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Abstract
A brief introduction to quantum computing is provided and the potential use of
molecules as the platform is discussed. The basic building blocks (quantum bits,
quantum gates, and quantum algorithms) are described in order to emphasize
the requirements for realizing a quantum computer, and, the advantages quantum
computation has over its classical counterpart. We outline the three key steps
to quantum computation: (1) initialization, (2) manipulation, and (3) readout.
The possible use of internal molecular states as quantum bits and shaped laser
fields to implement the quantum gates is introduced. The application to molecular
quantum computing is connected to the more general problem of the control
of quantum dynamics using tailored laser fields determined theoretically with
optimal control theory or genetic algorithms.

9.1 The Advent of Quantum Computing

The rapid pace of computer technology innovation was predicted in the early
1960s by Intel co-founder Gordon Moore. His prediction, popularly known as
“Moore’s Law,” states that transistor density on integrated circuits (a rough measure
of computer processing power) doubles about every 2 years. While this “Law”
has held for nearly 50 years, the end is in sight. However, more than 30 years
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ago, the physicist Richard Feynman proposed a potentially revolutionary idea
for computation: the quantum computer [1]. By utilizing quantum mechanical
phenomena, such as quantum superposition, entanglement, and interference, a quan-
tum computer realizes a fundamentally new mode of information processing relative
to classical computing [2, 3]. The quantum computing paradigm opens the avenue
to vast increases in computational power relative to methods based on classical
computation. Several potential applications of quantum computing are already
known: cryptography, algorithmic searching, and factorizing large numbers very
rapidly. Of particular interest to the field of molecular simulation, the advent of
quantum computing would allow the efficient simulation of quantum-mechanical
systems over unprecedented length and time scales. With the potential benefits being
so great, the field of quantum computing has emerged as an intriguing and exciting
research area involving the efforts of chemists, computer scientists, engineers,
mathematicians, and physicists.

In the present work, a brief introduction to the basic ideas of quantum computing
is provided. In particular, several problems that need to be addressed in order to
realize a quantum computer are introduced: the identification of a physical system
to represent the quantum bits (qubits), the implementation of mechanisms for
performing quantum logic gate operations on the qubits, and the maintenance of
coherence. While several different physical systems have been proposed or utilized
to realize quantum computing algorithms[4–8], the focus here is on the use of
molecules to store the quantum information and shaped laser pulses to carry out
the quantum gate operation—ideas introduced over 10 years ago [9–11]. Here the
proposals for implementing qubits in molecular systems are introduced, and the
methodologies for finding the shaped laser pulses (i.e., optimal control theory (OCT)
and genetic algorithms [12–14]) are discussed. Since a theoretical understanding of
these problems requires solving the time-dependent Schrödinger equation (TDSE),
there is a strong connection to the field of quantum dynamics and new ideas and
methods developed in that area can have important applications in the field of
molecular quantum computing.

9.1.1 Qubits, Quantum Gates and Quantum Algorithms

The computers that we encounter in our everyday lives operate using classical
processing. On the most fundamental level, calculations occur by changes in the
state of bits which can be in either of two states; typically represented by a “0” or
“1” in binary notation. The changes in the state of bits occurs by boolean logic
operations such that a specific sequence of these logic operations can carry out
an algorithm. It is these algorithms that are used to perform computations. The
workings of a quantum computer are (to-date) analogous to a classical computer.
However, the quantum mechanical nature of a system and its interactions are
utilized to represent qubits, quantum logic gate operations and quantum algorithms.
As stated before, a classical bit can exist in one of the two states (0 or 1) but a
qubit is a quantum 2-state system; although qudits with d quantum states could be
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used, we restrict our discussion to qubits only. The resulting state of the qubit is a
superposition of both “0” and “1”. For example, a classical two-bit system can be
in one of the four possible states, i.e., “00”, “01”, “10” or “11” state. A quantum
two-qubit system, represented in Dirac notation as jq1q2i, can be in pure states j00i,
j01i, j10i and j11i. The critical difference to classical bits is that qubits are described

by the wavefunction, � D
1P

q1;q2D0

cq1;q2 jq1q2i, where the coefficients cq1;q2 have the

relationship
P

q1;q2

jcq1;q2 j2 D 1. Therefore, the system (i.e., the quantum information)

is represented by the superposition of its individual qubits—it is this fundamental
difference that leads to the power of quantum computing (see Sect. 9.1.3). With
respect to the representation, qubits can be structured in two different ways. The
first case entails that each qubit is represented by a separate 2-level or quasi 2-level
system, and then these n qubits are appropriately coupled [6,15–17]. This is the case,
for example, in ion trap quantum computing examples in which a string of trapped
atomic ions represents a series of qubits through excitation of two hyperfine levels
from each atom, while coupling between each atom/qubit occurs through vibrational
motion in the harmonic potential of the linear Paul trap [4, 17]. Alternatively, n

qubits can be represented by N D 2n combinations of N quantum states [18–20].
A proposed quantum computing architecture suggests using the rovibrational states
or modes of molecules as qubits and in this case each resulting qubit state,“00”
to “11”, would be represented as the qubits. In this case n qubits are represented
by 2n quantum states [9]. Quantum logic gates have specific requirements due to
their quantum mechanical nature. Unlike classical logic gates, a quantum logic
gate (Q) must be reversible (QQ�1 D 1), unitary (Q� D Q�1) and Hermitian
(Q� D Q)—if these requirements were not fulfilled, it would indicate decoherence
in the system leading to the loss of quantum information. There are a number
of elementary quantum logic gates such as the NOT, Controlled-NOT (CNOT),
Hadamard, Toffoli and phase gates as shown in Table 9.1, which can be used for
universal quantum computation (see Sect. 9.1.5). In order to illustrate the general
operation of a quantum gate, consider a NOT gate acting on the general quantum
state, � D c0j0i C c1j1i, i.e.,

NOT� D
�

0 1

1 0

��
c0

c1

�

D
�

c1

c0

�

D c1j0i C c0j1i: (9.1)

The extension to 2-qubit and n-qubit gate operations is straightfoward.
An example algorithm is the one-bit full adder which is shown in Table 9.2 for

the classical and quantum forms of the algorithm [21]. The one-bit adder adds
three one-bit numbers (A, B and Cin) to produce output bits (S D A C B C
Cin and Cout). The carry (Cin and Cout) are bits from previous or future additions,
respectively, as would occur if the sum of the numbers, S, is greater than or equal
to two. This is analogous to addition in the decimal system, as when the number is
greater than or equal to 10 then we carry a 1 to the next place value. The quantum
form of the one-bit adder must include one additional input (D) and two extra
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Table 9.1 Examples of elementary quantum logic gates in matrix notation

Gate Matrix operation Gate Matrix operation

NOT
�

0 1

1 0

�
CNOT

0

B
B
@

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

1

C
C
A

Phase �
1 0

0 ei�

�

Hadamard 1p
2

�
1 1

1 �1

�
Toffoli

0

B
B
B
B
B
B
B
B
B
B
B
@

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

1

C
C
C
C
C
C
C
C
C
C
C
A

In general the Hadamard, Phase and NOT gates are 1-qubit operations, the CNOT gate is a 2-qubit
operation, and the Toffoli is a 3-qubit operation

Table 9.2 Description of the classical and quantum one-bit full adder algorithm

Inputs Outputs

Cin A B D Cin A S Cout

0 0 0 0 0 0 0 0
1 0 0 0 1 0 1 0
0 1 0 0 0 1 1 0
1 1 0 0 1 1 0 1
0 0 1 0 0 0 1 0
1 0 1 0 1 0 0 1
0 1 1 0 0 1 0 1
1 1 1 0 1 1 1 1

The input binary numbers (Cin, A, B) are added to produce the output numbers (S, Cout). The carry
(Cin, Cout) represent the bits being carried over from previous and future additions, respectively.
Additional input (D) and output (A, Cin) binary numbers are included in the quantum form of the
algorithm to ensure reversibility. The inputs and outputs for the classical one-bit adder are given in
bold while the quantum algorithm requires all four inputs to produce all four outputs

output (A, Cin) qubits to ensure reversibility. In order to illustrate the concept of
irreversibility in the classical form of the algorithm, consider the following three
inputs (Cin,A,B) D (100), (010) and (001), see Table 9.2. All three produce the same
final state (S, Cout) D (10), and hence, one could not reversibly return from this
output to the correct initial state. If the input (D) and output (A, Cin) qubits are
included in the quantum algorithm, the input states (1000), (0100) and (0010) now
produce different final states (1010), (0110) and (0010), respectively, albeit all with
the same values of (S, Cout) D (10). However, since the final states are distinct, the
process could be reversed to return to the corresponding initial state. The quantum
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Table 9.3 An example of the general phase imposed after the NOT2 quantum gate is applied

Gate Matrix operation Global phase alignment
NOT2

0

B
B
@

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

1

C
C
A

j00i ! j01iei�1

j01i ! j00iei�2

j10i ! j11iei�3

j11i ! j10iei�4

Each gate operation on each qubit acquires an arbitrary phase, ei�n

one-bit full adder algorithm can be implemented with the elementary Toffoli and
CNOT quantum logic gates [21]. A finite number of elementary boolean logic gates
provides the means to produce a vast number of algorithms. This is similar to the
finite set of letters in an alphabet (logic gates) which produce a vast number of
words, sentences and books in a language (algorithm).

9.1.2 Global Phase Alignment

In order to implement a quantum algorithm, a series of quantum gates must be
applied in a specific order. Therefore, besides causing the required qubit excitations,
there is an extra requirement imposed on the laser pulse quantum gate operation.
That is, the laser pulse quantum gate operation must also align the relative phases
of all the qubits by the end of the laser pulse interaction. This is termed global
phase alignment. Thus subsequent application of quantum gates will impose the
appropriate qubit transformation, since the qubits will all be in phase. An example of
this is shown in Table 9.3 for the 2-qubit NOT gate or NOT2 quantum logic gate. If a
laser pulse were applied that does not impart a global alignment in qubit phase, then
there would be an arbitrary resultant phase associated with each qubit. Subsequent
quantum gate transformations would impart even more phase uncertainty. Global
phase alignment requires that all resultant phases are the same and in the case of
the example NOT2 gate, ei�1 D ei�2 D ei�3 D ei�4 . The control of qubit phase is
important within many quantum algorithms and some quantum logic gates.

9.1.3 Quantum Superpositions and Quantum Parallelism

It may now seem apparent that an advantage of a quantum computer is in its
ability to construct superpositions of qubits, something not possible on a classi-
cal computer. During each computation the system’s wavefunction consisting of
superpositions of the qubits (in reality the wavefunction likely also contains some
other non-qubit states) is manipulated according to the necessary quantum logic
gates required by the algorithm. Thus every qubit experiences each quantum gate
operation, in turn each qubit is manipulated by the entire quantum algorithm and
at the end of the computation the wavefunction exists which describes every
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possible solution from each initial condition. By contrast, in order to attempt
representing this on a classical computer would require one processor for each
qubit and then run in parallel to produce all possible solutions to all possible initial
conditions. Thus quantum parallelism is not the same as classical parallelism since
classical parallelism refers to using multiple processors and on a quantum computer
this is done on the single processor. Quantum parallelism was first described by
Deutsch [22].

9.1.4 Advantages of a Quantum Computer

By utilizing quantum behaviour, algorithms can be constructed on a quantum
computer which in some cases take exponentially less computational time as
compared to classical computers. The most recognized quantum algorithm is Shor’s
algorithm [23] for factoring prime numbers. It was shown that a quantum computer
implementing Shor’s algorithm could determine the factors of a prime number in
a polynomial amount of time; the classical counterpart requires an exponential
amount of time with respect to the size of the prime number. Even though it
is relatively straightforward to generate very large valued prime numbers, it is
exceptionally difficult to determine their resulting factors on a classical computer.
It is this key classical computing limitation that allows Internet RSA encryption to
function. Using Shor’s algorithm, the prime factors of 15 were calculated through
Nuclear Magnetic Resonance (NMR) using 7 spin 1/2 nuclei of a perfluorobutadi-
enyl iron complex as the qubits [6]. This is the largest number of qubits used in an
NMR quantum computation. The Deutsch–Jozsa algorithm, an example quantum
algorithm which performs exponentially faster on a quantum computer, has also
been applied as a benchmark to many quantum computer systems [17, 19].

Recent developments in quantum algorithms showcase specific uses in
mathematics, physics and chemistry with much improved calculation times
compared to our current classical computers. In current electronic structure
calculations, the CPU time required to compute molecular energies scales
exponentially with the system size but it has been shown to take only a polynomial
amount of time on a quantum computer [24]. Chemical reactions could also be
simulated exactly on a quantum computer in polynomial time with respect to
the system size [25]. Other example studies have deduced quantum algorithms
for determining the dynamics of open quantum systems [26] and also molecular
properties and geometry optimizations [27]. With respect to molecular dynamics
simulations, a true quantum Metropolis algorithm has been developed [28] and also
a quantum algorithm for exact Monte Carlo sampling [29]. Quantum algorithms
within mathematics have also been developed for systems of linear equation
[30] and for solving the Poisson equation [31]. These select examples of the
implementation of quantum algorithms in science and mathematics showcase the
inherent and valuable use a quantum computer would have for scientific research.
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9.1.5 Universal Quantum Computer and Quantum Simulator

Thus far, the largest universal quantum computer controlled 14 qubits represented by
14 40CaC cations (one for each qubit) in a linear Paul ion trap [32], but it has been
suggested that thousands or even millions of qubits would be needed to perform
a practical calculation [33, 34]. On this 14-qubit quantum computer, the authors
investigated entanglement and the effect of noise, but being a universal quantum
computer they could have examined other simple quantum algorithms. The most
recent applicable progress has been made by utilizing a quantum algorithm on a
linear optical quantum simulator for determining eigenvalues of a molecule and the
hydrogen molecule was used as the simplest test case [35]. A universal quantum
computer would have the capability of solving general quantum algorithms whereas
a quantum simulator would solve a problem specific to the system being “simulated”
[21]. Using the previously described one-bit full adder as an example, a universal
quantum computer would utilize a specific set of universal quantum logic gates to
represent the quantum analogue of the one-bit full adder, whereas a quantum simu-
lator would be designed strictly to carry out the one-bit full addition operation only.

9.1.6 Experimentally Realized and Proposed Quantum Computer
Architectures

Besides the inherent properties that a quantum computer, including the quantum
gates, must have, there are technical issues regarding implemented and proposed
architectures. These issues include scalability, decoherence and computational
speed. Scalability refers to the ability to increase the number of qubits for
calculation. Coherence is the ability for the qubit to retain its encoded information
and thus decoherence is a loss of encoded information. Computational speed refers
to the general number of quantum gates that can be applied before decoherence
destroys the quantum state information. As will be alluded to below, it is not so much
the difference between atoms and molecules in quantum computing architectures
that determines feasibility but more so the choice of quantum state for qubit
representation.

The current implementation of a quantum computing architecture utilizing atoms
comes in the form of linear Paul ion traps [4], though there are suggestions of
performing quantum algorithms on atomic ions that are trapped in a 2-D or 3-D
lattice [5]. The qubits are represented by two hyperfine atomic levels, generally
chosen to be the ground state and some metastable state. With these choices of
quantum states, information encoded in the qubits can be long lived with respect
to the quantum operation being performed, and qubit preparation (see Sect. 9.2.1)
is straightforward through known atomic “cooling” techniques. Just as important,
the system is scalable simply by adding more atomic ions to the linear Paul trap.
The qubit excitations correspond to frequencies in the microwave region and qubit
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coupling occurs through vibrational mode coupling in the linear Paul harmonic
trap. Due to this, the application of a series of laser pulses to represent quantum
logic gates combined with the slow harmonic vibrational coupling could lead to
decoherence before the end of the quantum computation.

Alternatively a quantum computing architecture that has shown promise but uses
molecules is that of NMR [6–8]. The qubits are represented by the nuclear spin of
specific atoms within the molecule. Again the lifetimes for such states are long lived
and qubit state preparation is done through familiar NMR techniques. Scalability
is an issue for NMR quantum computing since increasing the number of qubits
requires increasing the number of nuclei in the molecule (i.e. increasing the size of
the molecule). In conjunction with scalability, the molecules used in NMR quantum
computing are specifically designed such that the nuclear spin excitations occur in
distinctly separate regions of the energy spectrum for detection purposes. The qubit
excitations occur through application of radiofrequency pulses and the qubits are
coupled through J-coupling of nuclei. Again very long radiowaves could lead to
decoherence before application of the entire quantum algorithm.

In order to attempt at circumventing some of the problems encountered in
current quantum computer implementations, it was proposed that rovibrational
states or vibrational modes of molecules could be used to represent the qubits [9].
Qubits are coupled through strong intermolecular dipole–dipole coupling and/or
intermolecular vibrational mode coupling. Respective qubit excitations occur in the
mid-infrared using femtosecond laser pulses. The results are very quick excitations
by quantum gates represented by shaped laser pulses such that possibly thousands of
gates can be applied before decoherence becomes an issue. Unfortunately, n qubits
are represented each by a specific rovibrational state or mode, utilizing 2n states and
posing a problem with scalability. Further suggestions include adopting this method
but specifically trapping diatomic molecules in a linear optical trap or optical lattice
[36], thus eliminating the issue of scalability. Theoretical research is aimed at
providing information regarding laser pulse shaping of the quantum gate, control of
the qubit excitations and indication of candidate molecules for such architectures.
Experimental investigations are mostly concerned with the preparation of such
diatomics and the ability for optical trapping of them.

9.2 Procedure for Performing a Quantum Computation

Quantum computer processing can be broken down into three chronological pro-
cedures: (1) system preparation, (2) system manipulation and (3) system readout.
Before an algorithm can be implemented, the system must be prepared in the
desired initial qubit state arrangement. The qubit states are then manipulated through
application of quantum logic gates to carry out the desired algorithm. After the
algorithm is complete, the system must be read to determine the solution to
the problem. The three general steps are summarized in the following sections.
Emphasis is placed on and further details are provided for the system manipulation
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step in subsequent sections, since understanding this step theoretically involves the
utilization of quantum dynamics techniques.

9.2.1 System Preparation: Qubit Initialization

With respect to implementing a quantum algorithm, the set of n qubits must be
initialized. This requires preparing the quantum system into a known configuration
or, more specifically, preparing the qubits into a known and desired state. The initial
state of the qubits depends on the problem being studied. Generally this is carried
out through common atomic or, more recently, molecular [37] “cooling" techniques,
where the system is brought ideally to its ground quantum state with respect to the
qubit representation. Thus, after cooling, the system is prepared into a state where all
qubits have been initialized, for instance a register reading as j000 : : : 0i, depending
on how many qubits are used. If the ground state is not a qubit representation, then
further excitations must occur in order to create an initialized qubit register. There
are clearly obvious advantages to having the initial qubit representation being that
of the ground quantum state.

9.2.2 SystemManipulation: Apply Quantum Algorithms

After the qubits have been specifically prepared, the quantum algorithm is then
applied via qubit manipulation through the necessary quantum logic gates. Laser
pulses, or more generally electromagnetic fields, provide a practical means to
implement the quantum logic gates and manipulate the quantum states of atoms
and molecules. Such experimental implementations include NMR [6–8] and ion
trap quantum computing [17, 38], with applied laser pulses using radiowave and
microwave frequencies, respectively. An alternative quantum computer architecture
proposed suggests using the rovibrational states of molecules as qubits and pro-
ducing mid-infrared laser pulses to represent the quantum logic gates [9]. Within
the mid-IR frequency region, laser pulses can be generated which are ultrafast
(fs to ps duration) and whose time-domain (spectral) properties are well controlled.
These properties allow the precise implementation of quantum gates and application
of quantum algorithms in time frames before decoherence becomes problematic.
Much of the theoretical work within molecular quantum computing has focused
on the quantum dynamics involved during the qubit manipulation step. The primary
concern is to obtain insight with respect to the laser pulse representation of quantum
logic gates, the controllability of the qubits, issues governing decoherence and
the sensitivity to the choice of molecular system. The effect of shaping laser
pulses to represent quantum logic gates, qubit controllability and the choice of
molecular system will be covered in Sect. 9.3, for the proposed quantum computing
architecture using the rovibrational states of diatomics (or polyatomics) as qubits
and shaped laser pulses as quantum logic gates.
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9.2.3 System Readout: Determine the Solution

Once the quantum algorithm has been implemented on the qubits, the solution to
the problem must be determined. This amounts to determining (i.e. measuring) the
final quantum state of the qubits. Unlike in classical computing, the act of measuring
the quantum system destroys the qubit arrangement and so readout can only occur
once per calculation. In theory, this is sufficient since we do not need to carry out
identical calculations to determine a solution. In practice, measurements are not
without error and generally there is an error associated with determining the state
of the qubits. Thus far, the simple quantum algorithms that have been carried out
to show quantum computation have in general relied on repeat measurements to
improve the probability of the solution. In the case of NMR quantum computing,
the qubit states are superimposed on an ensemble rather than individual molecules,
and thus measuring the nuclear spin qubit state occurs over a statistical average [6].
Readout on ion trap quantum computers has been carried out by exciting to a higher
lying electronic state and, by monitoring the fluorescence, the original qubit states
can be determined [32]. In classical computer systems, there are also associated
errors but their probability has been dramatically decreased through fault tolerance
techniques and improved technology. Analogous quantum error correction and fault
tolerant techniques [39] as well as new readout methods, see for example [40], to
improve quantum computing are being developed, proposed and researched.

9.3 Molecular Quantum Computing Using Shaped Laser
Pulses

In an attempt to expand the search for quantum computing architectures, it was
suggested that the rovibrational states or modes of molecules could be used as
the qubit representation and laser pulses could be shaped to cause the required
quantum logic gate operation on the qubits [9]. This came at a time when there were
emerging chemistry experiments being performed with mid-infrared shaped laser
pulses on the femtosecond time scale, with control of phase and amplitude at specific
frequencies [41]. It was thought that the quantum algorithm could be applied
more quickly with picosecond laser pulses (mid-infrared) than with pulses used
in ion traps (microwave; nanosecond) or NMR (radiowave; microsecond) quantum
architectures; thus possibly minimizing decoherence issues. Internal molecular
modes and rovibrational transitions are also more strongly coupled, in comparison
with ion trap and NMR quantum computing implementations. Numerous theoretical
studies emerged examining the use of internal vibrational modes of polyatomics
(e.g. acetylene [42, 43], ammonia [44, 45], thiophosgene [18, 46, 47], vibrational
[48] or rovibrational states of diatomics [49–51] and also systems using dipole–
dipole coupled diatomics [52–55] as the qubits. The majority of theoretical studies
determined the optimal shape of the laser pulse using OCT [56, 57], while others
implemented optimization routines such as ant colony optimization [58], Simulated
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Annealing [59] or, more commonly, Genetic Algorithm (GA) optimization [50, 51,
60]. In this section, we introduce the relevant dynamics equations, how OCT or GA
procedures differ and how they are utilized for the required qubit transformations
for logic gate representation, including global phase alignment. In general, the
theory is presented for diatomic molecules, but the generalization to polyatomics
is straightforward, for example, see [45] where MCTDH is utilized to examine gate
operations in ammonia.

9.3.1 Quantum Dynamics: Laser/Molecule Interaction

The molecular response to the laser pulse is determined by solving the TDSE,

i�
d�.t/

dt
D OH�.t/: (9.2)

The semi-classical Hamiltonian, OH , composed of a time-independent operator OH0,
describing the molecule, combined with the time-dependent term describing the
interaction of the electric field, �.t/, with the molecular dipole moment, �.r/, is
given by,

OH D OH0 � �.r/ � �.t/ D OH0 � �.r/�.t/ cos �: (9.3)

The wavefunction, �.t/, composed of a linear combination of time-dependent
coefficients, c�J .t/, with rovibrational state eigenvectors j�J i is described by,

�.t/ D
X

�J

c�J .t/j�J i: (9.4)

The magnetic quantum number M is equal to zero for the closed shell diatomic
molecules and linear electric field polarizations considered in our pulse optimization
examples. However, in general, one may have to consider a sum over quantum
number M (for open shell systems), other hyperfine constants and/or multiple
vibrational states (for polyatomics).

Solving the TDSE for the time-dependent coefficients in vector notation, c.t/,
results in,

Pc.t/ D � i

�

h
E � �.t/�

i
c.t/: (9.5)

Each time step along the laser pulse duration can be solved by using a numerical
integrator such as the commonly used Runge–Kutta fourth order integrator. Care
must be taken to ensure that the time steps are smaller than the oscillatory period
of the laser pulse in order to minimize integration error. The diagonal rovibrational
state energy matrix, E , is
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E D

0

B
B
B
@

E0;0 0 � � � 0

0 E0;1 � � � 0
:::

:::
: : :

:::

0 0 � � � E�max;Jmax

1

C
C
C
A

(9.6)

where �max and Jmax are the maximum vibrational and rotational states, respectively,
considered when solving the problem of interest numerically. The energies can be
determined directly from experimental spectroscopic excitation data, from fits of
diatomic molecular constants or through numerical calculations of the quantum
states from an ab initio potential energy curve. Rather than using a basis of
eigenstates, one can solve the problem using the potential energy curve, V.r/, or
surface (for polyatomics), directly [45]. An example of the transition dipole moment
matrix, �, is shown for single photon excitations between adjacent rovibrational
states,

� D ��0;J 0

�;J D

0

B
B
B
B
B
B
B
B
B
B
B
@

0 �
1;J 0

0;J 0 0 0 0

�0;J 0

1;J 0 �2;J 0

1;J � � � 0 0

0 �1;J 0

2;J 0 0
:::

: : :
:::

0 �
�max �1;J 0

�max �2;J 0

0 0 � � � �
�max �2;J 0

�max �1;J 0 �
�max;J 0

�max �1;J

0 0 0 0 �
�max �1;J 0

�max;J 0

1

C
C
C
C
C
C
C
C
C
C
C
A

: (9.7)

It is tridiagonal with zeroes along the diagonal and structured so that excitations
occur via simultaneous 	� D ˙1 and 	J D ˙1 transitions as is appropriate for a
relatively weak, linearly polarized laser field. The notation for � is given by initial

state (�,J ) as a subscript and the final state, (�0,J 0), as a superscript. Equation (9.7)
shows the structure for vibrational transitions and Eq. (9.8) shows the rotational
transition substructure of the sample cell at �

1;J 0

0;J

�
1;J 0

0;J D

0

B
B
B
B
B
B
B
B
B
B
@

0 �1;1
0;0 0 0 0 0

�
0;0
1;1 0 �

1;2
0;1 � � � 0 0

0 �
0;1
1;2 0 0
:::

: : :
:::

0 �
1;Jmax �1

0;Jmax �2
0

0 0 � � � �
0;Jmax �2

1;Jmax �1
0 �

1;Jmax
0;Jmax �1

0 0 0 0 �
0;Jmax �1

1;Jmax
0

1

C
C
C
C
C
C
C
C
C
C
A

: (9.8)

The exact form of the transition dipole matrix will vary depending on the
excitations involved. Initial investigations into the state population transfer are
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required since the number of quantum states included in the computations involves
a truncation of the complete set at .�max; Jmax/. The total number of states required
in the computation is dependent on the quantum states used as the qubits, the
strength of the state-to-state coupling and also the strength of the laser pulse being
optimized. In general, one is looking to include a minimum number of states such
that insignificant population transfer occurs for higher lying quantum states and the
resulting sum of the populations of the included states resembles to some error the
condition if all quantum states were included.

In relation to quantum computing, Eq. (9.5) illustrates that the resulting time-
dependent coefficient corresponding to each qubit at the final time needs to be
determined in order to elucidate effectiveness of the laser pulse (�.t/) at representing
the quantum logic gate. The two most common theoretical methods used to
determine the optimized laser pulse to represent specific quantum logic gates will
be discussed in the next sections, namely OCT and GA optimization.

9.3.2 Optimal Control Theory (OCT)

One of the most widely used theoretical laser optimization routines for molecular
laser control is OCT due to its relative ease in implementation and monotonic con-
vergence, see recent reviews [12–14] and the many references therein. Optimization
of the laser pulse occurs in the time-domain. Beyond the initial implementation
[61], further investigations developed important features such as constraints on the
frequency spectrum[62–64] and optimization of the laser pulse duration[65–67],
both of which are required to produce laser pulses comparable to those obtained
experimentally. Within OCT an objective function, J , is maximized according to
constraints on the required excitation, constraints on the laser pulse field and it
must also satisfy the TDSE. These constraints are represented by each term in the
objective function, respectively,
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zX

k

ˇ
ˇ
ˇ
D
� k

i .T /j˚k
f

Eˇ
ˇ
ˇ
2 �

Z T

0

˛0

s.t/
j�.t/j2 dt

�2Re
zX

k

�D
� k

i .T /j˚k
f

E Z T

0

�

� k
f .t/

ˇ
ˇ
ˇ
ˇi ŒH0 � ��.t/
 C @

@t

ˇ
ˇ
ˇ
ˇ�

k
i .t/

�

dt

�

:

(9.9)

Here � k
i is the resulting wavefunction after interaction with the laser pulse (of

total pulse duration T ) of the i th state for the kth qubit transformation for the
specific quantum logic gate. ˚k

f is the target state of the qubit transformation for
the specific quantum logic gate. The second term in the objective function contains
the electric field, �.t/, and the penalty parameter, ˛0, which is an arbitrary constant
that determines the weight of the field term on the resulting objective function, J .
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The penalty parameter is important for appropriate laser pulse optimization and
chosen based upon numerical adjustments. The integer z corresponds to the number
of multiple target qubit states that are being optimized to represent the quantum
logic gate. For 1-qubit operations, z D 2 and for 2-qubit operations, z D 4.
Upon maximizing the objective function with respect to � k

i .t/; � k
f .t/ and �.t/, a

set of resultant equations is obtained [68]:

i
@

@t
� k

i .t/ D ŒH0 � ��.t/
 � k
i .t/; � k

i .0/ D ˚k
i ; k D 1 : : : z (9.10)
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The first two conditions are the TDSE describing the wavefunctions � k
i .t/ and

� k
f .t/, while the last equation details the form of the laser pulse, �.t/. There are

several numerical methods that have been developed to solve for the laser pulse field
using the above optimal equations, see [14]. It is important to note that the optimal
pulses obtained by alternative methods for numerical optimization can differ [69]
and this is a reflection that there are generally numerous pathways/solutions to the
required problem.

The laser pulse envelope, s.t/ with amplitude s0, is arbitrary but is usually
defined by a sine-squared envelope or Gaussian envelope with pulse width � ,
respectively:

s.t/ D s0 sin2 .�t=T / (9.13)

s.t/ D s0 exp

 

� .t � T
2

/2

2�2

!

: (9.14)

As stated previously, the quantum gate operation being represented by the
optimized laser pulse not only induces a change in population but must also induce
a global phase alignment between the qubits (see Sect. 9.1.1). We shall see that in
the GA this is accomplished through an appropriately chosen fidelity function, F

(Eq. (9.22)). The simplest process of including global phase alignment within OCT
though, without altering the objective function and thus subsequent maximization,
is to include an auxiliary transition into the optimization [68]:

Œj�00i C j�01i C j�10i C j�11i
tD0 �! �
.j�00i C j�01i C j�10i C j�11i/ei�5

	
tDT

(9.15)

This fifth stipulation on the requirement for the resultant optimized laser field
is incorporated within the summation of the first term of the objective function
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(Eq. (9.9)), now with z D 5 for 2-qubit operations. The qubits, after operation by the
laser pulse, are then biased to shift by the same amount of phase, ei� (global phase
alignment). Phase alignment is in general more difficult to optimize than population.

9.3.3 Genetic Algorithm (GA) Optimization

The Genetic Algorithm is a heuristic search optimization routine that utilizes ideas
from natural selection to “breed” laser pulses, in effect optimizing the associated
pulse parameters (e.g. phase and amplitude), to produce the “fittest” or optimal
pulse shape [70]. In comparison with OCT, the GA optimizes the laser pulse in the
frequency domain with associated pulse parameters and is constructed in the time-
domain through a Fourier transform. Since OCT is monotonically convergent then
a convergence criteria can be readily implemented indicating progress in locating
the optimal pulse chape. Conversely, in GA optimizations since the parameter space
is being searched, there is no guideline dictating how many more generations will
be needed to bring the fidelity up to a specific value indicative of the optimal pulse.
On the other hand, without specific OCT pulse constraints, the optimal laser pulses
generated do not necessarily represent those obtainable from current experimental
laser pulse shaping techniques, see, however, recent work by Shyslov and Babikov
[46]. Work has been done using variations to both the GA and OCT optimizations
in order to bridge the gap between optimal pulses obtained from theory and those
obtained from experiment [71].

In Fig. 9.1, the general framework of a closed-loop feedback set-up using a GA
is conceptualized. Initially a random set of laser pulses, experimental or theoretical,
is input into the quantum dynamics procedure (Fig. 9.1; lower box) in order to
start the algorithm. The upper box is the GA routine, constituting the laser pulse
optimization. In the theoretical case, the quantum dynamics is determined by
solving the TDSE for the applied laser pulse, from an initial state �i , over the laser
pulse duration, to a final state �f . The Fidelity (see Sect. 9.3.3.2), a value between
0 and 1, is computed which describes the effectiveness of the specific laser pulse at
carrying out the required quantum gate operation over the chosen rovibrational state
qubits. This is repeated for all laser pulses of that generation. The Fidelity is fed back
into the GA so that it can rank the laser pulses and determine the appropriate actions
for “breeding”. A new set of laser pulses is produced which constitutes the next
generation. This process is continued for n generations. Both the GA and quantum
dynamics are connected in a closed loop, providing feedback to each other in order
to produce an optimal pulse for the quantum gate operation of interest.

9.3.3.1 Laser Field
In general, a laser field (electromagnetic radiation) is modelled classically as a com-
bination of perpendicular oscillating electric and magnetic fields. The electric field
interaction with the electric dipole moment is (typically) five orders-of-magnitude
(105 times) larger than the magnetic field interaction with the magnetic dipole [72].
Therefore, effects of the magnetic dipole are omitted in theoretical investigations
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Genetic Algorithm

Quantum Dynamics

Fidelity

1. Solve TDSE 
2. Propagate:

1. Tournament selection
2. Uniform cross-over
3. MicroGA

new generation 

Determine Fidelity

nth Generation
Largest Fidelity
Optimal pulse 

1st Generation
random set of 

laser pulses

Fig. 9.1 Illustration of theoretical shaped laser pulse optimization using a genetic algorithm
(GA). The first generation of laser pulses is randomly generated. The time-dependent Schrödinger
equation (TDSE) for the model diatomic is solved for each input laser pulse. The system is
propagated from an initial state �i to a final state �f , at which point the fidelity is calculated
based upon how close the laser pulse brings the system to the desired final state. The fidelity
associated with each laser pulse is used to determine the GA optimization through tournament
selection and uniform cross-over. The GA produces a new generation of laser pulses related to the
previous ones. The cycle is repeated for n generations; the optimal laser pulse being produced in
the nth generation

and only the electric field/electric dipole moment interaction is considered. In
molecular quantum computing applications, the effect of polarizability has also
been considered [49] but its effects were shown to be negligible for the fields
considered—fields which are typical of most theoretical simulations in this area.

As stated by Milonni [73], “An arbitrarily large number n of ‘photons’ may
occupy the same state, and when this situation obtains, it is accurate to regard the
photon wave function as defining a classical field distribution.” Thus the quantum
electrodynamic view of radiation for intense laser fields can be described classically.
Overall, the light–matter interaction is treated semi-classically where the diatomic
molecule is quantum mechanical and the laser pulse is classical in nature. The
electric dipole approximation [74] is also used which reduces the form of the electric
field due to the comparative size of the electric field wavelength compared to the
molecule. The classical description of the laser field, E.r; t/, can be written in
complex form according to

E.r; t/ D �0 cos.!t � k � r/ D �0< �
ei!te�ik�r	 : (9.16)

It is a continuous laser field of single-frequency (!) with peak field strength (�0)
being a function of space and time. The norm of the wave vector (k) is related to the
frequency of the laser field by k D !

c
, and for example is on the order of 10�6 Å�1
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for the mid-infrared frequencies. The value of k describes the number of oscillations
of the electric field in space. In this case one oscillation occurs approximately
every 106 Å, which is much larger than the molecules studied in molecular quantum
computing. Consequently the resulting value of k � r is small and the Taylor series
expansion for the electric field of the laser can be truncated to the first term (i.e.,
unity):

e�ikn�r D 1 � Œik � r
 C 1

2
Œ�ik � r
2 C � � � � 1: (9.17)

The electric field can now be written strictly in terms of time,

E.r; t/ D �0< �
ei!t

	 D �0 cos.2��t/: (9.18)

For the example optimized laser pulses illustrated herein, only the amplitude and
phase were shaped (no polarization shaping [75, 76] was considered). The pulse
shaping occurs in the frequency domain which can be readily connected to the more
familiar time-domain expression for the laser field. The form of the laser pulse for
each component of the discretized frequency spectrum with amplitude and phase
variation is [49]

�.�j / D �0

q
A.�j / exp

�

�2 ln 2

�j � �0

	�

�2
�

exp
�
i�.�j /

	
: (9.19)

In Eq. (9.19), �0 is the peak field strength, �0 is the central frequency and �j

represents the discrete frequencies at which the field is shaped. A Gaussian envelope
is used with a full width at half-maximum (FWHM) pulse width of 	�. The
amplitude and phase range from 0 � A.�j / � 1 and 0 � �.�j / � 2� , respectively.
A transformed-limited (TL) pulse corresponds to the case when A.�j / D 1 and
�.�j / D 0 for all frequency components j . The familiar time-dependent form of
the laser pulse can be determined by a Fourier transform or alternatively using the
analytic form for the time-dependent field [77]:

�.t/ D sin .�td�/

�t

nX

j D0

�0

p
Aj exp
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�2 ln 2

�j � �0

	�

�2
�

cos.2��j t C �j /;

(9.20)

with frequency resolution d�. The frequency domain laser pulse shaping shown
is closely related to experimental Spatial Light Modulators using Liquid Crystal
pixelated grids (LC-SLM). This requires diffraction of the incident laser pulse onto
the LC-SLM, in which each pixel will be illuminated by a specific frequency band.
At each pixel, there is simultaneous control over the amount of light transmitted
(amplitude) and the phase of that light passing through. Once each frequency band
passes through and is affected by the LC-SLM, the light is recombined to form a
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new pulse shape depending on the alterations imposed by the shaper. Thus, there are
numerous pulse shapes that can be generated by varying for instance: the number
of frequency bands (�j ), the resolution of the frequency bands illuminating each
pixel (d�) and the variation in amplitude and phase. The GA optimization aims at
modelling an LC-SLM set-up in order to reflect more closely the possible laser pulse
shapes that can be experimentally produced.

9.3.3.2 Fidelity and Average Population
Within GA optimization, the degree to which the shaped laser pulse represents the
quantum logic gate operation of interest is stated by a metric. Initial theoretical
studies which had not yet perceived the necessity of global phase alignment used
the average population NP , as this metric, i.e.,

NP D 1

N

NX

kD1

jh�k.T /j˚kij2 ; (9.21)

where �k.T / is the resulting wavefunction after the laser pulse of duration T has
been applied and ˚k is the target wavefunction. The sum is over the number of
qubit transformations N , which is N D 4 for the case of 2-qubit operations.
There is clearly no phase information contained in the average population function.
Population transfer combined with global phase alignment can be included in the
required constraints for shaped laser pulses within the GA by using instead the
fidelity function, F , where

F D 1

N 2

ˇ
ˇ
ˇ
ˇ
ˇ

NX

kD1

h�k.T /j˚ki
ˇ
ˇ
ˇ
ˇ
ˇ

2

: (9.22)

The fidelity is a number between 0 and 1. F D 0 implies no excitation to the
resultant qubit state (i.e., an incomplete quantum gate operation), while F D 1

implies a 100 % complete quantum gate operation on the qubits. Though the average
population is a useful value to determine the extent of overall population transfer
between the qubits, it is strictly the fidelity function values that should be used
within the GA optimization procedure when dealing with quantum gate operations.

9.4 Summary and Future Directions

In the present work, the basic ideas of quantum computing have been presented by
highlighting the similarities and differences to classical computing, see Sects. 9.1.1
and 9.1.2. Most important among these differences is the possibility for exponential
speed-up in solving computational problems, if, and only if, suitable quantum
algorithms can be designed, see Sects. 9.1.3 and 9.1.4. In addition to the develop-
ment of quantum algorithms, a critical choice is the physical system on which the
quantum gates, and hence algorithms, can be implemented, see Sect. 9.1.6, where
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the primary focus is on atomic and molecular systems. Once a physical system has
been chosen (in this work, the discussion is on molecules), there are three important
steps: (i) system preparation, (ii) gate and algorithm implementation and (iii) system
readout, see Sects. 9.2.1–9.2.3. The majority of the research on molecular quantum
computing has emphasized step (ii), see for example [18,42–55]. Therefore, the the-
oretical investigation of molecular quantum computing involves several important
elements: the choice of molecular (hyperfine, rovibrational, rovibronic. . . ) states for
the qubits and the molecule from which they are selected, the quantum gates to be
implemented, and the optimization algorithm used to determine the laser field. The
two most important computational challenges presented for gate implementation,
i.e., step (ii), are the accurate and efficient solution of the TDSE, see Sect. 9.3.1,
and the optimization techniques used to find the required laser field, see Sects. 9.3.2
and 9.3.3. Unlike control of photochemical or photo physical processes, molecular
quantum computing imposes the stringent requirement of global phase alignment
for quantum gate operations. While initial studies of molecular quantum computing
have been promising, practical applications involving several (or many) qubits
remain challenging. These will require the careful choice of a molecular system
for scalability, e.g., the use of coupled polar diatomic molecules on a 1D array[36,
37, 53–55]. However, just as important will be the development of new or refined
theoretical and computational techniques for dealing with quantum dynamics (most
likely, for many degrees of freedom) and/or optimization algorithms for finding the
best (and, hopefully, experimentally accessible) laser field. Whatever approach is
taken, insight can, and will, be revealed through high-level simulations.
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