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Abstract
Quantum dynamical simulations in full dimensionality play an essential role in
the field of molecular dynamics. This is shown with the help of two examples:
(1) the simulation of the infrared spectrum of the Zundel cation (H5OC

2 ) and
(2) the investigation of the tunneling splitting in malonaldehyde (C3H4O2). For
the Zundel cation, full, 15-dimensional dynamics calculations are presented
for different isotopomers and experimental spectra are assigned to vibrational
transitions. Furthermore, the internal proton transfer process within the Zundel
cation is discussed. For malonaldehyde, full, 21-dimensional calculations of the
ground state, the four lowest fundamentals, and their tunneling splittings are
presented. The results are, along with assignments, compared to experimental
data and findings of other researchers.

5.1 Introduction

In a classical picture, a molecule is often seen as collection of N atoms, connected
by chemical bonds that are formed by light electrons orbiting the heavy atomic
nuclei. The particular geometrical configuration of the molecule is determined by
type and character of the chemical bonds, which are seen as spring-like elastic
connections between the atoms, and the kind of atoms involved. As a consequence of
the elasticity of the inter-atomic bonds, the molecule can vibrate, i.e., the atoms can
perform periodic motions relative to each other. Within a harmonic approximation,
these vibrations can be expressed as superpositions of N � 6 (N � 5 for linear
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molecules) so-called normal mode vibrations, i.e., global vibrations of the molecule
where all atoms vibrate with the same phase and the same normal mode frequency.
Most of those normal mode vibrations involve a large number of the atoms of the
molecule, but, depending on the particular structure, some of the normal mode
vibrations can be quite localized and the corresponding frequency can be very
typical for a certain chemical bond or groups of involved atoms.

In a quantum mechanical description, the simple spring-like picture of chemical
bonds, of course, breaks down and the molecule has to be described as a many-body
system of interacting particles including electrons and nuclei. Nevertheless, the
normal mode vibrations have their counterpart in the fundamental excitations of the
nuclear vibrational degrees of freedom (DOF) of the molecule. The fundamentals
can be excited by infrared radiation (IR) and characteristic absorption bands in
the IR spectra immediately point to the existence of certain chemical bonds or to
functional groups and hence IR (and Raman) spectroscopy are powerful tools to
investigate and study the chemical structure of molecules.

However, not all of the experimentally observed absorption bands can be
assigned to characteristic bonds or groups. Here, model calculations can be a useful
tool to assign transitions to the involved vibrational states and may help to identify
a variety of properties such as the molecular structure itself, the determination of
reaction mechanisms, characterization of transition states, etc. The advantage of
model calculations is that the quantum mechanical wavefunction can be inspected
in detail and to arbitrary precision, only limited, of course, by the available
computational capacities.

For the theoretical modeling of IR absorption spectra there exist in essence
two strategies which are commonly used, both based on the semi-classical dipole
approximation for light–matter interaction: a time-independent one where eigen-
states and energies of the molecular Hamiltonian are obtained by solving the
time-independent Schrödinger equation and, hence, giving direct access to transition
frequencies and dipole matrix elements. The second ansatz is based on a perturbative
approach within a time-dependent framework. It aims for the calculation of the
linear response[1] of the molecule upon IR irradiation. The latter method requires
solving the time-dependent Schrödinger equation for a dipole operated initial
system state and subsequently obtaining the absorption spectrum as the frequency
components of the linear response function. The advantage of the time-dependent
approach is that multiple spectral lines and their intensities are obtained within
a single calculation, while, on the other hand, it lacks the possibility to inspect
particular eigenstates. A characterization of the eigenstates, i.e., an assignment of
the spectral lines, however, can be performed in the time-dependent picture as well.

The key ingredient for both approaches is solving the molecular Schrödinger
equation and a large variety of methods are known to accomplish this task, both
within the time-dependent and a time-independent framework. However, most
of these methods can only be applied to very small and rather rigid molecules,
containing three to four atoms with limited flexibility. The challenges of today lie
in the accurate modeling of larger and flexible molecules beyond the limit of so few
atoms. Large and flexible molecules, especially those exhibiting large amplitude



5 Vibrational Spectroscopy and Molecular Dynamics 119

motions and reorganization processes, usually need to be described by highly
correlated multi-dimensional wavefunctions which makes these systems difficult
to treat numerically. However, it is also in particular these problems which are
stimulating the exploration of new methodologies in the field of quantum dynamics.

One such approach is the multi-configuration time-dependent Hartree (MCTDH)
method [2–5] which first emerged in 1990 and since then has been further developed
and applied to a large variety of problems. With MCTDH two major breakthroughs
could be achieved, one of which we are presenting in the present contribution. The
first one was the calculation of the absorption spectrum of pyrazine[6, 7] using
a realistic 24-mode model Hamiltonian. The second one was the calculation of
IR spectra and assignment of states[8–12] of the Zundel cation, a system with
15 internal DOF. The latter is discussed in detail in Sect. 5.3. We also present
recent calculations of state energies and tunneling splittings of malonaldehyde (21
DOF) in Sect. 5.4 in comparison with experimental results, recently published by
Lüttschwager et al. [13].

The present chapter is organized as follows: in Sect. 5.2 we briefly review
present limitations and current challenges for solving the time-dependent and time-
independent Schrödinger equation in multiple dimensions and outline the MCTDH
approach in contrast to “standard” methods. In Sect. 5.3 we present full-dimensional
calculations on the protonated water dimer, also called the Zundel cation, including
the assignment of recorded spectral lines. In Sect. 5.4 we present calculations on the
proton tunneling splittings of malonaldehyde in comparison with experimental data.
We finally summarize in Sect. 5.5.

5.2 High-Dimensional QuantumDynamics

An accurate numerical description of molecular vibrations in the field of phys-
ical chemistry often requires explicit solutions of the time-dependent or time-
independent Schrödinger equation. A full quantum mechanical treatment of all
involved particles, i.e., all electrons and nuclei, however, is only possible for very
small and rather simple systems such as HC

2 . For larger systems one must rely an
approximations, because the demands on CPU time and memory of a numerically
exact treatment quickly exceed today’s numerical capacities.

The most powerful approximation for treating molecular systems even today was
already published in 1927, almost a 100 years ago: the famous Born–Oppenheimer
approximation [14]. The key ingredient to this approximation is the separation of
the electronic and the nuclear motions, motivated by the different masses of the two
types of particles. The electronic wavefunction is treated as being parametrically
dependent on the nuclear DOFs while the nuclei evolve within a set of PESs which
reflect the energies of the electronic eigenstates.

This separation into subsystems is even today indispensable. It reduces the
number of particles in each of the two problems, and, most importantly, it also
enables the use of specialized methods and algorithms which take into account
the different nature of the involved particles: indistinguishable Fermions within
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the electronic system and (in most cases) distinguishable nuclei. Especially for the
calculation of the electronic states a large variety of quantum chemistry methods
and programs on different levels of theory exist. Nevertheless, the calculation of
full-dimensional PESs on which the nuclei of a molecule evolve is even for small
molecules a formidable task. Many research groups spend much effort in calculating
and fitting these PESs and make them available as numerical subroutines that can be
integrated in other program codes which then may use them as a kind of “black box”
routines that allow to calculate the potential at any given configuration of the nuclei.

In this spirit we will consider the problem of obtaining the potential as solved
for our purposes and focus on the description of the nuclear DOF. Here one usually
concentrates on the internal DOFs and chooses a well-suited set of coordinates q D
fq�g to describe the system. Once having defined this set of coordinates one usually
represents the nuclear wavefunction � in terms of basis functions on a product grid,
that is, for each DOF one chooses a set of basis functions �i� .q�/, in practice often
grid points in coordinate representation, on which the wavefunction is sampled such
that it can be written as

�.q; t/ D
N1X

i1

� � �
NfX

if

Ci1���if �
.�/
i1

.q1/ � � � �.�/
if

.qf /; (5.1)

where the coefficients Ci1���if take the form of a complex valued f -way tensor and
are the quantities that need to be stored in a computer to describe the systems state.

The representation Eq. (5.1) is sometimes also called the standard form of the
wavefunction. Given that on average N basis functions per DOF are sufficient for
an accurate description of � the amount of information that needs to be stored and
processed scales exponentially with N f , where N is usually of the order of 10. The
standard form therefore de facto limits the size of the molecules that can be treated
to about 4 atoms, i.e., 6 internal DOF.

MCTDH therefore takes a different route. The basis functions that are used to
represent the wavefunction are chosen variationally optimal and typically span a
few (one to four) physical DOF. Numerically, this corresponds to combining a
subset of the indices in Eq. (5.1) into one single index and subsequently finding an
optimal basis to describe this subset of DOF. In this way only a few most important
basis functions and their expansion coefficients on the primitive grid as well as the
expansion coefficients of the wavefunction in this optimal basis have to be stored.
This leads to an enormous reduction of data.

The MCTDH ansatz of the wavefunction reads
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Here Aj1;:::;jp are the MCTDH expansion coefficients and ' are optimal basis
functions for this particular wavefunction, also called single particle functions
(SPF), that are (exclusively) defined on one combined coordinate Q� , the latter
comprising the aforementioned d (one to four) physical DOF. Note that the ansatz
Eq. (5.2) is a generalized form of the standard Hartree ansatz and reduces to the very
same if one sets ni D 1.

As mentioned before, the SPF are expanded on the primitive grid such that

'
.�/
j�

.Q�; t/ D
N1;�X

l1D1

� � �
Nd;�X

ld D1

c
.�/

j� l1���ld .t/ �
.�;1/

l1
.q1;�/ � � ��.�;d/

ld
.qd;�/; (5.3)

where the � represent the primitive basis functions as in Eq. (5.1), usually grid points
within a discrete-variable representation (DVR), and the c are again expansion
coefficients.

Note, that other than in the standard form Eq. (5.1) not only the coefficients, but
both the basis functions (SPFs) and the MCTDH expansion coefficients, are taken to
be time-dependent in Eq. (5.2). Inserting this ansatz in the Dirac–Frenkel variational
principle leads to equations of motion (EOM) for the SPF and the coefficients
(� D 1),

i
@

@t
AJ D

X

L

h˚J j OH j˚Li AL; (5.4)
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where OH is the system Hamiltonian,
D OH

E.�/

k;l
are the so-called mean fields, �.�/ is

the reduced system density matrix for the �th coordinate, and .1 � P .�// projects
outside the space currently spanned by the SPF of DOF �. Like for the standard form
Eq. (5.4) resembles the matrix form of the time-dependent Schrödinger equation
and Eq. (5.5) ensures that the basis set follows the motion of the wavefunction as it
evolves in time.

Note that Eqs. (5.4) and (5.5) are coupled via the mean fields and the matrix
elements. In practice, the EOMs are decoupled during an update time step, by the so
called constant mean-field approach. Nevertheless, the evaluation of the EOMs (5.4)
and (5.5) is rather costly as the calculation of the mean fields and matrix elements
involves multi-dimensional integrals over all physical DOF. A key ingredient of the
MCTDH algorithm therefore is that the Hamiltonian operator can be expressed in
terms of products of low-dimensional terms Oh.�/

r such that
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OH D
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r ; (5.6)

where the Oh.�/
r operate only on the �th composite coordinate. With this ansatz

the multi-dimensional integrals reduce to sums of products of low-dimensional
integrals:
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In this form the evaluation of the right-hand sides of the EOMs can be effectively
performed. (An alternative to the product form discussed here is the correlated DVR
(CDVR) method of Manthe [15].)

The MCTDH ansatz Eq. (5.2) is also suitable for the calculation of eigenstates in
which case the expectation value of the Hamiltonian is minimized. This leads to an
eigenvalue problem for the A-vector

X

L

h˚J j OH j˚Li AL D E AJ ; (5.8)

which constitutes an ordinary eigenvalue equation that can be solved using a Krylow
subspace method, and a propagation of the SPF in negative imaginary time � D �it,
i.e., a relaxation, with the EOM
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Since both equations have to be fulfilled simultaneously, one again uses the
constant mean-field approach to iteratively solve both equations until convergence
is achieved.

One of the main challenges at the present time, however, is not so much the
compact representation of the wavefunction but of the Hamiltonian. While the
kinetic energy operator is in most cases known analytically and of the form Eq. (5.6)
this is not the case for the PES. As stated above, accurate PES are often available
only as intricate numerical subroutines resulting from previous quantum chemistry
calculations. The sheer size of the primitive basis prohibits sampling of the PES or
calculating the potential points on the fly for larger systems.

For smaller systems (six to eight DOF) one can use a similar ansatz for
the potential as for the wavefunction Eq. (5.2) and use the so-called POTFIT
algorithm[3, 16–19] or its multi-grid extension[20], to transform the PES into
product form. This, however, requires multiple integrals over the complete grid such
that POTFIT can only be used up to a certain number of DOF. For larger systems,
one needs to use alternative techniques.
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Within the present contribution we resorted to the so-called cluster expan-
sion (CE)[10], a variant of the n-mode representation[21, 22], also called high-
dimensional model representation or cut-high dimensional model representation
(cut-HDMR)[23–26]. Within the CE the potential is approximated by n-particle
interaction terms. These terms are called clusters. Again the Q˛ refer to the
composite coordinates as detailed above. The PES is approximated by the expansion

V.Q/ D v
.0/
ref .Qref/ C P

˛D1

v
.1/
˛;ref.Q˛; Qref/ C P

˛<ˇ

v
.3/
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˛<ˇ<�

v
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(5.11)

etc. Qref here may either be a reference configuration or contain reference coordinate
which is present in all clusters. The main advantage of this technique is that the
series can often be truncated at low orders n and that the n-particle interaction terms
v.n/ only depend on a few (composite) coordinates such that POTFIT can be used to
transform these low-dimensional terms into product form. The main disadvantage,
on the other hand, is that this method is not variational and hence additional terms
are not always guaranteed to improve the global accuracy of the expansion. It is also
unknown which terms are significant and which ones can be neglected prior to their
actual calculation, however, it can be estimated using statistical methods. Moreover,
especially in the edges of the primitive grid the error of the expansion Eq. (5.10)
is known to be rather uncontrollable. The CE often leads to numerical instabilities
due to unphysically and strongly negative parts of the approximated potential which
need to be “repaired" by adding either additional higher order terms of the CE or
artificial external potentials. But even with these limitations, the CE is a powerful
tool to represent potentials with a large number of DOF and hence this method is
used for all calculations presented in this chapter.

5.3 Infrared Spectroscopy and Dynamics of the Protonated
Water Dimer

Protonated water clusters (H(H2O)C
n ) of various sizes and geometries have captured

the attention of many researchers in recent years due to their importance to many
areas of chemistry and biology. Advancements in understanding the dynamics
and spectroscopy of this kind of systems were made possible owing to important
improvements in the measurements of IR action spectra in the gas phase [27–32]. In
order to assign the recorded spectra and extract meaningful structural and dynamical
information, computational simulations are needed in conjunction with experiments.
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However, we are still far from accurate and reliable simulations of the IR spectra of
all but the smallest clusters. This is caused by the coupled, anharmonic interatomic
potential governing the motion of these systems, featuring many accessible minima
connected through shallow barriers, and the need of a quantum dynamical treatment
of the system to obtain accurate vibrational eigenstate energies and absorption
cross-sections. Among the various clusters, the protonated water dimer (H(H2O)C

2 ),
also known as Zundel cation, has been the subject of intense research efforts,
both from the experimental [28–32] and from the theoretical [8, 10, 11, 31–38]
perspectives. The cleanest experimental IR spectra for the Zundel cation could be
obtained by messenger atom tagging techniques using Ar [30–32] and Ne [31, 32]
as the tagging agents. Previous multiphoton spectra measured by IR free electron
lasers had presented substantially different features to the linear spectra measured
at lower light intensities and had been very difficult to interpret [28, 29]. The
spectrum obtained with Ne-tagging could be shown to be very close to the linear
absorption spectrum of the bare cation. This spectrum could be assigned and fully
understood only after full-dimensional quantum-dynamical simulation [8–10]. IR
spectra of various isotopically substituted forms of the Zundel cation were also
reported using the messenger predissociation technique with Ar-tagging in the range
600–4,000 cm�1[32]. The large observed variation in the spectral features of the
different isotopomers clearly pinpoints the complex nature of the cluster dynamics,
dominated by anharmonicities and Fermi resonances.

5.3.1 Infrared Spectroscopy

The infrared spectra are calculated in the time-dependent representation of quantum
mechanics by Fourier transformation of the auto-correlation of the dipole-operated
initial state [1]:

I.E/ D E

3 c �0 �
2

Re

1Z

0

exp.i .E C E0/ t=�/

�h�	;0j exp.�i OH t=�/j�	;0i dt (5.12)

where E0 is the ground-state energy and j�	;0i � O	 j�0i. This corresponds to the
first order time-dependent perturbation theory result for absorption spectroscopy.
The great advantage of the time-dependent approach is that no full Hamiltonian
diagonalization is required in order to obtain the vibrational eigenstates from
which later transition dipole matrix elements would be computed. The latter
becomes simply impracticable in systems of just moderate dimensionality due
to the large number and density of states. Instead, the application of Eq. (5.12)
requires an efficient wavepacket propagation method. As outlined in Sect. 5.2 an
efficient propagation method for the time-dependent Schrödinger equation is given
by MCTDH [2–5]. The choice of coordinates is crucial in quantum dynamics
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calculations of large molecules. The coordinates should correspond as much as
possible to what could be called “natural motions” of the system. In rigid and weakly
coupled systems these correspond to normal modes of vibration calculated from
second order expansion of the PES around a suitable stationary point. In molecules
and clusters featuring large amplitude motions and with strong mode couplings the
best choice is usually to use internal coordinates consisting of, e.g., bond distances,
bond angles or dihedral angles. Internal coordinates of this kind lead usually to
complicated kinetic energy operators (KEO), and this is discussed elsewhere. Once
the coordinates are fixed and the KEO has been obtained, the potential energy
operator (PEO) part of the Hamiltonian has to be expressed in such coordinates
in a form that makes the subsequent quantum dynamics calculations as efficient as
possible. Various possibilities to attack this question are also discussed elsewhere.
All details on the setup of the vibrational Hamiltonian of the Zundel cation can be
found in [9, 39]. For the sake of completeness we mention that a set of curvilinear
coordinates was used to describe the configuration of the system and that the exact
KEO in this set of coordinates was employed. The 15 internal coordinates describing
the system are: the distance between the oxygen atoms of both water molecules (R),
the position of the central proton with respect to the center of mass of both oxygen
atoms (x,y,z), the Euler angles defining the relative orientation between the two
water molecules (waggings: �A; �B ; rockings: ˇA; ˇB ; internal relative rotation: ˛)
and the Jacobi coordinates which account for the particular configuration of each
water molecule (R1.A;B/; R2.A;B/; 
.A;B//) where R1x is the distance between the
oxygen atom and the center of mass of the corresponding H2 fragment, R2x is the
H–H distance and 
x is the angle between these two vectors. Figure 5.1 presents
a scheme of the 15 coordinates that describe the configuration of the system. To
account for the interatomic potential we made use of the PES of Bowman and
coworkers, which constitutes the most accurate ab initio surface available to date for
this system [34]. The PEO was constructed as a CE or n-mode representation [21]
as outlined in Sect. 5.2.

We will now discuss the accurate calculation and assignment of the IR spectra
of the isotopically substituted forms of the Zundel cation D(D2O)C

2 , H(D2O)C
2 , and

D(H2O)C
2 [12]. These spectra are compared to the non-deuterated H(H2O)C

2 cation,
whose main features are extensively discussed in [8, 10]. Figure 5.2a presents the
computed MCTDH spectrum for H(H2O)C

2 in comparison with spectra from [32]
measured using Ne and Ar as tagging agents. The agreement of the computed
IR linear absorption spectrum with the Ne-tagging spectrum is excellent. The
Ar-tagging spectrum presents splitting and broadening of its features due to the
stronger interaction of Ar with the cation. For the deuterated species only Ar-tagged
spectra have been reported to date [32]. Figure 5.2b presents the comparison of
the computed D(D2O)C

2 spectrum with the one obtained with Ar-tagging. The last
presents relatively broad features, but the agreement in the positions of the main
absorptions with theory is good. Therefore we can conclude that the spectra of the
various Zundel forms computed with MCTDH will display a very good agreement
with messenger predissociation spectra whenever the perturbation due to the tagging
agent is small. This is in itself an important result that could only be established
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Fig. 5.1 Diagram of the 15
internal coordinates
describing the configuration
of the Zundel cation. The
internal coordinates of the
water molecules
(R1X ; R2X; 
X ) correspond to
the Jacobi vectors connecting
the oxygen atom to the center
of the H–H fragment, the
vector joining both hydrogen
atoms and the angle between
both vectors, respectively.
The bending mode of a
monomer is well described by
the R2X coordinate in the
absence of large oscillations
in the OH-stretching modes

after comparison of the messenger tagging spectra with spectra calculated by a full-
dimensional quantum mechanical treatment using MCTDH.

The interpretation of the IR spectra requires definite assignments of the spectral
lines and an understanding of their origin. Zeroth-order states are used as a tool
to perform such assignments. They correspond to well-defined local excitations
of the system, e.g. the bending mode of the water molecules or the one-quantum
excitation of the proton-transfer mode, and they are constructed as products of
eigenfunctions of low-dimensional Hamiltonians. A more specific definition and
procedures to obtain them in the context of MCTDH was presented elsewhere
[10]. In the following, j˚li refers to the vibrational wavefunction of a zeroth-order
state while j�mi corresponds to a vibrational eigenstate. The quantities used for
assignments are the jh˚l j�mij2 products, which tell us to which extent a particular
and well-defined zeroth-order vibration participates in a certain spectral line. Even
though each line contains contributions from all or some of the considered zeroth-
order states (non-vanishing jh˚l j�mij2 elements), there is usually a zeroth-order
state that contributes to a specific transition appreciably more than the others. Thus,
when we refer to a certain spectral line as the (X) transition or to the corresponding
eigenstate as j�X i, it is because it is possible to identify the zeroth-order state j˚X i
as the leading contribution to j�Xi. In the case of very large coupling it may not
be possible to cleanly disentangle the spectrum into one-to-one assignments of
spectral peaks to zeroth-order states, since a given transition may present similar
contributions from two or more zeroth-order states. Tables containing the most
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MCTDHH5 O2
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D5 O2
+

a

b

Fig. 5.2 Comparison of MCTDH spectra with available experimental measurements from [32]
for (a) H(H2O)C

2 and (b) D(D2O)C
2

important jh˚l j�iij2 elements for the four considered isotopologues are provided
in [40].

Figure 5.3 presents the IR spectra of H(H2O)C
2 , D(D2O)C

2 , H(D2O)C
2 and

D(H2O)C
2 . The lowest frequency parts of the four spectra are composed of two

lines related to the one-quantum wagging motions and its combination with the
internal rotation motion of one of the monomers with respect to the other. The
highest frequency parts of the spectra are composed of two bright lines related to
the terminal O–H(D) vibrations of the water molecules. Neither the assignment of
the just discussed peaks in the lowest and highest energy domain nor the relative
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a b

c d

Fig. 5.3 Computed IR spectra of the (a) H(H2O)C
2 , (b) D(D2O)C

2 , (c) H(D2O)C
2 , and

(d) D(H2O)C
2 isotopologues of the Zundel cation with assignments of the most important peaks

positions between each other change after deuteration. Only the expected red-
shifts take place for D(D2O)C

2 and H(D2O)C
2 , i.e. when the terminal hydrogens are

substituted by deuterium atoms.
The situation turns out to be much more complex in the spectral region between

600 and 2,000 cm�1. The middle range spectrum of the H(H2O)C
2 cation in Fig. 5.3a

features five clearly visible absorptions in the range between 900 and 1,900 cm�1.
They could be assigned and explained as arising from a set of five coupled zeroth-
order states composed of [8, 10]: j˚1R;w3i, a combination of two modes, a two-
quanta asymmetric wagging (w3) mode and the one-quantum (1R) mode, where R

is the O–O stretching coordinate; j˚1zi, the one-quantum asymmetric proton stretch
along the central O–O axis (z refers to the proton position along the O–O axis);
j˚1z;1Ri, the combination of the 1z and 1R excitations; j˚1z;2Ri, the combination of
the 1z and two-quanta O–O excitations; j˚bui, the ungerade water-bending mode.

The most intense line of the H(H2O)C
2 spectrum centered at 1,040 cm�1 is related

to the (1z) transition since the displacement of the central proton along the O–O
axis causes the largest variation of the dipole moment. Thus the j˚1zi zeroth-order
state has a large contribution to this eigenstate, but the second most important
contribution to this line arises from the j˚1R;w3i zeroth-order state. The situation
is reversed for the transition centered at 915 cm�1, whose leading contribution is
j˚1R;w3i and the second most important one is j˚1zi. Therefore the doublet of
peaks centered at about 1,000 cm�1 in the H(H2O)C

2 arises from a Fermi resonance
between the strongly coupled, zeroth-order states j˚1zi and j˚1R;w3i [8,10,11]. The
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next three lines of the spectrum correspond to the 1,415 cm�1 (1z; 1R), 1,750 cm�1

(bu) and 1,905 cm�1 (1z; 2R) transitions, respectively. All three transitions, and
specially (bu), have a non-negligible contribution from the j˚1zi zeroth-order state,
from which they obtain a large part of their spectral intensity [10]. Moreover, the
strong coupling between the j˚1zi and j˚bui modes is responsible for shifting the
(1z) and (bu) lines about 150 cm�1 down and up, respectively, with respect to their
estimated uncoupled positions [10, 11].

The IR spectrum of D(D2O)C
2 is shown in Fig. 5.3b. The (1z) peak is found

here at 678 cm�1 and is, as in H(H2O)C
2 , the most intense IR absorption. The

(1R; w3) peak is found at 807 cm�1. Therefore the characteristic doublet at about
1,000 cm�1 in H(H2O)C

2 is also found in D(D2O)C
2 , but with its constituent peaks

in reverse order [12]. The (bu) peak is found at 1,298 cm�1, about 450 cm�1 below
its position in H(H2O)C

2 . Neither (1z; 1R) nor (1z; 2R) peaks appear in the spectrum
of D(D2O)C

2 . The position of these two eigenstates has been computed to be 1,150
and 1,600 cm�1, respectively. Therefore they are located far from absorptions from
which they could borrow intensity. Moreover, after deuteration the coupling between
z (proton position) and R (O–O distance) is reduced since the system remains
in deeper, less anharmonic regions of the potential, thus reducing even more the
possibility for direct absorption of the (1z; 1R) and (1z; 2R) combinations [12].
Immediately above the (bu) peak a line is found, which can be assigned to
(w3; 2R) [40]. This peak therefore borrows some intensity from (bu) in order to
become bright in D(D2O)C

2 via a similar mechanism that gives rise to the main
doublet in H(H2O)C

2 . This absorption is seen as a shoulder to the (bu) peak in
experimental spectra in this region [32].

The most complex of all considered spectra is H(D2O)C
2 , shown in Fig. 5.3c.

Here the deuteration of the external positions brings the position of the zeroth-order
state j˚bui down to lower frequencies by about 300 cm�1, while the zeroth-order
states j˚1zi and j˚1z;1Ri remain almost unaffected. This results in a situation in
which the zeroth-order j˚bui is found between j˚1zi and j˚1z;1Ri. These three
zeroth-order states strongly couple to each other and are responsible for the triplet
absorption with peaks at 938, 1,355, and 1,564 cm�1 [12,40]. The peak at 938 cm�1

has almost equal relative contribution from j˚1zi and j˚bui. The central peak at
1,355 cm�1 has almost equal participation from j˚1zi, j˚bui, and j˚1z;1Ri, while
the peak at 1,564 cm�1 is a mixture of j˚bui and j˚1z;1Ri with a slightly larger
participation of the latest. The strong couplings shaping the middle region of the
spectrum are reflected in the loss of diagonal dominance of the matrix composed
of the jh˚l j�mij2 elements (see table in [40]) for H(D2O)C

2 . The use of a tilde
in these three assignments in Fig. 5.3c indicates that the tag assignments are a bit
arbitrary because of the strong mixing of underlying zeroth-order states, in contrast
to other assignments in which one zeroth-order state is mainly responsible for a
given peak. The (1R; w3) peak is of reduced intensity due to its red shift and
consequent decoupling from the zeroth-order (1z). The (1z; 2R) state is located far
from peaks from which it can borrow intensity and shows no IR absorption.
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In contrast to H(D2O)C
2 , deuteration of the central position alone in D(H2O)C

2

leads to the simplest and most diagonally dominant IR spectrum of this series.
Here the zeroth-order (1z) shifts to lower frequencies and decouples from (1R; w3).
The peak at 785 cm�1 is cleanly assigned to (1z). (1z) decouples as well from (bu).
This brings the position of the (bu) peak down to 1,662 cm�1, closer to the bending
frequency of an isolated water molecule and explains the reduced intensity [12,40].
Note that the position of (bu) at 1,758 cm�1 in H(H2O)C

2 was due to strong coupling
with the central proton (1z) mode. Due to the isotopic substitution the (1z; 2R) peak
is shifted down, ending relatively close to (bu). The doublet formed by (bu) and
(1z; 2R) is the only structure related to a resonance in D(H2O)C

2 . However, both lines
can be cleanly assigned, as seen by inspecting the contribution of the corresponding
zeroth-order states [12, 40].

We have seen that the effect of a full or partial deuteration of the cation not
only leads to line shifts but also significantly changes the intensities and modifies
the assignment of the infrared signatures of the different isotopologues. This is
due to the soft, anharmonic, and coupled potential of the Zundel cation, where the
dynamics and spectroscopy are strongly dominated by Fermi resonances between
various coupled zeroth-order vibrations. The discussed quantum dynamical calcula-
tions represent an important milestone in our understanding of the spectroscopy and
dynamics of protonated water clusters and on their dramatic isotope effects [41],
and could only be achieved after a full-dimensional quantum dynamical treatment
of the clusters.

5.3.2 Dynamics of the Excess Proton

We are now in a position to further explore the dynamics of the protonated water
dimer and attempt to learn about the details of proton transfer dynamics in acidic
water. These issues can be naturally addressed within the same methodological
framework presented above to calculate the IR spectrum. The first proposal of a
plausible mechanism for charge migration in water dates from two centuries ago
and depicts the excess charge as hoping between neighboring waters [42]. In more
recent times two limiting structures were proposed, namely the Zundel [43] (H5OC

2 )
and Eigen [44] (H9OC

4 ) cations, which represented excluding views of the hydrated
proton in water. With the advent of sophisticated experimental and computational
techniques during recent years a concordant view emerged for the transfer of an
excess proton between two hydrogen-bonded water molecules [38, 45–47]. Both
the Eigen and Zundel structures play a role as limiting ideal configurations in such
mechanism. Basically, the breakage of a hydrogen bond in the second solvation shell
of the Eigen cation allows for the excess proton to advance towards a neighboring
water molecule while forming a Zundel-like transient structure. Based on the
analysis of classical trajectories of an excess proton in bulk water two different
time regimes were identified. On the one hand, the rate-limiting hydrogen bond
breakage occurs in the time-scale of 1–2 ps. On the other hand, the ultra-fast rattling
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Fig. 5.4 (a) Expectation value hRi and (b) expectation value hzi. The vibrational energy of the
system is 2,575 cm�1 (7.36 kcal/mol) above the ZPE. The expectation value hzi at t D 0 is
�0.61 Bohr

of the transferring proton between water molecules before the transfer is complete
occurs in the time-scale of 100–200 fs or even less [48, 49]. Femtosecond pump-
probe experiments in the infrared domain were able to access such ultra-fast proton
oscillations between neighboring water molecules, which would even occur in a
time-scale shorter than the resolution of the experiment, below 100 fs [50], thus
supporting the view of an ultra-fast PT taking place only after the right coordination
of the implied water molecules has been achieved, this last being the rate-limiting
step of the overall process.

In the following we will analyze the very fundamental proton transfer event
between the fragments H3OC and H2O from a quantum dynamical, time-dependent
perspective, and provide a connection to the IR spectroscopy results presented
above. An initial wavepacket to study the collision and proton transfer is prepared
by applying a perturbing potential depending on the z and R coordinates in order
to place the proton closer to one of the two water molecules [11] and to increase
their intermolecular distance. This wavepacket corresponds to fragments H3OC
and H2O immediately before their encounter and exchange of a proton. This
wavepacket is then propagated on the unperturbed Hamiltonian. At t D 0 we
have hRi D 5:20 Bohr (2:75 Å), which roughly corresponds to the equilibrium
distance of the hydrogen bond between water molecules. The proton is initially
closer to water A (left in the plot). The total vibrational energy of the system in this
propagation lies 2,575 cm�1 (7:36 kcal/mol) above the ZPE. Figure 5.4a, b present
the time evolution of the hRi and hzi expectation values, respectively. After the
dynamics starts the hydrogen bond quickly compresses and reaches its shortest value
of hRi D 4:37 Bohr (2:31 Å) after 40 fs. After 75 fs it reaches its outer turning point
at hRi D 4:98 Bohr, which is, however, shorter than the initial O–O separation.
The amplitude of the hRi oscillations is damped at each new cycle. The dynamics
of the central proton depends to a large extent on the position of the R coordinate.
The plot of hzi shows how the proton executes a fast motion towards the acceptor
oxygen during the first half cycle of the hRi oscillation. The proton continues to
be transferred during the second half of the hRi oscillation, between t D 40 and
t D 75 fs while the R distance is becoming larger again. The rate of proton transfer
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is, however, slower during the second half-period. In the next full cycle of hRi the
proton transfer proceeds slightly in the opposite direction, and after two cycles of
hRi the expectation value hzi stabilizes around 0.

The probability density �.z; R/ at different times during the dynamics is depicted
in Fig. 5.5. After the first two oscillations of hRi during the first 150 fs the
probability density �.z; R/ reaches a nearly symmetric distribution in z, which is
also evident from the fact that hzi � 0. Although hzi attains an equilibrium value
in this short period, the �.z; R/ distribution changes in time by performing almost
symmetric motions in z. This is seen by comparing the snapshots of �.z; R/ at times
180, 210, 240, and 270 fs in Fig. 5.5. After about 120 fs a node develops in the .R/

coordinate direction which then remains clearly visible for the rest of the simulation.
This indicates that, once internally equilibrated, the .R/ coordinate has about one
quanta of excitation. Here we would like to emphasize again that the densities in
Fig. 5.5 and expectation values in Fig. 5.4 are averaged quantities extracted from the
full-dimensional (15-dimensional) propagation of the cluster. The dramatic effect
of the strong coupling among vibrational modes becomes now apparent if one
compares these dynamics to the kind of periodic and undamped motion that would
be expected for a one- or two-dimensional model composed of only the .z/ or .z; R/

coordinates.
Next, we discuss the dynamics of energy transfer from the .z; R/ coordinates to

the rest of the system [11]. During the first 50 fs these modes lose about 1,200 cm�1

vibrational energy. At the end of the propagation a bit more than 1,500 cm�1 of
vibrational energy has been redistributed to the rest of the system. Interestingly,
the energy transfer is markedly monotonic: the energy transferred from the (z,R)
coordinates to the rest of the system is never transferred back during the length of
the simulation. Such ultra-fast, irreversible energy transfer is the consequence of
strong couplings between the various DOF of the system, which open very effective
channels for vibrational energy redistribution. It is interesting to investigate how
the vibrational energy redistributes among various vibrational modes. Figure 5.6b
shows the vibrational energy in each combined-mode along time. The energy of
(˛,x,y) highly oscillates with a period that matches the motion of hRi. These
oscillations are not compensated by other modes, which indicates that these energy
oscillations are related to an energy transfer from and to the coupling terms, i.e. OH �P OH .�/ (where OH .�/ are separable Hamiltonians of the corresponding subpart of
the cluster [11]), of the Hamiltonian. The rocking coordinates (ˇA; ˇB ) also have an
oscillatory component, but underlying there is again a monotonic energy increase.
The wagging coordinates (�A; �B ) gain energy in a smooth and steady way during
the whole dynamics, while the internal coordinates of the water molecules gain
energy in a much more abrupt way during the first 50–100 fs. By projection of the
total wavefunction onto eigenstates of the OH .�/ Hamiltonians it is possible to learn
more about the details of the energy redistribution during the proton transfer process.
We find out that the vibrational energy in the (R) coordinate efficiently flows into
the orientational DOF of the water monomers via their gerade motions [11]. From
the internal motions within each water monomer only the bending modes play
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Fig. 5.5 Snapshots of the probability density �.z; R/ for the simulation with a total vibrational
energy of 2,575 cm�1 (7.36 kcal/mol) above the zero point energy of the system
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Fig. 5.6 Energy partition among combined modes (for details on the calculation, see [11]).
Panel (a) presents the change in vibrational energy in the (z; R) coordinates and the sum of the
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energy origin, so that energy changes relative to t D 0 are shown. The sum of these two energy
changes equals the energy dumped to the coupling terms of the Hamiltonian, and hence differs
from zero. Panel (b) displays the change in vibrational energy of all combined modes except (z; R)
individually

a significant role in the dynamics, while the O–H stretchings remain completely
unaffected. All vibrational energy flowing into the internal coordinates of the water
molecules is taken by the bending modes, even if the total energy of the system
would be enough to appreciably excite the O–H stretchings. The strong coupling
between proton transfer and bending modes has been analyzed in the IR spectra
discussed previously, where it was shown that it leads to pronounced energy shifts
of a few hundred wavenumbers of the corresponding absorption lines. The fact that
the energy transfer occurs mostly within the first 100 fs, in which the central proton
reaches a distribution close to equilibrium, suggests that there is a very efficient
energy flow from the proton-transfer mode to the water bendings, in particular to
the ungerade bending mode, which has the adequate symmetry for such coupling.

5.4 Tunneling Splitting of Malonaldehyde

Malonaldehyde (propanedial) is studied in many fields of the natural sciences. It
is, for instance, an important product of the lipid metabolism and also serves as a
biomarker for oxidative stress. In this function it plays an important role in many
clinical studies. Also in food processing the presence of malonaldehyde indicates
lipid oxidation and hence can be used for quality control purposes. Malonaldehyde
is also one of the most prominent molecules that exhibit a keto-enol tautomerization
and mainly exists in the enol form, of which in total eight possible but only one
stable stereoisomers exist. The stable enol form consists of a horseshoe-shaped
backbone of three carbon atoms with conjugated double bonds saturated with
hydrogen. To one end of the carbon chain a hydroxyl group is attached while the
other end is formed by an aldehyde group. The molecule is planar and the two
oxygen atoms are oriented to the same side of the carbon chain (cis-form) such that
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a b c

Fig. 5.7 Chemical structure and proton tunneling within the enol form of malonaldehyde. The
proton of the hydroxyl group (a) is transferred via a transition state (b) to the oxygen of the (former)
aldehyde group (c). During the transfer the single- and double-bonds as well as hydroxyl and
aldehyde groups are interchanged resulting in a mirrored variant of the original molecule

they are in close proximity and an intra-molecular hydrogen bond forms between
the hydroxyl and the aldehyde group [51].

This particular geometric arrangement gives rise to an interesting effect. The
hydrogen of the hydroxyl group can tunnel through a potential barrier towards
the other oxygen atom of the aldehyde group, thereby triggering a reorganization
of the double bonds—and hence bond lengths—within the carbon backbone. This
tunneling process is depicted in Fig. 5.7. The resulting structure corresponds to the
perfect mirror image of the original molecule such that the proton transfer process
occurs in a symmetric double well potential.

The small size of the molecule and the occurrence of an intra-molecular hydrogen
bond alongside with the existence of an intra-molecular tunneling process makes
malonaldehyde a model system to study these kinds of processes. In particular the
tunneling process has drawn quite some attention within the scientific community
and has been described in numerous publications, both experimentally and theoret-
ically. Spectroscopic measurements have already been performed in the late 1970s
and early 1980s [52] and first estimates of the ground state tunneling splitting have
been given as approximately 21 cm�1 by Wilson and coworkers. Later this value
could be refined and the value of the ground state tunneling splitting has been given
very accurately as 21:5831383.6/cm�1 [53, 54].

Higher vibrational eigenstates and tunneling splittings have been measured and
reported in a number of papers, most notably already by Wilson et al. [51, 52, 55]
and Seliskar and Hoffman [56] in the early 1980s. Most recently Lüttschwager et al.
reported [13] spectroscopic measurements and assignments of a larger number of
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vibrational states. These measurements allow a detailed comparison of calculated
and measured data and hence can be used to construct and test model systems with
large amplitude motions such as proton transfer reactions.

From a theoretical point of view an accurate treatment of these kind of processes
is a challenging task. For a full quantum treatment, electronic structure calculations
to a high level of theory need to be performed which became feasible in the early
2000s [57–60]. The first PES featuring full dimensionality was published by Yagi
et al. [61] and a second one by Wang et al. [62]. Following the authors, the latter
PES is the most accurate one published to date and in particular features the correct
barrier height which the authors state as 4.1 kcal/mol.

However, a numerical reproduction of experimental spectra requires not only
a correct PES but also the corresponding wavefunction of the system needs to
be accurately represented. The proton motion is strongly coupled to the motion
of the backbone atoms and the reorganization processes therein which makes
the wavefunction highly correlated. Accurate calculations require a full quantum
mechanical treatment of all involved particles. Nevertheless, in the past, a number
of approximate methods have been used to overcome this bottleneck. These are, of
course, models of reduced dimensionality where some DOF have been neglected
[55], reaction surface methods, [63–65], more general methods [60, 62, 66–71],
semi-classical approaches [72–77]. However, excitations in other modes than the
transfer mode can change the effective barrier height and width for the tunneling
process and therefore lead to different splittings. An illustrative example is the
vibrational mode describing the distance of the two oxygen atoms. Excitation of
this mode facilitates the proton transfer by effectively lowering the barrier and leads
to a much larger tunneling splitting than observed for the ground state. The opposite
effect can be seen upon excitation of the asymmetric out-of-plane motion of the two
oxygen atoms which effectively increases the barrier height as the oxygen atoms
move away from the proton.

Recently, a number of full quantum mechanical calculation on malonaldehyde
employing MCTDH have been reported [66, 70, 78–80] using the potential energy
surface of Yagi et al. [61] as well as for the PES of Wang et al. [62]. Here, the authors
report that even the estimation of the ground state energy already reached the limit
of today’s computational capacities as detailed in the following section, where we
present state energies that were obtained using the PES of Wang et al. [62].

5.4.1 Calculated State Energies

The choice of coordinates is of particular importance for the calculations using
MCTDH. The length of the A-vector (cf. Eq. (5.2)) is determined by the amount
of correlation between the combined modes or particles as discussed in Sect. 5.2.
The coordinates should therefore be chosen such that they minimize this correlation
in the sense that a simple Hartree ansatz for the wavefunction already yields a
good approximation of the wavefunction. Complicated curvilinear coordinates may
reduce these “artificial" correlations but, on the other hand, they may complicate the
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Table 5.1 Labeling, frequencies in cm�1, type and physical interpretation of the normal mode
coordinates obtained at the transition state

Coordinate Frequency C2v Description

Qq1 346.28 A2 CH–O—bending
Qq2 393.37 B1 CH–C–CH—bending
Qq3 573.02 B2 Ring deformation, C–O— bending
Qq4 608.85 A1 Ring deformation, O–O— distance
Qq5 750.20 B1 C–H—bending
Qq6 957.92 A1 Ring deformation, C–O— bending
Qq7 995.20 B1 C–C–C—bending
Qq8 998.18 A2 C–H—bending
Qq9 1073.78 A1 Ring breathing, C–C— stretching
Qq10 1101.40 B2 C–H—bending
Qq11 1321.98 B1 Out-of-plane motion of Transfer-proton
Qq12 1340.42 B2 C–H—bending, C–O stretching
Qq13 1405.12 A1 C–H—bending, C–O stretching
Qq14 1472.48 B2 C–H—bending, C–O stretching
Qq15 1617.71 A1 C–O—stretching
Qq16 1620.12 B2 C–C–C—stretching
Qq17 1893.66 A1 In-plane motion of Transfer-proton
Qq18 3126.86 A1 C–H—stretching
Qq19 3141.39 B2 C–H—stretching
Qq20 3227.45 A1 C–H—stretching
Qq21 i � 1253:02 B2 Proton transfer

calculation of expressions for the kinetic energy operator to such an extent that they
become hardly feasible. Often one needs to find a compromise between these two.

For the calculations on malonaldehyde we used a set of mass- and frequency
scaled normal mode coordinates f Qqi g obtained at the transition state depicted in
Fig. 5.7b. The coordinate labeling, normal mode frequencies and physical descrip-
tion are outlined in Table 5.1. The coordinates were subsequently modified [78] to
minimize the correlation induced by the reorganization of the double bonds. The
shifts of the inter atomic distances only depend on the position of the proton along
the transfer coordinate Qq21. They can be compensated by the modified coordinates
fqi g obtained by the transformation

qi D Qqi � Fi . Qq21/; i D 1 : : : 20;

q21 D Qq21:
(5.13)

The Fi describe the displacements and were determined by minimization of the
potential and subsequent fitting to polynomials such that the kinetic energy operator
can still be obtained in analytic form as given in [78]. Note that in the following
global rotation and vibration–rotation interaction terms have been neglected and
a non-rotating system is assumed. In this case the vibration–rotation interaction
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Table 5.2 Mode
combinations for MCTDH
calculations

Logical coord. Physical coords.

Q1 q1, q2, q18

Q2 q3, q12 , q15

Q3 q4, q16, q17

Q4 q5, q20, q6, q9

Q5 q7, q8, q10, q19

Q6 q13, q14, q11, q21

contributes approximately 2.4 cm�1 to the vibrational ground state energy and
increases the tunneling splitting about 0.2 cm�1 [78].

Details about the kinetic and potential operators can be found in [78] and [79].
The latter in particular contains a detailed description of the CE technique Eq. (5.10)
used to model the PES. Here, we just note that other than in the previous section, the
reference geometry always included the transfer coordinate and that relevant clusters
have been identified using a Metropolis algorithm prior to their actual sampling on
the primitive grid since a brute force calculation of all clusters was not possible.

For the representation of the wavefunction in MCTDH form, the 21 physical
coordinates have been combined into six logical ones, where each mode contains
three to four physical coordinates. The mode combination scheme is outlined in
Table 5.2. It was chosen such that, where possible, physical coordinates that are
strongly correlated are grouped together. This has the advantage that correlations
between those modes are already represented on the SPF level and do not enter the
A-vector. (Note that when computing the CE, Eq. (5.10), we have used less strongly
combined particles. See [79].)

Once having defined the computational setup, the ground state energy was
estimated using an extrapolation scheme [78] based on the variational character
of the MCTDH algorithm. The extrapolation scheme exploits the fact that adding
SPF always leads to lower state energies. Provided an (in terms of number of SPF)
almost converged wavefunction this energy drop is mode-local, i.e., it does (almost)
not depend on changes in the number of SPF in other modes, so that the sum of
energy drops one obtains by independently increasing the number of SPF in all
modes, one by one, is an upper estimate for the energy lowering one would obtain
if one increases the number of SPF in all modes simultaneously.

The extrapolation scheme is outlined in Table 5.3. Starting from a reference
calculation the numbers of SPF are doubled for each mode independently and the
energy drops are summed to obtain the true ground state energy and tunneling
splitting. Since the energy drop for modes 3 and 6 where larger then for all other
modes, we also performed an additional extrapolation by increasing the number of
SPF in these two modes simultaneously.

After careful convergence checks the zero point energy was obtained as
14,667.3 cm�1 and the ground state tunneling splitting as 23.2 cm�1. Additional
calculations confirmed these results with an error of less than 2 cm�1 for the ground
state and less than 0.1 cm�1 for the tunneling splitting. Concerning the dynamical
calculation, the error introduced by the CE of the potential is difficult to estimate.
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Table 5.3 Extrapolation of the state energies

No. of SPF for

Q1 Q2 Q3 Q4 Q5 Q6 Energy (C) �E Energy (�) �E Splitting

10 7 12 10 10 20 14672.784 (ref) 14696.587 (ref) 23.803
20 7 12 10 10 20 14672.273 �0:511 14696.034 �0:553 23.761
10 14 12 10 10 20 14672.209 �0:575 14695.985 �0:602 23.776
10 7 24 10 10 20 14671.321 �1:463 14694.722 �1:865 23.401
10 7 12 20 10 20 14672.115 �0:669 14695.847 �0:740 23.732
10 7 12 10 20 20 14672.144 �0:640 14695.998 �0:589 23.854
10 7 12 10 10 40 14671.518 �1:266 14695.158 �1:429 23.640
Sum �5:124 �5:778

Extrapolated energy 14667.660 14690.809 23.149
10 7 24 10 10 40 14669.709 �3:075 14692.999 �3:588 23.290
Sum �5:470 �6:072

Extrapolated energy 14667.314 14690.515 23.201

(C) and (�) denote the symmetric and asymmetric ground state, respectively, and �E denotes the
difference to the reference state.The last three rows outline the extrapolation with the number of
SPF increased in modes 3 and 6 simultaneously. We consider the values given in the last line of the
table as our best results for ground state energy. All energies are in cm�1

However, we have performed CEs using different mode combinations and different
selections of clusters (not discussed here) and obtained very similar results. Upon
adding the estimated contributions of the vibration–rotation coupling terms (2.4
and 0.2 cm�1) [78] a zero point energy of 14,670 cm�1 and a tunneling splitting of
23.4 cm�1 were obtained for the PES of Wang et al. [62]. These results are in very
good agreement with the splitting of 23.8 cm�1 obtained by Hammer and Manthe
[78] who used a multi-layer variant of MCTDH together with the correlation DVR
scheme. However, the tunneling splitting differs somewhat from the experimental
value of 21.6 cm�1. The zero point energy calculated by us is about 8 cm�1 below
the one obtained by Hammer and Manthe [78]. Again, this could be due to the
CE, but we think the lower ground state energy reflects the fact that the present
calculations are better converged.

Excited states and tunneling pairs were obtained using the block improved
relaxation algorithm. The calculations were performed in blocks of four using the
same computational setup as before but with a larger set of SPFs than for the
reference state in Table 5.3 (Q1:18, Q2:10, Q3:16, Q4:11, Q5:11, Q6:22) and the
blocks were chosen such that they overlap by one state. Calculated state energies
from this work in comparison with values obtained in [80] and experimental
energies [13] as well as tunneling splittings are outlined in Table 5.4 together
with their assignments. Note that within the calculated energies and splittings the
rotation–vibration interaction has been neglected. Since the wavefunctions become
more and more structured the higher the state energy, it is not surprising that their
accuracy decreases as emerging correlations cannot be completely covered by the
A-vector anymore. However, the structure of the corresponding tunneling pairs is
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Table 5.4 Vibrational state energies relative to the ground state energy and tunneling splittings,
both, calculated (this work and from [80]) and measured (from [13]), as well as their assignment

State energies Tunneling splittings

This work Ref. [80] Experiment This work Ref. [80] Experiment Assignment

0 0 0 23.5 23.5 21.6 Ground state
254 259 241 64.8 64.0 57 q4

271 325 273 17.3 6.7 6 � � � 9 q1

382 425 390 22.3 16.3 15 q2

507 – – – – – q4 � q4

526 566 512 16.8 18.8 15 q3

527 – – 53.3 – – q1 � q4

The state energies refer to the lower one of the tunneling pairs, which is usually the gerade state,
except for the q3 state where the ungerade state has a lower energy. All energies in cm�1

very similar such that this error cancels to quite some extent for the splittings. We
therefore consider the splittings reported in Table 5.4 as converged while the state
energies are likely to be slightly too large.

The calculated state energies and splittings we obtained as outlined in Table 5.4
are in reasonable agreement with the experiment. This is especially true for the state
energies for which we obtain a difference to the experimental values of at most
14 cm�1. However, it is interesting to see that for states q3 and q4 the energies are
larger than the experimental values, while this is not the case for the q1 and q2

fundamentals. Here the experimental value are larger.
For the two lowest eigenstates we obtain very similar splittings as Hammer and

Manthe [80], which are, however, somewhat larger than the experimental values.
For the two following splittings (q1 and q2) Hammer and Manthe observe excellent
agreement with the experiment while overestimating the absolute state energies by
35–50 cm�1, presumably because of a lag of full convergence of the wavefunction.
In contrast, we observe good agreement of our calculated state energies with
the experiment while obtaining larger splittings than Hammer and Manthe. This
is especially true for the fundamental of q1 for which we obtain a splitting of
about 17 cm�1, while the experimental value lies between 6 and 9 cm�1. The
situation changes for the splitting of q3. Here, the result of Hammer and Manthe is
approximately 4 cm�1 larger than the experimental one, while our result lies 2 cm�1

above the experiment.
In addition to the fundamentals we also show two doubly excited states in

Table 5.4. The first double excitation is observed in the mode q4 (O–O—distance)
and the second one as a combination of an excitation within mode q1 and q4, which
were both obtained among the fundamentals within the block improved relaxation
scheme. Note that the sum of the fundamental frequencies yields almost exactly
the frequencies of the double excitations, indicating that the anharmonic coupling
between these states is small.

The comparison of the calculated values both, of Hammer and Manthe [80] and
ourselves as well as the comparison with the experiment is quite interesting. While
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our results for the absolute state energies are in very good, the tunneling splitting are
in reasonable, but not excellent, agreement with the experiment, the situation is vice
versa for the results of Hammer and Manthe. Their splittings are indeed in excellent
agreement with the experiment; however, the state energies are consistently too large
as discussed above. At this point the origin of these differences remains unclear
and further investigations are needed. Hammer and Manthe are using the CDVR
scheme [15] and hence do not need to represent the PES in product form. The main
source of inaccuracies in their work is most likely due to a not completely converged
wavefunction and the errors introduced by the CDVR scheme (which are difficult
to estimate). On the other hand, our wavefunction is better converged (although
still not completely) and the main source of error may be introduced by the CE.
As mentioned above, however, test calculations with different mode combinations
and different selections of clusters lead to very similar results as outlined above.
This makes us confident that our PES representation is reliable. Moreover, errors in
the PES representation should largely cancel when inspecting tunneling splittings.
Considering the results outlined above and their discussion, again, shows that the
treatment of quantum dynamics in high dimensions is still a formidable task.

5.5 Summary

The protonated water dimer (or Zundel cation) constitutes an anharmonic and
vibrationally coupled cluster featuring a complex IR spectrum. This system has
been the subject of numerous experimental and theoretical investigations owing to
its challenging nature and its importance as a fundamental building block in acidic
chemistry. Here we presented a full-dimensional (15D) quantum mechanical calcu-
lation and assignment of the IR spectrum of the cluster using the MCTDH method.
Vibrational spectroscopy inherently probes quantized vibrational excitations and
a quantum mechanical treatment is critical to obtain the right absorption band
positions and intensities. For such a strongly coupled and anharmonic system the
description has to be full-dimensional and based on curvilinear coordinates, which
render the correlation between modes tractable if chosen to represent physically
meaningful bond lengths and angles of the system.

The IR spectrum of various isotopomers was discussed. Isotopomers of a system
have identical PES but their IR spectra present shifts with respect to each other
due to the different masses of some atoms. In the Zundel cation, we showed how
different isotopomers have completely different spectra, which is a consequence of
the complexity of coupling mechanisms and resonances shaping the IR absorption
profile. The proton transfer dynamics of the Zundel cation was discussed as well
and related to the IR signatures of the system.

Malonaldehyde with its intra-molecular proton transfer is another important
model system to study these kind of processes and is hence a well-studied molecule.
Experimental IR and Raman spectra have been recorded over the last decades and
allow a detailed evaluation of full-dimensional (21-D) model calculations which
only became possible in the recent years. In the present contribution we have
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presented full-dimensional calculations on the ground state energy and the lowest
excited states. The calculations were performed using the MCTDH algorithm and
the most accurate PES published to date [62]. Similarly as done in the Zundel
studies, the PES was brought to a numerically useful form by adopting a CE. This
re-fitting of the potential is likely the largest source of errors in our calculations.

With this setup and after careful convergence checks a ground state energy of
14,670 cm�1 and a tunneling splitting of 23.4 cm�1 have been obtained. Also, the
first four fundamentals and their tunneling splittings as well as two double exci-
tations were calculated and compared to experimental values as well as numerical
results of Hammer and Manthe [80]. Reasonable agreement between calculated and
experimental results was found. Slightly different results obtained with different,
but related, numerical methods still show that large systems like malonaldehyde are
a challenging task for accurate calculations.
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