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Preface

With the continuity of Moore’s law in the multicore era, the success of cloud
computing, and the emerging heterogeneous systems, parallelism pervades al-
most every domain of computing and information processing. This creates grand
challenges to computer architectures and systems, and puts enormous pressure
on the design of a new generation of tools and programming methods to har-
ness these systems. These challenges formed the core theme of APPT 2013. Our
two-day technical program of APPT 2013 provided an excellent venue capturing
some of the state of the art and practice in parallel architecture, parallel soft-
ware, concurrent and distributed systems, cloud computing, with a highlight on
computing systems for big data applications.

We believe this biennial event provides a forum for the presentation of this
community’s research efforts and exchanging viewpoints. We would like to ex-
press our thankfulness to all the colleagues who submitted papers and congrat-
ulate those whose papers were accepted. As an event that has taken place for
18 years, APPT aims at providing a high-quality program for all attendees. In
all, 62 papers were submitted, a 50% increase over the last conference. We ac-
cepted 30 papers: 18 as an oral presentation and 12 as a poster presentation.
The regular paper acceptance rate is 29%.

Most submissions were reviewed by three Program Committee(PC) members.
An online PC meeting was held during June 9–14. Consensus was reached for
each submission.

We would like to thank the authors for submitting their fine work to APPT
2013, and we would also like to show our sincere appreciation to this year’s
dream-team PC. The 18 PC members did an excellent job in returning high-
quality reviews in time and engaging in a constructive online discussion.

We would also like to thank the general chairs (Prof. Yong Dou and Mats
Brorsson), and the local organization, publicity and publication chairs for making
APPT 2013 possible. Finally, the contributions from our sponsors and support-
ers were invaluable: We would like to thank the China Computer Federation, the
Technical Committee on Computer Architecture of the China Computer Feder-
ation, the Royal Institute of Technology in Stockholm, the National Laboratory
for Parallel and Distributed Processing, and the State Key Laboratory of High
Performance Computing. Our thanks also goes to Springer for its assistance in
putting the proceedings together.

August 2013 Albert Cohen
Chenggang Wu
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Inference and Declaration of Independence
in Task-Parallel Programs

Foivos S. Zakkak1, Dimitrios Chasapis1, Polyvios Pratikakis1,
Angelos Bilas1, and Dimitrios S. Nikolopoulos2

1 FORTH-ICS, Heraklion, Crete, Greece
{zakkak,hassapis,polyvios,bilas}@ics.forth.gr

2 Queens University of Belfast, Belfast, United Kingdom
d.nikolopoulos@qub.ac.uk

Abstract. The inherent difficulty of thread-based shared-memory programming
has recently motivated research in high-level, task-parallel programming mod-
els. Recent advances of Task-Parallel models add implicit synchronization, where
the system automatically detects and satisfies data dependencies among spawned
tasks. However, dynamic dependence analysis incurs significant runtime over-
heads, because the runtime must track task resources and use this information to
schedule tasks while avoiding conflicts and races.

We present SCOOP, a compiler that effectively integrates static and dynamic
analysis in code generation. SCOOP combines context-sensitive points-to, control-
flow, escape, and effect analyses to remove redundant dependence checks at run-
time. Our static analysis can work in combination with existing dynamic analyses
and task-parallel runtimes that use annotations to specify tasks and their memory
footprints. We use our static dependence analysis to detect non-conflicting tasks
and an existing dynamic analysis to handle the remaining dependencies. We eval-
uate the resulting hybrid dependence analysis on a set of task-parallel programs.

Keywords: Task-Parallelism, Static Analysis, Dependence Analysis, Determin-
istic Execution.

1 Introduction

The inherent difficulty and complexity of thread-programming has recently led to the
development of several task-based programming models [1–4]. Task-based parallelism
offers a higher level abstraction to the programmer, making it easier to express parallel
computation. Although early task-based parallel languages required manual synchro-
nization, recent task-based systems implicitly synchronize tasks, using a task’s memory
footprint at compile or at run time to detect and avoid concurrent accesses or even pro-
duce deterministic execution [5–9]. In order for such a dependence analysis to benefit
program performance, it must (i) be accurate, so that it does not discover false depen-
dencies; and (ii) have low overhead, so that it does not nullify the benefit of discovering
extra parallelism.

Static systems detect possibly conflicting tasks in the program code and insert syn-
chronization prohibiting concurrent access to shared memory among all runtime in-
stances of possibly conflicting tasks. As this can be too restrictive, some existing static

C. Wu and A. Cohen (Eds.): APPT 2013, LNCS 8299, pp. 1–16, 2013.
© Springer-Verlag Berlin Heidelberg 2013



2 F.S. Zakkak et al.

systems speculatively allow conflicting task instances to run in parallel and use dynamic
techniques to detect and correct conflicts [6].

Dynamic dependence analysis offers the benefit of potentially discovering more par-
allelism than is possible to describe statically in the program, as it checks all runtime
task instances for conflicts and only synchronizes task instances that actually (not po-
tentially) access the same resources. However, dynamic dependence analysis incurs a
high overhead compared to hand-crafted synchronization. It requires a complex run-
time system to manage and track memory allocation, check for conflicts on every task
instance, and schedule parallel tasks. Often, the runtime cost of checking for conflicts
in pessimistic, or rolling back a task in optimistic runtimes becomes itself a bottleneck,
limiting the achievable speedup as the core count grows.

This paper aims to alleviate the overhead of dynamic dependence analysis with-
out sacrificing the benefit of implicit synchronization. We develop SCOOP, a compiler
that brings together static and dynamic analyses into a hybrid dependence analysis in
task-parallel programs. SCOOP uses a static dependence analysis to detect and remove
runtime dependence checks when unnecessary. It then inserts calls to the task-parallel
runtime dynamic analysis to resolve the remaining dependencies only when necessary.
Our work makes the following contributions:

– We present a static analysis that detects independent task arguments and reduces
the runtime overhead of dynamic analysis. We implement our analysis in SCOOP,
a source-to-source compiler for task-parallel C, using OpenMP-Task extensions to
define tasks and their memory footprints.

– We combine our static dependence analysis with an existing dynamic analysis,
resulting in an efficient hybrid dependence analysis for parallel tasks. SCOOP
uses the static dependence analysis to infer redundant and unnecessary dependence
checks and inserts custom code to use the dynamic analysis only for the remaining
task dependencies at runtime.

– We evaluate the effect of our analysis using an existing runtime system. On a rep-
resentative set of benchmarks, SCOOP discovers almost all independent task argu-
ments. In applications with independent task arguments, SCOOP achieved
speedups up to 68%.

2 Motivation

Consider the C program in Figure 1. This program has three global integer variables, a,
b and c (line 1) and a global pointer alias (line 2) that points to b. Function set()
copies the value of its second argument to the first (line 4) and function addto() adds
the value of its second argument to the value of its first (line 5). The two functions are
then invoked in two parallel tasks, to add c to b (lines 8–9) and to set the value of a
to the value pointed to by alias (lines 11–12). The first task reads and writes its first
argument, b, and reads from its second argument, c. Similarly, the second task writes
to its first argument, a, and reads from its second argument alias. The program then
waits at a synchronization point for the first two tasks to finish (line 14) and then spawns
a third task that reads from c and writes to a (lines 16–17).
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1 int a = 1, b = 2, c = 3;
2 int *alias = &b;
3

4 void set( int *x, int *y) { *x = *y; }
5 void addto(int *x, int *y) { *x += *y; }
6

7 int main() {
8 #pragma task inout(&b) in(&c)
9 addto(&b, &c);

10

11 #pragma task out(&a) in(alias )
12 set(&a, alias );
13

14 #pragma wait all
15

16 #pragma task out(&a) in(&c)
17 set(&a, &c);
18 }

Fig. 1. Tasks with independent arguments

To execute this program preserving the sequential semantics, the second task set
needs to wait until the value of b is produced by the first task, i.e., there is a dependence
on memory location b. Note, however, that since the third task cannot be spawned
until the first two return, memory location c is only accessed by the first task and a
is only accessed by the second. So, any dependence analysis time spent checking for
conflicts on a or c before it starts the first two tasks is unnecessary overhead that delays
the creation of the parallel tasks, possibly restricting available parallelism and thus the
scalability of the program. So, the #pragma task directive spawning these tasks
states that c and a are safe or independent arguments, that the analysis does not need
to track. For the same reason, both the arguments of the third task are safe, meaning it
can start to run without checking for dependencies.

Section 3 describes the static analysis we use to discover independent task arguments
like a and c above. Inferring that a task argument does not need to be checked for
dependencies requires verifying that no other task can access that argument. In short,
the static analysis infers this independence in three steps. First, we compute aliasing
information for all memory locations in the program. Second, we compute which tasks
can run in parallel; we do not need to check for conflicting arguments between for
example the second and third task in the example of Figure 1, even though a is accessed
by both, because the barrier prohibits them from running at the same time. Third, we
check whether a memory location (through any alias) is never accessed in parallel by
more than one task. We can then safely omit checking this location at runtime. We can
extend this idea by differentiating between read and write accesses and allowing for
concurrent reads without checking for dependencies, as long as no writes can happen
in parallel.
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Values v ::= n | () | λx . e
Expressions e ::= v | x | e; e | e e | ref e | ! e | e := e

| task(e1, . . . , en) {e} | barrier
Locations ρ ∈ L
CFG Points φ ∈ F
Tasks π ∈ T
Types τ ::= int | unit | (τ, φ) → (τ, φ) | ref ρ(τ )
Constraints C ::= ∅ | C ∪ C | τ ≤ τ | ρ ≤ ρ | φ ≤ φ

| ρ ≤ π | π‖π | φ : Barrier | φ : π
Environments Γ ::= · | Γ, x : τ

Fig. 2. λ‖: A simple task-based parallel language

3 Static Independence Analysis

This section presents the core algorithm of the independence analysis. To simplify the
presentation, we use a small language λ‖, and do not differentiate between reads and
writes. Section 4 describes how we extended our analysis to the C full programming
language.

3.1 The Language λ‖

Figure 2 presents λ‖, a simple task-parallel programming language. λ‖ is a simply-
typed lambda calculus extended with dynamic memory allocation and updatable ref-
erences, task creation and barrier synchronization. Values include integer constants n,
the unit value () and functions λx . e. Program expressions include variables x, func-
tion application e1 e2, sequencing, memory operations and task operations. Specifi-
cally, expression ref e allocates some memory, initializes it with the result of eval-
uating e, and returns a pointer to that memory; expression e1 := e2 evaluates e1 to
a pointer and updates the pointed memory using the value of e2; and expression ! e
evaluates e to a pointer and returns the value in that memory location. Expression
task(e1, . . . , en) {e} evaluates each ei to a pointer and then evaluates the task body
e, possibly in parallel. The task body e must always return () and can only access the
given pointers; if e is evaluated in a parallel task, the task expression immediately re-
turns (). Finally, expression barrier waits until all tasks issued until this point have
been executed.

3.2 Type System

We use a type system to generate a set of constraints C and infer independence of task
arguments. Figures 3(a) and 3(b) shows the type language of λ‖, which includes integer
and unit types, function types (τ, φ) → (τ, φ) and reference (or pointer) types ref ρ(τ).
We annotate function and reference types with inference labels φ and ρ, and use them
to compute the control flow graph among φ labels and the points-to graph among ρ la-
bels, respectively. Specifically, typing the program creates a constraint graph C, which



Inference and Declaration of Independence in Task-Parallel Programs 5

has three kinds of vertices. Location labels ρ annotating reference types abstract over
memory locations, control flow labels φ abstract over a control flow point in the pro-
gram execution, and task labels π abstract over parallel tasks in the program. Typing a
program e in λ‖ creates a constraint graph C. Constraint τ1 ≤ τ2 requires τ1 to be a
subtype of τ2. Constraint ρ1 ≤ ρ2 (ρ1 “flows to” ρ2) means abstract memory location
ρ2 references all locations that ρ1 references. Constraint φ1 ≤ φ2 means the execu-
tion of control flow point φ2 follows immediately after the execution of φ1. Constraint
ρ ≤ π (ρ “is an argument of” π) means an abstract memory location ρ is in the memory
footprint of task π. Constraint π1‖π2 (π1 “can happen in parallel with” π2) means there
may be an execution where tasks represented by π1 and π2 are executed in parallel.
Constraint φ : Barrier means there is barrier synchronization at control flow point φ of
all executions. Finally, constraint φ : π means there can be an execution where task π
is executed in parallel while control flow reaches point φ.

Figure 3(a) shows the type system for λ‖. Typing judgments have the form C;φ;Γ �
e : τ ;φ′, meaning program expression e has type τ under assumptions Γ and constraint
set C. Rules [T-INT] and [T-UNIT] and [T-VAR] are standard, with the addition of
control flow point φ as both starting and ending point. Rule [T-FUN] types function
definitions. The function type (τ1, φ1) → (τ2, φ2) includes the starting and ending con-
trol flow point of the function body. As with typing the other values, function definitions
do not change control flow point φ. Rule [T-SEQ] types sequence, where e1 must have
type unit , and the sequence expression has the type of e2. The ending control flow
point φ1 of e1 is the starting point of e2. The first two premises in rule [T-APP] type
the function expression e1 and argument e2 capturing the control flow order, the third
premise “inlines” the control flow of the function by setting the function starting point
immediately after the evaluation of the argument. The function application ends at φ2.
Rule [T-REF] creates a fresh label ρ that represents all memory locations produced by
the expression, and annotates the resulting type. Rules [T-DEREF] and [T-ASGN] are
straightforward, and type reference read and write expressions respectively.

Rule [T-TASK] types task creation expressions. The first premise types the task ar-
gument expressions e1, . . . , en with reference types in that control flow order. The next
three premises create a constraint that task π runs in parallel with control flow point φ′

of the task-create expression. The fifth premise marks all locations ρi of the arguments
as the footprint of task π, and the last premise requires the task body to have type unit .
The task’s control flow ends at any control flow point φ′′. Rule [T-BARRIER] types bar-
rier expressions, marking control flow point φ′ as a barrier synchronization operation.
Finally, rule [T-SUB] is standard subsumption.

3.3 Constraint Resolution

Applying the type system shown in Figure 3(a) generates a set of constraints C. To
infer task arguments that are safe to skip during the runtime dependence analysis, we
first compute the may-happen-in-parallel relation π1‖π2 among tasks by solving the
constraints C. Figure 3(b) shows the constraint resolution algorithm as a set of rewriting
rules that are applied exhaustively untilC cannot change any further. Here,∪⇒ rewrites
the constraints on the left to be the union of the constraints on both the left and right
side.
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[T-INT]

C;φ;Γ � n : int ; φ

[T-UNIT]

C;φ;Γ � () : unit ;φ

[T-FUN]
φ1−fresh C; φ1;Γ, x : τ1 � e : τ2;φ2

C;φ;Γ � λ x . e : (τ1, φ1) → (τ2, φ2);φ

[T-VAR]
Γ (x) = τ

C;φ;Γ � x : τ ;φ

[T-SEQ]
C; φ;Γ � e1 : unit ;φ1

C;φ1;Γ � e2 : τ ;φ2

C;φ;Γ � e1; e2 : τ ;φ2

[T-APP]
C;φ;Γ � e1 : (τ1, φ1) → (τ2, φ2);φ

′

C; φ′;Γ � e2 : τ1;φ
′′ C � φ′′ ≤ φ1

C;φ;Γ � e1 e2 : τ2;φ2

[T-REF]
C; φ;Γ � e : τ ;φ′

ρ−fresh

C;φ;Γ � ref e : ref ρ(τ );φ′

[T-DEREF]
C; φ;Γ � e : ref ρ(τ );φ′

C;φ;Γ � ! e : τ ;φ′

[T-ASGN]
C; φ;Γ � e1 : ref ρ(τ );φ′

C; φ′;Γ � e2 : τ ;φ′′

C;φ;Γ � e1 := e2 : τ ;φ′′

[T-TASK]
∀i ∈ [1..n] . C;φi;Γ � ei : ref

ρi(τi);φi+1 φ′, π−fresh C � φn+1 ≤ φ′

C � φ′ : π ∀i ∈ [1..n] . C � ρi ≤ π C;φ′;Γ � e′ : unit ;φ′′

C;φ1;Γ � task(e1, . . . , en)
{
e′
}
: unit ;φ′

[T-BARRIER]
φ′−fresh C � φ′ : Barrier C � φ ≤ φ′

C;φ;Γ � barrier : unit ;φ′

[T-SUB]
C; φ;Γ � e : τ ;φ′ C � τ ≤ τ ′

C; φ;Γ � e : τ ′;φ′

(a) Type Inference Rules

C ∪ {int ≤ int} ⇒ C
C ∪ {unit ≤ unit} ⇒ C

C ∪ {(τ1, φ1) → (τ2, φ2) ≤ (τ ′
1, φ

′
1) → (τ ′

2, φ
′
2)} ⇒
C ∪ {τ ′

1 ≤ τ1, τ2 ≤ τ ′
2, φ

′
1 ≤ φ1, φ2 ≤ φ′

2}
C ∪ {ref ρ1(τ1) ≤ ref ρ2(τ2)} ⇒ C ∪ {ρ1 ≤ ρ2, τ1 ≤ τ2, τ2 ≤ τ1}

C ∪ {ρ ≤ ρ′, ρ′ ≤ ρ′′} ∪⇒ {ρ ≤ ρ′′}
C ∪ {ρ ≤ ρ′, ρ′ ≤ π} ∪⇒ {ρ ≤ π}

C ∪ {φ1 ≤ φ2, φ1 : π} ∪⇒ {φ2 : π} when {φ2 : Barrier} /∈ C
C ∪ {φ : π1, φ : π2} ∪⇒ {π1‖π2}

(b) Constraint Solving Rules

Fig. 3. Constraint generation and solving

The first four rules reduce subtyping constraints into edges between abstract labels:
we drop integer and unit subtyping; we replace function subtyping with contravariant
edges between the starting control flow points and arguments, and covariant edges be-
tween the returning control flow points and results; and we replace reference subtyping
with equality on the referenced type (note both directions of subtyping) and a flow
constraint on the abstract location labels. The fifth rule solves the points-to graph by
adding all transitivity edges between abstract memory locations, and the seventh rule
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marks any locations aliasing task arguments also as task arguments. The seventh rule
amounts to a forwards data-flow analysis on the control flow graph. Namely, for every
control flow edge φ1 ≤ φ2 we propagate any task π that executes in parallel with φ1 to
also execute in parallel with φ2, unless φ2 is a barrier. Finally, the last rule marks any
two tasks π1 and π2 that both run in parallel with any control flow point φ, as also in
parallel with one another. We use C∗ to represent the result of exhaustively applying
the constraint resolution rules on a set C.

3.4 Task Argument Independence

Having solved the constraints C of a program, we can now infer independent task ar-
guments, namely arguments that cannot be accessed concurrently by any two parallel
tasks. Formally, we define the dependent set DC(ρ) of location ρ under constraints C
to be the set of tasks that can access ρ in parallel:

DC(ρ)
.
= {π | C∗ � ρ ≤ π}

We can now compute independent task arguments, i.e., memory locations that can be at
most accessed by one task:

C � Safe(ρ) ⇐⇒ |DC(ρ)| ≤ 1

4 Implementation

We have extended the algorithm presented in Section 3 to the full C programming
language in a compiler for task-parallel programs with implicit synchronization. To
handle the full C language, we make several assumptions concerning data- and control-
flow. Our pointer analysis assumes that all allocation in the program is done through
the libc memory allocator functions and that no pointers are constructed from inte-
gers. We treat unsafe casts and pointer arithmetic conservatively and conflate the related
memory locations. We perform field-inference for structs and type-inference for void*
pointers to increase the precision of the pointer analysis. We currently assume there is
no setjmp/longjmp control-flow.

The compiler is structured in three phases. The first extends the C front-end with
support for OpenMP-like #pragma directives to define tasks and task footprints. We
have chosen to mark task creation at the calling context, instead of marking a function
definition and have every invocation of the function create a parallel task for better pre-
cision; this way we are able to call the same function both sequentially or as a parallel
task without rewriting it or creating wrapper functions. The syntax for declaring task
footprints supports strided memory access patterns, so that we can describe multidi-
mensional array tiles as task arguments. When not explicitly given, we assume that the
size of a task argument is the size of its type.

The second phase uses a type-system to generate points-to and control flow con-
straints and solves them to infer argument independence, as described in Section 3. In
Section 3, however, we have made several simplifying assumptions to improve the pre-
sentation of the algorithm, that must be addressed when applying the analysis on the
full C language.
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Although in the formal presentation we do not differentiate between read and write
effects in the task footprint, we actually treat input and output task arguments differ-
ently. In particular, we match the behavior of the runtime system, which allows multiple
reader tasks of a memory location to run in parallel. Thus, we also mark task arguments
that are only read in parallel as independent.

To increase the analysis precision, we use a context-sensitive, field sensitive points-to
analysis, and a context-sensitive control flow analysis. In both cases, context sensitivity
is encoded as CFL-reachability, with either points-to or control flow edges that enter or
exit a calling context marked as special open or close parenthesis edges [10].

Finally, in several benchmarks tasks within loops access disjoint parts of the same
array. However, the points-to analysis treats all array elements as one abstract location,
producing false aliasing and causing such safe arguments to be missed. To rectify this,
in part, we have implemented a simple loop-dependence analysis that discovers when
different loop iterations access non-overlapping array elements. This (orthogonal) prob-
lem has been extensively studied in the past [11, 12], resulting in many techniques that
can be applied to improve the precision of this optimization.

The final phase transforms the input program to use the runtime system to create
tasks and perform dependence checks for task arguments not inferred or declared in-
dependent. As an optimization, the compiler produces custom code to interact with the
runtime structures instead of using generic runtime API calls. In particular, for each
#pragma task call, the compiler generates custom code that creates a task descrip-
tor (closure) with the original function as task body, registers the task arguments with
the runtime dependence analysis, and replaces the specified function call with the gen-
erated code.

We ran the resulting programs using the BDDT runtime [8] to perform dynamic
dependence analysis and check for any dependencies that are not ruled out statically.
The BDDT runtime system maintains a representation of every task instance and its
footprint at run time, and uses these to check for overlap among task arguments and
compare their access properties to detect task dependencies. To do that, BDDT splits
task arguments into virtual memory blocks of configurable size and analyzes depen-
dencies between blocks. Similarly to whole-object dependence analysis used in tools
such as SMPSs, SvS, and OoOJava, block-based analysis detects true read-after-write
(RAW) dependencies, or write-after-write (WAW) and write-after-read (WAR) anti-
dependencies between blocks, by comparing block starting addresses and checking their
access attributes. We selected BDDT for our experiments due to its good performance
and because it is easy to disable specific dynamic checks on specific task instances us-
ing its API. However, the SCOOP static independence analysis can be used to remove
unnecessary dynamic checks from other task-parallel runtimes with implicit synchro-
nization.

We used a region-based allocator to support dynamic memory allocation in tasks, and
allow for tasks that operate on complex data structures. This way, we extend BDDT to
handle task footprints that include dynamic regions specially: the task footprint lan-
guage allows several task arguments to belong to a dynamic region; the task footprint
then includes the region instead of the individual arguments, and SCOOP registers only
the region descriptor with the dependence analysis.
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Table 1. Benchmark description and analysis performance

Benchmark LOC Tasks Total Args Scalar Args Analysis (s) Graph Nodes Safe Args

Black-Scholes 3564 1 8 1 3.17 1790 6
Ferret 30145 1 2 0 699.05 85128 2
Cholesky 1734 4 16 8 1.06 7571 0
GMRES 2661 18 72 20 2.21 7957 9
HPL 2442 11 59 35 1.47 9330 0
Jacobi 1084 1 6 0 0.74 3980 0
FFT 2935 4 12 4 1.72 9750 3
Multisort 1215 2 8 4 1.02 4016 0
Intruder 6452 1 5 1 19.89 16855 3

5 Evaluation

We evaluated the effect of the static independence analysis in SCOOP on a set of repre-
sentative benchmarks, including several computational kernels and small-sized parallel
applications. We ran the experiments on a Cray XE6 compute node with 32GB mem-
ory and two AMD Interlagos 16-core 2.3GHz dual-processors, a total of 32 cores. We
compiled all benchmarks with GNU GCC 4.4.5 using the -O3 optimization flag. As is
standard in evaluation of task-parallel systems in the literature, we measured the per-
formance of the parallel section of the code, excluding any initialization and I/O at the
start and end of each benchmark. We used barriers to separate the initialization phase
from the measured computation. Finally, to minimize variation among different runs,
we report the average measurements over twenty runs for each benchmark.

We use the following benchmarks in our evaluation, listed in Table 1. Black-Scholes
is a parallel implementation of a mathematical model for price variations in financial
markets with derivative investment instruments, taken from the PARSEC [13] bench-
mark suite. Ferret is a content-based similarity search engine toolkit for feature rich
data types (video, audio, images, 3D shapes, etc), from the PARSEC benchmark suite.
Cholesky is a factorization kernel used to solve normal equations in linear least squares
problems. GMRES is an implementation of the iterative Generalized Minimal Resid-
ual method for solving systems of linear equations. HPL solves a random dense linear
system in double precision arithmetic. Jacobi is a parallel implementation of the Jaco-
bian method for solving systems of linear equations. FFT is a kernel implementing a
2-dimensional Fourier algorithm, taken from the SPLASH-2 [14] benchmark suite. It
is implemented in alternating transpose and computation phases. On each transpose the
data gets reordered, creating irregular dependencies between the two phases. Multisort
is a parallel implementation of Mergesort. Multisort is an alternative implementation of
the Cilksort test from Cilk [1]. It has two phases: during the first phase, it divides the
data into chunks and sorts each chunk. During the second phase, it merges those chunks.
Intruder is a Signature-based network intrusion detection systems (NIDS), from the
STAMP benchmark suite [15]. It processes network packets in parallel in three phases:
capture, reassembly, and detection. The reassembly phase uses a dictionary that con-
tains linked lists of packets that belong to the same session. The lists are allocated using
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Table 2. Impact of the analysis on performance

Benchmark
Task

Dynamic (ms)
Standard Static & Standard

Speedup
Instances Deviation Dynamic (ms) Deviation

Black-Scholes 234375 1618 5.83 % 963 4.51 % 1.68
Ferret 1000 3344 1.10 % 3344 1.33 % 1.00
Cholesky 45760 983 0.23 % 981 0.32 % 1.00
GMRES 5170 16640 4.42 % 13947 2.65 % 1.19
HPL 28480 1628 0.44 % 1574 0.37 % 1.03
Jacobi 204800 11499 0.39 % 11588 0.53 % 0.99
FFT 28864 2028 0.10 % 1849 0.29 % 1.10
Multisort 11264 3683 15.77 % 3446 15.15 % 1.07
Intruder > 4M 12572 1.23 % 10332 1.76 % 1.22

dynamic regions. Intruder issues a new task for each packet it receives. When a task
reassembles the last packet of a session it also executes the detection algorithm.

The second column (LOC) of Table 1 shows the size of each benchmark in lines of
code1. The third column (Tasks) shows the number of task invocations in the code. The
fourth column (Total Args) shows the total number of arguments of all task invocations.
We report the total number of arguments as each such argument incurs the additional
overhead of a runtime dependency check. The fifth column (Scalar Args) shows how
many of those arguments are scalars passed by value, since it is trivial for either the
programmer or the analysis to find them, thus we do not count them as independent
arguments discovered by the static analysis.

The last three columns of Table 1 show the performance and precision of the static
analysis. Namely, the sixth column (Analysis) shows the total running time of the static
dependence analysis in seconds. The seventh column (Graph Nodes) shows the num-
ber of nodes in the constraint graph. The last column (Safe Args) shows the number of
independent task arguments inferred by the analysis. Note that Ferret, the largest bench-
mark, creates the largest constraint graph, causing an analysis time of over 11 minutes.
This is because the context sensitive analysis has cubic complexity in the size of the
constraint graph.

Table 2 shows the effect of the optimization on the total running time of all bench-
marks, on 32 cores. Specifically, the second column (Task Instances) shows the total
number of task spawns by each benchmark during execution. The third column (Dy-
namic) shows the total running time in milliseconds for each benchmark, without using
the static analysis. Here, we use BDDT to perform runtime dependence analysis on
all the non-scalar task arguments of all tasks. The fourth column (Standard Deviation)
shows the standard deviation of the Dynamic total running time for twenty runs. The
fifth column (Static & Dynamic) shows the total running time in milliseconds for each
benchmark compiled with SCOOP, where the runtime dependence analysis is disabled
for any arguments found safe by the static analysis. The sixth column (Standard Devia-
tion) shows the standard deviation of the Static & Dynamic total running time. Finally,

1 We count lines of code not including comments after merging all program sources in one file.
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(a) Black-Scholes (b) Ferret (c) Intruder

Fig. 4. Comparison with alternative runtimes

the last column shows the speedup factor gained by removing redundant checks for ar-
guments found independent by the static analysis, compared to always checking argu-
ments dynamically. Note that even though the static analysis does not infer independent
task arguments in Multisort and HPL, we observe a speedup of 1.07 and 1.03 respec-
tively when compiling with SCOOP compared to the dynamic-only execution. This
happens because SCOOP generates code to interface directly with the BDDT runtime
internals, whereas the BDDT API may perform various checks, e.g., on scalar argu-
ments. We consider the 0.99 speedup (slowdown) in Jacobi to be well within the noise
due to cache effects, other processes executing, etc., as seen by the deviation observed
among twenty runs.

The dependence analysis is able to infer safe task arguments only in Black-Scholes,
Ferret, GMRES, FFT and Intruder. In these benchmarks, inferring independent argu-
ments has a large impact on the overhead and scalability of the dependence analysis,
producing substantial speedup over the original BDDT versions for four benchmarks.
The reduction of dependence analysis overhead is not noticeable in Ferret because the
tasks are very coarse grain. On the rest of the benchmarks (Cholesky, HPL, Jacobi and
Multisort) the dependence analysis fails to find any safe arguments. We examined all
benchmarks manually and found that there are no safe arguments.

For reference, we compare the three largest benchmarks with related parallel run-
times. We have ported each benchmark to all runtimes so that they are as comparable as
possible and express the same parallelism. Figure 4 shows the results. Specifically, Fig-
ure 4a compares four parallel implementations of Black-Scholes: the original Pthreads
and OpenMP implementations from the PARSEC benchmark suite, as well as two ports
of the OpenMP version into SMPSs and BDDT, using SCOOP. Note that SCOOP finds
and removes the redundant dependency checks. As Black-Scholes is a data-parallel ap-
plication, this removes most of the runtime overhead and matches in performance the
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fine-tuned Pthreads and OpenMP implementations. In comparison, the SMPSs runtime
scales up to 8 cores, mainly due to the overhead caused by redundant checks on inde-
pendent task arguments.

Figure 4b compares the original Pthreads implementation of Ferret with the SMPSs
and BDDT runtime. The Pthread version uses one thread to run each computation
phase, causing load imbalance. In comparison, BDDT and SMPSs perform dynamic
task scheduling that hides load imbalance and distributes computation to processors
more evenly. Although SCOOP detects and removes redundant runtime checks, Ferret
tasks are computationally heavy and coarse-grain, hiding the effect of the optimization.
The difference in performance between SMPSs and BDDT is mainly due to constant-
factor overheads in task scheduling.

Figure 4c compares the original Pthreads implementation of Intruder from the
STAMP benchmark, with a port for BDDT. The STAMP implementation uses software
transactional memory to synchronize threads, which causes high contention
effects above 8 cores, limiting performance. In comparison, BDDT incurs lower over-
heads and uses pessimistic synchronization that also removes the cost of rollbacks.

6 Related Work

Task Parallelism: There are several programming models and runtime systems that
support task parallelism. Most, like OpenMP [2], Thread Building Blocks [16], Cilk [1],
and Sequoia [3], use tasks to express recursive or data parallelism, but require manual
synchronization in the presence of task dependencies. That usually forces programmers
to use locks, barriers, or other synchronization techniques that are not point-to-point,
and result in loss of parallelism even among task instances that do not actually access
the same memory.

Some programming models and languages aim to automatically infer synchroniza-
tion among parallel sections of code. Transactional Memory [17] preserves the atom-
icity of parallel tasks, or transactions, by detecting and retrying any conflicting code.
Static lock allocation [18] provides the same serializability guarantees by automati-
cally inferring locks for atomic sections of code. These attempts, however, allow non-
deterministic parallel executions, as they only enforce race freedom or serializability,
not ordering constraints among parallel tasks.

Jade [19] is a parallel language that extends C with parallel coarse-grain tasks. Sim-
ilarly, StarSs, SMPSs and OpenMP-Ss [9, 20] are task-based programming models for
scientific computations in C that use annotations on task arguments to dynamically de-
tect argument dependencies between tasks. All of these runtimes could benefit from
independencies discovered by SCOOP to reduce the overhead of runtime checks.

Static analysis has been used in combination with dynamic analysis in parallel pro-
grams in the past. SvS [7] uses static analysis to determine possible argument depen-
dencies among tasks and drive a runtime-analysis that computes task dependencies with
overlapping approximate footprints. SvS assumes all tasks to be commutative and does
not preserve the original program order as SCOOP and BDDT. Prabhu et al. [21] define
sets of commutative tasks in parallel programs. The compiler uses this information to
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allow more possible orderings in a program and extract parallelism. As with all compiler-
only parallelization techniques, this approach is limited by over-approximation in static
pointer and control flow analyses that might cause many tasks to be run sequentially, be-
cause only two instances have clearly disjoint memory footprints. To avoid this, Comm-
Sets uses optimistic transactional memory, which is not suitable for programs with high
contention or effects that cannot be rolled back.

Deterministic parallelism: Recent research has developed methods for the determin-
istic execution of parallel programs. Kendo [22] enforces a deterministic execution for
race-free programs by fixing the lock-acquisition order, using performance counters.
Grace [23] produces deterministic executions of multithreaded programs by using pro-
cess memory isolation and a strict sequential-order commit protocol to control thread
interactions through shared memory. DMP [24] uses a combination of hardware owner-
ship tracking and transactional memory to detect thread interactions through memory.
Both systems produce deterministic executions, even though they may not be equivalent
to the sequential program. Instead, they enforce the appearance of the same arbitrary in-
terleaving across all executions.

Out-of-Order Java [5] and Deterministic Parallel Java [6], task-parallel extensions
of Java. They use a combination of data-flow, type-based, region and effect analyses to
statically detect or check the task footprints and dependencies in Java programs. OoO-
Java then enforces mutual exclusion of tasks that may conflict at run time; DPJ restricts
execution to the deterministic sequential program order using transactional memory to
roll back tasks in case of conflict. As task footprints are inferred (OoOJava) or checked
(DPJ) statically in terms of objects or regions, these techniques require a type-safe lan-
guage and cannot be directly applied on C programs with pointer arithmetic and tiled
array accesses.

Chimera [25] proposes a hybrid system that detects and transforms races, so that the
runtime system can then enforce deterministic execution.

Static and Dynamic Dependence Analysis: Static dependence analysis is often em-
ployed in compilers and tools that optimize existing parallel programs or for auto-
matic parallelization. Early parallelizing compilers used loop dependence analysis to
detect data parallelism in loops operating on arrays [12, 26], and even dynamic depen-
dence analysis to automatically synchronize loops [27] These systems, however do not
handle inter-loop dependencies and do not work well in the presence of pointers. Re-
cently, Holewinski et al. [28] use dynamic analysis of the dynamic dependence graph of
sequential execution to detect SIMD parallelism.

Several pointer analyses have been used to detect dependencies and interactions in
parallel programs. Naik and Aiken [29] extend pointer analysis with must-not-alias
analysis to detect memory accesses that cannot lead to data races. Pratikakis et al. [30,
31] use a context-sensitive pointer and effect analysis to detect memory locations ac-
cessed by many threads in the Locksmith race detector. SCOOP uses the pointer anal-
ysis in Locksmith to detect aliasing between task footprints, and extends Locksmith’s
flow-sensitive dataflow analysis to detect tasks that can run in parallel.
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7 Conclusions

This paper presents SCOOP, a compiler for a task-parallel extension of C with implicit
synchronization. SCOOP targets task parallel runtimes such as BDDT and OpenMP-
Task, that use dynamic dependence analysis to automatically synchronize and schedule
parallel tasks. SCOOP uses static analysis to infer safe task arguments and reduce the
runtime overhead for detecting dependencies. We have tested SCOOP using the BDDT
runtime system on a set of parallel benchmarks, where it finds and removes unnecessary
runtime checks on task arguments. Overall, we believe that task dependence analysis
is an important direction in parallel programming abstractions, and that using static
analysis to reduce its overheads is a major step in its practical application.
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Abstract. We present BDDT, a task-parallel runtime system that dynamically
discovers and resolves dependencies among parallel tasks. BDDT allows the pro-
grammer to specify detailed task footprints on any memory address range, multi-
dimensional array tile or dynamic region. BDDT uses a block-based dependence
analysis with arbitrary granularity. The analysis is applicable to existing C pro-
grams without having to restructure object or array allocation, and provides flex-
ibility in array layouts and tile dimensions.

We evaluate BDDT using a representative set of benchmarks, and we compare
it to SMPSs (the equivalent runtime system in StarSs) and OpenMP. BDDT per-
forms comparable to or better than SMPSs and is able to cope with task granular-
ity as much as one order of magnitude finer than SMPSs. Compared to OpenMP,
BDDT performs up to 3.9× better for benchmarks that benefit from dynamic
dependence analysis. BDDT provides additional data annotations to bypass de-
pendence analysis. Using these annotations, BDDT outperforms OpenMP also in
benchmarks where dependence analysis does not discover additional parallelism,
thanks to a more efficient implementation of the runtime system.

Keywords: Compilers and runtime systems, Task-parallel libraries, Middleware
for parallel systems, Synchronization and concurrency control.

1 Introduction

Task-parallel programming models [2,8,11] offer a more abstract, more structured way
for expressing parallelism than threads. In these systems the programmer only describes
the parts of the program that can be computed in parallel, and does not have to manually
create and manage the threads of execution. This lifts a lot of the difficulty in describing
parallel, independent computations compared to the threading model, but still requires
the programmer to manually find and enforce any ordering or memory dependencies
among tasks. Moreover, these models maintain the inherent nondeterminism found in
threads, which makes them hard to test and debug, as some executions may not be easy
to reproduce.
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Programming models with implicit parallelism [4,10,13,14] extend task-parallel pro-
gramming models with automatic inference of dependencies, requiring the programmer
to only describe the memory resources required in each task. They are easier to use, as
programmers need not discover and describe parallelism —which might be unstructured
and dynamic— but can instead annotate the program using compiler directives [10,14]
or language extensions [4,6]; the compiler and runtime system then discover paralleliza-
tion and manage dependencies transparently.

Dynamic dependence analysis can discover more parallelism than possible to de-
scribe statically in the program, as it only synchronizes tasks that actually (not poten-
tially) access the same resources. In order for a dynamic dependence analysis to benefit
program performance, it must (i) be accurate, so that it does not discover false depen-
dencies; and (ii) have low overhead, so that it does not nullify the benefit of discov-
ering extra parallelism. Most existing such systems require the programmer to restrict
task footprints into either whole and isolated program objects, one-dimensional array
ranges, or static compile-time regions. This may cause false dependencies in programs
where tasks have partially overlapping or unstructured (irregular) memory footprints,
or disallow tasks that operate on a multidimensional tile of a large array or on dynamic
linked data structures.

SMPSs [12], a state-of-the-art implementation of the StarSs programming model
for shared-memory multicores with implicit parallelism, supports non-contiguous array
tiles and non-unit strides in task arguments. This is, however, at the cost of reduced
parallelism due to overapproximation of memory address ranges and high overhead for
maintaining a complex data structure used to discover partial overlaps.

This paper presents BDDT, a task-parallel runtime system that dynamically dis-
covers and resolves dependencies deterministically among parallel tasks, producing
executions equivalent to a sequential program execution. BDDT supports a provably
deterministic task-based programming model [15]. Lifting the above restrictions of ex-
isting systems, BDDT allows the programmer to specify detailed task footprints on
any, potentially non-contiguous, memory address range, multidimensional array tile, or
dynamic region. To allow this, we use a block-based dependence analysis with arbi-
trary granularity, making it easier to apply to existing C programs without having to
restructure object or array allocation, introduce buffers and marshaling, or change the
granularity of task arguments.

Overall, this paper makes the following contributions:

– We present a novel technique for block-based, dynamic task dependence analy-
sis that allows task arguments spanning arbitrary memory ranges, partial argument
overlapping across tasks, dependence tracking at configurable granularity, and dy-
namic memory management in tasks. The analysis is tunable to balance accuracy
and performance.

– We implement this dependence analysis in BDDT, a runtime system for schedul-
ing parallel tasks. Our implementation is adaptive, the programmer can enable or
disable the dependence analysis for each task argument independently to minimize
overhead when the analysis is not necessary.

– We evaluate the performance of our runtime system. On a representative set of
benchmarks, BDDT performs comparable to or better than SMPSs and handle
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arbitrary tile sizes and array dimensions. In several benchmarks, dynamic depen-
dence analysis in BDDT discovers additional parallelism, producing speedups of
up to 3.9× compared to OpenMP using barriers. BDDT outperforms OpenMP on
embarrassingly parallel tasks without dependencies, by using hand-added annota-
tions to disable the dependence analysis.

2 Dataflow Execution Engine Design

BDDT uses a dataflow execution engine based on block-level dependence analysis for
identifying parallel tasks. Task arguments are annotated —at task-issue time— with
data access attributes, corresponding to three access patterns: read (in), write (out)
and read/write (inout). The runtime system detects dependencies between tasks by
comparing the access properties of arguments of different tasks that overlap in memory.
To do that, BDDT splits arguments into virtual memory blocks of configurable size and
analyzes dependencies between blocks. Similarly to whole-object dependence analysis
used in tools such as SMPSs and SvS, block-based analysis detects true (RAW) or anti-
(WAW, WAR) dependencies between blocks by comparing block starting addresses and
checking their access attributes. Block-based analysis can also detect dependencies be-
tween tasks that whole object analysis does not: Partially overlapping arguments are
dependencies if the overlapping part is written by at least one task. Furthermore, tasks
can have arguments that are non-contiguous in memory, such as a tile of a multidimen-
sional array or a collection of objects in random memory locations.

There are two potential drawbacks to block-based dependence analysis. First, as the
dependence analysis is performed per block, the runtime system must sometimes re-
peat the same action across all blocks in an argument, increasing overhead. In contrast,
whole-object dependence tracking must perform each action only once per argument.
Second, false positives may occur when data structures are not properly laid out or
when the block size is too large. BDDT overcomes both problems. A custom memory
allocator integrates the metadata with the application data to eliminate the overhead of
metadata lookup, and allows the sharing of metadata between blocks. Moreover, BDDT
allows the user to adjust block granularity, to be coarse enough to amortize overhead,
yet fine enough to avoid false positives. In our experience, selecting an appropriate
block size is quite straightforward.

Each task in the program goes through four stages: task issue performs dependence
analysis, queuing the task if any pending dependencies are unresolved; task scheduling
releases a task for execution when all its dependencies are resolved, selects a worker’s
queue and inserts the task; task execution executes it; and task release resolves pending
dependencies of an executed task, potentially releasing new tasks for execution. The
dynamic dependence analysis induces overheads in the issue and release stages, for
checking dependencies and task wakeup, respectively. We design the data structures
used in the dependence analysis specifically to minimize these overheads.

Retrieving the metadata that track dependencies for each byte, object, or block of
memory accessed by a task can be expensive. A general solution to this is to maintain a
hash from memory addresses to metadata [12], although this incurs a large overhead per
access. A faster way is to attach the metadata directly to the actual data payload [1,18],
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but this may make metadata visible to the programmer, require significant additional
changes to the program source and memory layout. We achieve the best of both solu-
tions using a custom memory allocator that allows for fast lookup of metadata, while
still hiding metadata management in the runtime system.

The dependence analysis on blocks is quite similar to dependence tracking on whole
objects. There can be, however, extra overhead, as a task argument may consist of mul-
tiple blocks, and dependencies must be tracked on each such block. BDDT allows mul-
tiple blocks to share the same metadata information. Then, critical dependence tracking
operations operate on one metadata element instead of multiple, reducing the overhead
of dependence tracking. We use this mechanism in particular to track dependencies
on strided arguments—usually multidimensional array tiles: while dependencies are
tracked on each block individually, the runtime system registers a single metadata ele-
ment for all the blocks in the tile.

To detect task dependencies, we also allow multiple metadata elements to describe
the same block, capturing the task order. Specifically, each written task argument (out
or inout footprint) creates a new metadata element to describe the argument blocks,
and each read (in) task argument creates one or more metadata element to describe
the argument blocks. Read arguments may result in multiple metadata elements, if the
relevant blocks were described by more than one metadata elements (fragmentation)
before the new task is created; this captures the scenario of a consumer task waiting
for multiple producers. This design allows for an efficient dependence analysis while
limiting the complexity of accessing and updating the same data structures for every
block.

Using solely memory address ranges to describe the memory footprint of a task re-
stricts tasks to finite footprints. Moreover, it prohibits tasks from allocating memory, as
the new range is yet unknown at task-invocation time, and thus cannot be part of the
footprint. To address these issues and allow tasks to operate on dynamic data structures,
we also use a region-based allocator [17]. A dynamic region (or zone) is an isolated
heap in which objects can be dynamically allocated. A BDDT task footprint can in-
clude dynamic regions, meaning that all memory allocated in a region is in the task’s
footprint, without having to enumerate the actual ranges. Moreover, a task can then allo-
cate new memory inside a region in its footprint (when it has an out or inout effect).
Dynamic regions are directly linked in the dependence analysis by allocating exactly
one metadata element per region, and treating it as exactly one memory location.

3 Implementation

BDDT constructs a task dependence graph dynamically, by deducing task dependencies
from the access modes and blocks in task footprints. We design the system so that
identifying and retrieving dependent tasks causes minimal overhead.

The runtime system consists of (i) a custom block-based memory allocator; (ii) meta-
data structures for dependence analysis; and (iii) a task scheduler. The two metadata
types include (i) task elements; and (ii) block elements. The memory allocator is de-
signed to facilitate fast lookup of block elements that model the outstanding and exe-
cuting tasks operating on these blocks, and to coalesce runtime system operations on
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blocks that are used in the same way, e.g., consecutive blocks forming a single task
argument. This key optimization in the design in the runtime reduces redundancy and
saves both time and space.

3.1 Task Elements

Each task metadata element represents a dynamic instance of a task. Task elements con-
tain all the essential metadata that is necessary to execute a task, including the closure:
a function pointer, the number of arguments, and the address, size and access attributes
for each argument. BDDT supports strided arguments specified as a base address, the
size and number of elements, and the stride (in bytes) between consecutive elements.
Arguments consisting of multiple contiguous blocks are also considered as strided ar-
guments by setting the stride equal to the block size.

Each task element contains a list of dependent tasks: tasks that wait for this task to
finish. New task elements are appended to this list whenever a new dependent task is
issued. The dependent task list is also used during task release to check whether any
of the dependent tasks becomes ready to execute. We implement this check using an
atomically updated join counter, which tracks the number of task arguments that are not
yet ready. As a task finishes execution and is released, it reduces the counters of all task
elements in its dependent list.

3.2 Block Elements

Block metadata elements capture the running and outstanding tasks that operate on a
particular collection of data blocks. They facilitate the construction of the task graph as
dependencies between tasks are derived from the data blocks that they access. A BDDT
block metadata element may represent a collection of blocks; in contrast, systems im-
plementing object-based dependence tracking would use one block metadata element
per object. Conversely, a collection of blocks may correspond to multiple block ele-
ments describing operations on that collection. A new block metadata element is al-
located for each task with a write effect (i.e., out or inout). These block elements
are strictly ordered from the youngest (most recently issued) tasks to the oldest (least
recently issued) tasks. Moreover, every block metadata element contains a list of task
elements that take the corresponding collection of blocks as a task argument. This list is
used at task issue to link the newly issued task on the dependent task list of older tasks
that have overlapping arguments.

Block metadata elements conceptually include information about the access mode
of the collection (in, inout, out). In fact, for space optimization, there can be up
to two access modes per block metadata element: an in mode, followed by an out
or inout mode. All task elements with in effect in the task list of a block metadata
element store an additional pointer to the first non-in task in the list. The reason for
this is that, in the common case, a series of tasks with in mode is always followed
by a single task with out or inout mode. By construction, the metadata elements
reveal the parallelism between tasks: tasks listed in the same block metadata element
may execute in parallel, while tasks in a younger block element must wait until all tasks
in an older block element have finished execution.
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3.3 Memory Allocator

BDDT uses a custom memory allocator to embed dependence analysis metadata in
the allocator’s metadata structures1. The allocator partitions the virtual address space
in slabs and services memory allocation requests from such slabs. Memory allocators
typically manage multiple slabs and allocate chunks of the same size in the same slab.
BDDT divides the slabs in blocks of configurable but fixed size. For every data block in
a slab, there is also room provisioned to store a pointer to index the metadata elements,
as discussed in Section 3.2.

(a) Task 1 Issue (b) Task 2 Issue

(c) Task 3 Issue (d) Task 4 Issue

Fig. 1. Memory allocation and dependence analysis metadata

Figure 1(a) shows the structure of such a slab. While data blocks are allocated starting
from one end of the slab, pointers to the metadata for these blocks are allocated starting
from the opposite end of the slab. Thus, there may be fragmented (unusable) memory
in the slab, the amount of which is bounded by the block size. All shared memory and
metadata is bulk-deallocated upon completion of all tasks. As such, BDDT does not
need special handling for fragmentation. Moreover, by using slabs of fixed size and
alignment, we can calculate the address of a block’s metadata through very efficient

1 Several parallel runtime systems implement custom memory allocators for performance rea-
sons, e.g. Cilk++ and Intel TBB. This is not a limitation of the usability of the programming
model.
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integer arithmetic on the block address. This also increases locality, as the metadata
pointers of consecutive blocks are located at neighboring addresses.

The metadata pointers stored in the slab implement collections of blocks: a collection
of blocks is a group of blocks that are operated on by the same task and will be available
as a task argument together. We optimize dependence tracking by mapping all blocks in
a collection to the same metadata elements. BDDT implements merging of collections
of blocks simply by assigning a pointer to the same metadata element to all blocks, and
splits collections of blocks by assigning a new pointer to a subset of the blocks.

For example, Figure 1(a) shows the state of memory after issuing task T1, which
accesses 4 different blocks as an inout strided argument. When issuing T1, BDDT
registers one metadata element (M1) for the four blocks and sets the slab pointers of the
blocks to M1. In addition, T1’s task element is inserted in M1’s linked list of tasks. In
the state shown, task T1 is executing or pending to execute.

3.4 Task Issue

During task issue, BDDT identifies dependencies between the new task and older tasks
by scanning all data blocks in the task arguments and analyzing the corresponding meta-
data elements. Note that blocks operated on in the same way are mapped to the same
metadata element. As such, a task with a large memory footprint may still require only
a few of the following actions. Depending on the access mode (in, out, or inout),
and any outstanding tasks that access the same data, BDDT either immediately sched-
ules the task, or stores it for later scheduling. If the task touches a memory block for
the first time, BDDT creates an empty block metadata element for each collection of
blocks with the same access mode.

Handling in arguments: If the most recent block metadata element contains writer
tasks, then BDDT iterates through the metadata’s list and registers the new task in the
list of dependent tasks of all the linked task elements. It also increments the join counter
by one in every task element it finds. Next, BDDT creates a new metadata element in
the youngest position of the metadata element list for the current collection of blocks,
and adds the new task to the new metadata element’s task list. Alternatively, if the
most recent metadata element contains only reader tasks, then the new task element
is simply added to its task list. Note that the operations on the metadata elements are
performed only once for all blocks sharing the same metadata elements, i.e., they have
equal pointers in the memory allocators slab at the start of task issue. The equality of
slab pointers is maintained after task issue for all blocks accessed by the new task. If the
collection contains blocks that are not accessed by the new task, then their slab pointers
are not updated. This results in a split of the collection.

Handling inout and out arguments: Such arguments similarly benefit from the op-
timization of operating on collections of blocks that have the same slab pointer. If the
most recent metadata element contains writer tasks, then BDDT iterates through the
metadata’s task list and adds the new task to the dependent list of all the task elements.
It also increments the join counter by one for every task element on the list, creates a



24 G. Tzenakis et al.

new metadata element, and inserts the new task in its task list. If the most recent meta-
data element contains readers but no writers, BDDT again adds a new metadata element.
This is necessary because all blocks in the collection are mapped to this new metadata
element. The new task is again inserted in the task list in the metadata element, and in
the dependent task lists of each task in the previous metadata element.

Collections of blocks are merged when blocks with different metadata elements are
passed as part of the same out or inout argument. In this case, a new metadata ele-
ment is added and the slab pointers for each block are set to point to the new metadata
element. This results in a merge of blocks in a collection and accelerates future depen-
dence analysis.

As an example, in Figure 1(b), assume that while task T1 is running, the program
spawns new tasks T2. Task T2 reads and writes four blocks in inout mode, where
one block overlaps with the footprint of T1. To issue T2, BDDT creates a new metadata
element (M2), and iterates through the linked list of M1 to place T2 in T1’s dependence
list. T2 becomes the first node in the linked list of M2. Finally, BDDT alters all slab-
pointers corresponding to the blocks in T2’s footprint (including that of the overlapping
block) to point to M2.

Continuing the example, Figure 1(c) shows the issue of task T3. Task T3 reads five
contiguous blocks in in mode. These blocks partially overlap with the memory foot-
print of T1. Two new metadata elements are created: M3 that models accesses to the
block accessed by both T1 and T3, and M4 that models accesses to the remaining
blocks. The slab pointers are updated accordingly, splitting the collection of blocks
accessed by T1 to reflect different subsequent usage. Task T3 is linked in the dependent
tasks list of T1.

Finally, Figure 1(d) shows the issue of task T4. T4 reads 3 contiguous blocks in
in mode. This argument overlaps with the T1/T3 footprint intersection (M3) and it
partially overlaps with the collection of blocks that is accessed uniquely by T3 (M4).
Consequently, two new metadata elements are created. M5 complements the M3 meta-
data element while M6 models accesses to part of M4. M4 persists and models the
blocks accessed by T3 but not by T4. T4 is inserted in the list of dependent tasks of T1
because it has a dependence with T1.

Note that metadata elements are recycled when they are no longer used: when the
last slab pointer to a metadata element is removed, the metadata element is freed, as is
the case for M3 in the example. Note also that, in total, 11 blocks are accessed, but due
to the coalescing of metadata elements between blocks that are accessed in the same
way, only 6 metadata elements are allocated.

3.5 Task Release and Scheduling

BDDT is based on a master-worker program model. The master is responsible for task
issue and dependence analysis. The workers concurrently perform task scheduling, exe-
cution and release. The master can also operate as a worker, as discussed below. On task
completion, the finished task walks through its dependence list and decrements by one
the dependence counter of every dependent task. Tasks with no pending dependencies
are pushed for execution.
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BDDT schedules a task for execution whenever all its dependencies are satisfied.
Each worker thread has its own queue of ready tasks. Queues have finite length and are
implemented efficiently, as concurrent arrays. The master thread has its own task queue
and can operate as a worker when the queues of all workers are full.

The master issues ready tasks to worker queues round-robin. Workers issue tasks to
their own task queues to preserve memory locality. If a worker’s task queue becomes
full, the worker issues tasks to task queues of other workers round-robin. In case there
is no empty slot in any task queue, the task is executed synchronously by the issuing
thread. Any thread can steal tasks from any other thread’s task queue in case its own
task queue is empty.

Task queues are allocated in a NUMA aware, first-touch policy. NUMA aware al-
location is important to reduce remote memory accesses inside the critical path of the
worker thread. Ready task queues support lock-free dequeuing with the utilization of
atomic primitives. A bit vector indicates the free slots in the queue. We use the atomic
“bit scan forward” and “bit test and set/reset” instructions of x86 to manipulate this
vector. The queue allows any number of dequeue operations and up to one enqueue op-
eration to occur concurrently. Enqueue operations must therefore be mutually exclusive
by means of a spin-lock. Each task queue has a fixed size of 32 slots which is imposed
by the atomic primitives used to implement the task queues.

3.6 Complexity Analysis and Discussion

BDDT incurs overhead for task issue and task release. Task release overhead depends
on the shape of the task graph: The runtime system receives a finished task from the
scheduler and inspects its dependent task list to locate ready tasks. We assume that the
average out-degree in the task graph is dout, at least in the part of the task graph that
is dynamically generated. Task release then takes O(dout) operations. Note that BDDT
shares metadata elements between blocks in the same collection, so the dependent task
list is scanned only once per collection. For the remaining blocks, only the slab pointers
may have to be updated. Assuming an average collection size of C blocks and N blocks
per task, then task release takes O(dout NC ) operations on average. In practice, sharing
of metadata elements reduces task release overhead by more than 50% for arguments
having more than 64 blocks.

Task issue has similar complexity. If prior producers of a block are still executing,
then the runtime system locates the metadata of a block with a single operation on the
bits of the block address in O(1) time and a new metadata element is created. The issued
task is linked to all tasks in the last-issued task list of the prior metadata element, taking
O(din) operations assuming an average in-degree din in the task graph. Furthermore, the
slab pointers of all blocks in a collection are updated. In total, task issue takes O(din N

C )
operations on average. Note that the overhead of merging and splitting collections is
included in the presented formulas as they are realized by setting the slab pointers.

To put the overheads in perspective, we compare BDDT to SMPSs [12]. The latest
version of SMPSs that we use as a comparison has less functionality than BDDT: it
handles only multi-dimensional array tiles, encoded with a binary representation, thus
disallowing arbitrary pointer arithmetic. The representation is approximate and subject
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to aliasing and alignment constraints, which restricts the acceptable tile and array sizes
to powers of two and is prone to false positives.

Dependence detection in SMPSs requires encoding of tiles in their binary represen-
tation, taking a number of operations proportional to the number of bits in an address.
SMPSs walks a tree data structure to detect overlap with other tiles, updates the tree
by adding the tile or updates the metadata of an already existing tile. These operations
take O(din N

R logT ), where R is the average tile size expressed in blocks and T is the
number of tiles in the tree. The tile size may be less than the argument size N because
tiles must be split to eliminate false positives, with R = O(N) in the worst case.

Although comparisons between block size and array length, and between average
collection size C and average tile size R are not trivial, we can conclude that BDDT
has the advantage that the appropriate metadata elements are identified in O(1), while
SMPSs requires O(logT ) time to locate metadata elements of overlapping task argu-
ments.

4 Experimental Analysis

We ran all experiments on a Cray XE6 compute node with 32GB memory and two
AMD Interlagos 16-core 2.3GHz dual-processors, i.e. a node with a total of 32 cores
and 8 cores per processor. Every pair of cores shares one FPU, possibly reducing float-
ing point arithmetic performance. Each 8-core processor has its own NUMA partition,
yielding a total of 4 NUMA partitions with 8 GB of DRAM per partition. To uniformly
distribute application data on all NUMA nodes, we initialize input data in parallel. Each
core allocates and touches a part of the input array(s) used in each benchmark, so that
all NUMA partitions perform approximately the same number of off-chip memory ac-
cesses during execution.

4.1 Benchmarks

We use a set of task-based benchmarks to evaluate BDDT. All benchmarks use row-
major (C-language) array layout. Ferret is taken from the PARSEC benchmark suite [5]
and Intruder is from the STAMP benchmark suite [7]. Cholesky, FFT, and Jacobi are
SMPSs benchmarks [12] and porting them to BDDT requires only trivial changes.

We compare the performance of the task-based benchmarks with equivalent OpenMP
implementations when available, so that both use the same parallelization strategy and
parameters, modulo the removal of barriers in the task-based version. We compare
against OpenMP in two contexts: First, we measure the performance gain of dynamic
dependence analysis in applications where OpenMP requires barriers to enforce depen-
dencies. Second, we measure the overhead cost of the dynamic dependence analysis
using applications with ample task parallelism and few or no dependencies.

The block size used in BDDT to partition task arguments affects the overhead and
accuracy of dynamic dependence analysis. For the block linear algebra benchmarks that
work on two-dimensional tiles of the input array, we set the block size to the row size
of a tile. Multisort recursively splits an array until a certain threshold, which we set as
the BDDT block size.
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(a) Cholesky (b) FFT (c) Jacobi

(d) Multisort (e) Intruder (f) Ferret

Fig. 2. BDDT, SMPSs and OpenMP on Interlagos

Cholesky is a factorization kernel that solves normal equations in linear least squares
problems. The kernel can be decomposed into four tile operations, each of which cor-
responds to a task in the benchmark. Dependencies among tasks create an irregular
task graph, requiring the OpenMP implementation to use barriers between phases. This
limits parallelism across outermost iterations of the code. Both SMPSs and BDDT over-
come this limitation using dynamic dependence analysis. Figure 2(a) shows the per-
formance of Cholesky for a 4096×4096 double precision matrix and 128×128 tiles.
BDDT performs 3.9× better than OpenMP on 32 cores, due to the extraction of ad-
ditional parallelism. Moreover, BDDT matches the SMPSs performance with less than
2% deviation. Both BDDT and SMPSs versions of the benchmark achieve a top speedup
of 14 on 32 cores, whereas the top speedup of the OpenMP version is 3.5.

FFT involves alternating phases of transposing a two-dimensional array and com-
puting one-dimensional FFT. We use the FFTW library for the 1-D FFT computations;
FFTW requires a row-wise layout in memory for the input array, which forces each FFT
calculation task to operate on an entire row of the array. In contrast, transposition phases
can break the array into tiles, so the transpose tasks’ arguments are non-contiguous array
tiles. Because of this difference in the memory layout of task arguments, the OpenMP
version must use barriers between phases to ensure correctness. Dynamic dependence
analysis in BDDT overcomes this limitation and exploits parallelism across phases, thus
permitting transpose and FFT tasks to overlap. Figure 2(b) shows the performance of
a 2-D FFT on 16M complex double-precision elements with BDDT and OpenMP. The
input array is 4096×4096 elements and the transpose tile size is 128×128. OpenMP
outperforms BDDT by up to 3% when the code runs with up to 4 cores, due to the
cost of dynamic dependence analysis. Using more than 4 cores, BDDT extracts more
parallelism than OpenMP and performs up to 50% better on 32 cores. BDDT still man-
ages an overall speedup of 16× using 32 cores, whereas OpenMP achieves a maximum
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speedup of 11×. Furthermore, SMPSs has a performance advantage over BDDT by 3%
on 32 cores.

Jacobi is a common method for solving linear equations. Each task in Jacobi works
on a tile of the array. The kernel is an iterative method, so we keep an input and an out-
put array and swap arrays from one iteration to the next. Dynamic dependence analysis
allows tasks from consecutive iterations to execute in parallel by keeping two arrays
as input and output and swapping them from one iteration to the next. In contrast, the
OpenMP implementation must issue a barrier between outermost iterations of the ker-
nel. We tested Jacobi using a 4096×4096 array and 128×128 tile size. The kernel is
data parallel, communication bound and memory intensive, thus highlighting the anal-
ysis overhead. In BDDT and SMPSs, overheads dominate execution time, yielding a
2.3× slowdown compared to OpenMP on 32 cores. The scalability of the BDDT version
of the code is also inferior to that of OpenMP: maximum speedup with BDDT reaches
2.1 vs. 3.1 with OpenMP. BDDT allows the programmer to selectively apply or turn
off the dependence analysis per task argument. The “w/o analysis” line in Figure 2(c)
shows the performance of BDDT with dependence analysis disabled for all arguments,
via data annotations. BDDT performs identical to OpenMP on up to 16 cores. For 16
cores or more, BDDT outperforms OpenMP by 15% to 45%, a difference that increases
with the core count. The result indicates that BDDT’s implementation of the runtime
system is efficient, scalable, and can be used by both conventional task-based models
and advanced models with out-of-order task execution capabilities.

Multisort is a parallel sorting algorithm from the Cilk distribution [11]. The algo-
rithm is a parallel extension of ordinary Mergesort. Multisort recursively divides an
array in halves up to a threshold, sorts each half, and merges the sorted halves, with
each merge task working on overlapping parts of the array. OpenMP requires barriers
between merge phases of the algorithm. Figure 2(d) shows the performance of Multisort
on an array of 32M integers, with a threshold of 128K elements for stopping recursive
subdivision. BDDT extracts more parallelism than OpenMP and achieves up to 35%
better performance on 32 cores. Specifically, BDDT is 3.5× faster on 32 cores, while
the top speedup of the OpenMP version is 2.7. SMPSs presents a performance advan-
tage of 20% on average for small number of cores but it deteriorates for higher core
counts, falling to 5% on 32 cores.

Intruder is a signature-based network intrusion detection system. It processes net-
work packets in parallel in three phases: capture, reassembly, and detection. The re-
assembly phase uses a dictionary that contains linked lists of packets that belong to the
same session. The lists are allocated in BDDT dynamic regions, allowing task footprints
to include whole lists and tasks to allocate new elements. Each packet issues a task that
inserts the packet into a list and possibly packs the list. The task footprint contains the
whole region where the list is allocated. Figure 2(e) shows the performance of Intruder
on 16384 sessions with max 512 packets per session. The figure only contains BDDT
data, because SMPSS cannot express task footprints that contain dynamically linked
lists. Intruder scales up to 2 on 4 cores and then speedup falls to 0.9 on 32 cores. Note
that while the Intruder port to BDDT outperforms the sequential code by up to a factor
of 2×, the original software transactional memory implementation [7] fails to get any
speedup over sequential runs.
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Ferret is an image similarity search engine. We issue parallel queries to the search
engine, where each query corresponds to a task. We used 1,000 images to issue queries
to a database which contains 59,695 images. Figure 2(f) shows the performance of Fer-
ret. BDDT scales up to 15.5× on 32 cores while SMPSS reaches maximum scalability
of 3.4× on 6 cores.

5 Related Work

Task parallel programming models offer a more structured alternative to parallel threads,
allowing the programmer to easily specify scoped regions of code to be executed in
parallel. OpenMP [2] is an API for parallelization of sequential code, where the pro-
grammer introduces a set of directives in an otherwise sequential program, to express
shared memory parallelism for loops and tasks. OpenMP implements these directives in
a runtime system that hides the thread management required, although the programmer
is still responsible for avoiding races and inserting all necessary synchronization.

Cilk [11] is a parallel programming language that extends C++ with recursive parallel
tasks. Cilk tasks can be fine-grained with little overhead, as Cilk creates parallel tasks
only when necessary, using a work-stealing scheduler; and “inlines” all other tasks at
no extra cost. The programmer must use sync statements to avoid data races and enforce
specific task orderings.

Sequoia [3,8] is a parallel programming language similar to C++, which targets both
shared memory and distributed systems. In Sequoia, the programmer describes (i) a
hierarchy of nested parallel tasks by defining atomic Leaf tasks that perform simple
computations, and inner tasks that break down the computation into smaller sub-tasks;
(ii) a machine description of the various levels in the memory hierarchy and any implicit
(coherency) or explicit communication (data transfer) among memories; and (iii) a map-
ping file that describes how data should be distributed among task hierarchies, which
tasks should run at each level in the memory hierarchy, and when computation work-
load should be broken into smaller tasks. Sequoia inserts implicit barriers following the
completion of each group of parallel tasks at a given level of the memory hierarchy.

Several programming models and languages aim to automatically infer synchroniza-
tion between parallel computations. Transactional Memory [9] preserves the atomicity
of parallel tasks, or transactions, by detecting conflicting memory accesses and retrying
the related transactions. Jade [16] is a parallel language that extends C with coarse-grain
tasks. In Jade, the programmer must declare and manage local- and shared-memory ob-
jects and define task memory footprints in terms of objects. The runtime system then
detects dependencies on objects and enforces program order on conflicting tasks. Jade
requires task arguments to be whole objects, and maintains per-object metadata for the
dependence analysis.

StarSs [14] is a task-based programming model for scientific computations that uses
annotations on task arguments to dynamically detect argument dependencies between
tasks. SMPSs [12] is a runtime system that implements a subset of StarSs for multicore
processors with coherent shared memory. Similarly to BDDT, in SMPSs each task invo-
cation includes the task memory footprint, used to detect dependencies among tasks and
order their execution according to program order. SMPSs describes array-tile arguments
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using a three-value-bit vector representation to encode memory address ranges. This rep-
resentation, however, causes aliasing and over-approximation of memory ranges when
the array base address, row-size and stride are not powers of 2. Aliasing in turn creates
false dependencies which reduce parallelism, and also a high overhead for maintaining
and querying a global trie-structure that detects overlapping memory ranges. In com-
parison, BDDT uses a transparent block-level dependence analysis with constant-time
overhead per block that, with proper choice of block size, eliminates aliasing and false
dependencies.

SvS [4] is a task-based programming model that uses static analysis to determine
possible argument dependencies among tasks and drive a runtime-analysis that com-
putes reachable objects for every task, using an efficient approximate representation of
the reachable object sets, resembling Bloom filters. It then detects possible conflicts
and enforces mutual exclusion between tasks. SvS assumes all tasks to be commutative
and does not preserve the original program order as BDDT. Moreover, it tracks task
dependencies at the object level, restricting SvS on type-safe languages. Finally, SvS
object reachability sets are approximate, and may include many reachable objects in
the program, regardless of whether they are accessed by a task or not. This may hinder
the available parallelism, and fails to take advantage of programmer knowledge about
the memory footprint of each task.

Out-of-Order Java [10] and Deterministic Parallel Java [6] are task-parallel exten-
sions of Java. They use a combination of data-flow, type-based, region and effect anal-
yses to statically detect or check the task footprints and dependencies in Java programs.
OoOJava then enforces mutual exclusion of tasks that may conflict at run time; DPJ re-
stricts execution to the deterministic sequential program order using transactional mem-
ory to roll back tasks in case of conflict. As task footprints are inferred (OoOJava) or
checked (DPJ) statically in terms of objects or regions, these techniques require a type-
safe language and cannot be directly applied on C programs with pointer arithmetic and
tiled array accesses.

6 Conclusions

We presented BDDT, a runtime system for dynamic dependence analysis in task-based
programming models. BDDT performs dependence analysis among tasks with memory
footprints spanning arbitrary ranges or dynamic data structures, and preserves program
order for dependent tasks. BDDT outperforms OpenMP by up to a factor of 3.8× in
benchmarks where dynamic dependence analysis can exploit distant parallelism be-
yond barriers, and similarly or better than OpenMP in data-parallel benchmarks when
dynamic dependence analysis is deactivated. Compared to SMPSs, a state-of-the-art
task-based model based on dynamic dependence analysis, BDDT has lower overhead,
supports dynamic memory management in tasks, and allows the dependence analysis to
be applied (or disabled) on individual task arguments.
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Abstract. Commodity servers deployed in the data centers are now typ-
ically using the Non-Uniform Memory Access (NUMA) architecture. The
NUMA multicore servers provide scalable system performance and cost-
effective property. However, virtual machines (VMs) running on NUMA
systems will access remote memory and contend for shared on-chip re-
sources, which will decrease the overall performance of VMs and reduce
the efficiency, fairness, and QoS that a virtualized system is capable to
provide. In this paper, we propose a “Best NUMA Node” based virtual
machine scheduling algorithm and implement it in a user-level scheduler
that can periodically adjust the placement of VMs running on NUMA
systems. Experimental results show that our NUMA-aware virtual ma-
chine scheduling algorithm is able to improve VM performance by up
to 23.4% compared with the default CFS (Completely Fair Scheduler)
scheduler used in KVM. Moreover, the algorithm achieves more stable
virtual machine performance.

Keywords: NUMA, virtual machine, scheduling, memory locality.

1 Introduction

Multicore processors are commonly seen in today’s computer architectures. How-
ever, a high frequency (typically 2-4 GHz) core often needs an enormous amount
of memory bandwidth to effectively utilize its processing power. Even a single
core running a memory-intensive application will find itself constrained by mem-
ory bandwidth. As the number of cores becomes larger, this problem becomes
more severe on Symmetric Multi-Processing (SMP) systems, where many cores
must compete for memory controller and bandwidth in a Uniform Memory Ac-
cess (UMA) manner. The Non-Uniform Memory Access (NUMA) architecture is
then proposed to alleviate the constrained memory bandwidth problem as well
as to increase the overall system throughput.

Commodity servers deployed in today’s data centers are now typically using
the Non-Uniform Memory Access (NUMA) architecture. The NUMA system
links several small and cost-effective nodes (known as NUMA nodes) via the
high-speed interconnect, where each NUMA node contains processors, memory
controllers, and memory banks. The memory controller on a NUMA node is
responsible for the local NUMA node memory access. An application accessing
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remote NUMA node memory requires the remote memory controller to fetch the
data from remote memory banks and send back the data through the high-speed
interconnect, thus the latency of accessing remote node memory is larger than
accessing local node memory.

The difference of memory access latency between local NUMA node and re-
mote NUMA node will severely impact an application’s performance, if the ap-
plication is running on one NUMA node while its memory is located in another
NUMA node. For example, the Linux default task scheduler CFS takes little
consideration of the underlying NUMA topologies and will scheduling tasks to
different cores depending on the CPU load balance, which eventually will result
in applications running on different cores and their memory being distributed on
different NUMA nodes. Especially for memory sensitive applications, the remote
memory access latency will greatly impact the overall application performance.

Virtualization poses additional challenges on performance optimizations of
the NUMA multicore systems. Existing virtual machine monitors (VMMs), such
as Xen [6] and KVM [12], are unaware of the NUMA multicore topology when
scheduling VMs. The guest operating system (OS) running in a virtual machine
(VM) also have little knowledge about the underlying NUMA multicore topology
, which makes application and OS level NUMA optimizations working ineffec-
tively in virtualized environment. As a result, the VMs running both in Xen and
KVM are frequently accessing remote memory on the NUMA multicore systems,
and this lead to sub-optimal and unpredictable virtual machine performance on
NUMA servers.

In this paper, we propose a “Best NUMA Node” based virtual machine
scheduling algorithm and implement it in a user-level scheduler that can pe-
riodically adjust the placement of VMs running on NUMA systems and make
NUMA-aware scheduling decisions. Our solution not only improves VM’s mem-
ory access locality but also maintains system load balance. And each VM achieves
more stable performance on NUMA multicore systems.

The rest of this paper is organized as follows: the NUMA performance impact
is analyzed in section 2. We present the proposed NUMA-aware scheduling algo-
rithm and describe the implementation of the user-level scheduler in section 3.
In section 4, the performance evaluation of the proposed algorithm is presented.
Finally, we discuss the related work in section 5 and draw our conclusion in
section 6.

2 NUMA Performance Impact

The NUMA architecture introduces more complex topology than UMA (Uniform
Memory Access) systems. Applications (especially for long-running applications
such as VMs) may have a high probability of accessing memory remotely on
NUMA systems. The CPU, memory bandwidth, and memory capacity load bal-
ance among NUMA nodes put much burden on OS and VMM schedulers to
properly take advantage of the NUMA architecture. The main focus of these
schedulers is to load balance CPU processing resource and seldom consider the
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Fig. 1. Dual Socket NUMA Multicore System Performance Impact

NUMA memory effect. In this section, we conduct some experiments to show
that the existing VM scheduler CFS (Completely Fair Scheduler) used in KVM
[12] will schedule VMs onto different NUMA nodes which results in VMs’ re-
mote memory access, and we also evaluate the performance degradation caused
by remote memory access on NUMA systems.

Table 1. Hardware Configuration of multicore NUMA servers

Server models Dell R710 Dell R910

Processor type Intel Xeon E5620 Intel Xeon E7520

Number of cores 4 cores (2 sockets) 4 cores (4 sockets)

Clock frequency 2.4 GHz 1.87 GHz

L3 cache 12MB shared, inclusive 18MB shared, inclusive

Memory 2 memory nodes, each with 16GB 4 memory nodes, each with 16GB

We use two experimental systems for evaluation. One is a two-NUMA-node
Dell R710 server, the other is a four-NUMA-node Dell R910 server. The detailed
hardware configuration is shown in table 1. Both servers are commonly seen in
today’s data centers. The R710 server has two 2.40 GHz Intel (R) Xeon (R) CPU
E5620 processors based on the Westmere-EP architecture (shown in Fig.1 (a)).
Each E5620 processor has four cores sharing a 12MB L3 cache. The R710 server
has a total of 8 physical cores and 16GB memory, with each NUMA node having
4 physical cores and 8 GB memory. The R910 server has four 1.87 GHz Intel (R)
Xeon (R) CPU E7520 processors based on the Nehalem-EX architecture (shown
in Fig.1 (b)). Each E7520 processor has four cores sharing a 18MB L3 cache.
The R910 server has a total of 16 physical cores and 64 GB memory, with each
NUMA node having 4 physical cores and 16 GB memory.

We briefly describe the NUMA architecture of our evaluation platforms. The
2-NUMA-node Intel Xeon Westmere-EP topology is shown in Fig.1 (a). In the
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Fig. 2. Memory Distribution of VMs running on NUMA Systems

Westmere-EP architecture, there are usually four or six cores sharing the Last
Level Cache (LLC, or L3 cache) in a socket, while each core has its own private
L1 and L2 cache. Each socket has the Integrated Memory Controller (IMC)
connected to the local three channels of DDR3 memory. Accessing to the physical
memory connected to a remote IMC is called the remote memory access. The
Intel QuickPath Interconnect (QPI) interfaces are responsible for transferring
data between two sockets. And the two sockets communicate with I/O devices
in the system through IOH/PCH (IO Hub / Platform Controller Hub) chips.
Fig.1 (b) shows a 4-NUMA-node Intel Xeon Westmere-EX topology, there are
four NUMA nodes interconnected by the QPI links in the system, and each
node has four cores sharing one LLC with two IMCs integrated in the socket.
Although other NUMA multicore processors (e.g., AMD Opteron) may differ in
the configuration of on-chip caches and the cross-chip interconnect techniques,
they have similar architectural designs.

2.1 Memory Distribution on NUMA Nodes

We use KVM as our experimental virtualization environment. The default Linux
memory allocation strategy is allocating memory on local node as long as the
task is running on that node and the node has enough free memory. Therefore,
after a long period of running, a VM will migrate from one NUMA node to
another NUMA node due to the CPU load balance of the CFS scheduler. Even-
tually, the VM’s memory will be scattered on all NUMA nodes. Fig.2 shows
the memory distribution of virtual machines running on the NUMA system.
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Fig. 3. Remote Memory Access Penalty on Virtual Machine Performance

The data is collected from the R910 server (described in Section 2.1) with KVM
virtualization environment, twelve VMs are running on the server, and each VM
is configured with 4 VCPUs and 4 GB memory.

The memory of VMs scattered on all NUMA nodes will lead to high memory
access latency due to a large proportion of memory access from remote NUMA
node. In section 2.2, we will study the VM’s remote memory access penalty on
NUMA systems.

2.2 Remote Memory Access Penalty

We run a single virtual machine on the R710 server to distinguish the remote
memory access performance impact on NUMA systems. In the experimental
evaluation, we first run the local memory access case that the VM’s VCPUs and
memory are all located in the same NUMA node. Then, we run the remote mem-
ory access case that the VM’s VCPUs are pinned to one node and its memory is
bound to another node (using the virsh VM configuration file). In the two cases,
we record the average runtimes of NPB benchmarks (a total of five runs for each
benchmark) running inside the VM.

Fig.3 shows the benchmarks’ local performance compared with remote per-
formance. The average runtime of benchmarks in the remote memory access
case is normalized to the local memory access case. As the result shows, some
benchmarks (such as cg, lu, sp) have significant performance degradation due to
remote memory access latency. But there has little performance impact on other
benchmarks (such as ep and mg) due to the NUMA memory effect.

From the experimental result, we find that even in a two-NUMA-node system,
the remote memory access penalty is obvious, especially for NUMA sensitive
workloads. Therefore, it is beneficial to improve virtual machine memory access
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locality on NUMA systems via properly using NUMA-aware scheduling methods.
In section 3, we present our NUMA-aware VM scheduling policy.

3 The NUMA-Aware VM Scheduler

3.1 Main Idea

Virtual machines running on multicore NUMA systems will benefit from local
node execution that a VM’s VCPUs are running on one NUMA node and its
memory is also located on the same NUMA node. VMs running on their local
nodes will reduce remote memory access latency. What’s more, all VCPUs of
a VM running on one NUMA node will reduce the last level cache (LLC) co-
herency overhead among LLCs of different NUMA nodes. If the VCPUs of a VM
is running on different NUMA nodes that have separate LLCs, when they ac-
cess shared data it will cause LLC coherency overhead. Finally, VMs local node
execution will also reduce the interconnect contention (e.g. contention for QPI
links in Intel Xeon processors). Although scheduling one VM’s VCPUs on the
same NUMA node will increase shared on-chip resources contention, we try to
schedule different VMs onto separate NUMA nodes with best effort to mitigate
shared resources contention and to maximize system throughput with a balanced
memory bandwidth usage.

However, it is a big challenge to make all the VMs execute on their local
NUMA node and at the same time fully utilize the scalable NUMA architecture.
One simple solution is to manually bind the VMs onto NUMA nodes, so all VMs
will have local node execution. But the manually bind solution lacks flexibility
and may lead to system load imbalance. Some heavily loaded NUMA nodes
may become the performance bottlenecks. System load imbalance will greatly
impact the VMs overall performance and can not effectively and efficiently take
advantage of the multicore NUMA architecture.

To improve virtual machine memory access locality and at the same time to
achieve system load balance, we propose a user-level NUMA-aware VM scheduler
that periodically scheduling the VCPUs onto certain NUMA nodes according to
the CPU and memory usage of all VMs in the virtualized system. The NUMA-
aware scheduling algorithm properly selects a “best NUMA node” for a VM
that is worth scheduling onto this “best NUMA node” to improve memory access
locality as well as to balance system load. Our “Best NUMA Node” based virtual
machine scheduling algorithm (short for BNN algorithm) dynamically adjust the
placement of VMs running on NUMA nodes as the workload behaviors of the
VMs change during execution. In section 3.2, we discuss the design motivation
and show a detailed description of the BNN algorithm. We implemented the
BNN algorithm in our user-level VM scheduler, and the implementation of the
user-level VM scheduler is presented in section 3.3.

3.2 The BNN Scheduling Algorithm

The “Best NUMA Node” based virtual machine scheduling algorithm (short for
BNN algorithm) is mainly composed of three parts: (i) selecting the VMs that
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are worth scheduling to improve their memory access locality; (ii) finding the
“Best NUMA Nodes” for the VMs selected by the previous step; (iii) scheduling
the VCPUs of the selected VMs to their “Best NUMA Node”.

(i) Selecting Proper VMs
We first select proper VMs that are worth scheduling to improve the virtual

machine memory access locality and the overall NUMA system load balance. To
select the most actively running VMs, the CPU load of each VM is calculated
online (the CPU load calculation of each VM is presented in section 3.3). VMs
are then sorted by their CPU load in descending order. Then, we select the
topmost k VMs as the proper VMs that are worth scheduling, such that the
value k satisfies the following equation:

k∑
i=1

N(V Mi)∑
j=1

Load(Vj) >
4

5

m∑
i=1

N(VMi)∑
j=1

Load(Vj) (1)

where N(VMi) represents the number of VCPUs of VMi, Load(Vj) represents
the CPU load of V CPUj , and m represents the total number of VMs in the
system. As denoted in the equation (1), we select the topmost k active VMs as
our target scheduling VMs (the total CPU load of these k VMs occupies 80%
(45 ) CPU usage of all VMs in the system) and let the default CFS scheduler
take over the rest of the VMs in the system to do fine-grained load balancing
job. We observe that active VMs suffer from NUMA effect more than less active
VMs, therefore we select the topmost k active VMs as our target NUMA-aware
scheduling VMs and the value of 80% CPU usage of all VMs is tuned by exper-
imental results. By scheduling the most active VMs into proper NUMA nodes
through our user-level scheduler and scheduling the remaining less active VMs
through the system default CFS scheduler, we can effectively address the chal-
lenges of virtual machine memory access locality and system load balance on
NUMA multicore systems.

(ii) Finding the “Best NUMA Node”
After selecting the proper VMs for NUMA-aware scheduling, we try to find

the “Best NUMA Node” for every selected VMs. First, we examine the memory
distribution of each selected VMs. The memory footprint of VMs in each NUMA
node is gathered online (the calculation of memory footprint of each VM is
presented in section 3.3). According to the memory footprint of the VM, we
select the “Best NUMA Node” candidates (short for BNN candidates) for the
VM. BNN candidates for the VM satisfy the following equation:

Mi >
1

n

n∑
j=1

Mj , (1 ≤ i ≤ n) (2)

where Mi represents the memory footprint of the VM in NUMA node i, n repre-
sents the total number of NUMA nodes in the system. Equation (2) means the
NUMA node i is selected as the BNN candidates as long as the memory footprint
in NUMA node i is larger than the average memory footprint of the VM in all
NUMA nodes. We select these NUMA nodes that have relatively large memory
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Finding ``best NUMA node`` for each selected VMs 

Input: List of selected VMs Lvm. The list is sorted in descending order of the 

VMs’ CPU load. Each VM’s BNN candidates set. 

Output: A mapping MBNN of VMs to ``best NUMA nodes``. 

Variables: the number of NUMA nodes n; the number of total VMs m; VCPU 
Resource VR; VMt’s BNN candidates set ;  

1: Initialize VCPU Resource VRj of each NUMA node j. 

2:     

3: MBNN   VMt  pop_front ( Lvm ); 

4: while VMt  NULL do 
5:    max = node i in  candidates set that has the largest VR value    

6:    if (  ) 

7:        BNN = max; 

8:    else 

9:        BNN = node j that has the largest VR value among all nodes; 

10:    end if 

11:    ,  push_back ( MBNN, ( , BNN) ) 

12:    VMt  pop_front ( Lvm ); 

13: end while 
 

Fig. 4. The algorithm of finding the BNN node for each VM

footprint of the VM as its BNN candidates. Because the VM scheduling into
BNN candidate nodes will have a higher probability of accessing local memory.

Then, we find the “Best NUMA node” from the BNN candidates set for each
VM. Figure 4 shows the algorithm of finding the BNN node for each VM. First,
the VCPU resource of each NUMA node is initialized (Line 1-2) as follows:

V Rj =
1

n

m∑
i=1

N(VMi), (j = 1, ..., n) (3)

where n represents the total number of NUMA nodes in the system, m represents
the total number of VMs in the system, N(VMi) represents the number of
VCPUs of VMi. V Rj means the VCPU resource of NUMA node j, that is the
number of VCPUs allocated in NUMA node j. We suppose that each NUMA
node should have equal number of VCPUs to achieve system load balance and
maximize system throughput, so we equalize V Rj as equation (3) shows.

After initializing V Rj , we design an approximate bin packing algorithm to
find the “Best NUMA Node” for each selected VM. In the beginning, each node
j has the VCPU resource capacity of V Rj . Every time, we pick up a VMt from
the sorted VM list (Lvm). We select a node that has the largest VR (VCPU
resource) value from the BNN candidates set of the VMt, and record the node
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id as max (Line 5). If the max node has sufficient VCPU resource capacity to
hold the VMt (Line 6-7), then we select max as the VMt’s BNN node (good
memory locality for VMt and predictable load balance). Other wise, we try to
find a node that has large VCPU resource to hold VMt to maintain system load
balance, so we select the node that has the largest VR value among all nodes in
the system as the VMt’s BNN node. By heuristically selecting relatively large
VR value node each time, we can achieve good system balance when assigning
VMs to their BNN nodes. After selecting the BNN node for VMt, we decrease
the VR capacity of the BNN node and save the VMt’s BNN node mapping
strategy in the mapping list MBNN . Then, we find the BNN node for the next
VM from the VM list Lvm until all selected VMs are mapped to their BNN
nodes.

In the BNN algorithm, we assume that the number of a VM’s VCPUs is
smaller than the number of physical cores in one NUMA node and a VM’s
memory size is no larger than the physical memory size of one NUMA node.
Therefore, we can assign each VM a BNN node to hold VMs. If the VCPU
number and memory size of a VM are larger than a physical NUMA node (called
huge VMs), we can configure these huge VMs with several small virtual NUMA
nodes using the qemu-kvm’s VNUMA functionality and make sure each virtual
NUMA node of the huge VM is smaller than a physical NUMA node. Then,
we can use the BNN algorithm to schedule these virtual NUMA nodes just like
scheduling small VMs.

(iii) Scheduling VCPUs to BNN Nodes
After finding the “Best NUMA node” for each selected VMs, the scheduler

migrates the VMs’ VCPUs to their “Best NUMA nodes” according to the BNN
mapping list MBNN . We use the sched setaffinity() system call to schedule
VCPUs to the proper NUMA nodes. After the VCPUs’ affinities are set to their
BNN nodes, the job of scheduling VCPUs within nodes is automatically done
by the CFS scheduler. The unselected VMs (the less active VMs) will also be
scheduled by the CFS scheduler to achieve more fine-grained system load bal-
ance.

As the VMs’ workload behavior will change over time, our NUMA-aware VM
scheduler will periodically execute the above three steps to dynamically adjust
the BNN nodes for the selected VMs. The adjustment period is now heuristically
set to 60s.

3.3 Implementation of User-Level Scheduler

The NUMA-aware VM scheduler is a user-level process that is designed to test
the effectiveness of scheduling algorithms on real NUMA multicore systems. It
is able to monitor the virtual machine execution online, gather VM’s runtime
information for making scheduling decisions, pass it to the scheduling algorithm
and enforce the algorithm’s decisions. The NUMA-aware VM scheduler has three
major phases of execution: (i) Gathering system information online; (ii) Execut-
ing scheduling algorithm; (iii) Migrating VM’s memory.



A User-Level NUMA-Aware Scheduler for Optimizing VM Performance 41

Table 2. Gathering system information for scheduling

Gathered information Description of gathering methods

Information about the system’s
NUMA topology

The NUMA topology can be obtained via sysfs by
parsing the contents of /sys/devices/system/node.
The CPU topology can be obtained by parsing the

contents of /sys/devices/system/cpu.

Information about the CPU
load of each VM

VMs created by the KVM are regarded as general
processes in the Linux system. VCPUs of a VM

are regarded as threads of the VM process.
The CPU load of the threads can be obtained via

/proc/<PID>/task/<TID>/stat file (columns 13th
and 14th represent the number of jiffies1 during
which the given thread are running in user and

kernel mode respectively).

Information about the memory
footprint of each VM in each

NUMA node

The memory footprint of a VM in each NUMA
node is the amount of memory stored on each

NUMA node for the given VM process.
The file /proc/<PID>/numa maps contains the
node distribution information for each virtual
memory area assigned to the process in number

of pages.

(i) Gathering system information
The detailed description of gathering system information through user-level

scheduler online is shown in table 2. There are three kinds of information ob-
tained online via parsing pseudo file systems (proc and sysfs).

(1) Information about the system’s NUMA topology is obtained once the
scheduler starts running.

(2) Information about the CPU load of each VM is calculated periodically.
We calculate the average CPU load of each VM during one scheduling epoch,
and we sort the VMs using their average CPU load in descending order.

(3) Information about the memory footprint of VMs in NUMA nodes can be
obtained from the numa map files as shown in table 2. The memory footprint
of each VM is calculated when the scheduling algorithm selects BNN candidate
nodes for the VM.

(ii) Executing scheduling algorithm
The user-level scheduler monitors the VMs workload behavior (the CPU load

and memory distribution information), passes the gathered information to the
NUMA-aware VM scheduling algorithm and enforces algorithm’s decision on
migrating VCPU threads onto their proper NUMA nodes. The NUMA-aware
scheduling algorithm is periodically executed and the scheduling decisions are
enforced using sched setaffinity() system call.

1 One jiffy is the duration of one tick of the system timer interrupt.
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(iii) Migrating VM’s memory
The user-level scheduler also provides the function of migrating memory to

a specified NUMA node using the move pages() system call. Our NUMA-aware
VM scheduler adopts two memory migration strategies to migrate a VM’s proper
memory pages to its BNN node. The two memory migration strategies are as
follows:

(1) If a VM’s BNN node is changed to another NUMA node and the VM’s
VCPUs are scheduled onto its new BNN node. We then use the Intel PEBS
(Precise Event-Based Sampling) functionality [2] of sampling memory instruc-
tions to get the memory address of the VM. If the sampled memory address
is located in the remote NUMA node, we uses the move pages() system call to
migrate the pages around the sampled address to the BNN node. The sampled
addresses are considered as frequently accessed memory addresses which have a
higher probability to be sampled by PEBS than those less frequently accessed
addresses. In this way, we migrate the frequently accessed memory pages from
remote node to the BNN node.

(2) When the system load is below a certain threshold (for example 1/p CPU
usage of the total system, where p is the total number of physical cores), the
scheduler will begin a memory migration phase. In each memory migration phase,
the scheduler randomly selects one VM and migrates the VM’s memory pages
that reside in other nodes to its BNN node. Once the system load is below the
previously defined threshold, the memory migration phase will restart memory
migration phase.

4 Performance Evaluation

In this section, we evaluate the proposed BNN algorithm using the real-world
parallel workloads. We compare the performance of BNN with KVM’s default
CFS (Completely Fair Scheduler) scheduler and a manually VM binding strategy
in Section 4.1. Then we show the improvement of performance stability of the
BNN scheduler in Section 4.2. Finally, we analyze the BNN’s runtime overhead
in Section 4.3.

We run the experiments on the R910 server described in table 1. The server
is configured with 32 logical processors with hyperthreading enabled. In order
to isolate the NUMA effect from other factors that affect VMs performance, we
disable the Intel Turbo Boost in BIOS and set the processors to the maximum
frequency. We ran VMs in qemu-kvm (version 0.15.1). Both the host and guest
operating systems used in the experiments are SUSE 11 SP2 (the Linux kernel
version 3.0.13). The proposed NUMA-aware VM scheduler runs in the host OS.
We use the NAS Parallel Benchmark (NPB 3.3) [1] to measure virtual machine
performance. The NPB benchmark suite is a set of benchmarks developed for
the performance evaluation of parallel applications.

We simultaneously run 8 VMs on R910 server. Each VM is configured with 4
VCPUs and 8 GB memory. Inside each VM, we run one 4-threaded NPB-OMP
benchmark. For example, a 4-threaded bt benchmark runs in VM1, a 4-threaded
cg benchmark runs in VM2, and a 4-threaded sp benchmark runs in VM8.



A User-Level NUMA-Aware Scheduler for Optimizing VM Performance 43

bt cg ep ft is lu mg sp
0.4

0.6

0.8

1

1.2

1.4

1.6

R
un

tim
e 

N
or

m
al

iz
ed

 to
 D

ef
au

lt 
S

ch
ed

ul
er Default

Bind
BNN

Fig. 5. Virtual machines performance compared with default scheduler

4.1 Improvement on VM Performance

Figure 5 shows the runtime of benchmarks under three different strategies: the
default CFS scheduler (Default), the manually bind VMs strategy (Bind), and
the BNN scheduler (BNN). We simultaneously run 8 VMs described above on
R910 server. Each runtime is the average of five runs under the same strategy
and is normalized to the runtime under default KVM CFS scheduler. In the Bind
strategy, we manually bind two VMs into one NUMA node, and the eight VMs
are evenly distributed across four NUMA nodes on R910 server with two VMs
bound to every NUMA node. In the Bind strategy, VMs running bt and cg are
bound to node 0, VMs running ep and ft are bound to node 1, VMs running
is and lu are bound to node 2, and VMs running mg and sp are bound to
node 3.

From the experimental results, we observe that BNN outperformed Default
by at least 4.1% (ep) and by as much as 23.4% (lu). Since the Bind strategy
is unable to adjust to the workload changes, the performance of some bench-
marks degrade significantly (the performance degradation of cg and is is up to
26.4% and 20.7% respectively) compared with Default. From the figure, we also
find that BNN is more effective for benchmarks that are more sensitive to the
NUMA remote memory access latency. For example, BNN significantly improves
the performance of lu, bt, and sp by 23.4%, 14.5%, and 14.9% respectively, while
only improves the performance of ep and mg by 4.1% and 5.7%. From previous
experiment in Fig.3., we can find that lu, bt, and sp are NUMA sensitive bench-
marks, while mg and ep are insensitive to NUMA effect. The BNN scheduler
considers both NUMA effect and system load balance, so BNN achieves better
performance than both Default and Bind.
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Fig. 6. Comparison of runtime variations among Default, Bind and BNN strategies

4.2 Improvement on Performance Stability

Figure 6 shows the performance stability comparison of Default, Bind, and BNN
strategies in terms of benchmarks runtime variations. We calculated the Rela-
tive Standard Deviations (RSD) for a set of five runs of each benchmarks under
different strategies. RSD measures the extent of stability across program exe-
cutions. The smaller the RSD value, the more stable and consistent program
performance. As expected, the manually bind strategy achieved small RSD val-
ues in all workloads with no more than 3% variations. The default CFS scheduler
(that only considers CPU load when scheduling VCPUs to cores) caused much
more variations than the Bind strategy. For the NUMA sensitive sp benchmark,
the variations can be as high as 12.4%. In comparison, BNN achieves perfor-
mance stability close to the Bind strategy and has significant improvement on
performance stability than the Default strategy.

4.3 Overhead Analysis

The time complexity of BNN algorithm is O(nlgn). Sorting VMs according to
their CPU load has O(nlgn) time complexity, and finding the “best NUMA
node” for each VM has O(n) time complexity. As our scheduler executes the
BNN algorithm every 60s, so the total overhead of BNN scheduling algorithm
is very low. Our experimental results show that the proposed NUMA-aware
scheduler incurs less than 0.5% CPU overhead in the system.

5 Related Work

There has been great research interest in performance optimizations of NUMA-
related multicore systems. Many research efforts aim at improving application
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throughput, fairness, and predictability on NUMA multicore systems. Exist-
ing work has tried to address these issues via thread scheduling and memory
migration.

In UMA (Uniform Memory Access) multicore systems, thread scheduling
methods have been studied to avoid the destructive use of shared on-chip re-
sources [7,16,13] or to use the shared resources constructively [4,8]. The NUMA
(Non-Uniform Memory Access) architecture introduces another performance
impact factor, the memory locality factor, to be considered when scheduling
threads[15]. Researchers proposed the profile-based [5] or dynamic memory mi-
gration techniques [9] to improve memory locality on NUMA systems. [7] and
[13] considered both shared on-chip resources and memory locality factors to op-
timize applications performance on NUMA multicore systems. [10] proposed a
user-level scheduler on NUMA systems to help design NUMA-aware scheduling
algorithms.

Virtualization poses additional challenges on performance optimizations of
NUMA multicore systems. [3] proposed a technique that allows a guest OS to
be aware of its virtual NUMA topology by reading the emulated ACPI (Ad-
vanced Configuration and Power Interface) SRAT (Static Resource Affinity Ta-
ble). [14] presented a method that allows the guest OS to query the VMM
via para-virtualized hypercalls about the NUMA topology. [11] proposed an-
other approach that does not assume any program or system-level optimizations
and directly works in the VMM layer by using Performance Monitoring Unit
(PMU) to dynamically adjust VCPU-to-core mappings on NUMA multicore
systems.

In contrast, our NUMA-aware virtual machine scheduler uses the novel BNN
algorithm to dynamically find the “Best NUMA Node” for each active VM and
allows these VMs running on their BNN nodes and their memory also allocated
in their BNN nodes. Our approach does not need modify the VMM or guest
OS, and has a low overhead that only uses system runtime information available
from the Linux pseudo file systems to make scheduling decisions.

6 Conclusion

In this paper, we proposed a “Best NUMA Node” based virtual machine schedul-
ing algorithm and implemented it in a user-level scheduler in the KVM virtual-
ized systems. The experimental results show that the BNN algorithm
improves virtual machine performance. Optimizing virtual machine performance
on NUMA multicore systems faces a lot of challenges, our solution tries to im-
prove memory access locality and at the same time maintain system load balance.
In the future work, we try to (1) find metrics for predicting data sharing among
VMs and using these metrics to aid VM scheduling on NUMA systems; and (2)
design a more adaptive memory migration strategy to further improve memory
access locality on NUMA systems.
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Abstract. Multi-core or even many-core systems are becoming com-
mon. New operating system architectures are needed to meet the ever in-
creasing performance requirements of multi-/many-core based embedded
systems. Barrelfish is a multi-/many-core oriented open-source operating
system built by ETH Zurich and Microsoft Research in a multi-kernel
style. Every kernel runs on a dedicated core with local interrupts dis-
abled, which may result in a failure in real-time systems. To make it
preemptive, new kernel state and private kernel stack are added. Capa-
bility is the central mechanism of Barrelfish, lots of analyses and mod-
ifications have been done to make the duration interrupts are disabled
as short as possible when kernel objects in capability space are accessed.
As a result, meaningful real-time performance have been obtained. Com-
bined with the inherent scalability of multi-kernel design in Barrelfish,
the work in this paper could be a useful reference for multi-/many-core
based embedded systems.

Keywords: embedded system, real-time, multi-/many-core, multi-
kernel, preemption.

1 Introduction

Multi-/Many-core based embedded systems are widely used in many fields such
as network routers, automobile electronics, large scale complex control systems
and so on. It’s believed that processors with hundreds or even thousands of
cores(hard-threads) will be used in the near future[1][2][3][4]. As a result, op-
erating system could become a bottle-neck for computers with large number of
cores because of the poor scalability[5][6][8][19]. Many-core based embedded sys-
tems may suffer more from operating system[13][18]. Predictability is often one
of the most important issues faced by embedded systems, especially for hard
real-time systems[9][10], multi-/many-core processors make it a great challenge
for the system to be predictable. Under shared memory programming paradigm,
multi-/many-core based embedded systems often perform poorly with respect to
scalability and predictability because of reasons as following:
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1. scalability:

– ping-ponging and false-sharing effects of cache-coherence increase system
overhead as the number of cores increases.

– the increase of communication speed among cores and memory modules
doesn’t quite follow the increase of cores.

– accesses to shared variables protected by locks must follow a serial pat-
tern although lots of cores exist in the system.

2. predictability:

– optimized processor designs such as super-scaler architecture, pipelines,
and branch prediction make CPI(Cycles Per Instruction) varies.

– the complex cache unit and poor associated control capability make it
hard to predict the latency of cache access.

– it’s difficult to control or predict the precise time when each core gets
access to the shared bus and memory modules.

– the time it takes to access a memory unit is greatly affected by when
and where the transaction occurs.

– prediction of the time needed to finish access to shared memory space in
a multi-/many-core environment is also a challenge.

2 Multi-/Many-core Oriented Operating System

To take up the challenges mentioned above, solutions of both hardware and soft-
ware are provided. In this paper, a software solution is discussed. Barrelfish[5] is
a multi-/many-core oriented open-source operating system built by ETH Zurich
and Microsoft Research. The multi-kernel philosophy of Barrelfish mainly focus
on the scalability of operating system on multi-/many-core platforms, while it
also provides excellent predictability for real-time systems. Each kernel in Bar-
relfish runs on a dedicated core(hard-thread) and shares almost nothing with
others except for some necessary global variables. Lots of factors that result
in poor scalability and predictability can be avoided. The kernel schedules and
runs dispatchers, which are implementation of scheduler activations. It follows
a message passing programming paradigm in Barrelfish kernel, inter-dispatcher
communication is realized by sending messages[7].

The kernel is also called CPU driver[5], and it provides only a limited number
of facilities such as scheduling, interrupt management, capability[16], memory
mapping, inter-dispatcher communication and so on. Barrelfish uses the micro-
kernel model, most of the architecture independent modules(memory server,
monitor, device driver etc.) are moved up to user space, and the whole system
can run on a heterogeneous multi-/many-core system with the support of CPU
divers[6]. This is good for embedded systems using both CPU and DSP. Ex-
plicit message-passing, user space drivers and system services make it easier to
model the timing characteristic of Barrelfish, which is meaningful for real-time
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applications[12]. What’s more, every domain can run an application specific
run-time systems or even operating systems in user space, to better satisfy the
particular design constraint of application.

Despite so many characteristics suitable for multi-/many-core real-time sys-
tem, Barrelfish is not meant for it particularly. Preemption[11], which is an
important feature in most real-time operating system, is not supported in Bar-
relfish. Functions in kernel control path such as system calls, and interrupt han-
dlers run in a single core environment with interrupts disabled until it returns to
user mode, which may prevent dispatchers and interrupt handlers with higher
priority from preempting current kernel control path. What’s more, every kernel
function shares the same kernel stack in a time-division manner, context switch
for dispatcher in kernel mode will arise an error.

3 Analysis on Interrupt Latency

Interrupt latency is one of the most important performance indexes in real-time
system. The time it consumes before handling an interrupt is affected not only
by the hardware unit in processor, but also by the duration when interrupt
is disabled. The WCET(Worst Case Execution Time)[12] of interrupt latency
depends not on the duration interrupt is allowed, but on the duration interrupt is
not allowed. As all of the kernel control path of Barrelfish execute with interrupt
disabled, there is lot of space to improve the interrupt latency.

Interrupt latency consists of hardware latency and kernel latency. LH stands
for hardware latency and LK stands for kernel latency, then the whole interrupt
latency can be represents as:

L = LH + LK (1)

Usually, hardware latency depends on the interrupt logic of processor, which
is supposed to be constant. Kernel latency is the difference between the time
interrupt is detected by processor and the time kernel begins to handle it. In real-
time system, instruction steam executed by every processor core can be divided
into N sections(see Figure 1), where 1 ≤ N < ∞, every section consists of two
subsections: kernel subsection and user subsection, which mean instructions run
in kernel mode and instructions run in user mode respectively. We assume that
the time it consumes to execute N sections of instructions is T, and the time
needed to execute the ith(1 ≤ i ≤ N) section is Tsi, which equals Tki + Tui,
where Tki stands for kernel subsection execution time, and Tui stands for user
subsection execution time.

When interrupt occurs, the probability it disturbs the ith user subsection
and kernel subsection are Tui/T and Tki/T respectively, so the probability it
disturbs the ith section is (Tki + Tui)/T . In user subsection, interrupt can be
handled immediately if interrupt is enabled, no matter the kernel is preemptive
or not. In this situation, the kernel latency is 0 in theory.
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Fig. 1. Sections of instruction stream

3.1 Non-preemptive Barrelfish

In kernel mode of Barrelfish, an interrupt which happens in the ith kernel sub-
section won’t be handled until the system returns to user mode, so the kernel
latency is the time it takes to finish the kernel subsection after interrupt has been
detected. In every section, the instant at which interrupt occurs is supposed to
conform to uniform distribution, and handling of every interrupt happened in
kernel mode experiences an unique latency while handling of interrupt happened
in user mode experiences no latency, then the value of kernel latency can be de-
scribed by the following cumulative distribution function:

Fsi(x) =

⎧⎨
⎩

0, x < 0
x/Tsi + Tui/Tsi, 0 ≤ x ≤ Tki
1, x > Tki

(2)

During the whole execution time of T, which consists of N sections, the kernel
latency can be described as:

F (x) = Ps1 ∗Fs1(x)+Ps2 ∗Fs2(x)+ ...+PsN ∗FsN(x) =

N∑
i=1

Psi ∗Fsi(x) (3)

Where Psi stands for the probability interrupt detected in the ith section, it
can be calculated by Tsi/T . The probability density function of kernel latency
in the ith section is fsi(t) and:

Fsi(x) =

∫ x

−∞
fsi(t)dt (4)

So we can get that:

F (x) =

N∑
i=1

Psi ∗Fsi(x) =

N∑
i=1

Psi ∗
∫ x

−∞
fsi(t)dt =

∫ x

−∞

N∑
i=1

Psi ∗ fsi(t)dt (5)

Then the density function of kernel latency during T is:

f(t) =

N∑
i=1

Psi ∗ fsi(t) (6)
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The expected value of kernel latency during Tsi is:

Esi(x) =

∫ +∞

−∞
xfsi(x)dx (7)

And expected value of kernel latency during T can be obtained:

E(x) =

∫ +∞

−∞
xf(x)dx =

N∑
i=1

Psi ∗
∫ +∞

−∞
xfsi(x)dx =

N∑
i=1

Psi ∗ Esi(x) (8)

3.2 Preemptive Barrelfish

In preemptive kernel, every kernel subsection can be divided into several regions,
every of which consists of two parts: critical subregion and non-critical subre-
gion(see Figure 2). Interrupts detected in kernel subsection can be handled in
non-critical subregion, but not in critical subregion in case race condition hap-
pens. Provided that the number of regions in every kernel subsection is M, where
1 ≤ M < ∞, the time it takes to execute the jth(1 ≤ j ≤ M) critical subregion
and non-critical sub region are Tcj, Tncj respectively, the total time needed to
run the jth region in a kernel subsection is Tcj + Tncj, which is represented by
Trj, the distribution of kernel latency in every region is described as:

Frj(x) =

⎧⎨
⎩

0, x < 0
x/Trj + Tncj/T rj, 0 ≤ x ≤ Tcj
1, x > Tcj

(9)

Fig. 2. Regions in kernel subsection
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During the execution of the ith kernel subsection, which includes M regions,
the kernel latency can be represented as:

Fki(x) = Pr1 ∗ Fr1(x) + Pr2 ∗ Fr2(x) + ...+ PrM ∗ FrM (x) =
∑M

j=1 Prj ∗ Frj(x)
(10)

Where Prj stands for the conditional probability that interrupts are detected
in the jth region of a kernel subsection, which can be calculated by Trj/Tki.
The probability density function of kernel latency in the jth region of a kernel
subsection is frj(t) and:

Frj(x) =

∫ x

−∞
frj(t)dt (11)

Then:

Fki(x) =

M∑
j=1

Prj ∗ Frj(x) =

M∑
j=1

Prj ∗
∫ x

−∞
frj(t)dt =

∫ x

−∞

M∑
j=1

Prj ∗ frj(t)dt

(12)
So the probability density of the ith kernel subsection is:

fki(t) =
M∑
j=1

Prj ∗ frj(t) (13)

The expected kernel latency in jth region is:

Erj(x) =

∫ +∞

−∞
xfrj(x)dx (14)

So the expected kernel latency in ith kernel subsection is:

Eki(x) =

∫ +∞

−∞
xfki(x)dx =

M∑
j=1

Prj∗
∫ +∞

−∞
xfrj(x)dx =

M∑
j=1

Prj∗Erj(x) (15)

3.3 Preemptive Barrelfish vs. Non-preemptive Barrelfish

Provided the ith instruction section that locates in a time zone [a, b], there exists
an instant c, where a < c ≤ b, system runs in kernel mode before c and returns
to user mode after c in the zone.

In non-preemptive Barrelfish, according to equation (2), the distribution func-
tion of kernel latency in zone [a, b] is:

Fsi(x) =

⎧⎨
⎩

0, x < 0
Fki(x) ∗ (c− a)/(b− a) + (b− c)/(b− a), 0 ≤ x ≤ (c− a)
1, x > (c− a)

(16)
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Fki(x) is the distribution function of kernel latency in kernel subsection:

Fki(x) =

⎧⎨
⎩

0, x < 0
x/(c− a), 0 ≤ x ≤ (c− a)
1, x > (c− a)

(17)

And expected value of kernel latency in kernel subsection is:

Eki(x) = (c− a)/2 (18)

The density function of kernel latency in the ith section is:

fsi(t) =

{
1/(b− a), 0 < t < (c− a)
0, t ≤ 0, t ≥ (c− a)

(19)

So the expected kernel latency is:

Esi(x) =

∫ c−a

0

x/(b−a)dx = (c−a)2/(2∗(b−a)) = (c−a)/(b−a)∗Eki(x) (20)

In non-preemptive Barrelfish, the expected kernel latency in a section is just
represented by equation (20). In preemptive Barrelfish, the expected kernel la-
tency in a section can be represented by equation (20) too, but the kernel subsec-
tion [a, c] can be divided to M regions, so Esi(x) can be transformed according
to equation (15):

Esi(x) = (c− a)/(b− a) ∗ Eki(x) = (c− a)/(b− a) ∗
M∑
j=1

Prj ∗ Erj(x) (21)

Assuming that the jth region in kernel subsection [a, c] starts at aj and stops
at bj, in every region, kernel runs in critical subregions before cj and non-critical
regions after cj , where aj < cj ≤ bj , a1 = a, aj+1 = bj , and bM = c.

The expected kernel latency in a region is calculated similarly with that in a
section:

Erj(x) =

∫ cj−aj

0

x/(bj−aj)dx = (cj−aj)
2/(2∗(bj−aj)) = (cj−aj)/(bj−aj)∗Ecj(x)

(22)

Where Ecj(x) = (cj − aj)/2.
So the expected kernel latency in a section is:

Esi(x) = (c− a)(b − a) ∗
M∑
j=1

Prj ∗ (cj − aj)/(bj − aj) ∗ Ecj(x) (23)
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Compare equation (23) with equation (20) we can get that preemptive Bar-
relfish outperforms non-preemptive Barrelfish in aspect of kernel latency because:

(c− a)/(b− a) ∗∑M
j=1 Prj ∗ (cj − aj)/(bj − aj) ∗ (cj − aj)/2

≤ (c− a)/(b− a) ∗∑M
j=1 Prj ∗ (cj − aj)/(bj − aj) ∗ (bj − aj)/2

≤ (c− a)/(b− a) ∗∑M
j=1(bj − aj)/2

= (c− a)/(b− a) ∗ (bM − a1)/2
= (c− a)/(b− a) ∗ (c− a)/2
= (c− a)2/(2 ∗ (b− a))

(24)

Which means that Esi(x) in preemptive Barrelfish is less than or equal to
Esi(x) in non-preemptive Barrelfish, then during T , kernel latency in preemptive
Barrelfish is less than or equal to that in non-preemptive Barrelfish.

All of the equations above only describe the average case of kernel latency,
in real-time system, the worst case matters too. In non-preemptive Barrelfish,
kernel latency in section [a, b] will reach the largest possible value, which is
b − a, when c = b, while in preemptive Barrelfish, kernel latency in section
[a, b] depends the largest critical subregion [aj , bj], which is at most bj−aj when
cj = bj . It’s known that (bj−aj) ≤ (b−a) because region [aj , bj] locates in section
[a, b], which means aj ≥ a and bj ≤ b. So, in worst case, preemptive Barrelfish
still outperforms non-preemptive Barrelfish in aspect of kernel latency.

4 Preemption Support of Barrelfish

4.1 Analysis and Design for Preemption

When interrupt is handled in user mode, kernel of Barrelfish saves the regis-
ter snapshot of current dispatcher in area shared between kernel and user space.
There are two kinds of register saving area: enabled saving area and disabled sav-
ing area, it’t up to the state of current dispatcher that kernel chooses which one
to save register snapshot in. A boolean type variable disabled in DCB(Dispatcher
Control Block) indicates the state of the dispatcher. If disabled == false, reg-
ister snapshot will be saved in enabled saving area, while disabled == true,
register snapshot will be saved in disabled saving area. When a dispatcher is
chosen to run after scheduling or interrupt handling, the kernel will choose one
of the snapshots in enabled saving area or disabled saving area to reset/restore
the dispatcher’s registers.

The time-division shared kernel stack in Barrelfish is not used to save context
in user mode, but that in kernel mode. To be preemptive, each dispatcher should
have a private kernel stack to save context of kernel functions executing in its
address space in case it’s switched out. What’s more, a kernel saving area is added
to DCB, which is used to save the register snapshot the first time dispatcher
executing in kernel mode is preempted by an interrupt handler. Just like the
variable of disabled, a new boolean type variable kernel is cited to indicate if
the current dispatcher executing in kernel mode when preempted. In this new
design, a dispatcher could be in one of the three states such as kernel, disabled,
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enabled. The state of kernel has a higher priority than the other two, when
kernel == true, dispatcher is definitely in kernel mode, no matter what disabled
equals, otherwise, the dispatcher is either in disabled or enabled state, which
are mutual exclusive to each other, according to the variable disabled.

In preemptive kernel, interrupt can be allowed when kernel control path such
as system calls, exception handlers, and interrupt handlers are executing, con-
text switch is not allowed when handling interrupts. An integer type variable
preempt count is used to count the number of interrupts under handling, it in-
creases by one before enter interrupt handlers while decreases by one after leave
interrupt handlers. If dispatcher runs in user mode, the register snapshot is saved
in enabled or disabled saving area by the common IRQ handler at first, mean-
while, stack pointer is set to the top of private kernel stack of current dispatcher.
The same operations on stack pointer will be carried out when system calls and
exceptions occurs in user mode. If dispatcher runs in kernel mode, which may
result from system calls or exceptions, the register snapshot is saved in kernel
saving area the first time interrupt occurs, and private kernel stack will still
be used to save context of kernel functions. If interrupt arrives when other in-
terrupts are being handled, the register snapshot will be saved in the current
kernel stack instead of kernel saving area, current kernel stack will still be used
too. Notice that there exists a special kernel state, in which no dispatcher is
runnable and the system stops to execute hlt instruction in kernel mode, once
interrupt arrives, the dedicated handler will run. In this situation, no private
kernel stack but the time-division shared kernel stack in original design is used
to save context of kernel functions.

Table 1. Rules related with kernel stack, context switch and snapshot area

user mode kernel mode

enabled disabled syscall exception interrupt waiting

kernel stack private private private private private/shared shared
saving area enabled disabled kernel kernel private/shared N/A
context switch allowed allowed allowed allowed not allowed allowed
restoring area enabled disabled kernel kernel private/shared N/A

1.private: private kernel stack 2.shared: shared kernel stack
3.enabled: enabled saving area 4.disabled: disabled saving area 5.kernel: kernel saving area

Scheduling and context switch is only allowed in the context of systems calls,
exception handlers or at the end of interrupt handling. An interrupt handler
must check if it’s nested in other interrupt handlers before scheduling or switch-
ing to another dispatcher, only when all the interrupt handlers have been fin-
ished(preempt count == 0 ) should scheduling or context switching be carried
out. Every dispatcher gets to run again by means of dispatch, a function car-
rying out context switch. dispatch chooses the proper register saving area to
reset/restore target dispatcher registers. When interrupt arrives, first the regis-
ter snapshot of current dispatcher should be saved into dedicated saving area,
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and then the kernel stack should be chosen. The rules for setting kernel stack
and register saving area are shown in table 1. When interrupt handler finished,
either another interrupt handler or dispatcher get to run. The rules for context
switching and choosing the right target saving area to restore is shown in table
1 too.

4.2 Protection in Critical Region

Preemption only makes it possible to handle interrupt in kernel mode, it’s sure
that interrupt is not allowed all along the kernel control path. In Barrelfish, every
kernel(CPU driver) run in a single core environment, critical region should be
avoided when interrupt is allowed. The mostly invoked kernel code is related with
capability operation, capability is a central security mechanism and most of the
kernel functions such as system calls, message passing, and interrupt handling
are invoked by means of capability reference. Call graph about capability is fully
analyzed, race conditions should never occur in any section of code. Interrupt
is disabled before entering critical region and restored when leaving. Capability
functions such as insert after, insert before, scheduling list operation functions
dispatch, scheduling, make runnale operating on shared data structure, and op-
erations on hardware which may be disturbed should all be called in a context
where interrupt is not allowed.

5 Experiment

To evaluate the preemptive kernel basing on Barrelfish, we have measured the
kernel latency and kernel overhead[13][14]. According to the result obtained in
section 3, kernel latency depends heavily on the portion of instructions executed
in kernel mode. If only user mode code is executed all the time, there will almost
be no improvement in kernel latency because nearly all of the interrupts can be
handled immediately in both preemptive and non-preemptive kernel. If code
executed is full of I/O operations or system calls, then preemptive kernel would
outperform non-preemptive kernel. In general, both of the kernel overhead and
kernel latency should be measured to evaluate the performance of preemptive
kernel in this paper.

5.1 Experiment Environments

In this experiment, preemptive barrelfish executes on a platform basing on 2
quad-core Xeon-5606 processors, which run at 2.13GHz, the capacity of main
memory is 8GB. In order to simulate an external interrupt which triggers in a
predictable interval, local APIC(Advanced Programmable Interrupt Controller)
timer is set to expire at a dedicated instant in one-shot mode[20][21], then the
timer interrupt handler will get invoked in a few time, which is treated as kernel
latency here, after the expiring. The experiment is carried out in environments
of CPU-bound and I/O-bound workloads separately, which are the two extreme
of a real-world scenario.
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– CPU-bound workloads: characterized by pure arithmetic logical computing
tasks that keep processor core busy, there is almost no critical region during
execution, except for some interrupt handling and process scheduling.

– I/O-bound workloads: characterized by a large number of I/O operations
such as ethernet transfer, communication port access, where interrupts are
disabled to maintain the consistency of system.

Kernel overhead equals the difference between real time needed to execute
a CPU-bound workload and the wall time consumed to execute it. The real
execution time can be measured when the program runs in kernel mode with
interrupt disabled, and the wall time consumed is measured when it runs in user
mode with interrupt enabled.

5.2 Evaluating Kernel Latency

In Figures 3(a)-(d), x-axis illustrates the number of times every experiment is
carried out. Figure 3(a) and Figure 3(b) represent the kernel latency of non-
preemptive Barrelfish and preemptive Barrelfish respectively, each sample rep-
resents a single measurement. In I/O-bound workload, the system executes in
kernel mode with a higher probability, then preemptive kernel has a lower kernel
latency in both average case and worst case, which matches the result in section
3. As shown in Figure 3(b), the worst case kernel latency in preemptive kernel
is less than 2500 cycles while that in non-preemptive kernel is as much as 3500
cycles in preemptive kernel as Figure 3(a), it’s a encouraging improvement for
hard real-time system. In addition, the average case kernel latency is also im-
proved approximately from 2400 cycles to 2200 cycles, which is meaningful for
soft real-time system.

In the CPU-bound workload represented in Figure 3(c) and Figure 3(d), sys-
tem executes in user mode with higher probability, preemptive kernel doesn’t
outperform non-preemptive too much, interrupt can both be handled imme-
diately after it occurs because CPU-bound workloads run in kernel mode sel-
dom. The average kernel latency are almost the same in preemptive and non-
preemptive kernel. Only in few case that non-preemptive kernel has larger kernel
latency, just as shown in 3(c) and 3(d), the worst kernel latency is more than
2500 cycles in non-preemptive kernel and less than 2400 cycles in preemptive
kernel. (e)-(h) in Figure 3 also represent the different kernel latency between
non-preemptive Barrelfish and preemptive Barrelfish, they are the cumulative
distribution function of kernel latency. In all of the four figures, probability
reaches to 1 from 0 rapidly during a narrow domain in x-axis, which represents
the kernel latency. The steeper the curve is, which means less standard deviation,
the better the kernel performs with respect to kernel latency. It’s clear that pre-
emptive kernel has a better kernel latency when running I/O-bound workload,
as shown in (e) (f) of Figure 3. Figure 3(g) and Figure 3(h) show the equivalent
result to Figure 3(c) and Figure 3(d).
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Fig. 3. Experiment data of kernel latency
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Fig. 4. Experiment data of kernel overhead

5.3 Evaluating Kernel Overhead

The kernel overhead of Barrelfish is also measured in this paper(see Figure 4). x-
axis indicates number of experiments and overhead(cycles) respectively in Figure
4(a)-(b) and Figure 4(c)-(d). When running CPU-bound workload, preemptive
kernel in this paper may even performs a little worse than non-preemptive kernel
in aspect of average kernel latency(see Figure 3(c)-(d)), the main reason is that
preemptive kernel may execute more code related with preemption prior to in-
terrupt handling. When it comes to kernel overhead, preemptive kernel is also a
little worse than non-preemptive kernel because of the same reason. Figure 4(a)
and Figure 4(b) show the result. But Figure 4(c) and Figure 4(d) give a clear
representation that the worse overhead in preemptive kernel is so negligible that
it’s completely acceptable.

6 Conclusions and Future Work

In this paper we have introduced a multi-/many-core oriented operating system:
Barrelfish. The multi-kernel architecture of Barrelfish makes it perform well in
both aspects of scalability and predictability, it could be a valuable choice for em-
bedded systems basing onmulti-/many-core platforms if preemption is supported.
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We first analysis the architecture of Barrelfish, and gives a model of the kernel con-
trol path. Then, we prove that preemption support in Barrelfish kernel will give
rise to a better kernel latency. According the model, we redesign some component
of Barrelfish and realize a preemptive kernel. Finally, experiments show that the
preemptive kernel in this paper can improved the performance of kernel latency
as much as 20% or even more(Figure 3(a)(b)), which is an encouraging result.

Next, a deep optimization and research will be carried out, we are also planning
to port Barrelfish to the MIC(Many Integrated Core) platform from Intel, which
consists of as many as 60 cores(240 hard-threads). Basing on the architecture of
MIC, topology aware taskmapping, real-time scheduling, power management and
optimized message passing are all meaningful topics to engage in.
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Abstract. The embedded systems are interrupt-driven systems, but the triggered 
methods of interrupts are with randomness and uncertainty. The behavior of 
interrupt can be quite difficult to fully understand, and many catastrophic 
system failures are caused by unexpected behaviors. Therefore, interrupt-driven 
systems need high quality tests, but there is lack of effective interrupt system 
detection method at present. In this paper, a modeling method of interrupt 
system is firstly proposed based on time Petri nets, which has ability of 
describing concurrency and time series. Then the time petri nets are 
transformed into timed automata for model checking. Consequentially, a 
symbolic encoding approach is investigated for formalized timed automata, 
through which the timed automata could be bounded model checked (BMC) 
with regard to invariant properties by using Satisfiability Modulo Theories 
(SMT) solving technique. Finally, Z3 is used in the experiments to evaluate the 
effectiveness of our approach. 

Keywords: Interrupt Modeling, Bounded Model Checking, Timed automata, 
Satisfiability Modulo Theories, Time Petri Nets. 

1 Introduction 

In the process of embedded system development, interrupt technique is always be 
used to deal with the interaction between the host and peripherals. Interrupt can 
provide more efficient and convenient solution for synchronous processing, real-time 
processing and emergency handling, which makes interrupt technique indispensably 
in the development of embedded systems. But interrupt has a closely connection with 
the hardware, the environment and the application, which makes the design of 
interrupt software much more difficult than that of ordinary software. It will easily 
lead to interrupt nesting error, breakpoint protection error, and switch interrupt timing 
error, etc. Once a program error is caused by interrupt, it will lead to a series of 
serious software failures, which are hard to track, and the failures for the system are 
often fatal. Since the triggered method of interrupt is randomness and uncertainty, 
which makes the interrupt errors are difficult to check them out through dynamic 
testing or static code analysis, and bring huge difficulty to the interrupt tests. 
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Therefore, we consider using the formal modeling method in the software design 
phase to construct the interrupt behavior, and then strictly deduct through 
mathematics method. We believe that the method above will be an effective way to 
solve the interrupt detection problem. 

At present, there are two formal modeling methods for embedded systems, which 
are Finite State Machine (FSM) and Petri nets. But the FSM cannot describe the 
concurrent behavior of interrupt, so it has certain limitations. In contrast, Petri net is a 
perfect formal modeling method with a precise formal definition, a rigorous 
derivation method, a preferable tool support, especially suitable to describe the system 
control flow, concurrency and asynchronous behavior. Recent years, there are lots of 
researches on applying Petri net to embedded systems modeling and verification. 
Rammig et al.[1] propose a modeling method of dynamically modifiable for 
embedded real-time systems. Gu et al.[2] provide an integrated approach to modeling 
and analysis of embedded real-time systems based on timed Petri nets. Costa et al.[3] 
give a method of Embedded Systems Co-design based on Petri net. Zhang et al.[4] 
propose a distributed real-time embedded systems scheduling model based on Petri 
nets. Basu et al.[5] introduces a rigorous system design flow based on the BIP 
(Behavior, Interaction, Priority) component framework, which is a new effective 
modeling method. But above methods do not consider the specific interrupt behavior 
modeling mechanism for embedded system. 

In this paper, we propose an interrupt behavior detection method for embedded 
system based on time Petri net. This method firstly models the interrupt behavior as a 
formalized time Petri net, and then transforms it into an equivalent automaton model 
in order to facilitate the follow-up formal verification. Consequentially, we 
investigate a symbolic encoding approach for formalized timed automata, through 
which the timed automata could be bounded model checked with regard to invariant 
properties by using SMT solving technique. Finally, Z3 is used in our experiments to 
evaluate the effectiveness of our approach.  

2 Time Petri Nets Model of Interrupt 

2.1 Interrupt Behavior Analysis 

An interrupt is a mechanism for pausing execution of whatever a processor is 
currently doing and executing a pre-defined code sequence called an interrupt service 
routine (ISR) or interrupt handler. Three kinds of events may trigger an interrupt. One 
is a hardware interrupt, where some external hardware changes the voltage level on an 
interrupt request line. In the case of a software interrupt, the program that is executing 
triggers the interrupt by executing a special instruction or by writing to a memory-
mapped register. A third variant is called an exception, where the interrupt is triggered 
by internal hardware that detects a fault, such as a segmentation fault.  

The trigger modes of the three type interrupts are different, but the interrupt 
response process is basically the same. A complete interrupt handling process should 
include: interrupt request, interrupt arbitration, interrupt response, interrupt service 
and interrupt return. All these parts above need to be handled separately in the Petri 
net modeling process. 
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Interrupt Request: When an interrupt request occurs, the interrupt source will send 
an interrupt request signal to CPU. There are two conditions need to be followed 
when a peripheral sends an interrupt request signal: 1) the work of a peripheral has 
come to an end; 2) the system allows the peripheral send an interrupt request. If the 
system does not allow the peripheral interrupt request, it can be blocked by interrupt 
control register. Therefore, the status of the interrupt control register needs to be 
considered when we use Petri net to construct an interrupt model. 

Interrupt Arbitration: The interrupt request is random, and sometimes multiple 
interrupt sources may make requests at the same time. But the CPU can only respond 
to one interrupt request every time, so we must arrange a priority order in advance 
according to the degree of importance of every interrupt source. When more than one 
interrupt requests take place, CPU will response one of them according to the priority 
order. After finishing a high priority interrupt, CPU will response to the low-priority 
interrupt request. Therefore, we need to introduce priority into the timed Petri net 
model and achieve the priority response for concurrent state. 

Interrupt Response: When an interrupt request is detected, CPU will abort the 
current program, save the program breakpoints, and execute the interrupt handler 
automatically. Interrupt response is a process of discovering and receiving interrupt, 
which is done automatically by hardware. Therefore, it does not require any 
additional control signal involved in the modeling process. 

Interrupt Service: Interrupt service is performed by the ISR (or interrupt handler), 
which is core content of interrupt event. ISR generally executed in the order, so the 
order time Petri nets model can be used to model it. But when the ISR is running, there 
may be a new interrupt request with a higher priority than the current interrupt 
occurring. CPU needs to stop the current low-priority interrupt handling, turn to 
respond to the high-priority interrupt, and after the high-priority interrupt processing is 
complete, it will continue to process the low-priority interrupt. This situation is called 
“Interrupt Nesting”. Therefore, In the Petri net modeling process, we need to introduce 
the representation of the hierarchical structure to express the interrupt nesting. 

Interrupt Return: For hardware interrupt and software interrupt, once the ISR 
completes, the program that was interrupted resumes where it left off. In the case of 
an exception, once the ISR has completed, the program that triggered the exception is 
not normally resumed. Instead, the program counter is set to some fixed location 
where, for example, the operating system may terminate the offending program. 
Therefore, we need to design different interrupt handler return status for the three 
interrupts in Petri net model. 

2.2 Time Petri Nets with Priority 

The basic concepts and definitions of time Petri nets can be found in [6]. We only 
introduce a few concepts related to this paper in the following section. 
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Definition 1: A time Petri net (TPN) is a tuple <P,T,Pre,Post,M0,efd,lfd> in which: 
—P={p1,p2 ,...,pm} is a finite non-null set of places;  
—T={t1,t2 ,...,tn} is a finite non-null set of transitions;  
—Pre⊆P×T is a finite non-null set of input arc, which defines the flow relationship 

between places and transitions; 
—Post⊆T×P is a finite non-null set of input arc, which defines the flow 

relationship between transitions and places; 
—M0 is the initial identification of Petri net; 
—efd is the earliest permission time of transitions fired; lfd is the latest permission 

time of transitions fired; 
The priorities need to be introduced in time Petri nets for interrupt modeling, 

forming time Petri nets with priorities (PrTPN). PrTPN extend TPN with a priority 
relation on transitions, and the definition is as followed. 

Definition 2: A time Petri net with priorities (PrTPN) is a tuple <P,T,Pre,Post,M0, 

efd,lfd,Pr,Σ�,L> in which: 
—< P,T,Pre,Post,M0,efd,lfd > is an original time Petri net;  
—Pr⊆ T×T is the Priority relation, irreflexive, asymmetric and transitive; 

—Σ is a finite set of Action, or Label, not containing the silent action�;   

—L:TΣ� is a function call the Labeling function. 

For f, g: PN+, f ≧ g means (∀p�P)(f(p) ≧ g(p)) and f{+|-}g maps f(p){+|-}g(p) 

with every p. A marking is a function m: PN+, t�T is enabled at m iff m ≧ efd(t), 

εN(m) denotes the set of transitions enabled at m in net N. (t1,t2)�Pr is written t1 t2 or 
t2 t1 (t1 has priority over t2). 

Definition 3: An identifier M is a set of distribution for token. For p�P, the identifier 
is M(p), which means multiple collection. For a specific identifier M, a place p is 
identified iff M(p)≠φ. 

Definition 4: The definition for pre-collection of a transition t�T is •t={p�P|(p, t)�

Pre}, which is the input place set of t. The definition for post-collection of t is t•={ p�

P |(t,p)�Post},which is the output place set of t. Similarly, the definition for pre-

collection of a place p�P is •p={t�T|(t,p)�Post}, and the definition for post-collection 

of a place p is p•={ p�P |(p,t)�Pre}. 

Definition 5: For each transition t�T, there is a transition function f. That is ∀t�T, ∃f: 
τ(p1)×τ(p2) ×... ×τ(pa)τ(q), where τ(p) represent the set of possible type value of p, 

•t={p1,p2, ...pa}, q�t•. 

Definition 6: For each transition t�T, there is a minimum transition delay efd and a 
maximum transition delay lfd, both of them are nonnegative real numbers and meet 
efd≤lfd. They represent the lower and upper bounds of execution time of the transition 
function separately. 
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Definition 7: A pocket of a transition t (where •t={p1,p2, ...pa}) is a ordered set of token 

b={k1,k2, ...ka}, where ∀pi∈•t and ki∈M(pi). If transition t�T is enabled for one pocket 
b={k1,k2,...,ka}, et=max{r1,r2,…,ra} is a period of time in which t is enable. If transition t

�T is enabled for one pocket b={k1,k2, ...ka}, the earliest fire time tt−=et+efd is the lower 

bound and the latest fire time tt+=et+lfd is the upper bound. An enabled transition t�T 
can only fire between tt- and tt+, otherwise, it will not become enabled. 

Definition 8: For b={k1,k2, ...ka}, when an enabled transition t�T is fired, it will 
transform the identifier M into a new identifier M’. The transfer result is as followed: 
1) The token in pre-collection •t is removed, that is ∀pi∈•t, M '(pi) =M(pi)–{ki}; 2) A 

new token k join into post-collection t•, that is ∀p�t•, M'(p) =M(p)+{k}. The new 
value of token k is calculated by transition function. The time delay of token k is tt= 
r*, where tt*∈[tt−,tt+]; 3) The identifier in the place which has nothing to do with the 

pre-collection and post-collection remain the same, that is ∀p�P\•t\t•, M '(p)=M(p). 

2.3 Interrupt Model 

In view of interrupt behavioral characteristics for embedded systems, we use three 
types of time Petri nets scenarios to model it. 

Case 1: Interrupt Order Execution 
At some moment, only one interrupt request occurs, and no high-priority interrupt 
request break the interrupt response service. In this case, the interrupt handler 
executes orderly, therefore, can be modeling by ordered time Petri nets (Fig. 1). IRQ 
is the status of interrupt request; IRP is the status of interrupt response; IS is the status 
of interrupt service; IRT is the status of interrupt return; the rest places are registers, 
global variables or mutual resources. 

 

Fig. 1. Ordered time Petri nets for interrupt order execution. This figure shows the modeling 
method of interrupt order execution based on time Petri nets. 

Case 2: Interrupt Nesting Execution 
Only one interrupt request occurs at some point, then a higher priority interrupts request 
coming in the process of the current interrupt response. In this case, current executing 
interrupt is interrupted, and CPU turns to the execution of the high-priority interrupt 
request. When the high-priority interrupt execution is complete, CPU returns to the 
original low-priority interrupt to continue the remaining execution. Therefore, the 
hierarchical time Petri nets can be used to model interrupt nesting execution (Fig. 2). 
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Fig. 2. Hierarchical time Petri nets for interrupt nesting execution. This figure shows modeling 
method of interrupt nesting execution based on time Petri nets. 

Case 3: Interrupt Concurrent Requests 
Multiple interrupt requests occur at one moment simultaneously. In this situation, 
CPU will arbitrate interrupt request based on interrupt priority, respond to high-
priority interrupt, and shield low-priority interrupt (or add the low-priority interrupt to 
the request queue, process it after the high-priority interrupt is finished). Therefore, 
concurrent time Petri nets model can be used to model interrupt concurrent requests 
(Fig. 3). 

 

Fig. 3. Concurrent time Petri nets interrupt concurrent requests. This figure shows modeling 
method of interrupt concurrent request based on time Petri nets. 

3 From Time Petri Nets to Timed Automata 

There are some methods to solve the transformation from time Petri nets to timed 
automata. A structural transformation from TPN to NTA is defined in [7]. This 
transformation builds a timed automaton per transition of the TPN. Based on the time 
state space exploration, Lime et al. [8] propose a new approach to calculate the so-called 
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state class timed automata (SCTA) based on extended state class diagram (SCG). In 
order to analyze and verify the properties of a specific time Petri net model, a 
transformation method from time Petri nets to timed automata is given in [9]. However, 
the above methods are lack of priority description and transformation. Based on the 
above methods, we extend time Petri nets with a priority and propose a new method to 
transform it into timed automata. 

Definition 9: A Timed Automaton (TA) [10] is a tuple <S,S0,Σ,X,I,T> in which: 
—S is a finite set of locations; 

—S0�S is the initial location; 
—X is a finite set of clocks; 
—Σ is a finite set of characters; 
—I:SC(X) is the mapping from location to location invariant. C(X) represents the 

variables constraints of the position. 
— ( ) 2XT S C X Sδ⊆ × × × ×  is a finite set of transitions or edges. 

Priorities: We only consider static priorities here. The definition of TA is extended 
with a partial irreflexive, asymmetric and transitive priority relation among 
transitions. The semantics is updated accordingly: a transition can only be taken when 
no transition with higher priority can be taken at the same time. 

In the process of transformation, construct an automaton and a clock for each 
transition of the time Petri nets. The transformation process includes the following 
steps: 

Step 3.1: Define a label set Σ, which is the set of all the TPN transitions. 

Step 3.2: Define global clock c(c�X) according to the symbol timestamp of TPN, 
which can be used to evaluate system performance by recording the statistics 
information of time consumption during the simulation.  

Step 3.3: Defined local clock ci(ci�X) ,which can be used to count the time of local 
transition to ensure the transition fire in its earliest and latest time interval. 

Step 3.4: For each transition of the time Petri Nets ti, construct an timed automaton 

it  in which there are r+1 states including s1,s2,…,sr, where r is the number of Pre-

collection input token transitions. The Pre-collection is denoted by ( )
i

i
p t

pr t p
∈•

= ⋅ . 

(1) When the Pre-collection of ti is empty, construct an automaton which contains 
only two states s1 and nd. 

(2) When ti does not conflict with other transitions, let r=| pr(ti) | and construct r 
edges (s1,s2), r edges (s2,s3), ……, r edges (sr,nd). Then assign the corresponding 
synchronization labels to the corresponding transitions of pr(ti) for each group of the r 
edges and assign synchronous label ti for (nd,s1) . 

(3) When ti conflicts with the transition tj, let C=pr(ti)－pr(tj), l=|C|, m=|D|, n=|pr(ti)|. 
Divide each state of s2,…sn into s2,c,…,sn,c and s2,d,…,sn,d. Firstly, define m edges 
(s2,c,s3,c), m edges (s3,c,s4,c),…, m edges (sn,c,nd), m edges (s1,s2,d),…, m edges (sn-1,d,sn,d), 
where each group of edges carriy with the synchronization labels corresponding to the 
transitions in D. Secondly, define l edges (s1,s2,c), l edges (s2,d,s3,c),…, l edges (sn,d,nd), 
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where each group of edges carry with the synchronization labels corresponding to the 
transitions in C. Thirdly, define 1 edge (s2,c,s1), 1 edge (s3,c,s2,d),…, 1 edge (nd,sn,d), 
where each edge carries with the synchronization label tj. Finally, define 1 edge (nd,s1) 
carrying with the synchronization label ti. 

Step 3.5: Define a clock ci(ci�X) for each transition ti of time Petri nets. Define a 

variable vk(vk�V) for each place pk of time Petri nets, where vk is the token value when 
pk is marked. The clock ci is used to ensure that the transitions fire in its earliest and 
latest time interval. 

Step 3.6: Defined R(ev)={ci} for each edge of the timed automata 
it , where define 

R(ev)=ϕ for other edges of 
it . Define the invariant ci ≤lfdi

  for state nd so that it can 

fire before the latest fire time (at the latest fire time). 
Step 3.7: Assign clock constraints efdi≤ci ≤lfdi

 for the edge e={nd,s1}(with the he 
synchronization label ti) of timed automata 

it .
k ip t∀ ∈ ⋅, assign :k iv f=  for e. 

Step 3.8: Assign variable constraints Gi for the edge e={nd,s1} of timed automata 

it  
if ti has the guard Gi. Then construct an edge (nd,nd) without labels, on which add 

iG  (
iG is the complement Gi) and R((nd,nd))={ci}. 

Step 3.9: If ti, with guard gi, has higher priority than tj, with guard gj (denoted by 

i jt t or j it t in the original TPN), then replace gj with gj∧¬gi in the 

transformation process. 
Step 3.10: If the transitions in the original TPN is enabled at the initial marking 

time, let nd be the initial state of the timed automata 
it . If there are l places initially 

marked in •t
 
and 0≤l≤|•t |, let sl+1 be the initial state of 

it . 

4 Model Checking for Timed Automata 

There are many encoding methods in model checking area. The initial idea for 
converting a transition system into a quantifier-free formula and using SAT solving 
technique [11] to bounded check the formula has been proposed in [12]. A more 
recent work [13] uses a similar approach to analyze model programs (representing 
transition systems) but based on SMT. To avoid encoding variants in the model into 
Boolean type in the process of bounded model checking(BMC) and preprocessing 
clocks for timed automata (TA), a model checking method of BMC for timed 
automata based on SMT tools is proposed in [14]. Weiqiang et al.[15] investigate a 
symbolic encoding approach for STM(State Transition Matrix) design, through which 
the design could be bounded model checked wrt. invariant properties by using 
Satisfiability Modulo Theories (SMT) solving technique. We present a new encoding 
approach for TA with priorities based on the above work. 

4.1 Encoding of Timed Automata Model M 

We demonstrate our encoding approach by considering a TA design M consists of n 
TAs A0,A1,…, An and the given bound is denoted by K. In addition, we verify the 
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security properties and liveness properties of the real-time interrupt systems through 
the reachability analysis algorithm based on SMT. The invariant properties of the TA 
model design are represented by LTL(Linear Temporal Logic) formula(eg. 
f=EFp|AGp). We converting a transition system TA and verified properties into a 
quantifier-free conjunction formula (denoted by BMC(M,f,K)), through which the 
design could be bounded model checked by using Satisfiability Modulo Theories 
(SMT) solving technique. Next we will give the implementation methods of the 
encoding and in section 5 the state-of-the-art SMT solver–Z3 is used in our 
experiments to evaluate the effectiveness of our approach. 

Formula for the initial state(s0,v0), denoted by step Init, representing the initial 
global state, is written as: 

0 1 1... nInit Init Init Init −= ∧ ∧ ∧ , 

Initj denotes the initial position of the j-th time automatic, and all initial variable 
values of this time automatic clock should be set to 0. The concrete formula is defined 
as follows: 

0

0 0( ) ( 0)
j j

j
t Xs S

Init s s t
∈∈

= = ∧ =∨ ∨
 

We define Constk(j) 
to denote the variable constraints of the j-th timed automata at 

the k-th state. tk denotes the value of the clock t at the k-th state. tk≧0 restricts the 
clock variable non-negative. sk denotes the position of the system at the k-th state. We 
also should ensure that every TA can only be in one state and the state holds 

invariant ( )kI sμ . So Constk(j) is defined as follows: 

( ) ( 0) {( ) (( ) ( ))}
j j j

v v

k
k k k k v

t X s S s S s s

Const j t s s s s I s
μ μ

μ μ
∈ ∈ ∈ ∧ ≠

= ≥ ∧ = → ≠ ∧∨ ∨ ∨  

Based on the encoding of Constk(j), we could define the global invariant of ( , )k ks v  

as follows: 

(0) ... ( 1), [0, ]k k kConst Const Const n k K= ∧ ∧ − ∈

 When TA is running, there will be two types of transitions occurring to the system. 
One is the time delay transition, because time is constantly changing all the time. 
Once the clock variable changes, the whole system TA model will transfer from one 
state to another. So we define the time delay transition as follows: 

1 1( ) ( ) ( ) ( )
j

j k
k k k k k

t X

T i s s s s t t dμ μ μ μα + +
∈

= ¬ ∧ = ∧ = ∧ = +∧  

TA models the whole real-time interrupt system including all of the dynamic 
behaviors. When an TA executes some actions, the TA states will make changes. So 
the other type is the action transition, defined as follows:  

1 1 1( ) ( ) ( 0) ( )
j j

u u

j k
k k k k k k

t t

T s s s s t t t dμ μ μ μ
λ λ

α + + +
∈ ∉

′= ∧ = ∧ = ∧ = ∧ = +∧ ∧
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As the TA design M consists of n TAs, there must be mutual exclusion in the 
process of various TAs internal transition. In addition, when a TA is running, each TA 
can only move one step one time. So we define constrains for each 

, , , ,v v v v v vT s sα σ λ ′=< >

 

to ensures the correctness of the TA design.

 

 

( )
v v

j k
v

T T T T

Exl k
μ

μ α
∈ ∧ ≠

= ¬∧  

In our encoding approach, we use BMC techniques to fight state space explosion. 
We define the bound as K. Stepk(j) denotes the k-th transition of the j-th TA, where dk 
is the clock delay. The complete transition process is defined as follows:  

 

( ) ( ( ) ( ) 0)
k

j j j
k k

T T

Step j Exl k T k T d
μ

μ μ μ
∈

= ∧ ∧ ∧ >∨

 The k-steps path of TA is essentially a finite sequence of states. we can use an 
intuitive and clear expression to describe the whole process of the TA transition as 
follows: 

0 1 1

0 0 1 1( , ) ( , ) ... ( , )Kd d d
K Ks v s v s v−⎯⎯→ ⎯⎯→ ⎯⎯⎯→  

Where
 0 0( , )s v

 
is the initial state of the path.

 ( , )k ks v  denotes the reachable k-th 

state after 0 1 ... kd d d+ + + . Stepk describes the k-th transition of the system, including 

the conjunction of the k-th transition
 
Stepk(j) of each timed automata. Each transition 

is denoted by a five tuple , , , ,T s sμ μ μ μ μ μα σ λ ′=< > .
 
In the k-steps transitions, Stepk 

1 1( , ) ( , )kd
k k k ks v s v+ +⎯⎯→  

is defined as follows:
 

( ) ... ( 1), [0, 1]k k kStep Step j Step n k K= ∧ ∧ − ∈ −  

Based on Stepk, we can get the k-steps path of the timed automata as follows: 

0

K

k k
k

Path Step
=

= ∧ ∧ . 

Finally we can convert the whole timed automata model into logical formulas: 

0

[[ ]]
K

k k k
k

M Init Const Path
=

= ∧ ∧∧  

4.2 Encoding of Properties f 

The set of all reachable global states of M is denoted by RM. An invariant property of 
M is a state predicate p which holds in all reachable global states of M. First, we use 
the LTL semantics to define the reachability as f=EFp. The f denotes that during the 
operation of TA, there is a path, on which there exists certain state that holds p. Based 
on that we can get 

[0, ]

[[ ]] [[ ]]k k
k K

f p
∈

= ∨ , where [[ ]]kp  can be converted according to the 

common logical operators. 
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The security property is in contrast to the reachability. f=AGp denotes that p holds 
true in all the states of all paths in the state transition process of timed automata. In 
this condition, we can negate the f to get the corresponding reachability property and 
verify f EF p′ = ¬ . If f ′ is satisfied, we can say that there is a path, on which there 

exists certain state that holds p¬ , which means that f is false. On the contrary, if the 

property f ′ is unsatisfied, f is true until the timed automata run k-steps.  

When we complete the encoding of M and f, the final logical formula is defined as 
follows: 

0 0
( , , ) ( [[ ]] ) ( [[ ]] )

K K

k k
k k

BMC M f K M f
= =

= ∧ ∧ ∧ ¬  

5 Implementation and Experiment 

SMT [16] tools and SAT tools could be used to testify whether a problem is satisfied 
with certain propositional logic. But there are differences, SAT [17] tool is only able 
to solve logical proposition which contains only Boolean variables. But according to 
certain theory and logic, SMT could solve a wider range of propositional logic 
problems. These problems contain integer or real number type variable. This 
advantage provides a convenience for bounded model checking: there is no need to 
code model variables into Boolean variables, what we should do is to apply logical 
propositions to SMT tool which contain integer or real number variables. In this 
paper, we choose Z3 as the tool in the model checking process.  

The timed automata model M, the character that is about to be verified f, the SMT 
tool and the setting expanded maximum step k are the input of the verification 
procedures. For each k<K, we can get the corresponding logical formulas 
BMC(M,f,K), and apply it to Z3.  

ARM CortexTM-M3 is a 32-bit microcontroller, used in industrial automation and 
other application fields. It carries with a system timer called SysTick. The timer can 
be used to trigger the ISR, and be executed once every millisecond. Fig. 4 is a design 
instance based on the processor platform (given only the key parts). The main  
 

 

Fig. 4. Design instance of the interrupt. This figure shows the tasks of ISRs and Main function. 
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function is used to complete the main task of the system. ISR1 completes the task that 
counts down per millisecond from the initial value until the counter reaches 0 and then 
stops the countdown. ISR2 is an external key interrupt service routine which can complete 
the counter reset. External key interrupt has a higher priority than the interrupt timer 
interrupt, so it can interrupt the timer interrupt so as to complete the interrupt nesting. 

Modeling the above instance using the time Petri nets based on our proposed interrupt 
modeling method (detailed in section 2), the modeling results are shown in Fig. 5. 

 

Fig. 5. Time Petri nets model of the design instance. This figure shows the interrupt behavioral 
characteristics using the time Petri nets.  

We describe the process of transformation from time Petri nets to timed automata in 
section 3. Due to space limitations, we only give several specific transformations of 
the timed automata model, as Fig. 6. 

 

Fig. 6. time automata model transformation of the design instance. This figure shows several 
specific transformation results of timed automata. 

We consider three kinds of invariant properties for the design instance. These 
properties are commonly desired by industrial practitioners for a TA design. 

Reachability: We want to know that whether there is a finite path from
as to

as ′ for 

certain TA, e.g.: 
( , ) .... ( , )A A A A

A a a a aEPath s v s v′ ′→ →  
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Two sample reachability properties of the above instance are declared as follows: 

1 ... , 2 ...reachability A C reachability E G= → → = → →  

Static Constraints: Static constraints demand certain correlation between status of 
different TAs. Such a correlation can be in the form of, e.g., TA B is in status sb if TA 
A is in status sa, e.g.: 

( , ) , ( , ) ( , )A A B B
M a a b Bs v R s v s v∀ ∈   

When a design M involves multiple (or large amount of) TAs, it is not quite easy 
for designers to maintain an overall image of the design and guarantee the satisfaction 
of it to static constraints (and dynamic constraints as well, to be introduced next). 

Two sample static constraint properties of the above instance are declared as 
follows: 

1 , 2static F B stactic I B=  =   

Dynamic Constraints: Dynamic constraints demand certain correlation between 
status-change in one TA with a specific status of another TA. Such a correlation can 

be in the form of, e.g., when the status of TA A has just changed from as to as ′ , the 

status of STM B should be sb, i.e.: 

( , ) ,{( , ) ( , ))} ( , )dA A A A B B
M a a a a b bs v R s v s v s v′ ′∀ ∈ ⎯⎯→   

We show a dynamic constraint property of the instance as follows: 

( )ddynamic E F B= ⎯⎯→   

Next, we encode the instance model based on our proposed encoding approach, 
and transform the generated BMC logic formulas into SMT-LIB which is the input 
language of Z3 solver. Then we use Z3 4.3.0 (running on Windows 7, 2.8GHz, 4GB 
RAM) to check these properties. We intendedly introduced errors to this system for 
demonstration purpose. Table 1 is the results of the one with errors, and Table 2 is the 
results of the correct.  

Table 1. Results of checking the original design instance. This table shows the design instance 
with errors. 

Property Step Verdict Time(s) 
reachability1 
reachability1 

23 
24 

unsat 
sat 

2.14 
2.21 

reachability2 21 unsat 2.01 
reachability2 

static1 
static1 
static2 
static2 

dynamic 
dynamic 

22 
20 
21 
26 
27 
25 
26 

sat 
unsat 
sat 

unsat 
sat 

unsat 
sat 

2.12 
2.45 
2.53 
2.75 
2.81 
2.44 
2.51 
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Table 2. Results of checking the revised design instance. This table shows the correct design 
instance. 

Property Step Verdict Time(s) 
reachability1 50 unsat 4.61 
reachability2 

static1 
static2 

dynamic 

50 
50 
50 
50 

unsat 
unsat 
unsat 
unsat 

4.58 
4.76 
4.5 

4.85 

 
If the result is “unsat”, then increase the value of k until the result is sat or k 

reaches the maximum value K. If the result is “sat”, for reachability, this property is 
established. If the result is still “unsat” while k is not less than K, this shows that in K 
steps, the property is not satisfied or security is satisfied.  

6 Discussions and Conclusions 

In this paper, we propose an embedded system interrupt behavior modeling method 
based on time Petri nets. This method can effectively depict the nested interrupt and 
concurrent behavior. In addition, in order to verify the interrupt model, with the help 
of the mature technology in automaton model validation, we put forward a method of 
transforming the time Petri nets to timed automata, and then use SMT model checking 
method with BMC strategy for validation. According to the different modeling 
granularity, the verification of the properties is also different. 

There are some specific details that need to be improved. Such as the BMC 
conversion formula is not optimized in the section of model encoding and validation. 
In addition, we didn’t give the proofs for the transfer method from time Petri nets to 
timed automata. We will further improve the research above in the future. 
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Abstract. Static data-race detection is a powerful tool by providing clues for 
dynamic approaches to only instrument certain memory accesses. However, 
static data-race analysis suffers from high false positive rate. A key reason is 
that static analysis overestimates the set of shared objects a thread can access. 
We propose thread specialization to distinguish threads statically. By fixing the 
number of threads as well as the ID assigned to each thread, a program can be 
transformed to a simplified version. Static data-race analysis on this simplified 
program can infer the range of addresses accessed by each thread more accu-
rately. Our approach prunes false positives by an average of 89.2% and reduces 
dynamic instrumentation by an average of 63.4% in seven benchmarks. 

Keywords: Static analysis, false positive, data-race detection, specialization. 

1 Introduction 

Multithreaded programs have weak reliability due to concurrent errors, which are 
mostly caused by data races. A remarkable design goal of multithreaded programs is 
data-race-freedom. To this end, many data-race detection approaches are proposed, 
including static and dynamic ones. These approaches try to locate data races accurate-
ly and assist developers in fixing these errors.  

Recently, an alternative way to deal with data races is dynamically tolerating them. 
For example, deterministic multithreading systems always produce the same output 
for the same input, even when the program contains data races. CoreDet [1] is such a 
deterministic software framework, which instruments shared-memory accesses to 
enforce a deterministic shared-memory accessing order. CoreDet instruments all 
shared-memory accesses except those are known to be thread-local. However, it is 
sufficient to only instrument data-race-involved memory accesses, which can be de-
tected by a sound static data-race detector. 

Unfortunately, static analysis tool is inherently conservative, hence a large fraction 
of warnings produced by the static data-race detector are false positives. Tracking 
these potential data races can still be costly. In order to reduce overhead, it is critical 
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to reduce false positive rates of static data-race detector. However, pruning false posi-
tives without compromising soundness remains an open problem. 

Chimera [2] uses static analysis to detect potential data races and instruments them 
with weak locks for deterministic replay. It employs a sound hybrid program analysis 
to increase the granularity of weak locks, and reduces the cost from 53x to 1.39x. 
However, Chimera does not address false alarms. Besides, although efficient in de-
terministic replay systems, weak locks may cause frequent global synchronizations in 
deterministic multithreading systems. In fact, false alarm pruning is a more general 
approach to reduce the overhead of deterministic systems. 

Schedule specialization [3] reduces false alarms of static analyses by transforming 
a program toward a schedule. After transformation, the control flow and data flow of 
the program are simplified. Hence, the precision of static analyses on the transformed 
program is improved. However, in order to specialize a program, developers have to 
record a set of schedules at first and then enforce these schedules at runtime for 
soundness. 

In this paper we present a novel approach called thread specialization to prune 
false positives produced by static data-race detection. Our insight is that in most mul-
tithreaded programs the control flow mainly depends on the number of worker 
threads. For instance, the divide-and-conquer applications divide work among threads 
according to the number of worker threads. Each thread accesses data according to the 
thread ID assigned. If we can statically fix the number of worker threads and the ID 
each thread assigned, the control flow and data flow would be simplified. Based on 
this insight, our approach specializes the program toward a fixed worker thread count. 
By analyzing the specialized program, we vastly improved the precision of static data-
race detection. The result of analysis is sound as long as we run the program with the 
analyzed thread counts.  

One of the limitations of our approach is that we have to analyze the program for 
every thread count. We consider that the set of thread count need to be analyzed is 
small because the number of cores on commodity hardware is generally less than 
sixty four. Besides, all programs we evaluated achieve peak performance when the 
number of worker threads is less than or identical to the number of cores. 

Based on thread specialization, we further propose two additional analyses to prune 
remaining false positives. First, we present Code Region Analysis (CRA), which cate-
gorizes all code regions into single-threaded regions, non-parallel regions, and paral-
lel regions. Single-threaded regions, for instance, the initialization of some programs, 
can only be executed in single-threaded mode. Thus, accesses in single-threaded code 
regions do not race with any other accesses. Non-parallel regions cannot be executed 
simultaneously by two or more active threads. Hence, accesses in non-parallel code 
regions do not race with any other accesses in the same region. Any other code re-
gions are conservatively considered as parallel regions, which can be executed by 
multiple threads simultaneously. 

Second, we propose Phase Analysis (PHA). It is common that the computation of 
multithreaded programs consists of multiple phases. At the boundary of each phase, 
barrier synchronization is taken to make sure that every thread runs in lockstep. 
Hence, any data race between two phases is a false positive, as any two phases cannot 
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be executed concurrently. We soundly identify multiple phases in parallel regions. 
Using the results of phase analysis, we prune any data race between two phases. 

The rest of this paper is organized as follows. Section 2 analyzes the false positives 
produced by static data-race detector. Section 3 introduces the thread specialization 
approach in detail. In Section 4 we evaluate our experimental setup and results. Sec-
tion 5 surveys related work. Finally, Section 6 concludes this paper. 

2 Static Data-Race Detection 

RELAY [4] is a static data-race detector, which scales to millions of lines of code. 
However, a lot of warnings produced by RELAY are false positives. In this section, 
we first give an overview of RELAY detection algorithm. Then we analyze the false 
positives produced by RELAY. 

2.1 RELAY 

RELAY is a lockset-based data-race detector. A lockset is a set of locks held by pro-
gram at every program point. A lockset analysis statically computes the lockset of 
each program point. If two accesses from different threads to the same shared object 
(1) may happen concurrently, (2) at least one access is a write, and (3) the intersection 
of the locksets at each point is empty, then a data-race warning is generated.  

RELAY improves the lockset algorithm by computing relative lockset. Relative 
lockset is the set of locks being held at each point relative to the function entry point. 
As relative lockset is independent to the calling context, the relative lockset for differ-
ent functions can be computed in isolation. RELAY runs a bottom-up relative lockset 
analysis over the call graph. Once the lockset analysis for a function is done, the 
access summary of that function is computed immediately. The access summary con-
tains the information of all accesses performed by a function, including the shared 
object being accessed, the relative lockset at the point where access happen and the 
kind of access (either a read or a write). During the bottom-up analysis, once a func-
tion call is processed, RELAY composes the summaries of callee and caller functions. 

After the bottom-up analysis, RELAY iterates the access summaries of every 
thread entry point. RELAY assumes that every thread entry point, except the main 
function, can start multiple active threads. All these threads may run concurrently. 
RELAY searches for any potential racy access pair between different threads. Such 
racy pair may access the same object, at least one access is a write, and the must-hold 
locksets do not overlap.  

2.2 Data-Race Warnings 

We evaluate the effectiveness of RELAY by using seven benchmarks which are listed 
in Table 1. These benchmarks cover different application fields, including network, 
desktop, and scientific applications. Further, we instrument the reported data races 
and evaluate the performance overhead by counting the dynamic instrumentation 
number. The evaluation inputs are listed in the last column of Table 1. 
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Table 1. Benchmarks and inputs used for evaluating RELAY. The number of LOC is measured 
for the CIL representation. 

Benchmark LOC evaluation inputs 
network aget 1.2K 4 workers, download a 5.3MB file 
desktop pfscan 2.1K 4 workers, scan “exe” from klee [5] source code tree 
scientific lu 1.5K 4 workers, 512 * 512 matrix, 16 * 16 element blocks 

fft 1.4K 4 workers, 210 data points, no inverse FFT check 

radix 1.3K 4 workers, 262144 keys, no sanity check 
water-n 2.5K 4 workers, 512 molecules, 3 steps 
ocean 5.3K 4 workers, 258*258 grid, 1e-07 error tolerance 

Table 2. The number of warnings generated by RELAY, the number of racy instructions 
involved and the proportion of instrumentation to total memory accesses 

Benchmark warnings racy instructions % of instrumentation 
aget 23 42 20.6 

pfscan 19 51 0.3 
lu 16 84 75.6 
fft 24 138 99.1 

radix 29 89 49.4 

water-n 115 434 99.8 
ocean 77 1824 99.8 

 
The number of warnings generated by RELAY is shown in Table 2. A warning 

consists of multiple data races which access the same shared object and have the same 
access pattern (either read-write or write-write). Therefore, a warning may contain 
multiple racy instructions. Table 2 also lists the number of racy instructions. The last 
column in Table 2 gives the proportion of the dynamic instrumentation to all shared-
memory accesses. From Table 2 we can see that the percentage of dynamic instru-
mentation is large, especially in scientific applications. The most important reason is 
that most memory accesses in the hot-spot are identified as potential data races. How-
ever, a large fraction of them are false positives. Pruning such false positives can 
drastically reduce the instrumentation overhead. 

2.3 Analysis of False Positive 

Unsurprisingly, manual inspection on these warnings reveals that the vast majority of 
them are false positives. Most of them can fell into a few categories described below. 

Single-Threaded Section: The execution of multi-threaded programs usually con-
tains some single-threaded sections. During such section only one thread is running. 
The most common pattern is the initialization and finalization of applications.  
In initialization and finalization sections a program often accesses the global objects 
without acquiring locks. RELAY conservatively assumes all threads start from the 
beginning of program execution, and therefore may mistakenly treat accesses in sin-
gle-thread sections as data races.  
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Array: RELAY uses Steensgaard [6] and Andersen [7] flow-insensitive context-
insensitive points-to analyses, which are efficient and can scale to large programs. 
However, these analyses are very conservative. For example, they do not distinguish 
array elements by index. Accessing an array through any index, no matter constant or 
variable, are treated as accessing the same objet. Such conservative treatment may 
lead to a lot of false positives, especially in scientific applications. 

  
Fig. 1. Distribution of different kinds of false positives according to the number of racy instructions. 

Happens-Before Relation: Sometimes it is possible to statically determine the hap-
pens-before relationship between two accesses. For example, accesses which domi-
nate a barrier synchronization are happens-before accesses post-dominating that bar-
rier. RELAY does not account for happens-before relationships due to fork/join, bar-
riers, conditional variables, etc. Actually, some data races reported by RELAY can 
never be executed concurrently. 

Non-parallel Region: Some paths would not be executed concurrently because the 
conditional statements ensure that only one active thread can execute them at the 
same time.  

Unlikely Aliasing: Due to the inaccuracy of alias analysis, RELAY may report false 
data races which actually access two different objects. 

The distribution of different categories is shown in Figure 1. As illustrated in Fig-
ure 1, single-threaded false positives are common among all benchmarks. It is very 
common that in the single-threaded section an application initializes global states 
without holding locks. For scientific applications, array elements result in a large 
number of false positives. Every benchmark we evaluated has a certain number of 
non-parallel false positives. Besides, barrier is the most common kind of the hap-
pens-before relation false positives in scientific applications. They are caused by 
ignoring of barrier synchronization. 



82 C. Chen et al. 

 

In contrast to the number of racy instructions, we prefer to prioritize false positives 
according to the number of dynamic instrumentation. Figure 2 shows the distribution 
of different kinds of false positives according to the number of dynamic instrumenta-
tion. Like Figure 1, the distribution varies significantly among benchmarks. However, 
the proportion of each category is quite different. For scientific applications, the array 
false positives account for the largest proportion. It is mainly because accesses to 
array are often enclosed by loops. 

 

Fig. 2. Distribution of different kinds of false positives according to the number of dynamic 
instrumentation 

3 Thread Specialization 

This section proposes thread specialization which specializes a program for improv-
ing precision of static data-race detection.  

3.1 Overview 

Figure 3 shows an illustration example. Using RELAY to analyze this program would 
produce many false positives. For instance, RELAY reports data-races on results in 
line 20. However, the program divides the array results into multiple portions and 
assigns different portions to each worker thread. Hence, different threads would not 
access the same entry in the array concurrently. RELAY treats arrays as aggregates, 
so accesses in line 20 are considered as stores to the same object. Even if an alias 
analysis can distinguish the accesses to results by index, it may still fail to compute 
that these accesses are disjoint. The reason is that the portion each worker thread ac-
cesses depends on my_id, which cannot be determined statically.  
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Intuitively, if we can determine the number of worker threads statically, distin-
guishing them becomes easy. In addition, if we can statically fix the my_id of each 
thread, we can probably determine the range each thread access. 

 
Fig. 3. A multithreaded program which partitions work among p threads. Variables p and n are 
two inputs. Variable n represents the size of the global array results, while p specifies  the 
number of worker threads. 

To take advantage of these observations, we propose thread specialization, which 
specializes a program toward a fixed thread count. It does so in two steps. The first step 
is called thread count specialization. It specializes the control flow of the program by 
cloning functions for every thread so that each statement can be executed by only one 
thread. Hence, it is easy to distinguish threads statically. Specifically, it first identifies 
the variable which represents the number of worker threads, and replaces it with the 
constant value specified. Then, it unrolls the loop when it can, especially the loop which 
forks or joins worker threads. After that, it clones thread start function for each worker 
thread, and uses a top-down recursive approach to descend into each thread start func-
tion. All functions on the call graph of thread start function are cloned and made thread-
local. Figure 4 shows the result after thread count specialization. Loops which contain 
pthread_create or pthread_join are unrolled. Thread functions and the compute function 
are cloned, which makes it easy for an analysis to distinguish threads.  

The second step is called thread ID specialization. In this step, our framework spe-
cializes the data flow by fixing the ID assigned to each thread and replacing the varia-
ble with constant ID. Figure 4 also shows the result of thread ID specialization.  
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The variable my_id of every function is replaced with constant value. In contrast to 
identifying the variable which represents thread count, it is not trivial to locate the 
variable which represents thread ID. Our framework currently relies on developers to 
specify the value of my_id, and then compare the specified value with the actual one 
at runtime. 

 
Fig. 4. The resultant program after thread specialization, which is done in two steps. (1)Thread 
count specialization. The loops at lines 9–10 and lines 11–12 in Figure 3 are unrolled because 
we can determine the loop bounds statically after fixing the thread count, while the other loops 
are not. Thread function and compute function are cloned twice respectively, making it easy for 
an analysis to distinguish two worker threads. (2) Thread ID specialization. Variable my_id is 
replaced with constants. 

Now, line 20 in the Figure 3 is transformed into two distinct statements in Figure 4 
(line 22 and line 30). Each statement is mapped to only one active thread, so it is im-
possible for the statement to race with itself. Besides, since the indices of the first 
dimension in each statement are different, we can determine that the ranges each 
statement access do not overlap, so two accesses to results do not race with each oth-
er. As a result, the false positives on results are pruned. 
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Unfortunately, sometimes it is still impossible to compute precise loop bound even 
after thread specialization. Figure 5 shows an example. The loop bound do not direct-
ly depend on my_id. Although my_id can be replaced with constant value, the value of 
i can still have a large range. Fortunately, in such case, we can infer loop bound using 
inter-procedure range analysis [8]. We leave the implementing of range analysis for 
future work. 

 
Fig. 5. A loop whose bounds cannot be precisely computed by thread specialization 

3.2 Code Region Analysis 

The basic thread specialization described above mainly deals with false positives 
caused by false sharing on arrays. We present two extra analyses based on thread 
specialization to prune other kinds of false positives. This subsection introduces  
Code Region Analysis (CRA), which classifies code regions into the following three 
categories. 

Single-threaded regions cannot be executed concurrently with other code regions, 
and at any time only one active thread can execute them. For example, the initializa-
tion code region may be executed by the main thread before any worker thread is 
forked. 

Parallel regions can be executed by multiple threads simultaneously. For example, 
thread start functions are parallel regions. 

Non-parallel regions cannot be executed by multiple threads simultaneously, but 
they can be executed concurrently with other code regions. For instance, aget forks a 
help thread for signals handling. Since there is only one thread to execute the signal 
handler, the code of the signal handler could not race with itself. 

Apparently, accesses in single-threaded region would not race with any other 
access, and accesses in non-parallel region would not race with each other. Based on 
this observation, we extend basic thread specialization with CRA to prune false posi-
tives further. CRA classifies every statement into one of the three region sets de-
scribed above. If any access of a reported data race is contained in single-threaded 
regions, CRA determines it as a false positive. If both accesses of a data-race are  
contained in the same non-parallel region, CRA also determines it as a false positive. 

Code region analysis is conducted simultaneously with thread count specialization. 
During specialization, functions are cloned if they are reachable from thread fork 
instructions. All functions which are cloned multiple times are identified as parallel 
regions. If a function is cloned for only one time, which means it can be reached by 
only one thread, it belongs to non-parallel region set. In all the remaining instructions, 
if an instruction is reachable from (1) the start of the main function or (2) the post-
dominator of all thread join/cancel instructions, CRA identifies it as single-threaded 
region. In the end, CRA conservatively classify the remaining instructions into paral-
lel region set. 
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We modify RELAY to read region information as inputs. Before warning genera-
tion, RELAY consults region information and filters out false positives which are 
relative to single-threaded regions and non-parallel regions.  

 

Fig. 6. Structure of parallel computation which is comprised of multiple phases. (a) Straight 
line (b) Loop (c) Branch. 

3.3 Phase Analysis 

It is common that a parallel region is comprised of multiple phases. At each phase 
boundary, every thread calls a barrier synchronization, waiting for other threads to 
finish the same phase. Figure 6(a) shows an example of such pattern. The computa-
tion of worker thread is divided into n tasks. Since all threads arrive at barrier before 
any can exit that point, we can statically infer happens-before relations between tasks. 
Hence, accesses from different tasks would not race with each other. Based on this 
insight, we propose the Phase Analysis (PHA) for parallel regions. The goal of PHA 
is constructing an access set for each phase. Suppose a reported data race contains two 
accesses a1 and a2, if there is no access set that contains two accesses both, PHA iden-
tifies the data race as a false positive. 

Before constructing the access set for each phase, PHA identifies phases at first. It 
looks into the thread start function and identifies barrier points in those functions. If 
each of the thread start functions contains exactly the same number of barrier syn-
chronization points (s1, s2, …, sn), and si-1 dominates si, then PHA has identified mul-
tiple phases. Note that it is possible that some barrier points are enclosed in a loop. 
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Figure 6(b) shows the example. In this case, the number of barrier points depends on 
the loop bound, so it is difficult to statically determine if all worker threads contain 
the same number of barrier points. Fortunately, in all benchmarks we evaluated, the 
bounds of barrier-involved loops are thread-independent. They depend on global va-
riables which would not be written after initialization section. Hence, PHA can de-
termine that each active thread executes the loop the same times, although it cannot 
determine the exact number of times. It is similar when the number of barrier points 
depends on the conditional variables. Figure 6(c) shows the example. If the loop 
bound or conditional variable depends on the global variables which are not written in 
parallel regions or non-parallel regions, PHA can still identify multiple phases. 

After phase identification, a depth-first traversal of accesses is performed in each 
phase to construct access sets. These sets are also read by RELAY as inputs. RELAY 
filters out any false data race that both accesses of it belong to the same set. 

4 Evaluation 

We implemented thread specialization in OCaml, using CIL [9] as front end. Pro-
grams are transformed and analyzed by our framework according to thread counts. 
Based on the result of the above transformation and analyses, RELAY performs static 
analysis on the modified source code. 

Table 3. Effect of proposed false positive pruning techniques on evaluated programs with 
respect to the number of racy instructions. Our approaches can reduce reported racy instructions 
from 80.2% (fft and water-n) to 99.0% (ocean). 

Benchmark Basic CRA PHA Remain 

aget 26.7 60.0 0 13.3 

pfscan 0 90.2 0 9.8 

lu 9.5 82.1 1.2 8.3 

fft 6.9 67.9 5.3 19.8 

water-n 6.5 68.7 5.0 19.8 

radix 25.8 68.5 1.1 4.5 

ocean 85.4 14.0 0.6 0 

Average 23.0 64.5 1.9 10.8 

 
We evaluated the effectiveness of our approach from two perspectives: (1) percen-

tage reduction in the number of static racy instructions and (2) percentage reduction in 
dynamic instrumentation.  

Table 3 shows the reduction in static racy instructions toward four worker threads. 
Note that the race warnings reported by RELAY is based on specialized programs. 
For comparison, we map the reported race warnings back to original programs. All 
warnings on the same group of statements which cloned from the same statement are 
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combined together. As we can see in Table 3, the basic specialization is effective to 
reduce race warnings for all evaluated programs except for program pfscan. It can 
reduce racy instruction count from 6.5% (water-n) to 85.4% (ocean). CRA works well 
on all benchmarks. It reduces the number of racy instructions from 14.0% (ocean) to 
90.2% (pfscan). For scientific applications with barrier synchronizations, for instance, 
fft and water-n, PHA is effective. 

Table 4. Reduction in the number of instrumentation with various analyses. The evaluation 
inputs are listed in the last column of Table 1.  

Benchmark Basic CRA PHA Remain 

aget 18.2 80.0 0 1.8 

pfscan 0 99.0 0 1.0 

Lu 0 2.3 0.5 97.1 

Fft 0 43.3 15.9 35.8 

water-n 2.6 21.4 0 76.0 

radix 43.4 1.5 13.8 41.3 

ocean 97.2 0 0 2.8 

Average 23.1 35.4 4.3 36.6 
 
Table 4 shows the reduction in the number of dynamic instrumentation with vari-

ous analyses. Inputs are listed in Table 1. In general, results in Table 4 for different 
analyses are consistent with instruction reduction in Table 3. The basic specialization 
did not work well in lu, fft and water-n. It is mainly because that loop bounds in these 
applications do not directly depend on thread ID. On average, the combination of 
three analyses reduces 63.4% instrumentation. 

5 Related Work 

Static Data-Race Detection for C. There is a large body of work that applies static 
data-race detection to C programs [4, 10-13]. One main design goal of these works is 
exploring the tradeoff between precision and scalability. RACERX [10] can scale to 
large programs. However, it makes several compromises, which lead to missing of 
real races. RELAY [4] also scales to millions lines of code. Although soundness is 
guaranteed, a large fraction of warnings generated by REALY are false positives. 
LOCKSMITH [12] is a more precise approach. However, the performing of heavily 
constraint solving makes it difficult to scales to large programs. Our approach im-
proves the precision of RELAY without compromising the scalability of RELAY as 
no costly constraint solving is introduced. 

Pruning False Positives of Static Analysis. Z-ranking [14] uses statistic approach to 
rank warnings of static analysis. Joshi, etc. [15] employ sequential version of a con-
currency programs to prune false alarms due to underspecified precondition. RELAY 
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provides several filters to prune false positives. However, all these filters are simple 
and unsound in that they can remove real races. We employ thread specialization to 
prune false positives. Our approach is sound as long as the specified thread counts are 
enforced at runtime.  

Program Specialization. Program specialization specializes a program according to 
some constant values which are known to be common in the program [16-20]. Sche-
dule specialization [3] specializes a program toward a small set of schedules, thus the 
results of static analyses on the specialized programs can be more precise. Unlike 
previous work, our approach specializes a program w.r.t fixed thread counts, thus 
static analyses can accurately distinguish threads.  

6 Conclusion 

In this paper, we propose thread specialization for pruning false positives of static 
data-race detection. Our approach specializes a program according to a set of fixed 
thread counts in order to make threads distinguishable statically. Hence, the set of 
shared objects accessed by each thread can be computed more precisely. Moreover, 
we present Code Region Analysis (CRA) and Phase Analysis (PHA) based on the 
basic specialization framework to reduce false positive rates further. The combination 
of three analyses prunes false positives by an average of 89.2% for seven benchmarks 
we evaluated. The pruning of false positives can be utilized for reducing instrumenta-
tion of shared memory operation. Suppose all reported data races are instrumented, 
our approach can reduce 63.4% instrumentation on average. 
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Abstract. Deduplication technology has been increasingly used to re-
duce the storage cost. In practice, the duplicate detection upon large
on-disk index incurs unavoidable and significant overheads in write op-
erations. Most existing deduplication methods perform single-pass pro-
cessing, while pay little attention to develop highly parallel methods for
the emerging parallel processors. In this paper, we present the design of
G-Paradex, a novel deduplication framework that can significantly re-
duce the duplicate detecting time. Utilizing a prefix tree to organize the
chunk fingerprints, G-Paradex is able to do fast deduplicating by using
GPU to search the target tree in parallel. Leveraging the inherent chunk
locality in writing data stream, we group consecutive chunks and extract
the handprints into the prefix tree, aiming at shrinking the index size
and reducing the on-disk accesses. Our experimental evaluation based
on real-world datasets demonstrate that, compared with the traditional
single-pass method, G-aparadex achieves a speedup of 2-4X for duplicate
detecting.

Keywords: Parallel data deduplication, GPU, Prefix tree.

1 Introduction

Explosive data growth over the recent years has brought much pressure on
the infrastructure and storage management. Faced with ever-growing storage
needs and the limited budgets, lots of corporations are exploring deduplication
technologies[1]. Data deduplication is a storage optimization technology that re-
duces the data footprint by looking up the whole storage to eliminate multiple
copies of redundancy. Industries such as financial services, pharmaceuticals, and
telecommunications have already adopted this technology in their daily work[2].

The majority of deduplication solutions aim to avoid the fingerprint-lookup
disk bottleneck and enable more efficient duplicate detection in storage systems.
To facilitate duplicate lookup, a single index containing the chunk fingerprints
of all the data must be maintained. However, as the data grows, the index over-
flows the amount of RAM available and must be paged to disk. Faced with severe
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fingerprint-lookup disk bottleneck, existing work mostly use similarity detection
techniques to quickly find the similar contents, and exploit the inherent chunk
locality in data stream to reduce accesses to on-disk index[3][4][5][6][7]. Although
a number of successive efforts have been made to improve the efficiency, state-
of-the-art approaches mostly perform single-pass processing over large amounts
of data, still incurring many random disk accesses and severely limiting dedu-
plication performance.

Growth in dataset size significantly outpaces the growth of CPU speed and
disk throughput. As a result, the efficiency of existing data deduplication tech-
niques is greatly challenged. One general trend for the need of accelerated perfor-
mance is to develop highly parallel methods on the emerging parallel processors,
such as multi-core processors, cell processor, and the general-purpose graphics
processing units (GPU)[8]. A common method to speed up the access to data
is to partition the data and to perform operations on it in parallel. To this end,
we explore a GPU-based framework for parallel deduplication. Though it can
quickly locate the duplicate contents, it is non-trivial to deploy modern GPU in
deduplication process. GPU has shown to produce performance improvements
for computation intensive applications, while it remains challenging for data in-
tensive applications where it has to execute large data transfers before GPU
processing. For example, the largest amount of memory available on NVIDIA’s
GPU is currently 6GB, which is much too small to hold all indexes from a data
set of terabytes. Furthermore, the data transfer from host (CPU) to GPU is
expensive that the utility of GPU tasks is highly constrained.

In order to address the above challenge, we propose a GPU accelerated dedu-
plication system, G-Paradex, which aims at fully leveraging the parallel process-
ing capability of GPU to reduce the duplicate detecting time. To fully utilize
the promising parallelism GPU offered, we adopt a prefix tree index structure
to organize the chunk fingerprints for efficiently mapping deduplication process
to GPU processors. Meanwhile, we propose technique aiming at optimizing the
index structure to shrink the index size and reduce the on-disk accesses. The
main contributions are as follows.

First, we adopt the prefix tree structure to index the chunk fingerprints, which
efficiently exploring the parallelism of deduplication process on the GPU envi-
ronment.

Second, leveraging the inherent chunk locality, we group consecutive blocks
into super chunk and extract the handprint into the prefix tree. Based on the
super chunk, the deduplication process is divided into two phases of fast similar-
ity detecting and further small chunk based deduplicating. With this, it largely
shrinks the space usage of prefix tree and significantly reduces disk accesses.

Third, we implement the deduplication in real system of CPU and GPU en-
vironment. Our experimental evaluations of G-Paradex, based on several real-
world datasets, show that it achieves a speedup of 1.5-3X for duplicate detecting
compared with the traditional single-pass method.

The rest of the paper is organized as follows. Sec. 2 gives an overview of
related work. Sec. 3 presents the preliminaries of this research. Sec. 4 presents
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the baisc architecture and the challenge of the G-Paradex deduplciation system.
Sec. 5 describes optimization technique to address the above challenge. Sec. 6
gives our experimental evaluation of G-Paradex based on real-world datasets.
And Sec. 7 draws conclusions and outlines our future work.

2 Related Work

2.1 Data Deduplication

The scalability of deduplication systems has become an increasingly important is-
sue, which faces potentially severe fingerprint-lookup disk bottleneck with grow-
ing data volumes[4][5][6][3][7]. DDFS is one of the earliest studies aiming at
exploiting the inherent backup stream locality to reduce accesses to on-disk
index[3]. Sparse indexing is a fast sampling method that chunks the data stream
into multiple megabyte segments, and then samples a few segments to do du-
plicate detection[7]. Extreme Binning is a well-known similarity-based approach
that exploits the file similarity to achieve a single on-disk index access for chunk
lookup per file[4].

Recently, parallel data deduplication has been gaining increasing attention due
to its ability to perform fast duplicate detection. Shredder is a GPU-based ac-
celerator which seeks to overcome the CPU bottlenecks of content-based chunk-
ing in a cost-effective manner[9]. P-Dedupe is a fast and scalable deduplica-
tion system which composes pipelined and parallel computations to improve
the chunking and fingerprinting performance[10]. MD-Approach parallelizes the
deduplication process on multi-core processors using the MapReduce program-
ming model[11]. Another work adopts the multiple bloom filters to deduplicate
in parallel, and further present a queuing algorithm theoretic analysis to opti-
mize their parallel algorithm on multi-core architectures[12]. In this paper, we
focus on the parallelism during the process of duplicate detection after chunking
and fingerprinting. Different from the previous work, we adopt an efficient hash
index structure to fully explore the parallelism. Moreover, we make the full use of
the mechanism of GPU and the inherent characteristic in deduplication process
to optimize the use of the hash index and accelerate the write performance.

2.2 Hash Index

In-memory indexing is a well investigated topic since years. Early research mainly
focused on reducing the memory footprint of traditional data structures and
accelerating search operations. For example, the T-tree reduces the number of
pointers of traditional AVL-trees while the CSB+-tree is an almost pointer-free
and thus cache-conscious variant of the traditional B+-tree[13][14][15]. These
structures usually offer a good read performance.

The prefix tree takes a different approach than the B+-tree[16]. Prefix tree
indexing is that the performance of search queries only depends on the depth
of the tree, i.e., the maximal length of the indexed strings, and not on the
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total number of indexed strings, thus it has been widely used to do similarity
search in large-scale dataset. Instead of processing single operations directly, the
FAST approach optimized data layout for modern CPU and GPU to achieve
fast reads[17]. Peter et al. use prefix tree structure to efficiently explore parallel
database operations on GPU[18]. Our G-Paradex is based on the prefix tree and
improves it in terms of reducing memory accesses and memory consumption.

3 Preliminaries

As a basis for our new method, we use a prefix tree on the GPU processor. In this
section, we will give a detailed description of our hardware model and introduce
the concept of adopting prefix tree to do parallel processing.

3.1 General-Purpose Computing on GPU

The Graphical Processing Units (GPU) has emerged as a source of great com-
puting power. The high computational power is stem from the specialized design
of GPU, where much more transistors are contributed to simple data processing
units (ALUs) rather than used to integrate sophisticated pre-fetchers, control
flows and data caches. Figure 1 illustrates a simplified architecture of a GPU.
At a high level, GPU has massive Streaming Multiprocessors (SMs), each of
which consists of a set of scalar processor cores (SPs). For example, NVIDIA
GTX 580 has 512 processors in total. A SM works as SIMT (Single Instruction,
Multiple Threads), where the SPs of a multiprocessor execute the same instruc-
tion simultaneously but on different data elements. GPU has a different memory
hierarchy compared with the CPU, which is organized as multiple hierarchical
spaces for threads in execution. The GPU has a high-bandwidth global memory
with high latency shared by SMs. Each SM also contains a very fast, low latency
on-chip shared memory to be used among its SPs.

PCI
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CPU
Global Memory

Multiprocessors

Local

SP SP
SP SP
SP SP
SP SP

Local

SP SP
SP SP
SP SP
SP SP

Local

SP SP
SP SP
SP SP
SP SP

Fig. 1. GPU architecture

The CUDA programming model is the most popular programming models to
extract parallelism and scale applications on GPU[19]. It directly exposes the
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GPU’s execution architecture and memory layout. In this programming model,
a host program runs on the CPU and launches a kernel program to be carried
out on the GPU device in parallel. More specifically, a GPU task is composed of
five stages: data initializing on the host and device; host-to-device data transfer;
GPU kernel parallel processing upon the data in the device global memory;
device-to-host results transfer and post-processing. CUDA are extensions to the
C programming language that makes it conveniently to write native C code and
execute it on the GPU. The methods introduced in this paper are implemented
using the CUDA programming model exclusively.

3.2 Introduction to Prefix Tree

Figure 2 shows an example of a prefix tree[18]. The basic is that an element
consists of a key ki and a value vi. The key is inserted into the tree and the
value is added to the leaf nodes of the tree. Differ from a binary search tree, the
node in the tree does not store the key; instead, the position in the tree carries
the information of keys with which it is associated. The path within the tree
corresponds to a key ki which is defined by the absolute value of the key instead
of being defined by the relation of the key to the others. A key ki is split into
N even-size sub-keys kni consisting of b = |ki|/N bits where |ki| is the number
of bits in the key. Thus, each node contains an array of 2b child node pointers.
Starting from the root, the path through the nodes is then defined by following
the pointers that are selected by the sub-keys, i.e., the ith sub-key chooses the
pointer within the node on level i.

To parallel the search operation, the prefix tree is first partitioned into mul-
tiple sub-trees with given a level of m. Each sub-tree starts at a specific tree
level k with a root node and covers m levels. At each leaf of a sub-tree, the next
sub-tree starts, until the leaf nodes of the whole tree have been reached. Each
sub-tree partition is assigned to one thread for lookup execution. Therefore, each
level may consist of one or multiple sub-tree partitions, and each thread is re-
sponsible for traversing its assigned tree for a given sub-key ki according to its
starting level. Each sub-tree search provides one of three different types of re-
sults. The result may be a pointer to its child sub-tree partition. This is the case
that the sub-tree is in the middle of the whole prefix tree and it contains a path
for substring searched. The result can also be NULL, meaning that the sub-tree
does not contain any matching path. The last possible result is a pointer to a
value where the sub-tree partition reaches leaf nodes of the original prefix tree.
Putting these altogether, we search the fingerprint index in parallel and obtain
the final query result by combining the outputs of all threads.

Leveraging the prefix tree, it can efficiently parallel the duplicate detection
by mapping it to the high number of cores on a GPU. Prefix tree uses multiple
bits per node and, therefore, results in shorter trees and a reduction of the total
number of query steps required.
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Fig. 2. Parallel Prefix Tree

4 System Overview and Challenges

In this section, we give an overview of the parallel deduplication system by
employing prefix tree on GPU hardware. Next, we explain the main challenges
in scaling up our basic design.

4.1 System Overview

Figure 3 depicts the workflow of the basic design for G-Paradex deduplicating
service. In this initial design, a main thread running in user mode on the host
(CPU) drives the GPU-based duplicate detecting operation. The framework is
composed of four major modules. Fist, the Prefix Tree Partitioning thread on
the host gets tree partitions from the large prefix tree index stored in under-
lying storage, and fetches them into the memory of the host. After that, the
Data Transfer thread allocates global memory on the GPU and uses the DMA
controller to transfer input data from the host memory to the allocated GPU
memory. Once the data transfer from the CPU to the GPU is complete, the host
launches the Deduplicate kernel for parallel detecting computations on the GPU.
Once the Deduplicate kernel scans all the keys for the input data, it transfers
the intermediate results of each sub-tree partition from the device memory to
the host memory. As the all partitions can not be put into memory at one time,
the host repeats the above steps until all the prefix tree partitions have been
traversed, and builds the final result by scanning all the intermediate results.

The Deduplicate kernel is responsible for performing parallel traversing of the
sub-tree partitions presented in the global memory of the GPU. Accesses to the
data are performed by multiple threads that are created on the GPU. The data
in the GPU memory is composed of many sub-tree partitions, as many as the
number of threads. Each thread is responsible for handling one of these sub-
tree partitions. For each sub-tree partition, a thread scans the tree in breadth-
first way. In particular, each thread searches the corresponding sub-key from its
assigned sub-tree partitions. Subsequently, all partitions are traversed in parallel,
and the intermediate results are transferred back to a global results collector.
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Fig. 3. Basic architecture of G-Paradex

4.2 Challenge of Parallel Deduplication

On-Disk Tree Index Bottleneck. In large-scale storage system, the size of
the index would limit system size and increase system cost. Consider a chunk
size of 4 KB and a fingerprint size of 32 bytes. Supporting 4 TB worth of unique
chunks, would require 32 GB just to store the fingerprints. Despite of massive
compression techniques, a prefix tree structure can still be too large to fit into
the memory. Therefore, most parts of the tree have to be stored on disk which
will incur many disk accesses. Another problem is the hash order in the prefix
tree which is determined by the content but not the write order. In this way, the
inherent chunk locality in the data stream can hardly be preserved and utilized
to optimize the deduplication performance. For example, two chunks A and B,
in a write stream appear in approximately the same order throughout multiple
write streams with a high probability. DDFS[3] makes full use of this locality
characteristic by storing the chunk fingerprints in the order of the backup stream
on the disk and preserving the locality in the RAM to accelerate the duplicate
detecting. However, the prefix tree structure breaks the locality of writing chunk
fingerprints, where the locations of A and B inside tree would be far away from
each other according to their hash content value. Thus, it can hardly use the
chunk locality to improve the duplication performance.

Device Memory Bottleneck. The fact that the host and device are synchro-
nized, where data has to be loaded into the GPU memory before being processed
by the GPU kernel, which represents a serial dependency: sub-tree traversing
only starts to execute after the corresponding transfer concludes. This serialized
execution may not suit the needs of data intensive applications, where the cost
of the data transfer step becomes a more significant fraction of the overall com-
putation time due to the increasing data volumes. More specifically, the on-disk
index is usually much more larger than device global memory that it has to
execute data transfer from disk to host memory, and then to the GPU memory
several times.
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5 Super Chunk Organization

The basic design for G-Paradex that we presented in the previous section cor-
responds to the traditional way of adopting prefix tree index structure on the
GPU. The above two challenges is induced by the growing data volumes. In order
to avoid the on-disk tree index bottleneck, we propose to organize consecutive
small chunks into the super chunk and extract handprint for each super chunk.
The prefix tree only stores the fingerprints of super chunks, thus the size of the
tree is largely shrank, allowing for holding the whole tree in the memory. In pre-
vious example, it only needs 1 GB memory to store all the fingerprints under a
super chunk size of 128 KB. The chunks in the same super chunk are consecutive
that the inherent chunk locality is likely to be preserved and can be utilized to
optimize the deduplication process. Therefore, when deduplicating, we perform
parallel similar detection of super chunks firstly, and then utilize the chunk lo-
cality in super chunk to accelerate the duplicate finding among similar super
chunks like Extreme Bining[4]. To enable this, we use representative fingerprint
to describe the super chunk. This is governed by Broder’s theorem[20]:

Theorem 1: Consider two sets S1 and S2, with H(S1) and H(S2) being the
corresponding sets of the hashes of the elements of S1 and S2 respectively, where
H is chosen uniformly and at random from a min-wise independent family of
permutations. Let min(S) denote the smallest element of the set of integers S.
Then:

Pr[min(H(S1)) = min(H(S1))] =
S1 ∩ S2

S1 ∪ S2
(1)

Broder’s theorem proves that the probability that the two sets S1 and S2
have the same minimum hash element is the same as their Jaccard similarity
coefficient. So that, if S1 and S2 are highly similar then the minimum element
ofH(S1) andH(S2) is the same with high probability. In other word, if two super
chunks are highly similar, they share many chunks and hence their representative
fingerprint is the same with high probability.
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By using the representative technique, the chunk index is split into two tiers
between the memory and the disk. Figure 4 shows the structure of the two
tiers hash index. One tier is the whole chunk fingerprints stored on disk where
chunk fingerprints of the same super chunk is consecutive in write order, and
the other is the super chunk fingerprints organized in the form of prefix tree
in memory. In-memory tree operations avoids costly accesses to disk, while the
fingerprints in a single super chunk are stored in write order as to increase the
similarity between super chunks and preserve the locality and further be utilized
to accelerate deduplicating.

6 Evaluation

In order to evaluate G-Paradex, we have implemented a prototype of the G-
Paradex system that allows us to examine the performance impact and sen-
sitivity of several important design parameters to provide useful insights into
the design of deduplication-based storage system. The evaluation is driven by
several real-world datasets that represent different workload characteristics in
deduplication systems.

6.1 Experiment Setup

Datasets. We test our design using datasets from real systems. The datasets
include web-vm (11.46 GB writes), mail (482.10 GB writes) and homes (148.86
GB writes), are from Florida International University and traces local researchers
storage[21]. For these traces, we extract write I/Os and their MD5 hashes to form
the write streams. The MD-5 hash is computed per 4096 bytes for web-vm and
mail, per 512 bytes for homes. Therefore we divide the traces of web-vm and
mail in unit of 4K, while divide the trace of homes in unit of 512 byte.

System Configuration. The experiments are carried out on a PC equipped
with a NVIDIA GTX 580 GPU and an Intel Core i7 CPU 920. The global
memory of GPU is 1.5 GB and the CUDA version is 3.1.

6.2 Impact of Parallel Deduplication

We first compare the parallel deduplication techniques with single-pass dedupli-
cation across a range of datasets. The parallel deduplication techniques include
the basic design and the optimized versions, with the prefix tree of sub-key
length of 4 (k’=4), number of sub-tree levels of 4 within a partition and super
chunk size of 64 (number of basic chunks). The single-pass deduplication on the
host (CPU) is implemented as the container-based deduplication with a locality
preserved cache[3].

Figure 5(a-c) shows the deduplication write speed of these methods. Our
results show that a basic GPU implementation can lead to some improvements
over a host-only single-pass implementation for all three workloads, while the im-
provements are not significant. The observations clearly highlight the potential
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(b) Throughput comparison of dedupli-
cating performance of mail
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(c) Throughput comparison of dedupli-
cating performance of homes
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(e) Deduplication ratio as a function of
chunk size

32 64 128 256
80

100

120

140

160

180

200

220

240

Super Chunk Size (Number of basic chunks)

W
rit

e 
T

hr
ou

gh
pu

t (
M

B
/s

)

 

 

Web−vm
Mail
Homes

(f) Throughput as a function of chunk
size

Fig. 5. Experiment results

of basic G-Paradex to alleviate parallel deduplication bottlenecks. Incorporat-
ing the optimizations leads G-Paradex outperforms the traditional single-pass
implementation by a factor of over 1.5x for web-vm and mail workloads, and
almost 3x for homes workload.

The performance of our approach depends on the number of levels within a
partition. Figure 5(d) illustrates the performance of our approach with different
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datasets. When the number equals 1, the performance of all three datasets is
the lowest. This is because that the number of threads is too large to execute
in parallel. And as the number of levels increases, the performance improves.
But, at the point of the number of levels equals 8, the performance decreases
for web-vm and mail. The reason behind is that large levels within a partition
makes the processing of a single thread more complex and increases the search
time.

6.3 Impact of Index Optimization

This subsection presents evaluation results on the impact of the super chunk
organization. Using the super chunk organization, the index size will shrink. The
larger the super chunk size, the smaller of the index tree size, while it may fail
to find some duplicates. Figure 5(e) shows the deduplication ratio produced by
applying our index optimization, normalized to that of the perfect deduplication
(every duplicate chunk was identified), as a function of the super chunk size. As
can be seen, the deduplication ratio falls off as the super chunk size increases,
and the ”knee” point at the size of 64 single chunks is a potential best tradeoff to
balance deduplication effectiveness and index size shrank. The existence of chunk
locality enhances the similarity between super chunks, and will be maintained
in small size of super chunks. But, as more chunks being grouped, the degree of
difference between similar super chunks increases, thus the locality is not that
obvious and the deduplication ratio decreases a lot.

Figure 5(f) shows the write performance of G-Paradex with index optimization
as a function of different super chunk size on three datasets. The larger the super
chunk size, the faster the write speed our G-Paradex has, because the amount
of partitions has to be examined decreases. Note that the deduplication ratio is
inversely proportional to the super chunk size. By leveraging the chunk locality,
use appropriate super chunk size not only largely improving the performance,
but also eliminating massive duplicates in storage system.

7 Conclusion and Future Work

With an increasing amount of data and demands for eliminating redundancy, the
optimization of duplicate detection continues to be a challenging task. In this
paper, we propose G-Paradex, an fast and efficient GPU-based deduplication
system that exploits parallelism in the deduplication process. In order to speed
up index search, G-Paradex adopts prefix tree to organize the chunk fingerprints
and traverse the tree in the GPU kernel. By effectively exploiting the ability of
GPU and the inherent chunk locality, G-Paradex also proposes two techniques
to further optimize the index structure and perform speculative pruning for
accelerating the deduplication process.

There are several interesting avenues for future work. First, our index opti-
mization technique is well suitable for workloads with high chunk locality, and
we would like to develop new index structures for those without locality. Second,



102 B. Lin et al.

our proposed techniques need to continuously adapt to changes in the technolo-
gies that are used by GPUs. Finally, with the ever increasing data that even an
optimized index tree may not be fully loaded into main memory, thus we will
explore on-disk tree layout and data prefetching techniques to cope with this
problem.

Acknowledgments. This paper is supported by NSFC No.61272483 and Fund
No.JC13-06-03.
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Abstract. This paper proposes an acceleration strategy for SPH on
single-node multi-GPU platform. First the acceleration strategy for SPH
on single-GPU is studied in conjunction with the characteristics of archi-
tecture. Then the changing pattern of SPH’s computation time has been
discussed. Based on the fact that the changing pattern is rather slow,
using a simple dynamic load balancing algorithm an acceptable load
balance is obtained on multi-GPU. Finally, an almost linear speedup is
achieved on multi-GPU by further optimizing dynamic load balancing
algorithm and communication strategy among multiple GPUs

Keywords: SPH, multi-GPU, dynamic load balancing, communication
optimization.

1 Introduction

Smoothed Particle Hydrodynamics(SPH) is a mesh-free Lagrangian method
based on particles. Due to its self-adaptivity, SPH can handle the problem of
large deformation in simulation in a natural way and is free of several flaws that
a grid-based method usually has, when they are used independently to deal with
the same problems. In recent years, SPH has made much headway; its accuracy,
stability and adaptability have already met the requirements of a great variety
of engineering applications. However, the huge computation cost is a bottleneck
to its use in many real-time situations. Therefore, nowadays great efforts have
been made to explore its acceleration strategies.

In this paper, an appropriate neighbour list algorithm for SPH is selected
according to the architectural characteristics of GPU. Then two optimization
methods are proposed to solve code divergence problem and reduce potential
neighbour particles. After observing the behavior of SPH computing process, a
simple yet acceptable dynamic load balancing algorithm is given. Finally, opti-
mization strategies of inter-GPU communication are illustrated.

2 SPH Method

SPH, developed by Monaghan[1] and Lucy[2] initially for astrophysical problems,
has been studied and extended extensively; it has been applied to solving the
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problem of dynamic response of material strength and hydrodynamics with large
deformations. The objects to be simulated are divided into a set of discrete
elements called particles, which can move freely in space. The physical quantities
of particles are updated according to their neighbours in each time step. Two
particles are called neighbours only if the distance between them is less than
a special value, which is called smooth radius. The physical quantity A of a
particle is given by

As(ri) =
∑
j

mj
Aj

ρj
W (ri − rj , h) (1)

where mj is the mass of neighbour particle j; Aj is the physical quantity of
neighbour particle j; ρj is the density of neighbour particle j; W is a kernel
function governing the contribution of neighbour particle j according to the
distance between particles i and j, and the smooth length h. As particles move
freely in a scenario without spatial relationship, we need to search for their
neighbours in each time step.

3 Related Work

Currently, most researches on the acceleration for SPH focus on two aspects:
how to speed up neighbour search and how to utilize the computation power of
parallel architecture.

SPH implements the interaction between particles, and so how to create the
neighbour list is one of the key points to improve SPH’s performance. To speed up
neighbour search, the simulation space is divided into cubical cells, called uniform
grid. The size of a cell is usually equal to smooth radius. Before neighbour search,
each particle is assigned to only one cell according to its center point to create a
particle list of each cell. To find the neighbours of a certain particle, 27(3 ∗ 3 ∗ 3)
cells need to be searched(including the cell itself resident in and 26 adjacent cells).
Denote by c the number of particles residing in each cell, then the complexity of
this method is O(cN) where N is the total number of particles in the simulation.
Dominguez et al.[3] have compared the time cost and memory consumption
between 4 gridding algorithms to create the particle list of each cell. Taking time
cost and memory consumption both into consideration, the algorithm in which
particles are sorted according to the cells performs the best. In this method,
each cell’s particle list only needs to store the start position of sorted particles
in the particle array. By comparing the start position of continuous cells, we
can find all particles in each cell. Dominguez et al. also compare time cost and
memory consumptions between VL(Verlet List) algorithm and CLL(Cell Linked
List) algorithm which are both used for the creation of each particle’s neighbour
list. The main difference between these two algorithm lies in the fact that VL
keeps neighbour list and reuses it in several time steps while CLL does not.

Fleissner et al.[4] use CPU cluster to accelerate SPH. They select ORB (or-
thogonal recursive bisection) domain decomposition algorithm to split simulation
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space from the perspective of optimizing communication between nodes. Each
CPU is assigned a subspace. Dynamic load balance is achieved by moving the
boundary of subspace with a PI controller. The main advantage of this method
is the decreased amount of communication between CPUs, but it has a drawback
that the communication pattern gets more sophisticated.

With the rapid development of GPU technology in recent years, the perfor-
mance and programmability of GPU have been promoted significantly. GPU,
which is used in computer graphics traditionally, has been extended to high per-
formance computing field. GPU has higher floating-point performance and bet-
ter power-efficiency than CPU. Many computation-intensive applications have
migrated from CPU to GPU and a speedup of two orders of magnitudes has
been achieved. Because of its natural parallelism, SPH is remarkably suitable
for parallel architectures such as GPU. In fact, even before the advent of specific
languages like CUDA and OpenCL, researchers had started to use GPU to speed
up SPH with graphic API. Amada et al.[5] implement SPH method partially on
GPU. They create neighbour list of each particle on CPU, and then transport
it to GPU to calculate force between particles. Harada et al.[6] implement SPH
on GPU entirely. After CUDA, Herault et al.[7] implement SPH with CUDA
for the first time. The neighbour search algorithm they use is same with that of
Simon Green’s[8].

As it is hard to meet the speed requirement of real-time simulation in a
scale of millions of particles on a single GPU, it is extremely necessary to utilize
multi-GPU in single computing node or even GPU cluster. Rustico et al.[10] and
Dominguez et al.[11] have proposed multi-GPU SPH implementation indepen-
dently. They both use the one-dimensional decomposition to divide simulation
space into subspaces, whose number is equal to that of GPUs. The boundary of
subspace is aligned at the boundary of cell. Dynamic load balance is achieved
by passing the outmost cell slices of a subspace, whose corresponding GPU is
overloaded, to others. The difference between Rustico et al.’s and Dominguez
et al.’s dynamic load balancing algorithm is only in implementing details. As
for communication strategy, both implementations divide subspace further into
two boundary areas and an inner area, and cover the overhead of data exchange
cost by exchanging boundary particles’ data in parallel with the computation of
inner area. Dominguez et al. further point out that the main factor influencing
the performance of GPU is synchronization between GPUs.

4 Accelerating SPH On Single-GPU

First an appropriate neighbour list algorithm for GPU is chosen from existing
ones in terms of time cost and memory consumptions. Then SPH’s code di-
vergence problem in traditional CUDA implementation is analyzed in conjunc-
tion with characteristics of SIMT architecture of CUDA-enabled GPU. Finally,
Smaller Cell optimization is presented from the viewpoint of reducing the quan-
tity of potential neighbour particles in the neighbour search.
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4.1 Choosing Appropriate Neighbour List Algorithm

For SPH in which all particles have the same smooth radius, there exists two
popular methods to create neighbour list, named CLL(Cell Linked List) and
VL(Verlet List), respectively. Both algorithms use the same method mentioned
in Section 3 to create a particle list of each cell. The difference between the
two algorithms is whether to keep the neighbour list or not. Over CLL algo-
rithm, the main advantage of VL algorithm is that it keeps neighbour list in
several time steps and reduces the time cost in neighbour search. In contrast,
VL algorithm requires much more memory because of storing the neighbour list.
According to Dominguez et al., under the condition of searching for neighbours
only once in each time step, VL algorithm is 6% faster than CLL algorithm
while its memory consumption is 30 times larger. As GPU has a relatively small
size of memory(GTX480 has about 1.5 GB), VL algorithm brings minor perfor-
mance promotion along with excessive memory consumption, thus limiting the
simulation scale fatally. Rustico et al. keep neighbour list in several time steps in
their multi-GPU SPH implementation and find that each particle needs nearly
1KB memory, and that a scale of only 1.8 million particles can be simulated on
a GTX480 graphic card. Considering storage and performance comprehensively,
CLL algorithm is more suitable for GPU.

4.2 Code Divergence Optimization

In SIMT architecture of CUDA-enabled GPU, threads are scheduled and exe-
cuted in warp. A warp is composed by 32 threads which execute same instruction
at the same time in parallel. Due to conditional control flow instructions, some-
times the threads in a same warp may need to execute instructions in different
code paths. In that case, the threads of a warp will execute instructions in each
path serially, thereby bringing huge negative influence on performance. In tradi-
tional implementation, a thread only computes one particle’s force. Each thread
traverses all 27 cells with a triple loop and traverses all particles in each cell in
the innermost loop(shown in figure 1).

After traversing all particles in cell, as all threads in a same warp have to
execute the same instruction, those threads must be synchronized implicitly be-
fore traversing the next cell. As the relationship between CUDA threads and
particles is one-to-one and the number of particles in most cells is not equal to
the number of threads in a warp, different threads in a same warp may process
particles in different cells. So each thread in a warp is likely to traverse cells
with different particle quantities at the same time, causing imbalance workload
between two synchronization points. Obviously, reducing the frequency of syn-
chronization can lower down the negative influence of imbalance workload on
performance. The frequency of synchronization is equal to the number of cells
to be searched. In CLL algorithm, particles are reordered according to the cells
and cells following the order of Z, Y and X axis. The particles in continuous
cells in Z axis will be continuous in particle array. As each cell only stores the
range(start index and end index in our implementation) of particles contained in
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Fig. 1. Code snippets of neighbour search in traditional SPH implementation

itself in particle array, the range of 3 continuous cells in Z axis can be replaced
by a larger cuboid with the same range. As a result, to find the neighbours of
each particle, only 9 nearby cuboids should be searched and branch instructions
reduce in number, consequently greatly improving the negative influence of code
divergence, and meanwhile reducing global memory access of cell information.
This optimization is called Cell Merging.

4.3 Reduce Potential Neighbours

The size of cell determines the volume of the neighbour search space. When the
cell size is equal to smooth radius h, each particle has to traverse 27 cells with a
volume of 27h3. However, for each given particle i, it is only affected by particles
in a sphere of radius h whose centre is i, and volume is 4π∗h3/3. Smaller cell size
can make the volume of neighbour search space of each particle get much closer
to the volume of sphere to reduce potential neighbour particles. Supposing cell
size is h/n, in order to ensure that all neighbor particles can be found for a given
particle, the volume being searched should completely cover the volume of the
sphere with radius h. So we have to search n cells with cell size h/n on both sides
of the cell where the particle stays in each dimension of neighbour search space.
Thus the side length of the cubic searched is 2∗n∗(1/n)h+1∗(1/n)h= (2+1/n)h
and the volume of neighbour search space is reduced to (2 + 1/n)3h3. However
two drawbacks occur when n is too large. First, the total memory consumption
of cells increases rapidly with the decreasing cell size:

memn = n3 ∗mem1 (2)
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where memn represents the total memory consumption of cells when the cell
size is reduced to h/n. Second, larger n makes neighbour search more sophisti-
cated and increases code divergence and global memory access of cell informa-
tion. As mentioned in section 4.2, more neighbour cells which need to search
to find neighbour particles lead to more implicit synchronization points. When
n becomes larger, the amount of neighbour cells need to be searched increases
rapidly, thus leading to the increasing of implicit synchronization points and code
divergence. Besides, more neighbour cells means more global memory access, as
the cell information is resident in the GPU’s global memory. Taking all this into
consideration synthetically, n=2 is the best choice in our implementation and
the volume of the neighbour search space shrinks to 15.625h3. Smaller Cell is
the name we give to this optimization.

4.4 Speedup on Single-GPU

For a better understanding of the experiment results shown in this paper, a
brief description of our experimental environment is given first. The hardware
platform is a dual quad-core Intel Xeon processor E5520 (2.27GHz, 8MB cache)
Server with 4 GTX480 GPU cards, and each GTX480 has 480 CUDA cores with
1.5GB global memory. The operating system is Ubuntu 11.04 x86 64, CUDA
runtime 4.1. Each experiment includes 1000 computing time steps for a certain
scenario. Two scenarios, one of which has different scales, are used as testing
cases in this paper, named armadillo and bunny respectively(shown in figure 2).

(a) armadillo (b) bunny

Fig. 2. Snapshot of scenario armadillo(a) and bunny(b) in 1st(upper-left),
300th(upper-right), 500th(lower-left), 1000th(lower-right) time step

Figure 3 shows the performance improvements with the two optimizations
mentioned above. Only the time cost of updating particles’ physical quantity
is compared. As Smaller Cell will significantly increase code divergence(When
n=2 and only Smaller Cell is applied, the time cost of updating particles’ phys-
ical quantity increases by about 80%), it should be applied with Cell Merging
optimization to get the best performance. In that case, each cuboid covers 5
continuous cells in Z axis.
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Fig. 3. Speedup on single-GPU with two optimization methods

5 Multi-GPU

In this section, we extend SPH implementation from single-GPU to multi-GPU.
In multi-GPU implementation, the Cell Merging optimization is applied to ac-
celerate the execution. Different from prior work on multi-GPU SPH, the feature
of SPH which can be utilized to design a simple yet acceptable dynamic load
balancing algorithm is mainly discussed instead of proposing a dynamic load
balancing algorithm directly. Communication optimizations focus on additional
steps introduced in multi-GPU SPH. For a better understanding of the problems
faced in multi-GPU SPH, a brief description of the basic frame of multi-GPU
SPH based on CLL algorithm is given first.

5.1 Basic Design

In our design, the same domain decomposition algorithm described in [9,11] is
used to divide particles among multiple GPUs. Simulation space is divided into
subspaces along X-axis whose number is same as the number of GPUs. The
interface of subspaces is aligned at cells’ boundary. The smallest unit of division
is n cell slices, as each cell has a cell size of h/m in Y-Z plane. For convenience,
we assume that the size of cell is equal to smooth radius below (the method
is similar when cell size is different). For the reason that particle’s physical
quantity is influenced by all its neighbour particles, each GPU contains not only
the particles in corresponding subspace, but also those near the interface within
a distance of smooth radius but on the neighbour GPU’s side. These particles
are called ghost particles below. The ghost particles exist in both neighbour
GPUs simultaneously but are updated by only one of them. After any physical
quantity of particles is updated, each GPU needs to exchange the new physical
quantity of ghost particles.
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Multi-GPU algorithm should include 4 main steps as follows:

1. Create Neighbour List
2. Dynamic Load Balancing

if (load imbalance)

{

divide the simulation space anew

each GPU exchanges boundary particles

}

3. Update Particles’ Physical Quantity

3.1 force calculation

3.2 integration in time

4. Particle Migration

4.1 gather particles needed by other GPU, called migrating

particles.

4.2 exchange migrating particles

Step 1 and step 3 are the basic steps of single-GPU SPH. The reason why we
put Dynamic Load Balancing step after Create Neighbour List is that CLL
algorithm can make particles in same cell slice continuous in particle array,
thereby simplifying the data exchange after the subspaces are repartitioned.

5.2 Dynamic Load Balancing

The key idea to obtain dynamic load balance between multiple GPUs is moving
boundaries of each subspace to change the number of particles on each GPU. The
key point of a good dynamic load balancing algorithm is how and when to move
the boundaries. Before a new dynamic load balancing algorithm is proposed, the
feature of SPH which can be utilized to design a simple yet acceptable dynamic
load balancing algorithm is discussed first.

To ensure the accuracy of simulation in SPH, the moving length of any par-
ticle is usually set not longer than the smooth radius h in each time step, and
consequently the spatial distribution of particles will not change a lot in two
contiguous time steps. The relative stability of distribution keeps the two main
factors that influence performance—the quantity of potential neighbours and
neighbour particles—all stay stable. So in two continuous time steps, computa-
tion time changes slightly. We have used the scenario of armadillo with a scale
of 2980K particles and scenario of bunny with 3049K to test changing range of
each time step’s time cost of updating particles’ physical quantity in comparison
with the previous one in the first 1000 time steps. Figure 4 shows the result.

From 300 to 480 time steps, the fluid in armadillo is compressed because of the
initial collapse and then it becomes sparser gradually. So not only the number
of potential neighbours but also the number of neighbours change severely; as a
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Fig. 4. Comparison of each time steps’ time cost(the time cost of updating particles’
physical quantity) with previous one tested with scenario armadillo and bunny

consequence, the time cost of updating particles’ physical quantity also changes
substantially. However, even in that case, the changing range remains within
3%. For bunny scenario that is affected less by collapse, its changing range stays
within 1% all along. Because of the slow changing pattern of SPH’s computation
time, simple dynamic load balancing algorithm described below can get satisfying
results:

for( each pair of neighbour GPUs A and B )

{

if( time_A > time_B )

{

A gives one cell slice to B

}else{

B gives one cell slice to A

}

}

Figure 5 shows a comparison of real wall time(longest time cost of updating
particles’ physical quantity among multiple GPUs) with an ideal one(average
time cost of all GPUs), demonstrating that simple dynamic load balancing al-
gorithm has acceptable effect. Figure 6 shows the speedup of multi-GPU in the
same situation. As particle scale goes up, the effect of the simple dynamic load
balancing algorithm improves.

The main disadvantage of simple dynamic load balancing algorithm is that
it is hyper-sensitive to load imbalance among GPUs. As the whole boundary
cell slice is the smallest unit of data exchanging, the alternation between the
overload and underload on a GPU in continuous time steps is unnecessarily
frequent, which leads to an unnecessary communication overhead in the step
of Dynamic Load Balancing. There are two ways to reduce the frequency. One
is to balance workload every k time steps. The other is to give a threshold
to dynamic load balancing algorithm. Simulation space is repartitioned if and
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Fig. 5. Comparison of real wall time with ideal one when simple dynamic load balancing
algorithm is applied

Fig. 6. Speedup with simple dynamic load balancing algorithm

only if the difference of computation overhead between two neighbour GPUs is
bigger than this threshold. Dynamic load balancing algorithm should discover
the imbalance among GPUs timely and gives response. So the second way is our
choice.

new time diffleft = fabs(t1 ∗ ncleft1 − t2 ∗ ncleft2) (3)

new time diffright = fabs(t1 ∗ ncright1 − t2 ∗ ncright2) (4)

nc = nnew/noriginal (5)

threshold = min{new time diffleft, new time diffright} (6)

where t1 and t2 represent the time GPU1 and GPU2(GPU1 and GPU2 are a
certain pair of neighbour GPUs, GPU1 is in the left of GPU2) used to update
particles’ physical quantity respectively; nc stands for the changing rate of the
number of particles updated by GPU after boundary moves in left or right
direction; ncleft indicates the boundary moves to the left and ncright on the
opposite side; nnew stands for the number of particles in GPU’s subspace after



114 L. Hu, X. Shen, and X. Long

boundary moves; noriginal stands for the number of particles in GPU’s subspace
before boundary moves. Figure 7 shows the speedup after adding the threshold.
Figure 8 exhibits a comparison of real wall time with ideal one.

Fig. 7. Speedup of optimized dynamic load balancing algorithm compared to the simple
one

Fig. 8. Comparison of real wall time with ideal one. Optimized dynamic load balancing
algorithm is applied.

Figure 9 demonstrates the ideal speedup(the performance of multi-GPU is
only affected by dynamic load balancing algorithm without any other negative
influences such as communication overhead) and the real speedup. Ideal speedup
is calculated as (on homogeneous multi-GPU platform)

speedupideal n = n ∗ walltimeideal n/walltimereal n (7)

where speedupideal n represents ideal speedup when the number of GPU is equal
to n, n represents the number of GPUs used in simulation, and walltime repre-
sents the longest time cost of updating particles’ physical quantity in each time
step. The real speedup is achieved without any optimization in the Dynamic
Load Balancing and Particle Migration steps. Both steps are relative with com-
munication among multiple GPUs.
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Fig. 9. Real speedup and ideal speedup of 4GPUs. Tested with: scenario armadillo
with 1034K, 1940K, 2980K particles and bunny with 3049K particles.

5.3 Communication Optimization

An often used method in CUDA applications to hide communication overhead
is to parallelize computation and communication. Communication among GPUs
goes in the following steps:

1. Particle Migration
After sub-step integration in time in the step Updating Particles’ Physical

Quantity, particles may migrate from one subspace to another subspace. At the
end of each time step, GPU needs to identify and exchange those particles(called
migrating particle below), so there exists data transfer overhead. As the distribu-
tion of migrating particles in memory space is irregular, GPU needs extra com-
putation to gather those particles into continuous memory space before sending
them to neighbour GPU.

2. Updating Particles’ Physical Quantity
As described before, it is necessary to exchange the information of boundary

particles among GPUs.
3. Dynamic Load Balancing
Each GPU needs to wait for new space division and exchanges boundary cell

slices according to new division of simulation space. As a result, there exist
synchronization overhead and data transfer overhead.

The same method described in Rustico for covering the overhead is used in
the Updating Particles’ Physical Quantity step. We focus on the optimizations
in Particle Migration and Dynamic Load Balancing steps. Here we give a brief
description of how to hide communication overhead in those two steps.

The first sub-step of Particle Migration is gathering migrating particles in
irregular distribution into continuous memory space. One way is to use a com-
press function to gather migrating particles, but non-negligible computation cost
has to be added. For SPH, the time of updating particles’ physical quantity is
more than 10 times longer than the time of data exchange of boundary parti-
cles in general cases. The other way is to send migrating particles to neighbour
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GPU(s) without gathering them. Migrating particles reside in two cell slices in
the vicinity of GPU’s boundary because the migration distance is shorter than
smooth radius (the size of cell is smooth radius). Instead of gathering migrating
particles, we send all particles in the two cell slices(called potential migrating
particles below) to neighbour GPU(s), but it will unfortunately increase the cost
of data exchange. If we can hide the communication overhead, the second way is
clearly a better choice. To hide the time cost of exchanging potential migrating
particles, the subspace of each GPU is divided into two boundary areas(consist
of two cell slices) and an inner area. First, the kernel which is used to update
boundary particles’ physical quantity is launched. Then, the update of inner area
works in parallel with the exchange of potential migrating particles. In this way,
the time cost of exchange of potential migrating particles is hidden. In the next
time step, when neighbour GPU(s) creates neighbour list with CLL algorithm,
it is feasible to extract those particles that are not needed from others at a cost
of a slight increase in the overhead only by giving them a sufficiently large cell
value.

The space repartition in the Load Balancing step can be delayed to the time
GPU starts to update particles’ physical quantity. In this way, it can be paral-
lelized with Updating Particles’ Physical Quantity to hide the synchronization
overhead. The data exchange of boundary cell slices after space repartition can
be done together with particle migration at the end of each time step. As a
result, all overheads in Dynamic Load Balancing step can be hidden through
parallelization with Updating Particle’s Physical Quantity.

6 Final Result

Figure 10 shows the final speedup of multi-GPU SPH implementation via com-
munication optimization using optimized dynamic load balancing algorithm. Cor-
responding to the speedup presented in figure 6, the performance of multi-GPU
increases by about 10%. Multi-GPU’s speedups all exhibit the trend of linear ac-
celeration when different numbers of GPUs simulate millions scale scenario.

Fig. 10. The final speed up



SPH 117

7 Conclusions

An acceleration strategy for SPH method on single-node multi-GPU platform
has been proposed in this paper. For single-GPU, we first choose an appropriate
neighbour search algorithm CLL combined with architectural characteristics.
Subsequently, two optimizations are made. To solve code divergence problem
we merge continuous cells into a huge cell to reduce synchronization point in
traditional implementation. By decreasing the cell size, less potential particles
are searched in neighbour search. For multi-GPU, we focus on the changing
patterns of SPH’s computational time. Simple dynamic load balancing algorithm
works well because the computational time of each time step changes slowly
compared to previous time step. By further optimizing dynamic load balancing
algorithm and the communication strategy among GPUs, a nearly linear speedup
is achieved in different scenarios with a scale of millions particles.

8 Future Work

We will study the specific acceleration strategy for SPH on GPU cluster. The
main difference between GPU cluster and single-node multi-GPU is that the
bandwidth among nodes is far narrower than PCI-E 2.0(infiniband has not been
taken into consideration yet), which may have significant effect on SPH’s perfor-
mance on GPU cluster. Therefore, its communication strategy may be different
with what we addressed in this paper. This deserves further research.
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Abstract. The implementation of human detection in the embedded domain can 
be a challenging issue. In this paper, a real-time, low-power human detection 
method with high detection accuracy is implemented on a low-cost field-
programmable gate array (FPGA) platform. For the histogram of oriented 
gradients feature and linear support vector machine classifier, the binarization 
process is employed instead of normalization, as the original algorithm is  
unsuitable for compact implementation. Furthermore, pipeline architecture is 
introduced to accelerate the processing rate. The initial experimental results 
demonstrate that the proposed implementation achieved 293 fps by using a  
low-end Xilinx Spartan-3e FPGA. The detection accuracy attained a miss  
rate of 1.97% and false positive rate of 1%. For further demonstration, a 
prototype is developed using an OV7670 camera device. With the speed of the 
camera device, 30 fps can be achieved, which satisfies most real-time 
applications. Considering the energy restriction of the battery-based system at a 
speed of 30 fps, the implementation can work with a power consumption of less 
than 353mW.  

Keywords: HOG+SVM, Binarization Process, FPGA Implementation, Low 
Power Consumption. 

1 Introduction 

Real-time image-based human detection is an important implementation for vision 
systems, particularly for embedded environments. Apart from the vision domain, this 
implementation also has a wide range application prospects in areas such as 
entertainment, surveillance, robotics, and security. For embedded human-detection 
applications, real time, detection accuracy, hardware resource requirement, and power 
consumption are four primary considerations. In many applications, external memory 
is usually needed. Moreover, a tradeoff must exist between performance and power 
consumption is trade-off by owing to the limited resources of a field-programmable 
gate array (FPGA). 
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The human detection process primarily contains two significant steps: feature 
description and classification. During feature description, important information is 
extracted from the image. The classifier algorithm is used to determine whether a 
person is present in an image. Various methods for feature description have been 
proposed, such as Haar wavelets [1], Haar-like features [2], Gabor filers [3], and 
SHIF descriptors [4]. Likewise, many classifier algorithms are available, such as the 
support vector machine (SVM) [5] and Adaboost [6]. Nevertheless, these algorithms 
cannot satisfy the requirements for detection accuracy. 

In 2005, the famous histogram of oriented gradients (HOG) feature [7] was 
proposed, which subsequently became the most widely used algorithm for object 
detection. This algorithm significantly enhanced the detection accuracy of human 
detection. However, its high computational complexity has made the HOG algorithm 
impossible to run on a desktop computer in real time. Numerous hardware 
implementations of human detection based on HOG algorithm that could work in real 
time have recently been made. Nevertheless, such methods have always had lower 
detection accuracy and poor power consumption or required a high-end FPGA for its 
implementation. 

To achieve a good balance of the four considerations mentioned in the first 
paragraph and to address the concern of having limited resources in embedded 
implementations such as wireless sensor networks (WSNs), we proposed a simplified 
human detection algorithm based on the HOG feature and linear support vector 
machine (SVM) targeting low-end FPGA devices. Binarization is adopted and 
optimized to replace the normalization process. Additionally, pipeline architecture is 
introduced to increase the detection speed. Furthermore, few other simplifications and 
optimizations are introduced during hardware implementation. Finally, our 
implementation can be mapped on a low-end Xilinx Spartan-3e FPGA and can work 
in real time, with slightly less detection accuracy and low power consumption. 

The remainder of this paper is organized as follows: Section2 reviews related 
studies on human detection; Section3 provides the architecture of the proposed human 
detection process; Section4 explains the FPGA implementation details; Section5 
recounts the implementation results and evaluation; and Section 6 presents a summary 
of the work.  

2 Related Work 

With the extensive literature on human detection, this section mentions only a few 
relevant papers on the acceleration or hardware implementation of human detection. 
Our algorithm is primarily based on the original HOG feature algorithm proposed by 
Dalal et al [7]. However, the original HOG algorithm has a very slow detection rate. 
In 2006, Zhu et al. [8] proposed a modified human detection algorithm based on a 
multi-scale HOG feature and a boosted cascade of the Adaboost classifier, which was 
first proposed in [9]. In this study, the researchers achieved nearly the same detection 
accuracy as Dalal’s implementation that worked in real time, although this algorithm 
was unsuitable for the hardware used. In 2007, Kerhetet al. [10] proposed a human 
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detection implementation that had minimal power consumption through the FPGA 
development board. Although this work was not based on the HOG algorithm, it was 
implemented well on FPGA with good detection speed and low power consumption. 
In 2009, Kadotaet al. [11] introduced a hardware implementation of HOG feature 
extraction. The researchers proposed some ideals of simplification or modification for 
FPGA implementation and achieved a process speed of 30fps. To reduce the HOG 
feature size, [12] proposed an effective binarization scheme for the HOG feature. In 
2011, Negi et al. [13] employed a deep pipelined architecture for the hardware 
implementation of human detection. With this architecture, external memory was no 
longer necessary, and less hardware resources were used. In 2012, Komorkiewicz et 
al. [14] implemented the original HOG algorithm by using single precision, 32-bit 
floating point values. Their implementation achieved high detection accuracy, 
although the use of a high-end Virtex6 FPGA resulted in very high resource 
utilization.  

In the present study, we modified the algorithm used by Negi et al. and further 
optimized it for hardware implementation, thus achieving significantly improved 
performance. 

3 Human Detection Algorithm 

The HOG feature uses the local histograms of oriented gradients of each pixel to 
characterize the image. This feature expresses the contour of humans and avoids the 
interference of light and action to a certain extent. The detection process is achieved 
through the linear SVM classifier. In this study, some modifications were made on 
these algorithms to suit hardware implementation on FPGA.  

The original HOG and SVM algorithms have four steps: 

1) Gradient and direction calculation;  
2) Histogram generation;  
3) Normalization;  
4) Classification. 

This algorithm is unsuitable for hardware implementation as the dense of square, 
square root, multiplication, anti-trigonometric, and division operations are calculated 
during the detection process, and an external memory is always required for the 
storage of intermediate data. Thus, the binarization process was adopted and 
optimized to replace the normalization process, resulting in a series of modifications 
that will be discussed in detail in Sections 3.2 and 3.3. Likewise, other optimizations 
and simplifications are discussed below.  

3.1 Gradient and Direction Calculation 

The parameters of the cell and block used for the HOG extraction are 8×8 and 16×16 
pixels, respectively. Based on Dalal’s work, sample mask (-1,0,1) showed the best 
performance. Using this mask, the following equation was obtained:  
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In the proposed implementation, a standard RGB-565 image was used. Only the 
highest four bits from every channel were used for the calculation, which means that 
only 512 different values are available for gradient m and direction θ. Thus, the 
weight vote of each pixel can be calculated in advance and then pre-stored in a look-
up-table with 1 kb BRAM.  

Subsequently, the votes of a cell are grouped and summed according to their 
direction. Finally, the histogram is generated for each cell. 

In this implementation, each block contains four histograms, which is a nine-
dimension vector. 

3.2 Histogram Normalization 

Using steps 1, we obtained serve histograms, each of which is a nine-dimension 
vector in the hardware, given by:  

Fi,j=[f0
i,j, f

1
i,j, f

2
i,j, f

3
i,j, f

4
i,j, f

5
i,j, f

6
i,j, f

7
i,j, f

8
i,j] 

Each element fn of Fi,j represents the value of bin n in each histogram. This element 
is called a feature vector. For each cell, we obtained a feature vector, whereas for each 
block, we obtained a large feature vector consisting of all the feature vectors from the 
cells that belong to the block. For example, the cell is 8×8 pixels, whereas each block 
consists of 2×2 cells. Thus, the feature vector of the block is a 36-dimension vector 
formed by the nine-dimension vectors of the four cells.  

To weaken the effect of light and the slight movement of the human body on the 
feature vector, the feature vector should be normalized. As stated in Dalal’s paper, the 
L2-norm has the best performance, which is given by v  (7) 

where Vk is the feature vector of block k, ε is a constant to avoid division by zero, and 
v is the final feature vector. 

Although this step also has a square root operation, it cannot be realized using a 
look-up table. The square root operation can be performed using a Cordic IP CORE 
with a delay of 20 clocks. However, such action would make hardware realization 
impossible, and a large memory would be necessary to store the feature vector.  

In [12], the researchers proposed a binarization process, a method used by [13] 
with a constant threshold. Although this process degrades performance because of the 
loss of accuracy of the HOG features, the memory cost is considerably reduced. After 
normalization, the HOG features of a block become specific values. With this process, 
the HOG features of each block would have the same weight on the classifier training 
and detection processes, although the rate of each HOG feature would not be changed 
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as before. With a constant threshold, the effective features of a block can be 
highlighted. Moreover, with a threshold that represents the average value of all the 
features in a block, the same result can be obtained, along with other benefits.  

As shown in Fig.3, the red line represents the average value of the 36 HOG 
features in one block. The final HOG feature is set to 1 if it is greater than the average 
value and is set to 0 otherwise. This process has two advantages. First, the rate of the 
HOG features for each block are unchanged with or without the normalization process 
because this process is no longer required given the selection of an average value as 
the threshold. Second, the features obtained after the binarization process take the 
value of either 1 or 0, which will further optimize the detection process with a SVM 
classifier. This optimization will be discussed in Section 3.3. Additionally, with an 
average value as the threshold, the same benefit can be obtained as with having a 
constant threshold.  

During the HOG feature generation step, the normalization process costs the most 
calculation resources given the need to calculate the dense of square, square root, 
division, and multiplication operations for each block. Assigning average values as 
the threshold will reduce the resource cost of both the hardware and software. 

 

Fig. 3. Binarization process 

After the two steps, the HOG feature of the image was obtained. 

3.3 SVM Classification 

SVM is a machine learning method used for classification and regression analysis. 
Given a set of training examples, each example is classified under two categories, and 
an SVM training algorithm builds a model that assigns new examples for each 
corresponding category.  

For the proposed realization, the training data comprised the feature vector of each 
image, which is a 3780-dimension vector. To simplify the calculation, linear SVM 
classifier was employed. The SVM classifier was trained offline, and the final SVM 
classifier was a 3781-dimension vector. 

The detection process using a linear SVM classifier involved multiplying the SVM 
vector by its corresponding HOG features. After the binarization process, the HOG 
features used to train the SVM classifier took the value of either 1 or 0, and the 
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multiplication operation was replaced by addition. Statistically, 40% of the HOG 
features take the value of 1. Finally, in each detection process, 1512addition 
operations would be calculated, instead of 3780 multiplication and 3780 addition 
operations. This modification saves hardware resources. 

4 FPGA Implementation 

An OV7670CMOS video camera was used as the input device. By changing the 
initial parameters, the input image was fixed at 320×240 pixels, and the frame rate 
was set as 30fps. Finally, the detection parameters used are shown in Table 1. 

Table 1. Parameters 

Input image 320x240 pixel 

Detection windows 64x128 pixel 

Cell 8x8 pixel 

Block 2x2 cell 

Step stride 8x8 pixel 

Number of bins 9 

4.1 Gradient Computation 

To accelerate the classification process, the pipeline architecture was adopted. As 
shown in Fig. 4, three lines of three-stage shift registers were used to store four 
adjacent data during gradient and direction calculation. Two-line BRAM was used to 
store the other 317 values. As previously mentioned, the calculation of mn and mnearest 

was performed using a look-up-table. 

 

Fig. 4. Hardware structure for the calculation of gradient and bin 
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4.2 Histogram Generation 

For the histogram generation process, pipeline architecture was also used. After the 
previous process, the weighted votes of each pixel were obtained. The histogram of 
each cell was generated by summing up the votes of one cell. As illustrated in Fig. 5, 
a partial histogram was calculated for every eight pixels and then stored in a 
temporary register. Subsequently, the stream of partial histograms was loaded into the 
BRAM, such that the partial histograms for eight lines are added up. Thus, the 
histogram for each cell was generated. 

 

Fig. 5. Hardware structure for the histogram generation 

4.3 Histogram Normalization  

In our implementation, we adopted optimized binarization instead of the 
normalization process. The hardware structure and data stream are shown in Fig. 4. 
This process requires the adjacent feature vectors of four cells. Therefore, two lines of 
two-stage shift registers and one-line of BRAM buffers were used to store the feature 
vectors. The average value of the feature vector of each cell was calculated and 
cached in the temporary register, along with its feature vector. Every time a new 
feature vector was input, the average value of each block was calculated. Each feature 
value was then coded in binarization mode. 

 

Fig. 6. Hardware structure for binarization 
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4.4 SVM Classification 

With the binarization process, the classification process could be performed by adding 
the elements of the classifier to a corresponding HOG feature of 1. To accelerate the 
prediction process, a 3780-dimension filter was built, as shown in Fig.7. The HOG 
features were stored in the 15×7×(4×9) bit shift registers and the 14×32×(4×9) block 
ram. The whole HOG feature of a detection window was stored in the shift register 
and then loaded into the filter. Consequently, the detection results were calculated by 
adding the SVM elements, which have a corresponding HOG feature of 1. The 
hardware architecture of this process is shown in Fig.8. 

 

Fig. 7. SVM Filter 

 

Fig. 8. Hardware structure for the human detection process 
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Negi’s implementation achieved112fps at a maximum frequency. Therefore, the 
current implementation is 139.5 times faster than the software implementation, and 
2.6 times faster than Negi et al.’s implementation.  

Subsequently, the authors re-implemented Negi et al.’s work on software. In this 
work, eight features are treated as one 8-bit-wide feature during the classifier training 
process. In contrast, in the current implementation, each HOG feature is used 
independently. The test results are summarized as a detection error trade-off (DET) 
curve in Fig. 10.Negi et al.’s work attained a 3.4% miss rate and a 20.7% FFPW. 
Alternatively, the current implementation attained a1.97% miss rate and 1% FFPW. 
In comparison with Negi et al.’s work, the detection accuracy of the current 
implementation was also evaluated by treating every 4 and 2 HOG features as one 
feature during the classifier training and detecting processes, as shown in 
Fig.10.Theresults show that this simplification method harmed the detection accuracy. 
Nevertheless, although the performance of the current implementation is worse than 
that of the original algorithm, it is still much better than that of Negi et al. 

 

Fig. 10. DET curve for detection accuracy 

Table 3. The power evaluation results  

Realization Quiescent Power Dynamic Power Total 

Ours on Spartan-3e 83mW 270mW 353mW 

Ours on Virtex5 444mW 120mW 564mW 

Negi’s on Virtex5 450mW 438mW 888mW 

 
Finally, we compared the energy consumption of the current implementation and 

that of Negi et al. The results are summarized using the Xilinx XPower Estimator 
(Table 3). The current implementation that works on a Spartan-3e has a power 
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consumption of 353mW, which is extremely low and can satisfy the extreme 
limitation on a WSN node. Furthermore, using a Virtex5 FPGA, the current 
implementation achieved 564mW power consumption, whereas that of Negi et al.’s 
implementation reached 888mW. The quiescent power was almost the same, whereas 
the dynamic power is nearly a quarter of that of Negi et al. 

6 Conclusion 

In this paper, a real-time, low power consumption implementation of human detection 
using the HOG feature and linear SVM was presented. After an experimental 
implementation on FPGA and an evaluation of the algorithm’s detection accuracy 
through software implementation, the current work achieved a detection rate of 30 
fps, with relatively less hardware resources and lower power consumption. Although 
some simplifications have been made, the detection accuracy is acceptable and 
relatively higher than that of other implementations. With a high-speed camera, the 
maximum frequency of 293 fps can be achieved. The current implementation is 
suitable for the extreme limitation of an embedded platform, such as a WSN node. 
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Abstract. As the continuous development of cloud computing and big data, 
data storage as a service in the cloud is becoming increasingly popular. More 
and more individuals and organizations begin to store their data in cloud rather 
than building their own data centers. Cloud storage holds the advantages of high 
reliability, simple management and cost-effective. However, the privacy and 
availability of the data stored in cloud is still a challenge. In this paper, we 
design and implement a High Privacy and Availability Cloud Storage (HPACS) 
platform built on Apache Hadoop to improve the data privacy and availability. 
A matrix encryption and decryption module is integrated in HDFS, through 
which the data can be encoded and reconstructed to/from different storage 
servers transparently. Experimental results show that HPACS can achieve high 
privacy and availability but with reasonable write/read performance and storage 
capacity overhead as compared with the original HDFS. 

Keywords: Cloud storage, Data privacy, Availability, Matrix encryption. 

1 Introduction 

Clouds [1] are a large shared resource pool of easily usable and accessible computing 
and storage infrastructures, which can be elastically configured to accommodate 
variable kinds of workloads for achieving optimal Quality of Service (QoS) and 
resource utilization. These large-scale shared resources are typically exploited by a 
pay-per-use model. According to the service type, clouds can be classified by three 
fundamental models: Infrastructure as a Service (IaaS), Platform as a Service (PaaS) 
and Software as a Service (SaaS). 

Cloud storage provides internet-based storage capacity to individuals and 
organizations. Users can access their data anytime and anywhere by various devices 
which are able to connect to the Internet. Cloud Storage Providers (CSP) should 
ensure their products with high reliability, simple management and cost-effective. A 
recent survey [2] among over 60 thousand cloud users shows that, for most of users, 
the primary reason for tuning to cloud is to save the cost in infrastructure construction 
and maintenance. 
                                                           
*  Corresponding author. 
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The promising benefits of the cloud service attract various companies, including 
both large enterprises and startup companies, to provide cloud storage service with 
different Service Level Agreements (SLAs). For example, Amazon’s Simple Storage 
Service (S3), Apache’s Hadoop Distributed File System (HDFS), Microsoft’s 
SkyDrive [3], etc. S3 [4] promises an average error rate less than 0.1, which is 
computed in a fairly straightforward manner. They first divide the monthly billing 
cycle into five-minute intervals, and then compute the error rate for each interval, 
finally compute the average error rate over all intervals. Apache Hadoop [5] is an 
open-source software framework that supports data-intensive distributed applications. 
All the input data are stored on HDFS as blocks and every block has several replicas 
in different DataNodes. JobTracker could gain the block locations of input data and 
assign tasks to the nodes which store the input data for parallel processing. 

Although the cloud storage service holds numerous advantages, it has two main 
challenges. (i) Privacy problem: Since the data stores outside user’s infrastructure, it 
is perceived to be normal that the companies may loss control of data. Multiple 
classes of personnel may access the physical storage devices to read or write other 
users’ data. Data encryption is a frequently-used technology to solve this problem, 
which can prevent cloud administrators and attackers from accessing the original data. 
(ii) Availability problem: It means the cloud providers might be out of service, and 
users cannot access the cloud storage platform at that interval. Report [6] shows that 
most CSPs have run into failures from time to time, causing services to stop for hours 
or even days. In the previous works, redundant technique is often applied to solve the 
availability problem, including data replication and erasure code strategies.  

Although there are some works on privacy problem and availability problem 
respectively, few works solve the problems simultaneously. In this paper, we combine 
these two factors and provide a high privacy and availability cloud storage platform 
(HPACS). Our contributions can be summarized as follows: 

● First, we propose a matrix encryption algorithm and a matrix decryption 
algorithm to achieve the high privacy and availability in cloud storage; 

● Then we integrate the algorithms to the HPACS, which is designed to 
automatically and transparently encode original data into multiple partitions or 
reconstruct original data from multiple partitions. The partitions are stored on 
different servers; 

● At last, we perform extensive evaluation to verify the effectiveness of HPACS as 
well as its overheads. Experimental results show that HPACS can achieve high 
privacy and availability but with reasonable write/read performance overhead and 
storage capacity overhead as compared with the original Hadoop system. 

The rest of this paper is structured as follows. In section 2, we first describe the 
architecture of HDFS and HPACS platform. Then we explain the write/read flows of 
HPACS and the theory of matrix encryption/decryption algorithms. Finally, we 
present the implementation of HPACS. In section 3, we conduct a series of 
experiments, comparing the write/read performance between HDFS and HPACS 
platform. We also consider the data availability and usage of storage capacity. In 
section 4, we give the introduction of related works. In the last section, we conclude 
our work and present the future work. 
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2 Designing and Implementation of HPACS Platform 

In this section, we first describe the architecture of HDFS and HPACS platform. Then 
we explain the write/read flows of HPACS and the theory of matrix encryption/ 
decryption algorithms. Finally, we present the implementation of HPACS. 

2.1 HDFS and HPACS Platform Architecture 

The Hadoop distributed file system [7] contains three parts: (i) NameNode:  It holds 
the namespace of distributed file system, which is a hierarchy of files and directories. 
File or directory is represented by inode which records the attributes like permission, 
modification, access time and disk space quota, etc. The NameNode also maintains 
the mapping information of file to blocks (each block has three replicas in default) 
and block to DataNodes. When clients want to read data, they first contact the 
NameNode for the locations of data blocks comprising the file and then read block 
contents from the DataNode closest to the Client. When clients want to write data, 
they first request the NameNode to appoint a suite of DataNodes to host the block 
replicas and then write block contents to the DataNodes in a pipeline form. The 
current design of Hadoop platform holds only one NameNode for each cluster and 
results in the problem of single point of failure. (ii) DataNode: It is responsible for the 
storage of file content itself. When the file size exceeds the appointed block size, it 
will be split into large blocks (typically 64 megabytes) which are independently 
replicated on multiple DataNodes. The cluster can have thousands of DataNodes and 
tens of thousands of clients, and each DataNode may execute multiple application 
tasks concurrently to improve the whole throughput. DataNode sends heartbeat to the 
NameNode to inform that the DataNode is running and the block replicas it hosts are 
available. The default heartbeat interval is three seconds. (iii) Client: User 
applications access the Hadoop distributed file system using the HDFS client. Similar 
to conventional file system, HDFS supports operations to read, write and delete files, 
and operations to create and delete directories. 

 
Fig. 1. HPACS platform architecture (Client module, Encryption/Decryption module and 
Storage module) 
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Figure 1 illustrates the system architecture of HPACS platform. It consists of three 
main modules: Client module, Encryption/Decryption module and Storage module. 
The Encryption/Decryption module is newly designed in this paper which is a 
supplement to the current HDFS to enhance its privacy and availability. It includes 
the functions of encoding original data to partition data and reconstructing partition 
data to original data. We design a matrix redundant algorithm in the 
Encryption/Decryption module which is implemented on slaves of storage module. 
The other two modules are similar to the original HDFS, we use the terms 
Master/Slave instead of NameNode/DataNode in the storage module. The master 
should also maintain the secret key (Vandermonde matrix in this paper) except the 
mapping information of file to blocks and block to DataNodes. 

2.2 Write and Read Flows of HPACS 

Figure 2 shows the file write flow of HPACS platform. It includes 8 steps: 

(1) The client creates the file by calling create() on DistributedFileSystem object; 
(2) DistributedFileSystem makes an RPC call to the master to create a new file in 

the namespace. If the create operation is executed successfully, it returns a 
success signal, else it returns an error signal; 

(3) As the client writes data, the file is split into blocks (typically 64 megabytes), 
FSDataOutputStream writes the data to an internal queue by packets. The 
packet queue is consumed by the DataStreamer, whose another responsibility 
is to ask the master to allocate a list of suitable slaves (always 3) to store the 
partition data encoded from the original data; 

(4) The block packet is written to the first slave and sent to FileEncode function 
in the matrix encryption and decryption module to encode independently 
partition packets; 

(5) The first slave stores one partition packet on its local file system, and other 
two partition packets are sent to the second slave and the third slave; 

(6) FSDataOutputStream also maintains an internal queue of packets that are 
waiting to be acknowledged by slaves, called the ack queue. The 
Vandermonde matrix is brought by the ack signal to the client; 

(7) When the client finishes writing data, it calls close(); 
(8) Finally, the client contacts the master to send secret key and to mark that the 

file is written completely. 

Figure 3 shows the file read flow of HPACS platform. It includes 7 steps: 

(1) The client opens the file it wishes to read by calling open() on Distributed-
FileSystem object; 

(2) DistributedFileSystem calls the master, using RPC, to obtain the locations of the 
partitions for the first few blocks in the file and the corresponding secret keys; 

(3) The client calls read() on the FSDataInputStream; 
(4) The FSDataInputStream transfers the secret key to the first slave; 
(5) Partitions are streamed from other slaves to the first slave; 
(6) FileReconstruction function in the matrix encryption and decryption module 

reconstructs the original data. Data is streamed from the first slave back to the 
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client. When the end of the block is reached, FSDataInputStream will close 
the connection to the slave, and then find another three slaves for the next 
block. This happens transparently to the client, which from its point of view 
is just reading a continuous stream; 

(7) When the client has finished reading, it calls close() on the FSDataInput-
Stream. 

 

Fig. 2. File write flow of HPACS platform 

 

Fig. 3. File read flow of HPACS platform 
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2.3 Matrix Encryption and Decryption Algorithm 

In this section, we describe the details of matrix encryption and decryption algorithms 
[8], which are implemented in the Encryption/Decryption module as shown in Figure 1. 

From the fundamental theorem of algebra, we know that every polynomial equation 
of k-order has k roots. We use this fact to encode original data into k partitions such that 
each of the partition can be stored on different servers. The partition data in themselves 
do not reveal any information, only when all the partitions and the corresponding secret 
key are brought together, the data can be revealed through reconstruct algorithm. The 
secret key in this paper is the Vandermonde matrix. 

Consider a polynomial equation of k-order, 

 1 2
1 2 1 0... 0k k k

k kx a x a x a x a− −
− −+ + + + + =  (1) 

Equation 1 has k roots denoted by {r1, r2, … , rk} ⊆ {set of complex numbers} and 
can be rewritten as equation 2. 

 1 2( )( )...( ) 0kx r x r x r− − − =  (2) 

We replace a0 in equation 1 with the data d which we want to encode, then we can 
obtain equation 3, and call the roots as partitions. 
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In the above situation, the partitions are stored on different slaves in storage 
module. When any one of the slaves on which the partitions are stored becomes 
unavailable, users couldn’t be able to reconstruct the original data from the available 
partitions. In order to solve the low reliability and availability mentioned early, we 
introduce the redundancy technology through matrix transformation. 

We use a linearly independent matrix to extend the k partitions to n partitions. 
From all the n partitions, we only need any k partitions to reconstruct the original 
data. We define r = n/k as the redundancy rate, referring that we bring the overhead of 
r on the storage costs. Through this redundancy we can achieve high availability and 
resist against possible failures of particular servers. For example, we construct n 
linearly independent equations such as equation 4. 
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The above linear equations can be redefined as matrix operation as equation 5, and 
we call it as (k, n) data encode algorithm. 
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The reconstruct algorithm is the inverse process of encode algorithm. Because 
equation 4 is linearly independent, the value of k × k determinant consists any k rows 
of matrix A doesn’t equal to zero. We can choose any k partitions of {p1, p2, … , pn} 
to reconstruct the k roots, using equation 6. Finally, we can use equation 3 to compute 
the original data d. 
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When computing the polynomial equation roots, we use the finite field  p where 
p ( 0 1d p≤ ≤ − ) is a large prime for simplicity. We can obtain k roots {r1, r2, … , 

rk}of equation 1 in finite field  p. For example, if the original data (d = 189) needs 
to be encoded into three partitions then a 3-order polynomial equation is chosen and 
the roots computed. We set the prime p to 257 which is bigger than the value of one 
byte. Through the Algorithm 1 in Appendix I, we can achieve three roots (r1 = 57, r2 
= 60, r3 = 113) which correspond to the partitions. The partitions in themselves do not 
reveal any information. When all the partitions are brought together, we can recons-
truct the original data use equation 7. 

 
3

1

mod (57 60 113) mod 257 189i
i

d r p
=

= = × × =  (7) 

2.4 Implementation of HPACS 

We implement HPACS platform based on Apache Hadoop-1.0.1, and add FileEncode 
function and FileReconstruction function in HDFS.  

● FileEncode Function 
In the HDFS, we use the –put command line API to write file to the distributed file 

system, while we use -newput command line API instead in our new platform. The 
Algorithm 1 in Appendix I shows the pseudo-code of FileEncode function.  
● FileReconstruction Function 

Similar to the write process, we use -newget command line API instead in HPACS 
platform. The Algorithm 2 in Appendix I shows the pseudo-code of FileReconstruc-
tion function. 
● Difference between HDFS and HPACS 

There are four main differences between HDFS and HPACS. (i) When users want 
to write file, the pipeline replication mechanism in HDFS is canceled. The block 
packet is sent to FileEncode function in the matrix encryption and decryption module 
to create independently partition packets. The first slave stores one partition packet on 
its local file system and other partition packets are transferred to the other slaves. (ii) 
When users want to read file, all partitions are streamed to the first slave. Then the 
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FileReconstruction function in the matrix encryption and decryption module 
reconstructs the original file data. (iii) We ignore the block replica number in HDFS, 
and conduct the transmission control by the value of (k, n). Every block is encoded 
into n partitions with the redundancy rate r = n/k. (iv) HPACS has the –newput and –
newget command line API. In addition, the master maintains the secret key except the 
mapping information of file to blocks and block to DataNodes. 

3 Experimental Results and Analysis 

In this section, we study both the write/read performance and the data availability. In 
the write/read performance analysis, we first study the performance of HDFS with 
different block replica number, and then investigate the performance difference 
between HDFS and HPACS platform. In addition, we analyzed the data availability of 
HPACS platform. 

3.1 Experimental Configuration 

Due to the limited quantity of physical machine, all the experiments are performed 
within virtual machines on four Dell PowerEdgeR720 servers, with 2 Quad-core 64-
bit Xeon processors E5-2620 at 2.00GHz and 64GB DRAM. We use Ubuntu12.04 in 
Domain 0, and Xen 3.3.1 as the virtualization hypervisor. Each virtual machine is 
installed with Ubuntu12.04 as the guest OS with the configuration of 1VCPU and 
2048MB vMemory.  

3.2 Write/Read Performance of HDFS and HPACS 

We first create a 16-node Hadoop virtual cluster (1 NameNode and 15 DataNodes) 
running on four physical machines to study the write and read performance of HDFS. 
Figure 4 shows the write performance when the file size ranges from 1MB to 200MB 
with different block replica number. The experimental data is chosen from TOEFL 
(The Test of English as a Foreign Language) English materials. From this figure, we 
can find the write time is short when the file size is relatively small, and increases 
obviously as the file size scales. We set the file size to 200MB, observing that the 
write time with more block replicas is higher. Furthermore, the write time is not a 
multiple of block replica number, which means the time cost by the NameNode to 
nominate DataNodes to host the block replicas cannot be ignored. 

Figure 5 represents the read performance of HDFS with different block replica 
number. From this figure, we can find that the read time increases as the file size 
scales. Since the client reads block contents from the closest DataNode, the read 
performance difference with different block replica number is negligible. When the 
block replica number equals to three, we can observe the read time of 10MB file is 
22.362s and 200MB file is 25.266s. The reason is that the time spending on data 
transmission is relatively short and most of the time is cost by other network 
communication. 
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Fig. 4. Write performance of HDFS with different block replica number 

 

Fig. 5. Read performance of HDFS with different block replica number 

Figure 6 shows the write performance of HPACS platform with different (k, n) 
combination. We consider three situations: (k, n) = (3, 4), (3, 5), (3, 6), and make a 
comparison with the HDFS of three block replicas. From this figure, we can observe 
that the write time of HPACS is much higher than HDFS, which means the overhead 
of matrix encryption algorithm occupies the vast majority of the write time. For 
instance, the write time of HPACS platform exceeds 4 minutes while it is less than 
20s in the HDFS when the file size is 200MB. The file size has little impact on the 
write operation efficiency of HDFS (see the “put” performance in Figure 6). When 
the file size scales, the write time shows a slight elevation and doesn’t change 
apparently. On the contrary, the file size impacts the write operation efficiency of 
HPACS obviously. When the file size exceeds a certain value, the write time will 
have a nearly linear growth.  
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Fig. 6. Write performance of HPACS with different (k, n) 

 

Fig. 7. Read performance of HPACS with different (k, n) 

Figure 7 illustrates the read performance of HPACS platform with different (k, n). 
We also consider three situations: (k, n) = (3, 4), (3, 5), (3, 6), and make a comparison 
with the HDFS of three block replicas. From this figure, we can observe that the read 
time of HPACS is much higher than HDFS, which means the overhead of matrix 
decryption algorithm occupies the vast majority of the read time. Similar to the write 
performance, the file size has little impact on the read operation efficiency of HDFS 
(see the “get” performance in Figure 7) and has obvious impact on HPACS. 

3.3 Availability Analysis 

We make an analysis of the availability problem. From figure 6 and figure 7, we can 
observe the overhead of write/read performance is relatively low to improve the 
availability by increasing the redundancy rate. For example, the read time of (k, n) = 
(3, 4) and (3, 5) is 11.397s and 12.977s respectively. In order to reconstruct the 
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original data, only one partition is allowed to be destructive in the situation of (k, n) = 
(3, 4), while two partitions can be destroyed in the situation of (k, n) = (3, 5). We also 
can find that the difference of the read time is smaller than the write time among 
distinct (k, n), because only k partitions are needed to reconstruct the original data 
when we execute read operation. 

4 Related Work 

There are a few works on the data privacy and security in the cloud. In [9], the author 
discusses the criticality of the privacy issues in cloud computing, and points out that 
obtaining information from cloud storage provider is much easier than from the 
creator himself. Zhang et al. give a study on the protection method of data privacy 
based on cloud storage [10]. Many encryption approaches have been proposed for 
hiding the data from the cloud storage provider and hence preserving data privacy 
[11-12]. DepSky [13] presents several protocols to improve the confidentiality of data 
stored in the diverse clouds. It uses encryption and secret sharing to promise data 
safety. SCMCS [14] proposes a secured cost-effective multi-cloud storage model, 
which divides the user’s data into pieces and distributes them among the available 
CSPs for providing better privacy. BLAST [15] presents a secure storage architecture 
enhanced with a stream cipher rather than a block cipher with a novel block 
accessible encryption mechanism based on streaming ciphers. Focusing on the 
privacy protection of the on-disk state, BIFS [16] reorders data in user files at the bit 
level, and stores bit slices at distributed locations in the storage system. While 
providing strong privacy protection, BIFS still retains part of the regularity in user 
data, and thus enables the CSP to perform a certain level of capacity space 
optimization. 

RACS [17] applies erasure coding to improve availability and tolerate provider 
price hikes, thus reducing cost of data migrations and vendor lock-in. HAIL [18] is 
another system trying to build an independent integration layer through erasure 
coding to achieve high availability. Due to the missing consideration of global access 
experience, paper [19] proposes the μLibCloud system. It works as a library at client 
side, transparently spreading and collecting data to/from different cloud providers 
through erasure code, aiming to improve the availability and global access experience 
of clouds, and to tolerate provider failures and outages. However, all the above works 
don’t refer to the Hadoop system directly. 

Currently, Hadoop has no specific availability support yet, and it is not trivial to 
enhance its privacy and availability. The work [20] proposes a metadata replication 
based solution to enable high availability by removing single point of failure. Intel 
[21] proposes a fast low-overhead encryption method for Apache Hadoop, which 
enables real-time analytics on massive data sets with enterprise-class data protection. 
zNcrypt [22] outlines some of the challenges associated with securing big data and 
offers tips for protecting your most important business asset. However, they haven’t 
taken the privacy and availability problem into account simultaneously. 
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Through the analysis of previous works, we find few works focus on the 
combinative measurements to solve the privacy and availability problems. The matrix 
encryption hasn’t applied in cloud storage system. Most of the studies improve them 
at the level of different cloud storage providers. The HPACS platform built on 
Hadoop can improve privacy and availability simultaneously and is also suitable for 
the private cloud. 

5 Conclusions and Future Work 

After the cloud computing paradigm proposed as a pay-per-use service business 
model, cloud storage service is becoming increasingly popular. In this paper, we 
design and implement a HPACS platform built on Apache Hadoop in order to 
improve the data privacy and availability in the cloud. In the HPACS platform, we 
add a matrix encryption/decryption module in the slave nodes. In experiments, we 
first compare the write and read performance of HDFS with different block replica 
number. The result shows that the write and read time increases as the file size scales. 
When the block replica number scales, the write time increases simultaneously, while 
the read time has no obvious changes. Then we conduct a series of experiments to 
contrast the write/read performance between HDFS and HPACS platform. We find 
the performance of HDFS is higher than HPACS. The file size has little impact on the 
write/read operation efficiency of HDFS and has obvious impact on HPACS. Finally, 
we observe the overhead of performance is low and acceptable to improve the 
availability by increasing the redundancy rate. 

Future work will include using real-time encryption technology in the matrix 
encryption and decryption algorithm to improve the encryption/decryption efficiency, 
and integrating the algorithms to other open-source cloud computing system to prove 
the effectiveness. 
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Appendix I 

Algorithm 1: (k, n) data encode 
Input: original data 
   Begin: 
 int i, j, k, prime, m, n, element[n]; 
 int root[k], partition[n], vandermonde[n][k]; 
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 for(i = 0; i < n; i++){ 
     element[i] = (int)Math.rint(Math.random() * 99 + 1); 
     for(j = 0; j < k; j++) 
  vandermonde[i][j] = (int)Math.pow(element[i], j); 
 } 
 int data=reader.read(); //read data from the block packet 
 while(data != -1){ 
    m = 1; 
    for(i = 0; i < k-1; i++){ 
      root[i] = (int)Math.rint(Math.random()*(prime-2)+1); 
      m *= root[i]; 
    } 
    for(j = 1; j < prime; j++){ 
  if((m * j) % prime == data) 
  break; 
    } 
    root[k-1] = j;       //obtain the k roots 
    matrix R = new matrix(root, k); 
    matrix P = vandermonde.times(R); 
    //obtain n partitions 
    partition = P.getColumnPackedCopy(); 
    data = reader.read();  //until the last byte of block 

} 
        end. 
Output: n partitions 

 

Algorithm 2: (k, n) data reconstruct 
      Input: k partitions of {p1, p2, … , pn} 
      Begin: 
 int i, j, k, prime, res; 
 int root[k], element[k], vandermonde[n][k]; 
 for(i = 0; i < k; i++){//obtain the transformation matrix 
        element[i] = reader.readInt(); 
    for(j = 0; j < k; j++) 
       vandermonde[i][j] = (int)Math.pow(element[i], k); 
 } 
 matrix A = new Matrix(vandermonde); 
 matrix B = A.inverse(); 
 for(i = 0; i < k; i++){//obtain k partitions 
    partition = raf.readInt(); 
    element[i] = partition; 
 } 
 matrix C = new Matrix(element, k); 
 matrix R = B.time(C); 
 root = R.getColumnPackedCopy(); //calculate the k roots 
 res = 1; 
 for(i = 0; i < k; i++) 
    res *= res[i]; 
 res += prime; 
 res %= prime; 
 data = ((int)Math.round(res)) % prime; 
      end. 
   Output: original data 
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Abstract. Solid State Drives (SSDs) have been widely adopted in both
enterprise and embedded storage systems with the great improvement in
NAND flash memory technology. With the growing size of NAND flash
memory, how to keep the most active address mappings be cached in lim-
ited on-flash SRAM is crucial to a Flash Translation Layer (FTL) scheme,
that plays an important role in managing NAND flash. In this paper, we
propose an efficient cache management strategy, called ECAM, to en-
hance the capability of caching page-level address mappings in demand-
based Flash Translation Layer. In ECAM, we optimize the structure
of Cached Mapping Table (CMT) to record multiple address mappings
with consecutive logical page numbers and physical page numbers in just
one mapping entry, and propose another two tables, Cached Split Table
(CST) and Cached Translation Table (CTT). CST can cache the split
mapping entries caused by the partial updates in CMT and CTT is used
to reduce the overhead of address translation for large number of se-
quential requests. By the cooperation of CMT, CST and CTT, ECAM
implements an efficient two-tier selective caching strategy to jointly ex-
ploit the temporal and spatial localities of workloads. The simulation on
various realistic workloads shows that ECAM can improve the cache hit
ratio and reduce the number of expensive extra read/write operations
between SRAM and flash efficiently.

Keywords: SSD, FTL, NAND Flash, Cache Management Strategy,
Cached Split Table, Cached Translation Table.

1 Introduction

In the past decade, a number of excellent research results and significant ad-
vances have been obtained in flash memory technologies, especially NAND flash
memory. NAND flash is a kind of erase-before-write non-volatile memory and
has a limited number of erase cycles. Due to its advantages such as low access
latency, low power consumption etc., NAND flash memory has become an im-
portant substitute of the traditional mechanical Hard Disk Drives (HDDs) in the
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form of Solid State Drives (SSDs) and received strong interests in both academia
and industry[1][3].

In NAND flash memory, the granularity of an erase operation is a block
that usually contains 32-128 pages, while that of a write operation is a page.
Because of its erase-before-write feature, NAND flash memory does not sup-
port in-place-update, which would require an erase-per-update and degrade the
performance[3]. In order to avoid unnecessary erase operations, NAND flash-
based SSDs usually exploit an out-place-update pattern, which updates one
page in an already erased page, remaps the address mapping table to reflect
this change and invalidates the old page. To reclaim the invalid pages caused
by the out-place-update pattern, a garbage collection mechanism is introduced.
Moreover, wear-leveling technique that can reduce the number of an erase opera-
tion and balance the erase count of each block is also an important issue because
of the limited lifespan of NAND flash memory.

To realize these functions, a firmware layer named flash translation layer
(FTL) is implemented in the controller of SSDs, which is crucial to the over-
all performance of NAND flash memory based storage system. FTL is the core
engine of SSDs to translate logical addresses to physical addresses on flash, which
is named address mapping. Various FTL schemes have been proposed such as
page-level FTL, block-level FTL[2][6] and hybrid FTL[10][13][14][15] schemes.
The page mapping table of page-level FTL usually cannot be kept in limited on-
flash SRAM with the increasing size of NAND flash. Besides, both block-level
FTL and hybrid FTL schemes exhibit poor performance for enterprise-scale
workloads with significant random write patterns. In this situation, demand-
based Flash Translation Layer (DFTL)[7] is proposed which selectively caches
page-level address mappings to overcome the shortcomings of the current FTL
schemes above.

DFTL shows great advantages in response time and garbage collection over-
head. However, the heavy I/O overhead between SRAM and flash when the
needed address mapping missed in SRAM may be a burden as the size of NAND
flash memory increases. And DFTL takes only temporal locality into considera-
tion, in which the spatial locality of enterprise-scale workloads is not considered.

In this paper, we mainly focus on improving the ability of address translation
without consuming more resources based on DFTL. We propose an efficient
cache management strategy called ECAM to make best use of the limited space
of on-flash SRAM. In ECAM, we optimize the structure of Cached Mapping
Table (CMT) and propose another two tables, Cached Split Table (CST) and
Cached Translation Table (CTT). With the help of CMT, CST and CTT, ECAM
achieves an efficient two-tier selective caching strategy that can jointly exploit
the temporal and spatial localities of workloads.

The rest of this paper is organized as follows. Section 2 provides a brief
overview of related work. In Section 3, the details of ECAM are presented. Ex-
perimental results are presented in Section 4. Finally, our conclusions and future
work are described in Section 5.
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2 Related Work

FTL is a firmware implemented in SSD controller and plays an important role
in providing address mapping, wear-leveling and garbage collection. Because of
the out-place-update pattern of NAND flash memory, address mapping table is
required to keep the address translation between logical address and physical
flash address. Current FTL schemes can be classified into page-level, block-level
and hybrid FTLs depending on the granularity of address mapping[5].

Page-level FTL scheme is the best grained and the most flexible scheme trans-
lating a logical page number (LPN) to a physical page number (PPN) in NAND
flash memory. Page-level FTL can get a very fast address translation and write a
data in any place of flash memory since it maintains an address translation table
containing the whole LPNs and their corresponding PPNs. Garbage collection
can also benefit from page-level mapping and obtain high efficiency. However,
this solution is very expensive since page mapping table usually cannot be kept
in SRAM because of its large size.

In order to reduce the size of address mapping table, another scheme, i.e.,
block-level FTL scheme is proposed, which translate only logical block number
(LBN) to physical block number (PBN) and can significantly lower memory
requirement. In block-level FTL scheme, a logical address includes a LBN of the
block and the offset in the block. The target page address can be found according
to the PBN translated from LBN and the logical page offset. However, since
block-level FTL only stores one logical page in the fixed position of blocks, it
may lead to large number of internal fragments and expensive garbage collection
overhead when the coming requests only overwrite part of a block constantly.

In order to get a tradeoff between performance and consumption of limited
system resource, various hybrid mapping schemes between page-level FTL and
block-level FTL have been proposed in literatures[10][13][14][15], in which blocks
are divided into data blocks and log blocks logically. Updates on the data blocks
are always written to log blocks. Fully Associative Sector Translation (FAST)[14]
allows log blocks to be shared by all data blocks and reserves a sequential log
block to perform sequential updates. However, the high correlation of a log block
among large number of data blocks makes the reclaim more expensive and gets a
higher possibility of the full merge operations caused by its fully associative pol-
icy. Locality Aware Sector Translation (LAST)[15] deals with sequential writes
and random writes separately according to the numbers of requested pages.
FASTer[16] focuses on online transaction processing (OLTP) systems based on
the FAST FTL scheme, which has the best performance when the workloads are
generally random and small I/O requests just like OLTP systems.

However, in most enterprise-scale servers, the access patterns of workloads
are composed of sequential and random writes in different ratios. A recent pro-
posal, WAFTL[20] makes FTL workload adaptive by sending the data cached
in buffer zone to either page-level mapping blocks or block-level mapping blocks
depending on their access frequencies. ADAPT[19] is a fully-associative hy-
brid mapping FTL and employs a novel way to manage log space for different
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workloads. ADAPT can adjusts the partitions of log space dynamically to satisfy
the sequential and random write requests at runtime.

DFTL[7] is another FTL scheme which selectively caches partial page-level
address mappings rather than the whole address translation table in SRAM.
Cached mapping table (CMT), global translation directory (GTD) in SRAM,
and the entire page-level address translation table on NAND flash memory to-
gether realized the translation from a logical page number to a physical page
number. CMT keeps active address mapping entries on demand in SRAM to
minimize the overhead of address translation by using the temporal locality of
workloads and GTD can track all physically dispersed translation pages over the
entire NAND flash memory. Though DFTL improves overall performance sig-
nificantly, the heavy I/O overhead between SRAM and flash during the address
translation may be a burden with the size of NAND flash memory increasing.

A recent proposal, S-FTL[9], exploits the spatial locality in the workloads
to reduce the page mapping table size and extra I/O overhead during address
translation. S-FTL exploits continuity in the write requests to create a concise
representation of in-cache translation pages by maintaining the bitmap for trans-
lation pages. CAST[21] uses a compact packing methodology for the page-level
address mappings in SRAM. However, the caching mechanism in CAST may
cause several extra eviction operations when a small write request reaches. Re-
cently, content-aware Flash Translation Layer (CAFTL)[4] and CA-SSD[8] are
proposed to enhance the endurance of SSDs by removing unnecessary duplicate
writes to flash memory.

3 The Design of ECAM

3.1 Overall Architecture

The overall architecture of ECAM is shown in Figure 1. In ECAM, we design
four tables in SRAM logically, cached mapping table (CMT), cached split table
(CST), cached translation table (CTT) and global translation directory (GTD).
CMT is used to cache the address translation entries of on-demand active data
page, and GTD keeps track of all translation pages on flash, just as DFTL. Unlike
DFTL, we change the structure of CMT and propose another two tables, CST
and CTT, which are the most important parts to jointly exploit the temporal
and spatial localities of workloads. In ECAM, CST can cache the split mapping
entries caused by the partial updates in CMT and CTT is used to reduce the
overhead of address translation for large number of sequential requests. The
segmented LRU array cache management algorithm[11] for replacement is used
in CMT and CST. Flash memory is divided into two partitions in ECAM, the
translation block and the data block. One Translation block is composed of
several translation pages that are special pages used to store address mappings
on flash, while one data block is composed of several data pages that store real
data accessed during read/write operations.

CMT and CST in ECAM have three parts, i.e., LPN, PPN and SIZE. LPN
indicates the logical page number, PPN indicates the physical page number
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corresponding to LPN, and SIZE indicates the number of consecutive pages
whose starting address is the LPN in this mapping entry. SIZE makes one cached
mapping entry record more than one address mapping information, which is
beneficial to requests with consecutive LPNs and consecutive PPNs.
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Fig. 1. The Architecture of ECAM

With the optimization of the CMT structure, a mapping entry with a big size
needs to be updated when a small write request write partial pages. The updated
mapping entry will split into several mapping entries because of the out-place-
update characteristic of NAND flash. We call it split operation. In this case,
ECAM updates on mapping entry, called hit entry, in CMT, and caches other
mapping entries, called split entries, into CST rather than just retain them in
CMT or write back to the translation page in flash directly.

When a requested address mapping entry missed in SRAM, ECAM needs
to fetch the needed entry from translation page. Considering that the mapping
information with the consecutive LPNs may be needed by the successive requests,
ECAM always fetches the whole translation page containing the needed mapping
entry in CTT. Besides, CTT implements a lazy batch update scheme of address
mappings from SRAM to translation pages when the victims from CMT or
CST are cached in CTT. ECAM caches the victims to CTT and searches the
mapping entries in replace segment of the segment LRU array[11]. The entries
that contained in the same translation page with the victim entry will be evicted
together and update to a free translation page on flash.

3.2 The Two-Tier Selective Caching Strategy

In ECAM, we propose an efficient two-tier selective caching mechanism to cache
the most active address mapping entries in SRAM by the cooperation of the
optimized CMT, CST and CTT.
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ECAM uses different strategies to handle read requests and write requests
because of the out-place-update pattern of NAND flash memory. Since no split
operation happens to the read requests, ECAM searches the needed address map-
ping entries from CMT, CST and CTT in sequence for all the request pages and
implements the page-by-page address mapping for read request. If the needed
mapping entries are not presented in SRAM, they will be fetched into CMT from
flash. When a mapping entry needs to be stored in CMT that is already full, one
address mapping in CMT needs to be evicted and stored in CST. In this case,
CST can only be used to cache the victims evicted from CMT with the sizes
bigger than threshold. For a write request, there are three situations that may
happen, hit, miss and partial hit.

HIT. The hit situation happens when the needed mapping information of ad-
dresses LPN to LPN+SIZE-1 can be found in CMT or CST. A split operation
may happen in this situation, ECAM just caches one or two split mapping entries
in CST if needed. Figure 2(a) and 2(b) describes a hit situation. The mapping
entry (11, 220, 9) in CMT can satisfy the request (DLPN=15, SIZE=2), in this
case, ECAM just updates the mapping information of the hit entry to (15, 420,
2) and moves it to the head of CMT. 420 is the PPN of a free page allocated
to LPN=15 in Current Data Block. Besides, ECAM caches the split entries (11,
220, 4) and (17, 226, 3) in CST.
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Fig. 2. An Example of Address Translation Process of ECAM

In ECAM, the split mapping entries caused by a write request are always
cached in CST rather than retained in CMT or write back to the translation
page in flash directly. The reason for this consideration is mainly to better jointly
exploit spatial locality and temporal locality of workloads. Generally speaking,



152 X. Xie et al.

different workloads show different access patterns, temporal locality intensive,
spatial locality intensive or random access intensive. If the split entries are al-
ways designed to cache in CMT and CMT is full, some entries needed to be
evicted from CMT to make space for caching the split entries. For the tempo-
ral locality intensive workloads, the evicted entries may be reused soon which
are much more important than the split entries. For the spatial locality intensive
workloads, numerous split operations may be triggered in a short time and CMT
may be filled with large number of split entries, which will destroy the structure
of segment LRU array[11] that used to organize CMT. Besides, the numerous
split entries occupy most space of CMT, which go against the purpose of CMT.
Therefore, we just selectively cache the split mapping entries in elsewhere, i.e.,
CST in ECAM, to exploit the spatial locality of workloads.

We use a selective caching strategy to better exploit the limited space of
SRAM by caching the split entries in CST. In order to implement this selective
caching strategy, we set a threshold to help ECAM to determine whether the
split entry should be cached in CST or not. ECAM always selectively caches
the split entries with SIZE lager than threshold, since the entry with larger size
represents more address mapping information and will be used soon with more
probability. Therefore, the victims with large size from CMT will be cached in
CST, ECAM can get them from CST directly if the mappings hit soon, rather
than read from translation pages in flash. The mapping entries whose sizes are
smaller than the threshold will be evicted to flash instead. We set the threshold
of size to 2 in ECAM. In the example shown in Figure 2(b), the two split entries
(11, 220, 4) and (17, 226, 3) are both cached in CST because the sizes of the
two split entries are bigger than the threshold.

MISS. If the mapping information of the requested LPN cannot be found in
SRAM (CMT, CST or CTT), the miss situation happens. We have to read
the translation page containing the needed mapping information from flash,
and cache the corresponding mapping entry in CMT. For example, the LPN
of request (DLPN=560, SIZE=7) is 560 shown in Figure 2(c), and this address
is mismatching in CMT, CST and CTT. The translation page (MPPN=21) in
flash contains the mapping information of this request address, and ECAM just
reads it to CTT. Since CTT contains the whole address mappings of translation
page (MVPN=0, MPPN=17) and there are two mapping entries (DLPN=15 and
DLPN=16) updated in last request, ECAM has to batch update the (MVPN=0)
mapping to a free translation page (MPPN=179). After that, ECAM just read
the translation page (MPPN=21) into CTT, which will batch satisfy the request
(DLPN=560, SIZE=7) in one time. While CMT is full, a victim (1280, 620, 4)
has to be evicted to make space for the needed address mappings of request
(DLPN=560, SIZE=7). In the end, an address mapping entry (560, 422, 7) is
added in the head of CMT.

ECAM always selective cache the victims evicted from CMT depends on the
SIZE, just as we explained above. The victims with large size from CMT will be
cached in CST while the one with small size will be evicted to flash instead. There-
fore, the victim (1280, 620, 4) is cached into CST, since the size of this entry is 4.
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PARTIAL HIT. The partial hit situation happens if the needed mapping
information can be partially found in SRAM. In this case, the request can be
divided into two sub-requests, (LPN, SIZE1) and (LPN+SIZE1, SIZE-SIZE1).
One request (LPN, SIZE1) can be satisfied in SRAM, just as the hit situation we
mentioned, the other (LPN+SIZE1, SIZE-SIZE1) is treated just as a new write
request, whose mapping information is then searched in SRAM or Flash from
scratch. Just as shown in Figure 2(d), the request (DLPN=4, SIZE=5) is partial
hit in SRAM, since the request (DLPN=4, SIZE=2) can be satisfied in address
entry (3, 250, 3), while the request (DLPN=6, SIZE=3) is mismatched in SRAM
and the mapping information has to be fetched from flash before the request
(DLPN=6, SIZE=3) is handled, the partial hit entry (3, 250, 3) is updated to (4,
429, 5), which is moved to the head of CMT. The split entry (3, 250, 1) cannot
be stored in CST and need to be written back to flash, since its size is smaller
than the threshold 2.

The mapping entries in SRAM will be written to translation pages when CST
is full and needs to make space for new mapping entries.

4 Performance Evaluation

4.1 Evaluation Setup

We performed a trace-driven simulation to evaluate ECAM for managing a 32GB
NAND flash memory with configurations shown in Table 1. We choose DFTL for
comparison, since DFTL has been shown that it has better performance than
both block-level and hybrid-level mapping schemes[7]. To better evaluate the
impact of CST and CTT on the performance of reducing the extra read/write
operations, we implement another two FTL schemes, ECAM without CST and
ECAM without CTT. We implement this evaluation with four configurations
of cache size for address mappings, which is set to 64KB, 128KB, 256KB and
512KB.

Table 1. Parameters of Simulated SSD

Parameters Values

SSD Capacity 32GB

Page Size, Block Size 4KB, 256KB

Time for Page Read, Page Write, Block Erase 25us, 200us, 1.5ms

Program/Erase Cycles 100K

Cache Size

DFTL CMT=X KB, (X=64/128/256/512)
ECAM without CST CST=0KB, CTT=4KB, CMT=(X-4)KB
ECAM without CTT CST=4KB, CTT=0KB, CMT=(X-4)KB

ECAM CST=4KB, CTT=4KB, CMT=(X-8)KB

In our evaluation, various types of traces from realistic workloads we selected
are shown in Table 2. Financial traces andWebSearch trace[12] are available from
Storage Performance Council (SPC). Financial1 trace is obtained from OLTP
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applications running at a financial institution as a temporal write intensive trace.
Financial2 trace is also made from OLTP applications and used as a type of
random performance measurements. WebSearch2 trace is obtained from popular
search engines and shows a read intensive access pattern with larger numbers
of sequential read requests. MSR trace is the mds 0 trace[17] that collected
on media servers by Microsoft Research Cambridge. The Windisk trace is a
trace collected from a laptop during the installation of a large application by
Diskmon[18]. MSR trace and Windisk trace are write-intensive traces with large
number of sequential write requests. In our simulation, a request is treated as
sequential request if the size exceeds 16 sectors.

Table 2. Trace Characteristics

Trace Total requests Write(%) Seq. Write(%) Seq. read(%)

Financial1 5334987 76.84 4.69 1.22

Financial2 3699195 17.65 1.22 2.91

WebSearch2 4579809 0.02 0 99.97

MSR 1211034 88.11 13.44 5.38

Windisk 244863 72.25 22.52 15.47

4.2 Extra Read/Write Overhead between SRAM and Flash

Because of the special characteristic of NAND flash memory, the high expensive
extra read/write operations between SRAM and flash heavily impact the storage
system performance. In this experiment, we analyze the effectiveness of ECAM
in reducing the number of extra read/write operations. As shown in Figure 3,
ECAM has less extra read/write operations between SRAM and translation
pages in flash than other schemes.

As shown in Figure 3, both CST and CTT play an important role in reduc-
ing the number of extra read/write operations. For write intensive and random
access workloads such as Financial1 and Financial2 (shown in Figure 3(a) and
Figure 3(b)), we can find that CST is much more important than CTT, which
shows the importance of the split entries of address mapping information in
demand-based FTL schemes. Just as we described above, this is mainly because
that CST in ECAM can cache both the split mapping entries and the victims
with a big enough size evicted from CMT. By the evaluations in Figure 3(a)
and 3(b), we can conclude that the split entries caused by partial update in
CMT have great importance in demand-based address mapping schemes. That
is the reason why we cache the split entries in CST separately rather than cache
them elsewhere or just evict them from SRAM.

For the sequential read dominated workloads such as WebSearch2, CTT is
much more efficient. Just as we described, CTT can cache the mapping entries
of one latest used translation page for spatial locality intensive workloads. As
shown in Figure 3(c), ECAM can achieve an average 14.8% reduction on extra
read/write overhead between SRAM and flash when the cache size is set to
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Fig. 3. Extra Read/Write Overhead

64KB. For the workloads with large number of sequential write requests such as
MSR trace and Windisk trace, ECAM can get a great improvement on different
cache sizes. For example, when the cache size for address mapping is set to
64KB, ECAM can get an improvement up to 71.86% and 59.34%. We can find
from the evaluation results that the effects of CST and CTT are similar in this
kind of workload. This is mainly because the access characteristics of sequential
write requests, i.e., the sequential write intensive workloads have large number
of write requests with strong spatial locality, which can be solved by CTT and
CST efficiently.

4.3 Cache Hit Ratio

Cache hit ratio is one of the most important factors in the performance of NAND
flash memory based storage system.

Figure 4 shows the cache hit ratio of DFTL and ECAM on each workload
with different cache sizes with configurations shown in Table 1. As the figure
shown, the increment of hit ratio is obvious with the cache size growing. This
is mainly because both DFTL and ECAM can cache more temporal request in
CMT by using the segment LRU array to record mapping entries in SRAM. The
cache hit ratios of ECAM are always higher than DFTL on the same workload.
That indicates the effectiveness of the cooperation of CMT, CST and CTT even
the size of CMT is smaller than that in DFTL.

For both write intensive and random access workloads such as Financial1 and
Financial2 traces, ECAM can get about 9.3%, 8.5%, 7.2%, 3.8% and 10.2%,
7.4%, 5.1%, 2.6% improvement than DFTL on the cache hit ratio with 64KB,
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Fig. 4. Cache Hit Ratios

128KB, 256KB and 512KB cache respectively. This is mainly because the CST
in ECAM can cache both the split mapping entries and the victims with a big
enough size evicted from CMT, which may be reused soon, by using our two-tier
selective caching mechanism. ECAM can efficiently take advantage of CST with
the growing size of cache.

For the workloads with large number of sequential write requests such as
the mds 0 trace, ECAM can get an improvement up to 80.3%, 82.5%, 38.35%
and 32.8% when the SRAM cache is set to 64KB, 128KB, 256KB and 512KB.
This is because CST in ECAM can cache the split mapping entries efficiently,
and CTT can cache the mapping entries of one latest used translation page for
workloads dominated by sequential request that is spatial locality intensive and
can be satisfied timely with the mapping entries in SRAM without searching
the entries in translation pages. Besides, for a sequential write request involving
n(n � 2) consecutive pages, DFTL has to maintain n address mapping entries
while ECAM needs to maintain only one address mapping entry with a size of
n. The improving of total numbers of address mapping information represented
in ECAM will benefit cache hit ratio evidently.

For the sequential read dominated workload such as websearch2 trace, CST
may be helpless to cache the split entries since there is little split operations
in read dominated workloads. In this case, CST can only be used to cache the
victims evicted from CMT with size bigger than threshold. Since CTT helps
ECAM to use a translation page as the caching unit, ECAM can fully exploit the
spatial locality of the sequential read requests in websearch2 to satisfy the needed
address mappings. For example, for a sequential read request involving n(n�2)
consecutive pages whose needed address mapping entries have not cached in
SRAM, DFTL has to read the needed mapping entry of each page one by one,
which will cause n times of cache misses. Unlike DFTL, ECAM always use a
translation page as the caching unit by introducing CTT. Therefore, ECAM can
satisfy them just by reading the related translation page in one time, which will
just cause 1 time of cache miss and n-1 times of cache hits. That is the reason
why ECAM can improve the cache hit ratio and reduce the extra read/write
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operations between SRAM and flash simultaneously for the WebSearch trace. We
can conclude that CTT always benefit the successive requests with consecutive
LPNs significantly, especially in the enterprise-scale environments.

4.4 Impact of CST Size on Reducing Extra Read/Write Overhead

As we have shown the performance of ECAM with a 4KB CST size in various
workloads, we would like to see the impact of CST size on reducing the extra
read/write overhead. Figure 5 shows the extra read/write ratio of each workload
with CST size varying in a large range.
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Fig. 5. Impact of CST size in ECAM

Just as shown in Figure 5, when CST size is set to 1KB, i.e., 128 mapping
entries in CST, the impact of CST is obvious for each workload. The extra
read/write ratio decreased rapidly and become stable with the increasing of CST
size. Every workload decreases with different speed, Windisk decreases fastest
and Finaccial2 decreases much slower than others. As the statistic results shown
in Table 2, Financial2 has the minimum sequential write requests and Windisk
has the maximum sequential writes. CST is used to cache the split entries and
victims with large sizes from CMT in ECAM. Sequential requests are the origin
of split operations in CMT. Besides, we found that the split entries cached in
CST are very important to the subsequent requests. CST is the key point to
decrease the extra read/write overhead in ECAM. The more sequential writes
requests, the more reduction of extra read/write overhead in ECAM.

When CST size increased to 4KB, the ratios are stable except for workload
Websearch2. By analyzing the characteristic of Websearch2 trace, we can find
that the reason why CST is always efficient for Websearch2 with CST size in-
creasing. Websearch2 trace has large number of sequential read requests with
big sizes. The two-tier selective caching mechanism in ECAM always uses CST
to cache the victims with large sizes from CMT since the size part in CMT
represents the range of the address mapping in one entry. The bigger the size
is, the more probability the entry will be used soon, especially for the temporal
and spatial localities intensive enterprise-scale workloads.
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5 Conclusions and Future Work

In this paper, we proposed ECAM, a novel strategy to enhance the caching ca-
pacity of address mappings for page-level flash translation layer. In ECAM, we
optimized the structure of CMT and propose another two tables CST and CTT
to better use the spatial locality of sequential requests, and an efficient two-tier
selective caching strategy is designed in ECAM to cache the most active address
mapping entries in SRAM. ECAM exploits the spatial locality of the sequen-
tial requests to satisfy the needed address mappings and update the overwritten
mappings to flash in batches rather than one by one. Our experiments show
that ECAM can improve the cache hit ratio and reduce the number of extra
read/write operations significantly on various realistic workloads by the cooper-
ation of CMT, CST and CTT, especially for the workloads with large number
of sequential write requests.

Our future work will focus on improving our strategy so that it can explore the
characteristics of workloads dynamically and then making the strategy adaptive
to various workloads to achieve better performance. Besides, it is an interesting
work to enhance the endurance of SSDs by removing the unnecessary duplicate
writes to flash memory.
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Abstract. In automatic memory management programming language, the gar-
bage collector is an important feature which reclaims memory that is no longer 
referenced by the program. The tracing collector performs a transitive closure 
across the object reference graph. And this process may result in too many 
cache misses, because the traverse exhibits poor locality. Previous studies have 
already proposed using software prefetching to improve memory performance 
of garbage collector. In this work, we studied the characteristic of prefetch in-
structions on x86 platforms in detail, and proposed a method to control the pre-
fetch ratios by address thresholds. The experimental results show that a further 
improvement and optimization is obtained by tuning the prefetch ratio. We use 
these results to devise some guidelines for optimizing the memory performance 
as well as minimizing the collection pause times. 

Keywords: Software Prefetching, Memory Performance, Garbage Collector, 
Cache Architecture. 

1 Introduction 

In many object-oriented programming languages such as Java and C#, the memory is 
automatically managed by the runtime component, e.g., java virtual machine. The 
programmers do not have to explicitly manage the memory that previously allocated. 
The memory reclaim work is performed by garbage collector, the garbage collector 
identifies the dead objects that will never be referenced in the heap and release the 
memory before the system exhausted the whole heap. However, although the garbage 
collector improves the security and reliability of the programs, it also impacts the 
performance of introducing additional overhead. When performing the memory rec-
lamation, most of the garbage collector will stop the execution of the application, and 
that is so called 'stop-the-world' garbage collector. The pause time leads to a perfor-
mance bottleneck that limits the response performance of the application. 

The garbage collector that traverse the reference graph of the objects to identify the 
live and dead objects is called tracing collector. It will visit all objects reachable from 
the root set, and the objects which were not visited during the trace are identified as 
dead objects. The tracing process is a time consuming operation, because the objects 
may scatter throughout the whole heap, and the object graph may arbitrary reference 
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from one object to another. Previous studies [5, 13] showed that the memory perfor-
mance during the tracing garbage collectors is poor, and too many cache misses are 
caused. 

The data prefetching technology is designed to reduce or hide the latency of the 
main memory access which is performed by a non-blocking load instruction. There 
are two kinds of prefetching, hardware and software. Hardware prefetching may spe-
culate the memory access behavior and then prefetch automatically the data before the 
application accessing it. While software prefetching is supported by some form of 
fetch instructions, and the instructions are manually added in the appropriate place of 
the application by the programmers. Using software prefetching to optimize the 
memory performance needs special care. Sometimes, it may lead to performance de-
gradation due to the inappropriate prefetching time or place. Prefetching too early or 
too late will not obtain the performance optimization. 

In this work, we make a study of the software prefetching to optimize the tracing 
garbage collector on x86 platform. We studied the 'prefetch' instruction on IA32 ar-
chitecture, and we concentrate on minimizing the pause time of the tracing collector. 
We proposed a strategy to control prefetch ratios in order to minimize the cache pol-
lution, and the prefetching time is dynamically adjusted. By tuning the prefetching 
ratios, a further performance improvement is obtained. We found that it is difficult to 
measure the low level instructions (e.g. prefetch) on a practical hardware platform 
rather than simulator. So the results can be devised as some guidelines for optimizing 
the memory performance as well as minimizing the collection pause times. 

The rest of this paper is organized as follows; in section 2 we provided a brief 
overview of tracing garbage collector. Software prefetching method is studied and 
proposed in section 3. Experimental results are showed in section 4 and related work 
is discussed in section 5. Finally, we conclude in section 6. 

2 The Tracing Garbage Collector 

The tracing garbage collector performs the memory reclaim work when an allocation 
request cannot be satisfied, namely, the heap memory is going to be exhausted. The 
collector stops the application and takes a transitive closure to identify the dead ob-
jects which will be no longer used, and then release that memory. The application is 
resumed after the collection process, and this is typically how a ‘stop-the-world’ col-
lector works. 

There are two typical tracing garbage collectors, mark-sweep collector and semi-
space collector, the difference is whether or not the collector performs objects moving 
during the reclaim phase. 

• Mark-Sweep (MS): the mark-sweep collector is a non-moving collector, it tra-
verses all reachable objects, recording each visited objects. After the traverse com-
pletes, all the objects that are not visited are considered as dead objects which will 
be swept up for later reuse.  

• Semi-Space (SS): the semi-space collector splits the heap into two regions, one is 
called from-space, and the other is called to-space. All of the objects are allocated 
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in the from-space during program execution. When garbage collection is triggered, 
the collector “flips” the two spaces and copies all reachable objects from the from-
space to the to-space, and all that remains in the from-space is considered as gar-
bage. The SS collector is also based on a tracing process, but the reclaim strategy is 
different from that of MS collector. 

Generally speaking, the SS collector needs more heap than MS collector. However, 
both of the collectors have their own advantages, decisions on adopting which collec-
tor depends on application’s demand. 

In this work, we only concrete on the traverse phase of the garbage collection, We 
use DaCapo [1] benchmark to measure the percentage of tracing time during the col-
lection, all of experiments are performed on the Jikes RVM [2] platform. We recorded 
the total traversal and collection time, and the results are showed in table 1. The re-
sults show that the traverse work takes a large proportion between 73% and 98%, 
which means the tracing is a key factor affecting the memory performance of the 
garbage collector. 

Table 1. Tracing time percentage of total GC 

Benchmark 
program 

Tracing Time Heap Used (MB) 

MS SS MS SS 

antrl 78% 86% 98 140 

avrora 79% 85% 57 91 

bloat 80% 88% 196 263 

eclipse 83% 90% 490 525 

fop 85% 87% 95 138 

hsqldb 98% 98% 195 282 

jython 85% 90% 535 623 

luindex 77% 83% 50 88 

lusearch 77% 84% 230 216 

pmd 87% 92% 190 322 

sunflow 73% 85% 210 245 
xlan 79% 85% 325 454 

3 Software Prefetching  

3.1 The Challenge 

There are several technologies to improve the memory performance, and one of these 
is using prefetching mechanism to tolerate cache miss latencies. Prefetching is a 
hardware or software technique to separate the tasks of data requesting and data us-
ing. Hardware prefetching means that the processors prefetch data by some prediction 
mechanism automatically without using any extra instructions. While the Software 
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prefetching explicitly inserts prefetch instructions to perform the data fetch. A pre-
fetch instruction is based on some form of non-blocking load operation, and it moves 
the data closer to the processor in the memory hierarchy. 

The challenge of an effective software prefetching is to determine when to issue 
the prefetch instruction before the data is accessed by the program. Prefetch too early 
or too late will not improve the performance. If prefetching too early the data may be 
evicted from the cache before use. On the other hand, if prefetching too late, the pro-
cessor may stall before data arrives. Moreover, inappropriate software prefetching 
may lead to serious cache pollution. So all the above issues should be carefully consi-
dered before using the software prefetching technique. 

3.2 Address Prefetching on Jikes RVM 

We use Jikes RVM [2] and MMTk [3] as our experimental platform. Jikes RVM (Re-
search Virtual Machine) is an open source JVM which is almost written in Java, but a 
small portion is written in C in order to access the underlying file system, and proces-
sor resource et al. MMTk is a memory management subsystem which provides differ-
ent garbage collection schemes for Jikes RVM, and in this work we only concrete on 
MS and SS collector. The low-level primitives can be accessed through the Assembler 
subsystem as showed in Figure 1. The prefetch operation can be achieved by an un-
boxed abstract class called Address [4], which represents an address in memory. The 
compiler compiles the prefetch() method declared in Address and translates it to a 
single instruction on the host architecture. So we can use prefetch operations provided 
by Jikes RVM to optimize the garbage collector as showed in Figure 2. 

 

Fig. 1. Low-level primitives access on Jikes RVM platform 
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3.3 “PREFETCH” Instructions on IA32 

The Intel 64 and IA-32 processors perform varying amounts of prefetching, and they 
also provide several instructions for managing cache [8]. Software prefetching opera-
tions can be performed by using the PREFETCHh (h indicates the cache level, more 
details see [8]) instructions which are streaming SIMD Extensions instructions on IA-32 
architectures. The PREFETCHh instructions offer more granular control over caching, 
and reduce the long latency typically associated with reading data from memory. The 
instructions merely provide a hint to the hardware, and suggest the processor to prefetch 
the data from a specified address in memory into the cache hierarchy. It is noteworthy 
that the instructions will not perform the data prefetch in the case that the prefetch oper-
ation causes a TLB miss. Moreover, overuse of PREFETCHh instructions may result in 
a performance penalty due to the memory bandwidth consumption and cache pollution. 

The architecture provides two kinds of prefetch instructions, temporal prefetch and 
non-temporal prefetch. Temporal means that the data exhibit good locality, while non-
temporal means lacking temporal locality. So non-temporal prefetch notify the proces-
sor that the data will not be reused soon, and the operations don't follow the normal 
cache-coherency rules. Its original intention is to minimize the cache pollution. 

3.4 Prefetching for Tracing Collector 

The tracing is a process that started from a root set to traverse the object reference 
graph. Reference represents an address which points from one object to another. 
Software prefetching technique is adopted by a FIFO-based buffer which is called 
prefetch queue. All of the reference addresses are required to pass through the pre-
fetch queue in their traverse order. The prefetch operation is executed when the refer-
ence enqueued. While when dequeued, the reference is handed over to the collector 
for further processing. That is the basic manner to apply software prefetching tech-
nique into tracing garbage collection, and the length of the queue represents the pre-
fetch distance. In the above process, each of the reference address will be prefetched 
before the collector processing it. Besides the prefetch distance, there are two factors 
may influence the performance improvement. One is that the prefetch operation will 
consume memory bandwidth; the other is that the prefetch operation will cause cache 
pollution. Unfortunately, these two factors are almost impossible to be intuitively 
measured on a practical computer, and this problem may be a challenge topic. 

 

Fig. 2. Prefetch queue operations 
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Although the measurement of the above factors temporarily cannot be put into prac-
tice, this does not prevent us from further optimizing the software prefetching. We add-
ed some constraints when performing the prefetch operation to control the prefetch ratio 
(the ratio of prefetched addresses to total addresses), and a threshold T was proposed to 
perform the tuning work. For a sequence of addresses that to be prefetched, ai, ai+1, 
ai+2, ..., ai+k, if the sequence has better locality features, it is obvious that only one tem-
poral prefetch with ai is enough. As showed in Figure 2(b), for a new enqueued address 
ai+k+1, the prefetch with ai+k+1 is performed only if |ai+k+1 - ai| > T, otherwise, no prefetch 
action. The goal of that is to reduce memory bandwidth consumption and cache pollu-
tion. Threshold T was selected as integral times of cache line size, and the prefetch ra-
tios of DaCapo benchmarks with different Ts were present in Figure 3. 
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(a) Prefetch ratios for MS collector 
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(b) Prefetch ratios for SS collector 

Fig. 3. Prefetch Ratios of DaCapo Benchmarks with different thresholds 

4 Evaluation 

All experiments are conducted on a 2.40GHz Pentium 4 platform with 8KB L1 data 
cache and 512KB L2 data cache, 64 byte line size, and 512MB memory. The operat-
ing system is Ubuntu 11.04, kernel 2.6.38. We use Jikes RVM as our experimental 
platform, and use DaCapo as the evaluation benchmark. 
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In order to evaluate the memory performance improvement obtained by software 
prefetching, we first extracted the address sequences of DaCapo benchmarks which 
are accessed by the collector during the tracing process. Then we simulated the trac-
ing process with these address sequences, we change the prefetch threshold and by 
this way we can obtain different prefetch ratios. For MS collector, we evaluated 4 
prefetch ratio intervals: 0.6-0.8, 0.4-0.6, 0.2-0.4, and 0.0-0.2, while 3 intervals for SS 
collector: 0.4-0.8, 0.2-0.4, 0.0-0.2. The tracing time with prefetch ratio 1.0 is consi-
dered as the baseline time. We picked 10 different thresholds in each prefetch ratio 
interval, and then compared the average tracing time to the baseline time. The evalua-
tion results are showed in Figure 4 and Figure 5, we can see that most of the bench-
mark programs obtain a better tracing performance than the baseline. The best results 
for MS collector appeared in prefetch ratio interval (0.4-0.6) with 5% performance 
improvement in average, while for SS collector that is 5% in prefetch ratio interval 
(0.2-0.4). 
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Fig. 4. Relative Tracing time of MS collector with different prefetch ratios 
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Fig. 5. Relative Tracing time of SS collector with different prefetch ratios 
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Based on the previous experimental results, we apply this software prefetching 
technique to Jikes RVM from which we can see how much performance can be im-
proved in a practical Java virtual machine. The prefetch ratios we chosen are (0.4-0.6) 
for MS collector, and (0.2-0.4) for SS collector. We run the benchmarks with the 
prefetching optimized RVM, each garbage collection time are recorded and then 
compared with the un-optimized version of RVM. Figure 6 presents the improve-
ments achieved by applying software prefetching. A positive percentage means that 
the collection performance is improved, the higher the better. 
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Fig. 6. Reduction in GC time obtained by software prefetching 

5 Related Work 

Both of the hardware and software data prefetching are studied in several research 
work [6, 7, 9], and benefits and limitations of software prefetching is studied in [10, 
11]. Cher [13] and Garner [5] proposed buffered prefetch strategy to improve tracing 
performance of the mark sweep garbage collector, the strategy adopted a FIFO pre-
fetch buffer, and the depth of the FIFO indicates the prefetch distance. Our work 
adopted the similar strategy with Cher and Garner's approaches. The difference is that 
our approach doesn't prefetch all the addresses in the prefetch queue, and prefetch 
ratio is controlled by prefetch threshold. Using prefetching technology to reduce stall 
times and improve the efficiency of reference counting collector was first studied by 
Paz et al. [12]. They investigated the memory access patterns of the reference count-
ing collector on Jikes RVM, and report that the patterns are different from the tracing 
collectors. 

There are several previous research focus on reducing or eliminating the pause 
time of the garbage collector, included the following three aspects: 1) Improving the 
collectors to meet real-time bounds under multiprocessor platform [14, 15, 20, 22]; 2) 
Investigating concurrent garbage collectors which no longer need to pause the pro-
gram when performing the collection [16, 17, 18, 19], but the overhead on the pro-
gram execution is not negligible; 3) Using hardware technologies to obtain better 
responsiveness [21]. 
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6 Conclusions 

In this work, we addressed the performance of software prefetching which used for 
tracing garbage collector. Investigating and evaluating the software prefetching on 
x86 platform, we found out that, the prefetch per tracing loop is not a good choice, 
and the performance improvement is very much limited. Based on the previous stu-
dies, we use threshold to tuning the prefetch ratios. The experimental results show 
that the proposed method can obtain a further memory performance improvement. 
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Abstract. In earlier work, we have developed the SkePU skeleton programming
library for modern multicore systems equipped with one or more programmable
GPUs. The library internally provides four types of implementations (implemen-
tation variants) for each skeleton: serial C++, OpenMP, CUDA and OpenCL
targeting either CPU or GPU execution respectively. Deciding which implemen-
tation would run faster for a given skeleton call depends upon the computation,
problem size(s), system architecture and data locality.

In this paper, we present our work on automatic selection between these im-
plementation variants by an offline machine learning method which generates a
compact decision tree with low training overhead. The proposed selection mecha-
nism is flexible yet high-level allowing a skeleton programmer to control different
training choices at a higher abstraction level. We have evaluated our optimization
strategy with 9 applications/kernels ported to our skeleton library and achieve on
average more than 94% (90%) accuracy with just 0.53% (0.58%) training space
exploration on two systems. Moreover, we discuss one application scenario where
local optimization considering a single skeleton call can prove sub-optimal, and
propose a heuristic for bulk implementation selection considering more than one
skeleton call to address such application scenarios.

Keywords: Skeleton programming, GPU programming, implementation selec-
tion, adaptive offline learning, automated performance tuning.

1 Introduction

The need for power efficient computing has lead to heterogeneity and parallelism in
today’s computing systems. Heterogeneous systems such as GPU-based systems with
disjoint memory address space already became part of mainstream computing. There
exist various programming models (CUDA, OpenCL, OpenMP etc.) to program differ-
ent devices present in these systems and, with GPUs becoming more general purpose
every day, more and more computations can be performed on either of the CPU or GPU
devices present in these systems.

Known for their performance potential, these systems expose programming diffi-
culty as the programmer often needs to program in different programming models to
do the same computation on different devices present in the system which limits code-
portability. Furthermore, sustaining performance when porting an application between
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different GPU devices (performance portability) is a non-trivial task. The skeleton
programming approach can provide a viable solution for computations that can be ex-
pressed in the form of skeletons, where skeletons [1, 2] are pre-defined generic com-
ponents derived from higher-order functions that can be parameterized with sequential
problem-specific code. A skeleton program looks like a sequential program where a
skeleton computation can internally exploit parallelism and leverage other architectural
features transparently by e.g. keeping different implementations for a single skeleton
targeting different architectural features of the system. Map/Zip and Farm are examples
of data and task-parallel skeletons respectively.

We have developed the SkePU skeleton programming library for GPU-based sys-
tems in our earlier work [3]. The library targets single-node GPU-based systems and
provide code portability for skeleton programs by providing sequential C++, OpenMP,
CUDA and OpenCL implementations for each of its skeleton. In this paper, we present
an adaptive offline machine learning method to tune implementation selection in the
SkePU library automatically. The proposed technique is implemented inside the SkePU
library allowing automatic implementation selection on a given GPU-based system, for
any skeleton program written using the library. To the best of our knowledge, this makes
SkePU the first skeleton library for GPU-based systems that provides general-purpose,
automatic implementation selection mechanism for calls to its skeleton.

input1:
inputk:

output:

...

Map

input:

output:

MapOverlap

+ +
+

Reduce

++

Scan
input1:
input2:

output:

MapArray

input1:
inputk:

...

MapReduce

++
+

input1:
inputk:

...

MapReduce

++
+

Fig. 1. Six data-parallel skeletons, here shown for vector operands: Map applies a user-defined
function element-wise to input vectors. Reduce accumulates an associative binary user function
over all input vector elements to produce a scalar output. MapReduce combines Map and Reduce
in one step. MapArray is similar to map but all elements from the 1st operand are accessible.
MapOverlap is similar to Map where elements within a (user-defined) neighbourhood are also
accessible in the user function. Scan is a generic prefix-sums operation.
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The paper is structured as follows: In Session 2 we briefly describe our SkePU skele-
ton library. The proposed adaptive tuning framework is explained in Section 3 followed
by evaluation in Section 4. Related work is discussed in Section 5 while Section 6 con-
cludes the work.

2 The SkePU Skeleton Library

The SkePU skeleton library [3] is designed in C++ and offers several data parallel skele-
tons including map, reduce, mapreduce, maparray, mapoverlap and scan. The operand
data to skeleton calls is passed using 1D Vector and 2D Dense matrix containers. These
containers internally keep track of data residing on different memory units (main mem-
ory, GPU device memory etc.) and can transparently optimize data transfers by copying
data only when it is necessary. The memory management for skeleton calls’ operand
data is implicitly handled by the library. This can for example allow multiple skele-
ton operations (reads, writes) on the same data on a GPU and copies data back to main
memory only when the program accesses the actual data (detected using the [] operator
for vector elements).

Figure 1 shows a graphical description of different skeletons when used with the 1D
vector container. The MapReduce skeleton is just a combination of Map and Reduce
skeletons applied in a single step which is different from Google MapReduce. For a 2D
matrix container operand, semantics are extended to, e.g., apply MapOverlap across all
row vectors and/or across all column vectors.

1 // #include directives
2

3 // generates a user function ‘mult_f ’ to be used in skeleton instantiation
4 BINARY_FUNC (mult_f , double , a, b,
5 return a*b;
6 )
7

8 int main ()
9 {

10 skepu ::Map <mult_f > vecMultiply (new mult_f);/* creates a map skel . object */
11

12 skepu ::Vector <double > v0(50) ; /* 1st input vector , 50 elements */
13

14 skepu ::Vector <double > v1(50) ; /* 2nd input vector , 50 elements */
15

16 skepu ::Vector <double > res (50) ; /* output vector , 50 elements */
17

18 ...
19

20 vecMultiply (v0 , v1 , res); /* skeleton call on vectors */
21

22 std ::cout <<" Result: " << res <<"\n"; /* output result vector */
23

24 ...
25 }

Listing 1. Multiplying two vectors element-wise using the Map skeleton

Listing 1 shows a simple operation of multiplying two vectors element-wise and
writing the result into an output vector. As each skeleton in the library has multiple
implementations (C++, OpenMP, CUDA, OpenCL) available, the skeleton call on Line
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12 will internally be mapped to one of those implementations. Up to now, this decision
was controlled by the user or was statically determined (e.g., to always use the CUDA
implementation when a CUDA GPU is available). In the next section, we will explain
the mechanism for tuning this implementation selection in a more intelligent manner
automatically.

3 Adaptive Tuning Framework

Any skeleton call in our library enables implementation selection choice which can
have performance implications. In the ideal case, we would like to select an implemen-
tation which would result in the shortest execution time. For this purpose, we devise an
empirical prediction technique based on offline sample executions. In the following, we
describe the technique and how it is implemented.

3.1 Idea

A simple way to do empirical offline tuning could be to exhaustively try out all variants
for different call context instances to find out the best variant and use that for actual
skeleton calls. In our case, variants are mainly the different skeleton implementations
(CPU, OpenMP etc.), call context instances are characterized by the sizes of operand
data and the best variant is one which results in shortest execution time. Trying out all
possible context instances using exhaustive search is practically infeasible. Our offline
tuning technique is rather an adaptive hierarchical search based upon a heuristic con-
vexity assumption which basically means that if a certain implementation is performing
best on all vertices of a D-dimensional context parameter subspace then we assume it
is also the best choice for all points within the subspace. For example, considering a
1-dimensional space (i.e. only 1 input size parameter), if we find out that a certain im-
plementation performs best on two distinct input sizes i and j we consider it best for all
points between these points (i.e. for the whole range [i, j]). This concept is extended to
D-dimensional space as described below.

3.2 Algorithm

The space C = I1× ...ID of context instances for a skeleton with D possibly performance-
relevant properties in the context instances is spanned by the D context property axes
with considered (user-specified or default) finite intervals Ii of discrete values, for i =
1, ...,D. A continuous subinterval of an Ii is called a (context property value) range, and
any cross product of such subintervals on the D axes is called a subspace of C. Hence,
subspaces are ”rectangular”, i.e., subspace borders are orthogonal to the axes of C.

Our idea is to find sufficiently precise approximations by adaptively recursive split-
ting of subspaces by splitting the intervals Ii, i = 1, ...,D. Hence, subspaces are orga-
nized in a hierarchical way (following the subspace inclusion relation) and represented
by a 2D-ary tree TC (cf. quadtrees/octrees etc.).

Our algorithm for off-line measurement starts from a trivial tree TC that has just one
node, the root (corresponding to the whole C), which is linked to its 2D corner points
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(here, the 2D outer corners of C) that are stored in a separate table of recorded perfor-
mance measurements. The implementation variants of the skeleton under examination
are run with each of the corresponding 2D context instances, possibly multiple times
for averaging; a variant whose execution exceeds a timeout for a context instance is
aborted and not considered further for that context instance. Now we know the winning
implementation variant for each corner point and store it in the performance table, too,
and TC is properly initialized.

Consider any leaf node v in the current tree TC representing a subspace Sv = Rv
1 ×

...×Rv
D where Rv

i ⊂ Ii, i = 1, ...,D. If the same specific implementation variant runs
fastest on all context instances corresponding to the 2D corners of Sv, we stop further
exploration of that subspace and will always select that implementation whenever a
context instance at run-time falls within that subspace. Otherwise, the subspace Sv may
be refined further. Accordingly, the tree is extended by creating new children below
v which correspond to the newly created subspaces of Sv. By iteratively refining the
subspaces in breadth-first order, we generate an adaptive tree structure to represent the
performance data and selection choices, which we call dispatch tree.

The user can specify a maximum depth (training depth) for this iterative refinement
of the dispatch tree, which implies an upper limit on the runtime lookup time, and also
a maximum tree size (number of nodes) beyond which any further refinement is cut off.
Third, the user may specify a timeout for overall training time, after which the dispatch
tree is considered final.

At every skeleton invocation, a run-time lookup searches through the dispatch tree
starting from the root and descending into subspace nodes according to the current run-
time context instance. If the search ends at a closed leaf, i.e., a leaf node with equal win-
ners on all corners of its subspace, the winning implementation variant can be looked
up in the node. If the search ends in an open leaf with different winners on its borders
(e.g., due to reaching the specified cut-off depth), we perform an approximation within
that range by choosing the implementation that runs fastest on the subspace corner with
the shortest Euclidean distance from the current run-time context instance.

The deeper the algorithm explores the tree, the better precision the dynamic com-
poser can offer for the composition choice; however, it requires more off-line training
time and more runtime lookup overhead as well. We give the option to let the user
decide the trade-off between training time and precision by setting the cut-off depth,
size and time in the component interface descriptor. Figure 2 shows an example for 1-
dimensional space exploration. The algorithm can recursively split and refine subspaces
until it finds common winners for all points for a subspace (i.e. the subspace becomes
closed) or the user-specified maximum depth is reached.

Fig. 2. Depiction of how a
1-dimensional space is re-
cursively cut into subspaces
(right) and the resulting dis-
patch tree (left)
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3.3 Implementation Details

In order to transparently integrate the tuning mechanism in our existing skeleton library,
we have designed it using C++ templates as an include header. As shown in Listing 2,
a Tuner class is introduced which is parameterized by the skeleton type and user func-
tion(s). The user needs to supply a unique ID (string) for the skeletonlet1 being tuned
as well as lower and upper bounds for the size of each operand. The ID decouples the
skeletonlet and tuner, and allows e.g. multiple tuning scenarios even for the same skele-
tonlet to co-exist. Internally the tuner applies certain optimizations (e.g. dimensionality
reduction) and returns an execution plan which is later assigned to the skeleton object.
An execution plan is a simple data structure that internally tracks the best implemen-
tation for each subspace and provides lookup facilities. After the execution plan is set,
the expected best implementation for any skeleton in a given call context will be auto-
matically selected.

The Tuner supports automatic persistence and loading of execution plans. If the
execution plan with same configuration already exists, it loads and returns it from a
repository without any tuning overhead; otherwise it invokes the tuning algorithm and
constructs an execution plan. The generated tuning plan is stored for future usages to
avoid re-tuning every time the skeleton program is executed. Furthermore, the tuning
and actual execution can happen during the same program execution, as shown in List-
ing 2. When porting the same skeleton program to a new architecture, the tuner would
automatically construct an exection plan for the new architecture without requiring any
changes in the user program.

1 ...
2

3 int main ()
4 {
5 skepu ::Map <mult_f > vecMultiply (new mult_f);
6

7 /* specify where input and output operand data (need to) resides */
8

9 int opInLoc [] = {0, -1}; /* 1st/2nd input operand in GPU/main memory */
10 int opOutFlag [] = {1}; /* copy result back to main memory or not */
11

12 /* specify lower and upper bounds for training range */
13

14 int lowerBounds [] = {10, 10, 10};
15 int upperBounds [] = {50000000 , 50000000 , 50000000};
16

17 /* invoke the tuner whichs returns the execution plan */
18

19 skepu :: ExecPlan plan = skepu ::Tuner <mult_f , MAP >(" vMult ", 3, lowerBounds ,
20 upperBounds , opInLoc , opOutFlag )();
21

22 /* assign the execution plan to the skeleton object */
23

24 vecMultiply .setExecPlan (execPlan);
25

26 ...
27 }

Listing 2. Tuning the vector multiply skeleton call

1 A pair of user-function(s), skeleton type.
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Dimensionality Reduction. We apply several optimizations based on domain specific
knowledge that each skeleton implementation exposes. For example, considering the
fact that all operands (inputs, output) in a map skeleton should be of exactly the same
size, we have considered it as 1-dimensional space instead of 3-dimensional space (with
2 input and 1 output operands). This significantly reduces the training cost and is trans-
parently done by considering semantics of the skeleton being used. Similar optimiza-
tions are applied for MapOverlap, MapReduce and Scan skeletons.

Data Locality. Current GPU based systems internally have disjoint physical memory
and both the Vector and Matrix containers in our skeleton library can track their payload
data on different memory units. The operand data locality matters when measuring the
execution time for both CPU and GPU execution for a skeleton implementation, as
operand data may or may not exist in the right memory unit; in case it is not available
in the right place, extra overhead for data copy needs to be encountered. Selection of
the expected best implementation for a given problem size cannot be made without
considering where the input data resides and where the output data needs to be copied
back as the data copying overhead between different memory units could affect the
selection of the best performing variant. One solution could be to assume that operand
data is always located in a specific memory unit (e.g., main memory) and, depending
upon where the skeleton implementation executes, a copy may or may not be required.
This solution is simple but unflexible as even different operands of a single skeleton call
may reside at different memory spaces depending upon their previous usage with other
skeleton calls. On the other hand, delaying the decision about operand data locality to
runtime is infeasible as we need to know the data transfer cost to determine, offline, the
best variant for a given problem size.

We have devised a simple mechanism for the programmer to specify knowledge
about operands’ data locality. By default, we assume that operand data resides in main
memory and cost for transferring output data back to main memory is not included in
the skeleton execution. However, the programmer can easily override this behavior by
specifying:

– An integer flag for each input operand specifying the memory unit where it is re-
siding (default main memory = -1). In the example in Listing 2 (line 6), the tuner
will determine the best implementation considering that the first operand resides in
the GPU device memory while the second input operand resides in main memory.

– A binary flag for each output operand specifying whether it should be transferred
back to main memory or not. In the example in Listing 2 (line 7), the best imple-
mentation is determined considering that the output operand needs to be copied
back to main memory after skeleton execution.

4 Evaluation

For evaluation, we have implemented five applications (NBody simulation, Smooth
Particle Hydrodynamics, LU factorization, Mandelbrot, Taylor series) and four kernels
(Mean Squared Error, Peak Signal-to-Noise Ratio, Pearson Product-Moment
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Correlation Coefficient, dot product) with skeletons available in our skeleton library.
We use two different systems to demonstrate effectivness of our tuning mechanism in
doing implementation selection while adjusting to platform differences: System A with
Xeon R© E5520 CPUs running at 2.27GHz with 1 NVIDIA R© C2050 GPU with L1/L2
cache support and System B with Xeon R© X5550 CPUs running at 2.67GHz with a
lower-end GPU (NVIDIA R© C1060 GPU).

For each application/kernel, we call the tuner on a given training range (i.e., prob-
lem size ranges for each operand) and it internally explores some points in the training
space and construct an execution plan using the algorithm described in Section 3.2. Af-
terwards, we do the actual execution by selecting a set of sample points (different from
the training points) within that range and do the actual execution using the tuned version
as well as using each implementation variant (CPU, OpenMP, CUDA) on those selected
points2. The same problem size ranges are used for experiments on both systems and
no modifications in the program source code are made when porting the applications
between both systems. Furthermore, for all experiments, we set the maximum training
depth to 10 and Euclidian distance is used to estimate the best variant if no best variant
is found for a subspace until depth 10.

4.1 Tuning Efficiency

Figure 3 shows execution of eight applications/kernels on System A. On the horizontal
axis, we list the problem sizes whereas the vertical axis represents the execution time.
For each application/kernel, we list the percentage of training space that is explored
by the tuner to construct the execution plan as well as average accuracy of execution
with the tuned version3. As it is practically infeasible to try out all points in the training
range, accuracy is measured by averaging over the ratio of execution time with the tuned
configuration with execution time of the best from direct execution (CPU, OpenMP,
CUDA) over all sample points. Due to small variations in execution times during actual
measurements, accuracy could become more than 100% in some cases (e.g. an OpenMP
implementation can take slightly different time even between successive executions
[18]). Averaging over all eight applications/kernels, 94% accuracy has been achieved
with just 0.2% training space exploration.

When porting the applications to System B, no changes in the applications’ source
code are required and the execution plan is automatically tuned before first execution
on the new platform. As shown in Figure 4, the tuner is able to effectively adjust to plat-
form differences without requiring any user intervention and we achieved on average
91% accuracy with just 0.3% training space exploration. For execution with the tuned
version, the overhead of looking up the best implementation in the execution plan for a
given call context is included in the measurement, which proved to be negligible.

2 We did not consider the OpenCL implementations for experiments as they are similar to CUDA
in performance on NVIDIA GPUs and are primarily written for execution on accelerator de-
vices not supporting CUDA.

3 In the tuned version, implementation selection is made based upon the execution plan returned
by the tuner.
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DotProduct
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(1.63%, 105.12%)

Mandelbrot

(0.004387%, 68.28%)

MSE (Mean Squared Error)

(0.000092%, 94.78%)

PSNR

(0.0001%, 98.62%)
Taylor Series

(0.000084%, 99.04%)

NBody Simulation

(0.545113%, 100.35%)
PPMCC

(0.000056%, 90.16%)

Fig. 3. Execution time of eight applications/kernels for different problem sizes on System A with
respective training space, accuracy figures. On average, 94% accuracy has been achieved with
just 0.2% training space exploration. [Legend: Black(CPU, +), Green(OpenMP �), Blue(CUDA
∗), Red(Tuned �)] .
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Mandelbrot
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(0.000092%, 97.29%) Taylor Series

(0.000084%, 102.45%)

NBody Simulation

(0.432331%, 71.07%)
PPMCC

(0.000056%, 94.25%)

Fig. 4. Execution time of eight applications/kernels for different problem sizes on System B with
respective training space, accuracy figures. On average, 91% accuracy has been achieved with
just 0.3% training space exploration. [Legend: Black(CPU, +), Green(OpenMP �), Blue(CUDA
∗), Red(Tuned �)].
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4.2 Bulk Execution

The Tuner predicts the best implementation for each skeleton call individually based on
operand data locality and execution time of each skeleton implementation available. As
we have seen in the previous section, this works fine for both simple and complex appli-
cations/kernels with skeleton calls of one or more types. However, in some applications
with multiple skeleton calls having different computational complexity and constrained
in a data dependency chain, locally optimal decisions for each skeleton call may result
in a globally sub-optimal decision. Listing 3 shows such an application scenario in the
SPH (Smooth Particle Hydrodynamics) application. This application has three different
types of skeleton calls with different computational complexity, operating on the same
data inside a loop. For a given problem size, the tuner might determine OpenMP, CUDA
and OpenMP execution as best for skeleton_1, skeleton_2 and skeleton_3 calls
respectively. Although making the best decision for each skeleton call individually, this
would result in lot of expensive data transfers (over PCIe bus between main and GPU
device memory) as output produced by the skeleton_1 call becomes an input to the
skeleton_2 call and so forth. Doing it inside a loop makes it even worse as these data
transfers would need to be done in each loop iteration.

1 ...
2 for(....)
3 {
4 skeleton_1(v0, v1, v1);
5 skeleton_2(v1, v0, v0);
6 skeleton_3(v0, v0);
7 }
8 ...

Listing 3. SPH pseudo-code
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Fig. 5. Execution of SPH on both systems with respective training space, accuracy figures

For such skeleton calls with different computational complexity and tight data de-
pendency, we implement a simple bulk selection heuristic in our tuner. For a sequence
of skeleton calls constrained in a data dependency chain, the skeleton programmer can
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specify a group id as a last (optional) argument to each skeleton call. All skeleton
calls with same group id are scheduled on compute units with the same memory ad-
dress space which is determined as the expected best one for the first skeleton call in
the group.

Figure 5 shows execution of SPH on both evaluation systems. As shown in the figure,
predicting the best implementation for each skeleton call individually (the Tune Local
version) yields poor performance in this case. The tuner version with the bulk heuristic
performs better in this case by considering the interconnection between the skeleton
calls and mapping them to the same backend.

5 Related Work

Besides SkePU, SkelCL [4] and Muesli [8] are currently the two main skeleton program-
ming libraries for GPU-based systems. They all provide some common data parallel
skeletons such as Map/Zip and also provide memory management for GPU-execution.
Hybrid execution and automatic implementation selection are some important capabil-
ities of SkePU that distinguish it from the other two libraries (see [3] for details).

MultiSkel [9] provides a CUDA code generation facility for skeleton programs writ-
ten in C++. Bones [11] targets automatic transformation of C programs to CUDA for
GPU execution by identifying occurences of pre-defined patterns/skeletons in the se-
quential code. Buono et al. [10] describe a set of low-level algorithmic constructs that
can be composed in a hierarchical manner to match application-level patterns.

In our earlier work [6], we used a genetic algorithm to do offline implementation
selection as well as selection of some tuning parameters for each implementation type
(number of threads for OpenMP and thread block size for CUDA and OpenCL back-
end). However, the current approach using the convexity assumption requires much less
traning space exploration while achieving better accuracy for a variety of applications.

Empirical exploration is employed by Collins et al. [12] in their FastFlow parallel
skeleton framework. They use Monte Carlo search of a random subset of the space
and use knowledge about variable dependencies to further reduce the search space.
However, their tuning is about finding the suitable values for the tuning parameters
rather than implementation selection; also the FastFlow library currently targets multi-
core homogeneous systems and does not support GPU-based systems.

There exist a large body of work in empirical tuning (e.g. [17, 13]) as well as usage
of decision trees [15, 14] and C4.5 algorithm [16]. Our work differs from other empiri-
cal auto-tuning approaches in two ways: First, our focus is on implementation selection
rather than tuning (machine- or algorithm- specific) parameters for an implementation.
This enables us to use the convexity assumption to significantly reduce the training
cost compared to random sampling employed by other parametric tuning frameworks.
A similar approach using the convexity assumption is used in our earlier work [7] for
PEPPHER components composition [5]. Secondly, we use an adaptive method to ex-
plore the sampling space selectively in an attempt to minimize the sampling and train-
ing cost while building the dispatch tree simultaneously. This is in contrast to classical
approaches that do the sampling and learning separately; thereby considering many un-
interesting but expensive sample points.



182 U. Dastgeer, L. Li, and C. Kessler

6 Conclusion

Having different implementations for a computation, possibly in different programming
models, can give both performance and portability if some intelligent selection mech-
anism is in place. We proposed and implemented an efficient empirical auto-tuning
method for doing implementation selection in a skeleton library for GPU-based sys-
tems. It uses an adaptive algorithm based on a heuristic convexity assumption to build
up a decision tree by exploring parameter subspaces in a recursive manner. Evalua-
tion with nine applications/kernels have demonstrated effectiveness of our approach in
predicting the best implementation, with great accuracy (more than 90%), for a given
execution context with just 0.5% training space exploration on two different systems.
The selection and tuning mechanism is implemented inside the SkePU skeleton li-
brary, requiring no modifications in the user-code when porting the application to a new
system.
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Abstract. This paper presents a technique to fully automatically gen-
erate efficient and readable code for parallel processors. We base our
approach on skeleton-based compilation and ‘algorithmic species’, an al-
gorithm classification of program code. We use a tool to automatically
annotate C code with species information where possible. The anno-
tated program code is subsequently fed into the skeleton-based source-to-
source compiler ‘Bones’, which generates OpenMP, OpenCL or CUDA
code and optimises host-accelerator transfers. This results in a unique
approach, integrating a skeleton-based compiler for the first time into
an automated flow. We demonstrate the benefits of our approach on the
PolyBench suite by showing average speed-ups of 1.4x and 1.6x for GPU
code compared to ppcg and Par4All, two state-of-the-art compilers.

Keywords: Parallel Programming, Algorithm Classification, Algorith-
mic Skeletons, Source-to-Source Compilation, GPUs.

1 Introduction

The past decades of processor design have led to an increasingly heterogeneous
computing environment, in which multi-core CPUs are used in conjunction with
accelerators such as graphics processing units (GPUs). Both parallelism and
heterogeneity have made programming a challenging task: programmers are
faced with a variety of new parallel languages and are required to have de-
tailed architectural knowledge to fully optimise their applications. Apart from
programming, maintainability, portability in general, and performance porta-
bility in particular have become issues of major importance. Despite a sig-
nificant amount of work on compilation, auto-parallelisation and auto-tuning
(e.g. [2, 6, 7, 11, 13, 21, 22, 23]), many programmers are still struggling with
these issues, having to deal with low-level languages such as OpenCL and CUDA.

Existing compilers for parallel targets fall short in at least one of the fol-
lowing areas: 1) they are not fully automatic and require code restructuring or
annotations, 2), they directly produce binaries or generate human unreadable
code, or 3), they do not generate efficient code. The first shortcoming mostly
affects application programmers who are unfamiliar with parallel architectures
and concurrent programming, while the second shortcoming mostly affects savvy
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programmers who are leveraging compilers to perform the initial parallelisation
and are willing to further optimise the resulting code. The third shortcoming
affects all types of users. The goal of this work is to address these shortcom-
ings. We take a unique approach: we use an algorithm classification to drive a
source-to-source compiler based on algorithmic skeletons.

In this work we present a technique to automatically generate efficient and
readable parallel code for parallel architectures (with a focus on GPUs). We
base this technique on ‘algorithmic species ’ [16, 17], an algorithm classification
of program code based on the polyhedral model [8]. Algorithmic species encap-
sulate information such as data re-use and memory access patterns. Algorithmic
species form the backbone of our approach (see Fig. 1), which includes a tool
to automatically extract species from static affine loops (aset) and a source-to-
source compiler based on skeletons (Bones). The contributions of this work are
summarised as follows:

– We present a unique integration of a skeleton-based compiler (Bones) with
an algorithm classification (algorithmic species) in Sect. 3. With this combi-
nation, skeleton-based compilers can be used in fully-automatic compilation
flows, as they no longer require manual identification of skeletons.

– We optimise host-accelerator transfers (e.g. CPU-GPU) in aset and extend
Bones as presented in [15] with new targets, skeletons and optimisations, in-
cluding register caching, thread coarsening, and zero-copy transfers (Sect. 4).

– We discuss and demonstrate the benefits of our unique approach (Sect. 5) by
generating OpenMP, OpenCL and CUDA code for the PolyBench benchmark
suite. We focus on the CUDA target, for which we show a speed-up compared
to two state-of-the-art polyhedral compilers for individual kernels (1.4x and
1.6x on average) and for complete benchmarks (1.2x and 3.0x on average).
Additionally, we demonstrate the importance of host-accelerator transfer
optimisations (1.8x speed-up on average).

Fig. 1. Overview of the approach taken in this work

2 Related Work

There is a large body of work targeted at (partially) automating parallel
programming (e.g. [1, 2, 6, 7, 11, 13, 15, 21, 22, 23]). However, existing work
targeting code generation for OpenMP, OpenCL or CUDA often requires anno-
tations in the form of directives [6, 11, 15, 23] or requires major code restructur-
ing [7, 21]. Furthermore, they often produce human unreadable source code for
further optimisations [6, 23] or no modifiable source code at all [7]. Exceptions
are the polyhedral-based compilers Par4All [1] and ppcg [22] that are able to
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fully-automatically compile sequential code into readable parallel code. We com-
pare our approach in terms of performance with these state-of-the-art compilers
for CUDA in Sect. 5. Par4All [1] is based on the theory of convex array regions
and is implemented using the PIPS source-to-source compiler. ppcg [22] is an op-
timising polyhedral compiler based on PET and ISL. Both Par4All and ppcg
are able to perform host-accelerator (e.g. CPU-GPU) transfer optimisations.

Among the large amounts of existing algorithm classifications (e.g. [4, 7]),
we identify only one classification, named idioms [18], that provides a tool to
perform automatic extraction of classes from source code. However, only six basic
classes are provided (stream, transpose, gather, scatter, reduction and stencil),
resulting in a significantly lower amount of detail compared to algorithmic species
and aset’s automatic extraction.

3 Combining Skeletons with Algorithmic Species

In our two-step approach (see Fig. 1), the first step is to extract relevant informa-
tion from source code. This information is encapsulated in the form of algorith-
mic species1 [16, 17]: an algorithm classification based on polyhedral analysis [8].
In this section, we first briefly provide background on algorithmic species and
algorithmic skeletons. Following, we discuss the combination of skeleton-based
compilation with algorithmic species. Finally, we illustrate the integration of
skeleton-based compilation and species by discussing example skeletons.

3.1 Classifying Code using Algorithmic Species

We illustrate algorithmic species by showing an example: matrix-vector multi-
plication r = M · s (see Listing 1). To produce a single element of the result
r, we need a complete row from matrix M and the entire vector s. In terms of
access patterns used to build algorithmic species, we name the row access from
M a chunk access. The vector s is needed entirely to calculate a single element
of the result r, which we characterise with the full pattern. The final algorithmic
species is shown in line 1 of Listing 1, including array names and access ranges.

Listing 1. Matrix-vector multiplication classified using algorithmic species

1 M[ 0 : 1 2 7 , 0 : 6 3 ] | chunk(− ,0 :63) ∧ s [ 0 : 6 3 ] | f u l l → r [ 0 : 1 2 7 ] | e lement
2 for ( i =0; i <128; i++) {
3 r [ i ] = 0 ;
4 for ( j =0; j <64; j++) {
5 r [ i ] += M[ i ] [ j ] ∗ s [ j ] ;
6 }
7 }

The example covers three access patterns, forming a single species when com-
bined. In total, five patterns (element, neighbourhood, chunk, full, and shared)
can be combined into an unlimited amount of different species. Species and their

1 Species is both the English plural and singular form.
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patterns are defined formally based on the polyhedral model. Since the patterns
are descriptive and intuitive, they may be derived from source code by hand in
certain cases. However, to ease the work of a programmer, to avoid mistakes, and
to be able to automatically generate parallel code, species are derived automat-
ically using aset, an algorithmic species extraction tool [5]2. We make a note
that this tool merely identifies species in source code, it does not perform any
transformations to extract (more) parallelism from the code. Therefore, our two-
step approach could be combined with existing parallelising compilers (e.g. [19]),
which can be seen as additional pre-processing.

3.2 Compilation Based on Algorithmic Skeletons

Algorithmic skeletons [4] is a technique that uses parametrisable program code,
known as skeletons or skeleton implementations. An individual skeleton can be
seen as template code for a specific class of computations on a specific processor.
Users of previous skeleton-based compilers were required to select a skeleton
suitable for their algorithm and target processor by hand, and could subsequently
invoke the skeleton to generate program code for the target processor. If no
skeleton implementation was available for the specific class or processor, it could
be added manually. Future algorithms of the same class could then benefit from
re-use of the skeleton code. Benefits of skeleton-based compilation are among
others the flexibility to extend to other targets, and the performance potential:
optimisations can be performed in the native language within the skeletons.
Examples of recent skeleton-based compilers are [3, 7, 15, 21].

3.3 From Species to Skeletons

In contrast to existing skeleton-based compilers, we use algorithmic species in-
formation to select a suitable skeleton. This does not only enable automation
of the whole tool-chain, but also overcomes common critique for skeleton-based
compilers illustrated by questions such as ‘how difficult is it to select a suitable
skeleton’ or ‘what if the user selects an incompatible skeleton’.

We modified the Bones skeleton-based source-to-source compiler [15] to be
combined with algorithmic species. The compiler takes C code annotated with
species information as an input. The algorithmic species (extracted by a pre-
processor) are used directly to determine the skeleton to use. Additionally,
they are used to enable/disable additional transformations and optimisations,
although most optimisations can be made within the skeletons themselves.

Algorithmic species map one-to-one to skeletons: the compiler needs to sup-
ply a skeleton for every species it wants to support. These skeletons should
be constructed in such a way that they are correct (and preferably optimised)
for all algorithms belonging to a given species. For practical reasons however (to
save work/code duplication), we provide a species-to-skeleton mapping, such that

2 aset can be replaced by the more recent a-darwin tool [16].
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multiple species can map to the same skeleton. For example, for a GPU target, al-
gorithmic species of the form ‘neighbourhood → element’ and ‘neighbourhood
∧ element → element’ both map to a single skeleton that enables explicit
caching of the neighbourhood in the GPU’s scratchpad memory.

We illustrate the working of Bones through Fig. 2. In this figure, we show
an example input with two loop nests identified as two different species (‘species
X’ and ‘species Y’ in the figure). The compiler first loads and invokes the corre-
sponding skeletons for a given target. Then, the skeleton-specific transformations
are performed, and finally, Bones combines the results to obtain target code.
The optimisations as described in Sect. 4 are performed in the last stage.

Fig. 2. Illustration of the structure of the Bones compiler for an example input with
two different species

3.4 Example Skeletons

To illustrate the use of skeletons within Bones, we first show a simplified
OpenMP skeleton in Listing 2 and its instantiation for the matrix-vector mul-
tiplication example (Listing 1) in Listing 3. The skeleton in Listing 2 shows
highlighted keywords, which are filled in as follows: parallelism represents the
parallelism found in the species, ids computes the identifier corresponding to
the current iteration, and code fills in the transformed code. For illustration pur-
poses, the example skeleton is heavily simplified, excluding comments, boundary
and initialisation code, function calls and definitions, and makes several assump-
tions, such as the divisibility of the amount of parallelism by the thread count.

Additionally, we show an example of a skeleton for the CUDA target in List-
ing 4. This skeleton is specific to species of the form ‘0:N,0:N|chunk(-,0:N) →
0:N,0:N|element’, similar to the matrix-vector multiplication kernel shown in
Listing 1. A naive mapping to CUDA will result in uncoalesced accesses to the
chunk array (M in the example): subsequent accesses will be made by the same
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Listing 2. A simplified skeleton for
OpenMP. Details are left out for clarity.

1 int count ;
2 count = omp get num procs ( ) ;
3 omp set num threads ( count ) ;
4 #pragma omp p a r a l l e l
5 {
6 int t id , i ;
7 int work , s t a r t , end ;
8 t i d = omp get thread num () ;
9 work = <para l l e l i sm >/count ;

10 s t a r t = t id ∗work ;
11 end = ( t i d +1)∗work ;
12
13 // Start the p a r a l l e l work
14 for ( i=s t a r t ; i<end ; i++) {
15 <ids>
16 <code>
17
18
19
20 }

Listing 3. Instantiated code for the List-
ing 1 example. Optimisations are omitted.

1 int count ;
2 count = omp get num procs ( ) ;
3 omp set num threads ( count ) ;
4 #pragma omp p a r a l l e l
5 {
6 int t id , i ;
7 int work , s t a r t , end ;
8 t i d = omp get thread num () ;
9 work = 128/ count ;

10 s t a r t = t id ∗work ;
11 end = ( t i d +1)∗work ;
12
13 // Start the p a r a l l e l work
14 for ( i=s t a r t ; i<end ; i++) {
15 int g id = i ;
16 r [ g id ] = 0 ;
17 for ( j =0; j <128; j++)
18 r [ g id ] += M[ gid ] [ j ]∗ s [ j ] ;
19 }
20 }

thread. To re-enable coalescing in these cases, which is paramount for perfor-
mance, a special skeleton with a pre-shuffling kernel is designed. The skeleton in
Listing 4 shows a kernel for the actual work (lines 1-8) and a kernel to reorder
the input array by re-arranging data in the on-chip memory of the GPU (lines 9-
20). The use of this skeleton implies a transformation in the original code as well
(e.g. from M[i][j] into M[j][i]), which is handled by the compiler. Again, this
skeleton is heavily simplified for illustration purposes, e.g. not showing boundary
checks nor the host code to launch the kernels.

Listing 4. A simplified skeleton for the CUDA target to enable coalesced accesses

1 // CUDA kerne l for the ac tua l work ( s imp l i f i e d )
2 g l o b a l void ke rn e l 0 ( . . . ) {
3 int g id = blockIdx . x∗blockDim . x+threadIdx . x ;
4 i f ( g id < <para l l e l i sm >) {
5 <ids>
6 <code>
7 }
8 }
9 // CUDA kerne l for pre−s hu f f l i n g ( s imp l i f i e d )

10 g l o b a l void ke rn e l 1 ( . . . ) {
11 int tx = threadIdx . x ; int ty = threadIdx . y ;
12 s h a r e d <type> b [ 1 6 ] [ 1 6 ] ;
13 int gid0 = blockIdx . x∗blockDim . x + tx ;
14 int gid1 = blockIdx . y∗blockDim . y + ty ;
15 int nid0 = blockIdx . y∗blockDim . y + tx ;
16 int nid1 = blockIdx . x∗blockDim . x + ty ;
17 b [ ty ] [ tx ] = in [ gid0 + gid1 ∗<dims>/<params> ] ;
18 sync th r e ad s ( ) ;
19 out [ nid0 + nid1∗<params>] = b [ tx ] [ ty ] ;
20 }
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4 Compiler Optimisations

In this section we discuss the host-accelerator transfer optimisations made by
aset andBones, and illustrate some of the optimisations possible withinBones.
The discussed optimisations in this section are new to Bones: they are not
present in earlier non-species based versions [15]. Both aset, and Bones are
open-source and are freely available3. The compiler Bones is programmed in
Ruby and uses the C-to-AST module CAST4. Bones currently supplies a total
of 15 skeletons for 5 different targets: OpenMP for CPUs, CUDA for NVIDIA
GPUs, OpenCL for AMD GPUs, and OpenCL for CPUs (AMD and Intel SDK).

4.1 Host-Accelerator Transfer Optimisations

Many of today’s parallel processors are designed as an accelerator : they require
a host processor to dispatch tasks (or: kernels). Furthermore, they often have a
separate memory (e.g. GPUs, Intel MIC), requiring host-accelerator transfers of
input and output arrays. When executing multiple kernels, this gives opportu-
nities to optimise these transfers in several ways [10, 12]: 1) transfers might be
omitted (e.g. subsequent kernels use the same data), 2) transfers can run in par-
allel with host code (e.g. start the copy-in as soon as the data is ready), and 3)
transfers unrelated to a specific kernel can run in parallel with kernel execution.

We perform such optimisations within aset. After delimiting the identified
algorithmic species by pragma’s, aset is instructed to: 1) mark inputs and out-
puts as copy-ins and copy-outs for the current kernel, and 2) add synchronisation
barriers after the transfers.Bones then generates a second host thread, receiving
transfer requests and performing synchronisations. An example of non-optimised
output is shown in the form of pseudo code in Listing 5, in which each copy-in
and copy-out implies that it is allowed to start the copy at that specific point,
and must be finished before the given deadline (see also Fig. 3).

After producing the non-optimised form (e.g. Listing 5), the tool performs
different types of optimisations in an iterative way, including: 1) copy-ins directly
after copy-outs are removed (e.g. from Listing 5 to Listing 6), 2) copy-ins are
moved to the front if the data is not written by the previous species, 3) deadlines
of copy-outs are increased if the data is not written by the next species (e.g.
from Listing 6 to Listing 7), 4) unused synchronisation barriers are omitted, and
5) transfers are moved to an outer loop if possible. The effects of the transfer
optimisations are discussed in Sect. 5.

4.2 Optimisations within Bones

The compiler Bones performs various optimisations to the source code before
it instantiates a skeleton. Most optimisations are conditionally applied based on
the algorithmic species. For example, array indices and the corresponding array

3 Bones and aset can be found at: http://parse.ele.tue.nl/species/.
4 CAST can be found at http://cast.rubyforge.org/.

http://parse.ele.tue.nl/species/
http://cast.rubyforge.org/
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Listing 5. Transfer exam-
ple (original)

1 copy−in (A, 1 )
2 sync (1 )
3 ke rn e l : B ← A
4 copy−out (B, 2 )
5 sync (2 )
6 copy−in (B, 3 )
7 sync (3 )
8 ke rn e l : C ← B
9 copy−out (C, 4 )

10 sync (4 )

Listing 6. Transfer exam-
ple (partly optimised)

1 copy−in (A, 1 )
2 sync (1 )
3 ke rn e l : B ← A
4 copy−out (B, 2 )
5 sync (2 )
6 ke rn e l : C ← B
7 copy−out (C, 4 )
8 sync (4 )

Listing 7. Transfer exam-
ple (fully optimised)

1 copy−in (A, 1 )
2 sync (1 )
3 ke rn e l : B ← A
4 copy−out (B, 4 )
5 ke rn e l : C ← B
6 copy−out (C, 4 )
7 sync (4 )

Fig. 3. Illustrating the optimisation steps: original (left, Listing 5), partly optimised
(middle, Listing 6), fully optimised (right, Listing 7)

names for input arrays in neighbourhood -based skeletons for GPUs are replaced
by local indices and local array names. This transformation is a simple matter
of name-changing, the actual definition of the local indices and the pre-fetching
into local memories is performed within the corresponding skeletons.

Bones also performs several performance-oriented transformations, including
caching in the register file and thread coarsening. Register file caching replaces
array accesses (mapped to off-chip memories) with scalar accesses (mapped to
registers) in certain cases. For example, in Listing 1, the accesses to vector r
in lines 3 and 5 can be replaced by scalar accesses under the condition that a
final store to r is added after line 6. Thread coarsening (or merging) is a tech-
nique to increase the workload per thread. This comes at the cost of parallelism,
but could increase data re-use through locality or factor out common instruc-
tions [14]. In Bones, coarsening is enabled if the species encapsulates re-use over
a complete data structure. For example, in the case of ‘0:M,0:N|chunk(-,0:N)
→ 0:M,0:N|element’, a total of N · M elements are produced, while only M
chunks are available as input, resulting in the re-use of the entire input data
structure with a factor N . Coarsening is only enabled for kernels without diver-
gent control flow and with sufficient data re-use and parallelism.

To further improve the performance of the generated code, Bones enables
zero-copy for the OpenCL targets using an aligned memory allocation scheme.
In OpenCL, data needs to be explicitly copied from host (typically a CPU)
to device (the accelerator). In some cases, the host and device share the same
memory, e.g. for CPU targets or for fused CPU/GPU architectures. In these
cases, a memory copy can be saved by performing a pointer-only copy, i.e. a
zero-copy. Bones enables zero-copying in OpenCL for Intel CPUs by fulfill-
ing two requirements: 1) using specific OpenCL memory map and memory un-
map functions, and 2), aligning all memory allocations to 128-byte boundaries.
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To ensure aligned memory allocations in the original code, Bones provides a cus-
tom malloc implementation and furthermore replaces existing stack allocations
with aligned dynamic allocations in a matter similar to [12].

Furthermore, Bones flattens data structures to a single dimension when gen-
erating OpenCL or CUDA code. Parallel loops are also flattened, decoupling the
amount of loops from the thread or work-item structures provided by OpenCL
and CUDA. In contrast, many existing approaches (e.g. [1, 7, 22]) map multi-
dimensional loops to the multi-dimensional thread or work-item structures pro-
vided by OpenCL and CUDA. Although this might be a straightforward solution,
it limits the applicability of these approaches to 2 or 3-dimensional loops and
data structures. By flattening, Bones omits these limitations and is able to
handle any degree of loop nesting and arrays of any dimension.

5 Evaluation and Experimental Results

To evaluate the applicability of algorithmic species and to validate aset and
Bones, we test against the PolyBench/C 3.2 benchmark suite5, which is a pop-
ular choice for evaluating polyhedral-based compilers [1, 22]. We choose this suite
because it allows us to compare against polyhedral-based compilers, and allows
us to perform automatic extraction of algorithmic species. Nevertheless, Bones
can still be used for code that does not fit the polyhedral model, albeit that the
classification of code has to be performed manually (see [16] for examples).

The PolyBench suite contains 30 algorithms, in which we identify a total of
110 species6 with aset, or 60 if we exclude those found within other species
(i.e. nested species). The classified code for these 60 species can now be fed
into Bones. However, there is a large number of benchmarks with species in
the form of inner-loops with little work, executing in a fraction of a millisecond,
making start-up and measurement costs dominant. For our evaluation, we there-
fore exclude adi, cholesky, dynprog, durbin, fdtd-2d-apml, gramschmidt, lu,
ludcmp, reg detect, symm, trmm and trisolv. The exclusion of these bench-
marks can be automated by integrating a basic roofline-like performance model.
Additionally, we exclude floyd-warshall and seidel-2d because they contain
no parallelism in their current form. All in all, we include 34 species (not nec-
essarily unique) spread across 16 benchmarks. Within a benchmark, we number
the found algorithmic species sequentially7.

Although GPUs are currently the primary target of Bones, we also include
an evaluation of our multi-core CPU targets: we perform a comparison of the
3 CPU targets against single-threaded code. Next, we compare our approach
for the CUDA target against two state-of-the-art polyhedral-based compilers:
Par4All [1] and ppcg (based on the pluto algorithm) [22]. To the best of
our knowledge, these are the only available fully-automatic compilers able to

5 PolyBench website: www.cse.ohio-state.edu/~pouchet/software/polybench/.
6 PolyBench annotated with species: http://parse.ele.tue.nl/species/ .
7 See http://parse.ele.tue.nl/species/ for the corresponding species.

www.cse.ohio-state.edu/~pouchet/software/polybench/
http://parse.ele.tue.nl/species/
http://parse.ele.tue.nl/species/
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generate CUDA code directly from C (we exclude C-to-CUDA [2], as it is lim-
ited to kernel generation only). Finally, we discuss the benefits of our unique
combination of a skeleton-based compiler and an algorithm classification.

5.1 OpenCL and OpenMP on a Multi-core CPU

We perform experiments on a 4-core CPU comparing the 3 CPU targets
(OpenMP, Intel SDK OpenCL, AMD SDK OpenCL) against single-threaded
C code. We use an Intel Core i7-3770 (4 cores, 8 threads) with support for AVX.
We use the auto-vectorising GCC 4.6.3 (-O3) compiler for the single-threaded
and OpenMP targets. Furthermore, we use AMD APP 2.7 and Intel OpenCL
2012 for the OpenCL targets. We disable the CPU’s Intel Turbo Boost tech-
nology. We use the ‘large dataset’ as defined in PolyBench with single-precision
floating point computations. We average over multiple runs and start each run
with a warm-up dummy computation followed by a cache flush.

We show the results of the experiments in Fig. 4. We see geometric mean
speed-ups of 2.1x (Intel SDK OpenCL), 2.4x (AMD SDK OpenCL), and 2.7x
(OpenMP). Although the three targets use the same hardware, we still observe
significant performance variation for the individual benchmarks. Differences are
among others the lower thread creation cost for OpenMP, the different thread
scheduling policies, and different auto-vectorisers. For a detailed comparison
of OpenMP against OpenCL in general, we refer to other work, such as [20].
Furthermore, we expect to see improved speed-ups by applying a pre-processing
parallelisation pass first (such as pluto or [19]), which we leave for future work.

5.2 Comparison of the CUDA Target against the State-of-the-Art

For our CUDA experiments, we use an NVIDIA GeForce GTX470 GPU (448
CUDA cores) and GCC 4.6.3 (-O3) and NVCC 5.0 (-O3 -arch=sm 20) for com-
pilation. We test Bones version 1.2 against the latest versions of Par4All (ver-
sion 1.4.1) and ppcg (pre-release commit 94af357, Feb 2013)8. We test Bones
with and without host-accelerator transfer optimisations. Furthermore, we in-
clude as a reference PolyBench/GPU [9], hand written CUDA code9. As before,
we use the single-precision ‘large dataset’ and average over 10 runs, starting with
a warm-up.

We perform two tests. For our first test, we evaluate the quality of the gener-
ated CUDA kernels only. We generate kernels for each of the found algorithmic
species in isolation using Bones, Par4All, and ppcg. As before, within a
benchmark, we number the found algorithmic species incrementally, while av-
eraging the execution time of kernels executed multiple times. The results of
the kernel quality test can be found in Fig. 5 in terms of speed-up of Bones
compared to Par4All and ppcg. We make the following remarks:

8 We test ppcg with default tiling options. Manual tuning of the tiling parameter for
each benchmark is omitted in this work to keep the obtained results fully automatic.

9 PolyBench/GPU provides non-optimised CUDA code. Unfortunately, fully optimised
hand-written code is not available for these benchmarks.
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Fig. 4. Speed-ups of the OpenCL (� for the Intel SDK and � for the AMD SDK) and
OpenMP (�) targets compared to single-threaded code on a 4-core CPU

– Bones shows significantly better performance (2x or more) for 21 kernels
(compared to Par4All) and 11 kernels (compared to ppcg).

– In a few cases (e.g. correl-3,covar-2,jacobi2d-2) ppcg and/or Par4All
are slightly ahead due to better data locality enabled by loop tiling.

– A number of kernels (e.g. atax-1, bicg-2, mvt-1, syr2k, syrk) use a skeleton
in the form of Listing 4 to ensure coalesced memory accesses, yielding a
significant speed-up over Par4All and a moderate speed-up over ppcg.

– In the cases of 2mm and 3mm (both matrix multiplication), Bones is on-par
with ppcg. In these cases, Bones relies on the hardware cache, while ppcg
performs loop tiling and explicit caching through the GPU’s local memories.

– In several cases (2mm, 3mm and gemm), Bones and ppcg both perform thread
coarsening, gaining performance over Par4All.

– Bones achieves a 1.6x (vs. Par4All) and 1.4x (vs. ppcg) average speed-up.

For the second test, we measure the full benchmark (‘scop’ in PolyBench ter-
minology). We show the results in Fig. 6 in terms of speed-up compared to opti-
mised Bones code. The (experimental) option to optimise CPU-GPU transfers
for Par4All (--com-optimization) does not work for these benchmarks. For
a fair comparison, Par4All should therefore be compared to Bones without
transfer optimisations. We make the following remarks with respect to Fig. 6:
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Fig. 5. Speed-up of CUDA kernel code generated by Bones compared to Par4All
(�) and ppcg (�) for the PolyBench suite (higher is in favour of Bones). ppcg was
unable to generate code for correl-2, doitgen-1, and doitgen-2 (marked by an x).

– In almost all cases, Bones with transfer optimisations outperforms the other
compilers. On average, Bones achieves a speed-up of 3.0x and 1.2x over
Par4All and ppcg respectively (excluding the 100x or worse cases).

– Hand written (non-optimised) PolyBench/GPU code [9] is in many cases
significantly slower compared to compiler generated code (on average 4.2x
compared to Bones).

– A 1.8x average speed-up is achieved by performing CPU-GPU transfer op-
timisations with aset and Bones, although further optimisations are still
possible. For example, in the case of fdtd-2d, ppcg is able to move addi-
tional CPU-GPU transfers to outer loops, resulting in a significant speed-up.

In general, we conclude that the supplied skeletons for Bones already out-
perform Par4All and ppcg on average for the CUDA kernels found in these
benchmarks. For the 34 kernels shown in Fig. 5, Bones uses 5 different skele-
tons, each used at least twice. Furthermore, we note that Bones, in contrast to
polyhedral compilers, can be used for code containing non-affine loop nests.

5.3 Benefits of Skeleton-Species Integration

By integrating algorithmic species with a skeleton-based compiler, we have cre-
ated a unique approach to automatically generate code for parallel targets.
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Fig. 6. Speed-up of Bones compared to PolyBench/GPU (�), Par4All (�), ppcg
(�), and Bones without transfer optimisations (�) (higher is in favour of Bones).
PolyBench/GPU is not available for doitgen, gemver, jacobi-1d, and jacobi-2d (x).

We see this novel combination as a way to profit from the benefits of skeleton-
based compilation, without having its drawbacks.

Skeleton-based compilation has several benefits [4]. Firstly, compilation re-
quires only basic transformations that can be performed at abstract syntax tree
level, omitting the need for intermediate representations which often lose code
structure and variable naming. This allows the compiler to generate readable
code, enabling opportunities for further fine-tuning and manual optimisation.
Furthermore, the skeletons themselves can be formatted to include structure and
code comments, greatly benefiting readability. Secondly, skeleton-based compi-
lation benefits from the flexibility of improving the compiler or extending to
other targets: simply adjust or write the appropriate skeletons. Finally, sev-
eral optimisations applied within skeletons in Bones cannot be applied as code
transformations on the original code. For example, polyhedral compilers could
generate the first kernel of the example skeleton in Listing 4 (lines 1-8), but will
not be able to generate an additional pre-processing kernel (lines 10-23), as it is
not a permutation of the original code.

Because of the integration of algorithmic species, Bones is the first skeleton-
based compiler that can be used in a fully-automatic tool-flow. This removes
the requirements of existing skeleton-based approaches such as SkePU [7] and
SkeCL [21] to manually identify a skeleton and modify the code such that the
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skeleton can be used. Furthermore, algorithmic species provides a clear, struc-
tured, and formally defined way of using skeletons, which can be beneficial in
cases where manual classification is unavoidable.

6 Conclusions and Future Work

In this work we have demonstrated the successful integration of an algorithm
classification (algorithmic species) with skeleton-based compilation. This results
in a novel method to perform automatic generation of parallel code, transforming
sequential C code into readable CUDA, OpenCL or OpenMP code. With aset,
we are able to automatically extract species from affine loop nests. The species
are used within the skeleton-based compiler Bones to select a skeleton. Bones
is able to produce readable code, provides flexibility for new targets and opti-
misations, and generates efficient code. Furthermore, the combination of aset
and Bones allows us to perform host-accelerator transfer optimisations.

Many existing skeleton-based compilers [3, 4, 7, 21] have failed to become
popular, despite their flexibility and high performance potential. By combining
skeletons with an algorithm classification, we overcome their drawbacks: we do
not require users to select a skeleton, and we have a fixed and structured classi-
fication. Compared to polyhedral compilers on the other hand (e.g. [1, 22]), we
have shown significant speed-ups: 1.6x and 1.4x for CUDA kernel code versus
Par4All and ppcg respectively. Additionally, Bones generates readable code,
leaving the user with further possibilities for optimisation or fine-tuning of the
algorithm. Furthermore, Bones is applicable outside the scope of affine loop
nests, although species may have to be identified manually.

In this work, we have focused mainly on the CUDA GPU target. As part of
future work, we plan to compare our OpenCL targets against the state-of-the-art
as well. Furthermore, we plan to extend Bones by investigating the benefits of
kernel fusion and fission.

References

[1] Amini, M., Creusillet, B., Even, S., Keryell, R., Goubier, O., Guelton, S., Mcma-
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Abstract. This work proposes a new technique for performance eval-
uation to predict performance of parallel programs across diverse and
complex systems. In this work the term system is comprehensive of the
hardware organization, the development and execution environment.

The proposed technique considers the collection of completion times
for some pairs (program, system) and constructs an empirical model
that learns to predict performance of unknown pairs (program, system).
This approach is feature-agnostic because it does not involve previous
knowledge of program and/or system characteristics (features) to predict
performance.

Experimental results conducted with a large number of serial and
parallel benchmark suites, including SPEC CPU2006, SPEC OMP2012,
and systems show that the proposed technique is equally applicable to be
employed in several compelling performance evaluation studies, includ-
ing characterization, comparison and tuning of hardware configurations,
compilers, run-time environments or any combination thereof.

Keywords: Program Characterization, Feature-agnostic, Cluster Anal-
ysis, Empirical Performance Modeling, Program Optimization.

1 Introduction

Over the past decade there has been an exponential growth in computer perfor-
mance [1] that quickly led to more sophisticate and diverse software and com-
puting platforms (e.g., heterogeneous multi-core platforms [2], parallel browsers
[3]). The cost of software development and hardware design too increases and
creates the need for evaluating performance of proposed software and system
changes before the actual implementation and deployment begin.

However, given the increasing complexity of modern micro-architectures [2],
software [4, 5], development and execution environments [6], performance of
a program on new systems (specularly, performance that a system delivers to
new programs) is difficult to predict. Constructing a comprehensive model that
includes all the possible aspects featuring software and computing platform is
practically limited by the cost of feature retrieval compared with the performance
goal to reach. For example, while having negligible run-time overhead, collecting
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a large number of hardware performance counters is not possible at once - it
requires multiple runs of a software as only a limited number of hardware per-
formance counters can be collected in one run, e.g., up to eight in modern Intel
microprocessors [7]. Instrumentation based retrieval and simulation also incur in
significant run-time overhead [8].

As a result, prior research (a) mainly focuses on the characterization and em-
pirical performance modeling of serial programs and (b) limits its attention to
a number of program/system features that are tied to a specific performance
study (e.g., system procurement [9, 10], tuning of compiler heuristics [11, 12],
task-to-core allocation tuning for heterogeneous and homogeneous multi-cores
[13, 14], selection of the number of cores and parallel scheduling algorithm [15],
design space exploration [16–18]) and do not generalize to other performance
studies. These techniques can be categorized as feature-aware because the fea-
tures chosen to characterize the specific performance study are extracted from
either system and program properties, e.g., hardware performance counters, or
program-inherent properties, e.g., instructions mix, working set size [19], or sys-
tem design properties, e.g., number, type, size and organization of hardware
components [16, 18, 20].

In this work we present a new feature-agnostic technique for performance mod-
eling, prediction and, more important, we present the application of the proposed
technique to several cases of serial and parallel programperformance optimization.
The type of characterization presented in this work differs from the characteriza-
tions introduced in previous research. In fact, in this work only the knowledge of
completion times for some pairs (program, system) is leveraged to predict perfor-
mance for unknown pairs (program, system). The characterization of programs
and systems is embedded in series of known performance of a programs on certain
systems and known performance that some systems give to some programs. Be-
cause of the above, the proposed technique is said to be feature-agnostic because
it does not involve a knowledge of programs (e.g., the number of instructions of
a certain type, the memory footprint) and systems (e.g., the memory hierarchy
organization, the operating frequency) characteristics.

Using the information available, first a technique based on micro-array visual-
ization [21] is proposed to highlight the presence of coherent patterns of similarity
between programs and systems. Programs exhibiting similar series of performance
on different systems are clustered together using hierarchical clustering [22]. Like-
wise, systems exhibiting similar series of performance on different programs are
clustered together. A heat-map is constructed to provide a joint visualization of
coherent patterns, i.e., areas on the map on which (program, system) perfor-
mance are nearly-equal. The presence of such patterns highlights opportunities to
predict program performance by similarity. For example, two (or more) programs
that attain nearly-equal performance on a number of systems are deemed to be
similar under a certain similarity metric. These programs are also likely to attain
nearly-identical performance on a new system. Hence, the knowledge of perfor-
mance for some of these programs on a new system is predictive of performance
of a similar, unseen programs on this system.
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Performance modeling and prediction happens as follows: two prediction mod-
els are constructed and their outcomes are combined to predict performance
for unknown pairs (program, system). The first model aims to predict perfor-
mance that a new system provides to a program, given the available performance
that other systems provided to the program. The second model aims to predict
performance of a program on a new system given the available performance
of other programs on the system. Performance prediction for unknown pairs
(program, system) is obtained as the weighted average of the outcomes of the
two predictors above. The importance of combining the two predictions above
is to improve prediction accuracy compared with the accuracy of the individual
model. To construct prediction models, we use, evaluate and compare machine
learning algorithms for regression, e.g., Linear Regression (LR) [23] and Support
Vector Regression (SVR) [24].

Program optimization occurs in the form of selecting the combination of algo-
rithmic optimization, compilation, execution environment and hardware design
that maximizes performance, i.e., minimizes completion time, of a program of
interest. A procedure based on k-fold cross-validation [25] is proposed to validate
the proposed prediction technique.

To the best of our knowledge this is the first work that considers a feature-
agnostic, practical technique for program and system characterization, perfor-
mance modeling and prediction. In particular, this work makes the following
contributions: (i) It provides a new, practical and generally applicable technique
for cross-system performance modeling and prediction. Performance prediction
relies on a fairly general and simple to retrieve program characterization, i.e.,
performance of some pairs (program, system) - which usually is available in
industry and research settings; (ii) The application of the proposed technique
to several practical performance studies is shown, e.g., the cases of system se-
lection, compiler and run-time settings selection are illustrated; (iii) It is also
shown that for the sake of several performance studies, the problem of program
characterization and specifically that of feature selection can be moved to the
problem of selecting appropriate simpler programs, e.g., programs from different
application domains. Performance modeling and prediction happens by similar-
ity between series of completion time of a program on different systems and of a
system on different program; (iv) It is shown that the proposed characterization
is not only applicable across different systems, but also holds for both serial and
parallel programs.

The rest of the paper is organized as follows: Basic concepts and definitions
that are adopted in this work are introduced in Section 2. Section 3 discusses
previous research; The characterization and performance modeling technique is
described in Section 4. Section 4 also discusses on the evaluation methodology
developed to validate the proposed performance modeling technique; The ex-
perimental evaluation and results are presented and discussed Section 5. Key
highlights and future developments are discussed in Section 6.
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2 Basic Concepts and Definitions

In this work a property of a program, e.g., instruction mix, working set size,
and/or of a system, e.g., memory hierarchy configuration, average number of cy-
cles to execute each instruction in the instruction set architecture (ISA), is a fea-
ture of the program and/or the system. A set of features is a signature. This work
focuses on signatures whose features assume real number values, techniques to
analyze patterns (similarity) occurring between features, empirical performance
modeling that associate performance to features.

A signature is a n-dimensional vector of real numbers s = [f1, f2, · · · , fn]
whose elements can be homogeneous (they measure the same quantity, e.g., a
series of energy consumptions or completion time) or heterogeneous (they mea-
sure different quantities, e.g., number of cache misses, cost of communication).
A feature is agnostic of program and/or system properties if its value cannot be
directly associated to any property of a program or of a system. Examples of such
type of features are total completion time, total energy consumption etc. Other-
wise a feature is aware of program and/or system characteristics. Techniques to
model program and system performance for program optimization are feature-
agnostic when the signature adopted by the specific technique is composed of
features that only latently account for program and/or system properties. Oth-
erwise the approach is said to be feature-aware.

Given a set of signatures, a similarity measure [26] provides a way of measur-
ing the degree of similarity between two programs (or systems). The comparison
of two signatures under a certain similarity measure makes program character-
ization (i.e., discovery of groups of signatures with similar properties) possible.
More in general, the use of cluster analysis (as explained in the next Section)
makes possible to partition a set of signatures into smaller groups of signatures
with similar features [22]. Because the type of characterization proposed in this
work is feature-agnostic and the elements of a signature are completion times,
the similarity measure adopted in this work is the Euclidean distance.

3 Related Work

For a specific performance study, deciding whether to adopt a feature-aware or
-agnostic characterization has pros and cons. Feature-aware characterizations
appear in many common practices in program characterization and tuning [19,
27, 28], algorithmic optimization [29], various intelligent forms of profile-guided
optimization [11, 12] and design space exploration [16, 18]. While feature-aware
characterizations provide information to interpret the behavior of a program
and/or system, feature extraction comes at the cost of iterating multiple program
runs or program/compiler instrumentation and/or simulation. In addition to the
above, the amount of features amongst which one can choose is enormous. As
a result, only a small subset of features are usually considered at once and the
selection of features is usually subjective and/or time/cost constrained. While
statistical analysis techniques can be employed to select essential features from a
group of features, the selection of the initial group of features remains subjective.
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On the contrary, feature-agnostic characterizations have been used to analyze
the coverage of programs within a benchmark suite [30], for hardware design
rating [9, 31] and compiler aided program optimization [32]. However, in prior
work feature-agnostic characterizations have been employed in conjunction with
serial programs and only one of the following signatures was used at a time: pro-
gram performance across systems (program signature); performance of multiple
programs on a system (system signature). Differently from previous research,
not only this work covers serial program, but also considers and focuses on par-
allel program optimization. Furthermore, this work combines the use of program
and system signature, which enables (i) the construction of very accurate per-
formance models and (ii) the application of the proposed technique to different
program optimization scenarios, as illustrated in Section 5.

4 Learning to Optimize Programs by Similarity

This section presents a unified approach to program and system characterization
and a technique to construct effective performance models based on such charac-
terization. The performance characterization and modeling technique presented
in this work assumes the knowledge of performance values (completion times)
for some pairs (program, system). These values are organized in a m×n matrix
M such that each element mi,j of M represents performance of the program i
on the system j.

Rows in the matrix M can be interpreted as program signatures, i.e., πi =
[mi,1,mi,2, · · · ,mi,n]. Likewise, columns in the matrix M can be interpreted as
system signatures σj = [m1,j ,m2,j, · · · ,mm,j]. Therefore, a program signature
is the series of performance values that a program attains on different system
configurations, whereas a system signature is the series of performance values
that a system configuration delivers to a set of programs.

The matrix M is in general sparse because performance for several entries
corresponding to pairs (program, system) may be missing. Two cases are con-
sidered in this work: (i) The first case in that M is dense, i.e., all the entries
are known. In this case we present a technique to visualize patterns of similarity
between programs and systems; (ii) The second case in that the sparsity of M
is limited to just one program of interest, whose performance is unknown on a
number of systems. Hence, the program signature for this program is as follows:
ıi = [mi,1,mi,2, · · · , ?, ?, ?, · · · , ?], where the question marks indicate unknown
elements in the signature.

The performance modeling and prediction technique presented in this work
aims to predicts performance of the program of interest on the unknown systems
by similarity, i.e., with respect to performance attained by similar programs on
the unknown systems. In particular, in this work, predicting by similarity means
that performance prediction is based on a combination of the following two
aspects in the matrix M: (i) Performance that the program of interest attained
on known systems; (ii) and Performance that other programs attained on a new
system.
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4.1 Program and System Similarity

The Euclidean distance is adopted in this work as similarity measure [26]. The
Euclidean distance is an appropriate similarity measure as the goal of this study
is to discover similarity patterns where programs attain nearly-equal perfor-
mance on different system configurations and/or system configurations deliver
nearly-equal performance to different programs.

For either program or system signatures, similarity analysis on a set of sig-
natures is assessed using average-linkage hierarchical clustering [22, 26]. Hier-
archical clustering organizes rows (program signatures) of M into a tree using
the following procedure: First, for any set of m signatures, an upper-diagonal
(similarity) matrix is computed by using the Euclidean distance between the sig-
natures; Second, the similarity matrix is visited to identify the highest similarity
value, i.e., the lowest distance that connects the most similar pair of signatures.
A node is created from joining these two signature, and a signature expression
profile is computed for the node by averaging observation for the joined elements;
Third, the similarity matrix is updated with this new node replacing the two
joined elements. This process is repeated m − 1 times until only a single ele-
ment remains. Likewise, the process above is repeated for the columns (system
signatures) in M.

Given the similarity trees, the rows and columns in M are re-organized.
Rows are permuted such that similar program signatures are adjacent. Likewise,
columns are permuted such that similar system configurations are adjacent. A
clustergram visualization [21] associates a heat-map to the permuted version of
M. The heat-map is composed of rectangular tiles arranged in a matrix shape
where the position of each tile corresponds to the position of an element in the
permuted M. Each tile is associated to a color corresponding to the value of
the element in the permuted relatively to the average value of the elements M.
Values corresponding or close to the average value are colored in black or dark
shades of either green or red. Values in the matrix above the average are colored
with shades of red - the higher the value is above the average, the lighter red
is associated to the corresponding tile. Values in the matrix below the average
are colored with shades of green - the lower the value is below the average, the
lighter green is associated to the corresponding tile. Finally, the similarity trees
are appended to the margins of the heat-map to compose the clustergram - refer
to Figure 1. The usefulness of such a representation is that coherent patterns
are represented by patches of the same gradient of colors on the heat-map. The
formation of such patches is induced by the similarity structure in the signa-
tures and may indicate a functional relationship among system signatures and
programs.

4.2 Performance Modeling

In this work performance modeling relies on known machine learning algorithms
for regression to predict performance for unknown pairs (program, system).



Optimizing Program Performance via Similarity 205

Model Components - Let us assume for a moment that the signature of a
program of interest contains only a single missing entry,

πi = [mi,1,mi,2, · · · ,mi,j−1, ?,mi,j+1, · · · ,mi,n]

The first step of the proposed modeling technique is to construct a model to
predict performance of the system at column j for the program i from the
knowledge of performance of the program i on the other systems. Hence, from
M, a regression model is constructed to learn the following map Σ : f → pi,
where f is the feature vector of performance of a certain program on the sys-
tems 1, 2, · · · , j − 1, j + 1, · · · , n and its outcome is performance that a program
i attains on the system j, i.e., pj .

The missing entry in πi is also missing in the system signature of the system
i, i.e.,

σj = [m1,j ,m2,j , · · · ,mi−1,j , ?,mi+1,j , · · · ,mm,j]

Hence, the second step of the proposed modeling technique is to construct a
model able to predict performance of the program at the row i from the knowl-
edge of performance of other programs in the column j. Hence, from M, another
regression model is constructed to learn the following map Π : g → pj, where
g is the vector feature of performance of that a certain system delivers to the
programs 1, 2, · · · , i − 1, i + 1, · · · ,m and its outcome is performance that the
system j with deliver to a program i, i.e., pi.

Combined Model - A machine learning algorithm A is trained in the two
cases above to construct two models for the maps Σ and Π . These models are
referred as F̂ and Ĝ. Prediction for the missing entry in position (i, j) in the
dataset M is performed by combining the following quantities

p̂j = Σ̂ ([mi,1,mi,2, · · · ,mi,j−1,mi,j+1, · · · ,mi,n])

and
p̂i = Π̂ ([m1,j,m2,j , · · · ,mi−1,j ,mi+1,j , · · · ,mm,j ])

It is clear now that p̂j and p̂i attempt to predict the same quantity, but from
two different perspectives. The combined prediction is obtained using a weighted
average of the quantities above, i.e.,

m̂i,j = wj × p̂j + wi × p̂i

In this work, the Equal Weight Average (EWA), i.e., the arithmetic average of the
two predictions is taken. Other averaging techniques are possible and a survey
of such techniques is in [33].

In this work it is always assumed that the number of missing entries is much
smaller than the number of entries in the dataset M - several entries are avail-
able from the history of previous tests. This assumption is likely to be satisfied in
practice because testing for performance of a software for different system con-
figurations is a daily routine in industry. Hence, in the case of missing entries,
the procedure above is repeated for each missing entry.



206 R. Cammarota et al.

Validation Metrics - For an incomplete program signature, i.e.,

πi = [mi,1,mi,2, · · · , ?, ?, ?, · · · , ?]

the modeling technique illustrated in the previous section constructs the follow-
ing signature π̂i = [mi,1,mi,2, · · · , m̂i,n−k, m̂i,n−k+1, m̂i,n−k+2, · · · m̂i,n], where
m̂i,j represent performance predictions for the program of interest on the sys-
tems n− k, n− k + 1, · · · , n, and k + 1 is the number of unknown performance
values.

Given the true performance values that the program of interest attains on
the systems n−k, n−k+1, · · · , n, i.e., mi,n−k,mi,n−k+1,mi,n−k+2, · · ·mi,n, and
the predicted values, i.e., m̂i,n−k, m̂i,n−k+1, m̂i,n−k+2, · · · m̂i,n the evaluation of
the prediction accuracy and the quality of the predicted values is determined in
terms of Minimum Absolute Error (MAE) - which is defined as the sum of the
pairwise absolute differences of components of πi and π̂i divided by the number
of systems n. This metric measures the accuracy in terms of error and error
magnitude in the predictions.

In addition, the discrepancy ε between the performance delivered to the pro-
gram of interest by the optimal system and the average performance delivered
by the predicted optimal systems in R repetitions of predictions for k missing
systems is evaluated. This metric is important to assess the goodness of the
proposed modeling technique at selecting an arbitrary system configurations -
ultimately, program optimization happens via the selection of the system con-
figuration that minimizes completion time.

Model Validation Procedure - Given a dense dataset M, the following
procedure based on cross-validation [25] is proposed. For each program in the set
of programs the dataset is split such as a number of entries 1 ≤ k ≤ n−1 is chosen
at random and taken out from M. For each missing entry a model constructed
as described in Section 4.2 is build and performance for the missing entry is
predicted. The random selection of k entries is repeated for a large number of
times R compared to the number of entries, such that, a good coverage of the
prediction ability of the proposed technique for arbitrarily missing subset of k
values is evaluate. Hence, for each k, the average MAE and ε are reported.

5 Experiments

This section evaluates the proposed technique and illustrates its application to
program optimization. Program optimization is the selection of a system con-
figuration that makes program performance satisfactory (or, ideally, minimizes
completion time). Even though a variation in program performance is driven by
program attribute changes, e.g., a change in compiler settings, in the context
of the proposed technique attribute changes represent latent information that is
hidden in M and summarized by series of performance values.
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Table 1. Dataset descriptions

Dataset name n. of programs x n. of systems

CINT2006 13 x 4308

CFP2006 18 x 4250

OMP2001 10 x 401

OMP2012 10 x15

NAS-ICC 10 x 40

5.1 Datasets

The datasets considered in this Section and their sizes - the number of pairs
(program, system) - are illustrated in Table 1. The first four datasets, i.e.,
CINT2006 [34], CFP2006 [34], OMP2001 [35], OMP2012 [36], are obtained from the
past decade - from January 2001 to December 2012 - of SPEC benchmark re-
sults - that is publicly available from SPEC website (http://www.spec.org).
Programs in the SPEC benchmarks synthesize real life applications from different
application domains - i.e., that are developed with different goals and software
development constraints. In particular, programs in SPEC CPU2006 are intended
to exercise system’s processor, memory subsystem and compiler. Programs in
SPEC OMP2001 and SPEC OMP2012 benchmarks are intended to measure perfor-
mance of shared memory multi-processor systems and heavily exercise the mem-
ory sub-system using parallel programs that are compliant with the OpenMP
v2.x and OpenMP v3.x (http://www.openmp.org) specifications respectively.

In terms of system configurations, the variety of micro-architectures (e.g.,
UltraSparcIII, Intel Itanium, R12000 processors), and compilers (e.g., Sun, HP),
is richer in the case of shared-memory multiprocessors evaluation than it is
for single processor (on which most of the previous modeling techniques focus),
where most benchmark records refer to Intel architectures and compilers (≈ 91%
of the total records). Vice versa, UNIX/Linux operating system (Linux ≈ 48%,
Sun ≈ 24%) is the choice for multi-processors evaluation. Linux, Windows and
Solaris appear in single processor evaluations.

The last dataset concerns performance of the OpenMP version of the Nasa
Parallel Benchmarks [37] subject to changes in compiler settings - inlining set-
tings and AVX vectorization [38] in the Intel ICC compiler - and number of
threads. The target architecture is Intel Sandy Bridge.

Each dataset in Table 1 is log-transformed, i.e., the natural logarithm of each
entry in the dataset is taken.

5.2 Similarity Analysis

This section illustrates clustergrams for some of the datasets introduced in the
previous Section. While a detailed analysis of all the families (clusters) that
are formed using the clustering procedure illustrated in Section 4.1 is out of
the scope of this paper, a comparative analysis of small clusters (each cluster
contains ≈ 16 systems) from the red and the green areas of the clustergrams is
briefly conducted.

http://www.spec.org
http://www.openmp.org
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A first cluster is extracted from the red patch (that indicates completion times
above the average) on the right hand side of Figure 1. System configurations in
this cluster are Intel-based and belong to the families Intel Pentium, Core and
Xeon M. A second cluster is extracted from the green patch (completion times
below the average) toward the right hand side of Figure 1. System configura-
tions in this cluster are Intel-based and belong to the families Xeon E and X.
Clusters group together system configurations based on micro-architectures in
the same entry level. In the case of CFP2006 the clustergram can be roughly
divided in six areas - refer to Figure 2. Similarly to the case of CINT2006, a
comparative analysis of small clusters (each cluster contains ≈ 20 systems) from
the red and the green areas is briefly conducted. A first cluster is extracted from
the red patch toward the right hand side of Figure 2. System configurations in
this cluster are Intel-based and belong to the families Xeon E and X. A second
cluster is extracted from the green patch in the center of Figure 2. System con-
figurations in this cluster belong to the families Core-i3E/EV2 and Pentium G.
Even in this case clusters group together system configurations based on micro-
architectures in the same entry level, however, the comparison of these clusters
among CINT2006 and CFP2006 shows that system configurations based on ar-
chitectures whose performance are above the average for SPEC CINT, correspond
to system configurations whose performance is below the average for SPEC CFP.
At a larger granularity - larger clusters - differences between clusters become
noticeable according to compilers’ type, version and settings as well as system
library levels - e.g., included as a part of different Linux distributions.

The clustergram for SPEC OMP2001 is roughly divided in three areas of system
configurations. As in the case of SPEC CPU, two small clusters (each cluster com-
posed of ≈ 20 systems) from the red and the green areas are briefly analyzed.
System configurations in a red cluster are based on micro-architecture families
powered by Intel Xeon X. System configurations in the green cluster belong to
families powered by Intel Itanium 2, R12000 and Ultra Sparc III. Limited to
the records retrieved from SPEC website, the information from the two clusters
above indicates that system configurations based on Intel Itanium 2 and HP
compilers deliver performance above the average.

5.3 Program Optimization via Similarity

The application of the proposed technique to program optimization concerns
the utilization of performance predictions to predict system configurations that
minimize the completion time of a given program of interest. System selection
corresponds to hardware and compiler settings selection in the cases of SPEC
CPU2006; it corresponds to hardware, compiler and run-time environment set-
tings in the cases of SPEC OMP2001, SPEC OMP2012 and NPB. We use and compare
Linear Regression and Support Vector Regression [24] to construct the model
components Π and Σ. The combined model is indicated as (Π,Σ). Predictions
results are averaged over 500 repetitions of randomly picking k system configura-
tions from a program signature, for each program. Experimental results compare
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Fig. 1. Feature-agnostic Characterization of CINT2006

Fig. 2. Feature-agnostic Characterization of CFP2006

the proposed technique against a random selection of one out of the predicted
system configurations.

Table 2 illustrates MAE and ε for SPEC CINT2006. Table 3 illustrates MAE and ε
for SPEC CFP2006. In both cases the hybrid model reduces the discrepancy of one
order of magnitude - this enforces the concept that both the information about
programs and systems in a feature-agnostic characterization are important to
construct effective predictors. System configuration predictions with the hybrid
model (Π, Σ)SV R are almost perfect, i.e., performance prediction is less than
1% from optimal performance.
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Table 2. MAE and ε for CINT2006

MAE ε
Missing Item (k) ΠLM (Π, Σ)LM ΠSVR (Π, Σ)SVR RND ΠLM (Π, Σ)LM ΠSVR (Π, Σ)SV R

1 1.00 0.43 0.36 0.20 2.52 0.0470 0.0086 0.0076 0.0008
2 1.06 0.53 0.34 0.20 1.82 0.0887 0.0179 0.0139 0.0015
3 1.05 0.54 0.35 0.20 2.05 0.1207 0.0307 0.0232 0.0020
4 1.05 0.57 0.35 0.20 2.19 0.1796 0.0411 0.0216 0.0027
5 0.98 0.53 0.35 0.20 2.19 0.1923 0.0538 0.0271 0.0030
6 1.13 0.54 0.35 0.20 2.04 0.2224 0.0640 0.0377 0.0036

Table 3. MAE and ε for CFP2006

MAE ε
Missing Item (k) ΠLM (Π, Σ)LM ΠSVR (Π, Σ)SVR RND ΠLM (Π, Σ)LM ΠSVR (Π, Σ)SV R

1 1.43 0.75 0.26 0.15 1.40 0.1330 0.0594 0.0463 0.0006
2 1.60 0.82 0.26 0.15 1.36 0.2211 0.1101 0.0521 0.0018
3 1.72 0.87 0.25 0.15 1.28 0.3099 0.1574 0.0076 0.0031
4 1.87 0.95 0.26 0.15 1.26 0.3341 0.2024 0.0541 0.0033
5 2.05 1.11 0.25 0.15 1.41 0.4061 0.2434 0.0604 0.0044
6 2.02 1.07 0.25 0.15 1.27 0.3446 0.1557 0.0171 0.0054

Table 4. MAE and ε for OMP2001

MAE ε
Missing Item (k) ΠLM (Π, Σ)LM ΠSVR (Π, Σ)SVR RND ΠLM (Π, Σ)LM ΠSVR (Π, Σ)SV R

1 1.38 0.76 0.37 0.25 2.19 0.0446 0.0012 0.0020 0.0006
2 1.39 0.76 0.37 0.25 2.19 0.0843 0.0027 0.0047 0.0009
3 1.41 0.74 0.37 0.25 2.19 0.1303 0.0040 0.0073 0.0017
4 1.42 0.75 0.36 0.25 2.19 0.1647 0.0070 0.0101 0.0033
5 1.42 0.77 0.36 0.25 2.21 0.2214 0.0077 0.0115 0.0026
6 1.43 0.77 0.36 0.25 2.20 0.2596 0.0102 0.0155 0.0028

Table 5. MAE and ε for OMP2012

MAE ε
Missing Item (k) ΠLM (Π, Σ)LM ΠSVR (Π, Σ)SVR RND ΠLM (Π, Σ)LM ΠSVR (Π, Σ)SV R

1 0.16 0.44 0.18 0.28 0.82 0.0000 0.0269 0.0000 0.0000
2 0.17 1.76 0.18 0.30 1.54 0.0000 0.1038 0.0000 0.0099
3 0.17 1.63 0.18 0.31 1.52 0.0000 0.1023 0.0000 0.0161
4 0.17 0.61 0.18 0.35 1.28 0.0000 0.1265 0.0000 0.0391
5 0.18 8.77 0.19 0.37 1.75 0.0002 0.1240 0.0000 0.0453
6 0.19 0.59 0.21 0.46 1.74 0.0015 0.0935 0.0000 0.0416

Table 4 illustrates MAE and ε for SPEC OMP2001. Table 5 illustrates MAE and
ε for SPEC OMP2012. As in the case of serial benchmarks, hybrid models reduce
the discrepancy of one order of magnitude. However, both hybrid and model
based on programs signatures are suitable for the purposed of system selection.
System configuration predictions are almost perfect, i.e., performance prediction
is less than 1% from optimal performance.

Table 6 illustrates and compare average MAE and ε, where the average is taken
across programs.

Experiments for the last dataset concern the selection of combinations of com-
piler and run-time settings that, in addition to the baseline optimization level
O3, enable/disable vectorization, i.e., -xavx, assigns an inlining-level and
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Table 6. MAE and ε for NAS-ICC

MAE ε
Missing Item (k) ΠLM (Π, Σ)LM ΠSVR (Π, Σ)SVR RND ΠLM (Π, Σ)LM ΠSVR (Π, Σ)SV R

1 4.68 3.34 0.79 0.40 3.75 0.12 0.09 0.05 0.04
2 3.84 1.87 0.79 0.40 4.30 0.16 0.12 0.06 0.04
3 4.66 1.77 1.21 0.62 3.42 0.17 0.12 0.06 0.04
4 6.57 1.78 0.81 0.41 3.38 0.16 0.13 0.06 0.04
5 2.83 1.59 0.79 0.41 3.32 0.16 0.13 0.06 0.05
6 3.33 1.36 0.96 0.49 3.41 0.15 0.12 0.06 0.05

number of parallel threads, i.e., to configure the OpenMP run-time environment.
The compiler and the architecture under attention are the Intel ICC v13.1 com-
piler and Intel Ivy Bridge Core i7-3632QM respectively. In this case, the hybrid
model (Π, Σ)SV R provides superior performance in terms of predicting compiler
and run-time settings with an average prediction error that is at most 5% from
the optimal selection.

6 Conclusion

This work proposed a new feature-agnostinc technique for program and sys-
tem characterization, performance modeling, prediction and its application to
program optimization. The characterization approach to performance modeling
considers the collection of completion times for some pairs (program, system).
Thereby, the proposed technique is practical, because it does not require feature
selection, neither does it incur in overheads due to feature retrieval. Because of
the above, the proposed technique is suitable to be applied in industry settings
to reduce engineering effort for optimizing software. Such an effort involves to
find rapid solutions to performance studies, involving the discovery of complex
systems settings, that the proposed technique can effectively address.

Experimental results show that the proposed modeling technique equally ap-
plicable to be employed in several compelling performance studies, including
characterization, comparison and tuning of hardware configurations, compilers,
run-time environments or any combination thereof and for both serial and par-
allel programs.
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Abstract. MPI collective communication overhead dominates the com-
munication cost for large scale parallel computers, scalability and oper-
ation latency for collective communication is critical for next generation
computers. This paper proposes a fast and scalable barrier communi-
cation offload approach which supports millions of compute cores. Fol-
lowing our approach, the barrier operation sequence is packed by host
MPI driver into the barrier "descriptor", which is pushed to the NIC
(Network-Interfaces). The NIC can complete the barrier automatically
following its algorithm descriptor. Our approach leverages an enhanced
dissemination algorithm which is suitable for current large scale net-
works. We show that our approach achieves both barrier performance
and scalability, especially for large scale computer system. This paper
also proposes an extendable and easy-to-implement NIC architecture
supporting barrier offload communication and also other communication
pattern.

Keywords: barrier offload, dissemination algorithm, MPI collective
communication.

1 Introduction

Collective communication (barrier, broadcast, reduce, all-to-all) is very impor-
tant for scientific applications running on parallel computers, it has been shown
that the collective communication overhead could take over 80% communication
cost for large scale super computers[1]. The barrier operation is the most common
used collective communication, its performance is critical for most MPI parallel
applications. In this paper, we focus on the implementation of fast barrier for
large scale parallel systems.

For next generation exascale computers, the system could have over 1 mil-
lion cores, a good barrier implementation should achieve both low latency and
scalability[2]. In order to achieve the overlapping of communication and com-
putation, offload the collective communication to hardware could have obvious
benefits for these systems. Present barrier offload technique, like Core-Direct [3],
TIANHE-1A[4], uses a triggered point-to-point communication approach, Core-
Direct software initiates multiple point-to-point communication requests to the
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hardware and sets the request to be triggered by other messages, in this way,
the whole collective communication can be handled by hardware without further
software intervention.

We observe that present barrier offload method may suffer from long delay
and poor scalability. The Core-Direct must push many working-queue-element
for a single barrier operation in each node, e.g., for barrier group with 4096
nodes, each node needs to push 12 work requests to the hardware[5], we observe
that this incurs long host-NIC (Network-Interface-Card) communication.

For next-generation computer networks, its point-to-point communication de-
lay is usually high as its topology usually uses the torus mode. But each chip’s
network bandwidth is high due to the technology advances in serdes. In this pa-
per, we propose a new barrier communication offload approach, which fits well
for the next generation system networking.

Our approach offloads the MPI barrier operation through the following steps:
step1 : each barrier node’s MPI driver calculates the barrier communication

sequence,i.e, the communication pattern performed by the barrier algorithm,
and packs it into the barrier descriptor. All descriptor is packed following the
enhanced dissemination algorithm, while the host does not perform any real
communication during this step.

step2 : the descriptor is sent to the NIC, our approach enables the NIC to
complete the real barrier communication automatically without any further host
intervention, the barrier communication is performed solely by NIC hardware.

step3 : when the NIC completes the whole barrier communication, it informs
the host through the host-NIC communication.

Compared with other approach, our approach only requires the host to push
1 communication descriptor to the NIC in each node, and the hardware can
follow the descriptor to automatically finish the full barrier algorithm. We also
give the NIC hardware architecture that smoothly supports the new barrier
offload approach, due to the simple barrier engine architecture, the NIC can
dedicate more hardware resources to collective communication. From simulation
results, we show that our approach performs better than present barrier offload
technique.

2 Barrier Offload Algorithm

The dissemination algorithm is a common used barrier method[6,7]. It supports
the barrier group with arbitrary number of nodes. The basic dissemination bar-
rier algorithm requires multiple rounds, each round sends and receives one barrier
message from other node. The following round communication can be initiated
only after the previous round has been finished. We observe that in large scale
systems, the network system usually uses the torus topology, the network point-
to-point communication delay is high as it may require many hops to reach the
destination node. For these systems, the basic dissemination algorithm is not
efficient. In most cases, every node takes long time waiting for the source barrier
message in each round.
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To efficiently hide the barrier message delay, our NIC hardware uses an en-
hanced K-way dissemination algorithm to offload the barrier communication.
The modified algorithm is able to send and receive K messages parallel in each
round. Our approach defines a new message type which is used for solely barrier
communication. The new barrier message is very small, so even the NIC does
not support multi-ports parallel message processing, the barrier messages can
be sent and received very fast. The example 2-way dissemination algorithm is
shown in 1.

N ←number of barrier nodes

rank ← my local rank

round← −1
repeat

round← round+ 1
sendpeer1← rank + 3round mod p

sendpeer2← rank − (3round + p) mod p

recvpeer1← rank + 3round mod p

sendpeer1← rank − (3round + p) mod p

send barrier msg to sendpeer1 with round id

send barrier msg to sendpeer2 with round id

receiv barrier msg from recvpeer1 with round id

receiv barrier msg from recvpeer2 with round id

until round ≥ log(3, N)− 1

Fig. 1. 2-way dissemination algorithm

We can prove that the 2-way dissemination algorithm requires total log(3, N)
rounds to complete the barrier for N nodes. The obvious benefit of the new
algorithm is that it can greatly reduce the number of communication rounds,
e.g., for the 2-way dissemination algorithm, the algorithm rounds can be reduced
from log(2, N) to log(3, N), we observe that the whole barrier delay can benefit
from less algorithm rounds.

3 Barrier Algorithm Descriptor

When offloading the collective communication to the NIC hardware, there is one
approach that offloads the full collective algorithm to the hardware. For example,
the collective optimization over Infiniband[8] uses an embedded processor to
execute the algorithm. We observe that this approach will greatly complicate the
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NIC design. The embedded processor is usually limited by its performance, it is
far slow compared with NIC’s bandwidth and the host processor’s performance.

We propose a new approach that does not require the hardware to execute
the full barrier algorithm, instead, the barrier’s communication sequence is cal-
culated by host’s MPI driver, and the hardware simply follows the operation
sequence to handle the real communication. We see that this will lead to simple
hardware design, through which more hardware can be dedicated to the real
collective communication.

For any node in the barrier group, we can see from the dissemination algorithm
that even before real communication, each round’s source and destination nodes
can be statically determined. Our approach leverages each node’s MPI driver to
calculate the barrier sequences and pack it to the algorithm descriptor. After
the descriptor is generated, it is pushed to the NIC through its host interface.
The NIC hardware can follow the descriptor to automatically communicate with
other nodes, after the sequence is completed, the whole barrier is completed. The
host interface may be varied for different systems, for example, the command
queue residents in the host memory, or the descriptor is directly written to NIC
on-chip RAM through PCIE write command.

An example structure of barrier descriptor supporting 2-way dissemination
algorithm is shown in figure 2. The DType field indicates descriptor type, along
with the barrier descriptor, the system may support other collective or point-to-
point communication type, the following descriptor field is interpreted according
to its descriptor type. the BID is a system wide barrier ID, and it is predefined
when the communication group is created, each node’s barrier descriptor for the
same barrier group uses the same barrier ID. The barrier message uses the BID
to match the barrier descriptor for the target node. The SendVec field is a bit
vector, its width equals the maximum barrier algorithm round, and each bit
indicates whether the corresponding round should send out barrier messages to
the target node. The RC1, RC2,.. RC16 shows the number of barrier message
in each algorithm round it should received. only after receiving all the source
barrier messages and sending out all the barrier messages, the NIC barrier engine
proceeds to the next algorithm round. SendPeer indicates the target node ID
for each communication round.

Fig. 2. Example descriptor structure for 2-way dissemination algorithm
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The example descriptor is only 704 bits, but it can hold all the information
to execute 16 rounds of the 2-way dissemination algorithm. In theory, the ex-
ample descriptor can support the barrier group with maximum 43046721 (i.e,
316) nodes. We see that this should be easy to support the next-generation sys-
tems. The host-NIC communication cost is low as it only requires each node to
push 1 descriptor to the node. The barrier descriptor is small compared with
most standard point-to-point message descriptor, for example, the TIANHE-1A
computer’s MP (Message Passing) descriptor has 1024 bits[4].

Each node has its own barrier descriptor, and it should be generated com-
pletely through node’s local information. The target and source rank id for each
barrier round can be easy generated if local process rank and the barrier group
size is known. But for the NIC hardware to perform the real communication, the
NIC should know the target and source node id, our approach leverages the MPI
driver to translate the process rank id to the physical node id. The translation
process should be handled by local node without any communication, so our
approach requires that the rank to node mapping information is saved in each
node’s memory when the MPI communicator group is created.

The barrier message takes the information on BID, RID, DestID to the desti-
nation node. Through these information, the destination node can easily deter-
mine which point it has reached for the algorithm. If the destination node has
not reached the barrier, the barrier messages are saved in temporal buffer and
wait for the destination node’s own descriptor to be pushed to the NIC. When
the NIC has completed the sequence defined in the descriptor, the group barrier
communication is finished. It then informs the host that all other nodes have
reached the barrier.

4 The Hardware Implementation

In this section, we propose an architecture of the NIC that easily enables barrier
communication offload shown in the previous section. The NIC hardware follows
a scalable structure that can be easily extended to support more communication
type. Besides the NIC architecture, we also give the detail design of the barrier
engine.

For our target NIC architecture, the host may generate multiple communica-
tion descriptor, we uses the virtual ring queue as the host-NIC communication
interfaces[9]. The virtual ring queue is like a fifo resides in the host memory. Its
write port is managed by the host or NIC, and the read port is managed by the
other end. This is an efficient way for host-NIC interface which enables large
data communication.

Our system incorporates various types of virtual ring queues, including the
communication descriptor queue, network message receiving queue, the interrupt
queue, the completion event queue. The main function for each type queue is
shown in table 1.

Besides the barrier descriptor, our system supports standard communica-
tion descriptor, including the MP descriptor for short message point-to-point
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Table 1. NIC virtual ring queue type and its function

communication
descriptor
queue

The host initiates NIC communication through this queue, each
descriptor defines the information needed to perform the commu-
nication, for example, the target node, source memory address
etc. Modern NIC usually supports the MP and RDMA descrip-
tor, our system enables new collective barrier communication.
The NIC fetches the descriptor from the queue through DMA.

network mes-
sage queue

When NIC receives message from network, it saves the messages
in this predefined queue, the host will fetches the message from
it. This queue is usually used for point-to-point short message
communication

interrupt
queue

the NIC report detailed interrupt information through this queue,
it stores various interrupt information, e.g, the interrupt type,
interrupt source etc. When this queue is not empty, the NIC
sends the hard interrupt command to host, when the host is on
the interrupt processing task, it reads interrupt queue for further
processing.

completion
event queue

Our system can also uses the event to inform the host that NIC
communication is completed, this queue is used when the host
process is loop waiting for the completion of of the communica-
tion. NIC writes a completion packet to this queue when some
communication task has finished, and the host can fetch from this
queue to determine which communication request has finished.

communication, RDMA (Remote-Direct-Memory-Address) descriptor for point-
to-point large data block copy. The descriptor can also be extended with other
type of collective communication mode, we show that our NIC architecture can
be easily extended with new communication mode.

4.1 NIC Architecture

The schematic NIC architecture is shown in figure 3, it mainly includes the
following components.
DQM(Descriptor Queue Management): this module is responsible for fetching
the communication descriptor from host memory. Depends on the descriptor
type (MP, RDMA, Barrier), it dispatches the descriptor to the target processing
engine. When host has pushed new descriptors to the queue, it writes a predefined
NIC register to inform the NIC that new descriptor is valid in the queue. The
NIC then fetches the descriptor.
BE(Barrier Engine): the module receives the barrier descriptor dispatched by
DQM and automatically perform the barrier communication with other nodes.
It follows the descriptor to perform the real barrier communication. From our
experiences that the BE is very simple and requires small chip resources, and
this permits more BEs to be instantiated in order to support multiple parallel
barrier requests. BE can handle the unexpected messages that is received from



220 S. Wang et al.

Fig. 3. The NIC architecture supporting collective communication

network, in this case, the host has not reached the barrier, so the source barrier
message does not have the matching descriptor.
WA(DMA Write Arbiter): in NIC, there are many sources that want to DMA
access to the host memory, for example, each communication engine may write
the receiving data to host memory, the RDMA engine may read and write host
memory. The WA module is responsible for arbitrating the DMA requests to host
memory. Through this module, it hides the communication details of the host-
NIC, which may be the PCIe, QPI depending on implementations. To support
virtual address, this module is also responsible for virtual-to-physical address
translating.

The NIC also incorporates other communication engines, for example, the MP,
RDMA engine, which is responsible for processing MP and RDMA descriptor.



Scalable NIC Architecture to Support Offloading of Large Scale MPI Barrier 221

The network interfaces are the implementation of serdes. Each NIC can incorpo-
rate more channels, and each channel is independently managed by host driver.
This paper focuses on the barrier communication, we will not give further details
on these modules.

4.2 Barrier Engine Architecture

In this section, we show a simple BE architecture. Our system put the complex
computation to the host, when the barrier communication sequence is generated,
the hardware can dedicate its logic to pure communication, in this way, we keep
the BE’s design simple.

For the barrier communication, a complicated case is to deal with different
processing arriving patterns. The timing difference between collective commu-
nication group nodes can have a significant impact on the performance of the
operation, it requires the hardware to be carefully designed to avoid performance
degression.

To handle this problem, BE leverages the DAMQ (Dynamically-Allocated
Multi Queue)[10] to hold incoming barrier messages. The packets stored in this
queue can be processed out of order. If the barrier reaches the target node who
has not reached the barrier, BE saves the packets in the DAMQ buffer.

We use a simple barrier message handshake protocol to barrier between two
nodes, shown in figure 4. In the barrier descriptor, if the recvpeer is valid, this
indicates that local node should wait the source node to reach barrier; if the

Fig. 4. Barrier handshake message flow
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sendpeer is valid, this indicates that local node should tell the destination node
that it reaches the barrier. If the barrier messages from sendpeer reaches the
target node, but the target node has not reached the barrier, the barrier messages
are saved in a DAMQ buffer, then the target barrier engine sends back the
BarrierRsp message. On receiving the BarrierRsp message, the source node
knows that the target node is sure to get the message. When DAMQ buffer
is full, the target node nacks the source node with BarrierNack message, on
receiving this message, the source node will resend the barrier message after a
predefined delay.

When the barrier descriptor reaches the NIC, the barrier engine will first
check its local DAMQ buffer to see if there are any previously reached barrier
messages. If there are any, BE processes these messages immediately.

Note that each barrier message takes the information on the barrioud id BID,
through which it is matched with destination node’s descriptor. If the message’s
BID equals the descriptor BID, the source node and target node are from the
same barrier group. The BID could be derived from the MPI communicator
group id, it is required that all the nodes on the same barrier group agree on the
BID. This BE engine supports multi barrier run in parallel, with each barrier
uses different ID.

The structure of the barrier engine is shown in figure 5. The logic is separated
by the barrier message sending (TE) and receiving module (SE). The SDQ and
HDQ are descriptor queue. SDQ is resident in host memory, and HDQ is resident
in on-chip RAM. The HDQ is mainly used for fast communication and fully
controlled by host MPI driver. The OF is the fetching module which reads from
descriptor queue and dispatches the descriptor to the barrier engine.

The SE module is responsible for receiving network barrier message that
comes from sendpeer. The barrier engine saves the messages in the DAMQ buffer;
To reduce hardware requirement, all barrier group messages are saved in one
buffer, and the DAMQ buffer can be handled out of order. When the receiving
DAMQ receives one message, it directly sends back the rsp reply to the sender.
For local node, it does not need to known the barrier message is from which
node, so the barrier descriptor only holds the number of messages it should

Fig. 5. Barrier engine architecture
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received. The SE module uses a booking table to holds the number of source
barrier messages for each round. Because each node may reach the barrier in the
arbitrary sequence, the receiving messages may reaches local node out of order,
so current receiving round id is RID, where from round 1 to RID-1, all barrier
messages have received.

The TE module is responsible for sending barrier messages to target nodes
following the sequence defined in the descriptor. For algorithm round i, barrier
messages to node sendpeer are sent if: the SE module has received all barrier
messages before round i, and the sendpeer is valid for round i. The barrier
messages for current round are sent in pipeline before their responsive messages
are received. If target node replies with nack message, the barrier message is
resent after a pre-configured delay.

TE and SE are running in parallel and independently. Because the TE module
needs to know current receiving round, SE module directly gives this information
through module ports.

From our experience that the barrier engine is very simple, this permits
more engines can be instantiated in one NIC. This enables more flexible usage
for the MPI driver, for example, the MPI3.0 supports non-blocking collective
communications[11], so one communication group can use more than one barrier
engine to handle parallel barrier requests.

5 Experiments

We implemented the barrier engine using the SystemVerilog language, and inte-
grated the barrier engine module into TIANHE-1 NIC’s RTL model. TIANHE-
1’s point-to-point communication engine uses the descriptor for MP (Message-
Passing) and RDMA (Remote-Direct-Memory-Access)[4], and we add the new
barrier descriptor type. From our experiences that the barrier engine is easy to
design, we model the barrier engine with less than 6000 SystemVerilog code lines.

The new NIC model is simulated by synopsys VCS simulator. We test the
barrier latency for different sized barrier. To simulate large scale barrier groups,
we designed a simplified NIC model using SystemVerilog language, the simplified
model requires less simulation resources and runs more fast, yet its processing
delay is similar with the real RTL model.

To simulate the network, we use a general model which route point-to-point
message to the target node, the point-to-point delay is calculated based on the
number of hops for the 2D torus network.

5.1 Barrier Latency

We compare the barrier communication delay between our approach and the
Core-Direct approach, the simulation result is shown in figure 6.

We see from the simulation that when the point-to-point delay are high com-
pared with message startup time, the barrier engine takes long time waiting for
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Fig. 6. Barrier communication delay

the source barrier message, this situation gets worse when point-to-point delay
increases. Increasing the K can benefit from more message overlapping. suppose
the point-to-point delay is l, the barrier message sending time is ts, we see that
the total barrier delay should be continually reduced if the following condition
holds.

K ∗ ts < 2 ∗ l (1)

We also see that the reduced barrier rounds have obvious impact on total
barrier delay. Our approach also shows better scalability, the speedup over Core-
Direct approach increase as the barrier group size grows. For the Core-Direct
approach, although the dissemination algorithm can be executed, yet the host-
NIC communication cost is very high. The Core-Direct approach uses basic MP
message to carry the barrier info, so the message startup time is higher than our
approach. These limitations can greatly hurdle the barrier performance.

5.2 Barrier Delay Compared with Software Only Approach

In this section, we test the average barrier speedup over the software only ap-
proach. The software approach is simulated by modifying the timing parameters
collected from the real hardware. The software only barrier delay is compared
with our approach, shown in figure 7.

Our barrier offload approach gets obvious delay reduction compared with
the software only approach, and shows much better performance scalability.
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Fig. 7. NIC barrier offload speedup over software only approach

For the barrier group with 128 nodes, our NIC offload approach is 7.2x faster than
the software only approach. The performance benefits come from the following
reasons:

1. The software approach uses standard MP message for barrier communica-
tion, we see that the MP packet is too large for barrier communication, it
incurs long NIC processing delay.

2. The host-NIC communication cost is high, it is even worse than the Core-
Direct approach which uses the triggered point-to-point operations. For each
point-to-point message, the host needs to push the MP descriptor to the NIC,
and waits for the NIC’s completion events.

3. The offload approach permits more communication and computation over-
lapping, the performance benefits may depends on the applications.

6 Conclusion

We propose a new barrier offload approach, with the new hardware-software
interfaces, the barrier engine is . The NIC hardware follows the descriptor to
executes the complex K-way dissemination algorithm. Simulation results show
that our approach reduces barrier delay efficiently and achieves good compu-
tation and communication overlap. From our experiences, the barrier engine is
easy to implement and requires less chip resources, so the NIC can dedicate
more logic for real communication, this is important for next-generation super
computer, where each NIC must support more processor threads.
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Abstract. Nowadays, Wireless Sensor Networks (WSNs) are widely used in 
different aspects of human life such as agriculture, health care systems, traffic 
engineering and so on. By improving WSN’s design and applicability, still due 
to energy limitation in the sensors, the main concern is about the lifetime of 
sensors. Beside hardware aspect, establishing some efficient techniques for data 
sensing, processing and transition in the sensors can increase WSN’s lifetime. 
In this paper, a new optimized routing protocolcalled OLBHC (Optimal Load 
Balancing Hierarchical Clustering) is designed. In contrast to some traditional 
methods such as LEACH, OLBHC could decrease the energy consumption in 
the sensors by utilizing the equalization method. In OLBHC, a Flag matrix 
which stores cluster head nodes’ connection status is used and then an optimiza-
tion algorithm is applied for selecting the best clusters in the network based on 
the energy consumption. The simulation results prove this proposed approach’s 
efficiency because by applying OLBHC the average lifetime of nodes is about 
160% longer than LEACH and almost all of the nodes are dead in LEACH 
when the first node begins to die in OLBHC. 

Keywords: wireless sensor networks, equalization, clustering, hierarchical 
routing, matrix. 

1 Introduction 

Wireless sensor networks (WSNs) are defined as wireless networks consist of ran-
domly distributed tiny nodes through self-organization [1]. These tiny nodes are  
integrated with sensor unit, data processing unit and communication unit. Currently 
wireless sensor networks have been actually used in many areas such as smart home, 
military reconnaissance and environmental monitoringand so on. Their development 
and application will give human far-reaching implications in various fields of life and 
production[2]. 

Owing tolimitations of hardware and software in the wireless sensor networks, the 
sensor nodes can’t providea sufficient amount of energy for computing, storage and 



228 T. Wang et al. 

communication functions,permanently [3]. Therefore, it’s necessary to in-depth re-
search about routing protocols in wireless sensor networks to optimize the distribution 
of nodes, increase the lifetime of a single node and eventuallyachieve the goal to ex-
tend the life cycle of the entire wireless sensor network[4]. 

The main function of the routing protocol is to find the optimal path of data trans-
mission between nodes [5]. Routing protocols can be divided intoplanar routing pro-
tocolsand hierarchical routing protocols according to the network’s topology, the 
status and functions of each node[6]. Planar routing protocolsconsist ofa sink node, 
and other nodes in the network can only communicate with the sink node, and they 
have the same status and functions. In this protocol, all of the nodes cooperate with 
each other to do data processing and transmission in the network[7]. Hierarchical 
routing protocol adopts a hierarchical management mechanism.Its main idea is divid-
ing the whole network into a plurality of relative small collection of network 
nodes.Each collection is calleda cluster[8]. Normally each cluster has a node which 
iselected as the cluster head according to certain rules.The cluster head is used to 
manage or control the collection of nodes.Apart from the cluster head node, other 
nodes within the cluster are called member nodes.In the cluster, the head node is re-
sponsible for collecting the data which are gathered by member nodes and doing ag-
gregation. Finally, it sends theresults to the base station or sink node. 

The network which is implemented by the planar protocol is simple and has a good 
robustness. But sink node has excessive communication and computing pressure, 
leading to the rapid depletion of the battery energy,and eventually demise of sink 
node will result to destruction of the entire network.Hierarchical routing protocol put 
forward the idea of data fusion in cluster heads, reduces power consumption of sink 
node and decreases the transmission distance between each peer nodes. Finally, it 
greatly improves network stability and energy efficiency.Therefore,hierarchical 
routing protocol is more advantageous than planar routing protocol [9]. Shown in 
Figure 1 is a wireless sensor networkbased on hierarchical routing protocol.There are 
five clusters in the network, the sink node communicate with five cluster heads, each 
cluster head node does data transmission with three cluster members. 

 

Fig. 1. Awireless sensornetworkbased on hierarchicalrouting protocol 
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2 Related Works and Motivation 

Current hierarchical routing protocols are mainly implemented by clustering-based 
[10], chain-based [11] and tree-based [12] routing protocols. This paper focuses on 
the clustering-based hierarchical routing protocol. Heinzelman et al. [13] proposedthe 
LEACH.It is a low energy adaptive clustering hierarchy protocol. LEACHis the most 
typical clustering-based hierarchical routing protocol. The basic idea is to select the 
cluster head randomly in the form of round. Then energy load of the entire network 
will be distributed equally between all of the nodes. Therefore, it can reduce energy 
consumption and prolong the network’s lifetime. In order to maximize network life-
time andform efficient clusters, Younis [14] proposed Hybrid Energy—Efficient Dis-
tributed(HEED) cluster protocol. This protocol is based on the primary and secondary 
parameters which extend the lifetime of network by distributing energy to the entire 
network. The HEED’s foundation istime synchronization of the entire network.The 
protocoldivides all the nodes into several levels according to remained energy level 
by proportion P. Higher-level nodesconsider themselves as the cluster heads and an-
nounce other low-level nodes to join thecorresponding clusters by sending a broadcast 
message. Based on the dataaggregationscheme, Chatterjea et al.[15] proposed the 
CLUDDA (Clustered Diffusionwith Dynamic Data Aggregation) which performs data 
aggregation in unfamiliar environmentsby query definitions. The query definitions 
describe the operations that need to beperformed on the data components in order to 
generate aproper response. CLUDDA combines directed diffusion [16] with cluste-
ringduring the initial phase of query propagation. Theclustering approach ensures that 
only cluster heads areinvolved in message transmissions. This techniqueconserves 
energy, since the regular nodes remain silentunless they are capable of servicing a 
request. 

However, there are some disadvantages in the previous works: 

• LEACH is a self-organized protocol to form clusters in the network. The cluster 
headsare randomly generated. Hence, nodes may be repeatedly selected as the clus-
ter heads. In this case the nodesthat are far away from cluster heads consume mo-
reenergy.The phenomenon of not balanced energy consumption in the network will 
appear. 

• Energy load imbalances [17] between the cluster heads. In fact, energy consump-
tion ofcluster heads is mainly reflected in two aspects: (1) the cluster heads which 
are far from the sink node require more power to send data, thus expend more 
energy; (2) there are more nodes in the cluster, so the cluster head consumes more 
energy. 

• The scatter node is defined as a cluster head node which doesn’t haveany cluster 
member. As a result when the base station is far from the scatter nodes more power 
is necessary to send the data. In addition, when the scatter nodes arecommunicating 
separately, data aggregation can’t be done completely, leading to increasing the to-
tal energy consumption of the network. 

• Nowadays security is one of the main concerns in WSNs. However, most of the 
previous works did not consider security beyond energy efficiency. 
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To overcome these disadvantages, firstly, through clustering algorithm, the hierar-
chical clustering routing protocol based onoptimalloadbalancing in Wireless Sensor 
Networks (OLBHC) which is proposed in this paper, produces cluster heads accord-
ing to certain rules.By this manner, the same node will not berepeatedly selected as 
the cluster head node and then avoid the imbalance of energy consumption. In addi-
tion, each cluster head in the network is allocated, roughly, the same number of 
nodes, thereby, eliminating the imbalance of load. And then,as cluster heads are allo-
cated, the protocolmakes a full coverage of network, avoiding the generation of scat-
ter nodes.Finally, to consider security issue, encryption and decryption algorithms are 
applied to the experiments. The cluster member nodes encrypt the sensing date by 
encryption algorithm; after receiving the data from cluster members, cluster heads 
decrypt the packets and encrypt all data and then send encrypted data to the sink node. 

The clustering algorithm in the OLBHC is an equalization algorithm that expends 
node energy evenly, reduce network energy consumption and prolong the demise time 
of a single node so that extendlife cycle of the entire network. 

3 Protocol Design 

3.1 Prior Knowledge 

3.1.1 LEACH Based on the "Round" Thinking 
In this paper, OLBHCprotocol is based onthe "round" thinking of LEACH. In fact,in 
each round the most appropriate nodes are selected as the cluster heads.After deter-
mining the structure of each cluster, the cluster members send perception information 
to the cluster headsand consume energy.After receiving information and perform 
corresponding data aggregation algorithm, cluster heads consume a certain amount  
of energy. The concrete steps of LEACH based on the "round" thinking are as  
follows: 

• Setting a threshold T(n), then each node selects a number, randomly, from 0 to 1.If 
the random numberofthe current round is smaller than T(n), then the node is se-
lected as the cluster head node. 

• When a node is selected as the cluster head, it will take the initiative to send a 
broadcast message to the network. Other nodes selectthe appropriate cluster head 
which has the strongest signal according to the information they receive, and 
jointhe cluster where the cluster head is in. 

• Finally, the member nodes, in their own time slot, send data to the cluster 
heads.The cluster headsfuse collected data integration, and send the results to the 
sink node. Afterwards, LEACH reselects the cluster heads andenters a new round 
of circulation. 

3.1.2 Advanced-Node 
The proposed hierarchical clustering routing protocol based onoptimalloadbalanc- 
ing in Wireless Sensor Networks (OLBHC) in this paper adds the concept of  



 Hierarchical Clustering Routing Protocol Based on Optimal Load Balancing 231 

“advanced-node”. The so-called advanced-node is a node that has more initialenergy 
than ordinary nodes in the network. 

3.1.3 The Flag Matrix 
OLBHC introduces the concept of Flag matrix.The matrix is defined as follows: the 
rows and columns represent the ID of corresponding nodes in the net-
work.Forexample,as shown in the Table 1, when the cell which corresponds to row i 
and column j is equal to 1, then node i and node j are interconnected. 

Table 1. The Flag matrix 

 1 2 3 4 5 6 7 8 9 

1 0 0 0 1 0 0 0 0 1 

2 0 0 0 0 0 0 0 0 0 

3 0 1 0 0 0 0 1 0 0 

4 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 1 1 0 0 0 

9 0 0 0 0 0 0 0 0 0 

Table 1 shows a 9*9 Flag matrix in which the number 9 corresponds to the total 
number of nodes in the network.In the matrix when cell (i, j) = 1,(i, j=1,…,9),then 
node i is the cluster head and node j is the cluster member. Therefore, the correspon-
dingwireless sensor network of theFlag matrix hastotally three clusters, the cluster 
heads are nodes 1,3 and 8, separately. Figure 2 identifies all of the members in the 
corresponding clusters. 

 

Fig. 2. The proposed topology based on the OLBHC protocol 
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3.1.4 The Flagdis Matrix 
The OLBHC protocol also defines a matrix named Flagdis which is corresponding to 
Flag matrix.The matrix stores the distance between each peer of nodes. As shown in 
Table2, the value of the first row and the fourth column is 3.05, it means that the dis-
tance between the node 1 and node 4 is 3.05. 

Table 2. The Flagdis matrix 

 1 2 3 4 5 6 7 8 9 

1 0 0 0 3.05 0 0 0 0 4.16 

2 0 0 0 0 0 0 0 0 0 

3 0 2.93 0 0 0 0 6.77 0 0 

4 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 8.96 9.71 0 0 0 

9 0 0 0 0 0 0 0 0 0 

3.2 OLBHC Overall Process 

The overall process of the hierarchical clustering routing protocol based onoptimal-
loadbalancing in Wireless Sensor Networks (OLBHC) is shown in Figure 3. In this 
flow chart, r represents the number of rounds.During every round, OLBHCadopts a 
new clustering algorithm which is presented in this paper to select cluster heads and 
determine the appropriate members of cluster heads.Unlike the LEACH protocol, 
the determinationof cluster members is not based on the strength of signal, but on 
the principle of balanced allocation, the specific methodwill be covered in the  
following. 

After selecting the cluster heads and determining the primary corresponding cluster 
members, there may be a long distance between a node and its cluster head, so cluster 
head of the nodeswill be selected again. After determining the structure of cluster, the 
OLBHCcycles this processtentimes and electsthe optimal result. Afterselecting the 
optimal structure for the clusters, cluster headswill sendinformation to theirs cluster-
members, in the process, the cluster heads will consume a certain amount of ener-
gy.Likewise, after receiving a message bycluster members,sending their perception 
information to the cluster head nodes also need to consume energy.The cluster head-
saggregate the information which are collected, and thensend the results to the sink 
node.This process alsoneeds to expendsome energy. 
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Fig. 3. The flow chart of OLBHC protocol 

3.2.1 Cluster Nodes Selection 
The experiments show that if in each round the advanced-nodes are all selected as the 
cluster heads, they will be destroyed in a short time which decreases the lifetime of 
the network. Traditional LEACH protocol does not take full advantage of the charac-
teristics of advanced-nodes.Based on the experiments,after destruction of all ordinary 
nodes, finally, only a few advanced-nodes will work. 

Suppose the total number of nodes in the wireless sensor network is n, the number 
of the demise nodes is d, and the percentage of advanced-nodesis a. Select x nodes  
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from the advanced-nodes, randomly, as part of cluster heads.Select y nodes from  
the remaining ordinary nodes, randomly, as the remaining part of cluster heads.  
For determining the cluster head nodes,x and ycould be obtained by the following  
equations: 

 4  (1) 

 √  (2) 

3.2.2 Determining the Corresponding Cluster Members 
For determining the corresponding cluster members, there are several steps as  
following: 

• Step1: Calculate the Euclidean distance [18] between all of the n nodes in the net-
work.Suppose that there are two nodes A and B, their coordinates are (X1, Y1) and 
(X2, Y2), respectively.The Euclidean distance EU between A and B is shown in 
Equation 3. Then all of EU distances will be stored in the Matrix D. 

  1 2 1 2  (3) 

• Step2: Calculate the CN value for defining the number of members for the clusters 
in the network. 

 √ 1 (4) 

• Step3: Based on the CN value from previous step, construct the Flag matrix and 
Flagdis matrix from matrix D. Suppose thatthe node i is the cluster headin matrix 
D. Therefore, row iwill be looked at to identify cluster members. If CN = m, it 
means there are m cluster members in the row i. Then, choose m minimum values 
in form of cell(i,j). Finally, in the Flag matrix and Flagdis matrix, set the corres-
ponding cell(i, j) to 1 and the cell(i, j)’s value, respectively. 

• Step4: Denote the dead nodes. Then set all of the cells in the corresponding col-
umns in the Flag matrix and Flagdis matrix to 0. So because in the corresponding 
rows, the number of cluster members is lower than CNvalue, based on the differ-
ence with CN value in each row, choose suitable number of members which have 
the lowest values among other candidate members. 

• Step5: Add the values of all the columns in the Flag matrix. Then, make two new 
matrices called Judge0 and Judge1. Add the columns that their sum values are 
greater than 1 into Judge1 matrix, and add the columns that their sum values are 
equal to 0 into Judge0 matrix. Judge1 matrix stores the nodes which areconnected 
with multiple cluster heads, and Judge0 matrixstores the nodes which are not con-
nected to any node. 
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• Step6: Empty Judge0 matrix and Judge1 matrix through a certain method. The 
specific processing method can be ascertained from the following code: 

Empty Judge0 and Judge1 Matrixes Method 

1. G1Node = Judge1(1); 
2. G1CCol = FIND(Flag(:, G1Node) == 1); 
3. MAXValue = Max(D(G1CCol(:), G1Node)); 
4. MAXCol = FIND(D(:, G1Node) == MAXValue); 
5. Flag(MAXCol, G1Node) = 0;      
6. Flagdis(MAXCol, G1Node) = 0; 
7. MINValue = MIN(D(MAXCol, Judge0(:)));  
8. MINRow = FIND(D(MINValue, :) == MINValue);  
9. Flag(MAXCol, MINRow) = 1;  
10.Flagdis(MAXCol, MINRow) = D(MAXCol, MINRow); 

Fig. 4. Empty Judge0 and Judge1 Matrixes Method. Firstly, select the first node of Judge1 
anddetermine cluster nodes connected withG1Node. Secondly, determine the longest distance 
and determine the longest cluster head connected with G1Node. Thirdly, set the mark whether 
G1Node and MAXCol are connected to 0 and determine the shortest distance connected with 
MAXCol cluster head. Finally, determine the shortest cluster member connected with MAXCol 
and set the mark whether MAXCol andMINRow are connectedto 0. 

3.2.3 Further Optimization in the Structure of Clusters 
For further optimization inthe structure of clusters, there are several steps as  
following: 

• Step1: Find the maximum valuein the Flagdis matrix. And then identify its corres-
ponding row and column, call r and c. This step can determine the longest path in 
the network which consumes the largest amount of energy. After that, set the cor-
responding cell in the Flag matrix and Flagdis matrix to 0. 

• Step2: Calculate the minimum value in the column c of matrix D in corresponding 
to the rows which are cluster heads and based on its position , (i, j), in the matrix 
D, set corresponding cell in the Flag matrix and Flagdis matrix to 1 and its value, 
respectively. 

• Step3: Calculate the maximum value in the rowi of Flagdis matrix. Then, write 
down the position of the value and set it to 0 in the same position inFlag matrix 
and Flagdis matrix. 

• Step4: Calculate the sum of all values in the Flagdis matrix.If the sum value is 
greater than the previous summed value in the Flagdis matrix, then replace the 
Flag matrix and Flagdis matrix with previous ones. 

• Step5: Skip to step (2) until the cycle index is √ . 
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• Step6: Skip to step (1) until the cycle index isRN,RN is determined by equation (5). 

 2 3  (5) 

4 Experimental Results 

This research used MATLAB to simulate the proposed protocol (OLBHC) in the 
wireless sensor network. The simulation environment is an area of 100*100m2where 
100 nodes are randomly distributed. Totally there are 100 nodes which 10 of them are 
advanced-nodes with 1J energy and other ordinary nodes have 0.5J energy. The coor-
dinate of sink node is (50, 50). 

Figure 5 shows the cluster distribution in one of the roundsin traditional LEACH 
protocol. The empty circles represent ordinary nodes, and the plus signs represent 
advanced-nodes.As it is obvious, in the Figure 5-a there is a cluster which has 15 
members, in contrast to some clusters with only one member. In the figure 5-b, there 
are two clusters with more than 30 nodes, versus, some clusters which have only three 
members.In the figure 5-b, there are two clusters with more than 30 nodes, versus, 
some clusters which have only three members. Figure 5 shows that the traditional 
LEACH protocol has a lot of randomness when it selects the cluster head nodes. The 
cluster head node will consume too much energy, when it selects too many nodes as 
cluster heads. The individual cluster head node will connect excess cluster members 
when the protocol selects too little nodes as cluster nodes, in this case there will be a 
substantial of energy consumed. 
 

 

Fig. 5. Thecluster distribution of traditional LEACH protocol 

 

(a) (a) 
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Figure 6 shows the cluster distribution of the hierarchical clustering routing proto-
col based on optimal load balancing in Wireless Sensor Networks (OLBHC) which is 
proposedin this paper. The number of cluster heads is calculated according 
to √ . In figure 6, the total number of nodes is 100. The number of dead nodes 
is 0.Therefore, there are10 clusters. Every cluster contains 10 nodes, equally. Each 
node connects to the cluster head with an optimal distance. Therefore, the number of 
clusters selected in each round will not change frequently. Consequently, the OLBHC 
protocol ensuresthat all of the nodes in the network consume a reasonable amount of 
energy. 

 

Fig. 6. The cluster distribution of OLBHC protocol 

Figure 7 shows the number of active nodes intraditional LEAHC protocol and the 
hierarchical clustering routing protocol based on optimal load balancing in Wireless 
Sensor Networks (OLBHC). The experiment results indicate that nodes begin to die-
from 942throundin the traditional LEACH protocol. There were only 15 activenodes at 
1420thround. At the same time, there are nodes that begin to die at 1520thround and 
there are 20 nodes survival until 1700th round. From 942th to 1520th round, in the tra-
ditional LEACH protocol nodes start to die dramatically, in contrast to the OLBHC 
protocol proposed in this paper which increases the efficiency of network immensely. 
The simulation results show that the average lifetime of the nodes in OLBCH is  
about 160%longer than LEACH and then OLBHC greatly extends the lifetime of  
network. 

Figure 8 shows the number of active nodes intraditional LEAHC protocol without 
applying any security mechanism, OLBHC protocol which applied security mechan-
ism and OLBHC protocol without applying security mechanism. The result shows 
that the lifetime of the OLBHC protocol which uses the security mechanism is much 
longer than traditional LEACH protocol. 



238 T. Wang et al. 

 

Fig. 7. The number o

Fig. 8. The number of 

f active nodes in LEACH protocol and OLBHC protocol 

active nodes in LEACH, OLBHC and OLBHC (security) 
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5 Conclusion and Future Work 

In this paper, a new routing protocol is proposed in the Wireless Sensor Network 
called OLBHC. It aims at extending the lifetime of the network by providing a new 
clustering algorithm. In fact, this proposed protocol selects a fixed number of nodes as 
the cluster heads at each round and then uses a Flag matrix representation for connec-
tion status of nodes. In contrast to traditional methods, it applies the idea of equaliza-
tion to construct appropriate clusters for avoiding the generation of scatters.The  
simulation results show this protocol’s efficiency because it can extend the lifetime of 
the network about 160 percent more than other traditional methods.  

The OLBHC protocol proposed in this paper has been greatly improved with re-
spect to traditional protocols, but still it selects the cluster heads randomly. The future 
work should consider a certain algorithm to select more appropriate cluster heads 
according to the physical location and the residual energy of the nodes in the network. 
In addition, bandwidth and fault tolerance are very important issues in WSNs. Next 
research will be about developing a new protocol to consider them.  
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Abstract. Fast multicore simulators are extremely useful in evaluating design 
alternatives and enabling early software development. Among the state-of-the-
art multicore simulators, Simics is a very popular used one both in academia 
and industry. It has a powerful debugging system, and also provides an accele-
rator to support multithreaded or distributed simulation. However, this kind of 
parallel mechanism mainly aims at speed up distributed systems. It is not suita-
ble for the shared-memory multicore systems which are much more commonly 
used. In this paper, we propose a novel parallel mechanism to improve the si-
mulation speed of shared-memory multicore systems. More importantly, our 
approach is compatible with other optimizations and exist debugging systems 
used in Simics. Experimental results show that our parallel approach achieves 
an average speedup of 9.6× (up to 12.2×) when running SPLASH-2 kernel on a 
16-core host machine. 

Keywords: Parallel Simulator, Multicore Simulator, Debuggable. 

1 Introduction 

Instruction-Set Simulator (ISS) is an essential system-level design tool for both archi-
tecture design and software development. With the simulators, software developers 
can validate their programs without the need of real target machines and thus signifi-
cantly shorten design turnaround time. Also, the transparency and debuggability of 
the simulator can help developers quickly converge on design problems. After years 
of development, the single-core IIS is close to be ideal, i.e. accurate and fast. Howev-
er, multicore architecture gradually replaces single-core architecture due to the ad-
vance in semiconductor manufacturing process. As a result, multicore simulator is 
becoming more and more important.  

Among the state-of-the-art multicore simulators, Simics [1] is a proven, stable, and 
efficient simulator framework, which has been very extensively used in both acade-
mia and industry. It has a large library of simulated components available for users to 
use to construct system modeling, which reduces the time to build a model of a par-
ticular system. Examples include the X86, ARM, SPARC V8/Leon2, PowerPC, and 
other processors. There are also models of common system components such as serial 
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ports, SDRAM memories, FLASH memories, and system controllers. Various buses 
and networks are available, including MIL-STD 1553, ARINC 429, and Ethernet. 
Simulated buses and networks can be connected to real-world networks for mixed 
simulations involving both virtual and physical nodes. 

Simics also offers a convenient software test and debug environment, with features 
like instant stop of execution, scripted test cases, full determinism, checkpoint and 
restart, as well as reverse debugging and reverse execution. As a simulator, Simics 
offers complete control over the simulated computer systems, enabling precise injec-
tion of faults and scripting of tests. Faults can be injected both inside devices, memo-
ries, and processors, and on the buses and networks connecting them. Simics includes a 
full Python language interpreter, enabling powerful scripting.  

Simics fully supports simulation setups containing multiple cores, multiple chips, or 
multiple boards, all within a single Simics process running on a single workstation. 
Different types and speeds of processors can be freely mixed if desired, with no limita-
tions. It is possible to simulate both a central computer unit and the payload computers 
of a satellite system within a single simulation, if that is desired.  

In order to improve the simulation speed, Simics provide a tool named Simics Acce-
lerator [17]. It takes advantage of multicore hosts to improve the execution speed of 
large target system simulations. However, Multithreading is only supported for models 
marked as thread-safe, using a configuration partitioned in simulation cells [18]. A cell 
is a group of configuration objects that are tightly connected to each other, and they 
should never share memory. Thus in shard memory multicore target systems, core and 
memory have to be put into different cells in order to use multithreading technique. 
However, memory access operations usually occupy more than 1/3 of the total instruc-
tions. This leads to a very inefficient speedup because the interactions between core 
and memory are very frequent. The multithreaded version may execute even slower 
than the sequential one. Obviously, the parallel mechanism of Simics Accelerator 
mainly aims at speed up distributed target systems. It is not suitable for the shared-
memory multicore systems which are much more commonly used. 

The inefficiency we just mentioned heavily affects the use of Simics, which is a 
highly-debuggable multicore simulator. It is crucial for Simics to efficiently simulate a 
shared-memory multicore target system in parallel. However, there are several chal-
lenges to do that: First, the module scheduling mechanism is controlled by Simics and 
cannot be changed because Simics is not open source. Second, the powerful debugging 
system is very useful and should be keep untouched when parallelizing Simics. Third, 
Simics already provides a lot of optimization methods to improve the simulation speed, 
and our parallel mechanism should be compatible with them.  

In this paper, we propose a parallel mechanism to further improve the performance 
of shared-memory multicore simulation in Simics. The main contributions of this paper 
include:  

(1) We present a novel parallel mechanism for shared-memory multicore system 
simulation in Simics, and get a considerable performance improvement compared 
with traditional method. As far as we know, this is the first effective solution for 
this problem. 

(2) We support the debugging methods provided by Simics when simulating multi-
core system in parallel. This is very critical for software developers.  
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(3) Our parallel approach is compatible with the accelerate methods, such as distri-
buted simulation and binary translation techniques already provided by Simics.  

The rest of this paper is organized as follows: We briefly review the scheduling 
mechanism of Simics, introduce our parallel approach, and discuss its compatibility 
with existing optimizations and debugging systems in Section 2. Section 3 presents the 
experimental results. Section 4 discusses related work. Finally, we summarize the pa-
per and present future work in Section 5.  

2 Parallel Mechanism 

This section discusses the design of our parallel mechanism based on Simics simula-
tor. We first describe the scheduling method of Simics. Then we present our parallel 
mechanism for shared-memory multicore target systems. Finally, we discuss its com-
patibility with the debugging system and other optimizations provided by Simics.  

2.1 Simics Scheduling Method 

In Simics, there is a scheduler responsible to schedule all the modules in the target 
system. As shown in Figure 1, only those modules that have implemented execute 
interface will be scheduled [22]. Simics schedules them in a round-robin style, and 
keep them within a time window defined by the time_quantum attribute which can be 
set by the users. After being simulated for time_quantum cycles, each target module 
gives up the control and returns to Simics scheduler through event callback mechan-
isms. Having a time_quantum that is significantly larger than a single cycle allows for 
faster simulation since optimizations such as binary translation can then be employed. 

 

Fig. 1. Scheduling mechanism of Simics 

When simulating a shared-memory multicore system, usually Simics puts them into 
one cell, and lets each processor implement its own execute interface, so that every 
core can be scheduled periodically. However, only systems belong to different cells 
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can be parallelized by the multithreaded mechanism of Simics. This kind of shared-
memory multicore systems can only be simulated sequentially, leading to a very slow 
simulation speed.  

In order to use Simics Accelerator to parallelize shared-memory target systems, one 
possible way is to map the core and memory modules into different cells. However, 
this leads to a very inefficient speedup because the interactions between core and 
memory are very frequent. As a result, we present a new parallel mechanism to effec-
tively parallelize shared-memory multicore target systems.  

2.2 Parallel Mechanism 

Because Simics is not open source, we cannot modify the module scheduling mechan-
ism. When parallelizing multicore system in Simics, we have to follow its scheduling 
rule. As we mentioned before, only the modules that have implemented execute inter-
face can be seen and will be scheduled by Simics.  

Based on this observation, we defined a novel parallel mechanism based on the 
implementation of a new module named shadow_core. Figure 2 shows the parallel 
mechanism of our method. As we can see, shadow_core is the key of the paralleliza-
tion. Next we will give some detailed description of shadow_core.  
 

  

Fig. 2. The parallel scheduling mechanism of using shadow_core 

Shadow_core is actually a virtual core which is used to cheat Simics scheduler. If 
we implement all the target cores of shared memory system with execute interface, 
they will be scheduled sequentially by Simics. In order to avoid this, we define a sha-
dow_core with execute interface, and all the target cores being simulated do not  
implement execute interface. In this way, only the shadow_core can be seen and 
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scheduled by Simics. As for the target cores, they will be scheduled by the sha-
dow_core so that they can be simulated in parallel.  

Note that the shadow_core is not a real core, so it does not have to define all the 
context of the target core. Actually, only the interfaces which are necessary for the 
interaction between Simics and the target cores need to be implemented.  

It is obvious that all the target cores are invisible to Simics, and the shadow_core is 
responsible for the target core scheduling and synchronization. Roughly, there are 
three main tasks for the shadow_core. First, shadow_core needs to create threads and 
schedule the target cores. Second, when running in parallel, the shadow_core should 
keep the right synchronization of all the target cores. Third, the shadow_core needs to 
pass the commands, which are mainly debugging commands, from Simics to the ac-
tual target cores. In the next three subsections we will discuss how the shadow_core 
support core scheduling, synchronization, and debugging mechanism.  

Core Scheduling 
As we mentioned before, only the shadow_core is registered and seen by Simics. 
After Simics starts, it will schedule the shadow_core and keep it running for 
time_quantum cycle before switching to next registered module.  

When the shadow_core starts to run, it creates many new threads, and each thread 
is responsible for simulating one or several target cores. For example, if the target 
system has 8 cores and host system has 4 physical cores, the shadow_core can create 
4 threads and each thread simulates 2 target cores. The relation between host threads 
and target cores can be defined by the users. They can map the target cores into any 
thread at will.  

Note that, this scheduling process is totally invisible to Simics. Depending on the 
different implementation, the shadow_core can use different scheduling methods  

Synchronization 
In Simics system, users define time_quantum attribute to indicate the synchronization 
frequency of different cores. Each core will keep running for time_quantum cycles 
before synchronize with other cores. However, only the shadow_core can be seen by 
Simics in our parallel mechanism, and all the target cores are invisible. Thus Simics 
only makes sure that shadow_core will be scheduled to run time_quantum cycles and 
then synchronize with other modules which have registered execute interface. It is not 
possible for Simics to synchronize all the invisible target cores automatically. In order 
to solve this problem, the shadow_core must make sure that all the target cores being 
simulated in different threads synchronize with each other every time_quantum 
cycles. Thus each time the shadow_core is scheduled by Simics, it lets each target 
core keep running time_quantum cycles and then wait for the next scheduling. By 
defaut, the shadow_core uses a barrier-based synchronization mechanism.  

As we mentioned before, Simics has to map cores and memory modules into dif-
ferent cells in order to run them in parallel. However, in our method, cores and mem-
ory modules are mapped into the same cell. In the shared-memory multicore system, 
all simulated cores share a global, cache-coherent memory. All the cores access the 
memory module directly. This poses a challenge to scalable parallel simulation. Spe-
cifically, processor exports a set of atomic instructions executed atomically, which are 
usually used to implement synchronization primitives. An efficient simulation of 
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atomic instructions is critical to parallel simulation. In our system, we perform an 
identical translation that maps the simulated atomic instruction to one on the host 
architecture, this solution works well in most situations. As for some special ISAs, we 
use the lightweight memory transactions method presented by COREMU [2]. 

Debugging Support 
While simulating various of target systems, Simics also provides a powerful debugger 
system. For example, Simics can run user binaries directly, allowing the user to set 
breakpoints, inspect state, single step, etc. Some difficult bugs are easier to find using 
various esoteric breakpoint types. In Simics you can set breakpoints on memory 
access, time, instruction types, device accesses, output in the console, etc.  

More importantly, Simics is the first general-purpose development tool for reversi-
ble execution of arbitrary software running on arbitrary systems. With the reversible 
execution and debugging features of Simics, it is now possible to execute a program 
in reverse and step backwards through the code. This makes debugging very efficient. 

For the convenience of debugging, we make these debugging methods still work cor-
rectly under our parallel mechanism. However, it is a great challenge to do that because 
Simics cannot see the target cores at all. In order to solve this problem, we make a con-
text mapping between shadow_core and target core. Because the shadow_core can be 
seen by Simics, if we can map the context of the target core into shadow_core exactly, 
then Simics is actually controlling the target core when it schedules the shadow_core. In 
order to deceive Simics, it is critical to identify all the context information that needed 
by the debugging system. We find that it is mainly composed of the interfaces and event 
queues. Table 1 shows the context we have identified. 

Table 1. The context of target core 

Context Description 

time queue the cycle queue of target cores, responsible for the management of events relat- 
ed to time. For example, it is used to record the events send by Simics or exter- 
nal devices. 

step queue the step queue of target cores, responsible for the management of events related 
to step. It is used in the step debugging. 

iface_context_query the context query interface of target cores, responsible for the query operations 
related to the context of cores. 

iface_context_trigger the context trigger interface of target cores.  

obj_context the object of target core’s context.  

iface_phys_mem_page the physical memory page interface of target cores. 

iface_phys_mem_space the physical memory space interface of target cores.  

iface_phys_trigger the physical memory trigger interface of target cores, responsible for the trigger 
operations related to the physical memory. 

obj_phys_mem the object of target core’s physical memory. 

cache_page the cache pages of target cores.  
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In our parallel simulator, we provide the user a new command interface to select 
the target core number being debugged. When shadow_core creates threads and sche-
dules the target cores, it checks whether the target core is the debugged one. If so, 
shadow_core will copy all the context pointers of the debugged core into itself, so that 
the Simics can control the running of the debugged core.  

Note that although shadow_core does not perform any real instructions, it is still 
necessary to define a context that is the same as real target core. After that, we can 
make a consistent map between the shadow_core and target core. 

Because multicore system debugging is more complicated than single core debug-
ging, we extend the basic debugging mechanism of Simics in shadow_core. For ex-
ample, we add new commands to select the target core being debugged.  

2.3 Compatibility with Other Optimizations 

In Simics, there are many kinds of optimization strategies, such as multith-
readed/distributed simulation of different cells, binary translation technique, etc. Our 
parallel mechanism is also compatible with them. 

When simulating a cluster target system, we can parallelize it in two hierarchies. 
First, we use Simics Accelerator to distribute multiple machines into different host 
cores or host machines. Then we can further map the multiple cores within a target 
machine into different host threads.  

Another powerful simulation optimization technique, binary translation, can also 
be used combined with our parallel mechanism. Binary translation is a very popular 
technique to improve the simulation speed of single core. Thus in our parallel simula-
tor, when the target cores are simulated in different host cores, we can use binary 
translation to further improve its simulation speed.  

We currently have not finished the work of combing our parallel simulator with 
these optimization methods. The evaluation of it will be our future work. 

3 Experimental Results 

In this section, experimental platform and benchmarks are introduced first. Then we 
evaluate the performance and scalability in section 3.2. Finally, we demonstrate its 
compatibility with exist debugging methods of Simics.  

3.1 Experimental Setup  

The configuration of the systems and the benchmarks we use are listed in Table 2. 
The host platform has 4 quad-core AMD Opteron Processor 8347 HE running at 
1.9GHz and 64GB of DRAM. The host OS is linux-2.6.9 (x86_64). The benchmark 
we used is SPLASH-2 [17] kernel and a hybrid benchmark. We evaluate the perfor-
mance of a 16-core target system on Simics 4.2.  
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Table 2. Evaluation system configuration 

 Parameters Configuration 
Host system CPU type 16-core (4 quad-core AMD Opteron 8347 SMP) 

Memory size 64GB 
OS Linux 2.6.9, x86_64 
Compiler Gcc 4.1.1 
Simics Version 4.2 

Benchmark SPLASH-2 Fft, lu, cholesky, radix 
Hybrid bench-
mark 

Multithreading program consists of all the kernel computation of 
splash2 benchmarks 

Target sys-
tem 

CPU & memory 16-core processor, ARM ISA, 
Shared 4GB memory 

3.2 Performance Evaluation 

Uniprocessor Scheduling Overhead  
In our method, we introduce a new scheduling layer to parallelize the simulation of 
multicore target systems. Obviously this scheduling layer will lead to some additional 
overhead. In order to evaluate the scheduling overhead, we set only one core in the 
target system.  
 

 

Fig. 3. Normalized uniprocessor scheduling overhead 

Figure 3 depicts the relative performance overhead to native Simics scheduling for 
splash-2 benchmark suite. As shown in the figure, our scheduling method incurs neg-
ligible performance overhead compared to Simics scheduling, within 5% for all the 
benchmarks.  

The additional overhead we introduced mainly comes from the thread creation 
overhead and context mapping of target core. However, as the simulated target cores 
run longer, the incurred thread creation overhead is negligible. As for the context 
mapping, it happens only when we change the debugged target core, which means the 
target system is under debug mode, and not running at full speed. Compared with the 
very slow manual interactive speed, the context mapping overhead is also negligible.  

Speedup and Scalability 
When simulating multicore target system in parallel, the value of time_quantum is a 
key factor, which determines the frequency of synchronization between different 
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threads, thereby affects the final performance. Normally, a large time_quantum reduc-
es the frequency of scheduling and synchronization, thus improving the performance. 
However, larger time_quantum means longer synchronization period, which usually 
incurs larger accuracy errors. Note that the functional correctness is still guaranteed as 
long as the benchmarks running on the simulator are synchronized correctly. In this 
paper, we only evaluate the speedup and scalability of splash-2 kernels with the 
time_quantums which are not more than 1000. 

 

  

(a) time_quantum=1 (b) time_quantum=10 

 

(c) time_quantum=100 (d) time_quantum=1000 

Fig. 4. Speedup of splash-2 kernels across different host thread numbers when simulating 16 
target cores 

Figure 4 shows the speedup results of simulating a 16-core target system with 
splash-2 benchmarks running on it. The number of threads used in the host machine 
varies from 1 to 16, and the time_quantum used in the parallel mechanism varies from 
1 to 1000. Note that the performance of 1 thread in our method is a little worse than 
the original performance of sequential scheduling in Simics. This is because of the 
additional scheduling overhead introduced by our method. 
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We can see that the value of time_quantum affects the final parallel performance 
significantly. Small time_quantum leads to an unsatisfactory speedup because of the 
frequent synchronization operations. Figure 4(a) shows that the performance even 
gets worse when using more host threads. However, when the time_quantum is larger 
than 100, our method produces a good scalability. For example, when the 
time_quantum equals to 1000, we can see that most of the benchmarks get linear 
speedup. The average speedup of 16-thread is 9.6×.  

Normally the speedup is in negative relation with the percent of thread synchroni-
zation in the applications. From figure 4, we can see that cholesky gives a relative 
worse speedup because it has more synchronization operations. However, the average 
performance is still quite noticeable. The results show that our parallel mechanism 
can produce a considerable speedup for typical multithreading applications, and it is a 
very attractive option for achieving fast multicore processor simulation.  

3.3 Debugging Function Verification 

To verify the compatibility with exist debugging mechanism of Simics, we make 
several case studies by using our parallel simulator to diagnose and debug the bugs in 
user applications. The following four debugging functions are intensively tested.  

Target Core Selection: We randomly set different core as target debugged core dur-
ing our test, and each core has been selected at least 10 times.  

Core Information Display: We test all the display interfaces provided by each target 
core. Each target core’s inner information, such as register value, can be correctly 
displayed.  

Breakpoint Operations: Similar to the core information display, we test all the 
breakpoint interfaces provided by the target cores, including adding, removing, enabl-
ing, disabling breakpoints. All the functions work well.  

Step Execution: With the former debugging mechanisms and step execution, we 
quickly locate the function and execution context causing the bug.  

4 Related Work 

Simulation is an important technique to explore new computer architectures ranging 
from micro-processors to parallel computers. A variety of different simulators have 
already existed. Due to the space constraint, we only give a brief introduction of mul-
ticore simulators.  

GEMS [11] is a very popular multicore simulator. It uses Simics for functional 
modeling plus their own models for memory systems and core interactions. However, 
GEMS is a sequential simulator, and the simulation speed is not fast.  Similar to 
GEMS, GEM5 [12] is also a sequential simulator, with the difference of using M5 
[16] instead of Simics for functional modeling.  
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There is also much existing research in the field of parallel simulation of multicore 
target systems. The Wisconsin Wind Tunnel [6] is one of the earliest parallel simula-
tors. It requires applications to use an explicit interface for shared memory and only 
runs on CM-5 machines, making it impractical for modern usage. 

P-Mambo [20] is a multithreaded implementation of IBM’s full-system simulator 
Mambo. It uses a user-level thread-scheduler to adapt multithreaded execution. How-
ever, the scale of the P-Mambo simulation target is only 4 cores. 

COREMU [2] clusters multiple mature sequential simulators (QEMU in their 
working prototype) using a thin library layer, hence decouples the complexity of sup-
porting parallel emulation from building an optimizing sequential emulator.  

COTSon [8] is a system-level simulator for modeling clusters of multicore CPUs, 
networking and I/O. It uses AMD’s SimNow! [5] for functional modeling. It also uses 
Parallel Discrete Event Simulation (PDES) [15] to synchronize different COTSon 
node instances. The sequential instruction stream coming out of SimNow! is demul-
tiplexed into separate threads before timing simulation. 

Penry [9] presents techniques to perform automated simulator parallelization and 
hardware integration for CMP structural models by generating the simulator from a 
concurrent, structural model of the CMP.  

Graphite [4] provides user-level parallel functional simulation using a multi-
machine distributed method, which provides a good scalability. However, it is based 
on Pin tools [21], and does not support full system simulation.  

SlackSim [10] accelerates the parallel simulation of CMPs by relaxing the tight 
synchronization enforced between simulation threads in cycle-by-cycle (cycle accu-
rate) simulation. It allows all threads to run freely as long as their local clocks remain 
within a specified window. 

Hornet [19] is a highly configurable, cycle accurate network-on-chip simulator, 
which can scale multicores and their on-chip networks to thousand core levels. Hor-
net’s parallelized simulation engine that can scale well with the number of physical 
cores in the processor. It also allows the user to obtain even more speed via loose 
synchronization.  

Transformer [13] is an extensible, cycle-accurate loosely-coupled full-system mul-
ticore simulator. It leverages an architecture-independent interface between function 
mode (FM) and timing mode (TM) and uses a lightweight scheme to detect and re-
cover from execution divergence between FM and TM. To improve performance, it 
parallelizes FM and TM by putting them into two threads. Different with our method, 
parallelized transformer can use only two threads and the performance improvement 
is limited.  

Wu [14] proposes a new distributed scheduling mechanism for a parallel compiled 
Multi-Core Instruction-Set Simulator (MCISS). The distributed scheduling with his 
prediction method shortens the waiting time an ISS spends on synchronization. 

Different with the multicore simulators we mentioned above, Simics is a commer-
cial simulation framework and has many advantages. For example, it supports more 
kinds of target platforms, provides powerful debugging system and accelerator. These 
features make Simics succeed both in academia and industry. However, Simics does 
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not provide an effective parallel mechanism for shared-memory multicore target sys-
tems, which heavily affects the use of this highly-debuggable multicore simulator. 

In this paper, we propose a novel parallel mechanism to parallelize shared-memory 
multicore system simulation in Simics. As far as we know, this is the first effective 
solution for this problem. 

5 Conclusion and Future Work 

In this paper, we propose a novel parallel mechanism to improve the simulation speed 
of shared-memory multicore systems in Simics. Instead of scheduling the target cores 
by Simics, we define a new module named shadow_core to do that. Thus in our paral-
lel simulator, shadow_core is responsible for the multi-threading scheduling of the 
simulated cores. More importantly, our approach is compatible with other optimiza-
tions and exist debugging systems used in Simics. When using a 16-core host ma-
chine, our experiments showed that it achieved an average speedup of 9.6× for 
SPLASH-2 kernels.  

There are mainly two directions in our future work. First, we plan to combine our 
approach with other optimizations such as binary translation to further improve the 
simulation speed. Second, we will extend our parallel mechanism to support larger 
scale multicore/many-core systems.  
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Abstract. Chipmultiprocessors (CMPs) are becoming the trend ofmain-
stream computing platforms. The design of an efficient on-chip memory
hierarchy is one of the key challenges in computer architecture. Tiled archi-
tecture and non-uniform cache architecture (NUCA) is commonly adopted
in modern CMPs. Previous efforts on cache replacement policy usually as-
sume an unified last-level cache or running multiprogrammed workloads.
However, few researches focus on the replacement policy of cache cluster-
ing scheme running parallel workloads. Cache clustering scheme can im-
prove the system performance on parallel performance, which is a tradeoff
between shared cache organization and private cache organization which
adopts cache replication. In cache clustering scheme, cache blocks in
last-level cache can be subdivided into eight types.

In this work we propose Data access Type Aware Replacement Pol-
icy (DTARP) for cache clustering organization, DTARP classifies data
blocks in last-level cache into different access types, and designs the in-
sertion and the victim selection policies according to different data access
types based on traditional LRU policy. The global shared data will be
kept in last-level cache longer than before. Simulation results show that
DTARP can improve the system performance of cluster scheme using
LRU policy by 10.9% on average.

1 Introduction

With the advance of semiconductor technology, chip multiprocessors (CMPs)
are becoming the trend of mainstream computing platforms. Intel R© has recently
demonstrated a 48-core cloud chip prototype [2]. The design of an efficient on-
chip memory hierarchy is one of the key challenges in computer architecture.
Tiled architecture is commonly adopted in modern CMPs because of its low
design complexity as well as high scalability. Non-uniform cache architecture
(NUCA) [3] has pioneered the effort of addressing the scalability problem of
traditional uniform cache architecture in large CMPs. In NUCA, the access
latency to a cache block is the sum of the static bank access latency and the
variable on-chip communication latency to different cache banks.

C. Wu and A. Cohen (Eds.): APPT 2013, LNCS 8299, pp. 254–268, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Traditional last level cache organizations of CMPs are either shared or private.
Shared scheme has advantage of high capacity utilization, while suffers from long
average on-chip access latency. The main advantage of the private scheme is the
proximity of data to the requestor cores, but private scheme suffers poor capacity
utilization. Cache clustering scheme is a tradeoff between shared scheme and
private scheme, where several nearby tiles are clustered together into a region.
Cache blocks inside last-level cache is shared by all the cores within the region.
Cache clustering scheme is a technique of cache replication, which replicates
data from home node to a L2 bank close to the requestor cores and thus reduces
the following access latency. Fig. 1 gives the performance of cluster scheme over
shared scheme in a 64-core CMP with 16×4 clusters, cluster scheme gets about
48.9% higher performance than shared scheme on average. Both schemes adopt
traditional LRU replacement policy.
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Fig. 1. Performance of cluster scheme

Cache replacement policy choose a victim cache block to evict when there has
a need to fetch a new data block to the cache. Recent representing researches
include DIP [4], TADIP [5] and RRIP [6], However, these techniques assumed
a unified last-level cache or running multiprogrammed workloads, where a core
access will suffer a stable latency. Traditional LRU policy treats each cache re-
quest as the same. However, for parallel workloads, such as scientific computing,
different type cache blocks in L2 cache get different access probability, especially
for cluster scheme. Unfortunately, few researches focus on the replacement policy
of cache clustering scheme running parallel workloads.

In this work we proposeData access Type Aware Replacement Policy (DTARP)
for cache clustering organization, DTARP classifies data blocks in last-level cache
into different access types, and designs the insertion and the victim selection pol-
icy according to different data access types based on traditional LRU policy. The
global shared data will be kept in last-level cache longer than before. Simulation
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results show that DTARP can improve the system performance of cluster scheme
using LRU policy by 10.9% on average.

The rest of this paper is organized as follows. Section 2 provides some back-
ground information. Section 3 describes classification of data type in last-level
cache and the data access distributions, then introduces the data access type
aware replacement policy. Section 4 provides the experimental methodology and
simulation results. Section 5 presents related work. This paper will be summa-
rized in Section 6.

2 Background

2.1 Cache Clustering Scheme

Most modern chip multiprocessors adopt TILE architecture. A tiled CMP has
the advantages of modularity for low design complexity and high scalability. As
shown in Fig. 2, this work considers a tiled CMP. Each tile has a processor core,
private L1 instruction and data caches, a unified and L2 cache slice organized
as cluster, and a router connecting to the on-chip network. All the tiles are
connected by a 2D mesh on-chip network, last-level caches distribute across the
chip. For cluster organization, every 4 nearby tiles construct a cluster. In such a
tiled CMP, each L2 slice can serve requests from any processor with in the cluster
through the on-chip network. For simplicity, we assume there is no congestion
in the on-chip network, and L2 caches are last-level caches and all data in the
L1 cache must also be somewhere in the L2 cache (inclusive). Access to remote
cache suffers longer on-chip latency.

The L2 caches are last-level caches in this work, although the discussion can
be applied to any cache organizations with multiple cache hierarchies. Each L2
slice is the regional home node or the global home node for a fraction of the
statically distributed physical address space. On an L1 miss, a regional home
node will look up its local L2 slice for the requested cache line. On a regional
cache miss, the remote global home node will repeat the look up process, and
access off-chip memory on a miss. When an L1 replacement occurs, the regional
home node will be notified.

Huh et al. [15] precisely defined the concept of sharing degree (SD) as the
number of processors that share a pool of L2 cache banks. In this terminology,
private scheme means an SD of 1 where each core maps and locates a requested
cache block to and from its corresponding L2 bank. Shared scheme, on the other
hand, means each core shares with all other 63 cores the total L2 banks [16].
Cluster scheme is intermediate between private scheme and shared scheme, which
SD can be one of 2, 4, 8, 16 and 32. In this paper, we choose SD as 4 for simplicity,
as shown in Fig. 2. The proposed design in this work can be applied to other
cluster scheme with different SDs.

2.2 Data Access Types in LLC

In shared scheme, last-level cache accesses, as well as the cache blocks, can be clas-
sified into four access types, Instructions, Data-Private, Data-Shared-Read-Only,
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Fig. 2. Baseline architecture

andData-Shared-Read-Write [19]. For cluster scheme, we can further divided each
access type into two categorizations, accesses to global L2 cache bank or accesses
to regional L2 cache bank, which means overall eight access types. Tab. 1 gives
the access type names and descriptions.

Table 1. Data type in clustered last-level cache

Data access type Description
Global private
(G PRIVATE)

L2 bank is the global home, cache block is accessed by
one and only one requestor

Global Instruction
(G INS)

L2 bank is the global home, data in cache block belongs
to instruction

Global shared read only
(G RO)

L2 bank is the global home, cache block is read by more
than one requestors

Global shared read write
(G RW)

L2 bank is the global home, cache block is read or write
more than one requestors, at lest a write requetor

Regional private
(R PRIVATE)

L2 bank is the regional home, cache block is accessed by
one and only one requestor

Regional Instruction
(R INS)

L2 bank is the regional home, data in cache block belongs
to instruction

Regional shared read only
(R RO)

L2 bank is the regional home, cache block is read by more
than one requestors

Regional shared read write
(R RW)

L2 bank is the regional home, cache block is read or write
more than one requestors, at lest a write requetor

2.3 LRU Replacement Policy

The Least Recently Used (LRU) replacement policy is commonly used in the
on-chip memory hierarchies and is the de-facto standard of replacement policy
for researchers. In the LRU policy, a cache block must traverse from the MRU
position to the LRU position before being evicted from the cache. The LRU
policy can get high performance for workloads which working sets are smaller
than the on-chip cache size or have high locality.
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A cache replacement policy mainly concerns about two issues: the victim
selection policy and the insertion policy. The victim selection policy determines
which cache block to be evicted when a new data block needs to be accessed
from a lower level memory hierarchy. The insertion policy decides where to place
the incoming data block in the replacement list. Traditional LRU replacement
policy inserts a new cache block at the MRU position of the replacement list to
keep it on-chip for a long time. When an eviction is needed, the cache block at
the LRU position is chosen as the victim.

3 Implementation of Data Access Type Aware
Replacement Policy

3.1 Data Access Type Classification

The classification of L2 cache blocks’ data access type is easy to realize with
little modification on current cache coherent protocols. We can follow the steps
below

– To determine a cache block is an instruction or not. Which can be achieved
by tracing the access type to L2 cache. If the access type is Instruction-Fetch,
it means the corresponding data in the cache block is instruction.

– To determine a cache block is private or not, Which can be achieved by
tracing the requestor of a data block. If a cache block is accessed by one and
only one requestor, the block is private, otherwise the cache block is shared.

– To determine a cache block is read-only or not. Which can be achieved by
tracing whether there is ever a write request to the cache block. If there
is ever a write request to the cache block, the cache block is read-write,
otherwise it is read-only.

– To determine a cache block is global or regional, which can be determined
when a cache block is fetched to the L2 slice. If the global home id is equal
to the L2 slice id, the cache block is global, otherwise it is regional.

The data access type determination of each cache block can be accomplished
with the maintenances of L2 cache coherence protocol. The data access type of
each cache block can be stored and updated together with the coherence states.
For each cache block, only 3 additional bits are needed. For L2 caches with 64B
cache line, the storage overhead is increased by about 0.6%. Despite instructions,
all off-chip accessed data are initialized as G PRIVATE, and then will be updated
according to their later accesses. The data access type information of a cache
block is cleared when evicted from L2 cache. In this work, we don’t concern
those rarely happened cases such as writing to instruction code which have little
impacts on system performance.

3.2 Data Access Type Distribution in Shared Scheme

Fig. 3 gives the access type distribution of different workloads in shared schemes
at the end of parallel execution. Detailed system configurations are given in



Data Access Type Aware Replacement Policy 259

Section 4. Private cache blocks occupy about 57% of the overall cache capacity
on average. The percentage of instruction cache blocks is relatively small. Vol-
rend gets the maximum 6.6% percentage of instructions. Shared cache blocks
occupy about 40% percent of the overall L2 cache capacity on average. For most
workloads, the capacity of shared read only cache blocks are larger than shared
read-write cache blocks. Fig. 4 gives the distribution of accesses to different L2
cache blocks during the parallel execution. More than 85% percent of accesses
are belong to shared cache blocks. The percentage of requests for private cache
blocks is less than 3% on average. About 10% accesses are for instructions.
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Fig. 3. Cache blocks distribution in shared scheme
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3.3 Data Access Type Distribution in Cluster Scheme

Fig. 5 gives the data access type distribution of different workloads in cluster
scheme at the end of parallel execution. In cluster scheme, there are overall
eight data access types. On average, global cache blocks occupy about 33%
of L2 capacity. The percentage of global instruction cache blocks is relatively
small, volrend gets the maximum 3.46% percentage. Other cache blocks belong
to regional data blocks. Regional private cache blocks occupy about 41% of
the overall cache capacity on average. regional shared L2 cache blocks occupy
about 15% percent of L2 capacity, and most of them are regional read-write.
Fluidanimate gets the maximum 9.3% percentage of regional shared read-only
cache blocks. Other workloads’ percentage of shared read-only cache blocks are
less than 2%. Fig. 6 gives the accesses distributions on different L2 cache blocks
during the parallel execution. More than 85% percent of the accesses are belong
to regional cache blocks. Percentage of regional private accesses are more than
60% on average.
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Fig. 5. Cache blocks distribution in cluster scheme

3.4 Data Access Type Aware Replacement Policy

The main idea of data access type aware replacement policy is to identify the
access type of each cache blocks in last-level cache, and then design the insert
policy and the victim selection policy both according to the access type of cache
blocks. In this way, a more important cache block can stay in the cache set longer
than a less important one, which may get further accesses.

To implement data access type aware replacement policy, the importance of
each data access type should be determined first. As mentioned in Section 3.2, for
parallel workloads running under shared cache organization, the global private
cache blocks are least important, as they are rarely re-referenced while occupying
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Fig. 6. Accesses distribution in cluster scheme

the majority of the overall L2 cache capacity. For cluster scheme, accesses to
global instructions and shared data are less than under shared scheme because
most accesses hit at regional home node. However, these cache blocks are as
important as in shared scheme to avoid expensive off-chip accesses. In similar
way, we can determine the importance of regional cache blocks in each type.
Where regional read only cache blocks are the most important, as its capacity is
small compared with its accesses. The capacity percentage of regional read-write
cache blocks is higher than its access percentage, so it is unimportant.

Data access type aware replacement policy is based on traditional LRU policy,
and is optimized through classification of different data access types. When a
data block is fetched to the L2 cache slice, or its access type is updated by
a cache access, its LRU position is set according to the updated access type.
Global instructions and global shared data are placed at the MRU position. The
LRU positions of other access types are set according to their importance, the
more important, the closer to the MRU position. So the initial LRU position of
global private is the most faraway from the MRU position. On victim selection
policy, unlike LRU policy, DTARP choose a victim from several (4 in the work)
candidates at the top of LRU stack. the final priority of a cache block is its
LRU position plus its evict priority given in Tab. 2. The cache block with the
highest priority will be selected as the victim. If two or more cache blocks have
same priorities, their distances to the global home are compared and the nearest
one is chosen as the victim. Otherwise the victim is the cache block with the

Table 2. Eviction priorities of different data access type

Data access type G PRIVATE G INS G RO G RW R PRIVATE R INS R RO R RW
Eviction priority 6 0 0 0 5 2 2 4
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highest LRU value. When there is a cache hit without access type change, its
LRU position is updated as traditional LRU policy.

4 Evaluation

In this section, we first describe the simulation environment. Then the experi-
mental results are utilized to evaluate the effect of DTARP.

4.1 Simulation Setup

We use GEMS[13] tool sets, which is based on a full system simulator simics [14],
to evaluate our proposal. The parameters of simulated system configuration are
given in Tab. 3. We simulate a 64-core Tiled CMP, and the network-on-chip is
modeled in detail, including all messages required to maintain cache coherence.
We evaluate our design using eight workloads from SPLASH-2 [17] and five
workloads from PARSEC [18] benchmarks. Tab. 4 gives the workload’s name
and problem size.

Table 3. Configurations of s imulated system

Component Parameter
CMP size 64-core
Processor model Sparcv9
CMP line size 64B
L1 I-Cache Size/ Associativity 32KB /2-way
L1 I-Cache Size/ Associativity 32KB /2-way
L1 Load-to-Use Latency 2 cycle
L1 Replacement Policy LRU
L2 cache Size/Associativity (per tile) 256KB/16-way each tile
L2 Load-to-Use Latency 15 cycles
L2 Replacement Policy LRU (***)
Network Configuration 8 × 8 2d mesh
One-hop Latency 3 cycles
External Memory Latency 300 cycles

Table 4. Benchmarks

Workload Problem Size Workload Problem Size
barnes 32768 particles bodytrack simmedium
cholesky tk 29.0 canneal simlarge
fft -m20 fluidanimate simmedium
fmm 32768 particles x264 simmedium
lu 1024×1024 vips simsmedium
radix 1M-keys, 1024-radix, 2M-maxkey
raytrace teapot.env
volrend head

We compare our design (Cluster-DTARP) with other three schemes: shared
scheme using traditional LRU policy (Shared-LRU), cluster scheme using LRU
policy (Cluster-LRU) and cluster scheme using RRIP [6] policy (Cluster-RRIP).
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4.2 System Performance

Fig. 7 gives the system performance for four schemes: Shared, Cluster, RRIP
and DTARP schemes. Shared scheme is the baseline system with traditional
LRU policy. Both RRIP and DTARP get the maximum system performance
with about 220% speedup for x264 benchmark. The average system performance
improvement of DTARP is 59.8%, which is about 10.9% higher than Cluster
scheme. RRIP gets about 57.7% system performance improvement over Shared
scheme on average, which is about 8.8% higher than Cluster scheme. For most
workloads, RRIP and DTARP have similar performance, except cholesky and
canneal, where the system performance of RRIP scheme are close to or even
worse than Cluster scheme.
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4.3 Evicted Data Distribution

Fig. 8 shows the data block type distribution of evicted cache blocks for Clus-
ter, RRIP and DTARP schemes. DTARP scheme evicts least G PRIVATE cache
blocks for all workloads except lu and raytrace. At the same time DTARP scheme
evicts most P PRIVATE cache blocks for all workloads except raytrace. Cluster
scheme has most evictions of instructions and shared data, either global or re-
gional. RRIP schemes evicts more global instructions and global shared cache
blocks than DTARP scheme.

4.4 L2 Capacity Distribution

Fig. 9 illustrates the L2 cache capacity occupied by different cache blocks for
Cluster, RRIP and DTARP schemes. RRIP scheme keeps most R RW cache
blocks for all workloads, while DTARP scheme keeps lest R RW cache blocks. For
12 of the 15 workloads, RRIP gets lest G PRIVATE cache blocks, DTARP gets
lest G PRIVATE cache blocks in other 3 workloads. For most workloads, DTARP
keeps most global instructions and global shared cache blocks, which is because
DTARP scheme gives cache blocks of such access types higher importance than
other access types.
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4.5 LRU Hit Curve

Here we give the hit curve of Cluster, RRIP and DTARP schemes for workloads
fft and x264, as shown in Fig. 10, the missed accesses are not considered. The hit
curves of other workloads present similar. As cache blocks in RRIP scheme only
has 4 LRU positions, it hit curve reach 1 when LRU position is 3. The hit curves
of Cluster Scheme are close to RRIP, the hit counts on LRU position large than
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Fig. 10. Hit curve of different cache schemes

3 are relatively small. The hit curves of DTARP vary greatly from other two
schemes. The stack hit rate is not close to 1 until LRU position approaching 8.

5 Related Work

There is an impressive amount of research work attempting to improve the cache
performance through cache replication/migration or cache replacement policies.
We describe the work which is most relevant to our proposal in the following
paragraphs.

Lee et al. [1] proposed Least Frequently Used (LFU) replacement policy which
predicts the blocks frequently accessed have a near-immediate re-reference in-
terval, and the blocks infrequently accessed have a distant re-reference interval.
LFU is suitable for workloads with frequent scans, but it doesn’t work well for
workloads with good recency. Then LRFU [1] is proposed to combine recency
and frequency to make replacement.

Qureshi et al. [4] proposed Dynamic Insertion Policy (DIP) which places a
few of the incoming lines in the LRU position instead of MRU position. DIP
can preserve some of the working set in cache, which is suitable for thrash-
access patterns. However, inserting lines at LRU position makes cache blocks
are prone to be evicted soon and have no time to learn to retain active working
set. Since DIP adopts a single insertion policy for all references of the workload,
the LRU component of DIP will discard active cache blocks with single used
cache lines. Jaleel et al. [5] extends DIP to make it thread-aware for shared cache
multi-core.

RRIP [6] is the mostly recent proposal that predicts the incoming cache
line with a re-reference interval between near-immediate re-reference interval
and a distant re-reference interval. The prediction interval is updated upon
re-reference. The policy is robust across streaming-access patterns and thrash-
access patterns. However, it is not suitable for recency-friendly access patterns.
The proposed DAI-RRP [12,11] is more robust than RRIP for it is also suitable
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for access patterns with high temporal-locality. In addition, the hardware over-
head of DAI-RRP is comparable to RRIP, which is identical to LRU policy.

Kim et al. pioneered the design of Non-Uniform Cache Architecture [3]. Huh
et al. [15] presented a flexible NUCA design that supports a spectrum of sharing
degrees. Hammoud et al. [16] proposed to dynamically adjust the sharing degree
according to the L2 miss rate and average access latency. Hardavellas et al. [19]
proposed R-NUCA that coordinates with OS support to classify the types of
cache accesses, and used rotational interleaving for fast looking up. Marty et
al. proposed Virtual Hierarchies to partition L2 caches for multiprogrammed
workloads [20].

Cache partitioning is also one popular way of managing shared caches among
competing applications. Stone et al. [7] investigated optimal (static) partition-
ing of cache resources between multiple applications when the information about
change in misses for varying cache size is available for each of the competing ap-
plications. Dynamic partitioning of shared cache was first studied by Suh et al.
[8]. Qureshi et al. [9] improved on [8] by separating the cache monitoring cir-
cuits outside the cache so that the information computed by one application
is not polluted by other concurrently executing applications. Xie and Loh pro-
posed Promotion/Insertion Pseudo-Partitioning [10] to partition shared cache
by insertion policy. Jaleel et al proposed cache replacement and utility-aware
scheduling [21] which is a hardware/software co-designed approach for shared
cache management.

6 Conclusions and Future Work

As the scale of CMPs keeps increasing, the pressure on the on-chip memory hier-
archies also expands. Cache clustering scheme combines the advantage of shared
organization and private organization, which is a promising choice of CMPs last-
level cache organization. Through analysis on data type distribution, as well as
accesses in last-level cache, we point out that different data type get different
access patterns. Shared data and instructions may be accessed many times, while
most of the cache capacity is occupied by private cache blocks which are accessed
infrequently. In this work, we propose Data access Type Aware Replacement Pol-
icy (DTARP) for cache clustering organization. DTARP classifies data blocks
in last-level cache into different data types, and designs insertion and victim
selection policy according to different data types based on traditional LRU pol-
icy. The global shared data will be kept in last-level cache longer than before.
Simulation results show that DTARP can improve the performance of cluster
scheme using LRU policy by 10.9% on average.

In this study, the eviction priorities of different data type are fixed, which
may cause cache performance degradation for some applications. Design a more
flexible mechanism by tracing the accesses together with L2 capacity usage by
different cache block type, and dynamically update different data type priorities
can be our future work.
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Abstract. Decentralized networks have some unique characteristics,
such as heterogeneity, autonomy, distribution and openness, which lead
to serious security issues and low credibility. In this paper, the agent tech-
nology is utilized to construct a novel credibility protection model, which
efficiently makes open, disordered, decentralized networks evolve grad-
ually as an orderly, stable and reliable computing environment. Within
this model, our research is focused on the credibility measurement mech-
anism, and a novel behavior-credibility evaluation algorithm is proposed.
The evaluation value of behavior-credibility is calculated based on the
current and historical performances of nodes as service providers and
consumers to make an accurate prediction. Based on a decentralized
network simulation environment, we conducted several rounds of simu-
lation experiments to test the function, performance and validity of the
model, mechanism and algorithm.

Keywords: decentralized networks, agent, credibility.

1 Introduction

Many research and practice have indicated that decentralized network comput-
ing environments have some unique characteristics, such as heterogeneity, au-
tonomy, distribution and openness, which lead to serious security issues and low
credibility[1]. Without the reliable management of central node, malicious nodes
could pose serious threats to the normal operation of network and damage the
credibility of network through fake services, conspiracy, non-cooperation and the
spread of malicious codes, etc. The construction and operation of decentralized-
network-oriented software system faces greater uncertainty, which brings more
serious issues of system security, reliability and availability.

On the other hand, new network applications continue to emerge, showing a
more diverse and flexible features. The traditional study of software credibility
focuses on building safe, reliable and available software in closure computing
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environment[2], which is unable to meet for open, cross-organization computing
environments.

In this paper, we provide a new solution to protect the credibility of decen-
tralized network in order to make resource sharing and collaboration efficient
and reliable in dynamic environments. We constructed the credibility protection
model for decentralized network based on agent, which is able to support all
kinds of application operating in decentralized network computing environments.
Within this model, our research is focused on the credibility measurement mech-
anism, and a novel credibility evaluation algorithm is proposed, which is able
to evaluate behavior-credibility. Our research result can promote open, chaotic,
decentralized networks gradually into orderly, stable and reliable computing en-
vironments.

2 Analysis of Decentralized Networks

The basic element of decentralized network computing environment is the au-
tonomous node. It can be found that decentralized network computing environ-
ments and their nodes have the following features[3]:

• Resource redundancy: the number of nodes decentralized network (such as
Internet-based P2P network) might be very large, which means resources are
always redundancy, but the stability of the resources sharing is enhanced.

• Capacity difference: the software and hardware resources of nodes are very
different in quality and quantity.

• Node autonomy and network instability: nodes are free to join and withdraw
from the network, and determine all by their own will how and when to
use those resources owned by themselves, which makes the network very
unstable.

• Lacking of centralized control node: decentralized networks don’t have the
centralized control node usually deployed in traditional distributed comput-
ing environments, resulting in low security management problem.

• Node anonymity and selfishness: the majority of nodes in the selfish decen-
tralized network computing environment are selfish. All their activities (to
provide services for others or obtain others’ services) are to maximize their
own interests and meet their default targets, not volunteer to provide any
services and resources selfless; many nodes demand for anonymity and hope
their actions hard to track, which also makes it easier for the existence of
malicious nodes.

In short, decentralized networks show an unstable anarchy, bringing a series
of serious problems, cumbering the normal operation of network systems. There
are a large number of malicious nodes providing false and unreliable services,
conspiring, attacking other nodes or even the whole network.
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3 Agent-Based Credibility Protection Model
for Decentralized Networks

Agent-based Node (AbN) of decentralized network is an independent, self-
government software and hardware integrated system[3,4,5]. The introduction of
Agent technology is to build a better system, which could manage resources and
regulate actions of node in order to maximize the benefit of the whole network
system. AbN is a kind of rational agent, of which the model can be expressed as
follows:

AbN = (ID,Goal, Action, Capability, Policy, Creditability,Group) (1)

Of which, AbN obtains its own ID when it adds network at the first time,
which is the basis of the identity-credibility. Goal is the set of goal on behalf of
all the objectives of AbN. Action is the set of collaborative action as follows:

Action = {search, choose, commit, investigate, evaluate, execute, pay, gain}(2)
Action search is used to find some ability needed and its owner; choose is used

to select the best suitable AbN; commit is to agree to implement the task sent
from others; investigate refers to the investigation of the credibility of another
node’s action and ability; evaluate is to give a valuation to the node based on
the interaction just happened; execute, pay and gain are easy to understand.

Capability is the set of the actual resources owned by AbN, including com-
puting resources (exp. CPU and memory), storage resources (exp. hard drives)
and software resources (exp. programs, documents, data):

Capability = {c1, c2, ..., ci, ..., cm} (3)

Capability ci contains the following information:

ci = (subjecti, categoryi, quantityi, remainderi) (4)

quantityi is the total amount of Capability ci; remainderi is the available
amount of Capability ci. For example, the number of resources in memory refers
to the size of its physical space, and categoryi of memory is the type of reusable
computing resources.

Policy is the set of strategy adopted by AbN who is executing some tasks:

Policy = {P1, P2, ..., Pi, ..., Pm} (5)

Pi is a piece of policy based on ci one-to-one, including priorityi, timingi and
quotai.

Creditability should objectively reflect the credibility of the behavior-
credibility and ability-credibility of AbN.

Node performance is mainly determined by its ability and behavior. In ad-
dition, it is very possible that active nodes could fail sometimes in interactive
transactions because of objective reasons, while those nodes seldom interacting
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with others are certainly not easy to fail. It is unfair to say that nodes who
seldom provide services are more trustworthy than those actively providing ser-
vices. The credibility of nodes can be described as follows:

Creditability = (ability−credit, behavior−credit, number1, number2) (6)

number1 is the number of node providing services and number2 is the number of
node obtaining services.Group is used to depict the logical group AbNs belong to.

4 Prediction-Oriented Behavior-Credibility Evaluation
Algorithm

The connotation of credibility is manifested in behavior analysis through the
quantitative measurement. The AbN with credible identity (that is, through au-
thentication) might not have the credible behavior. Behavior-credibility not only
involves the credibility of service providers, but also involves services consumers.
Research on the credibility of the node behavior can forecast behavior of nodes
in advance of it conducting any acts of vandalism in order to reduce or even
avoid contact with malicious nodes, enhance their potential to complete tasks
by establishing mutual credibility, and reduce the additional overhead brought
about by monitoring and prevention of no-confidence. Certainly, the behavior-
credibility is assessed on past evidence of nodes conduct to make an accurate
prediction. The behavior-credit of dishonest node should decline so rapidly that
other nodes do not want to interact with it.

Behavior-credibility can be described as the following formula:

behavior−credit = (pcredit, pnumber, ccredit, cnumber) (7)

Behavior-credibility of AbN contains two pairs of factors: pcredit( AbN cred-
ibility acting as service provider) and pnumber(the number of service provided)
as well as ccredit( AbN credibility acting as service consumer) and cnumber(the
number of service obtained).

Both pcredit and ccredit can be divided into 7 levels: Distrust highly, Distrust
moderately, Distrust slightly, Trust neutrally, Trust slightly, Trust moderately
and Trust highly. Trust neutrally is given to the node just joining the network
and not interacting with other nodes yet.

If a node always contributes valuable resources honestly, actively and stably, it
would get a higher evaluation of other nodes interacting with it. Inspired by the
EigenRep model of Stanford[6], a new prediction-oriented behavior-credibility
evaluation algorithm is proposed, with the following description.

Suppose that in an decentralized network there are a series of interactive
activities between AbNA and AbNB (AbNA obtains service from AbNB) in a
certain period of timeΔx; it is allowed that AbNA stores the number of successful
transactions it has had with AbNB, SAB , and the number of failure transactions
it has had with AbNB, FAB . A normalized local direct evaluation value of AbNB

in provided by AbNA, EAB, is defined as follows:
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EAB =

⎧⎨
⎩

max(SAB−μBFAB ,0)∑
B max(SAB−μBFAB ,0) ,

∑
B max(SAB − μBFAB, 0) �= 0

0,
∑

B max(SAB − μBFAB, 0) = 0

(8)

Parameter μB is a very important factor in this formula, which is used as the
adjustable penalty factor. pcreditB,Δx is set as the global behavior-credibility
evaluation value of AbNB as a service provider in the period of Δx. The value of
μB is determined with pcreditB,Δx−1 , which is the global behavior-credibility
evaluation value of AbNB in the period of Δx−1( that is the previous time period
before the current period of Δx):

μB = 1+αpcreditB,Δx−1 , 0 < α < 1 (9)

This means that node with the worse performance in the previous period, will
be punished more seriously in this current period. The global behavior-credibility
evaluation value of AbNB as a service provider in the period of Δx is:

pcreditB,Δx = (1−λ)ΣmEmB×ccreditm,Δx+λpcreditB,Δx−1 , 0 < λ < 1 (10)

pcreditB,Δx−1 is also considered above, indicating that AbNB have to keep
acting honestly, reliably in all transactions. ccreditm,Δx indicates that the impor-
tant degree of evaluation on AbNB is based on the its trading partners behavior-
credibility as service consumers.

Similarly, the global behavior-credibility evaluation value of AbNB in the pe-
riod of Δx as a service consumer is:

ccreditB,Δx = (1−λ)ΣmEmB×pcreditm,Δx+λccreditB,Δx−1 , 0 < λ < 1 (11)

The above algorithm considers the dynamic adjustable penalty factor and
the nodes history behavior, which makes it more reasonable and efficient than
EigenRep.

5 Experimental Analysis

We designed and built a Decentralized network simulation environment contain-
ing 100 AbN nodes. In this environment, we conducted several rounds of simula-
tion experiments to test the function and performance of the model, mechanism
and algorithm proposed in this paper. In order to facilitate comparative exper-
iments, we have set a fuzzy interval [β1, β2] based on the average value of the
node credibility, and defined AbN nodes by the credibility into three types sim-
ply: TH AbNs, which overall evaluation values are higher than the value β2;
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Fig. 1. The changes and distribution of global credibility evaluation value of AbN
(α = 0.1, λ = 0.1)
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Fig. 2. The changes and distribution of global credibility evaluation value of AbN
(α = 0.7, λ = 0.1)

TN AbNs, which overall evaluation values are equal to the average value and
between; DH AbNs, which overall evaluation values are lower than the value β1.
In the following part, we focused on analysis and testing on the new credibility
evaluation algorithm. We studied how different adjustment parameter α of the
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penalty factor μ affecting the global credibility evaluation values of AbNs. We
compared the global credibility evaluation values of AbNs of three time sections,
Δ1, Δ2 andΔ6, As Fig. 1 and Fig. 2 show. Supposing λ = 0.1, the new credibility
evaluation algorithm proposed in this paper with different α can all impove the
global credibility evaluation values of TH AbNs, and low the global credibility
evaluation values of DH AbNs, which proves the validity of the algorithm. From
Fig.1 and Fig.2 we can find that if parameter α is set higher, the effect of penalty
factor μ to the global credibility evaluation value of AbN is smaller; if parameter
α is set lower, the effect of penalty factor μ to the global credibility evaluation
value of AbN is larger, which is able to distinguish between TH AbNs and DH
AbNs sooner.

6 Conclusion

Lacking of credibility and security mechanisms, current decentralized network
computing environments can not fully utilize the enormous computing power and
the mass of types of resources, and provide really convenient, stable cooperation
work platform to share resources and address needs for large computing, large
storage space and valuable projects. Currently, domestic and overseas research
institute have not studied the credibility mechanism of resource sharing and col-
laboration in decentralized network computing environment well enough, still
at the initial stage. It is necessary to consider the credibility problems emerg-
ing at decentralized network computing environment, and included the trust-
computing architecture, avoiding decentralized network computing system in a
relative reliable and isolative status. Results of this study can be widely applied
to Grid computing, P2P computing, cloud computing and other network com-
puting systems and applications. It is sure that the specific application methods
and application results are also worth further study.
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Abstract. The K-Means algorithms is one of the most popular and effective clus-
tering algorithms for many practical applications. However, direct K-Means me-
thods, taking objects as processing unit, is computationally expensive especially 
in Objects-Assignment phase on Single-Instruction Single-Data (SISD) proces-
sors, typically as CPUs. In this paper, we propose a vectorized K-Means  
algorithm for Intel Many Integrated Core (MIC) coprocessor, a newly released 
product from Intel for highly parallel workloads. This new algorithm is able to 
achieve fine-grained Single-Instruction Multiple-Data (SIMD) parallelism by tak-
ing each dimension of all objects as a long vector. This vectorized algorithm is 
suitable for any-dimensional objects, which is little taken into consideration in 
preceding works. We also parallelize the vectorized K-Means algorithm on MIC 
coprocessor to achieve coarse-grained thread-level parallelism. Finally, we im-
plement and evaluate the vectorized method on the first generation of Intel MIC 
product. Measurements show that this algorithm based on MIC coprocessor gets 
desired speedup to sequential algorithm on CPU and demonstrate that MIC  
coprocessor owns highly parallel computational power as well as scalability. 

Keywords: K-Means, Vectorization, Locality, MIC Coprocessor, Algorithm. 

1 Introduction 

1.1 K-Means 

Clustering is considered as one of the most important unsupervised learning [1]  
problem. The target of clustering is to find a structure in a collection of unlabeled 
data. There are a number of published algorithms to achieve this target. Among all  
these algorithms, K-Means [2] is an effective and widely applied one in many appli-
cations for its simplicity, and was identified as one of the top 10 algorithms in data 
mining [3]. 

The K-Means problem offers no accuracy guarantees, it is NP-hard to solve this 
problem exactly [21]. Nevertheless, K-Means execute time is still very appealing in 
applications; especially with data scale expands at an amazing speed nowadays. Over 
the past decades, a number of efficient K-Means algorithms have been studied. 
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By augmenting k-means with a very simple, randomized seeding technique, K-
Means++ [5] obtained an algorithm that is O log k  competitive with the optimal 
clustering. K-Means|| [6] proposed an efficient parallel version of the sequential K-
Means++. Both of them focus on the initialization of K-Means, which is crucial for 
obtaining good final solutions. K-Means# [7] provided a clustering algorithm that 
approximately optimizes the k-means objective in the one-pass streaming setting 
based on K-Means++. 

Another idea of K-Means acceleration is to explore the parallelism feature of input 
data, which is also the foundation of this paper. Paper [8] studied the performance of 
general-purpose applications as well as K-Means on graphics processors using Com-
pute Unified Device Architecture (CUDA). Paper [9] [10] implemented K-Means on 
GPUs with CUDA, and got speedups. The speedups are obtained through a vast num-
ber of simple, data-parallel, deeply multithreaded cores and high memory bandwidths. 
Mahout [11] implement a parallel version of K-Means algorithm on top of Hadoop 
[12] using the MapReduce [13] paradigm. 

Preceding parallel optimization [9][10][11] can be summarized as optimization at 
task level. Most of them adopt objects oriented scheme, which is nature to be paralle-
lized by uniformly splitting objects into chunks. And then, each chunk is processed in 
sub-tasks. These parallel methods do not need to modify computational logic of sub-
tasks. They just spawn a number of processes on cluster nodes or threads on GPU at 
runtime for all sub-tasks. All these processes and threads execute the same logic as in 
common K-Means algorithm. 

However, preceding parallel methods do not take the dimension parameter into ac-
count. The GPU based methods are just suitable for one-dimensional objects. So, they 
just achieve coarse-grained parallelism. This paper proposes a new vectorized  
K-Means algorithm that suits any-dimensional objects and is particularly suitable for 
MIC Architecture supporting multi-level parallelism. 

1.2 Many Integrated Core Architecture (MIC) 

There is a strong trend to use heterogeneous architecture with moderate amounts of 
CPU cores and a number of accelerators or coprocessors in High Performance Com-
puting (HPC) recently. This trend has been announced from TACC [14] and ORNL 
[15]. From the top500 Supercomputing list we also observe that both Titan - Cray 
XK7 (Top 1 in November 2012) and Tianhe-1A - NUDT YH MPP (Top 1 in Novem-
ber 2010) used NVIDIA GPUs as accelerators. From the Top10 list in Nov. 2012 
(www.top500.org), we can find the Intel Xeon Phi coprocessor, of Intel MIC  
Architecture, has already been used as accelerators in Stampede. 

The Intel MIC Architecture [16] was announced in this context in 2010. Its first 
generation of Intel Xeon Phi product, codenamed Knights Corner (KNC), was just 
release in the late of 2012. It is a general-purpose, many-core architecture that sup-
ports shared memory execution model based on Intel’s previous Larrabee [17] design. 
Intel MIC coprocessor supports developers to run on standard, existing programming  
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tools and methods. Each Intel MIC coprocessor is consisted of many Intel CPU cores. 
Each core can execute 512-bit width SIMD instructions, which is a key feature  
contributing to MIC coprocessor’s computational power. 

The first generation of Intel Xeon Phi product has key specifications of: up to 1 te-
raflops double-precision performance, exceptional performance-per-watt for highly 
parallel workloads and familiar programming mode. Nevertheless, to port applications 
on MIC is not straight forward. Up to now, there are little published studies on MIC 
as [18] [19]. To take advantages of MIC, the key technologies are vectorization, im-
proving data locality and parallel on many integrated cores. Through this case study 
of using MIC to accelerate K-Means, we make an early exploration of Intel MIC  
architecture in real-world application. 

1.3 Our Contributions 

In this paper we obtain a vectorized version of the K-Means algorithm. The main idea 
is to further exploit data parallel characters in K-Means problems. There are varia-
tions of parallel K-Means methods based on MapReduce or GPU technologies [20] 
mentioned in section-1.1. However, they just exploit the parallelism between objects. 
We further exploit the parallelism between elements of multi-dimensional object. 

On the other hand, this paper is largely inspired by the newly announced MIC  
architecture. This vectorized K-Means algorithm is suitable for this architecture,  
because we can exploit both element-level and object-level parallelism. We then eva-
luate the performance of our algorithm on heterogeneous architecture of CPU and 
MIC. 

Our key contributions in this paper are: 

• We firstly describe the execute characteristic of K-Means algorithm. And then, 
propose a vectorized K-Means algorithm to further exploit data parallelism. 

• We design a special data layout scheme for this algorithm, because data locality 
plays an important role in both vectorization execution and thread-level parallel on 
shared memory. 

• Finally, we port the vectorized K-Means algorithm on heterogeneous architecture 
of CPU and MIC, and then make evaluation. We also exploit the computational 
power and scalability of MIC architecture. 

2 A Vectorized K-Means Algorithm 

In this section we present our vectorized algorithm based on a classic K-Means algo-
rithm, called Lloyd’s iteration [4]. Firstly, we make an introduction of the Lloyd’s 
iteration. Then, we set up the notations that will be used throughout this paper. After 
that, we present our vectorized algorithm in the trend towards fine-grained parallelism 
by using more complicated SIMD vector instruction sets. 
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2.1 Lloyd’s Iteration and Notations 

A simple and popular implementation of K-Means is called Lloyd’s iteration, which is 
made up of two steps: Objects-Assignment and Centroids-Recalculation. As an initia-
lization, k centroids are chosen randomly in the first iteration. And then, all n objects 
in  are assigned to the nearest centroid. So, n objects are divided into k clusters. In 
the second step, k centroids are re-calculated for k clusters. The iteration is then re-
peatedly until k centroids converge to a stable state that no longer moves. 

In the following section, we set up some notations that will be used throughout the 
whole paper: 

Let …  be a set of objects to be clustered into k clusters …  
in the d-dimensional Euclidean space, where  is the centroid of ith cluster. The 
Euclidean distance, denoted as || – ||, is used to measure the distance from  to 
jth cluster. 

For each object in , we define the assignment of  to one cluster in  follows 
the formula of:  ∀  ∈ … , || || || ||, membership o                     1  

After the assignment of all objects, we get k new clusters … . For each 
new cluster, the new centroid can be compute as:   ∑| |    , where :                                       2  

We also define a threshold , telling the program when to terminate in practice. 
Whether the centroids converge to a stable state is checked by a parameter  given 
by:  ∆ | | ,   ∆ | :     |        3  

In formula (3), delta is the total number of objects whose membership has changed 
in current iteration compared to previous iteration. 

With these notations, we can present the pseudo code of Lloyd’s iteration in  
Algorithm-1. 

 
Algorithms 1. Lloyd’s iteration 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

C  random chosen from O 
initialize … 1 
while    do 
    for each o ∈ O  

                                                          1  
    for each c ∈  
       ’                                                                                  2  

            3  
end while 
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2.2 Execute Characteristics of K-Means 

In order to analyze the execute characteristic of K-Means, we implement the Lloyd’s 
iteration in C++, and examine the execute time in different datasets. We breakdown 
the execute time into two parts corresponding to two phases of Objects-Assignment 
and Centroids-recalculation. 

We use five synthetic datasets to make the evaluation. All datasets compose of 
100,000 objects, using float as element data type. They are different from each other 
in dimension configurations as shown in Table 1. The figures in brackets from dimen-
sion column denote the total size of five datasets. For each dataset, we carry out three 
experiments with the parameter k tuning from 50 to 150. From Table 1, we find that 
the run time increase astonishingly with the increase of dimension and k parameters. 
We can also get that Objects-Assignment time occupies the most of running time. 
Specially, with the increase of dimension and k, the value of  .  / .  enlarges drastically. Keeping these characteristics in mind, we 
propose our vectorized K-Means algorithm. 

Table 1. Time breakdown of Lloyd’s iteration 

Time 

Breakdown 
Assign Time(s) 

Centroids 

Re-Calculation Time(s) 

Assign. /  
ReCalculation. 

 k 
50 100 150 50 100 150 50 100 150 

d  

1(1.6M) 10.2 31.7 45.6 0.60 0.99 0.98 16.8 31.9 46.4 

5(5.0M) 32.7 96.3 62.4 1.11 1.67 0.72 29.4 57.4 86.3 

10(9.3M) 51.0 76.1 203 1.48 1.11 2.00 34.4 68.2 101 

15(14M) 122 161 307 3.23 2.19 2.75 37.7 73.6 111 

20 (18M) 126 203 235 3.15 2.56 1.99 40.0 79.3 117 

2.3 Vectorization of K-Means Algorithm 

The vector processing mode of single-instruction multiple-data (SIMD) has always 
been an important branch of parallelism as well as thread-level parallelism in multi-
cores and MapReduce-like parallelism in clusters. The latter two are much simpler in 
programming by splitting a large job into small tasks. However, the SIMD parallelism 
on vector processing unit shares the advantages of power and area efficiency on single 
chip. Nowadays, most major high-performance CPUs support short SIMD instruction 
set extensions [22], such as SSE and AVX introduced by Intel. Recently, Intel extends 
SIMD instructions width to 512-bit with the release of Intel MIC coprocessor. The 
width is going to be wider in Intel’s roadmap. For K-Means problems, however, a 
high vectorization ratio cannot be expected in the algorithms mentioned above.  

In section 2.2, we observe that the Objects-Assignment phase occupies most of the 
running time. In theoretical, the running time of Objects-Assignment is , 
while the running time of Centroids Re-Calculation is . So, the value of .  / .  equals to ,  , which can be 

verified in experimental results in Table 1. In this section, we focus on the vectorization 
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of Objects-Assignment phase. In section 3, a full implementation will be presented 
based on the heterogeneous architecture of CPU and MIC. 

As we all know, there are two critical factors to attain high vectorization ratio: (i) the 
vector length must be long sufficiently, (ii) there should not be operation dependence 
between vector elements in one operation. For wide width vector instructions in MIC 
coprocessor, data locality is another factor that also influences performance obviously. 

To meet these requirements, there are two choices in Objects-Assignment phase: 

1) Objects-oriented Objects-Assignment 
Objects-oriented mode is a natural strategy. The intuition here is that k distances from 
one object to k centroids are calculated in one loop, and then the centroid of the short-
est distance is chosen as the cluster, to which current object will be assigned. After the 
assignment of current object, the next object is processed and so on. This strategy is 
easy to scale out by splitting objects into multi-chunks and spawning multi-processes 
on cluster or multi-threads on multi-core processor to process these chunks. Most 
sequential and parallel K-Means methods in the preceding adopt this strategy. 

However, this strategy is not adapted to the vectorization requirements mentioned 
above. First, the elements number, equals to d, is not long sufficient required in the 
first premise. Unless the objects are of 1-dimensional, then the whole objects are tak-
en as one vector as in [10] method, that assume all objects are 1-dimensional. Second, 
the operations on vector elements are not independent. To compute distance from 
objects to centroids, a classic distance mode is the Euclidean-Distance denoted 

as ∑ , where  and  is the ith element of object  and centroid  

respectively. The subtraction and square operations on different elements can execute 
separately, while the sum operations of different elements need to write to the same 
intermediate result. 

2) Centroids-oriented Objects-Assignment 
Centroids-oriented mode is another strategy that is used in this paper. The intuition 
here is that n distances from n objects to the same centroid are calculated in one loop, 
and then n new distances from n objects to the next centroid are calculated in the next 
loop. At the end of each loop, n new distances are compared to previous n distances 
correspondingly to n objects except the first loop as an initializer. If the new distance 
is shorter, the corresponding object is reassigned to a new centroid. The details are 
presented in Algorithm 2. 
 

Algorithm 2. Centroids-oriented Obj.-Assign. 

1: 
2: 
3: 
4: 
5: 
6: 
7: 

initialize … … ,  
for each  from 2 to  

  … … ,                                     4  
   ℎ   1                                                                       5  

    if  
      ℎ  
       



 A Vectorized K-Means Algorithm for Intel Many Integrated Core Architecture 283 

 

We find an obvious characteristic that the arithmetic (4) and logic (5) operations 
are separated in this strategy, which will be utilized in the full implementation on 
MIC coprocessor. 

In this strategy, it owns potential to meet two vectorization requirements if we calcu-
late the distances of all objects to current centroid in the manner of Algorithm-3, which 
take each dimension of all objects as one long vector. First, the vector length, equals to 
objects scale of n, is long enough. Second, the operations of subtraction, square, sum 
and square root are independent, because they are carried out on different objects. 

From the pseudo code we can see, that all arithmetic operations in Algorithm-3 can 
be implemented in a vectorization way. 

 
Algorithm 3. Distances calculation 

1: 
2: 
3: 
4: 
5: 
6: 

initialize … 0  
for  from 1 to  

   ℎ   1   
     

ℎ 1  
  

2.4 Data Locality Optimization 

A typical set of d-dimensional objects are distributed in Rd space as shown in Fig. 
1(a), which is also the layout of data in hard disk files. 

In memory, a common layout mode of all objects is shown in Fig. 1(b), in which 
the serial numbers denote the element offset to the first element of the first object. 
This layout mode is used in most preceding sequential or parallel variations of K-
Means method. As in the parallel variation for example, the ith chunk starts at 1 _ 1, where chunk_size is the splitting granularity of chunks. 

Fig. 1. Data layout for locality optimization 

The layout mode in Fig. 1(b) works well for objects-oriented strategy, because the 
data access pattern is also serial in that direction. However, this layout mode is not 
suitable for vectorized K-Means algorithm. We designed a new data layout mode as 
shown in Fig. 1(c), following SoA (Struct of Array) methodology. It is unlike the 
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layout mode in Fig. 1(b), following AoS (Array of Struct) methodology. This data 
layout mode performs better in utilization of memory bandwidth and cache, because 
Gather and Scatter operations [23] are not needed to prepare vectors for vector  
operations in the vectorized K-Means method. 

Based on the vectorized K-Means algorithm, we then implement the algorithm on 
MIC coprocessor to achieve both fine-grained parallelism through 512-bit SIMD 
instructions and coarse-grained parallelism through multi-threads parallel. 

3 Implement Vectorized K-Means on MIC 

3.1 MIC Architecture Overview 

Intel MIC coprocessor combines many Intel CPU cores onto a single chip. All the 
cores are general-purpose cores that can execute 64-bit scalar instructions and 512-bit 
vector instructions (16 single-precision or eight double-precision floating-point values 
per vector instruction) as well. The vector instructions run on vector procession unit 
(VPU) of each core. Each core supports four hardware threads with round-robin sche-
duling between instruction streams. All the cores share the coprocessor memory via a 
ring bus. It uses the cache structure of per-core L1 32KB Instruction/Data cache and 
L2 512KB cache. All caches and the shared memory are fully coherent. This Archi-
tecture satisfies the increasing computational demand and enables a higher ratio of 
computation per watt. 

The MIC card is designed for highly parallel part of a program. It works as coproces-
sor that is connected to CPU through PCI-e bus. MIC supports two easy Programming 
Modes, called offload and native. In offload mode, hot parts of calculation are offloaded 
to coprocessor just by adding a directive: “#pragma offload …” In the native program-
ming model, it compiles applications to run directly on the coprocessor. Because there is 
a Linux-based operating system running on MIC coprocessor, it supports to run all code 
on coprocessor just by adding a “–mmic” option at compiling time. 

For parallel Programming Modes, most options available in the host systems are 
available in Intel MIC coprocessor. These include: pThreads, OpenMP, Intel Thread-
ing Building Blocks, and Intel Cilk Plus. 

In general, the main advantages of MIC are as follows: 

1) It owns strong parallel computational power. One MIC card is consisted of many 
integrated cores, and each core can execute 512-bit wide SIMD instructions of-
fering high FLOP rates for computationally dense workloads. 

2) It provides an easy programming-mode for user who is familiar with C/C++ or 
FORTRAN. Thread-level parallel is easy to achieve through most parallel pro-
gramming language as OpenMP, TBB, and Intel Cilk Plus. 

3) It is an energy efficient design. In highly parallel applications, there are frequent-
ly inner loops that step regularly through memory and perform the same math 
operations repeatedly. The energy overhead for processing instructions repeated 
is impressive if these loops are assembled with scalar instructions. While SIMD 
amortizes that cost by doing all of the bookkeeping once and performing many 
math operations in just one instruction. 
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3.2 Vectorized K-Means on MIC: System Design 

Fig. 2 shows the basic work flow of vectorized K-Means algorithm on heterogeneous 
architecture of CPU and MIC.  

Fig. 2. The basic work flow of vectorized K-Means on CPU and MIC 

We adopt offload programming mode to offload highly parallel part to MIC copro-
cessor. However, the algorithm presented in previous section contains two main 
processes that run in a sequential order. And not all of them are suitable to be of-
floaded to MIC, because the MIC coprocessor does not perform well in logic opera-
tion. So, we divide the processes into logic operation and arithmetic operation firstly, 
and run them on host and coprocessor separately. 

1) We separate the  operations from Objects-Assignment. There 
is a logic operation of deciding whether the membership of object has changed. 

2) In Object-Assignment phase, the distance calculation and membership modify-
ing is separated. The distance calculation can run parallel but membership  
modifications need to compare old distances with new distances. 
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Secondly, the processes of membership modification and distance calculation already 
execute on CPU and MIC separately to take advantages of CPU’s logic computational 
power and MIC’s parallel arithmetic computational power. But the two processes do not 
have to execute serially. Because the modification of membership for ith centroid can 
run simultaneously with the distance computation for (i+1)th centroid. After the dis-
tances to ith centroid be calculated, it doesn’t have to wait for membership modification 
but transfer niwDist(o1…n) back to host asynchronously. In host side, the membership 
modification is triggered when niwDist(o1…n) is received. 

Finally, in Centroids-Recalculation phase, we don’t offload it to MIC, because 
there are logic operations to sum the value of each dimension in a cluster, and it only 
occupies a small part of running time, especial in situation of large number of clus-
ters. We separate these logic operations from Centroids-Recalculation, and execute 
them with membership modification as Centroids-Recalculation-1, because they share 
the same logic compare operation. In Centroids-Recalculation-2 phase, the new cen-
troid is calculated by averaging the summation from Centroids-Recalculation-1. 

3.3 Implementation 

In this section, we describe the full implementation of the algorithm for MIC. 

1) Vectorization and Data layout 
In order to meet two vectorization requirements in section 2.4, we use the centroids-
oriented strategy and layout all objects in the manner of Fig. 1(c). So, distances from 
all objects to centroid c can be calculated in vectorization way. There are d vectors, 
elem1…elemd, made up of dth dimension of all objects, and d scalar value, c1…cd, 
made up of dth dimension of centroid c. Then the distance vector, denoted as dist, of 
all objects to centroid c, is calculated as: 

                               ∑   

The length of dist and elem1…elemd are n, equals to the number of objects. As the 
MIC’s SIMD instructions are 512-bit wide, every long vector operation is then di-

vided into /  short vector operations on MIC’s VPUs. 

There are two practical choices to vectorize highly parallel code on MIC. One way 
is auto-vectorization, which is achieved by the compiler without any code modifica-
tion. But it requires the code to be suitable for efficient auto-vectorization. Another 
way is to explicitly call SIMD intrinsics, which is usually the most efficient way to 
use the SIMD capabilities of MIC coprocessor. But it needs some programming skills 
to use SIMD intrinsics explicitly. 

2) Multi-Threading parallelism 
The MIC coprocessor exposes many computational cores, each featuring 4-way SMT, 
providing developer hundreds of threads in total. To utilize all the threads is a key factor 
for parallel applications. Although developers can manage all the threads themselves, 
the managements of raw threads are a lot of work and it is very hard to maintain.  
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Fortunately, OpenMP, TBB, and Intel Cilk Plus are three parallel programming options 
that are available in Intel MIC coprocessor. In this paper, we use OpenMP to achieve 
thread-level parallelism for our K-Means algorithm on MIC coprocessor. 

OpenMP is an API that supports shared memory parallel programming in C, C++ 
and FORTRAN on multi-platform. It consists of a set of compiler directives and li-
brary routines. The compiler directives are used to annotate loop bodies and code 
blocks for parallel execution and marking variables as local or shared as well. The 
runtime behavior can be controlled by environment variables. In this paper, we use a 
for compiler directive to execute the iterations of the loop concurrently. We also set 
thread schedule mode as static and thread affinity mode as scatter to control the run-
time behavior. In static scheduling mode, the iterations will be partitioned in chunks 
which are allocated to the threads in a round-robin manner. In scatter thread affinity 
mode, the target is to make the best use of every core first. So, the first thread is com-
bined to core-1, the second thread is combined to core-2 and so on. 

Applying these technologies on vectorized K-Means algorithm, we can now port it 
on heterogeneous architecture of CPU and MIC. The pseudo code of Objects-
Assignment is shown in Algorithm-4. 

 
Algorithm 4. Obj.-Assign. On CPU + MIC 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 

initialize …  
initialize … … ,  
for each  from 2 to  

swap … , …  #   target …  
{ 
    initialize … 0  
    for  from 1 to  #  omp parallel  num_threads   
         ℎ   1   
               #  omp parallel  num_threads  

  ℎ   1   
     

} 
   ℎ   1                                               

         if  
       ℎ  

          #  _ target mic  
      null 

 
The “MIC” code block is offloaded to MIC coprocessor through an “offload” as 

clause of #pragma, while the “Host” code block runs on common CPU at host side. 
The overlap executing of these two blocks is achieved by using “signal” and “wait” as 
offload clauses of #pragma. When the program runs to line-5, it tells the runtime to 

 
MIC 

Host 
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execute the “MIC” block on MIC, and gives the control back to CPU. So, the CPU 
thread goes on executing “Host” code block. When the program runs to line-20, it 
blocks the CPU thread until distNew(o1…n) is calculated on MIC and transferred 
back to host. It is possible that current distNew(o1…n), distances to ith centroid, be 
overwritten by next distNew(o1…n), distances to (i+1)th centroid, when it is still 
being read at host side. To avoid this overwritten, we define distTmp of the same size 
as distNew, and make a swap with distNew at the beginning of iterations for different 
centroids. This process doesn’t introduce memory copy overhead just by swapping 
address.  

In order to utilize the hardware resource of many cores, we use OpenMP to get a 
coarse parallel by spawning a number of threads on many cores. As shown in line-9 
and line-12, all objects are split into chunks to be processed on different threads. 

4 Performance Evaluations 

In this section we present the experimental evaluations for vectorized K-Means algo-
rithm and MIC coprocessor.  

4.1 Experiment Setup 

All experiments were conducted on a single server made up of Intel Xeon CPU and 
Intel MIC coprocessor connected to CPU through PCI-e bus. 

The host side features two-way processors of Intel Xeon Processor E5-2670. Each 
processor consists of 8 physical cores with clock speed of 2.60GHz. Based on Intel 
Hyper-threading technology, that delivers two processing threads per physical core, 
the host side can spawn up to 32 threads each time. Moreover, the E5-2670 processor 
can execute vector instructions of AVX Instruction Set Extensions. 

In the coprocessor side, we choose the first generation of Intel Xeon Phi product, 
codenamed Knights Corner (KNC). The Intel Xeon Phi card in our experiment pro-
vides in a single chip 57 cores with clock speed of 1.094GHz. Each core can execute 
four hardware threads in round-robin scheduling between instruction streams, and 
features a 512-bit wide vector processing unit. It uses the cache structure of per-core 
L1 32KB Instruction/Data cache and L2 512KB cache. All caches and the shared 
8GB GDDR5 memory (up to 320GB/s) are fully coherent. This coprocessor can 
spawn up to 224 threads each time. 

4.2 Dataset and Baseline 

The 512-bit wide SIMD instructions of each core in MIC coprocessor can process 
sixteen 32-bit single-precision float or eight 64-bit double-precision double operations 
in one instruction. We produce sample objects, consisted of random 32-bit float as 
elements of an object. We change the parameters of means, number of dimensions as 
well as object-scale and evaluate the performance in different settings. 
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For the rest of the experiments, we take the scalar version of Lloyd’s iterations as 
baseline. We evaluate the vectorization on CPU firstly. And then, we evaluate the 
performance of vectorized K-Means algorithm on MIC coprocessor. We also survey 
the scalability of MIC coprocessor as well as the overhead to use MIC coprocessor.  

4.3 Basic Evaluation on CPU 

In order to evaluate the vectorization performance of K-Means algorithm and the 
speed up achieved from MIC coprocessor, we compare the scalar and vector version 
of K-Means method on CPU first. The scalar version uses objects-oriented strategy in 
Objects-Assignment phase, while the vector version uses centroids-oriented strategy. 
Fig. 3 plots the time elapse of both strategies in Objects-Assignment phase. The expe-
riments were conduct on a dataset consist of 100,000 1 to 20-dimensional objects. All 
the objects are assigned to 50-150 clusters. The iteration times are the same in two 
strategies with the same configurations of #dimension and k. Fig. 3 shows that the 
vectorized variation gets a speed-up of 2 in Objects-Assignment phase with different 
settings. 

Fig. 3. Comparison of Objects-Assignment time between our vectorization version and scalar 
version on CPU 

4.4 Computational Power and Scalability of MIC Coprocessor 

Fig. 4 compares the computational power of MIC coprocessor to CPU on host. In this 
experiment, we take the vectorized K-Means method on CPU as baseline, and then 
compare the distances calculation time on both CPU and MIC coprocessor. The y-axis 
is the speedup to baseline on CPU. We use two vectorization ways on MIC coprocessor 
as shown in Fig. 4. Both the baseline and auto-vectorization version use compiler para-
meter “-O3” as optimization option for vectorization. In intrinsic version, we unroll the 
loop 4 times to use most of the vector registers. We also use prefetch intrinsic and 
broadcast intrinsic to make the most of cache resources. We observe that MIC coproces-
sor works faster than CPU to calculate distances unless objects are 1-dimensional, and 
get a maximum speed up of 1.5. 
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Fig. 4. Computational power comparison between MIC and CPU 

Fig. 5 plots the scalability as we scale the number of threads in both MIC copro-
cessor and host. As mentioned above, the host features two physical E5-2670 CPUs, 
with each consisting of 8 cores. As E5-2670 CPU use Hyper-threading technology, 
the host supports 32 hard threads at most. The MIC coprocessor consists of 57 cores, 
with each supports 4 hard threads. One MIC coprocessor supports 224 hard threads  
at most on 56 cores, with one core used to run the uOS. All experiments were on a 
dataset of 5,000,000 10-dimensional objects, which were clustered into 50 clusters. 

The experiment results shows that MIC coprocessor scales out near linearly before 
#thread 32, and gets a maximum speed up of 23 at 112-threads to 1-thread setting. 
The maximum speed up of CPU is 10.5 at 32-threads settings. There is a shock from 
8-threads to 16-threads settings on CPU, because every 8 cores are on two different 
physical CPUs. We observe that in the same setting before 8-threads, host side per-
forms little better than MIC coprocessor. This phenomenon is different from the com-
putational power comparison. It might be influenced by parallel programming mode 
of OpenMP, and suggests optimization for parallel programming mode on MIC  
coprocessor. 
 

 

Fig. 5. Scalability of MIC coprocessor (the inset figure shows the explicit runtime of the outset 
figure at the configuration from 8 to 224) 
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4.5 Data Locality 

To evaluate the influence of data locality on vectorized K-Means algorithm, we com-
pare two data layout strategies in Fig. 1(b) and Fig. 1(c). All experiments are con-
ducted on a dataset of 100,000 objects. We compare the Objects-Assignment time for 
both data layout strategies on MIC coprocessor. As the number of iterations varies in 
different parameter settings, we take the Objects-Assignment time of scalar variation 
on CPU as baseline, and compute the ratio of Objects-Assignment time to baseline as 
y-axis for both data layout strategies as shown in Fig. 6. We observe from the experi-
ment results that the second data layout strategy gets a steady ratio of 0.5, meaning a 
speedup of 2 to baseline. While in the first data layout mode, the Objects-Assignment 
time equals to baseline when the dimension is 5. Since then, the Objects-Assignment 
time grows near linearly with the increase of dimension. 

Fig. 6. Data locality in two data layout modes 

4.6 Total Speed Up and Execution Time Breakdown 

To test the total speedup achieved by this algorithm on heterogeneous architecture. 
We test the execution time breakdown firstly. 

 
Fig. 7. Execution time breakdown of vectorized K-Means on CPU and MIC 
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Fig. 7 shows the time breakdown of three parts of the algorithm. The distances-
calculation is finished on MIC, while the other two are on host. These experiments are 
conducted on the most optimized setting, meaning #thread is set to 112. From the Figure 
we observe that distances-calculation time is usually longer than objects-assignment, 
which inspires us to hide the objects-assignment from distances-calculation.  

Fig. 8 shows the total speed up to the baseline of sequential Lloyd’s iteration 
against 1,000,000 objects. The synchronous mode means distances-calculation and 
objects-assignment execute in sequential way, while asynchronous mode means they 
execute asynchronously. The ideal mode is based on a hypothesis that objects-
assignment can be full hided from distances-calculation without overheads. The speed 
up peaks at 23.8 in the 100-k configuration and 15-dimension configuration. 

 

 

Fig. 8. Total speed up 

4.7 Overheads 

As previously noted, we cannot expect an ideal speed up. There are two main over-
heads at runtime.  

Firstly, threads management might affect the performance. As mentioned in section 
4.4, the single thread performance of MIC is better than CPU. But it is not the same 
when using OpenMP to manage threads on MIC and CPU. Moreover, the scalability 
decreases dramatically after 56-thread configuration. 

Secondly, data transfer between host and MIC will affect the performance as shown 
in section 4.6. It is hard to achieve ideal asynchronous execution between host and MIC. 
Because the memory on MIC coprocessor is shared by hundreds of threads, the memory 
mapping technologies between host and MIC are worthy of further research. 

5 Conclusion 

To extract useful information from massive data and use it to facilitate our decision 
making are challenging scientific problems in big data technologies. The key to acce-
lerate massive data processing is parallelism. Traditional strategies are to use more 
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hardware to divide massive data into small tasks, which can be executed parallel. But 
we think the essence is to explore data parallel to the most fine-grained level. In the 
context of heterogeneous architecture, we have already got the hardware support. 

In this paper, we presented a vectorized K-Means algorithm that achieves both 
fine-grained and coarse grained parallelism. This algorithm further explores the data 
parallel at element-level of objects in vectorization manner. We then introduce a data 
layout mode that is suitable for this algorithm to improve data locality in shared 
memory. 

Moreover, we implement the algorithm on heterogeneous architecture of CPU and 
MIC coprocessor. As newly designed coprocessor architecture, there will surely be a 
lot of following studies on Many Integrated Core architecture that supports wide 
SIMD instructions. Through this work, we make an early study of MIC coprocessor. 
We achieve desired speedup in real-world application as well as scalability on the 
Intel MIC architecture. From the implementation, we also get a strong impression of 
the simple programming mode of MIC coprocessor. 
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Abstract. Despite of continuous efforts on reducing virtualization overhead, 
memory virtualization overhead remains significant for certain applications and 
often the last piece standing. Hardware vendors even dedicate hardware re-
sources to help minimize this overhead. Each of the two typical approaches, sha-
dow paging (SP) and hardware assisted paging (HAP), has its own advantages 
and disadvantages. Hardware-dependent HAP eliminates most VM exits caused 
by page faults, but suffers from higher penalties of TLB misses. On the other 
hand, the software-only approach, SP, enjoys shorter page walk latencies while 
paying for the VM exits to maintain the consistency between the shadow page 
table and the guest page table. We observe that, although HAP and SP each 
holds its ground for a set of applications in a 32-bit virtual machine (VM), SP 
almost always performs on a par with or better than HAP in a 64-bit system, 
which steadily gains its popularity. This paper examines the root cause of this in-
consistency through a series of experiments and shows that the major overhead 
of shadow paging in a 32-bit system can be substantially reduced using a custo-
mized memory allocator. We conclude that memory virtualization overhead can 
be minimized with software-only approaches and therefore hardware-assisted 
paging might no longer be necessary. 

Keywords: Memory virtualization, shadow paging, hardware assisted paging. 

1 Introduction 

Server consolidation, performance isolation and maintenance advantages of system 
virtualization makes it a backbone technique for data center and cloud computing. 
However, virtualization brings an additional layer of abstraction that can result in 
performance penalty. Previous studies in both software and hardware have successful-
ly minimized the virtualization overhead for CPU, I/O and network [1, 2, 3]. Recent 
research proposes a selective approach to mitigate memory virtualization overhead by 
taking advantage of hardware support and software page table management [4].  
Enhancements of hardware assistance are discussed in [5, 8]. 

Each of the two conventional memory virtualization approaches, shadow paging 
(SP) and hardware assisted paging (HAP) such as Extended Page Table (EPT) and 
Nested Page Table (NTP) [6, 7, 8], has its own advantage. Figure 1 illustrates the key 
mechanism of SP and HAP. SP is a pure software approach. In implementation, VMM 
maintains a shadow page table which maps virtual addresses directly to machine  
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addresses while a guest OS maintains its own virtual to physical page table. Since the 
shadow table is the actual page table loaded into the MMU, operations like reloading 
CR3, invalidating TLB entries and modifying page table result in multiple VM exits in 
order to synchronize between the two page tables. To avoid expensive VM exits, HAP 
introduces a two-dimensional page table by extending the guest pages table with EPTs 
or NPTs, which complete the translation from guest physical address to machine ad-
dress. When loaded into the MMU, a guest OS can convert a guest virtual address to 
machine address through guest and extended page tables. Therefore, guest page fault, 
CR3 change and invalidation of TLB entries can be handled within the guest OS itself 
without triggering VM exits. However, the additional layer of translation adds over-
head to the page walk on a TLB miss, which becomes remarkable in 64-bit system 
with multi-level page table. 

 

Fig. 1. Memory virtualization 

Figure 2 shows that neither HAP nor SP can be a definite winner in a 32-bit sys-
tem. HAP edges SP with an up to 60% performance gap for gcc while losing 20% to 
SP for mcf. Interestingly, for a 64-bit system as shown in figure 3, despite that there is 
no noticeable gap between the two mechanisms in over half of the cases in SPEC 
CPU 2006, SP performs better in other cases.  

This paper investigates empirically the performance discrepancy of SP and HAP 
between a 32-bit and a 64-bit system. We evaluate the system behavior of VM with 
SP mode and HAP mode, respectively, and find that the major overhead of SP stems 
from VM exits, which in turn result from minor faults in Guest OS. We observe that, 
although a massive number of minor faults have a minimal impact in the native sys-
tem and HAP, it causes a notable penalty for SP. Further experiments reveal that over 
90% minor faults are introduced by virtual memory management in system libraries. 
We propose an adaptive approach that tunes memory management libraries to elimi-
nate minor faults. Our results show that SP can match the native performance with the 
software improvement. Although it is still too early to drop HAP as our results are 
limited to C/C++ applications that use the glibc libraries, we conclude that a software 
approach to eliminating memory virtualization overhead is apparently more cost  
effective and promising.  
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Fig. 2. 32-bit VM normalized execution time 

 
Fig. 3. 64-bit VM normalized execution time 

2 Origin of Memory Virtualization Overhead 

To understand why SP and HAP behave so differently in a 32-bit VM versus a 64-bit 
VM, we profile the systems by collecting the number of VM exits and TLB misses, 
noting that longer latency is required to fill TLB entry for a 64-bit VM in HAP mode 
because of multi-level page table, and HAP eliminates VM exits caused by page 
faults, CR3 loading and TLB entry invalidation.  

We use hardware performance counters to track TLB misses for all applications. 
The number of TLB misses of mcf is one magnitude higher in both 32-bit and 64-bit, 
which explains the significant of performance gain of SP over HAP. 

Table 1 lists the number of VM exits. The number of VM exits of gcc is one mag-
nitude higher than all other benchmarks in the 32-bit VM while the gap disappears in 
the 64-bit VM. We thus conclude that the performance benefit of HAP stems from its 
ability to reduce certain VM exits. However, when the number of VM exits becomes 
insignificant, the advantage of HAP no longer exists.   
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Table 1. VM exits (millions) 

Benchmark 32-bit shadow 32-bit hap 64-bit shadow 64-bit hap 
400.perlbench 4.493 1.148  2.002  1.091  

401.bzip2 10.107 1.712  3.588  1.413  

403.gcc 190.038 0.857  7.043  1.012  

429.mcf 3.004 0.834  2.070  1.094  

445.gobmk 2.112 1.353  1.656  1.241  

456.hmmer 3.033 2.458  2.253  1.928  

458.sjeng 2.151 1.443  1.710  1.324  

462.libquantum 3.998 1.570  2.150  1.312  

464.h264ref 4.216 2.065  2.095  1.607  

471.omnetpp 1.431 0.921  1.232  0.962  

473.astar 3.508 1.335  1.965  1.230  

483.xalancbmk 2.073 1.294  1.276  1.257  

 
When comparing the VM exits of the 32-bit VM with the 64-bit VM under SP 

mode, we observe that all benchmarks yield a lower number of VM exits in the 64-bit 
VM. The VM profile tells us that major sources of VM exit events are 
EXCEPTION_NMI, EXTERNAL_INTERRUPT, PENDING_VIRT_INTR, CPUID, 
HLT, INVLPG, CR_ACCESS, IO_INSTRUCTION and APIC_ACCESS, where 
EXCEPTION_NMI and INVLPG are two events that dominate the differences be-
tween 32-bit and 64-bit. EXCEPTION_NMI and INVLPG correspond to page fault 
handling and TLB invalidation in SPEC CPU 2006, respectively. These differences 
can stem from operating system, application memory footprint, runtime library or 
their interactions. We examine these possibilities in this section. 

2.1 Experimental Setup 

We use SPEC CPU2006 to explore the origin of the excessive VM exits in the 32-bit 
VM. We conduct our experiments on an Intel CORE i5 machine with 4 GB of physi-
cal memory and two 2.80GHz cores. We run Xen 4.1.2 [13] as the VMM, Linux 
2.6.38 with 1 core and 2 GB of physical memory as domain 0, and Linux 2.6.32 with 
1 core and 2 GB of physical memory as domain U. For comparison, the native plat-
form also uses 1 core and 2 GB of physical memory. 

2.2 Memory Footprint 

A 64-bit application and a 32-bit one can demonstrate different memory access pat-
tern even when the source is the same. In Intel X86 architecture, the compiler can 
reduce memory accesses by using more registers in 64-bit mode. On the other hand, 
some data structures, such as pointers, might require more memory. When monitoring 
the memory footprint of the SPEC integer benchmarks, we notice that only mcf shows 
notable working set size changes, whose working set is doubled in 64-bit as mcf is 
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pointer intensive[9,10]. Slight increase of memory footprint is irrelevant to the de-
crease of VM-exits. We conclude that changes in memory footprint cannot explain the 
differences of VM exits. 

2.3 OS Impact 

Since most of the VM exits are caused by page faults in a VM, we further investigate 
the sources of page faults. We find out the VM exit resulting page faults are predomi-
nantly minor faults, which makes sense considering the sufficient physical memory 
we allocate for the VM. Our first guess is the minor faults could be attributed to the 
different OS behaviors in 32-bit mode and 64-bit mode although both of them are 
built from the same source code. 

To verify this conjecture, we run the benchmarks in a new mode, blend mode, 
where we experiment with 32-bit applications in the 64-bit guest OS. We then com-
pare with existing results: 32-bit application in the 32-bit system (32-bit mode) and 
64-bit applications in the 64-bit system (64-bit mode). We observe that the number of 
page faults under blend mode is roughly the same as 32-bit mode as shown in Table 2 
for gcc. The other benchmarks behave the same. We thus conclude the page fault 
discrepancy must result from user space and the OS impact is minimal.  

Table 2. Minor faults statistics of 403.gcc 

403.gcc 32-bit shadow 64-bit shadow Blend mode 
inputs # million heap % #million heap % # million heap % 
166.i 0.28 99.67 0.20 99.47 0.28 99.62 

200.i 0.27 99.67 0.10 99.03 0.27 99.62 

typeck.i 0.34 99.73 0.29 99.63 0.34 99.68 

cp-decl.i 1.85 99.95 0.18 99.42 1.85 99.94 

expr.i 3.61 99.97 0.32 99.67 3.61 99.97 

expr2.i 0.52 99.82 0.50 99.78 0.52 99.79 

g23.i 4.79 99.98 0.41 99.72 4.79 99.97 

s04.i 9.03 99.99 0.61 99.80 9.03 99.99 

scilab.i 0.04 97.80 0.03 97.34 0.04 97.44 

sum 20.77 99.96 2.68 99.63 20.77 99.95 

2.4 Runtime Library 

To identify the source of minor faults at user space, we attempt to pinpoint the exact 
location in code by analyzing the type and address of page fault. Table 2 shows the 
numbers of minor faults and their distribution when gcc runs on 32-bit mode, 64-bit 
mode, and blend mode, all with shadow paging. Note that most of the minor faults 
are located in heap for gcc (similar results for other applications). We can be certain 
that the minor fault discrepancy come from the memory management library.  
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This conclusion is also supported by a study by Phillip Ezolt et al. who pointed out 
that minor faults are the source of performance difference between Tru64 Unix and 
Linux/Alpha [11]. 

Both the 32-bit and 64-bit systems use the same glibc that implements the Doug-
Lea allocator [12]. The difference locates at the two tunable parameters 
mmap_threshold and trim_threshold, which are set to different default values in the 
two systems. mmap_threshold is the request size threshold for using mmap() to ser-
vice a request. Requests of at least this size will be serviced via mmap(). In Linux, the 
mmap() support routine is expensive because it needs to zero out the mapped space 
and restart corresponding page table mappings. trim_threshold is the maximum 
amount of unused top-most heap memory to keep by a process. The top-most availa-
ble chunk is released back to the system if its size is larger than the trim_threshold. 
Both thresholds are dynamically adjusted when the application frees memory that was 
allocated via mmap(). mmap_threshold is set to the size of the recently unmapped 
space if the size no bigger that DEFAULT_MMAP_THRESHOLD_MAX (the de-
fault upper bound of mmap_threshold) and bigger than the current mmap_threshold. 
trim_threshold is always maintained as twice of mmap_threshold when an adjustment 
takes place.  

For a 32-bit application, the default upper bound of mmap_threshold is 512K, 
while for a 64-bit application it is 32M. A request size between 512K and 32M will 
likely trigger two different allocation processes. The request of this size in a 32-bit 
application will be likely served by more expensive mmap(), while the same size re-
quest from a 64-bit application is likely served by the chunks in free bins which can 
reuse the existing page table entries and do not trigger minor faults [12]. 

brk         allocated  area 

malloc a  218718208        218718208 : 218996736 
malloc b  218996736        218996736 : 219275264 
free a 
free b 
malloc c  218718208        218718208 : 218996736 
malloc d  218996736        218996736 : 219275264 

………… 

With relatively smaller mmap_threshold and trim_threshold, by observing the 
glibc allocations for gcc, we find a typical operation pattern where trim operations 
release the top-most chunk back to the system and malloc operations reallocate the 
same virtual memory region later. Above is a snapshot of trim operation effects. The 
first column stands for the memory operation; the value of heap top address is in the 
second column; and the third is the allocated area. After malloc b, the heap top ad-
dress is 219275264, but before malloc c, due to free a and free b, whose combined 
size is bigger than the trim_threshold, the heap brk is trimmed to 218718208. Then 
the same virtual space is allocated to c that needs to be mapped again. Accesses to c 
will trigger minor faults. 
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Fig. 4. Trim threshold  

Figure 4 shows the trends of trim threshold values for gcc. The trim threshold for 
32-bit stays flat while it quickly increases in 64-bit.This trends and the aforemen-
tioned example partially explain the minor fault difference between 32-bit and 64-bit. 
A bigger threshold that prevents releasing a and b will avoid these faults. 

We also track the number of memory management related system calls by glibc. 
Table 3 shows that system operations invoked from glibc, such as mmap, sbrk, and 
unmap, are many more in 32-bit than in 64-bit. Due to the relatively smaller thre-
sholds, a 32-bit application usually allocate and free the same region back and forth, 
leading to more calls to mmap, unmap, and sbrk. 

Table 3. Glibc system calls 

403.gcc mmap sbrk unmap 
  inputs 32-bit 64-bit 32-bit 64-bit 32-bit 64-bit 

166.i 340 45 526 678 317 20 
200.i 900 37 1,334 1,043 878 14 

typeck.i 1,599 48 804 839 1,577 24 
cp-decl.i 95 35 70,294 788 73 12 

expr.i 97 51 119,431 1,226 75 28 
expr2.i 142 56 1,910 2,542 119 33 
g23.i 1,261 43 106,539 2,828 1,238 19 
s04.i 124,004 56 960 1,054 123,979 32 

scilab.i 80 37 478 482 62 14 
sum 128,518 408 302,276 11,480 128,318 196 

 
To further verify the impact of the thresholds, we set environment variables 

M_TRIM_THRESHOLD_ to -1 and M_MMAP_MAX_ to 0 to forbid the system 
libraries from returning dynamically allocated memory to OS and thus minimize 



302 X. Wang et al. 

 

heap-related minor faults. Table 4 compares the results for gcc. With disabled thre-
sholds, the number of minor faults is reduced by 95%. The other applications in 
SPEC2006 are also reduced to different extent. However, simply disabling the thre-
shold is not a good idea as it increases physical memory pressure and could result in 
more hard faults that will significantly drag down the performance. Section 3 propos-
es a software approach that can effectively reduce minor faults without increasing 
memory pressure. 

Table 4. Minor faults with disabled thresholds 

403.gcc minor fault 
inputs original disabled thresholds 
166.i 283,502 59,397 
200.i 278,109 45,850 

typeck.i 343,063 107,834 
cp-decl.i 1,853,783 77,391 

expr.i 3,616,901 105,113 
expr2.i 528,185 144,304 
g23.i 4,791,573 210,420 
s04.i 9,036,055 237,832 

scilab.i 40,238 17,200 
sum 20,771,409 1,005,341 

3 Software Approach 

3.1 Adaptive Trim Threshold 

As analyzed in Section 2, excessive minor faults of 32-bit applications are caused by 
the selection of thresholds. A small trim threshold can lead to fluctuations of the heap 
top. The result is that the library returns the top chunk of heap and asks it back imme-
diately. To eliminate the unnecessary operations and the resulting minor faults,  
we propose to adaptively increase the trim threshold when the heap top thrashing is  
observed. 

Our implementation introduces a new parameter, last_trim, to keep track of the 
most recent break or heap top address before the most recent trimming attempt. On a 
free, if the size of the unused top-most memory is larger than trim_threshold, which 
suggests trimming, we compare the current break address with last_trim. If the cur-
rent break address is larger than or equal to last_trim, which means that the memory 
region released by last trimming has been reused again, we adjust the trim threshold 
with an increment of trim_threshold. The current trimming is determined by the new 
threshold. Otherwise, we keep the current trim threshold intact to allow the top chunk 
to be released. In this case, the new break will go down further, demonstrating conti-
nuous memory release actions.  
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3.2 Delayed Unmap 

Another source of minor faults stems from the mmapped space that reuses the recent-
ly unmapped area. The mmap_threshold is designed with the assumption the large 
chunk of allocated memory often lives long and thus is more persistent. However, in 
the 32-bit library, the mmap_threshold is set small considering the limited virtual 
address space. An unmapped area often gets mapped again, yielding unnecessary 
minor faults because the remapped area uses the previously unmapped physical pages. 

To make up for the deficiency of superfluous mmap and unmap in 32-bit applications, 
we propose a new mmap/unmap scheme, called delayed unmap. Delayed unmap does not 
change mmap_threshold and thus will not increase the pressure to the main heap. When a 
chunk of memory is to be unmapped, we do not unmap it directly. Rather, we keep track 
of this chunk in a pointer called delayed_unmap_chunk. To simplify the algorithm, we 
only track the largest chunk. If the current chunk is bigger than the de-
layed_unmap_chunk, the delayed chunk is unmapped and the current chunk is marked as 
delayed. When an allocation request exceeds the mmap_threshold and thus needs to be 
mmaped, we check if the request can be satisfied by the delayed chunk. If so, it is served 
right after memseting the allocated region to emulate the zeroing out memory operation 
of unmap. The remaining chunk, if any, is still reserved in the delay_unmap_chunk with 
updated size and location information. If a reserved chunk cannot satisfy mmap requests 
for more than five times, it is released, which rarely happens in our experiments. 

4 Experiment Evaluation 

We implement our adaptive threshold and delayed mmap in glibc and evaluate its 
impact on the 32-bit systems. In the results, shadow simple stands for disabled thre-
sholds in glibc to forbid returning dynamic memory to OS, while shadow adaptive is 
our implementation. 

Figure 5 shows the normalized VM exits of SP when the adaptive approach is applied 
or the thresholds are disabled. The performance improvements as shown in Figure 6  
 

 

Fig. 5. Normalized times of VM-exits 
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Fig. 6. Normalized Execution time 

correlate well with the reduction ratios of VM exits. Note that gcc，libquantum and 

h264ref all have remarkable VM exits reduction and thus performance improvement. It 
shows the normalized execution time of SPEC INT2006 in VM with HAP, SP, SP with 
disable thresholds which serves an upper bound for software approaches, and SP plus 
delayed unmap and adaptive threshold.  

Our software approach essentially treats the pathological case of gcc. It also brings 
notable improvement over SP for several other benchmarks, namely 3% for h264ref, 
and 5% for libquantum. The software approach brings SP to within 2% of the native 
performance, on average, compared to 8% before and %4 for HAP. 

Figures 7 and 8 show the physical memory footprints of different memory man-
agement schemes under SP mode for gcc and libquantum, two representative cases, 
on 32-bit system. Note that simply disabling the thresholds will result in significant 
physical memory footprint increase and thus increase the memory pressure. Our soft-
ware method does not cause notable increase of footprints. 

 

 

Fig. 7. Footprint of gcc 
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Fig. 8. Footprint of libquantum 

5 Conclusion 

This paper analyzes the overhead of memory virtualization and finds that the major 
overhead of shadow paging comes from minor page faults in 32-bit systems that 
mostly disappear in 64-bit systems. Through a series of experiments, we show that the 
minor faults can mostly be eliminated with careful tuning of glibc memory manage-
ment thresholds. We propose a software solution that can adaptively adjust the thre-
sholds and reuse the unmapped area to minimize minor faults. Our experimental  
results show that, with the software scheme, shadow paging can exhibit close to na-
tive performance. On the other hand, HAP cannot avoid its penalty for long page walk 
and thus is less effective. 
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Abstract. Reconfigurable compilers have shown significant promise in
the field of reconfigurable computing, and pipeline scheduling algorithms
are typically concerned with improving iteration performance or sav-
ing the resources. However, the lack of loop pipeline scheduling algo-
rithm for reconfigurable systems hampers the widespread adoption of
fine-grained reconfigurable compilers. This paper presents an improved
FPGAs-based loop pipeline scheduling algorithm and has realized it in
ASCRA (Application-Specific Compiler for Reconfigurable Architecture)
compilation framework. In FPGAs-based loop pipeline scheduling algo-
rithm, the adequate consideration of hardware operation logic delay can
save the resources of pipelining and ensure the performance of reconfig-
urable systems. Both of iterations with carried dependencies and without
carried dependency have been considered. The preliminary experiment
results show that it can economize more than 20% of the register re-
sources by combining the adjacent pipeline stages without influencing
the performance, and the algorithm is feasible for the other fine-grained
reconfigurable compilers.

Keywords: Reconfigurable compiler, FPGAs, Pipelining algorithm,
loop, LLVM.

1 Introduction

The manufacturing technique of modern field programmable gate arrays (FPGA)
has prompted the supercomputing industry to develop high-performance reconfig-
urable computers that combine general-purpose processors (GPPs) with FPGAs.
For general-purpose, reconfigurable compilers have also been developed, which
allows scientists and engineers to create FPGA-based reconfigurable computing
systems using high-level language (HLL) rather than hardware description lan-
guage (HDL) [1]. The loop pipeline techniques used in the hybrid platform based
on GPPs-FPGAs can take full advantage of parallelism to improve the data pro-
cessing capacity. Therefore, the researching of efficient loop pipeline scheduling
algorithm is necessary to reconfigurable compilers.
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At present, many reconfigurable compilers can generate pipelined architecture
on FPGAs, and most of them use the ASAP (As Soon As Possible) scheduling
and directed pipelining division method to insert nodes in the LDDG (loop data
dependence graph) to pipelines [2–5]. The directed pipelining division method
puts nodes that have the same height in the LDDG into the same pipelining
stage. This approach is simple, but did not consider the impact of time and
resources for pipelining scheduling.

Reference [6] proposes a pipeline stages combined scheduling algorithm. It
can combine the adjacent two or more pipeline stages into a single relatively
long delay pipeline stage to reduce pipeline stages and optimize pipeline without
increasing the pipeline maximum delay. But the pipeline scheduling algorithm
does not consider the feedback-directed in the LDDG and the performance of
scheduling pipeline circuit is still not satisfied. Reference [7] proposes an op-
timized pipeline scheduling algorithm on the basis of reference [6], and it has
considered how to optimize the maximum clock frequency and can be more ef-
fective for pipeline scheduling. But the method of achieving the higher frequency
by dividing the multiplication operation is not suitable for the fine-grained re-
configurable compilers.

This paper presents a FPGAs-based loop pipeline scheduling algorithm for
fine-grained reconfigurable compilers, and this algorithm is designed in the hard-
ware implementation module of the ASCRA compiler [8]. This paper is organized
as follows. Section 2 presents an overview of ASCRA. On the basis, Section 3
presents the FPGAs-based loop pipeline scheduling algorithm. Section 4 presents
the preliminary experiment results and the analysis. Section 5 concludes the
paper.

2 Overview of ASCRA

The input for ASCRA consists of an algorithm specification written in C lan-
guage. The ASCRA compiler framework uses the LLVM front-end to convert
the input C program to LLVM IR (Intermediate Representation) with selected
optimizations that can be applied for the RAU (Reconfigurable Acceleration
Units). LLVM is an open-source project designed by University of Illinois [9]. It
is not essentially a compiler, but rather a compiler infrastructure. The LLVM,
based on GCC front-end or Clang front-end, has its own code optimization sys-
tem. ASCRA is an reconfigurable compiler based on LLVM. ASCRA compiler
can extract compute-intensive loops of ANSI C programs and compile C subset
into VHDL running on a tightly-coupled RAU automatically. Then, the selected
kernel can be mapped by IR to VHDL transformation module. The output files
of ASCRA compiler consist of C program, VHDL Code and the interface files
of VHDL and C. The target architecture consists of a single general-purpose
processor and on-chip coprocessor based on FPGA to improve the performance
of general purpose applications.

Figure 1 outlines the flow of processing information in the ASCRA environ-
ment. The target architecture for ASCRA consists of a single GPP (Microblaze)
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and RAU (FPGAs) towards improving the performance of general purpose ap-
plications. Fast Simplex Link (FSL) bus is adopted as communication channels
between the MicroBlaze and FPGA in the platform.

Fig. 1. ASCRA Compilation Flow Outline

As shown in figure 1, the process of each module in the ASCRA is as follows.

(1) Hardware and Software Partitioning. Using the profiling and some
computing templates and memory templates which can be adapted (automati-
cally) to suit the application, this module could select the kernels that make the
best trade-off between resource allocation and performance in IR for hardware
automatically.

(2) Preprocess. This module transforms the selected kernels that composed
of a series of BBs (Basic Blocks) to function. And this module also is responsible
for generating the hardware/software interface auxiliary information file and the
communication function between hardware and software.

(3) Optimization for Hardware. LLVM IR is a target independent SSA
(Static Single Assignment) language that uses RISC-like instructions. The op-
timizations for software do not consider the FPGA features. Therefore its nec-
essary to apply dedicated optimizations to LLVM IR, which are suitable for
hardware. The optimizations include: bit-width analysis, illegal name renaming,
ram memory access optimization, basic block partitioning according to RAM
access behavior, operation parallelization and so on.

(4) IR to VHDL Transformation. This module can transform the IR
function into VHDL. According to characteristics of accelerated program, IR to
VHDL transformation module transforms program to be accelerated into VHDL
with loop pipelining or systolic array architecture.
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(5) Interface Code Generation. This module can generate the interface
program for software and hardware based on the hardware/software interface
auxiliary information file.

(6) IR to C Decompiler. The module transforms the modified IR into C
program. The functions transformed into VHDL are commented and the state-
ments and calling information of communication bus is inserted in the modified
IR.

This paper presents an advanced loop pipeline algorithm for the optimization
for hardware module, and can help to generate the efficient hardware for FPGA.

3 Pipeline Scheduling Algorithm

The ASAP scheduling algorithm has been widely used for loop pipeline parti-
tioning in the reconfigurable compilers, and need set the parameters manually to
guide the classification of pipeline [10–12]. Based on the factor of operator delay
in the FPGA, this paper extends the work by seeking a compromise between the
ASAP and ALAP (as late as possible) scheduling, and presents a FPGA-based
loop pipeline scheduling algorithm that can generate the pipelined hardware
architecture automatically.

In this paper, the iteration is divided into two groups. Firstly, we consider
loops which do not have loop carried dependencies. Finally, we deal with the
loops which have feedback-directed edges in the LDDG.

As follows, the original loop code which do not have loop carried dependencies
is shown, and figure 2 shows the DFG (data flow graph) generated by the loop
body which is scheduled with ASAP algorithm. Although the result of ASAP can
improve the performance of reconfigurable system by pipelining the hardware,
the ASAP scheduling algorithm isnt perfect for the design of FPGA. There are
some principles to improve the efficiency of the pipeline scheduling algorithm
which is defined by this paper.

f o r ( i =0; i<MAX; i++ ){
p=x [ i ]+x [ i −5] ;
r=x [ i ]∗ s ;
i f ( p>r ){

y [ i ]=p∗( r−r ∗ t1+q)&0xF ;
z [ i ]= r ∗ t1 ∗p&0xF ;

}
e l s e {

y [ i ]=( t1−r+s )∗q&0xF ;
}

}

Principle 1. (Maximum Frequency Principle). To speed up the reconfig-
urable system, the program running in the FPGA platform should be executed as
fast as possible. Splitting the long delay pipeline stage into multiple short delay
pipeline stages is the key for increasing pipeline frequency.
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Fig. 2. DFG with ASAP algorithm

The maximized operations delay among the pipeline stages reflects the fre-
quency of the hardware. Based on the result of ASAP scheduling algorithm, the
main idea of this paper is only put one node into the pipeline stage in the every
data-path. The result of preliminary pipelining is as shown in Figure 2. The
maximized delay pipeline stage has the minimized hardware delay among the
different divided methods.

Principle 2. (Operation Balance Principle).The operation which has the
similar delay time should be scheduled to the same pipeline stage. Keeping the
operation balance is the benefit of the merging of pipeline for the minimized
number of pipeline stages.

Combining the ALAP scheduling algorithm and the hardware delay about
the operations, the main train of this paper is scheduling the operation to the
proximity pipeline stages. Without influencing of the frequency and reducing the
delay of some stages, the result of preliminary scheduling is as shown in Figure
3.

Principle 3. (Mergence Principle).To reduce the resources used by parti-
tioning pipeline and reduce the iteration execution interval, it is necessary merg-
ing the adjacent pipeline stages without influencing the maximized pipeline stage
delay.

Based on the result of operation balanced, the next step is merging adjacent
stages in the CDFG, and as shown in Figure 4. After merging the stage 3 and
stage4, the maximized hardware delay about the stages is also 6.370ns, without
affecting the frequency of the system.

Based On the above principles, this paper proposes a basic pipeline partition-
ing algorithm (as shown in algorithm 1) for the loops that don’t have carried
dependencies.

When there are carried dependencies in the loop body, it is necessary consid-
ering the back-edges in the DFG. A loop code in C language which has carried
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Algorithm 1. Basic Pipelining Division Function (DFG dfg)

Step 1.Get the starting nodes in the dfg;
Q ← Ø;
for each node dfg.vi ∈ V do

dfg.vi.h ← 0
if dfg.vi is the starting node then

ENQUEUE(Q, dfg.vi);
end if

end for
Step 2.Initialize the pipeline stages number about the nodes in the dfg by ASAP
scheduling algorithm;
while Q = Ø do

dfg.vk ← DEQUEUE(Q);
for each edge dfg.eij ∈ E do

if dfg.vi = dfg.vk and dfg.vj is not marked then
if dfg.vj .h = 0 then

dfg.vj .h ← dfg.vk.h+ 1;
ENQUEUE(Q, dfg.vj);

else if dfg.vj .h < dfg.vk.h+ 1 then
dfg.vj ← dfg.vk.h+ 1;
UPDATE(dfg.vj);

end if
end if

end for
end while
Step 3.Compute the max value of combinational logic delay of each pipeline stages;
for l = 0 to max h do

max s[l].d ← 0;
for each node dfg.vi ∈ V do

if dfg.vi.h = l and dfg.vi.d > max s[l].d then
max s[l].d ← dfg.vi.d;

end if
end for

end for
Step 4.Combine the adjacent pipeline stages without changing the maximum fre-
quency.
s ← 1;
while s ≤ max h do

delay 0 ← max s[s− 1].d;
delay 1 ← max s[s].d;
if delay 0 + delay 1 ≤ maxdelay then

for each node vi ∈ V do
if dfg.vi.h ≥ s then

dfg.vi.h ← s− 1;
end if

end for
else

s ← s+ 1;
end if

end while
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Fig. 3. Delay Balanced DFG Fig. 4. DFG with Minimized
Pipeline Resources

dependencies is shown as follows. According to the partitioning method shown
in figure 5, we can get the space-time diagrams of the loop. When the stages
number crossed by the back-edge is more than the offset of iteration about the
dependency, there would be a bubble in the space-time diagram, as shown in
figure 6. It is necessary to reduce the number of pipeline stages inside the back-
edges to eliminate the bubble. To ensure the validity of pipeline scheduling algo-
rithm aiming at the loop with back-edges, this paper proposed another principle.

f o r ( i n t i=0 i <N; i++){
X[ i +2]=A[ i ]+Y[ i ]+B[ i ]+C[ i ]+D[ i ]+E[ i ]+F [ i ]+G[ i ] ;
Y[ i +4]=X[ i +2]∗A[ i ] ;

}

Fig. 5. DFG of the loop with back edges

Principle 4. (Back-Edges Principle).The distance of iterator dependency
interval for every back-edge should be more than the number of pipeline stages
crossed by back-edges. For the nodes vi and vj (i < j), the back-edge from vj to
vi expressed by eji. Si is the pipelined stage number about the nodes vi and the
Sj is for the nodes vj. IDIij is the presentation of iterator dependency interval
between nodes vi and vj. The formula (1) should be satisfied.
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Fig. 6. Space-time diagram of the loop

Fig. 7. The result of pipelining divided

Sj − Si ≤ IDIij (1)

When there are back-edges in the DFG corresponding to the loop body, the
frequency of the system may be influenced by combining the adjacent pipeline
stages too much. The pipelining divided result of DFG shown in the figure 5 is
shown in figure 7. Although the maximized logic delay among the pipeline stages
has been changed, we can get the more perfect space-time diagram, as shown in
figure 8. By the way, the pipeline control units will be simpler, and the validity
result of pipelining is ensured.

Fig. 8. The improving space-time diagram
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Algorithm 2. Improvement Pipelining Scheduling Function (DFG dfg)

Step 1.Run step1 and step2 from the basic pipelining scheduling function for dfg,
as shown in algorithm 1, and get the preliminary result of pipeline partition;
Step 2.Get the back-edges in the dfg;
QE ← Ø;
for each edge dfg.eij(vi → vj) and (i < j) do

if dfg.vj .h > dfg.vi.h then
ENQUEUE(QE, dfg.eij);

end if
end for
Step 3.Build the subgraph set of the DFG dfg according to the back-edge queue
QE;
QG ← Ø;
while QE = Ø do

beij ←DEQUEUE(QE);
offsetij ← IDIij ;
if offsetij < dfg.vj .h− dfg.vi.h then

for each node dfg.vk ∈ V and dfg.vi.h ≤ dfg.vk.h ≤ dfg.vj .h do
According to the node dfg.vk and edges dfg.eij build subgraph of dfg named
dfg sub;

end for
end if
ENQUEUE(QG, dfg sub);

end while
Step 4.According to the principle 4, eliminate the bubble for every subgraph dfgsub.

for each back-edge beij ∈ QE do
offsetij ← IDIij ;
while offsetij < dfg.vj .h− dfg.vi.h do

dfg sub ← DEQUEUE(QG);
for l in dfg.vi.h to dfg.vj .h do

combinDelay[l] = max s[l].d+max s[l + 1].d;
end for
Select the minimized combineDelay[k];
Combine the pipeline stages k and k + 1;
Update the height of nodes in the dfg sub and dfg;

end while
end for
Step 5.Run the step 3 and step 4 in algorithm 1 for the dfg, and update the pipeline
stages height.

On the basic of algorithm 1 and principle 4, this paper has proposed an
improvement algorithm for the loop with carried dependencies. As shown in
algorithm 2.

According to the algorithm 2, the loop with carried dependencies can be well
handled and the result of example code is shown in figure 7. The bubble of space-
time diagram is eliminated, as shown in figure 8. The maximal delay of pipeline
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stage is decreased from 6.618ns to 6.370ns, and its the least of delay when the
bubble would be eliminated about the space-time diagram.

4 Experiment and Analysis

To evaluate the effectiveness of our loop pipeline scheduling algorithm, we have
finished the implementation of loop pipeline scheduling algorithm in reconfig-
urable compiler ASCRA. We generate code for reconfigurable systems based
on microblaze and FPGAs using ASCRA, and preliminary experimental results
are acquired. Our loops include both perfect and imperfect ones. For exam-
ple, the Discrete Cosine Transform (DCT), the 5 tap Finite Impulse Response
(5-tap-FIR) and the Fast Fourier Transformation (FFT) include the loop with-
out carried dependencies. The seventh test case of Livemore Fortran Kernels
benchmark (Kernel-7) has carried dependencies. The result of pipelining by the
FPGA-based loop pipeline scheduling algorithm is shown in figure 9. IPD is
the improved FPGA-based loop pipeline scheduling algorithm proposed by this
paper, and DPD is the directed pipelining division method used by the other re-
configurable compilers which haven’t consider the delay of hardware operation.
The number of pipeline stages is named PS in figure 9.

Fig. 9. The number of pipeline stages Fig. 10. The frequency of Benchmark

Figure 9 shows that the pipeline stages quantity has been reduced efficiently
by our algorithm. The VHDL code generated by ASCRA is synthesized by ISE
14.3 and we obtain the frequency of benchmark as shown in figure 10. Except the
loop with carried dependencies, such as Kernel-7, the ASCRA will not decrease
the frequency for the loop without carried dependency.

In addition, we have compared the resources of register cost by our improved
pipelining division algorithm with DPD. In order to estimate the effects of saving
register resources, we have improved the complexity of calculation by unrolling
the loop, and obtained the cost of register for various unrolling factors. The result
of experimental is shown in figure 11, figure 12, figure 13 and figure 14. The result
shows that the more complicated about the calculation, means that the unrolling
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factor is larger, the improved algorithm can saving the more resources of register.
In this figure, OP means that the optimization percentage. By the end of the
experiment, the optimization rate of the register resources used IPD can achieve
20% to 40%.

Fig. 11. The result of DCT Fig. 12. The result of 5-tap-FIR

Fig. 13. The result of FFT Fig. 14. The result of Kernel-7

All the analysis shows that the combination of adjacent stages based on hard-
ware operation delay is feasible for loop pipeline scheduling algorithm. Without
decreasing the performance of reconfigurable system, the algorithm can obtain
the more economical hardware architecture pipelined for FPGA.

5 Conclusions

This paper presented an overview of ASCRA compiler which can translate C
code to VHDL program automatically for reconfigurable systems. Traditional
reconfigurable compilers mainly focus on the directed pipeline division method
without considering the influence of operation logic delay for FPGAs. This pa-
per have proposed 4 pinciples for the reconfigurable compilers and improved



318 Z. Guo et al.

pipelining scheduling algorithms based on FPGA to improve method of hard-
ware implementation for ASCRA. The preliminary experiments validates that
the algorithm is feasible and can generate the more efficient hardware.

In future work, we will explore the pipelining scheduling algorithm for multi-
dimensional iterations and complete the experiment aiming at more benchmarks.
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Abstract. The key idea of progressive deadlock recovery scheme is providing 
an escape path outside the deadlock cycle. State-of-the-art schemes, such as 
Virtual Channel Reallocation (VCR) and DISHA, set up escape paths by dedi-
cated deadlock-handling channels. These channels use additional data paths, 
central buffers and bypass logic. This paper proposed a novel deadlock recov-
ery scheme for NoC, using Accurate on-Cycle Forwarding (ACF) path inside 
deadlock cycle to drain blocked packets. ACF does not decouple deadlock-
handling channels from normal routing channels, but enhanced credit flow con-
trol on each channels to allow accurate deadlock detection and recovery. ACF 
method is constructed by three tightly combined components: adaptive routing, 
run-time accurate deadlock detection, and deadlock removal. We implemented 
ACF algorithm by O(n) time complexity and by distributed modules cooperat-
ing with NoC. The rigorous valuation on multiple traffic patterns shows that our 
scheme achieves significant performance improvement. ACF detected 10-20 
times less fake deadlock alarms than approximation and heuristic time-out ap-
proaches. In high packet injection rates interval (40%-75%) where network is 
more frequently troubled by deadlock, ACF provides 67% communication la-
tency improvement comparing to dimension order routing, and 14%-45% to 
VCR and DISHA. Moreover, the power consumption and hardware overhead of 
ACF are light. 

Keywords: NoC, Adaptive Routing, Deadlock Detection, Deadlock Removal, 
Topology Ordering. 

1 Introduction 

Full adaptive routing is a very attractive goal for all networks. Full adaptive routing 
allows maximum routing adaptability that is most important for congestion control-
ling. These kinds of techniques could also be applied to fault-tolerant NoC where 
more flexible routing schemes are necessary when links break down and topological 
connectivity is reduced. Deadlock is the most catastrophic issue to full adaptive 
routing network, which may causes whole network failed. Up to now, there are two 
main strategies for deadlock handling: deadlock avoidance and deadlock recovery. 

In deadlock avoidance, resources are granted to packets in a way that the whole 
network is deadlock free. Deadlock avoidance is the most popular strategy, including 
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schemes of turn prohibiting models such as [4][18][19], strict using of buffer such as 
injection limitation[20] and strict ordering of virtual channels such as [7]. In general, 
avoidance techniques require restricted routing functions or additional resources to 
prevent deadlocks [13], as well as restricted fault tolerance degree [14]. 

Deadlock recovery techniques do not make restriction on routing and fault toler-
ance. Deadlock recovery techniques can be divided into two kinds by progressive and 
regressive. Regressive strategy such as abort and retry mechanism [1], require storing 
lots of routing information and using very large buffers for retransmission. Progres-
sive strategy, such as a variety of Virtual Channel Reallocation (VCR) [2][3][4] and 
DISHA[5][6][7] methods, utilizes additional escape path to drain suspected blocked 
packets. For an example, for a 2D torus network, VCR needs at least 3 VCs, whose 
cost of VC buffers and VC switchers increased by 3x. But only one VC can perform 
true full adaptive routing, while other two VCs still be restricted to a kind of dateline 
routing[4]. For another example, DISHA architecture provides one or more shared 
central buffers and bypass channels to construct the escape path. Like VCR, DISHA’s 
routing in the escape path has to be deadlock free [6]. Furthermore, accurately detect-
ing deadlock cycles in DISHA and VCR is challenging, simply because of the distri-
buted nature of deadlocks. Heuristic approaches, such as various time-out mechan-
isms [6][8][9][10], are often employed to monitor the activities at each channel for 
deadlock speculations. 

In our opinions, deadlock recovery on NoC owns more opportunity than traditional 
interconnect networks. First, link’s round trip time is relative smaller, so the channels 
dependency and buffer space information could be transmitted in time. Second, at the 
cost of moderate hardware resources, a fast deadlock cycle detection approaches with 
more accuracy could be considered to replace heuristic approaches. Our new deadlock 
recovery technique is called Accurate on-Cycle Forwarding (ACF). ACF supports full 
adaptive routing with deadlock configuration. When deadlock occurs, it is able to 
locate all the true deadlock cycles in channel wait graph without fake. Finally, based 
on an elastic credit flow control mechanism, ACF constructs the forwarding path on 
blocked channels to drain packets simultaneously. As a result, it will be unnecessary 
to decouple deadlock-handling channels from normal routing channels, providing 
more routing flexibility, and higher performance and hardware cost efficiency. 

2 ACF Methodology 

2.1 Network Model 

NoC: NoC consists of a set of processer tiles interconnected by point-to-point chan-
nels. No restriction is imposed on the topology. Each tile has a router. There are  
first-in first-out (FIFO) channel buffers for storing packets in each channel. When a 
channel buffer is full, the state of the channel will set as unavailable to follow-up flits. 
The paper doesn’t distinguish channel and channel buffer in the following discussion. 

Switching: Virtual Cut-Through (VCT) switching is used for presentation. Our me-
thod is also valid for wormhole switching after introducing some changes in credit 
control. 
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Routing: fully adaptive routing algorithm, when a packet reached the arbitration 
unit but cannot be routed because all the valid output channels are unavailable, it 
waits on the head of corresponding input buffer until its next turn. By doing so, the 
packet gets the first valid channel that becomes available when it is routed again. 

Deadlock cycle: The general cycle rely conditions of deadlock are known as wait-
for and circular wait conditions [4]. For a fully adaptive routing network, it is dead-
lock free if and only if there is at least one path that can be used to deliver blocked 
packets out of deadlock cycles. 

Channel Wait Graph (CWG): Resource’s wait-for dependencies of a network at 
any particular time can be expressed as a directed Channel Wait Graph [4],G= (V, E). 
V= {v0, v1, …, vn} is a set of vertices, where each vertex represents a channel of 
networks. E is a set of edges, where an ordered pairs represents dependence between 
two channels:  when there is flit in the head of channel vi requesting 
channel vj.  

Selected Channel Wait Graph (SCWG): SCWG is a directed graph produced by 
routing selection step, and will keep stable until the end of deadlock detection. Each 
vertex of SCWG may have multiple in-edges, but none or only one out-edges.   

Simple Cycle Graph (SCG): The graph that is only constructed by disjoint simple 
cycles. A simple cycle is a connected directed sub-graph, each of whose vertex has 
and only has one out-edge and one in-edge [7].  

Suspected deadlock condition: “On any one of router, for all , if buf-
fer(vi)==full and buffer(vj)== full lasted for N cycles”. When the suspected dead-
lock condition is triggered, the NoC starts a deadlock detection operation and then 
deadlock recovery operation. On the other side, the negation of this condition is used 
to determine if the deadlock is removed from NoC. Note that we introduce N cycles’ 
latency in the condition. This makes accurate detection combined with time-out me-
chanism. Waiting several cycles to determine whether make a real trigger action will 
reduce the rate of "fake alarms" than triggering the deadlock detection operation im-
mediately. This is more power consumption efficient for NoC. Comparing to general 
time-out detection with time threshold from 64 up to 1024[13], we set rather smaller 
waiting time N here. According to our experiment, 4~6 cycles are enough to filter out 
more than half of fake alarms while impose slight impact on performance.  

2.2 Routing Selection  

Topology Ordering algorithm could be used to find out cycles in directed graph in 
O(n) time complexity. However, the algorithm produces correct results only if edges 
(channel request dependencies) are static throughout its operation. For adaptive 
routing network, requested channels are changeable in a period of time. It means that 
vertices in the CWG may have multiple dynamic out-edges and in-edges during to-
pology ordering iteration. To solve this problem, the essential processing flow of ACF 
deadlock recovery is composed by three steps as shown in Fig. 1.  

First of all, if suspected deadlock condition is triggered, a routing selection step 
selects a certain blocked channel from all adaptive requested channels for each re-
questing channel. The ID number of the selected channel will be reported to detection  
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Fig. 1. Three steps of ACF method and their in/output channel wait graphs 

module and then be stored in a register, until the deadlock detection finish. No matter 
how requested channel changes after selection step, the detection only depends on    
those selected channels. Anyway, the input of selection step is CWG while the output 
is SCWG as illustrated in Fig.1-b, where vertices with multiple out-edges (red edges 
in Fig.1-a) will be cut off to only one out-edge. This approach ensures the static of 
channel wait graph during the follow-up detection operation.  

Another problem is, a typical detection iteration requires about 10-20 cycles as dis-
cussed in section 3 table 1, during this iteration, if any channels becomes available 
(not full) again, blocked packets could move out through that channel. So when the 
detection result returns to the router, there will be three possibilities: First, blocked 
packets has already moved out, so the router does nothing. Second, the selected chan-
nel is not in any of true deadlock cycles, thus the router continues waiting until a re-
quested channel is available. Third, the selected channel is in a true deadlock cycle, 
then the router starts deadlock removal.  

2.3 Deadlock Detection 

The second step is deadlock detection, where topology ordering algorithm is imple-
mented to accurately locate all true deadlock cycles in the SCWG. The algorithm is 
presented as follow:  

(1) Selecting a vertex with none of out-edge or none of in-edge from the SCWG.  
(2) Removing this vertex and all of its in-edges and out-edges from the SCWG. 
(3) Repeating above two steps until all of vertices have been removed, or rests of 

vertices have and only have one in-edge and one out-edge.  

The output of the algorithm is SCG, as shown in Fig.1-c(removing all green edges 
and unconnected vertices). SCG graph consists and only consists of simple cycles, 
each of which represents a true deadlock cycle. 

A coupled Topology Ordering Detection (TOD) network is added to NoC to imple-
ment topology ordering operations. As shown in the left of Fig.2, TOD network is com-
posed of distributed Channel Dependence Tag (CDT) units in each router, an intercon-
nection among CDT units and a global synchronization net. The CDT unit is used to 
represent the channel vertex in the SCWG. For a 2D torus network instance, there are 
four CDTs in each router corresponding to four input channels. A CDT unit contains a 
4-bit in-edge tag, each of which connects to the corresponding out-edge tag of neighbor 
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CDT units as shown in the right of Fig.2. Besides, a tiny synchronization net is coupled 
with CDT units that is illustrated as red wires in Fig.2. The synchronization net trans-
mits the detection start/end signals and computation result (stable signal) among CDT 
units. Although global synchronization operation may result in some system clocks 
delay, it is acceptable when the deadlock is infrequency event in most scenario [7][11] 
(the detailed evaluation of detection delay is described in section 3.2). Furthermore, the 
whole TOD network and synchronization net could be implemented as an asynchronous 
circuit or clocked using faster clock than router clock. 

 

Fig. 2. A 2D NOC coupled with TOD networks 

 
When suspected deadlock condition is triggered, the dependence information of 

channels will be reported to CDT units by setting on the corresponding edge tag. 
Then, each CDT unit keeps checking its in-edge tag. If none bits of the in-edge tag is 
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set on, CDT unit will set down all of it’s out-edge tags. Meanwhile, CDT unit contin-
ues comparing values of out-edge tag at recent two clock cycles, and then output a 
stable signal to indicate whether the value is changed. When the whole system reach-
es a stable state (stable signals are set on by all CDT units), the detection operation 
finishes off. At last, the CDT unit whose out-edge tags are not set down all is in the 
true deadlock cycle, while the channel whose out-edge tag is not all set down is the 
blocked channel. The pseudo code of TOD network function is listed in algorithm 1. 

The time overhead of TOD detection mainly depends on the size of NoC. Given a 
network with n channels, when the detection starts, CDT units will set down at least 
an out-edge tag every clock cycle. Thereby, the detection iteration will spend no more 
than O(n) clock cycles.  

2.4 Deadlock Removal 

The third step is applying deadlock removal to those true deadlock cycles. This sec-
tion presents the idea and implementation of an on-cycle forwarding deadlock remov-
al approach called Elastic Credit Transfer (ECT), which is compatible with the widely 
used credit-based flow control mechanism [4]. 

 

Fig. 3. Successful case of credit-based on-cycle forwarding 

 

Fig. 4. Failed case of credit-based on-cycle forwarding 

According to the detection result, routers release an extra deadlock-handling buffer 
for those channels on the true deadlock cycle, and forward at least a packet towards 
destination. This procedure will repeat until the network recovery from deadlock (no 
suspected deadlock condition is triggered). A simple credit-based deadlock removal 
approach is illustrated in Fig.3. Fig.3-a shows a deadlock scenario. Then, the packet 
blocked in the channel is moved to a deadlock-handling buffer as shown in Fig.3-b. It 
guarantees that at least one blocked packet could be forwarded along the deadlock 
cycle. In this way the deadlock cycle will be broken quickly.  
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But, it must be guaranteed that packets outside the deadlock cycle will not inject in, 
otherwise the deadlock-handling buffer may be occupied by “fake” packet, while 
“true” deadlock packet still blocked in channels (Fig.4-a, b). That is why the routing 
selection and the TOD detection steps have to be used to change CWG to SCG. Oth-
erwise, if there is more than one packet requesting the deadlock channel (means mul-
tiple in-edges in CWG), it is very possible to choose the wrong one to occupy the 
deadlock-handling buffer as Fig.4-c shows. This will make credit-based deadlock 
removal approach failed. 

Traditionally, the maximum credit of channel is constant. The credit controller of 
current channel is located in the previous router. As state machine shown in Fig.5-a, 
when a flit passes to next router, the credit is reduced by one (means that an entry of 
next router’s channel buffer is occupied). When the next router pushes out a flit, it 
will reply a release signal to add one credit. When the credit value is smaller than a 
threshold (normally, set to the maximum packet length in VCT or one flit length in 
wormhole, pulsing a round trip latency), the channel is unavailable and flits which 
requesting this channel should be blocked. 
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Fig. 5. Stat machines of traditional credit flow control and ECT credit flow control. To simplify 
of the description, the figure assumes that one packet constructed by one flit. 

On-cycle forwarding could be implemented in more efficient way as our ECT me-
thod. We distribute the space of central deadlock-handling buffer to each channel and 
then control it by credit, whose controlling state machine is shown in Fig 5-b. The 
ECT method set the normal credit threshold as Elastic Credit (EC) initially. When the 
credit is less than threshold, we regard the channel as pre_full. As the result, the sus-
pected deadlock condition presented in section 2.1 is changed to: “On any one of 
router, for all , if buffer(vi)==pre_full and buffer(vj)== pre_full lasted 
for N cycles”. Then, if suspected deadlock condition triggered and the channel is 
detected in a true deadlock cycle (this kind of channel is called blocked channel) , the 
router changes its credit threshold to a random value between 0 and  EC-1, and gene-
rates a mask to prohibit the packets in unblocked channel requesting any blocked 
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channel1. Note that blocked channel requesting blocked channel or unblocked channel 
requesting unblocked channel are not forbidden. As the result, at least one extra dead-
lock-handling credit is available to and only to the packet waiting in the blocked 
channel. Then, the blocked packet could pass though to the next channel without any 
“disturbing”. This procedure repeats until current deadlock cycle removed, and then 
the credit threshold can and will be reset to EC again.  

A detailed instance for ECT is shown in Fig.6. In this case every channel reserves 
an extra deadlock-handling buffer entry as elastic credit (marked as grey color). Gen-
erally, this buffer entry is closed unless deadlock occurs. First of all, we got a dead-
lock configuration (Fig.6-a), 4 groups of packets occupies a channel and request the 
next channel, which causes two circular dependencies. The green packet is so called 
“fake” deadlock packet that stays out of deadlock cycle but requests a blocked chan-
nel. It will be excluded by TOD detection (as shown in Fig.6-b). In Fig.6-c,d, chan-
nels on true dead lock cycle release the elastic credit to ensure all blocked packet 
moving at least one step. The packets could continuously using the elastic credit and  
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Fig. 6. ACF examples for remove tow deadlocks simultaneously 

 

                                                           
1  This description is just for VCT, for wormhole, the packet in unblocked channel which already passed 

the head flit is allowed requesting blocked channel temporally until the tail flit. 
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moving on. Finally, when packets arrived at the destination, or left the deadlock cycle, 
as illustrated in Fig.6-e, the deadlock has been removed and the deadlock-handling 
buffer entry for elastic credit is closed again. 

Note that our on-cycle forwarding path is constructed on true deadlock cycle, in-
stead of using an escape path outside deadlock cycle. It makes ECT able to forward 
blocked packets in multiple deadlock circles simultaneously and fast (no need to 
switch to escape path). Meanwhile, ECT did not add any additional switch resources, 
central bypass buffers nor channels, and no packet need to be aborted to free up re-
sources. ECT only requires an extra buffer spaces for each channel and an accurate 
detection mechanism like TOD. 

3 Evaluation 

A typical 8x8 torus network is used for the evaluation. Since VCR requires at least 3 
VCs for torus NoC, for fairness, all mechanisms are configured with three VC chan-
nels as well. Each VC has an independent 8-entry input buffer, while ECT introduces 
one additional entry for each buffer and DISHA brings a 32-entry central buffer for 
each router. The router uses a 5-stage pipeline with a round robin arbitration scheme. 
Every node generates 20000 packets per VC per destination and injects into the NoC 
by preset Packet Injection Rates (PIR). Four different traffic patterns are tested: ran-
dom, bit-complement, bit-reverse [7] and fault-channel. The traffic of fault-channel 
pattern is the same with random one, but four channels are randomly set to be broken. 
For each PIR, 20 networks were simulated, each with a different randomly chosen 
fault set. The curvy in the figure give the ensemble average latencies. In contrast, in a 
network with deterministic routing, a single faulty channel renders the network in-
operable, so DOR is not tested in fault channel pattern. 

3.1 Detection Accuracy and Latency 

The accuracy of detection, calculated as the number of packets detected in suspected 
deadlock cycles, is shown in Fig.7. TOD and Time-Out with thresholds of 16, 32 and 
64 system clocks are tested. It shows that the majority deadlocks detected by the time-
out schemes are fakes. For instance, about 14% of the packets injected in the network 
are detected as part of deadlock under the time-out threshold of 16 when network near 
saturating (Fig.7-c), while TOD detected that less than 1% of packets are in true dead-
lock cycles. For all four patterns, TOD detected about 10-20x less deadlock alarms 
than time-out schemes. It can be also noticed that under some injection rates, TOD 
detects more deadlocks than Time-Out 16 and 32(e.g., in PIR of 0.74 in Fig.7-a). It 
does not mean Time-Out is more accurate. This is because sometimes Time-Out 
schemes may release heavy load channels as a congestion monitor, fewer deadlocks 
may occur if some flit draining actions made earlier. 

As an important factor for the earlier removal action, Table 1 list the average TOD 
delay under different NoC sizes, assuming using a separate fast clock for synchroniza-
tion net. The detection delay of TOD is determined primarily by three factors: the size  
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Fig. 7. The ratio of deadlock packets detected by different schemes 

Table 1. TOD detection delay at PIR of 0.5 on different NoC size 

NOC size Theoretic 
Max delay 

Tested Max 
delay 

Tested Average 
delay 

Equal to system 
clock cycle (1GHz) 

4x4 58.54 ns 8.1 ns 7.588 ns <8 
6x6 113.1 ns 10.0 ns 9.258 ns <10 
8x8 222.2 ns 13.4 ns 12.434 ns <13 

16x16 863.3 ns 18.7 ns 17.401 ns <18 
 

of networks, physical transfer delay of wire connections and the size of detection. Note 
that the average practical detection latency is much less than the maximum theoretic 
value, because most deadlock cycles are constructed by a small vertices set in practice.  

3.2 Communication Latency and Throughput  

Different deadlock-free mechanisms are measured to make a comparison as follow: 
(1) DOR (Dimension Order Routing); (2) VCR; (3) A concurrent DISHA; (4) The 
ACF. Heuristic Time-Out scheme is used for VCR and DISHA to detecting deadlock. 

The result of packet transfer latency is shown in Fig.8. First, DOR shows the poor-
est performance. Taking random pattern for instance (Fig.8-a), it saturates at about 0.5 
PIR, while ACF saturating at 0.74 PIR achieves 1.5x performance speedup. In adap-
tive routing schemes, ACF have the best performance on average. The DISHA has 
comparable communication latency of ACF on low PIR, but its latency becomes 
worse when PIR being closer to saturation point. DISHA, has much more fake dead-
lock packets to drain, and only a central structure can be used to forward one packet 
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once a time. On the contrary, ACF processing true deadlock packets only and allows 
forwarding multiple deadlock packets directly and simultaneously on all paths. How-
ever, both of their latencies surpass the DOR and VCR after saturation. It is because 
in both of ACF and DISHA, the deadlock packet has higher priority on all VC chan-
nels than normal packet. Thus if deadlock is no longer an very infrequent event, more 
normal packets may be blocked in buffers to produce new deadlock cycles, makes a 
positive feedback phenomenon [7]. VCR is worse than others because two of VCs are 
restricted on routing, but in a sense, these restricted VCs could not be deadlock, mak-
ing the latency curvy smoother after network saturation.  

In a word, at high PIR where deadlock occurs more, ACF outperforms DISHA in 
most instances and always outperforms VCR before saturation. Among 0.4-0.75 PIR 
interval, the average communication latencies are list as following: DOR: 233; 
32T+VCR: 91; 32T+DISHA:142; ACF:79. It shows that ACF provides 67% im-
provement of the latency comparing to DOR, 14%-45% to VCR and DISHA. 

 

Fig. 8. Performance of communication latency on four traffic patterns 

The other important performance metric is throughput, illustrated in Fig. 9. The 
figure shows throughput (accepted traffic) as an average function of offered traffic as 
flits per cycle per node. In traffic patterns such as random and fault-channel, ACF 
works the best. In others, ACF performs the second best. It does make sense, because 
of impossibility of finding out absolutely the best time threshold and escape path con-
figuration for VCR and DISHA, which are sensitive to too many factors and depend 
on traffic pattern as well. However, it shows that ACF always works quite well on all 
traffic patterns. The average maximum throughput of ACF is about 1.5x higher than 
DOR, and about 1.1x higher than VCR and DISHA. 
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Fig. 9. Performance of throughput under four traffic patterns 

3.3 Area and Power Cost 

Fig.10 shows the micro-architecture of the router used for hardware cost evaluation. 
The components added to baseline NoC for different deadlock recovery mechanism 
are rendered in different colors. 

 

Fig. 10. Micro-architecture of the evaluation router 
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Table 2. Area overhead for different deadlock recovery tech.(8x8 torus NoC, 3VC 48-bit flit 
width, 1GHz) 

 Combination 
(mm2) 

SRAM 
(mm2) 

Num.of cross-
router wires 

Total 
(mm2) 

Baseline NOC 49.4 15.4 2816 69.2 
Time-Out+VCR 52.5 15.4 2816 73.6 
Time-Out+DISHA 72.0 27.2 3328 108.1 
ACF(TOD+ECT) 51.2 20.1 3645 78.4 

 
The area evaluation was carried out using a modified version of ORION 2.0[15] on 

the TMSC 65nm standard cell library. The operating frequency is 1G MHz and the 
supply voltage is 1.0V with temperature at 110 C. Table 2 lists the area overhead of 
four kinds of NoC. We found that the TOD detection circuit uses 55% less combina-
tion area than the Time-out circuit with 10-bit counter and will add only 2.6% area 
overhead of the total area compared to 5.6% for the time-out implementation. Moreo-
ver, the hardware overhead of the ACF is light that is 11% of a baseline network 
without deadlock recovery mechanism. Compared with other deadlock recovery me-
chanisms, ACF uses 73% area of DISHA and 107% area of VCR.  

We also found that although TOD detection spend about 10% more power on syn-
chronization net, ACF deadlock removal circuit consumes 31% less power than the 
DISA circuit and 22% less than VCR, because of less actions triggered by fake alarms 
and fewer central logic. ACF is worthwhile. Furthermore, in fact, three kinds of dead-
lock-recovery-able NoC only add less than 10% of the total power overhead com-
pared to NoC without deadlock recovery in most situations, where the deadlock is 
infrequency event [11]. Note that, we evaluated three VCs here. The ACF is able to 
implement true adaptive routing with only one VC, which is flexible 

4 Related Works  

DISHA and VCR are typical deadlock recovery techniques, there are many related 
studies and improvements, such as [2][3][4][5][6][7][8][9][10][12]. Comparing with 
our paper, there are two main different: the first is that they all use inaccurate heuris-
tic detection approach, but we presents an accurate detection method. Second, they  
all drain deadlock packets through an additional escape path, but we use on-cycle 
forwarding method. 

For accurate detection, [13] presented an accurate method that utilizes run-time 
Transitive Closure (TC) computation to discover the existence of deadlock-
equivalence sets, which imply cycles of requests in NoC. However, The time com-
plexity of its TC algorithm is O(n3) that may result in higher detection delay, while 
our algorithm is O(n). And it also need considerate extra O(4n2) global wires by not 
taking advantage of the locality of channels, but our method use much less global 
wires that are only in synchronization net. Finally, a simple token-ring protocol is 
necessary in TC algorithm, which causes detection operation delay increasing as well.  
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For credit-based deadlock removal, [14] introduced a deadlock removing mechan-
ism based on adding a central deadlock-handling buffer to every routers. When the 
network looks like to be deadlock, one extra credit from the deadlock-handling buffer 
is added to each blocked channels to recovery deadlock. But there are two problems. 
On one side, since accurate detection mechanism was missed, their method actually 
works incorrectly as discussed in Fig.2. On other side, the central buffer cannot deal 
with more than one wait-for packets in different deadlock cycles simultaneously. 

5 Conclusion 

This work studies deadlock detection and recovery in NoCs supporting full adaptive 
routing. We proposed a novel architecture coupled with network to realize deadlock 
recovery. An accurate run-time deadlock detection method based on topology order-
ing algorithm is presented. Furthermore, based on accurate location of true deadlock 
cycles, a new on-cycle forwarding mechanism cooperating with elastic credit control 
is used to remove deadlock. We investigated the proposed methodology in a RTL 
level NoC simulator, and evaluated it rigorously on latency, throughput, hardware 
area and power consumption. The result is encouraging that demonstrates the effec-
tiveness of ACF method compared to other state-of-the-art methods. 
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Abstract. In cloud computing, all kinds of idle resources can be pooled to es-
tablish a resource pool, and different kinds of resources combined as a service is 
provided to users through virtualization. Therefore, an effective mechanism is 
necessary for managing and allocating the resources. In this paper, we propose a 
double combinatorial auction based allocation mechanism based on the charac-
teristics of cloud resources and inspired by the flexibility and effectiveness of 
microeconomic methods. The feedback evaluation based reputation system with 
attenuation coefficient of time and the hierarchy of users introduced is imple-
mented to avoid malicious behavior. In order to make decisions scientifically, we 
propose a price decision mechanism based on a BP (back propagation) neural 
network, in which various factors are taken into account, so the bidding/asking 
prices can adapt to the changing supply-demand relation in the market. Since the 
winner determination is an NP hard problem, a league championship algorithm  
is introduced to achieve optimal allocation with the optimization goals  
being market surplus and total reputation. We also conduct empirical studies to 
demonstrate the feasibility and effectiveness of the proposed mechanism. 

Keywords: cloud computing, double combinatorial auction, reputation, BP 
neural network, league championship algorithm. 

1 Introduction 

First proposed by Google and commercialized by Amazon in IT industry, cloud 
computing [1-3] has been developed for several years and has already become the 
mainstream in the research community. 

Currently, most IT companies sell cloud resources with the fixed-pricing model. 
However, this pricing scheme has a lot of disadvantages, i.e., low efficiency, inflex-
ibility, low profit, and difficulty in achieving an equilibrium price according to 
changing supply-demand relation in the market, etc. The fixed-pricing scheme is de-
signed for static allocation and disregards the dynamic nature of a cloud environment. 

Therefore, dynamic resource allocation that is more suitable for a cloud is urgent to 
be addressed. There have been some research results on auction mechanisms intro-
duced in cloud computing. Tan et al. [4] proposed a novel stable continuous double 
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auction (SCDA) to alleviate the unnecessarily volatile behavior of the continuous 
double auction and to ensure economic efficiency for grid resource allocation. Danak et 
al. [5] modeled users’ preference relations, and presented a repeated auction-based 
allocation protocol and a utility-maximizing bidding algorithm for sharing computa-
tional grid resources. Tsai et al. [6] used a bid-proportional auction model, which is 
capable of adaptively adjusting resource price to improve revenues and resource uti-
lization of providers in capacity-constrained cloud environment. Prodan et al. [7] 
proposed a negotiation-based approach for scheduling scientific applications on hete-
rogeneous computing infrastructures, and presented a negotiation protocol between the 
scheduler and resource manager using a market-based continuous double auction 
model to manage the access to resources in an open market. Shang et al. [8] first pre-
sented a framework for constructing global cloud resource markets and then proposed a 
knowledge-based continuous double auction model to determine the price using a 
learning algorithm based on historical trading information. Song et al. [9] presented a 
novel combinatorial auction that allows the group of service providers to publish their 
bids collaboratively as a single bid to the auctioneer as the bidding mechanism. Its goal 
is to reduce conflicts among providers and the negotiation time. 

However, most of the methods above have the following drawbacks. First, while 
making use of the effectiveness and flexibility of market mechanisms, they ignore the 
high probability of malicious behavior, and that leads to lack of corresponding me-
chanisms to ensure credibility. Second, most methods ignore the importance of history 
information when deciding the bidding/asking price, which makes the bidding/asking 
price fixed and not adaptive to the changing supply-demand relation in the market. 
Third, for methods using a single-item auction, they can only allocate one kind of 
resource, and they do not display the important characteristic of cloud computing, i.e., 
the combination of different resources is usually used to offer a variety of services. 

According to the above, we propose the intelligent agent based double combinatorial 
auction mechanism, using feedback evaluation based reputation system to prevent 
malicious behavior and BP (back propagation) neural network based bidding/asking 
price decision mechanism to make prices that can adapt to the changing supply-demand 
relation in the market. Finally, we introduce market surplus and overall reputation as 
the optimization goals and use league championship algorithm to determine the winner 
in the auction, which realizes dynamic, efficient and combinatorial allocation of  
resources in cloud computing. 

2 The Auction Mechanism 

2.1 Framework 

The framework of the resource allocation system is shown in Fig. 1. It involves five 
roles: cloud service provider (CSP), provider agent (PA), cloud service consumer 
(CSC), consumer agent (CA) and auction intermediary (AI). The basic process of the 
double combinatorial auction proposed in this paper is described as follows. 

(1) CSC submits the related information to CA when he/she requires service, and 
CA makes the initial tender according to the requirements. In a similar fashion, CSP 
submits the related information to PA when he/she has redundant resources, and then 
PA makes the initial tender. 
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(2) CA and PA respectively use the bidding/asking price decision algorithm to get 
the bidding/asking price, and submit the complete tender to AI. 

(3) AI runs the winner determination algorithm to get the optimal allocation at reg-
ular intervals or when the number of tenders received has outnumbered the threshold. If 
the auction does not reach the maximum round, AI sends a message to the failed par-
ticipants to let them modify their prices in order to perform the allocation process again; 
otherwise, the allocation ends. 

(4) AI informs every participant the result of the auction, and the winning CSPs 
provide services to the winning CSCs, while CSCs need to pay service fee to the  
corresponding CSPs. 

2.2 Double Combinatorial Auction Protocol 

Description of Provider’s Tender. A CSP’s tender includes the following attributes: 
the CSP’s ID number, CPU ($/(MIPS*hour)), memory ($/(GB*hour)), storage 
($/(100GB*hour)), bandwidth ($/(Mbps*hour)), and the total capacity of the above 
resources with time changes, the set of platforms and software that he/she can support, 
the lowest requirement about CSC’s reputation. So, a CSP’s tender can be described as 
the following 7-tuple: {CSP_ID, {price_c, quantity(t)}, {price_m, quantity(t)}, 
{price_s, quantity(t)}, {price_b, quantity(t)}, support_set, r_reputation} 

 
Fig. 1. Framework of Allocation System 
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Description of Consumer’s Tender. A CSC’s tender includes the following 
attributes: the CSC’s ID number, bidding price, start time, end time, speed of CPU 
(MIPS), capacity of memory (GB), capacity of hard disk (GB), network bandwidth 
(Mbps), task size (MI), data size (GB), granularity, the demands of platform and 
software, the lowest requirement about CSP’s reputation. For certain kind of service, 
the description of CSC’s tender is a subset of the whole set of all the above attributes. 

For four kinds of services, i.e., virtual machine service, computation-intensive ser-
vice, IO-intensive service and storage service, the CSC’s tender can be respectively 
described as {CSC_ID, bid_price, start_time, end_time, CPU, memory, storage, 
bandwidth, software&platform, r_reputation}, {CSC_ID, bid_price, start_time, dead-
line, task_size, partition, r_reputation}, {CSC_ID, bid_price, start_time, deadline, 
task_size, data_size, memory, storage, partition, r_reputation} and {CSC_ID, 
bid_price, start_time, end_time, data_size, partition, r_reputiton}. 

Winner Determination Rule. The winner determination problem can be divided into 
two parts, i.e., optimization goals and constraints. The optimization goals can be de-
scribed in Eqn. (1)-Eqn. (3), this winner determination problem becomes optimizing an 
allocation matrix (two-dimensional variable-length array). To be specific, a row of the 
matrix represents one CSC, and a column represents one CSP, so the element ijR  

represents the proportion of demanded service that iCSC allocates to jCSP . 

 ( )1 1 1 1
max _ _ _

m n n m

i ij ij iji j j i
total surplus bid price R R ask price

= = = =
= × − ×     (1) 

( )1 1 1 1

__max _
m n n m iji

ij iji j j i
i i

ask pricebid priceunit surplus R Rlength length= = = =

  = × + ×      
     (2) 

 
1 1 1 1

max _
m n n m

ij i ij ji j j i
total reputation R reputation R reputation

− − − −
= × + ×     (3) 

3 Winner Determination Method 

The winner determination of the double combinatorial auction has been proved to be a 
very complicated NP-hard problem [10, 11]. Up to now, no method can effectively 
solve this NP problem, while the simple and easy-to-understand swarm intelligent 
algorithm can be applied to approximately solve such large-scale problems. In this 
paper, we chose one of the swarm intelligent algorithms, i.e., the league championship 
algorithm [12], to solve the winner determination problem. 

3.1 Problem Simplification 

Process of Multi-objective Problem. In this paper, the three optimization goals are of 
different magnitudes and units, and are also mutually constrained. Hence, it is not 
appropriate to convert the problem to a single objective optimization problem using the 
method of weighted summation. Therefore, the following method is utilized to better 
solve the problem. 
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Eqn. (4) is used to compare the quality of any two solutions, i.e., aX  and bX . 

( ) ( ) ( ) ( ) ( ) ( )

min( ( ) , ( ) ) min( ( ) , ( ) ) min( ( ) , ( ) )
b a b a b a

a b a b a b

TS X TS X US X US X TR X TR X

TS X TS X US X US X TR X TR X
α β γ− − −Δ = ⋅ + ⋅ + ⋅  (4) 

Here, TS , US  and TR  represent _total surplus , _unit surplus , _total reputation ; 

1α β γ+ + = , this represents the weight of three objectives.  
After the above comparison is done, Eqn. (5) can be used to calculate the fitness. 

 ( ) ( )1 1,

1 1

( ) 1k
k k k

k
fitness X

fitness X k− −

==  + Φ Δ >
 (5) 

Here, 1, 0k k−Δ ≥  means that kX  is better than 1kX −  1, 0k k−Δ ≥  times; 

( ) ( )1,

1, 1 1k k

k k ae a−Δ
−Φ Δ = − >  is the increasing function of fitness, and it grows expo-

nentially to make the solution with larger 1, 0k k−Δ ≥  has higher fitness. 

Process of Constraint Optimization. In this paper, the method of comparison dif-
ference is adopted. Its main idea is that when comparing the fitness of solutions, the 
degree that a solution violates the constraints should also be taken into consideration. 
Deb [13] proposed a league selection operator, which uses the following rules to de-
termine which solution is better. 

(1) When one solution is feasible and the other is not feasible, then choose the 
feasible solution; 

(2) When both the two solutions are feasible, then choose the one with higher fitness; 
(3) When the two solutions are not feasible, then choose the one that violates the 

constraints to a less extent. 

3.2 Constraints Adjustment 

The final allocation matrix will be of practical significance only if it satisfies all the 
constraints. It is difficult to make the solution satisfy all constraints only by the swarm 
intelligent algorithm and comparison difference, so adjusting the matrix in each itera-
tion of the algorithm is needed. 

(1) Adjustment of price constraint. If the bidding price is lower than the asking price 
for a point in the matrix, and the value of this element does not equal 0, then set this 
value to be 0. 

(2) Adjustment for reputation constraint. If the reputation cannot satisfy each other’s 
requirements for a point in the matrix, and the value of this element does not equal 0, 
then set this value to be 0. 

(3) Adjustment for each row. The sum of all elements’ values on each row must be 0 
or 1. The specific steps are as follows, 
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Step 1: Record the maximum value [ , ]R i large  and second maximum value 

[ , ]R i secondLarge  of the a row that does not satisfy the above constraint; 

Step 2: Set ( )( )[ , ] 1R i large sum i− = − , if [ , ] 0R i large ≥ , adjustment of this ends; 

otherwise, set [ , ] [ , ]R i secondLarge R i large+ = , [ , ]R i large . 

(4) Adjustment for granularity constraint. For the line whose granularity is too small, 
combine the minimum value and second minimum value, repeat this operation until it 
satisfies the constraint. 

(5) Adjustment for capacity constraint. The resources of a CSP must satisfy the 
requirements of CSC. This adjustment should be done at last. The main idea of this 
operation is recording the point that violates the capacity constraint, and moving the 
value of this point to other points where it can be allocated service. 

3.3 League Championship Algorithm 

The league championship algorithm [12] is inspired and proposed by the phenomenon 
that teams are continuously adjusting their formation to improve their strength. In the 
algorithm, every two teams compete, and the result is decided by the strength (fitness). 
In the remaining period, every team will design the best formation (new solution) for 
the next week based on the results of the last week and the upcoming rival. 

Primary Steps. In the algorithm, roulette is adopted to determine the game results, and 
the probability of winning the game is related to fitness. The probability of team i 
winning can be calculated as shown in Eqn. (6). 

 
*

*

( )

( ) ( ) 2

t
jt

i t t
j i

f X f
p

f X f X f

 − =
 + − 

 (6) 

Here, t
iX  and t

jX  are the formation of team i and team j respectively; *f represents 

the optimal fitness. 
Every team i will adjust the formation of the last week 1 2( , ,..., )t t t t

i i i inX x x x=  when 

preparing the game of the next week (t+1). We assume the scene that in the tth week, 
team i competed with team j, team l competed with team k, and in the (t+1)th week, 
team i will compete with team l. The general idea of the readjustment is that adjusting 
the formation to move closer with the winner, and meanwhile, to move oppositely from 
the looser. In more detail, the specific description is as follows. 

a) If both team i and team l are winners in tth week, then the new formation can be 
obtained from Eqn. (7). 

 1
2 1 2 2( ( ) ( )) 1,...,t t t t t t t

id id id id kd id jdx b y c r x x c r x x d n+ = + − + − ∀ =  (7) 

b) If team i is the winner and team l is the looser in the tth week, then the new  
formation can be derived from Eqn. (8). 



340 J. Sun et al. 

 

 1
1 1 2 2( ( ) ( )) 1,...,t t t t t t t

id id id kd id id jdx b y c r x x c r x x d n+ = + − + − ∀ =  (8) 

c) If team i is the looser and team l is the winner in the tth week, then the new  
formation can be derived from Eqn. (9). 

 1
2 1 1 2( ( ) ( )) 1,...,t t t t t t t

id id id id kd jd idx b y c r x x c r x x d n+ = + − + − ∀ =  (9) 

d) If team i and team l are all losers in the tth week, then the new formation can be 
derived from Eqn. (10). 

 1
1 1 1 2( ( ) ( )) 1,...,t t t t t t t

id id id kd id jd idx b y c r x x c r x x d n+ = + − + − ∀ =  (10) 

Here, t
idb  is the dth component in the best formation of team i; 1r and 2r  conform to 

the uniform distribution in [0,1] ; 1c and 2c  are fixed parameters, respectively 

representing the weights of superiority and inferiority; { }0,1t
idy ∈ represents whether 

the component needs to be changed, and the probability of changing is simulated 
through the truncated geometry distribution. 

Algorithm Process. The allocation matrix with m rows and n columns represents a 
solution of the winner determination problem: { }11 12, , , mnr r r  with 

{ }0,0.1,0.2, ,1ijr ∈   using discrete encoding. The steps of the algorithm are as follows. 

Step 1: Initialize L ( number of teams) and Seasons  ( number of seasons); set 1t =
, 1s = ; generate the schedule; 

Step 2: Process the multi-objective problem and constraints to simplify the problem 
based on Sec. 3.1 and Sec. 3.2. 

Step 3: Calculate the strength (fitness) of each team, set the current formation to be 
the best formation of the teams; 

Step 4: If s Seasons≤ , go to step 5; otherwise, the algorithm ends; 
Step 5: Teams compete according to the schedule of the tth week, and determine the 

game results based on Eqn. (6); 
Step 6: Set 1t t= + ; every team adjusts formation according to Eqn. (7)-Eqn. (10); 
Step 7: Conduct constraint adjustments based on the steps in Sec. 3.2; if the adjusted 

formation is better, the current formation is replaced by it; 
Step 8: If 1t L= − , set 1t = , s + + , generate new schedule, and go to step 4. 

4 The Reputation System 

The feedback evaluation based reputation system is meant to reduce malicious behavior 
and improve the satisfaction in the auction. The reputation is decided by the evaluation 
from feedback, and the evaluation is based on the performance. [ ], 1,1i jevaluation ∈ −  is 

the evaluation of i on j. 
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Firstly, the reputation is based on the evaluation and the amount of transaction. 
Secondly, the reputation is time-sensitive, and it declines over time. Finally, to ensure 
correct operation, the reputation system must prevent the defaming action and specu-
lation of the reputation. So in this paper, a hierarchy of users is introduced to reduce the 
impact of malicious behavior. 

If an evaluation that a participant received is of great difference with his/her current 
reputation, then this evaluation is regarded to be abnormal, and there may be the de-

faming action or speculation. We set i jdeviation evaluation reputation= − , and divide 

the malicious behavior into n levels based on the value of deviation , where each level 
corresponds to a coefficient of suspicious degree (0,1]kco ∈ . Based on the above, the 

credibility of a participant can be calculated from Eqn. (11). 

 ( )*i k i
i

i

N co N
CR N

− ×=  (11) 

Here, iN  is the total number of times that participant i evaluated others; *iN  is the 

number of times that his/her evaluation was thought to be malicious. 
To summarize, the reputation can be calculated from Eqn. (12). 

 

( )

( )

, 1
, , 1

,

, , ,
,

,

( ) 1

1 ( )

j k
j k i j k

j k

i j i j k
i i j

j k

transaction
reputation de t CR reputation

transaction

R price
de t CR evaluation

transaction

−
−= Δ × − × × +

×
− Δ × × ×

 (12) 

Here, ,j ktransaction  represents the transaction amount of jCSC  or jCSP  after the kth 

transaction; , , ,i j i j kR price×  is the amount of the kth transaction; ( )de tΔ  is the attenu-

ation coefficient of time, as shown in Eqn. (13). 
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Here, 1k kt t t −Δ = −  is the interval between kth transaction and the (k+1)th transaction. 

5 Price Decision 

Introducing the mechanism of bidding/asking price decision is to let PA and CA intel-
ligently decide the bidding/asking price, and increase their income, also cut the loss of 
incomplete information. Factors influencing the decision are varying and complicated, 
and there does not exist a formula that can take all these factors into consideration while 
making decisions. Therefore, BP neutral network [14] is adopted in this paper to  
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address this problem. The fact that every function can be simulated by a three-layer 
neutral network in arbitrary precision has been proved. The main idea is that historical 
data are used as samples to train the neural network, to get the matrix of weights, and 
then decide to the bidding/asking price. 

5.1 Prediction of Supply-Demand Relation 

Supply-demand relation in the market is one factor that can influence the decision, so it 
is needed to predict the supply-demand relation in the tth transaction for PA and CA to 
make decisions through the relationship in previous 1t −  transactions. 

In this paper, a single-index moving method is utilized to predict the supply-demand 
relation, and Eqn. (14) shows the calculation of tSA  (the prediction of the relationship 

in the tth transaction). 

 1 1(1 )t t tSA sd SAα α− −= + −  (14) 

According to the recursive rule, we can derive Eqn. (15). 

 
1

1 00
(1 ) (1 )

jt t
t t jj

SA sd SAα α α−
− −=

= − + −  (15) 

Here, (0 1)α α≤ ≤  is the smoothing factor; isd  is the real supply-demand relation in 

the ith transaction; 0SA  is the initial value of prediction. 

5.2 Bidding/Asking Price Decision 

The factors that a CA considers when deciding the bidding price are as follows. 

(1) Supply-demand relation: If oversupply occurs, decrease lower the bidding price; 
otherwise, increase the price. 

(2) Latest start time: If the interval between this time and the current time is short, 
which means the demand is urgent, bidding price should be increased. 

(3)Budget: This is the upper bound of the bidding price. 
(4) Current period: The bidding price should be higher in the peak time. 
(5) Reputation: A participant win with high reputation is more likely to win. Those 

with high reputation can lower their bidding prices.  
(6) Risk preference: Risk-seeking participants can bid lower than risk-averse ones. 
Instead of the latest_start_time and the budget, a PA should consider the cur-

rent_load and cost when deciding the asking price. The other four factors are the same 
as those that a PA considers. 

The specific description of the algorithm is as follows. 

Step 1: Initialize samples; set the minimum number of samples that are needed to 
train the neural network; 

Step 2: Test the number of samples, and if it is insufficient, randomly generated 
bidding/asking prices as used samples, then go to Step 4; otherwise, go to Step 3; 
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Step 3: Normalize the samples, train the neural network, and save the matrix of 
coefficients; use the neural network to determine the bidding/asking price, and train the 
neural network at intervals; 

Step 4: After the auction ends, save it in the database. 

6 Simulation and Evaluation 

The double combinatorial auction mechanism is implemented and evaluated based on 
Simjava2.0 toolkit [15] on the Eclipse platform. The three types of services are set 
according to the cloud computing platform of Amazon [16]. 

The values of the different supply-demand relations are as follows: short supply 
(S_S) (0.4~0.6), balance (Ba) (0.9~1.1), oversupply (O_S) (1.4~1.6), and sufficient 
resource (S_R) (≥4). The market size can be divided into six types: smaller size (Sm) (8 
services, 4 resources), small size (S_er) (16 services, 4 resources), medium size (Me) 
(32 services, 4 resources), large size (La) (64 services, 4 resources), larger size (L_er) 
(128 services, 4 resources), superior (Su) size (128 services, 8 resources). 

Our simulation results demonstrate the superiority of the proposed algorithm over its 
counterparts in Ref. [10], which applies a stable continuous double auction. Each datum 
in the following figures is the average of 20 trials under the corresponding conditions. 
The parameters of the league championship algorithm (LCA) are detailed in Table. 1. 

Table 1. Parameters of LCA 

Parameter Valuation Meaning 

iterations 20 Number of iteration 

teamNum 20 Number of team 

c1 0.5 Weight of superiority 

c2 0.5 Weight of inferiority 

pc 0.01 Parameter of probability 

The comparisons on the total market surplus and the unit market surplus with dif-
ferent supply-demand relations between the double combinatorial auction with league 
championship algorithm (DCA_LCA) proposed in this paper and the stable conti-
nuous double auction (SCDA) proposed in [4] are presented in Fig. 2, respectively. 
The value of the best market surplus is set to be 1. 

As shown in Fig. 2, in most cases, the performance of DCA_LCA is superior to that 
of SCDA in both the total market surplus and the unit market surplus; but in the con-
dition that resources are sufficient, SCDA is slightly better. It can be explained as 
follows. The service that one CSC demands will not be allocated to multiple CSPs in 
SCDA. A CSC can always get the cheapest resources when resources are sufficient. 
While the randomness of LCA cannot guarantee no divided allocation, and this leads to 
slightly poorer performance. However, in the cases with capacity constraints, 
DCA_LCA is much better than SCDA. In addition, the tighter the constraints are, the 
more obvious the superiority is. 



344 J. Sun et al. 

 

 
Fig. 2. Comparison on Total/Unit Market Surplus with Different Supply-demand Relation 

 
Fig. 3. Comparison on Number of Successful Tasks with Different Supply-demand Relation 

We can see from Fig. 3 that, the number of successful tasks in DCA_LCA is the 
same with that in SCDA when resources are sufficient, and the number achieves the 
maximum. In cases of other supply-demand relation, the number of successful tasks is 
more in DCA_LCA. This is because DCA_LCA can divide the service and allocate 
each part to several different CSPs, and then more demands can be satisfied together. 

 

 
Fig. 4. Comparison on Time Cost with Different Market Size 
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From Fig. 4, we can conclude that DCA_LCA spends more time than SCDA does. 
As the market size expands, the time cost of DCA_LCA increases noticeably, and the 
maximum is 20s, which can also be accepted. If the conditions of the hardware  
improve, the time cost will become more acceptable. 

7 Conclusion 

In this paper, methods in economics and intelligent algorithms are introduced to pro-
pose an effective resource allocation mechanism in cloud computing. A feedback 
evaluation based reputation system is implemented to avoid malicious behavior, and 
BP neural network based price decision mechanism is proposed to determine prices 
scientifically. Finally, the winner determination problem is optimized by league 
championship algorithm with optimization goals being maximizing market surplus and 
total reputation. Simulation results validate the feasibility and demonstrate the supe-
riority of the proposed mechanism on improving both market surplus and success ratio. 
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Abstract. Model checking technique has been gradually applied to verify the 
reliability of software systems. However, as to software with large scale and 
complex structure, the verification procedure suffers from the state space 
explosion, thus leading to a low efficiency or resource exhaustion. In this paper, 
we propose a method of accelerating software model checking based on 
program backbone to verify the properties in ANSI-C source codes. We prune 
the program with respect to the assertion property, and compress the circular 
paths by maximal strongly connected components to extract the program 
backbone. Subsequently, the Hoare theory is used to generate an invariant from 
the compressed circular nodes, which reduces the length of path encoding. The 
assertion property is finally translated into a quantifier-free formula and 
checked for satisfiability by the SMT solver Z3. The experiments show that this 
method substantially improves the efficiency of program verification. 

Keywords: Model Checking, Program Backbone, Path Compression, Program 
Verification. 

1 Introduction 

With the rapid development of computer technology, the application fields of 
software are growing wider. However, the exponential growth on software scale 
easily leads to some unpredictable crashes. Therefore, many researchers pay close 
attention to find out the loopholes in the early stage of software design and 
development. The main methods of software quality assurance include software 
testing, model checking [1], and theorem proving [2]. But it is difficult for software 
testing to detect all execution paths, and theorem proving cannot be accomplished 
automatically limited by complex data structures and low performances. Along with 
the increasing demands on software performance, the verification of software source 
code combined with model checking has been a significant method. 

Some valuable researches focusing on model checking of software source code 
have been carried out in recent years. The Turing Award winner, Prof. E.M. Clarke 
has made a research in CBMC [3-4] and SATABS [5], which support full or rich 
subset of ANSI-C programs. CBMC and SATABS use predicate abstraction 

                                                           
*  Corresponding author. 



348 K. Zhou et al. 

 

techniques to check properties including pointer safety, array bounds, and user-
provided assertions, but these model checkers have difficulty in verifying more 
complex software systems since they need to unwind the loops in the programs at a 
certain bound. Some other existing tools such as SLAM [6], BLAST [7], MAGIC [8], 
or NuSMV [9], a new symbolic model verification tool, also achieve good results in 
software verification. However, most of them accept proprietary input languages that 
are not used for programming. F-SOFT [10-11] is developed on the basis of BLAST, 
using the lazy abstraction approach and localization techniques. It firstly takes 
program blocks as the primary elements to build an LTG (Labeled Transition Graph), 
then translates the control logic and data logic into Boolean representation 
respectively, and finally uses a SAT (Satisfiability Problems) solver to verify the 
program. In order to deal with more theory domains, SMT-BMC [12] adopts the more 
powerful SMT (Satisfiability Modulo Theories) [13] solvers instead of SAT solvers to 
verify software programs, but it still needs to unwind the loops with the BMC 
(bounded model checking) approach. Furthermore, Lucas [14] also leads some 
valuable research focusing on bounded model checking of embedded software. 

When verifying the properties in source code, it would cause the space explosion 
problem [15-16] if we traverse all the program paths. That problem severely restricts 
the scale of verified software. The key remission approach is simplifying program 
verification process as far as possible. In this work, we extract program backbone 
from software source code to accelerate software model checking. Firstly we treat the 
assertion property as guidance, pruning the program parts irrelevant to the property; 
then we compress the circular paths by maximal strongly connected components. 
Finally we encode the property and program backbone into a quantifier-free formula 
to check for satisfiability of the assertion property automatically. 

The outline of the rest of this paper is as follows. In Section 2, we systematically 
describe our method of extracting program backbone, including pruning with respect 
to property and compressing circular paths. In Section 3, we present the path encoding 
for Z3 [17]. Section 4 shows the results and evaluation of our experiments. Section 5 
makes conclusions and describes our future work. 

2 Extracting Program Backbone 

The program backbone is a core framework of software source code obtained through 
the procedure of pruning and compression. By extracting program backbone, we can 
remove the data variables, branch conditions, and assignment statements which are 
irrelevant to the assertion properties. Meanwhile, the complex structures such as loops 
and recursions will be hided, thus simplifying the complexity of the final predicate 
logic formula and improving the efficiency of program verification. 

2.1 Pruning with Respect to Property 

Pruning with respect to property is a useful way of reducing program size and formula 
complexity to allow more efficient model checking. Some existing software model 
checkers also adopt a similar method named program slicing [18-19] to remove the 
irrelevant program parts, but most of them are explicit state model checkers [20-21]. 
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As to the assertion property to be checked, some existed statements of the source 
program are insignificant or have no influence on the verification result. In the model 
checking of program properties, it is unnecessary to encode all the statements. 
Therefore, we should make best efforts to remove those irrelevant program parts, and 
we call it pruning in this work. Before processing pruning, we present the definition 
of the dependency between properties and variables. 

Definition 1 - Property Dependency.  We use the letter P to denote the program, Vp 
to denote the variable set of P, Expr(v) to denote the expressions including variable v. 
For v∈Vp, u∈Vφ, if one of the following conditions is satisfied: 

(1) v∈Vφ; 
(2) P contains assignment statements with the format of u=Expr(v); 
(3) P contains guards with the format of Expr(u)⊗Expr(v), where ⊗∈{<, <=,==, 

!=,>=,>}; 
(4) P contains assignment statements u=Expr(v) or guards Expr(u)⊗Expr(v), and a 

series of assignments vi=Expr(vi-1), … , v2=Expr(v1), v1=Expr(v), where vi∈Vp, 
i∈N+; 

Then we call that the variable v is relevant to the property φ; otherwise, the 
variable v is irrelevant to the property φ. 

Note that, we cannot consider the variable v to be relevant to the property φ even if 
P contains assignment statements with the format of v=Expr(u). 

Definition 2 - Pruning Rule. If the variable v is irrelevant to the property φ, prune 
the statements containing v in the program P. 

 

Fig. 1. An example of an ANSI-C program and its minimal pruning program 
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Definition 3 - Minimal Pruning Program. For a pruned program Pmin based on the 
property φ, if no other pruned programs based on the same property contain less 
statements than Pmin, then we call Pmin is the minimal pruning program with the 
property φ. 

Fig. 1 shows an example of (a) an ANSI-C program and (b) its minimal pruning 
program. In the example, the variable n is irrelevant to the assertion sum<=SIZE*m, 
so we can prune the statements containing n in the program. 

Note that even though the pruning procedure above has removed the statements 
irrelevant to the assertion property, the pruned program can still execute without 
influence. Besides, the final status and property will not be changed either when the 
program is executed to the assertion. 

2.2 Compressing Circular Paths 

After pruning with respect to property, we have accomplished the primary treatment 
for the program. Now we will continue to abstract the pruned program by 
compressing circular path in order to obtain the program backbone. The program 
backbone is dynamically extracted in accordance with the property. A common 
method of ensuring properties in programs is the form of assertions.  

In Definition 4, we depict the program including assertions with control flow graph 
(CFG). 

Definition 4 - Control Flow Graph.  The control flow graph of a program is a 
directed graph composed of finite nodes and edges. It can be described by a tuple 

cfgG : , , , ,cfg cfg cfg cfg
in outN op E N N< > . 

cfgN  denotes the finite nodes set of CFG, the same as the finite set of code lines. 
op  denotes the operation set of the program. It consists of assignment statements 

and branch statements. 
cfgE  denotes the edges set of CFG, cfg cfg cfgE N op N⊆ × × . 
cfg
inN  denotes the root node of CFG, cfg cfg

inN N∈ . 

cfg
outN  denotes the node to be checked in CFG, cfg cfg

outN N∈ . 

Therefore, the state transition relation can be intuitively expressed by the CFG. On 
the basis of that, we regard the maximal strongly connected components [22] as 
compressed objects to obtain the compressed control flow graph. 

The maximal strongly connected component means that any two nodes have a path 
reaching each other in connected nodes set. Here we use only one abstract node 
instead of each maximal strongly connected component to compress the CFG. The 
algorithms searching for the maximal strongly connected component in CFG refer to 
Kosaraju algorithm [23], Tarjan algorithm [24], or Gabow algorithm [25]. Definition 
5 reveals the principle of compression. 

Definition 5 - Compression Principle 
(1) Find out the maximal strongly connected components in CFG, and merge the 

connected nodes into one node with the entry edge and exit edge unchanged. 
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(2) If there are some assignment statements, such as u=Expr(v), next to others, 
merge them into one node with the entry edge and exit edge unchanged. 

After the compression operation, the CFG will be translated into a compressed 
CFG. Here we give the definition of compressed control flow graph(CCFG) as 
follows. 

Definition 6 - Compressed Control Flow Graph 

Assume a directed graph : ( , , , , )ccfg ccfg ccfg ccfg ccfg
in outG N op E N N , we define it as a 

CCFG if the following conditions are satisfied. 
ccfgN  denotes the nodes set of CCFG, the nodes represent the maximal strongly 

connected components. 
ccfgE  denotes the edges set of CCFG, the edges represent the connection between 

two nodes. 
op , cfg

inN , cfg
outN  are similar with Definition 4. 

The example program in Fig. 1 can be graphically shown in the Fig. 2. The CFG of 
the raw program is displayed in (a), the CFG of the pruned program is displayed in (b) 
and the CCFG of the program backbone according to the compression principle is in (c). 

 

Fig. 2. The CFGs of the raw program, pruned program, and the program backbone 
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The CCFG is a directed acyclic graph which is able to avoid analysis of complex 
structures, as we consider the compressed maximal strongly connected component as 
a whole node. Thus we have accomplished the extracting procedure of program 
backbone. 

3 Path Encoding 

The program backbone has been extracted from the source codes after pruning with 
respect to property and compressing the circular path. In this section, we present the 
detailed methods of path encoding to Boolean form for software model checking. The 
path encoding will firstly use Hoare theory to find out an invariant for each 
compressed circular node of the program, and then translate the program backbone 
into the single assignment form. Finally, we make a conjunction of the whole program 
conditions and the negation of the assertion property to generate a quantifier-free first 
order predicate logic formulas, which can be easily compatible with an SMT solver 
for verification. 

3.1 Invariants of Compressed Circular Nodes 

In the previous section, we have abstracted the circular paths of the program into 
compressed circular nodes, hereinafter called abstract nodes for simplicity. The 
abstract nodes ignore the details in the loop structures, making the program backbone 
much easier to SMT solvers. To this end, we need to obtain an invariant for each 
abstract node to replace a long encoding of the complicated loop blocks in the 
program. The following paragraphs will give the detailed approach to find out the 
invariants of abstract nodes. 

As a start, we introduce Hoare theory [26] into software model checking. The basic 
formula of Hoare's logic can be denoted by a triple { } { }Sϕ ψ , where ϕ  and ψ  are 
first order formulas representing assertion properties. S denotes a segment or 
statement of a program, including the assignment statements, skip statements, if-then-
else branch statements, and while-loop statements. The Hoare triple { } { }Sϕ ψ  means 
that ϕ  holds before the execution of S, and then ψ  holds after the execution of S 
terminates. 

Based on Hoare theory, the while-loop of a program satisfies an invariant ϕ , 
which can be hold before and after each loop iteration, that is the while rule as 
follows. 

{ } { }

{ } { }

p S

while p do S end p

ϕ ϕ
ϕ ϕ

∧
∧ ¬  .                         (1)

 

Here, p is the quantifier-free first order assertion condition of the while-loop. Since 
p shall hold before each execution of the loop body S and certainly do not hold when 
the program exit the loop, so we use pϕ ∧  as the precondition of the loop body S, 
and pϕ ∧ ¬  as the postcondition. Therefore, the while rule means that ϕ  holds after 
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each execution of loop body S, including the last execution, from any statements that 
satisfy pϕ ∧ . The ϕ  above is rightly the invariant of the compressed circular node 
we need. 

On the basis of the theory described above, we can further find out the invariants of 
abstract nodes through the inductive method. Here we take the program backbone in 
Fig. 2(c) as an example in order to show how to figure out the invariants and proof 
procedure. 

Initial condition: 0 0 0i m sum= ∧ = ∧ = ; 
After the 1st execution of the loop body S, it holds 1 =max{ [0]} [0]i m a sum a= ∧ ∧ = ; 
After the 2nd execution of the loop body S, it holds 
2 = max{ [0],a[1]} [0]+a[1]i m a sum a= ∧ ∧ = ; 

And so forth, the invariant after the kth execution of the loop body S can be 
inducted as follows. 

-1 -1

0 0
( ) 0 max [ ] [ ]

k k

j j
i k m a j sum a j

= =
= ≥ ∧ = ∧ =  .                      (2) 

Proof. Based on the if- then-else rule [27], 
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By the assignment axiom [27], 
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holds; so (6) (7) (8) and (3) (4) (5) imply 
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So the loop body S satisfies the while rule 
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Obviously, as to the circular node in the example program, its invariant is 

0
0

0 max [ ] [ ]
ii

j
j

i m a j sum a j
= =

≥ ∧ = ∧ = ;                     (11) 

After the loop exits, it holds 

0
0

0 max [ ] [ ] 6
ii

j
j

i m a j sum a j i
= =

≥ ∧ = ∧ = ∧ ≥ .                   (12) 

3.2 Translating into SSA Form 

In this subsection, we interpret how to translate statements and variables of the 
program into static single assignment (SSA) form. 

Assignment Statements. The assignment statement is the basic part of the program 
after pruning and compressing. At first, the SSA form needs to record the number of 
the variables’ assignment operations (the number of variables which appear on the left 
of assignments). Let i denote the lines of codes, and Ni denote the statement 
corresponding to Line i. Before the statement Ni (not including the statement i ), the 
number of any variable v’s assignment operations is denoted by ass(v, Ni): 

(1) When i = 1, ass (v, Ni) = 0; 
(2) When 2i ≥ , and the Ni-1 statement assigns a value to the variable v, ass(v, Ni)= 

ass(v, Ni-1)+1; 
(3) When 2i ≥ , and the Ni-1 statement does not assign a value to the variable v, 

ass(v, Ni)= ass(v, Ni-1); 
Using the rules above, we are able to record the number of any variables’ 

assignment operations at any code line, then rename the variable v appearing on the 

left side as ( , ) 1iass v Nv + , the variable v on the right side as ( , )iass v Nv . Thus we could 

accomplish the translation of SSA form on assignment statement by rename 
procedure.  

Array Variables. The array variable is a special storage structure in the program. 
Assume that some values of array are updated, it is necessary for us to update the 
whole array. Here we introduce the with-operator to achieve it. Let e be a new value 
with the type of the ith element in array a, and the updated array can be expressed as 

' ( [ : ])a a with i e== =  by with-operator. It means 

(1) The ith element '[ ]a i  of the updated array 'a  can be assigned to '[ ]a i e= ; 

(2) The rest elements of the updated array 'a  will be assigned to the value of the 

same elements, '[ ] [ ], (0 < ( ), )a j a j j sizeof a j i= ≤ ≠ . 

Branch Statements. Branch statement is also an important program part besides 
loops. Let the ternary operator i ? t : e be an expression of the variables o, p, q, …, 
and o’, p’, q’, …, denote the variables with updated values. Let i denote if conditions, 
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then oi  represents the conditions related to o. Let t denote then operations, then ot  

represents the operations related to o. Let e denote else operations, then oe  

represents the else operations related to o. So the SSA form of branch statements 
combined with the assignment statements can be defined as follows. 

(1) When the branch statement if-then-else assigns values for some variables o, p, 
q, …, we should rewrite all these variables in SSA form. For example, if we give a 
new value to variable o in the then or else statement, the new value in the left side is 

( , ) 1 ( ? : )
iass o N o o oo i t e+ = . The variable o in the right side ( , , )o o oi t e  stays unchanged.  

(2) List all variables which have been assigned in branch statement. For example, 
o, p, q are variables assigned new values. We can rewrite the SSA forms as 

( , ) 1 ( ? : )
iass o N o o oo i t e+ = ; 

( , ) 1 ( ? : )
iass a N p p pp i t e+ = ; 

( , ) 1 ( ? : )
iass a N q q qq i t e+ = . 

Consequently, we are able to obtain the whole program backbone’s SSA form of 
the example program in Fig. 1.  

3.3 Encoding SMT Formula 

Now we insert the invariant of compressed circular nodes into the SSA form of 
program backbone based on Formula (11) in order to encode the whole program an 
SMT formula based on context. The constraints C of the example program Fig. 1 is 
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The properties P and its negation P¬  are 
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Finally, the SMT formula C P∧ ¬ would be passed to an SMT solver to check for 
satisfiability. 
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4 Experiments and Evaluations 

After getting the SMT formula through pruning, compressing, and encoding by the 
method above, we could further check for its satisfiability by an SMT solver. In this 
work, we choose Z3 [17] as our experimental tool. Z3 is a powerful SMT solver 
which integrates several decision procedures. It has a wide range of solution domains 
including linear real and integer arithmetic, uninterpreted functions, extensional 
arrays, and several input formats. Compared with other SMT solvers, Z3 also supports 
model generation, thus having an advantage in complex program.  

To demonstrate the correctness and effectiveness of our method, we choose some 
representative programs. The example program in Fig. 1 is verified as the first 
experimental case. It consists of the array summation algorithm SumArray and the 
maxima and minima algorithm MinMax. We select the Division algorithm by circular 
subtraction, intuitively showing the result of our method. The BubbleSort is chosen as 
another case because of its circular node. Meanwhile, we select the BellmanFord 
algorithm searching for the monophyletic minimum cost path. The famous Eight 
Queens problem and Prime Number algorithm are also checked in the experiments. 
To illustrate the situation for large scale program, we add two more large programs 
the Red Black Tree and the C-implemented HTTP protocol [28] to show the 
robustness of our method. 

In order to illustrate the validity of our program backbone-based accelerating 
method, the regular method based on the raw source code without pruning and 
compressing is designed to verify the same program assertions as a comparison. Both 
of the two methods encode the program constraints C and assertion properties P into 
SMT formulas C P∧ ¬  and check satisfiability with Z3. 

The experiments are performed on the Windows 7 operation system, with a 
2.4GHz CPU (AMD Athlon II X4 610E) and 2GB RAM. The experiments adopt the 
Windows-based SMT Z3 in Version 4.3.0. Table 1 shows the time cost of the 
verification experiments and the number of failures which are caused by memory 
overflow or time-out. 

Table 1. Experimental results 

Test Cases 
Lines of 

Codes 
Assertions 

Total Time (sec) Failures Number 

Regular Our Regular Our 

Example 

Division 

BubbleSort 

BellmanFord 

EightQueens 

PrimeNumber 

Red-Black tree 

HTTP protocol 

17 

12 

43 

49 

83 

20 

291 

242 

1 

5 

17 

33 

65 

12 

163 

151 

0.30 

1.48 
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15.93 
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121.94 

0.17 
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0.82 

0.24 
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80.15 
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8 
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11 
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The results in Table 1 indicate that the total time is substantially declined and the 
number of failures is reduced in our method. Some inevitable failures occur in the 
verification process of the latter two large scale cases, but most of them attribute to 
memory overflow and time-out. We can conclude that the software model checking 
based on program backbone improves the verification efficiency than the common 
method directly based on source code. 

5 Conclusions 

In this work, we propose a backbone-based software model checking approach to 
accelerate the verification of properties in ANSI-C programs. The program backbone 
is obtained on the basis of pruning with respect to property, and compressing the 
loops into abstract nodes instead of unwinding them limited to a certain bound like 
CBMC or SMT-CBMC. We further make use of Hoare theory to generate an 
invariant from the compressed circular node to replace the complicated logic of the 
loop body, which reduces the length of path encoding to a great extent. The 
experimental results show that our method based on program backbone accelerates 
the efficiency of software model checking compared with the common method 
directly based on source code. However, some details can still be improved in this 
work. We will continue to extend our method to verify multi-threaded concurrent 
programs and try to implement an integrated software verification tool in the future. 
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Abstract. Recently, snore signals (SS) have been demonstrated carrying signif-
icant information about the obstruction site and degree in the upper airway of 
Obstructive Sleep Apnea-Hypopnea Syndrome (OSAHS) suffers. To make this 
acoustic based method more accurate and robust, big SS data processing and 
analysis are necessary. Cloud computing has the potential to enhance decision 
agility and productivity while enabling greater efficiencies and reducing costs. 
We look to cloud computing as the structure to support processing big SS data. 
In this paper, we focused on the aspects of a Cloud environment that processing 
big SS data using software services hosted in the Cloud. Finally, we set up a 
group of comparable experiments to evaluate the performance of our proposed 
system with different system scales. 

Keywords: cloud computing, big data, signal processing, snore signals (SS), 
Obstructive Sleep Apnea-Hypopnea Syndrome (OSAHS). 

1 Introduction 

Obstructive Sleep Apnea-Hypopnea Syndrome (OSAHS) is a prevalent disorder 
among community, which is estimated to affect 4% of the adult male population and 
2% of the adult female population [1]. This chronic and easy-overlooked disorder has 
a high risk to trigger high blood pressure, coronary heart disease, pulmonary heart 
failure and even dangerous nocturnal death [2]. In medical practice, Polysomnogram 
(PSG) is regarded as the gold standard. However, the uncomfortable experience of 
patients and the expensive manufacture of equipment restrict its further developing 
and widely use. Sound snoring is a typical symptom of OSAHS therefore in the past 
10-20 years numerous researchers and scholars focused on acoustic features analysis 
of snore signals (SS) generated by patients [3]-[6], which leads a relatively cheap and 
non-intrusive method of PSG. Nevertheless, there is a more demanding requirement 
                                                           
*  Corresponding author. 
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from doctors to know the variations of the upper airway (UA), which is significant to 
help them to find the collapse site of the UA and adopt an accurate plan for surgery 
[2]. Long-time analysis of SS data is a good method to understand the relationship 
between acoustic analysis and anatomical theory. P. D. Hill et al. calculated crest 
factor of OSAHS patients and inferred that the substantial changes of this value dur-
ing the night indicate the mechanism variations of snores [3]. W. D. Duckitt et al. 
studied all night SS data and built a system based on Hidden Markov Models (HMM) 
to detect, segment and assess the snores and acoustic signals [7].  

All the scholars have taken no attention on the ability of their systems to process 
big data. Especially when the scales and samples of SS data become tremendously 
large, the processing and analysis will be a time-consuming and difficult task. There-
fore, we need a powerful computing system to handle the huge amount of would-be 
big SS data. Cloud computing technology has the ability to afford a platform contains 
software services that are made available to consumers in a pay-as-you-go model [8]. 
In industry area the services are referred as Infrastructure as a Service (IaaS), Plat-
form as a Service (PaaS) and Software as a Service (SaaS), respectively. Big data has 
three characteristics: volume, variety and velocity [8]. We can predict that with a 
lager and deeper collaboration of medical service all over the world, medical data 
such as SS data should be big data with no doubt. Some researchers have studied how 
to implement big medical data processing based on distributed and cloud computing 
technology [9]. Cloud computing, an emerging concept and technology, has moti-
vated numerous researchers to exploit its super power in computing and storage by 
developing applications in biomedical treatment [15]. Encouraged by the high per-
formance achieved by cloud system, we utilize it to deal with the processing of big SS 
data mentioned above. In this paper, we designed a cloud system includes IaaS, PaaS 
and SaaS to cope with big SS data, which is an original idea to conduct the medical 
cloud computing research for further work. 

2 Analysis Methods and System Design 

2.1 Signal Processing of SS Data 

The original SS data are recorded by a high-quality microphone array positioned at a 
sleep laboratory and stored as audio files. Initially, the SS data will be divided into 
frames as samples based on Short-Time-Analysis (STA) approach. The frames can be 
regarded as samples for further processing and analysis. Subsequently, these samples 
will be pre-processed to eliminate the background noise and interference (which 
needs to utilize beam forming technology based on array signal processing). Then  
we extract frequently-used acoustic features from samples. Features extraction is the 
most essential step for machine learning, pattern recognition and establishment of SS 
database. 
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Fig. 1. The signal processing for SS data in the SaaS 

Features Extraction. Snoring is the result of the vibration of the tissues when the air 
flow passes through the narrowing UA. It is widely accepted that the UA acts as an 
acoustic filter during the production of SS, hence, vital information of the structure of 
UA are carried by SS data.  

Frequency domain features are also popular in medical researches [4]. The center 
point, peak point and mean point of the spectrum, fcenter, fpeak, fmean is defined as  
follows respectively: 

 

(1)

 
(2)

  (3) 

Where, Sfi is the absolute amplitude spectra of SS at frequency of fi Hz calculated 
by Fast Fourier Transform (FFT). And fc is the cut-off frequency of the SS spectrum. 
Relative studies have indicated that these three features extracted from SS of OSAHS 
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patients are normally much higher than simple snorers [4]-[5]. The physical explana-
tion of the phenomena is that the narrowing extent of the UA is more severe, the fre-
quency of SS generated by air flow is higher [2].  

Power ratio at the frequency of 800 Hz is capable to classify SRS generated by dif-
ferent obstruction site in UA []. We defined this feature as: 

 

 (5) 

Totally, we extracted 4 acoustic features for establishment of a preliminary data-
base of individual OSAHS patients. 

2.2 Cloud Computing System Design 

The overall functionality infrastructure of a big SS data analysis cloud computing 
system involves the following steps as Fig. 2 illustrates: 

 

Fig. 2. The overall functionality infrastructure of a big SS data analysis cloud computing system 

The architecture of cloud computing system is revealed in Fig. 3, which affords us 
a method to address the bid SS data in collection, storage and analysis. From bottom 
to top, each box represents IaaS, PaaS and SaaS layer, respectively. The software 
service is hosted as signal processing in order to make any client-side implementation 
simply call the underlying functions (e.g., Pre-Processing, Analysis, etc.) without 
going through the complexities of application.  

IaaS Layer. To meet the needs of our study, we deployed a private cloud computing 
system with the help of OpenStack, a global collaboration of developers and cloud 
computing technologists on producing the ubiquitous open source cloud computing 
platform for public and private clouds. We utilize it to create and manage the in-
stances which run big SS data processing programs. 
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Fig. 3. The architecture of cloud computing system for big SS data processing 

PaaS Layer. In PaaS layer, we adopted a framework called Briareus [16], which 
provides convenient tools to make use of computing resources provided by cloud to 
accelerate Python applications. MapReduce has motivated us to design the distributed 
computing methodology of Briareus. Briareus offers accelerating techniques into a 
Python program, which brings us a set of convenient to design this cloud computing 
system. All signal processing computation tasks can be migrated into cloud compu-
ting system, which will significantly enhance the efficiency of running programs. 

SaaS Layer.  Big SS data processing belongs to the SaaS layer, which should be 
developed due to the specific applications. We selected Python as our programing 
language to exploit the SS processing applications. This language is an open source 
scripting language and it will be efficient and simple to develop programs in Briareus. 
Meanwhile, thanks for the open-source fundamental packages for scientific compu-
ting with Python such as NumPy, SciPy, Matplotlib [17]-[19] etc. which makes  
development of scientific computation with Python as easy as Matlab. 

3 Experimental Setup and Evaluation 

We setup comparable experiments of the same computation tasks taken down by a 
server in the Matlab and a cloud computing system we proposed (see Fig.3). The SS 
data, a whole 1-hour audio recording of an OSAHS patient, was offered by the De-
partment of Otolaryngology, a hospital, Beijing, China (People’s Republic of). We 
utilize the SS processing applications all by Python for the platforms to run the pro-
grams. The hardware of the experiment environments are illustrated in Table 1. In the 
cloud, we set 1, 2, 4, 8, 16 instances to run the computation tasks relatively and record 
the time costs. Then, we also run the same tasks in the Matlab and do comparison 
with above results which in the cloud.  
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Table 1. Hardware of each computation equipment 

 CPU Memory 

Server Intel Xeon E7420 (2.13 GHz)×4 32.0 GB 

Cloud (instances) Intel Xeon E5504 (1 VCPU 2.0 GHz ) 512 MB 

 
The OpenStack IaaS platform has been deployed in a cluster of IBM BladeCenter 

servers as the private cloud. For each server, there are two 2.0 GHz Intel Xeon quad-
core CPUs, 24GB memory and 1000M wired Ethernet. In the private cloud, we set up 
at most 16 instances (each with 1 VCPU, 512MB) in the OpenStack as Briareus’ 
workers. In the PaaS, the time costs of the communications of each instance and the 
activation of Briareus are relatively low (about 1 second). Meanwhile this system is a 
private cloud computing system, which needs no transferring data in Internet com-
pared with the public cloud computing system. 

Table 2. Time costs of different scale in the cloud and the Matlab running at server (Unit: sec.) 

 1-hour data 1-hour data 1-hour data 
1 instance 44.115 43.883 43.830 
2 instances 23.110 22.119 22.295 
4 instances 12.875 11.923 11.967 
8 instances 6.836 6.930 6.742 
16 instances 3.631 3.973 3.526 

Matlab 32.094 31.171 31.440 

 
In the table 2. We compare the time costs for 3 independent experiments of the 

same tasks with the different scale in the cloud. Meanwhile, the results of Matlab 
which running at server with same tasks are shown in the bottom of table 2. 

The cloud with only one instance takes the maximum time costs for accomplishing 
the computation tasks. Meanwhile, the Matlab tasks running in the Server has a good 
stable performance for the experiments. However, its computation ability is not much 
better than one instance. When we setup more instances in the cloud, we can see that 
the time costs reduce significantly. Specifically, the more instances we have, the low 
time costs we get, and the cloud will bring a breakthrough in boosting the efficiency 
of big SS data processing, if we have enough instances in the cloud. We can infer that 
once the scale of SS data becomes large enough, the processing tasks would be time-
consuming and even difficult for one instance or server. The transferring of acquired 
SS data by microphones from subjects in Internet would also take much of time for a 
public cloud computing system. This private cloud computing system we proposed 
would get rid of the problem. 
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4 Relation to Prio Work 

Hill et al. studied the changes of crest factor value of SS data for OSAHS patients 
during a whole night and they indicated that the obstructive site or mechanism of 
snoring varied during long-time analysis [3]. Inspired by the long-time analysis of SS 
data, we adopted the method to monitor patients’ long-time SS data for further study. 
Azarbarzin et al. and Duckitt et al. utilized features clustering and HMM method to 
group all night SS data into different classifications, respectively [6], [7]. We inte-
grate the two methods in our analysis system to achieve more clear results of varia-
tions of the UA of OSAHS patients. Good acoustic features which can reveal the 
changes of the UA structure in medical practice were extracted [3], [4], [5]. However, 
most existing scholars ignored the would-be intensive big SS data scale, which is our 
topic in this work. Jones et al. proposed an architecture design for mobile manage-
ment of chronic conditions and medical emergencies, which focuses on defining a 
generic mobile solution [11]. Our system shares many good characteristics of this 
architecture. In addition, we took a stronger attention on the part of processing and 
storage, which takes scalability, economy and QoS issues into account. Analysis of 
heartbeat waveforms can be time-consuming hence automated computer-based 
processing of ECG data serves as a useful clinical tool. One of the major tasks to be 
provided is the accurate determination of the QRS complex [12]. Deelman et al. car-
ried out a study to assess the cost of doing science in the cloud by renting computing 
and storage resources from Amazon Web Services to run a scientific workflow [13]. 
They concluded that costs could be reduced with little impact on performance. Tech-
nologies, such as MapReduce and Dryad have also been evaluated in the scientific 
context to support data analysis problems that traditionally relied on MPI-style paral-
lel programming [14]. We adopted advanced ideas and knowledge from above re-
searches and applied them into analysis of SS data.  

5 Conclusions 

This cloud system we proposed could significantly boost the efficiency in big SS data 
processing and research on analysis of big SS data for large scale of subjects. This 
study is a preliminary study in our group and the methodology and system design will 
be implemented and improved by large scales of practical experiments, which is a 
promising method for biomedical signal processing in the cloud. 
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Abstract. With the rapid growth of the high performance computer system size 
and complexity, passive fault tolerance can no longer effectively provide relia-
bility of the system because of the high overhead and poor scalability of these 
methods. Hybrid fault tolerant method which is the combination of passive and 
active fault tolerant approaches has the potential to be widely used in fault toler-
ance of exascale system. However, there are still many issues of this method need 
to be ironed out. This paper focuses on the issues of checkpointing of hybrid fault 
tolerant method. A common question surrounding checkpointing is the optimiza-
tion of the checkpoint interval. This paper proposes two models to model the 
systems which adopt hybrid fault tolerance. By comparing their results with the 
simulation, this paper evaluates the effectiveness of these two models. Experi-
mental result shows that the modified model can not only predict the total work 
time excellently, but also can predict the optimum checkpoint interval precisely. 

Keywords: optimum checkpoint interval, fault tolerance, model. 

1 Introduction 

Nowadays, high performance computer systems (HPCs) are growing more and more 
complex [1]. It makes the system mean time to failure (SMTTF) of HPCs extremely 
shortened. According to the current technical routes, the latest data shows that SMTTF 
of the high-end systems will be less than 10 hours. If the scale of HPCs conti-
nuous increasing and MTTF of single hardware remain stable, the scale of exascale 
system will much more than the petascale system and the SMTTF will as low as 1 
hour[2]. 

Passive fault tolerance which is commonly known as Checkpoint/Restart (C/R) will 
not satisfy the fault tolerant requirements of exascale systems. It is because these 
methods has two main drawbacks: (1) its executing overhead is so high that contributes 
15% to 50% of the overall processing cost [3]; (2) the scalability is poor. If the SMTTF 
is lower than the period checkpoint–restart operation takes, the whole system will 
dump because the time interval between two interrupts are too short to write a check-
point image. 

To deal with these issues, researchers begin to consider active fault tolerant methods. 
These methods base on fault alert mechanism and predict possible failures in the near 
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future. Systems can keep processing application by implementing fault avoid operation 
before interrupt. Comparing with passive fault tolerance, active fault tolerance can 
effectively reduce the overhead and improve the scalability of fault tolerant system.  

However, the predictor can’t forecast all failures of the system in practice. Which 
means the system will dump if the predictor fails to dig out the failures in the near 
future. Hence, hybrid fault tolerant approaches are put forward to address this issue. By 
combining active and passive fault tolerant methods, these two methods can overcome 
the drawbacks for each other. Thus, such solution will be an efficient fault tolerant 
method of next-generation extreme scale systems. However, there are still many issues 
of this method need to be ironed out. For example, how to avoid the interrupt occurs 
during writing a checkpoint image?  

This paper focuses on the issues of checkpointing of combinative fault tolerant 
method. The matter in question which surrounds checkpointing is the definition of the 
frequency in which checkpoints should be taken to minimize the overhead introduced 
by this technique, which is better known as the optimum checkpoint interval [4]. If the 
checkpoint interval is chosen inadequately, the system overhead will increase rapidly. 
Because checkpoint method is a widely used solution, there are many studies regarding 
the definition of its optimum interval [5][6][7]. But these studies are all focus on 
modeling the systems which only adopt passive fault tolerant method. For the systems 
which adopt hybrid fault tolerant method, these models are not accurate enough. The 
behavior of these systems is quite different from the systems only adopt single fault 
tolerant method. For example, the SMTTF can’t be used to model the system directly, 
because some of fault will not interrupt the system because they are avoided by active 
fault tolerance. 

In this paper, the authors model the systems which adopt hybrid fault tolerant me-
thod. The purpose of defining the optimum checkpoint interval is to minimize the total 
work time. Thus, the cost function for these systems should be             

 is the interval between checkpionting operation. Operation time is defined as time 
spent on effective operation (solving applications). If there is no interrupts of the sys-
tem, the total work time  is equal to operation time. Checkpointing time is the 
overhead of writing checkpoints. Rework time is defined as time spent re-operating the 
lost work when an application is interrupt by a fault. It is equal to the amount of time 
elapsed since the last checkpoint. Restart time is the time required before an application 
is able to resume. Prediction time is the overhead of failure predictor. Fault avoid time 
is the time spent on handling the possible failures which are forecasted by predictor. 

Base on this model, this paper quantifies the optimum checkpoint interval that mi-
nimizes the total work time. The experimental results show that our model is effective 
to calculate the optimum checkpoint interval for hybrid fault tolerance. 

Table 1 lists the notations used in the model. 
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Table 1. Description of variables 

Variable Description  
 total work time 

checkpoint inverval 
 operation time 
 the number of time segment required to complete the 

application 
 SMTTF 

The approximation of the effective SMTTF 
 the overhead to write a checkpoint image 

 the total number of interrupts , the total number of interrupt attempts 
 average restart time 

The number alter generate by predictor 
 the overhead spent on handling th possible failures 

 the average overhead spent on handling each possible 
failure 

 the overhead spent on predicting 
 
The content of this paper is organized as follows. Section 2 introduces the related 

works. The system model is proposed and the methodology used to define variables of 
the model is presented in section 3. Evaluation results and discussion are shown in 
section 4. Finally, conclusions and future work are stated in section 5. 

2 Related Work 

Because checkpointing is a widely used method, there are many studies regarding the 
definition of its interval. As early as 1974, Young [5] introduced an analytical model to 
define the checkpoint interval for serial applications. The optimum checkpoint interval 
can be calculated once some variables such as checkpointing overhead and fault 
probability are available. W. Gropp [6] presented a simpler model and uses a different 
approach to deduce his model. The result achieved by Gropp’s model is similar to 
Young’s model. 

In 2003, Daly [7] presented more deeply study to determine optimum checkpoint 
interval. Daly starts with analyzing first order approximation of the checkpoint interval, 
and generalizes to higher order estimation of it. He solved the model by using simple 
bisection method and the precision of approximation is not very high. In order to figure 
out an excellent approximation, Daly solved the model by using Lambert’s function 

 in [8]. The experimental results show that Daly’s model is more precise than 
Young’s model. 

All models introduced above can only precisely calculate the optimum checkpoint 
interval for coordinated checkpoint protocols. Leonardo F. et al. [4] explored the rela-
tionship existent between processes of parallel applications and propose a new 
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checkpoint interval model which includes a factor representing the parallel application 
inter-process relationship. The model they proposed can calculate the checkpoint 
interval which minimizes the fault tolerance overhead for uncoordinated checkpoint 
protocols. 

There are many studies on improving the performance of C/R. In[14], Moody's team 
designed a scalable C/R library which is a multi-level checkpointing system that writes 
checkpoints to RAM, Flash, or disk on the compute nodes in addition to the parallel 
file system. Their multi-level checkpointing method can reduce the overhead of C/R 
significantly . They also presented a probabilistic Markov model that predicts the 
performance of their method on current and future systems. In 2013, Jangjaimon I.et 
al.[13] improved Moody's research by proposing an adaptive incremental checkpoint-
ing method (AIC). The experimental results show that the AIC can reduce the check-
pointing file size considerably. 

There are a number of researches on active fault tolerance. In 2006, Avritzer [9] 
presented three algorithms for detecting the need for software rejuvenation by moni-
toring the changing values of a customer-affecting performance metric. Gujrati’s team 
[10] presents a failure predictor to automatically process RAS events and further dis-
cover failure patterns for prediction in Blue Gene/L systems. The Experiments show 
the effectiveness of the three-phase failure predictor. X. Gu [11] and his colleagues 
explored light-weight stream-based classification methods to perform online failure 
prediction. Experiment results show that their method can manage system failure 
efficiently.  

In [12], C. Wang’s team designed a hybrid fault tolerant method. First, they propose 
an efficient process-level live migration mechanism. Then they combine the mechan-
ism with checkpointing method. Experiment indicates their method can effectively 
provide reliability of the system.  

Hybrid fault tolerance has the potential to be widely used in fault tolerance of 
next-generation extreme scale systems. Despite the effectiveness of hybrid fault tole-
rant method, as far as we know, there is no model to calculate the optimum checkpoint 
interval for this method. 

3 The Checkpoint Interval Model for Hybrid Fault Tolerance 

3.1 The First Order Model 

The operation time is defined as 

  (1) 

The total checkpointing time will be 1 . The rework time is some fractions of 
time segments which are interrupted by fault. This paper assumes that the proportion of 
fraction is  on average. Then the rework time can be defined as 

. The restart time is . The prediction time is simply assumed as  
which is fixed proportion of operation time. The fault avoid time is defined as follow. 

   ∑   (2) 
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Hence, the cost function will be 

 1 σ  ∑  (3) 

3.2 The Assumptions and the Number of Interrupts 

The first assumption is 

  (4) 

Which means the interrupts will occur halfway through the checkpoint interval on the 
average. To address the issues of fault avoid time, this paper denotes the number of 
correct warning of active fault tolerance as  (true positive) and denotes the number 
of false warning as  (false positive). Meanwhile the number of correct missing is 
defined as  (true negative) and the number of missing warning is defined as  
(false negative). Obviously, . The recall and precision of the predictor 
are defined as follows. 

 ∈ 0,1  (5) 

  ∈ 0,1  (6) 

Thus 

  (7) 

This paper assumes that the system only adopts single fault avoid method. The fault 
avoid time will be 

   ,  (8) 

where  is the average overhead spent on handling each possible failure. ,  is the 
total number of interrupt attempts of system fault. Some of faults will not interrupt the 
system because they are avoided by active fault tolerance. 

 is defined as follow (see [7]). 

 ⁄ 1  (9) 

If , the exponential term can be approximated by linear term.  

                               for 1 (10) 

Eq. (9) and (10) can’t be used directly in the model. The first reason is that some of fault 
will not interrupt the system because they are avoided by active fault tolerant method. 
The second reason is that the assumption  is erroneous for hyper scale 
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systems which require adopting hybrid fault tolerance. Thus, this paper uses  to 
approximate the effective SMTTF.  is defined as follow. 

  (11) 

                            ⁄ 1  (12) 

                             for 1 (13) 

Combining all of these terms, the cost function will be 

 1 σ   

                   (14) 

3.3 Solving the Model 

To solve the model this paper considers solutions of the first and second derivative with 
respect to . First, this paper considers the second derivative with respect to . 

 0 (15) 

Then the minimum point of first derivative is unique. 

  

          2 2 2 1 0 (16) 

The optimum checkpoint interval  is the solution of (16). 

 ̂ 2 2 2  (17) 

3.4 Relaxing the Assumption 

The problematic assumption associated with the original model is . is 
determined by the recall and the scale of the system. For exascale systems, the as-
sumption will be valid only if the active fault tolerant method can achieve very high 
recall (over 99 percent). For generalization purpose, Eq. (14) should be rewritten as  

 1  1 1     1                                   (18) 
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3.5 Solving the Modified Model 

The second derivative with respect to  of Eq. (18) is complex. Thus, it is trivial to 
prove the convexity of Eq. (18) directly. However, as shown in the next section, the 
minimum point of Eq. (18) is unique. To be brief, this paper defines two symbols: 

  (19) 

   (20) 

Then, the first derivative with respect to  is 

  

                                         (21) 

Setting it to zero, we get 

 2 2 2 2 2 2  (22) 

   (23) 

Adopting logarithm on both sides of Eq. (23), then 

  (24) 

To simplify the function, we set 

  (25) 

Obviously, the left side of Eq. (24) is non-negative. Thus 1 for all . If we use 
Euler-Maclaurin expansion for natural logarithm directly, the series will diverge. 
However, Eq. (24) can be rewritten as 

 1 1 ∑ 1  (26) 

This series expansion is expected to converge. Ignoring higher order terms (the effect 
will be discussed in next section), we get 

 1 =1  (27) 

  2 2  (28) 

Therefore, the optimum checkpoint interval  is approximately 

  ̂ 2 σ (29) 



374 L. Zhu et al. 

 

4 Evaluation 

This paper develops a simulation to valid the effectiveness of the models. The simula-
tion system include three modules: interrupting attempts module, fault tolerant module 
and operation module. The interrupting attempts module generates random interrupting 
attempts when the operation module executing the application. The distribution of 
interrupting attempts is described by an exponential model. This model is the simplest 
useful life distribution model for mechanical and electrical equipment [7]. Then, the 
probability of an interrupt occurring before time  is given by the distribution function 

 ∆ ∆ ⁄ 1 ∆ ⁄  (30) 

The interrupting attempt will suspend the operating module. The fault tolerant module 
catches each interrupting attempt and calculates whether there is a real interrupt ac-
cording to recall parameter. If the result is FALSE (the interrupt is avoid by active fault 
tolerance), the fault tolerant module will calculate the overhead of fault avoid. If the 
result is TURE (the active fault tolerance is fall to avoid the interrupt), the fault tolerant 
module will calculate the overhead of recovery. Then the operating module will remain 
standstill for corresponding time. The system simulates the checkpointing (write 
checkpoint image) as a delay operation. The prediction  is ignored since it only 
correlate with the operation time. The simulation is run multiple times for each para-
meter setting and the results will be averaged. 

 

Fig. 1. Simulation results for Ts 387 hours, M=200min, σ 5 min, recall=0.85, precision=0.9, R 1min, F 2 min. 111.02min. The optimum interval ̂  predicted by modified 
model is 111.05min. 



Research on Optimum Checkpoint Interval for Hybrid Fault Tolerance 375 

 

 

Fig. 2. Simulation results for Ts 387 hours, M=60min, σ 25 min, recall=0.85, precision=0.9 R 1min, F 2 min. 118.69min. The optimum interval ̂  predicted by modified 
model is 118.8min.  

 

Fig. 3. Simulation results for Ts 387 hours, M=20min, σ 25 min, recall=0.85, precision=0.9 R 1min, F 2 min. 60.4min. The optimum interval ̂  predicted by modified model 
is 60.7min. 
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Figure 1 shows that there is agreement between two models and simulation when 
( 22 ). It means that the original model is appropriate to model 

the system if . 
As shown in figure 2-3, the SMTTF decreases and the total work time increases 

rapidly. The original model can’t model the system accurately. This is because the 
assumption that  is no longer valid. With the decreasing of , the 
agreement between the original model and simulation gets worse. However, the mod-
ified model is perfectly consistent with simulation results. Figure 4-5 show the results 
of the modified model for extreme SMTTF. Because the huge deviation between the 
original model and simulation, the results of original model are not shown in these 
plots.  

There is little deviation between the optimum checkpoint interval ̂  calculated 
by Eq. (29) and . This is because the higher order terms of Eq. (26) are ignored. 

Figure 6-7 show the simulation results of higher recall and lower precision.  
The effectiveness of the modified model is still good. 

Figure 8-9 show the deviation between  and the optimum interval ̂  pre-

dicted by modified model for different σ. As the  increasing, the deviation between ̂  and  will be reduced. 

 

Fig. 4. Simulation results for Ts 387 hours, M=10min, σ 25 min, recall=0.9, precision=0.9 R 1min, F 2 min. 38min. The optimum interval ̂  predicted by modified model is 
38.3min. 
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Fig. 5. Simulation results for Ts 387 hours, M=5min, σ 25 min, recall=0.85, precision=0.9 R 1min, F 2 min. 22.9min. The optimum interval ̂  predicted by modified model 
is 23.4min. 

 

Fig. 6. Simulation results for Ts 387 hours, M=20min, σ 25 min, recall=0.9, precision=0.9 R 1min, F 2 min. 78.3min. The optimum interval ̂  predicted by modified model 
is 80.1min. 
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Fig. 7. Simulation results for Ts 387 hours, M=20min, σ 25 min, recall=0.85, precision=0.8 R 1min, F 2 min. 60.5min. The optimum interval ̂  predicted by modified model 
is 61.1min. 

 

Fig. 8. The deviation between  and the optimum interval ̂  predicted by modified model 
for different σ. Ts 387 hours, M=10min, σ 20 min, recall=0.85, precision=0.9 R 1min, F 2 min.  
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Fig. 9. The deviation between  and the optimum interval ̂  predicted by modified model 
for different σ. Ts 387 hours, M=20min, σ 20 min, recall=0.85, precision=0.9 R 1min, F 2 min. 

Normally, the deviation can be ignored. However, if the value of  is very small, 
the relative error is relatively large. In this case,  can be easily calculated by ̂  
and the modified model by using simple search method. Because the deviation between 

 and ̂  is very little,  is located in the neighborhood of ̂ . First, we set 
step length , and calculate ̂  and ̂ . If , we 
set , ̂ ̂ . Then we calculate ̂ . Repeating this step 
until . t  is approximate of ̂ . For , the process is similar. 

Figure 1-5 show the simulation results of two models. Then we find out that the 
original model fails to represent the behavior of the system for small . However, the 
main target of experiments is to compare the modified model with simulation results. 
We find out the modified model can effectively model the system. 

5 Conclusions and Further Work 

This paper presents two models to model the systems which adopt hybrid fault tolerance 
and predict the optimum checkpoint interval. Their results are compared with the simu-
lation. The experimental result shows that the modified model agrees with simulation in 
predicting total work time. Furthermore, this paper discusses the deviation between the 
optimum checkpoint interval predicted by the modified model and the optimum check-
point interval obtained by simulation. Normally, the deviation can be ignored.  In other 
words, ̂  is a good approximation of the optimum checkpoint interval. Then this 
paper proposes a simple search method to deal with the deviation for small .  
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However, the modified model introduced in this paper could be further improved. 
First of all, this paper assumes that, on the average, the interrupts will occur halfway 
through the compute interval. This assumption is problematic. In practice, on the av-
erage,   1/2 . What’ more, this paper assumes that the system only adopts 
single fault avoid method. The model will fail to model the systems which adopt mul-
tiple fault avoid methods. We will exploit these aspects in future. 
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Abstract. Manycore architectures are gaining attention as a means to meet the 
performance and power demands of high-performance embedded systems. 
However, their widespread adoption is sometimes constrained by the need for 
mastering proprietary programming languages that are low-level and hinder 
portability.   

We propose the use of the concurrent programming language occam-pi as 
a high-level language for programming an emerging class of manycore archi-
tectures. We show how to map occam-pi programs to the manycore architec-
ture Platform 2012 (P2012). We describe the techniques used to translate the  
salient features of the language to the native programming model of the P2012. 
We present the results from a case study on a representative algorithm in the 
domain of real-time image processing:  a complex algorithm for corner detec-
tion called Features from Accelerated Segment Test (FAST). Our results show 
that the occam-pi program is much shorter, is easier to adapt and has a com-
petitive performance when compared to versions programmed in the native 
programming model of P2012 and in OpenCL. 

Keywords: Parallel programming, Occam-pi, Manycore architectures, Real-
time image processing. 

1 Introduction 

The design of high-performance embedded systems for signal processing applications 
is facing the challenge of increased computational demands. Moore’s Law still gives 
us more transistors per chip but, since increased processor clock speed is no longer an 
option, current hardware designs are shifting to manycore architectures to cope with 
the computational demand of DSP applications. However, developing applications 
that employ such architectures poses several other challenging tasks. The challenges 
include learning multiple proprietary low-level languages for describing the commu-
nication structure of the application and the computational kernels, as well as  
partitioning and decomposing the application into several sub-tasks that can execute 
concurrently. Sequential programming languages (like C, C++, Java …), which were 
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originally designed for sequential computers with unified memory systems and rely 
on sequential control flow, procedures, and recursion, are difficult to adapt for many-
core architectures with distributed memories. Usually, as a partial solution, these lan-
guages provide annotations that the programmer can use to direct the compiler how to 
adapt the implementation to the target architecture.  

We propose to use the concurrent programming model of occam-pi [1] that 
combines Communicating Sequential Processes (CSP) [2] with the pi-calculus [3]. 
This model allows the programmer to express concurrent computations in a produc-
tive manner, matching them to the target hardware using high-level constructs. The 
features of occam-pi that make it suitable for mapping applications to a wide class 
of embedded parallel architectures are: a) constructs for expressing concurrent  
computations, b) computations that reside in different memory spaces, c) dynamic 
parallelism, d) dynamic process invocation, and e) support for placement attributes. 

The feasibility of using the occam-pi language to program an emerging class of 
massively parallel reconfigurable architectures has been demonstrated in earlier work 
[4]. The applicability of the approach was also previously demonstrated on a more 
fine-grained reconfigurable architecture, viz., PACT XPP [5]. This paper is focused 
on using occam-pi to map applications to an embedded manycore architecture, the 
Platform 2012 (P2012) [6], which is currently under joint development by STMicroe-
lectronics and CEA. P2012 is a scalable manycore computing fabric based on mul-
tiple processor clusters with independent power and clock domains. Clusters are  
connected via a high-performance fully asynchronous network-on-chip (NoC). The 
independent power domain for each cluster allows switching-off power to a cluster, 
and the independent clock domain enables frequency/voltage scaling in order to 
achieve energy-efficient solutions.  

The paper describes the different translation steps involved in the code generation 
phase of the compiler. The paper also presents as a case study the implementation of 
the FAST (Features from Accelerated Segment Test) algorithm [7] for corner detec-
tion. The case study aims at verifying that programming is actually simplified, and at 
evaluating the competitiveness in performance of our compilation based approach 
compared to the use of the native programming model of the P2012 architecture. We 
have used a parameterized approach in the form of replicated parallel processes in the 
occam-pi language to control the degree of parallelism. 

In previous papers we have demonstrated the suitability of occam-pi for ex-
pressing task parallelism in applications like FIR (finite impulse response) filter, 
DCT (discrete cosine transform) and Autofocus in image forming radar systems [4, 
5, 18]; here we show the applicability of the approach also for truly data parallel 
computations.  

In the following three sections we present some related work, review the occam-
pi language basics, and give an overview of the P2012 architecture and its native 
programming model. We then describe the compiler framework and the various  
translation steps involved to generate code for P2012. The approach is experimentally 
evaluated through a case study implementation of the FAST algorithm, and  
conclusions are drawn.  
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2 Related Work 

There have been a number of initiatives in both industry and academia to address the 
requirement of raising the abstraction level in the form of high-level parallel pro-
gramming languages. Recently developed parallel programming languages include 
Chapel [8], Fortress [9], and X10 [10]. These mainly rely on implicit paral-
lelism based on data-parallel operations on parallel collections and are primarily tar-
geting high-performance large-scale computers.   

Apart from the above-mentioned parallel programming languages, there are some 
recently introduced domain specific languages (DSLs) intended for the domain of 
digital signal processing (DSP). The Feldspar language [11], being developed at 
Chalmers University of Technology, is one such DSL where the domain expert ex-
presses the DSP algorithms by using constructs like filters, vectors, and bit manipula-
tion operations. The functional basis of the Feldspar core language facilitates  
performing different source code transformations such as fusion techniques and graph 
transformations. CAL [12] is another domain-specific language, developed at UC 
Berkeley, for dataflow programming and is based on the actor’s model of computa-
tion. By describing the application as a dataflow network of actors, the available par-
allelism is explicitly exposed. CAL has been chosen as a specification language for the 
ISO/IEC 23001-4 MPEG standard. The Spiral project at CMU [13] deals with the 
domain of linear signal transforms in the broad field of DSP algorithms. Spiral 
makes use of the mathematical knowledge expressed in a particular algorithm in order 
to transform it into a concise declarative framework that is suitable for computer re-
presentation, exploration, and optimization. These high-level domain-specific lan-
guages are best suited for application programming because of their productivity and 
expressiveness. However, they are not well suited for compiling directly down to the 
manycore architectures; rather, they require transformations via a parallel interme-
diate representation. 

Since we are interested in both the signal processing domain and mapping to the 
manycore architectures, we have proposed the use of occam-pi because it provides 
explicit control of concurrency in terms of processes that communicate by message 
passing (however, this is not demonstrated in the present paper) [22].  This closely 
matches the underlying architecture and it supports both task and data-level paral-
lelism, thereby allowing the programmer to exploit the available parallelism more 
effectively. Based on this property, occam-pi is a candidate for the parallel inter-
mediate representation mentioned above. 

3 Occam-pi Language Overview  

Occam-pi [1] is a programming language based on the concurrency model of CSP 
[2] and the pi-calculus [3].  It offers a minimal run-time overhead and comes with 
constructs for expressing parallelism and reconfigurations.  It has a built in semantics 
for concurrency and inter-process communication. Occam-pi can be regarded as an 
extension of classical occam [14] to include the mobility feature of the pi-calculus.  
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It is this property of occam-pi that is useful when creating a network of processes 
in which the functionality of processes and their communication network changes at 
runtime. 

The primitive processes of occam include assignment, input (?) and output (!). In 
addition to these there are constructs for sequential processes (SEQ), parallel 
processes (PAR), iteration (WHILE)selection (IF/ELSE, CASE) and replication [2]. 
In occam-pi the SEQ and PAR constructs can be replicated. A replicated SEQ is 
similar to a for-loop. A replicated PAR can be used to instantiate a number of 
processes in parallel and helps managing the multitude of parallel resources in a given 
hardware architecture.  

PAR i = start FOR Number of Replications 
<process i> 

Finally, a procedure is a named process that can take parameters. In occam the 
data a process can access is strictly local and can be observed and modified by the 
owner process only. The communication between processes uses channels and mes-
sage passing, which helps to avoid interference problems. In occam-pi data can be 
declared to be MOBILE, which means that the ownership of the data, including com-
munication channels, can be passed between different processes. Moreover, channel 
type definitions have been extended to include the direction specifiers input (?) and 
output (!). Thus, a variable of a channel type refers only to one end of the channel. 
Channels in occam-pi are first-class citizens. Channel direction specifiers are added 
to the type of a channel definition and not to its name. Based on the direction specifi-
cation, the compiler can do static checks of the usage of the channel both in the body 
of the process and the processes that communicate with it. Channel direction specifi-
ers are also used when referring to channel variables as parameters of a process call. 

Mobile data and channels, together with dynamic process invocation and the 
process placement attributes of occam-pi, are used to express the different  
configurations of hardware resources as well as run-time reconfiguration. 

Mobile Data and Channels: Assignment and communication in classical occam 
follow the copy semantics, i.e., for transferring data from the sender process to the 
receiver both the sender and the receiver maintain separate copies of the communi-
cated data. The mobility concept of the pi-calculus enables the movement semantics 
during assignment and communication, which means that the respective data has 
moved from the source to the target and afterwards the source has lost the possession 
of the data. In case the source and the target reside in the same memory space, the 
movement is realized by swapping of pointers, which is secure and does not introduce 
aliasing. 

In order to incorporate mobile semantics into the language, the keyword MOBILE 
has been introduced as a qualifier for data types [5]. The definition of the MOBILE 
types is consistent with the ordinary types when considered in the context of defining 
expressions, procedures and functions. However, the mobility concept of MOBILE 
types is applied in assignment and communication. The modeling of mobile channels 
is independent of the data types and the structures of the messages that they carry. 
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4 P2012 Architecture and Development Tools 

P2012 [6] is a manycore architecture, which is aimed at replacing existing specialized 
hardware and software subsystems by using a single, modular, scalable, and pro-
grammable computing fabric. The architecture is based on multiple clusters with in-
dependent power and clock domains. Clusters are connected via a high-performance 
fully asynchronous network-on-chip (NoC). The independent power domain for each 
cluster allows switching-off power to a cluster and the independent clock domain 
enables frequency/voltage scaling in order to achieve energy-efficient execution. The 
P2012 fabric can support up to 32 clusters [6]. The current P2012 cluster is composed 
of a cluster controller, one to sixteen ENcore processors and Hardware Processing 
Elements (HWPEs) [6]. The cluster controller is responsible for starting/stopping the 
execution of ENcore processors and notifying the host system. The processing ele-
ments share an advanced DMA engine, a hardware synchronizer, level-1 shared data 
memories and an individual program cache [6]. 

The P2012 Software Development Kit (SDK) supports several programming mod-
els that can be classified into three main classes. The native programming layer is a 
low-level C-based API providing the most efficient use of P2012 resources at the 
expense of a lack of abstraction. Standards-based programming models target effec-
tive implementations of industry standards, such as OpenCL and OpenMP, on the 
P2012 platform. The SDK provides the GePOP platform for simulation.  

4.1 P2012 Native Programming Model 

The Native Programming Model (NPM) is a component-based development frame-
work. Application components are developed based on the MIND framework [16]. A 
component may provide services to other components by its provided interfaces and 
get service from its environment by using required interfaces. The communication 
between two components is hidden by binding their provided and required interface 
[16]. An NPM application is designed by using the Architecture Description Lan-
guage (ADL), Interface Description Language (IDL), and an extended C code. ADL 
is used to define the structure of each component, IDL to specify component inter-
face, and the extended C language for the implementation of the code that runs on the 
ENcore processors and the cluster controller. After the application is designed, a host-
side program also has to be developed to deploy, manage and run the application. For 
this purpose, the middleware Comete is used.  

NPM is designed to have direct access to specific features of the P2012 hardware 
platform, while still providing a high level of abstraction. Since the current standards-
based programming models of P2012 don’t have explicit means for dynamic resource 
allocation, we propose to translate occam-pi to the P2012 native programming 
model. Fig. 1 shows our approach to map occam-pi programs to the Platform 2012 
Software Development Kit stack. 
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The main implementation of an NPM application will run on the ENcore pro-
cessors, and the cluster controller will execute code for resource allocation and 
configuration. Interaction between the cluster controller and the ENcore processors 
can be handled by two execution engines: Reactive Task Manager (RTM) and/or 
Multi-Threaded Engine (MTE). RTM expresses parallelism based on forking and 
duplication of tasks, and MTE allows execution of synchronized parallel threads. 
Currently, our compilation directly uses the APIs provided by the base runtime  
and hardware abstraction layer (HAL), instead of using any of the two execution 
engines.  

5 Occam-pi Compilation to P2012  

The compiler that we have developed is based on the frontend of an existing Transla-
tor from occam to C from Kent (Tock) [17].   Our compiler can be divided into three 
main phases as shown in Fig. 2. The front end consists of phases up to machine inde-
pendent optimization and the backend includes the remaining phases that are depen-
dent upon the target machine architecture. The Ambric and the eXtreme Processing 
Platform (XPP) backends were developed and describer earlier [18] [5]. We have also 
earlier described the P2012 backend, focusing on fault recovery mechanisms using 
dynamic reconfiguration [22]. 

In the current paper we have extended the P2012 backend to support data intensive 
computations. Our P2012 backend targets the whole platform including its integration 
with the host system.   

Frontend: The frontend of the Tock compiler consists of several modules, which 
perform operations like lexical analysis, parsing and semantic analysis. The frontend 
of the compiler has been extended to support mobile data and channel types, dynamic  
 

Fig. 1. Mapping of occam-pi to P2012 SDK 
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process invocation, and process placement attributes [18][5]. We have also introduced 
new grammar rules corresponding to the additional constructs to create Abstract Syn-
tax Trees (AST) from tokens generated at the lexical analysis stage. In the current 
work, we have revised the frontend in order to provide support for channels that 
communicate an entire array of data in a single transfer. 

The transformation stage consists of a number of passes either to reduce complexi-
ty in the Abstract Syntax Tree (AST) for subsequent phases or to convert the input 
program to a form which is suitable for the backend or to implement different optimi-
zations required by some specific backend. 

P2012 Backend: The P2012 backend generates the complete structure of applica-
tion components in NPM as well as the host-side program to deploy, control and run 
the application components on the P2012 fabric. The generated code can then be ex-
ecuted on the GePOP simulation environment. The P2012 backend is divided into two 
main passes. The first pass traverses the AST to create a list of parameters passed in 
procedure calls specified for processes to be executed in parallel. In addition to para-
meters the list also includes two integer values which store the first value and the 
count of replicated PAR.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Since a procedure can be called more than once in different places, besides name of 

the procedure, a counter and the name of the procedure that calls the procedure  
(parent procedure) is also added on the parameter list to indicate parameters of this 

Fig. 2. Occam-pi compiler block diagram 
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particular procedure call. To facilitate the code generation, if the list is composed of 
several parent procedures and simple procedures, it will be transformed to a list of 
simple procedures and one parent procedure. This list of parameters of procedure calls 
is used to generate the required and provided interface of each component along with 
its specific binding codes, i.e., the architectural description of the application using 
ADL and IDL. Listing 1b shows the ADL file generated for a component called 
‘prod’, which corresponds to a process call in occam-pi (Listing 1a). PullBuffer 
and PushBuffer are services provided by the NPM communication components. The 
two source files, ‘prod_cc.c, and ‘so_prod.c’, will be generated in the next pass.  

 
 
 
 
 
 
 
 
 
 
 
 

 
The list of parameters of procedure calls is also used to generate deployment, in-

stantiation and control code of an application component from the host-side.  For each 
procedure call, binary code of the procedure is deployed on the intended cluster using 
the NPM_instantiateAppComponent API, then the cluster controller will execute 
this binary code on one of the ENCore processors. The NPM_instantiateFIFOBuffer 
API is used to bind the push buffer with the corresponding pull buffer. For replicated 
PAR an array of processes is created and a for-loop is used to deploy, run and stop the 
processes. The for-loop gets the start and count of the replicator from the information 
stored in the list of the procedure calls. Listing 2 shows the translation of replicated 
PAR of occam-pi to the corresponding host code sequences that instantiate, deploy, 
run and stop each process.  

The second pass generates implementation code of the application components and 
the cluster controller. The genProcess function traverses the AST to generate the 
corresponding extended C code for different occam-pi primitive processes such as 
assignment, input process (?), output process (!), WHILE, IF/ELSE, and replicated 
SEQ. Since we are not using the execution engines, the cluster controller code uses 
runtime APIs to execute, control and configure the application component. Cluster 
controller code is differentiated from the component code by inserting the @CC anno-
tation; in Listing 1b prod_cc.c will be executed on the cluster controller and 
so_prod.c will run on the ENCore processors.   

 

      Listing 1. Translation of Occam-pi process (a) to ADL file (b) 

(b) 

primitive SimpleEx.prod { 
    requires PullBuffer as f; 
    requires PushBuffer as e; 
    @CC 
    source prod_cc.c; 
    source so_prod.c; 
} 

(a) 

PROC SimpleEx() 
  CHAN INT e: 
  CHAN INT f: 
  PAR 
    prod(f?,e!) 
    con(e?,f!) 
:  
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6 Experimental Case Study  

In this section, we will describe the implementation of a FAST Corner Detection al-
gorithm, which is used to evaluate our compilation methodology.  We have compared 
our implementation in occam-pi with a hand written NPM version and with an 
OpenCL implementation. 

6.1 Features from Accelerated Segment Test (FAST) Corner Detection 

FAST is an algorithm that is used to spot corners in an image [7]. In image processing, 
corners are detected and used to derive a lot of information that is important for com-
puter vision systems. The FAST corner detection algorithm is a high performance detec-
tor, suitable for real-time visual tracking applications that run on limited computational 
resources. According to Rosten et al [19], FAST performs better than conventional algo-
rithms in terms of execution time and repeatability (i.e., detecting the same corner in 
several similar images).  
 

 
 
 
 
 
 
 

Fig. 3. Bresenham circle of radius three surrounding the pixel of interest 
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PAR pr=0 FOR 16 
  fastProc (idT[pr],inIm[pr], offsetX[pr],  
            offsetY[pr], inF[pr]?, outF[pr]!) 

Listing 2. Translation of Replicated PAR (a) to corresponding C code (b) 

(b) 

fastProc_processor_bare_t   fastProc_inst_100[16]; 

 

for(pr=0;pr<(16+0);pr++) 

   err = deployfastProcBare(pr, &fastProc_inst_100[pr]); 

 

for(pr=0;pr<(16+0);pr++)    

  NPM_run(&fastProc_inst_100[pr].appComp.runItf); 

 

for(pr=0;pr<(16+0);pr++)          

  CM_stop(fastProc_inst_100[pr].appComp.comp); 
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The FAST algorithm examines a pixel by comparing the intensity value of the pixel 
with the values of sixteen pixels that surround the pixel in a Bresenham circle of radius 
three, as shown in Fig. 3 [19]. Among the sixteen pixels, if the intensity of N pixels are 
either greater than or less than the intensity of the pixel by a threshold T, then that pixel 
is categorized as a corner. In our implementation, the values of N and T are set to 14 and 
35, respectively. This step usually detects multiple neighboring pixels as a corner. To 
solve this problem, the score of each corner pixel is computed and corner candidates 
with lower score are discarded by using non-maximal suppression [19]. 

To speed up the computation, we have implemented a parallel version of the algo-
rithm using occam-pi primitives. To control the degree of parallelism, we have used 
replicated PAR statements of occam-pi. As shown in Listing 3, the amount of paral-
lelism can be varied by changing just one parameter (noP).  In the implementation the 
host-CPU loads and splits the image vertically for the given number of processes (noP). 
Listing 3 shows sample occam-pi code that starts with converting the RGB image to 
a grayscale intensity image, and then splits the intensity image according to the given 
number of processes (noP), which are instantiated by using replicated PAR. In our im-
plementation, we create a circle of 16 pixels that surround a pixel p under test and then 
in order to identify the pixel as a corner the intensity value of 14 neighboring pixels has 
to be above or below intensity of p by the threshold value of 35. 

As mentioned above, to examine a pixel we have to create a Bresenham circle of 
radius three, which requires a 7x7 block. So, to examine boundary pixels, a process 
has to share three columns of pixels from both left and right processes. Since an oc-
cam-pi process cannot share data with any other process, the host-CPU duplicates 
three columns of pixels on the new borders that are created when the image is split. 
Therefore, each process examines the pixels of its own portion of the image and com-
putes the scores for detected corners without sharing any data with other processes.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Listing 3. Occam-pi code that splits an intensity image for the given number of processes 

inImT[i][j]:=((im[i][j][1]+im[i][j][2])+ 
im[i][j][0])/3 
 
SEQ k=0 FOR noP 
SEQ jy=0 FOR (procWT+6) 
input[k][jy] := inImT[i][jy+(procWT*k)] 
 
PAR pi=0 FOR noP 
inF[pi] ! input[pi] 
 
PAR pr=0 FOR noP 
fastProc (idT[pr], inIm[pr], offsetX[pr], 
offsetY[pr], inF[pr]?,outF[pr]!) 

 

SEQ op=0 FOR noP 

outF[op] ? output[op] 
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If a pixel is not detected as a corner, its score is –1. From its portion a process reads 
seven lines and examines the pixels in the middle row one by one. When it’s done 
with the middle row, the process pushes the computed score as an output, releases the 
first input line, moves the remaining six image lines upward, fetches the next input 
line, and starts to examine the pixels in the new middle row until it has fetched the 
last input line. In our implementation each process (fastProc from Listing 3) is ex-
ecuted by one ENcore processor and we use the host CPU to select the good corners.  

Just like our implementation, the FAST implementation that comes with the P2012 
SDK uses ENcore processors to detect corners and to compute scores, and the host 
CPU for non-maximal suppression. This implementation is not modified. The imple-
mentation reads the entire line of the input image and spawns sixteen slave processes 
using an RTM engine which then works on a specific portion of the input image.  

7 Implementation Results and Discussion 

In this section, we will analyze our compilation methodology using the FAST corner 
detection case study.  Our aim is to demonstrate the applicability of the programming 
model of occam-pi, to verify that programming is simplified when using the occam-
pi language, and to assess the competitiveness in terms of performance. We compare 
our compilation based implementation with one implementation that was hand written in 
NPM, as well as with an other compiled implementation based on OpenCL. We imple-
ment a computation intensive application, which can benefit from the parallel compute 
resources of P2012 and show the simplicity of using occam-pi to express parallelism 
in an algorithm where communicating processes are natural elements of abstraction.  

In Table 1 we have compared our implementation with the hand written NPM ver-
sion. As a measure of implementation complexity we use the number of lines-of-code. 
The occam-pi program shows significant reduction in lines-of-code, 2x in the im-
plementation of FAST. In Table 1, we also show the set up times and execution times 
for both versions. The set up time includes the configuration and deployment, and the 
execution time includes computation and communication time.  

Both versions of the FAST implementation use 16 processes to detect corners and 
to compute corner scores, and they both use the host CPU to execute non-maximal 
suppression. As seen by the measured performance times, the occam-pi version 
outperforms the hand written version not only in simplicity in terms of lines-of-code 
but also in speed. The difference in time is the result of three main reasons: 

1. The FAST implementation in occam-pi transfers data in the form of ar-
rays. After the image is split, each process reads the entire line of its portion 
in a single step.  

2. The hand written version has an overhead of protecting shared memory ac-
cesses. The occam-pi version solves this problem by duplicating the 
boundary pixels when splitting the image. 

3. The third reason is the overhead due to dynamic allocation of resources when 
using RTM engine.  
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Both versions of FAST implantations have been tested on the same image (VGA 
sized input image) and they have detected 3146 corners. With non-max suppression, 
772 have been selected as good corners. The (identical) outputs of the occam-pi 
version and the hand written NPM implementation are shown in Fig. 4. 

Image analysis applications are usually data intensive and are suitable for pro-
gramming models that can expose a high degree of data-level parallelism like 
OpenCL [20].  Our occam-pi implementation has utilized data-level parallelism by 
duplicating critical sections and by using channels that transfer an entire array of data. 
By this it has achieved better performance than the NPM version, which uses RTM 
engines. An implementation of FAST on P2012 using OpenCL was reported in [21], 
where 777 corners were detected as good corners on the same image that was used in 
the case of occam-pi and NPM implementations, resulting in an execution time of 
30 milliseconds. In the case of OpenCL implementation, the threshold value is varied 
from 20 to 35 to get the best value of detected corners.  

 

Fig. 4. An image with detected corners (red dots) and suppressed corners (green dots) 

Table 1. Simulation results for the FAST Corner Detection implementations 

Simulation              
Results/Languages 

NPM OpenCL Occam-pi 

Lines of Code 453 450 190 
No of ENcore processors 16 16 16 

Setup time (µs) 53,383 - 47,515 
Execution time (µs) 67,115 30,000 32,549 
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The implementation results reveal that both the OpenCL and occam-pi imple-
mentations outperform the NPM version in terms of execution time. The occam-pi 
implementation is much simpler when compared to the OpenCL and hand-coded 
NPM versions, which is evident from the lines of code counts. From the implementa-
tion results we can see that the cost of configuration and deployment (the setup time) 
is significant as compared to the actual execution time. Especially, dynamic loading 
of tasks, as done in the RTM engine is very costly. But, if the processors are deployed 
at start up and used for long time, which is often the case in streaming applications, 
the time spent on configuration and deployment could be compensated. The OpenCL 
implementation was developed under that assumption, therefore the setup time was 
not measured. On the other hand, knowing the setup time may be important when 
scheduling reconfigurations. 

The implementation using occam-pi is more concise than the two other versions. 
This is a consequence of the high level constructs of the language, which is also a 
feature that leads to fewer opportunities to introduce errors and to a higher likelihood 
of finding errors. Also, using a high-level approach like occam-pi and OpenCL 
makes the program easier to scale, in the sense that changing the number of 
processing elements involved in the computation is determined in one place in the 
program (the bound for the replication of processes). We gain also in portability given 
that a change of platform requires a change in one program: the compiler, instead of 
changes to all applications. 

OpenCL implementations are based on the single instruction stream, multiple 
threads (SIMT) execution model, meaning that each processing element is executing 
the same instruction flow. On the other hand the occam-pi implementations are 
based on the multiple instruction streams, multiple data streams (MIMD) approach, 
where each processing core can execute its own instruction stream. This closely re-
sembles the underlying manycore architecture. 

8 Conclusions and Future Work  

We have presented our approach to map programs in a CSP based language to a ma-
nycore architecture. We have extended our occam-pi compiler framework to gener-
ate native programming language code for Platform 2012. We have shown the  
simplicity of programming in occam-pi and the performance competitiveness of 
our compilation based approach through a case study using FAST corner detection 
implementations. The result of the case study demonstrates the practicality of our 
approach for an algorithm that is both communication intensive and compute-data 
intensive. It has been concluded from the results that the occam-pi implementation 
achieves much better execution time results with respect to the hand-coded NPM 
version with a relatively less development effort. The occam-pi implementation 
execution time results are also comparable to those of an OpenCL version, again at a 
reduced development effort as evident from the lines of code counts. Future work will 
focus on making further evaluations of the approach using complex examples. 
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Abstract. Incorporating network coding with TCP is a natural way to
enhance the robustness and effectiveness of data transmission in lossy
channels, it can mask packet loss by mixing data across time and across
flows. The key of this approach is a suitable retransmission scheme which
can adjust according to the changed of the lossy channel condition. How-
ever, most retransmission schemes can’t compensate losses effectively. In
this paper we propose a novel self-adaptive retransmission scheme com-
bining prospection with compensation, which can dynamically adjust
the number and time of coding packets’s retransmission according to
the channel state change. Compensatory retransmission transmit exact
number of packets the receiver needs for decoding all packets based on
feedback, and prospective retransmission transmit extra packet before
losses happened, and the redundancy factor R is adjusted based on the
channel conditions. The scheme can work well on handling not only ran-
dom losses but also bursty losses. Our scheme also keeps the end-to-end
philosophy of TCP that the coding operations are only performed at
the end hosts. Thus it is easier to be implemented in practical systems.
Simulation results show that our scheme significantly outperforms the
previous coding approach in reducing size of decoding matrix and decod-
ing delay, and and produces better TCP-throughput than the standard
TCP/NC, TCP-Reno.

Keywords: network coding, retransmission, TCP, packet loss, redun-
dancy packet.

1 Introduction

It is well known that TCP protocol has an awful performance in the lossy wireless
network[2][3][4]. It is because that each loss is interpreted as a congestion signal
in TCP. Network Coding allows nodes of a network to send packets that are
linear combinations of previously received information, instead of delivering the
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information to their destination in the standard store-and-forward-manner[1][2].
Network coding has emerged as an important potential approach in the operation
of communication networks [1].The main benefits of network coding are the
potential throughput improvements and a high degree of robustness to packet
losses[7].

In [5] Sundararajan et al. propose TCP/NC protocol that successfully imple-
mented the network coding into TCP with minor changes to the protocol stack.
The key idea was introducing a new network coding layer between the transport
layer and IP layer in TCP/IP stack, which masks non-congestion packet losses
from congestion control algorithm. In this layer TCP segments are encoded at
the sender and decoded at the receiver. In[6]Sundararajan et al. present a real-
world implementation of this protocol that addresses several important practical
aspects of incorporating network coding and decoding with TCP’s window man-
agement mechanism. For every packet that arrives from TCP, R(>= 1)linear
combinations are sent to the IP layer on average, These packets are used by the
receiver to counteract non-congestion losses.In TCP/NC, the redundancy factor
R is constant, we need to know the loss rate of the network circumstance, and set
R to the optimal number. However, when the system is under lossy networks, es-
pecially wireless network where the loss rate is hart to acquire and not constant,
the constant redundancy factor R may cause problems, either sending bunches
of useless redundancy packets or being not able to mask the packets loss. Both
will impair the performance of the network.

FNC protocol is presented in 2009[7], which focuses on reducing the decoding
delay and redundancy by adding some information in packets header. It inherits
the coding approach and see packets notion presented by the TCP/NC scheme
[9]. In the receiver, the FNC brings in a new factor loss, which indicates how
many combinations the sender needs to retransmit enable the receiver decode all
the combinations it has received. The loss factor will be sent back to the sender,
and the sender uses this factor to decide how many redundant packets should
be sent and how many original packets should be coded. By doing this, this
new scheme can avoid the retransmission of the useless redundant packets, and
due to sending redundancy packets coded by the appropriate number of original
packets, it significantly reduces the decoding delay and improves the performance
of the networks. However, FNC protocol use a feedback-driven retransmission
scheme, it always compensate the loss of past passively. TCP-throughputs is
limited by the RTT(Round Trip Time).

The work by Sicong Song et al.[8] propose a new scheme named SANC-TCP.
It adds some feedback information in the ACK header to indicate the current
network state, thus enable the sender to dynamically change the R according to
the real system. SANC-TCP aim to better the utility of the networks and de-
crease the retransmission of the useless redundant packets. In [7] Hamlet Medina
Ruiz et al. propose a loss differentiation scheme to adjust R, based on the Vegas
Loss Predictor and the collective feedback information of ACKs and duplicates
ACKs. However, when the channel state change rapidly or some bursty losses
happened, both this two scheme may lead to TCP time outs because R can’t
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fast converge to the optimal number. What more, redundancy rate R considered
only predictive aspects of packet losses, it can not rapidly compensate for the
losses of past.

To overcome the disadvantages in existing approaches, we propose a new Self-
adaptive retransmission scheme named TCP-CPNC, which mainly optimizes the
retransmission scheme based on TCP/NC. Our scheme combines compensatory
retransmission with prospective retransmission. Compensatory retransmission
can rapidly counteract the lossy before the retransmission, and prospective re-
transmission can initiatively transmit suitable redundant coding packets before
losses happened. Our scheme can dynamically adjust the number and time of
coding packets’s retransmission according to the channel state change, and hence
significantly improve the performance of throughput and decoding delay under
both random losses and bursty losses. Simulation results show that our scheme
significantly outperforms the previous coding approach in increasing throughput
while reducing decoding delay.

The remainder of the paper is organized as follows. In section 2, we describe
basic ideas of network coding in TCP with the seen scheme for background
and TCP/NC protocol. Details about the self-adaptive retransmission scheme
are given in Section 3, simulation results are described in Section 4, and some
conclusions and future research directions are drawn in Section 5

2 Network Coding for TCP

Network coding has emerged as an important potential to bring benefits in terms
of throughput and robustness, since it can mask the packet loss via redundant
packets, thus decrease the delay caused by the timeout and to raise the uti-
lization of the channels. However, Despite this potential of network coding, we
still seem far from seeing widespread implementation of network coding across
networks[5][6]. And the main problem that needs to be solved is how to put it
into practice in real communication network, one solution is implementing the
network coding into TCP. To do so, TCP/NC protocol incorporates the seen
scheme with congestion control and introduces a new network coding layer be-
tween the transport layer and the network layer , such practice can lets us utilize
the standard TCP protocol with the minimal change.

The seen scheme is promoted by ANC[10] firstly. In ANC, the decision of
which packets to combine relies on the concept of the seen packets. A packet
Pk is said to be seen by a receiver if it has enough information to compute a
linear combination in the form of (Pk + Q), in which q is a linear combination
of packets that are newer than Pk, i.e. Q =

∑
l>k αlPl, with αl ∈ Fq for all

l > k. The receiver acknowledges the oldest unseen packet, so the sender always
transmits a packet that is a combination of the oldest unseen packets of each
receiver. A packet can be dropped from the sender queue when it is seen by all
receivers. The expected queue size of the scheme is reduced from the traditional
length Ω(1− ε)−2, to Ω(1 − ε)−1 where ε is the erasure probability.

TCP/NC’s seen scheme borrows from ANC, but it is designed with respect
to a single source that generates a stream of packet s to single sink. The heart of
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TCP/NC is that the sink acknowledges every newly seen packet even if it does
not reveal an original packet immediately. Such heart enables a TCP-compatible
sliding-window approach to network coding. It more easy and efficiency add re-
dundant packets by make use of the ability of network coding to mix data across
segment. In the implementation of TCP/NC, the source side buffers packets
generated by TCP in the coding buffer, and for every segment arriving from
TCP, R random linear combinations of the most W recently arrived packets
in the network coding buffer are sent to IP layer on average, where R is the
constant redundancy factor. To convey the combination requires an additional
network coding header (contain coding coefficients et al.) that is added to the
coded packet. On the receiver side, upon receiving a linear combination from
the sender side, it first retrieves the coding coefficients from the packet header
and appends them to the basis matrix of its knowledge space. Then the Gaus-
sian elimination method is adopted to find the newly seen packet and decoded
packet. The newly seen packet can be ACKed and the newly decoded packet
can be submitted to TCP layer. Fig. 1 illustrates an example of encoding and
decoding. In addition, any ACK generated by the receiver TCP is suppressed
and not sent to the sender. These ACKs may be used for managing the decoding
buffer. An important point is that the new NC layer is invisible to the transport
layer and IP layer. For more details, the reader is referred to [6].

Fig. 1. TCP/NC

3 Self-adaptive Retransmission Scheme

In this section, we will describe the basic ideas of the TCP-CPNC scheme. Our
scheme aims to better the utilization of channels by dynamically adjusting the
number and time of retransmission in unknown lossy networks. Before introduce
TCP-CPNC, we first expatiate four state of uncoded segment in the receiver
side buffer, Fig. 2 shows a typical situation.
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Fig. 2. Four state of segment in receiver buffer

It is easy to understand seen and decoded state, we mainly focus on involved
and uninvolved state. When a packet is in involved state means some linear com-
binations that contain this packet has been receive, but still cant been seen. As
for uninvolved state, a packet is in uninvolved state when none linear combina-
tions in receiver side contain this packet.

At the receiver, the difference between First Byte Uninvolved and
First Byte Unseen is called Gap. When the channel state is stability and re-
transmission scheme suited to loss rate, the value of Gap keep stable at the
decoding matrix. When channel condition change or retransmission scheme is
not suited to loss rate, the value of Gap will also vary.

To fulfill our target, TCP-CPNC combines compensatory retransmission with
prospective retransmission. Compensatory retransmission can rapidly counteract
the lossy before the retransmission, and prospective retransmission can initia-
tively transmit suitable redundant coding packets before losses happened. both
compensatory and prospective retransmission dynamically adjust the number
and transmit time of redundancy packets based on the feedback Gap in ac-
knowledge.we adding Gap to the ACK header.

The sender should maintain a variable ACK Count which indicates the num-
ber of ACK receive from sink. The sender enter a period of adjustment whenever
it receive 10 ACK. For compensatory retransmission, the value of Gap is the ex-
act number of packets the receiver needs for decoding all packets in decoding
matrix. Each compensation / adjustment period to Source side send Gap lin-
ear combinations of the original packet in coding window of NC layer, these
combinations can effectively accelerate the decoding speed of decoding matrix.
For prospective retransmission, The values of Gap change with the bit error
rate(BER) of channel. So we perceive the change of loss rate by comparing
Gap on ACK with SGap on source side, and thereby dynamically adjust the
redundancy factor R. When sender is in explorative period, we maintain two
variable:riseCount and redundancyCount, riseCount record the time of Gap’s
augment, redundancyCount record the time of redundancy packet. In adjust-
ment period, If acked Gap is -1 which indicates redundancy packets is too many,
R is decreased until the lower limit(LL). On the other hand, if acked Gap is up
0, R should increase (below the upper limit(UL)) to counterbalance channel loss.
Initially R is set to a value R0 that takes into account the losses in throughput
due to the finiteness of the field. The improved algorithm is specied in Algorithm
1 using pseudo-code.(both α, β, μ < 1)

To make it clear, we independently describe the actions which are taken on
the sender and receiver side. Provided we have introduced a network coding
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Algorithm 1. adaptive alg

1: Initialization: ACK Count = 0, SGap = 0, R0 = 1.05, R = R0 , UL = 2,
LL = 1.05

2: Each time an ACK is received: ACK Count + + and Pick up Gap in NC ACK
header

3: if ACK Count = 10 then
4: NC layer enter adjustment period
5: if Gap == −1 then
6: if R > LL then
7: R = R− α
8: end if
9: SGap = 0
10: else
11: SGap = Gap
12: if Gap > 0 then
13: Send Gap linear combination to receiver
14: if R < UL then
15: R = R+ riseCount ∗ μ+ redundancyCount ∗ β
16: end if
17: else
18: R remain unchanged
19: end if
20: end if
21: redundancyCount = 0
22: riseCount = 0
23: ACKCount = 0
24: else
25: NC layer enter explorative period
26: if Gap = −1 then
27: redundancyCount++
28: else
29: R remain unchanged
30: SGap = Gap
31: if Gap > SGap then
32: redundancyCount++
33: end if
34: end if
35: end if

layer between the transport layer and the IP layer. To implement our scheme in
the network coding layer, we make some minor changes to standard TCP/NC
protocol. The changes algorithm is specied below:

Source Side :

ACK arrives from receiver
1) Call Algorithm1
2) Remove the ACKed packet from the coding buffer
3) Generate a new ACK by the ACK and send it to the TCP layer
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Sink Side :

Packet arrives from source side:
1) Performs Gaussian elimination to update the decoding matrix.
2) Update First Byte Uninvolved and and First Byte Unseen
3) Generate a new ACK, consisting of the value of Gap which is the difference
between First Byte Uninvolved and First Byte Unseen

Following the approach above, the sender adjusts the retransmission scheme from
time to time, thus to dynamically change the R according to the real system.
The algorithm to adjust the redundancy factor R in the sender is showed in Fig.
3 And the algorithm feedback Gap in the Sink side is showed in Fig. 4

Fig. 3. The algorithm to adjust retransmission in sender

4 Simulation Results

The Implementation of TCP/NC with self-adaptive retransmission is base on
discrete event simulation environment OMNET++ and the open source TCP/IP
protocol framework INET. We also use OMNET++ to evaluate and compare the
performance of different protocol in network. The topology for the simulations
is a tandem network consisting of 7 nodes, three router and 4 host,shown in Fig.
5. The source and sink nodes are at opposite ends of the chain.
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Fig. 4. The algorithm to feedback in sink

Fig. 5. Topology of network

4.1 Simulation Environment Setup

In this system, there are two flows generated by two FTP applications, the appli-
cations type of sender side is TCPSessionApp and receiver side is TCPSinkApp.
One flow is from Client1 to Server1, and the other is from Client to Server2.
They will compete for the intermediate channels. The queue type of wire inter-
face is DropTailQueue which the first item stored is the first item output. The
frame capacity of DropTailQueue is 150. All the channels have a bandwidth of
1 Mbps, and the propagation delay between host to router is 10ms, between
routers is 50ms. The TCP receive NC layer buffer size is set to 200, and the
IP packet size is 556 bytes. TCP-Reno is chosen for the transport layer proto-
col. The TCP-throughput is measured using outputhook(a kind of measure class
in INET framework). Each point is averaged over 4 or more iterations of such
session, depending on the variability.



404 C. Wu et al.

4.2 Simulation Results

In order to evaluate the effect of our medication of our simulate protocol on
fairness, we first study the fairness of the standard TCP and TCP/NC with our
self-adaptive retransmission scheme. By fairness, we mean that if two similar
flows compete for the same link, they must receive an approximately equal share
of the link bandwidth[5]. We figure out the fairness characteristic under three
different situation:

Situation1: a TCP-Reno flow competes with another flow running TCP/NC
with self-adaptive scheme.

Situation2: a standard TCP/NC flow competes with another flow running
TCP/NC with self-adaptive scheme.

Situation3: two TCP/NC flows with self-adaptive scheme compete with each
other.

In three cases, the loss rate is set to 0% and the redundancy parameter is set
to 1.05 for a fair comparison. The current throughput is calculated at intervals of
1s. TCP/NC with self-adaptive scheme flow start at t=0.1s, the second flow start
at t=30s. In situation 1, the second flow is TCP-Reno flow, and it is standard
TCP/NC flow in simulation 2, TCP/NC with self-adaptive scheme in simulation
3. Three simulation is all over in 120s. The plot for both three simulation is
essentially identical to Fig. 6 (and hence is not shown each simulations respective
figure). Both the three simulations show that when the second flow joins in the
channel, it quickly shares an equal amount of bandwidth of the channel with the
previous TCP/NC with self-adaptive scheme flows, thus proving the fairness of
new scheme with TCP/NC.

Fig. 6. A TCP/NC compete another TCP flow

Next, we try to prove that our new self-adaptive scheme has a better through-
put rate and lower decoding delay under lossy channels with variational packet
error rate(PER). Packets in the network are subject to these losses in the for-
ward and the reverse direction. The PER can been calculated by a equivalence
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bit error rate(BER), since the size of packet is stable. We study the variation
of receive Seq with time. PER vary over time: 0-50s: 5% PER, 50-90s: 40%
PER,PER is set to 20% after 90s. Only flow from client1 to server1 is choose
and the size of this flow is 5MB. Fig. 7 shows the evolution of the Seqs sent by
the Server1s NC layer as a function of time for different values of R, as well as
coding packets is dynamically retransmit. Fig. 8 shows the value of R in Client1’s
NC layer as a function of time.

Fig. 7. Revd Seqs vs Time

Fig. 8. R vs Time

We can observe that R plays an important role in TCP/NC.
For standard TCP/NC, The peak average throughput achieved is
0.325Mbps(5MB*8/123.002) when R=1.7, but TCP/NC with our self-adaptive
can achieve 0.34Mbps(5MB*8/117.59). We clearly appreciate the improvement
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obtained in TCP-throughput with our scheme. We believe that when BER of
channel is more protean, our scheme can archived better performance. Fig. 9
shows that the max size of decoding matrix is remain small while increasing
TCP-throughput.

Fig. 9. Decoding Buffer vs TCP/NC

All previous simulations results are get by set coding window as 3. Fig. 10
shows that when PER is 5%, R have been chosen the optimization by trial and
error, the max size of decoding matrix grows rapidly as coding window increase.
In contrast, our scheme also keeps quite a small size and the value does not
increase as the coding window increases. Whats more, the decoding delay mainly

Fig. 10. Decoding Buffer vs Coding Windows
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rests with the size of decoding matrix, a small decoding matrix can achieve a
small decoding delay.

5 Conclusions and Future Works

Incorporating network coding with TCP works much better than TCP for loss
channels. However, due to the different PER in different period of time in lossy
networks, the retransmission scheme of coding packet is the key to compensate
the non-congestion packets losses.

In this paper, we proposes an self-adaptive retransmission scheme in the
TCP/NC protocol based on the collective feedback information of sinks decod-
ing matrix, the transmit of redundancy packets is adjust according to the real
current circumstance.

Simulation results show that our scheme significantly outperforms the stan-
dard TCP protocol and standard TPC/NC protocol in reducing size of decoding
matrix and TCP-throughput. Furthermore, we intend to implement our algo-
rithm in a Linux protocol stack to assess of relation between PER, coding win-
dow, R and available computer/memory resource,and investigate new scheme of
adjust coding window,
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