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Abstract
In this chapter, recent developments of the quantum wave packet methods
for calculating differential cross sections (DCSs) of tetra-atomic reaction, for
calculating DCSs of triatomic reaction using wave packet method only with
reactant Jacobi coordinates, for calculating and analyzing the reactive resonance
wave functions, and for simulating and explaining experimental observables of
a reactive scattering, are given. Applications to the F C H2 reaction, especially
some fundamental understandings of its short-lived reactive resonances, the
H C O2 reaction, the H2 C OH ! H C H2O reaction, and the OH C CO !
H C CO2 reaction are presented for illustration.

4.1 Introduction

For decades it has been witnessed the persistent endeavors from both experimental
and theoretical sides in the attempts to reveal the ever detailed minutes of how
the reactants evolve to products during a chemical reaction process in various
conditions. A chemical reaction may be envisioned as a scattering collision in which
the original chemical bonds are cleaved and new ones are formed. Considering the
large mass difference between electrons and nuclei, it is advantageous to separate
the treatment of a reaction into solutions of two Schrödinger equations: first for
the electrons at fixed nuclear positions, and then for the nuclei. This is the Born–
Oppenheimer (BO) approximation, and it is valid for many chemical reactions.
The treatment of the motions of electrons allows the definition of potential energy
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surface (PES) as a function of all nuclear coordinates, and then the dynamic motions
of nuclei during a reaction are governed by the PES, which provides the force acting
on each nuclei in the system. A chemical reaction takes place on the PES along a
minimum energy path connecting the reactant region to the product region, and it
is called the reaction coordinate for the chemical reaction. In a typical chemical
reaction, the path traverses a reaction intermediate region, which is defined as the
transition state [34, 35].

Theoretically, the very early theory was pioneered by Hirschfelder and his
coworkers dated back to the later 1930s and early 1940s [49, 52], but it takes
more than 30 years to see the report of the fully quantum mechanical method on
the simplest three-dimensional H C H2 exchange reaction [110, 111], even though
various model calculations were implemented on H C H2 [62,108,109,133,134,143]
and F C H2 [106, 112, 144]. With the tremendous progress of various theoretical
and numerical methods to deal with the partial differential equations and associated
boundary conditions in the field of quantum reaction dynamics [4,15,50,90,96,107],
it has now become just a routine to perform full-dimensional quantum scattering
calculations for atom–diatom systems with both accurate ICS and DCS at the state-
to-state level [3, 100, 119, 124, 140], especially after the introduction of reactant
coordinate-based method [43, 126, 127]. Previously one had to transform the wave
function between the reactant Jacobi coordinates and the product Jacobi coordinates
(Jacobi coordinate is defined in Sect. 4.3), in order to efficiently express the reactant
ro-vibrational states and the product ro-vibrational states and further obtain the
state-to-state information. This leads to the well-known coordinate problem in time-
dependent quantum wave packet calculation for extracting state-to-state reactive
scattering information. Therefore quantum wave packet method had only been
considered as a convenient method for calculating initial state-specific total reaction
probabilities. Nowadays the quantumwave packet method has also been proved an
effectivemethod for extracting state-to-state information.

Once the atom–diatom reactive scattering problem had essentially been solved,
attention naturally turned to more complicated reactions involving more than three
atoms—as the first step, to systems involving four atoms. Unfortunately, this is not
a trivial task, as the number of degrees of freedom increases from three for a three-
atom system to six for a four-atom system. In the past decades, significant progress
has been made on accurate quantum reactive scattering studies of four-atom
chemical reactions. Starting from time-independent (TI) reduced dimensionality
approaches [15, 26], it is now possible to calculate fully converged integral cross
sections [42, 155, 164], and state-to-state dynamical quantities for the total angular
momentum J D 0 [29, 156, 165] without any dynamical approximation for some
four-atom reactions, mainly through the development of the initial state selected
wave packet method. Other quantum dynamical approaches have also received great
success in four-atom reactions, such as the Multi-configurational Time-Dependent
(TD) Hartree (MCTDH) approach for thermal rate constant calculations [72].
Various TID and TD reduced dimensionality calculations were also reported on
different systems [118, 149, 154, 163, 166]. Recently, time-dependent wave packet
(TDWP) method was developed to compute differential cross sections (DCSs) for
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four-atom reactions and applied to the prototypical HD C OH ! H2O C D [70,145]
and D2 C OH ! HOD C D reactions [69]. Excellent agreements were achieved for
the first time for a four-atom reaction between the full-dimensional DCS and high-
resolution crossed-molecular beam experimental results. Because it only takes a
relatively short time to obtain fully converged DCS for the reaction, it is conceivable
that the wave packet-based quantum scattering method has matured to the stage
where it can afford yielding complete dynamical information for many four-atom
reactions, as have been done for three-atom reactions in the past decades.

While fully quantum mechanical calculations on larger reactive system are
always limited by the current computational power, the quasi-classical trajectory
(QCT) method provides a feasible alternative by describing the scattering collisions
with classical equations of motion [54, 99]. However, despite its high efficiency
and intuitive nature, QCT is not a rigorous method to deal with quantum dynamics
in reactive scattering, such as reactive resonance, zero-point energy, quantum
tunneling, and interference. Even atoms other than hydrogen and its isotopes usually
are not believed to have strong tunneling effect at room temperature, it is not clear
what is exact the role of the zero-point energy in a molecular dynamics process.

In this chapter, we aim to provide quantum mechanical methods to simulate and
explain some interesting experimental observables of reactive scatterings, especially
some fundamental understandings of the short-lived reactive resonances.

4.2 Resonance in a Reactive Scattering

For a reactive scattering, the properties of the reaction system near the tran-
sient region have the dominant role that determines various details of reactive
collisions including the nature of potential surfaces, nonadiabaticity, direct and
complex-forming collision dynamics, energy partitioning, product state and angular
distributions, quantum tunneling and resonances in the transient region, and other
interference effects.

The literature has seen several comprehensive reviews that summarized the
recent advances in the understanding of reactive resonance [22, 37, 66, 67, 148],
and for the consideration of integrity, here we shall only briefly explain the basic
concepts.

The properties of the reaction system near the transient region determine how
the reactant evolves to the product side, and in a typical chemical reaction, reactions
form short-lived intermediate reactive complex at the transition state region and
finally decay into the final reaction products. The transition state region can be an
energetic barrier, which separates the reactants from products, and in some cases
after this barrier the reaction coordinate shows itself with a deep potential well,
shown in Fig. 4.1a, which attracts the intermediate complex for a long time before
it decays into the final products. The latter is always named as complex-forming
reaction, and we shall not go into too much details in this kind of resonance, as
recently it has been intensely reviewed by an elegant article [46]. We shall from
now on only focus on the reactive resonance in direct reactions.
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Fig. 4.1 Three types of reactive resonances near the transition state region in chemical reactions,
adapted from [66]. Panel (a) illustrates the case associated with a deep potential well along
the reaction coordinate. The resulting bound and pre-dissociative quasi-bound states can be
characterized, for a three-atom system, by three vibrational modes. (b) Threshold resonance
for which only the two motions orthogonal to the unbound reaction coordinate are quantized
and thus assignable by vibrational quantum numbers. The dynamical trapped-state resonance is
schematically shown in panel (c). Despite the repulsive potential energy surface along the reaction
coordinate, this metastable state can be assigned by three vibrational quantum numbers

In a direct reaction, the minimum energy path along the reaction coordinate
shows itself with repulsive feature on the PES, and no discrete quantum state exists
in the transition state region along the reaction coordinate R, shown in Fig. 4.1b, c.
The directions perpendicular to R are the internal coordinates u of the reaction
system, and the motions along u are quasi-bound, which is the character of the
saddle-point nature in the transition state region, shown in Fig. 4.1b. In a typical
atom–diatom reaction, A C BC, the reaction coordinate approaches the asymmetric
stretch motion of the ABC complex in the transition state region, and the two quasi-
bound states are the symmetric stretching and bending modes. Due to the discrete
nature of the two quasi-bound states, they would serve as a bottleneck to gate the
flux going from the reactant region to product side. This is named as the threshold
resonance or barrier resonance, and the discrete quasi-bound states are the quantized
bottleneck states. As a result, stair-like feature is observed in the reaction probability
PJ .Ec/ from a single partial wave J as a function of the collision energy, as shown
in Fig. 4.2a (middle). The effect of zero-point energy manifests itself in the reaction
probability as the smaller reaction threshold energy than the height of the barrier.
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Fig. 4.2 Schematic illustration of the threshold resonances (a) and quantum dynamical resonance
(b), adapted from [67]. In each panel, the left figure illustrates the effective dynamical potential
along the reaction coordinate R, and the middle and the right ones are the Ec-dependence of
the reaction probability PJ .Ec/ and the reaction cross section �.Ec/. In the case of threshold
resonance, the non-zero values of the reaction probability and cross section start at a smaller
collision energy than the height of the barrier, which manifests the effect of zero-point energy

The other reactive resonance is called the trapped-state resonance or Feshbach
resonance, shown in Fig. 4.1c. In this case, the ABC complex is dynamically trapped
along the reaction coordinate, even the minimum energy path on the BO PES
is totally repulsive. The trapping of the short-lived ABC complex is caused by
the vibrationally adiabatic potential, which is based on the concept of vibrational
adiabaticity [23, 75, 76, 120]. As the vibrational motions along the directions
perpendicular to R are fast compared with the motion alongR, the vibrational modes
should approximately conserve the quantum number n, which is in the spirit of BO
separation of motions with different time scale. A typical vibrationally adiabatic
potential along the reaction coordinate R is shown in Fig. 4.2b (left), and it can be
constructed as

VVAP.R/ D VMEP.R/C "n.R/ (4.1)

in which VMEP.R/ is the minimum energy path along the reaction coordinate,
and "n.R/ is the quantized vibrational energy of the orthogonal motions. In the
vicinity of the transition state region, the strong couplings between the vibrational
motions and the reaction coordinate lead to the dramatic vibrational frequency
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decrease due to the weakening of the bonds, and consequently dynamic potential
well would appear along the reaction coordinate, especially for high vibrational
quantum numbers. If the well is deep enough to support discrete resonance quantum
state along the reaction coordinate, an isolated sharp peak should be observed
in the reaction probability PJ .Ec/, as shown in Fig. 4.2b (middle) for PJ .v0 D
1IEc/ of the v0 D 1 product state from a single partial wave J . The appearance
of the isolated sharp peak before the reaction threshold energy is due to the
resonant tunneling process through the barrier, which enhances the formation of
the resonance complex state, and at higher collision energy, the direct reaction of
the broad over-the-barrier probability dominates the process. In a one-dimensional
model, the resonance produced by a potential like in Fig. 4.2b (left) is called as shape
resonance [37]. While in multi-dimensional case, energy exchange occurs between
various collective modes of the compound molecule, and it is named as the Feshbach
resonace.

Even though the reaction probability provides distinctly different characteristics
for the above two types of reactive resonance, the experimental observables of
the reaction cross sections are often smeared out due to the summation of all
possible PJ .Ec/, which is inevitable because of the existence of many partial.
The interpretation of the experimental observables and further understanding of
the effects of reactive resonance require the intense interplay between theory and
experiment. For example, the transition state region is often tight, and only a
small range of partial waves contributing to the DCS in certain direction, which is
amenable to quantum mechanical calculations. We shall be able to focus on reaction
probabilities of a certain range of partial waves, from which the different kinds of
reactive resonance manifest themselves with distinct features.

In the following part, we will review the current quantum wave packet method
for simulating reactive scattering processes and its applications, especially on
understandings of reactive resonances. The quantum dynamical studies have greatly
deepened our understandings of the reaction dynamics in some prototypical sys-
tems. The following part is full of technical details and one may skip it for a general
interest.

4.3 Theory by QuantumWave Packet Method

4.3.1 Overall Theory

In a reactive scattering, the full Hamiltonian H needs to be partitioned in different
arrangement channels �,

H D H�
0 C V � (4.2)

in whichH�
0 D T �.R/Ch�.q/ is the asymptotic Hamiltonian, V � is the interaction

potential, and T �.R/ is the kinetic energy operator in the translational degree of
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freedom,R, h�.q/ is the internal Hamiltonian in the internal degrees of freedom, q.
In the limit that the separation of the two fragmentsR goes to infinity, the interaction
potential would be vanished, and the eigenfunction of the system is simply the
product of a plane wave and the eigenfunction �n.q/ of the internal Hamiltonian
h�.q/,

 �n;E.R; q/ D u�k.R/�
�
n.q/ (4.3)

in which ��n.q/ is related to En by

h�.q/��n.q/ D En�
�
n.q/ (4.4)

and the translational plan wave is directly written as

u�k.R/ D eikR

p
2�

(4.5)

where k D p
2�.E � En/=�2, � is the reduced mass of the translational motion.

The eigenfunction �;˙n;E of the full HamiltonianH is related to the asymptotic wave
function through the Møller operator,˝˙ [153],

 
�;˙
n;E D ˝˙ �n;E (4.6)

Given the definition of S matrix operator, S D ˝��˝C, the probability amplitude to
scatter from an initial state i of the reactant arrangement ˛ to a final state f of the
product arrangement ˇ is written as the matrix element of the S operator [153],

S f̌;˛i D h ˇf;E jS j ˛i;Ei D h ˇf;E j˝��˝Cj ˛i;Ei D h ˇ;�f;E j ˛;Ci;E i (4.7)

There are generally two methods to calculate the S matrix element. The first
one is the time-independent (TI) method, which solves the eigenvalues of the full
Hamiltonian H to obtain the scattering matrix  ˇ;�f;E0 and  ˛;Ci;E . In a single run of
the TI method, the entire S -matrix is obtained at a particular energy E . TI method
is especially suitable for the case with low energy, such as cold collision problem.
However, the TI method is notorious for its bad scaling relation N3, with respect to
the number of basis functions, N . Alternatively, the time-dependent (TD) method
or wave packet method has a better scaling of N2, and it is carried out by solving
the TD Schrödinger equation of a first-order differential equation.

In a typical wave packet method, three steps are involved to calculate the S
matrix. First, an initial wave packet�i of definite internal quantum states is launched
in the reactant region with normally a Gaussian shape wave packet in the scattering
coordinate, and this determines the range of collision energy. Then the wave packet
is propagated for a sufficient length of time until the reaction is finished. Finally,
the state-to-state S -matrix element is obtained for the reactive scattering. In the TD
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method, the S -matrix element is reformulated by wave packet correlation function
[132],

S f̌;˛i D .2��/�1

a�f .E/ai .E/

Z 1

0

eiEt=�h�f je�iHt=�j�iidt (4.8)

where �f is the final wave packet, ai .E/ and af .E/ are the energy amplitudes of
the energy normalized eigenfunctions contained in the initial and final wave packets.
It can be seen that the S matrix element is obtained by the Fourier transform of the
time correlation function Cfi.t/ between the final wave packet and the propagated
initial wave packet, Cfi.t/ D h�f j�i.t/i.

It should be noted that the initial and final wave packets are usually expressed
in the Jacobi coordinates of their own arrangements, which results in the difficult
coordinate problem in state-to-state reactive scattering as we mentioned previously.
One may either choose the product Jacobi coordinate [47, 53, 65, 151], or reactant
Jacobi coordinate to propagate the initial wave packet, and there also exist two other
methodologies but may be both named as reactant coordinate-based (RCB) method:
the first one is to employ interpolation schemes for the coordinate transformation
[41, 89, 126, 127, 156], and the second one is realized by projection of both reactant
and product wave packets to an intermediate coordinate [43, 127], Alternatively,
in the reactant–product decoupling (RPD) method [6, 7, 96], both the reactant and
product coordinates are used, and they are divided and combined by a complex
absorbing potential.

4.3.2 QuantumWave Packet Method

The ever increasing popularity of the wave packet approach to reactive scattering
is attributed largely to its intuitive time dependence and better scaling laws [87].
However, the concept of wave packet was originally postulated long time ago by
Schrödinger in 1926 [115] as a coherent superposition of states, with localization in
its position representation. The states can be electronic states, vibrational states, or
rotational states, but in molecular wave packet method, the wave packet represents
the coherent nuclei motion on certain electronic PES under Born–Oppenheimer
approximation. Since the formulation of these original works, molecular wave
packet theory has undergone a huge development, as reviewed by Manz in his
comprehensive historical survey of molecular wave packet theory in the period of
1926–1996 [74].

Since the numerical details for a triatomic reactive scattering can be directly
extended to more complicated systems and are very typical, we will focus on the
triatomic reactions in this part.

4.3.2.1 Hamiltonian and Discretization
To study the atom–diatom reactive scattering, A C BC(vi ; ji )!AB(vf ; jf ) C C/AC
(vf ; jf ) C B at a state-to-state level, body-fixed (BF) frame Jacobi coordinates are
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Fig. 4.3 The Jacobi coordinates for the reactant ACBC (a), and product ABCC (b) and
ACCB (c)

used to represent the corresponding wave packets in their arrangements: normally
the reactants A C BC is for the ˛ arrangement, and the two product channels
AB C C and AC C B are for the ˇ and 	 arrangements, respectively. The Jacobi
coordinates for the three arrangements are shown in Fig. 4.3. In each arrangement,
the coordinate is denoted as .R�; r�; 
� I ˝�/, where � represents any one of the
above arrangements. For example, when � represents the reactant arrangement, R�
is the length of vector R� pointing from the BC center of mass to A, r� the BC bond
length, and 
� the angle between BC bond and R� ; ˝� denotes the Euler angles
orienting R� in the space-fixed (SF) frame.

Considering the reaction scattering as an isolated system, the calculation is
always carried out using a partial wave representation, in which the total angular
momentum J is a good quantum number and one can take advantage of the
conservation of the total angular momentum to break the problem into separate
calculations for each value of the total angular momentum quantum number J . The
Hamiltonian for a given total angular momentum J is given in the reactant Jacobi
coordinate as

OH D � �
2

2�R

@2

@2R
� �

2

2�r

@2

@2r
C

Ol2
2�RR2

C Oj 2
2�rr2

C V.R; r; 
/ (4.9)

where the arrangement label ˛ is removed for clarity consideration, �R and
�r are the corresponding reduced mass for R and r , respectively. The squared
orbital angular momentum operator is responsible for the centrifugal potential and
expressed as

Ol2 � . OJ � Oj /2 D OJ 2 C Oj 2 � 2 OJ z Ojz � OJC Oj� � OJ� OjC (4.10)

where OJ and Oj are the total and BC diatomic rotational angular momentum
operators, with OJ z and Ojz as their corresponding projections onto the BF z-axis,
which coincides with the vector R. The raising/lowering operators in the last two
terms, OJ˙ and Oj˙, represent the Coriolis coupling, which couples the adjacent
helicity quantum numberK .K is the projection of both J and j onto the BF z-axis,
and it is a good quantum number in the BF frame.
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For each partial wave J and parity �, the Hamiltonian and wave packet are
discretized in the BF frame in mixed representation [21, 64, 80, 89, 160]: discrete
variable representation (DVR) is employed for the two radial degrees of freedom
and finite basis representation (FBR) of normalized associated Legendre function
YjK.
/ for the angular degree of freedom. Thus the wave packet in the BF frame is
written as

� JM�.R; r/ D
X

K

DJ��
MK .˝/ .t; R; r; 
K IK/ (4.11)

where DJ��
MK .˝/ is the parity-adapted normalized rotation matrix, depending only

on the Euler angles ˝ ,

DJ��
MK .˝/ D .1C ıK;0/

�1=2
r
2J C 1

8�
ŒDJ�

MK.˝/C �.�1/JCKDJ�
M�K.˝/�;

(4.12)

where � is the parity of the system defined as � D .�1/jCl with l being the orbital
angular momentum quantum number, and DJ�

MK.˝/ is Wigner rotation matrix [16,
152]. The usage of the parity-adapted normalized rotation matrix restricts the K to
be nonnegative and the basis size is reduced almost by half.  .t; R; r; 
K IK/ only
depends on three internal coordinates and K , and it is expanded as

 .t; R; r; 
K IK/ D
X

n;m;j

F K
nmj.t/un.R/m.r/YjK.
/ (4.13)

where n and m are the radial basis labels, un.R/ and m.r/ are the corresponding
basis functions, respectively, and YjK.
/ is the normalized associated Legendre
function.

4.3.2.2 Construction of the Initial Wave Packet
As has been mentioned above, the first step of the wave packet method is to set
up the initial wave packet. The initial wave packet is advantageous to be defined
in the SF frame, because the Coriolis couplings in the BF frame are long ranged
and it requires to define the initial wave packet at rather large position of R. There
are not many ways to account for them in a reasonable grid. On the other hand, in
the SF frame, the asymptotic form of the scattering wave function can be described
by the Riccati–Hankel function, and the long-range centrifugal term is diagonal,
l.l C 1/=2�RR

2 [3, 30]. Consequently, the initial wave packet can be placed as
close as the interaction potential is negligible. In such a manner, the initial wave
packet is defined as the product of the diatomic ro-vibrational eigenstate v0j0.r/ of
BC and a Gaussian wave packet G.R/ in the translational coordinate [3, 65, 126],

� JM�
v0j0l0

.R; r/ D G.R/v0j0.r/jJMj0l0�i; (4.14)
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where jJMj0l0�i is the eigenfunction of the total angular momentum operator in the
coupled representation of the SF frame with parity of system � D .�1/j0Cl0 , and
the Gaussian wave packet G.R/ in the translational coordinate is given as

G.R/ D
�
2

�ı2

�1=4
e�.R�R0/2=ı2e�ik0R; (4.15)

in which ı, R0, and k0 are the width, mean position, and mean momentum of the
translational wave packet, respectively, and they determine the range of collision
energy.

Wave packet is always propagated in the BF frame, and the initial wave packet
needs to be transformed from the SF to the BF frames before the propagation,
which is to transform the SF eigenfunction jJMj0l0�i of the total angular momentum
operator in the coupled representation to the BF frame,

jJMj0l0�i D
X

K�0
C

Jj0�
l0K

jJMj0K�i

D
X

K�0
C

Jj0�
l0K
DJ��

MK .˝/Yj0K.
/; (4.16)

where C
Jj0�
l0K

is the parity-adapted orthogonal transform matrix between the SF and
BF frames [65, 101, 153, 157] and given as

C
Jj0�
l0K

D
s
2l C 1

2J C 1

p
2 � ıK;0h jKl0jJKi; (4.17)

where h jKl0jJKi is the Clebsch–Gordan coefficient.

4.3.2.3 Propagation of theWave Packet
After the preparation of the initial wave packet, it is then propagated under the
operation of system Hamiltonian by the unitary propagator U.t; t0/ D e� i

�
H.t�t0/.

Usually, the propagatorU.t; t0/ is approximated by various schemes [55,60,137],
and there are plenty of wonderful articles that have explained each in detail, such
as the split operator method and higher order split operator methods [11, 36,
130], Chebyshev polynomial expansion [131], Faber polynomial expansion [51,
146], short iterative Lanczos propagation method [95], Crank–Nicholson second-
order differencing [10, 56, 57], symplectic method [14, 45], recently proposed real
Chebyshev method [24, 44, 125], and Multi-configuration Time-Dependent Hartree
(MCTDH) Method [12, 73, 81–83]. For details, one may refer to the corresponding
references.
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4.3.3 State-to-StateMethod: The RPD Approach

It has been a long time that only the product Jacobi coordinates were used in
the propagation for extracting state-to-state information: the initial wave function,
which is constructed in reactant Jacobi coordinate, is first transformed into product
Jacobi coordinate, directly or after some propagation time to focus the initial wave
packet in interaction region. Then the wave function propagation and product
state-resolved information is calculated. Later, RPD method was proposed [96],
particularly for direct reactive scattering process where it has been proved being
very efficient. Recently, efficient RCB method was put forward by Sun et al. and
Roncero et al. [43, 126, 127], particularly for reactive scattering process involving
intermediate complex. The RCB method has been applied with H C O2 [124],
O C O2 [128], N C NO ! N2 C O etc., which clearly demonstrated its efficiency
and convenience for usage. In this part we only briefly introduce the RPD method,
which is the only technique capable of extracting state-to-state DCS of tetra-atomic
molecules currently.

The RPD method, originally introduced by Peng and Zhang [96] in order to
extract the state-to-state information efficiently, transforms no-return part of reacted
wave packet continuously in time from reactant to product coordinates with the
help of absorption potentials. It divides the full time-dependent wave function into
the reactant and product components and the calculation of each component can be
carried out using the Jacobi coordinates of the corresponding arrangement channel
separately. The RPD method solves, to a large extent, the problem of the choice of
coordinates in quantum reactive scattering.

In the time domain, the RPD scheme partitions the full time-dependent (TD)
wave function into a sum of reactant component (�r ) and all product components
(�p; p D 1; 2; 3; : : :) that satisfy the following decoupled equations:

i�
@

@t
j�r.t/i D H j�r.t/i � i

X

p

Vpj�r.t/i (4.18)

i�
@

@t
j�p.t/i D H j�p.t/i C iVpj�r.t/i;

where �iVp is the negative imaginary potential (absorption potential) used to
prevent the wave function �r.t/ from entering the pth product arrangement. The
solution for �r.t/ is independent of those for �p.t/ and the latter are independent
of each other. Therefore, �r.t/ can be propagated in the reactant Jacobi coordinates
just as for total reaction probability calculations,

�r.t C�/ D e�Vp�=�e�.i=�/H��r.t/: (4.19)

Every product wave function, �p , can be propagated in its own coordinates as
in a normal wave packet propagation except with a source term, �p , provided by
Eq. (4.19),
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�p.t C�/ D e�.i=�/H��p.t/C �p.t/ D e�.i=�/H��p.t/C .1 � e�Vp�=�/�r .t C�/:

(4.20)

Finally, one can extract the final state information, such as state-to-state S matrix
elements or reaction probabilities, from the Fourier transformation of �p.t/.

The RPD approach is very efficient on dealing with direct reactants with
barriers as demonstrated by Althorpe and coworkers [3, 8], because in this case
the absorption potential can be applied right after the barrier as in initial selected
total reaction probability calculations and it is also rather cheap to carry out the
continuous propagation for the absorbed wave packet in a product channel. In
particular, Althorpe and coworkers have realized that the absorption of reacted wave
packet can be performed after multiple propagation steps [5, 29].

In the original RPD approach, the source term �p.t/ D .1 � e�Vp�=�/�r.t/
is saved and transformed from reactant to product Jacobi coordinates at every
propagation time step. By using the multiple-step reactant–product decoupling
(MRPD) scheme, one can be saving and transforming the source term at every M
time [68, 70, 71].

�r.t C�/ D e�VpM�=�e�.i=�/H��r.t/;when mod..t C�/� t0;M�/ D 0;

�p.t C�/ D e�.i=�/H��p.t/C .1 � e�VpM�=�/�r.t C�/; (4.21)

where t0 is the starting point for performing wave function transformation. At other
time steps, we carried out the standard split-operator propagation for �r.t/ and
�p.t/ without the absorption potential, Vp , related terms. In this way, we can cut
the computational time for wave function transformation from reactant coordinates
to product coordinates by a factor of M .

Since the efficiency of RPD method for a state-to-state calculation of a direct
reactive scattering process, it is crucial for extracting product state-resolved infor-
mation of tetra-atomic reaction limited by current computer resource. The applica-
tions below of tetra-atomic reaction are accomplished by using the RPD method.

4.3.4 Calculation of the Experimental Observations

4.3.4.1 Calculation of S -Matrix of Triatomic Reaction Using the RCB
Method

To calculate the state-to-state S -matrix in Eq. (4.8), the time correlation function
Cfi.t/ D h�f j�i.t/i needs to be calculated at each time step during the propagation.
A projection plane is often defined as R� D R�0 for the �th (� D ˇ or
	 ) arrangement using the corresponding product Jacobi coordinate, and the time
correlation function is always carried out on this projection plane but the projection
action can be carried out in either reactant or product Jacobi coordinate. The final
product wave packet �f .R�/ is also defined in the SF frame due to the merits
already mentioned above,
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� JM�
f .R�0/ � � JM�

v�j�l�
.R0; r 0/

D ı.R0 � R�0/v�j� .r
0/jJMj�l��i

D ı.R0 � R�0/v�j� .r
0/

X

K0�0
C
Jj��

l�K0D
J��
MK0.˝

0/Yj�K0.
 0/ (4.22)

in which R0, r 0, and 
 0 describe the product Jacobi coordinate, and ˝ 0 are the Euler
angles for R0 in the SF frame. In practice, one often calculates the scattering wave
function in the energy domain before taking overlap with the final product state,
and it is obtained by a time-energy Fourier transform from the propagated wave
packet,

˚ JM�
i .EIR�0/ D

Z 1

0

eiEt=�� JM�
i .t IR�0/dt; (4.23)

With the strategy to deal with the coordinate problem as mentioned in Sect. 4.3.1,
the state-to-state S -matrix can be readily evaluated,

SJ�v�j� l� v0j0l0 .E/ D .2��/�1

a�f .E/ai .E/
h�f .R�0/j˚ JM�

i .EIR�0/i (4.24)

where ai .E/ and af .E/ are given by

ai .E/ D
�

�R

2��2kv0j0

�1=2 Z
Hl0 .kv0j0R/G.R/dR (4.25)

af .E/ D
�

�R0

2��2kv�j�

�1=2
Hl� .kv�j�R�0/ (4.26)

in which �R0 is the reduced mass for the product translational degree of freedom,
Hl is the outgoing Riccati–Hankel function.

Finally, the S -matrix needs to be transformed from the SF frame to the helicity
representation by the standard transformation,

SJv0j 0K0 vjK D
X

l 0l

i l�l 0
s
2l 0 C 1

2J C 1
hj 0K 0l 00jJK0iSJv0j 0l 0 vjl

s
2l C 1

2J C 1
h jKl0jJKi:

(4.27)

4.3.4.2 Calculation of ICS and DCS
By substituting the S -matrix SJv0j 0K0 vjK.E/ in the helicity representation into the
standard formulas, the state-to-state ICS can be obtained by summing over the
contributions from all partial waves [157],
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�v�j� v0j0.E/ D �

.2j0 C 1/k2v0j0

X

K�

X

K0

X

J

.2J C 1/jSJ�v�j�K� v0j0K0.E/j2

(4.28)

and the state-to-state DCS [157],

d�v�j� v0j0.#;E/
d˝

D 1

.2j0C1/
X

K�

X

K0

ˇ̌
ˇ
ˇ
ˇ

1

2ik2v0j0

X

J

.2JC1/dJK�K0.#/SJ�v�j�K� v0j0K0.E/
ˇ̌
ˇ
ˇ
ˇ

2

;

(4.29)

in which # is the scattering angle between the direction of incoming reactant A and
outgoing product AB/AC in the center of mass frame, and dJK�K0.#/ is the reduced
rotational matrix [16, 152].

4.3.4.3 Calculation of Reaction Rate
With the calculated initial state-specific ICS, the initial state-specific temperature-
dependent reaction rate constant can be expressed as

k.T jv0j0/ D
�
8KbT

��R

�1=2
.kbT /

�2
Z 1

0

dE exp

�
Et

kbT

�
�v�j� v0j0.E/

(4.30)

where kb is Boltzmann’s constant. The thermal rate constant can be calculated from
the Boltzmann averaging of the initial state-specific reaction rate constants as

k.T / D Zelec.T /

P
v0j0
.2j0 C 1/k.T jv0j0/ exp.�Ev0j0=.kbT //

P
v0j0
.2j0 C 1/ exp.�Ev0j0=.kbT //

(4.31)

where Ev0j0 is the ro-vibrational energy of the reactant diatomic molecule, and
Zelec.T / is the possible electronic partition function for the system.

For a reaction with a defined transition state and without recrossing, reaction rate
can be well approximated by many methods. For such reaction, we can assume that
there is a dynamics bottleneck located at the transition state (conventional transition
state theory, TST) or at a generalized transition state obtained by a canonical
(CTV) or microcanonical (�VT) criterion. In the later cases, the dividing surface
is optimized variationally to minimize the recrossing. Evans first proposed to place
the transition state at the location that maximizes the free energy of activation
which provides a key conceptual framework for modern variational transition state
theory [33]. However, recrossing always possibly exists and only a full-dimensional
reactive scattering dynamics calculations are able to provide us the exact rate
constant on a defined PES. For a detailed discussion, one may refer to the reviews
by Truhlar et al. [38, 136].
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4.3.4.4 Calculation and Characterization of the Reactive Resonance
Wavefunction

It is crucial to characterize the features of the reactive resonance wave function, in
order to understand the nature and role of a particular reactive resonance state in the
reaction.

The nomenclature “resonance” refers to a transient metastable species pro-
duced in the reaction scattering processes, and it results in peaks in the plots of
reaction probabilities as a function of collision energy. Although its observation
and assignment in scattering experiments usually is difficult because the coherent
summation of many partial waves tends to wash out most of the resonance
structures, numerically the quantum calculation is carried out with a specified partial
wave and the resonance is much easier to pick out. The existence signature of
a dynamical resonance is the arising of a peak in the collision energy-dependent
reaction probability enhanced by the metastable transient state with long enough
lifetime. Thus, such dynamical resonance wavefunctions can be figured out by using
the so-called spectral quantization method. The bottleneck state in the H C H2 and
its isotopes reactions scattering processes [104] and the reactive resonance state
in the F C HD reaction processes [116] have been investigated using the spectral
quantization method. In that method a carefully designed initial wave function was
applied to obtain the time-independent wave function at the peak energies in the
reaction probabilities by Fourier transform of the time-propagated wave packet.
The reactive resonance wave function calculated in this way strongly depends on
the initial wave function, and one must be careful for further studying with it.

Instead, a rigorous, robust, and convenient method to calculate the dynamical
resonance wave functions in a reactive process may be applied, which is a direct
extension of the standard TDWP method for describing a reaction scattering process.
For a reactive scattering of a triatomic A C BC reaction with the initial incoming
wave function � JM�

v0j0l0
.tD0/ for an initial state .v0; j0; l0/, the dynamical resonance

wave function at certain collision energy En can be obtained with a Fourier
transform of the time evolved incoming wave function as

˚.En/ D
X

l0;�

Z C1

�1
� JM�
v0j0l0

.t/ exp.iEnt/dt �
X

l0;�

Z C1

0

� JM�
v0j0l0

.t/ exp.iEnt/dt

(4.32)

The last step is reached by using the fact that before time zero the incoming wave
contributes nothing to the interaction region. Thus the calculated resonance wave
function is rigorous in the whole grid region and can be safely used to analyze
the reactive process. The dynamical resonance wave function must have relatively
large amplitude in the interaction region and pure incoming and outgoing tails with
relatively small amplitude, and exhibits features of a quasi-bound state. And we can
use this evidence to justify if the calculated wave function at specified collision
energies corresponds to a dynamic resonance state. In contrast to the spectral
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quantization method, the wave function in resonance region may not be so clear
since it is not overemphasized.

After the extraction of the reactive resonance wave function in certain convenient
coordinates used in the propagation, one may need to transform it into another
optimal coordinates to facilitate the observation of its resonance quantization
structure, such as normal mode near the transition state region or product/reactant
Jacobi coordinates or hyperspherical coordinates. In this way, the dynamics origin
of the reactive resonance wave functions may be clarified to us.

4.4 Applications

4.4.1 Resonances in F Plus H2 and Its Isotopes

The reactive resonances reveal the quasi-bound levels of the reaction complex with
unique clarity and they do exist. Identification of the reactive resonances can help
us with understanding how elementary chemical processes take place at a single
quantum state level. F C H2 and its isotopic analogs are the most beautiful examples.

Interest in the F C H2 reaction was largely due to Lee’s benchmark molecular
beam studies [105] and early chemiluminescence and chemical laser work [98].
This work led to the early QCT studies of Muckerman [88], Blais and Truhlar [13],
and Polanyi and Schreiber [97], using the PES but with serious flaws. A series of
surface by Truhlar and his coworkers [17,84,122,135] led to gradual improvement,
and then Stark and Werner developed surfaces (SW PES) [121] from multireference
configuration interaction calculations that resolved many of the earlier issues, even
some problems remain. Very recently, Zhang and his coworkers developed several
versions of the PES for the F C H2 reaction using icMRCI [100] and CCSDT
method [40, 102], whose ultimate version has been proved to be of spectroscopy
accuracy.

Early the QCT [106] and collinear quantum reactive scattering studies [113]
revealed their distinct difference for predicting the F C H2 reaction, especially for
the F C HD reaction where reactive resonances played a big role. Subsequent 3D
quantum scattering calculations by Wyatt and coworkers [77, 78] and a variety of
3D quantum models confirmed the existence of the resonance, thereby stimulating
further experiments on F C H2 and its isotopic analogs and finally leading to the
molecular beam studies of Neumark and coworkers [91–94] which proved important
hints that resonances play a role in this reaction.

However, the following theoretical work on the SW PES argued that the forward
scattering of the F C H2 reaction results from the tunneling-induced reactivity at
high impact parameters which do not need the formation of resonance [20]. And the
QCT work by Aoiz et al. [9] yielded angular distributions with forward components
that were consistent with the experiments, suggesting that the quantum effects,
especially resonance effects, are relatively unimportant.

In 2000, the work on the F C HD reaction of Dong et al. [31] discovered
the existence of reactive resonances in crossed beam experiments, where a
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Fig. 4.4 The excitation functions for FCHD!HFCD. The experimental results are shown
with solid dots, the QCT simulations with a blue line, and the QM results with a red line. The
resonance contribution is depicted with a dotted red line, and the direct reaction contribution with
a dashed red line. A multisurface factor of 1/2 has been used to scale the ICS

Fig. 4.5 Experimental (a) and theoretical (b) 3D contour plots for the product translational
energy and angle distributions for the F(2P3=2)CH2.j0 D 0) reaction at the collision energy
of 0.52 kcal/mol. The different circles represent different HF product ro-vibrational states. The
forward-scattering direction for HF is defined along the F atom beam direction

resonance-enhanced step in the excitation function was observed, as shown in
Fig. 4.4. Subsequent IR work by Nesbitt [48] confirmed this results and theoretical
calculations have been presented to interpret the dynamics using SW PES [116,117].

In 2006, the work of Qiu et al. [100] presented the evidence for the resonances in
the F C H2 reaction, with both theory and experiment exhibiting consistent behavior
on XXZ PES, as shown in Fig. 4.5. The appearance of this report is catalyzed by the
developments on quantum scattering method development, ab initio method and
crossed-molecular beam combined with high resolution H-Rydberg state tagging
technique [147]. The sharp forward peak at collision energy of 0.52 kcal/mol
actually results from the interference between the first two Feshbach resonances.
For total angular momentum J D 0, there are two resonance states at collision
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energy of 0.26 and 0.46 kcal/mol. With increasing J , the resonance energy will shift
to higher collision energy. The three-dimensional (3D) scattering wave function at
the collision energy of 0.26 kcal/mol shows the existence of three nodes along the
H-F coordinate (correlating to the HF product) in the HF-H0 complex with no node
along the reaction coordinate. The projection of the J D 0 scattering wave function
at 0.26 kcal/mol to the HF vibrational states shows that the main character in this
wave function is HF(v0 D 3) with the outgoing waves mostly on HF(v0 D 2).
This implies that the resonance state at 0.26 kcal/mol is the ground resonance state,
(003), trapped in the HF(v0 D 3)-H0 vibrational adiabatic potential (VAP) well. The
3D scattering wave function for J D 0 at the collision energy of 0.46 kcal/mol
shows the existence of three nodes along the HF coordinate (correlating to the
HF product) in the HF-H0 complex with one node along the reaction coordinate.
The projection of the J D 0 scattering wave function at 0.46 kcal/mol to the HF
vibrational states shows the main character in this wave function is predominantly
HF(v0 D 3) with the outgoing waves also mostly on HF(v0 D 2). This suggests that
the resonance state at 0.46 kcal/mol is the excited reaction resonance state trapped
in the HF(v0 D 3)-H0 VAP well. This resonance state can be assigned to the (103)
resonance state with one-quantum vibration along the reaction coordinate, zero-
quantum vibration on the bending motion (or hindered rotation), and three-quanta
vibration along the HF stretching. The resonance schemes were shown in Fig. 4.6.

Their subsequent work at higher collision energy (0.94 kcal/mol) demonstrated
the tunneling and shape resonance effects [139], other than Feschbash resonance
for arising the forward scattering in the reaction of F C H2, which suggested that the
reactive resonances played quite different roles in the same reaction but at different
collision energies [139].

In 2008, Ren et al. [102] measured the DCSs at several collision energies, which
showed strong variation as a function of collision energies, as shown in Fig. 4.7, due
to the existence of strong reactive resonance state. The theoretical DCSs on the new
version PES by Zhang and his coworkers (FXZ PES) agree with the experimental
observation very well, as shown in Fig. 4.8 which demonstrated that the F C H2

reaction is the first reaction which can be studied at spectroscopy accuracy, besides
the H C H2 reaction.

To have a better feeling about the resonance state, the ground reactive resonance
state wave function of the F C HD ! HF C D, along with the 2D minimal potential,
which is optimized along the angle degree of freedom, is given in Fig. 4.9. It is
observed there that the wave function exhibits well features of a semi-bound state.
The outgoing part, which corresponds to the HF (v0 D 2) product, has two nodes
of structure but the inside peak has three nodes, which corresponds to an excited
vibrational state of v0 D 3.

The most exciting chapter on detecting the reactive resonances in the F C H2

reaction and its isotopic analogs is the observation of the partial wave resonance
in the F C HD by Dong et al. in 2010 [32]. The reactive resonance, as we know,
which commonly is considered as being elusive and smeared by summation of many
partial waves, was observed individually by Dong et al. at three different rotational
quantum states of the temporarily trapped FHD complex, as shown in Fig. 4.10.
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Fig. 4.6 Schematic diagram showing the resonance-mediated reaction mechanism for the FCH2

reaction with two resonance states trapped in the peculiar HF(v0 D 3)-H0 VAP well. The 1D wave
functions of the two resonance states are also shown. The (003) state is the ground resonance state;
the (103) resonance is the first excited resonance state. Calculated van der Waals states for the
lower VAPs are also shown. OP, overtone pumping; Eb, barrier height; Ec, collision energy

0.31 kcal/mol

0.43 0.52

0.64

0.71

0.850.95

1.06

Fig. 4.7 The experimental 3D contour plots for the product translational energy and angular
distributions for the F(2P3=2)CHD(j0 D 0) reaction at various collision energies: 0.31, 0.43,
0.52, 0.64, 0.71, 0.85, 0.95, and 1.06 kcal/mol
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Fig. 4.8 The experimental and theoretical 3D contour plots for the product translational energy
and angular distributions for the F(2P3=2)CHD(j0 D 0) reaction at various collision energies:
0.43 kcal/mol (a); 0.48 kcal/mol (b); 0.52 kcal/mol (c); and 0.71 kcal/mol (d)

Fig. 4.9 3D ground reactive resonance wave function of the FCHD (v0 D 0; j0 D 0)!HFCD
reaction, along with the potential which is optimized along angle degree of freedom

This is different from the work in 2000 by Dong et al. [31] where the resonance in
F C HD was identified by observing the averaged contribution from a sequence of
the resonances in the cross sections. Dong et al. are, however, in 2010 the first to
pick out individual resonances from this series [32].

Recent quantum reactive scattering studies of F C H2 and Cl C H2 have included
spin-orbit effects and multiple surfaces within both the framework of hyperspherical
coordinate coupled channel and TDWP calculations [2,129,140]. These works help
us with better understanding the role of the spin-orbit effects in reactions.
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Fig. 4.10 Experimental and theoretical DCS of the HF(v D 2, j D 6) product of the
F(2P3=2)CHD(j0 D 0) reaction in the backward scattering direction. The solid circles are
experimental data; the red curve, the result of full quantum dynamics calculations convoluted
with the experimental resolution and shifted 0.03 kcal/mol lower in energy. The error bars in
the experimental data are the estimated measurement errors (1� ) for the HF(v D 2, j D 6)
product peak intensity in the collision energy scan. The three peaks are assigned to the partial
wave Feshbach resonances of J D 12, 13, and 14 in the FCHD!HFCD reaction, as explained
in the text. The three-dimensional DCS shown was measured at 1.285 kcal/mol, with F and B
indicating the forward- and backward-scattering, respectively, directions for HF with respect to the
F-atom beam direction

From above discussion, we have seen a close interplay between theory and
experiment which is extremely helpful with revealing the reaction dynamics
mechanism. Theory and experiment verify and reinforce each other, develop side by
side through mutual cross-fertilization. We can expect even more success through a
close interplay between them.

4.4.2 Non-statistical Effects in HCO2 Reaction

The H C O2 ! HO C O reaction and its reverse are of fundamental importance to
combustion chemistry. This reaction proceeds via the formation of an intermediate
complex in a deep well of 2.4 eV which is relatively stable with no barrier to
dissociation. There have been many theoretical and experimental studies on this
reaction, particularly on the concern about the non-statistical effects. Statistical
modeling based on the statistical adiabatic channel model (SCAM) is able to account
for the observed forward and reverse thermal rate constants overall a wide range of
temperature, implying that the reaction is statistical. However, QCT studies find
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Fig. 4.11 Comparison of the
QM rotational state
distribution of OH (filled
square) with the PST results
(filled circle), GW-QCT
results (filled inverted
triangle), and available
experimental data (filled
triangle). The PST result
normalized to the QM
distribution (sPST) is also
presented (open circle)

that there is significant recrossing of reasonably chosen dividing surfaces after
the HO2 complex is formed in the HO C O reaction, suggesting the existence of
the important non-statistical effects in this reaction. Rigorous quantum reactive
scattering calculations and more accurate potentials are required to settle down this
issue. However, this reaction presents obvious challenges for quantum scattering
calculations, on account of the heavy masses and the deep HO2 well.

Using DMBE IV potential, Meijer and coworkers carried out wavepacket
calculations of the initial state selected total cross sections for the H C O2, including
partial waves up to J D 35. All of the projections of J onto the intermolecular
axis have been incorporated in the calculations. They found that the calculated
cross sections are lower than the experiment, which indicated the deficiencies in
the DMBE IV potentials. In 2005, Xu et al. constructed a new potential (XXZLG
PES) for this reaction at the internally contracted multireference configuration
interaction plus the Davidson correction level with the augmented correlation
consistent polarized valence quadruple zeta (aug-cc-pVQZ) basis set. It has been
shown that there is remarkable improvement over the previous DMBE IV potential.
Based upon this new potential and using the recent developed RCB quantum wave
packet method, Sun et al. calculated state-to-state DCS and ICS of the H C O2

reaction up to 1.5 eV.
By comparing the QM rotational state distribution with the statistical limit

represented by the phase space theory (PST), which assumes that the formation and
decay of the reaction intermediate are separate events and the decay probability is
proportional to the number of open channels. As shown in Fig. 4.11, the shape of the
PST distribution is similar to that of the QM counterpart; namely, it increases with j
until the highest accessible rotational state. However, the statistical model severely
overestimates the QM distribution. Even when comparing with the normalized
PST distribution, as shown in the same figure, the QM distribution typically
overpopulates at large j values and underpopulates at small j values. Similar
differences exist in other collision energies.

The deviation of the QM rotational state distribution from the statistical limit is
a convincing piece of evidence in support of the argument that the title reaction has
a significant non-statistical component despite its complex-forming nature. In other
words, the dynamics plays a non-negligible role in the reaction. This is contrast with
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the conventional wisdom: usually it is assumed that the deep well in the PES which
creates the long-lifetime intermediate complex will smear out all of the dynamics
effect thus leads to statistical limit. This conclusion is consistent with the slight
forward–backward asymmetry of the calculated DCSs reported here and the non-
statistical decay of the HO2 complex observed in QCT studies. The origin of the
non-statistical behavior can presumably be attributed to the relatively short lifetime
of the HO2 intermediate which has not enough time to fully relax the internal energy
into all degrees of the freedom in a statistical way.

The atmospherically important reaction O C O2 with three heavy atoms and deep
potential well has also been studied at the state-to-state DCS level by quantum
wave packet method. It reveals the failure of the statisical model from the calculated
strong non-statistical effects and some quantum effects in the reaction [128].

4.4.3 H2 COH

The H2 C OH ! H C H2O reaction is a prototype reaction for H atom abstraction by
an OH radical to form water as a product. Moreover, it is important in combustion
chemistry and interstellar chemistry [85, 142]. Consequently, it has attracted exten-
sive experimental and theoretical studies. Crossed-molecular beam experiments
on the isotopically substituted D2 C OH ! D C HOD reaction revealed that the
product was strongly backward-scattered, with the majority of the available energy
channeled into HOD internal excitation and the newly formed OD bond in the HOD
molecule preferentially excited to the � D 2 state [123]. The reverse reaction has
also been studied widely as a prototype system for mode specific chemistry, in which
different vibrational modes in the reactants can play an important role in the reaction
dynamic. As three of the four atoms in this system are hydrogen isotopes, it has
been straightforward to pursue both high-quality ab initio calculation of a PES and
accurate quantum dynamics calculations. As a result, this reaction has become a
benchmark system for four-atom reactions, in much the same role that the H C H2

reaction played for three-atom reactions.
In 1993, the first TDWP calculation was reported for the H2 C OH ! H2O C H

reaction with the total angular momentum J D 0 by using diatom–diatom Jacobi
coordinates with only the spectator OH bond length frozen [158]. It was quickly
extended to include all degrees of freedom for a four-atom reaction without any
dynamical approximate on the same reaction system [159]. In 1996, the TDWP
method was applied to study the H C H2O ! H2 C OH reaction in full dimensions
on the atom–triatom Jacobi coordinates [161]. Then, the method was extended to
study four-atom reactions for the total angular momentum J > 0 in one set of
Jacobi coordinates, with the full converged integral cross sections reported for the
H2 C OH ! H2O C H reaction [155] in 1999, for the H C D2O ! D C HOD and
H2O C H ! H2 C OH reactions in 2000 [162, 164].

Figure 4.12 compares theoretical integral cross sections for the H C D2O !
D C HOD exchange reaction with the experimental results [18,19,162]: the absolute
cross sections at a relative translational energy of 1.5 and 2.2 eV and the excitation
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Fig. 4.12 Comparison between the experimental and theoretical integral cross sections for the
HCD2O!DCHOD reaction. The dashed line is the experimental excitation function. The
shaded area reflects the statistical uncertainty (1� ) of the global least squares fit procedure used to
determine the optimum excitation function

function of the reaction in the line-of-center functional model. The first-principles
theoretical results agree excellently with the experiments in all respects. We note
that the experimental result is thermally averaged over the initial rotation of
D2O, whereas the theoretical result is for initial non-rotating D2O (preliminary
calculations showed that rotational excitation of the triatomic reactant has no
substantial effect on the integral cross section).

Despite the significant progress in initial state selected level, the accurate
quantum calculation of the state-to-state DCSs for four-atom reactions remained
a challenge for many years. State-to-state reaction probabilities for the total angular
momentum J D 0 were reported for the H2 C OH ! H2O C H reaction by using
both the diatom–diatom and atom–triatom Jacobi coordinates [165]. Following that,
the state-to-state integral and DCSs were reported for the H C H2O ! H2 C OH
reaction in five dimensions with the spectator OH bond length fixed, in 2002 [163]
and 2005 [154], respectively. In the past few years, Althorpe and coworkers used
quantum wave packet method to obtain the state-to-state reaction probability for the
H2 C OH ! H2O C H reaction in five and fully six dimensions [27–29]. All of these
state-to-state calculations were using the reduced dimensionality method or limited
to total angular momentum J D 0.

Recently, TDWP method was developed to compute DCSs for four-atom
reactions and applied to the prototypical HD C OH ! H2O C D [70, 145] and
D2 C OH ! HOD C D reactions [69]. Excellent agreements were achieved
for the first time for a four-atom reaction between the full-dimensional
DCS and high-resolution crossed-molecular beam experimental results on the
HD C OH ! H2O C D reaction [145]. Figure 4.13 compares the theoretical energy
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Fig. 4.13 Experimental and theoretical DCSs of the HDCOH!H2OCD reaction in the
backward scattering direction. The experimental data, measured in relative values, are scaled to
the theoretical DCS value at the collision energy (Ec) of 6.15 kcal/mol. In the experiment, the
DCSs at the backward scattering direction were measured by scanning the collision energy back
and forth 15 times. Error bars in the experimental data indicate the estimated errors (˙1� ) for the
DCS signal at the backward direction from the 15 scans of the collision energy

dependence of DCSs in the backward direction with the experimental result. The
agreement between theory and experiment is remarkable. It also reveals that the
theoretical reaction barrier of 5.4 kcal/mol on the PES they used is very accurate, and
the quantum tunneling effect for the hydrogen transfer reaction is quite strong, since
the reaction threshold is apparently much lower than the barrier height 5.4 kcal/mol.

4.4.4 OHCCO

After simple four-atom reactions have been solved, however, huge challenges still
persist in rigorous quantum scattering studies of complex-forming four-atom reac-
tions with more than one heavy atoms, such as the OH C CO ! H C CO2. Because
of its crucial role in the conversion of CO to CO2, the OH C CO ! H C CO2

reaction is important to both atmospheric [39] and combustion chemistry [86]. Due
to the presence of two deep wells along the reaction path which support long-
lived collision complex HOCO in both trans and cis configurations, the reaction
dominated by pronounced resonances has become a prototype recently for complex-
forming four-atom reactions, just as H2 C OH ! H C H2O is for direct four-atom
reactions.

Considerable experimental studies have been carried out on this reaction and
its reverse [1, 61, 103]. Theoretically, in 1987 the first global analytic PES was
constructed by Schatz, Fitzcharles, and Harding (denoted as SFH) based on the
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Fig. 4.14 Product vibrational state distributions of CO2 for the OHCCO!HCCO2 reaction
with total angular momentum J D 0 at reactant translational energy of (a) 0.158 eV, (b) 0.174 eV,
(c) 0.1 eV, and (d) 0.4 eV

many-body expansion approach [114]. Following that, a number of global analytic
[58,59,150] and numerical [25,63] PES have been constructed to study the reaction
more accurately, and many dynamics calculations have been performed by using
quasiclassical trajectory method [59, 79]. We would like to note here that there is
more detailed discussion about this reaction in the chapter by Guo et al. in this
book.

The OH C CO reaction presents a huge challenge to quantum dynamics. The
combination of a relatively long-lived collision complex and three heavy atoms in
this reaction makes the rigorous quantum scattering calculations difficult. Kroes and
coworkers obtained the first 6D total reaction probabilities for this reaction. Very
large basis sets had to be used to ensure converged results [138]. Recently, Zhang
and coworkers gave some preliminary full-dimensional (6D) quantum state-to-state
results for this reaction on the LTSH PES. It is the first such a calculation for a four-
atom reaction other than the H2 C OH $ H2O C H and its isotopically substituted
reactions. The calculation is carried out by the RPD method. The results presented
are limited to total angular momentum J D 0 for the ground initial ro-vibrational
state. Advancing from J D 0 to J > 0 is extremely difficult due to the rapid
increase of the rotational basis functions needed in calculation [68].

Figure 4.14 shows the CO2 product vibrational state distributions at four collision
energies. For CO2, because the symmetric stretching vibrational frequency �1 is
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very close to the double of the bending frequency �2, it is extremely hard to
make a complete assignment of all the vibrational states, and they only managed
to assign some of the vibrational states with low excitation energies. The total
reaction probability exhibits a pronounced peak at Ec D 0:158 eV and a dip at
Ec D 0:174 eV. Although the total and, therefore the CO2 vibrational state-specific
reaction probabilities at 0.158 eV are much larger than at 0.174 eV, the population
structures for the two collision energies are quite similar. The (000) state has large
population, but the majority of the population are contributed by the bending excited
states. Figure 4.3c, d present the CO2 vibrational population atEc D 0:1 and 0.4 eV,
to show the effect of collision energy on product vibrational state distribution.

4.5 Conclusion

After persistent endeavors of decades, the quantum wave packet method has been
well developed and currently it is quite mature for calculating product state-
resolved different cross sections of triatomic and tetra-atomic reactive scatterings.
However, due to numerical scaling of a quantum calculation, in order to study more
complicated systems, developments of more efficient numerical methods are still
very important in the future, such as the search and develop more efficient grid rep-
resentation for angular degree of freedom and more compact Hamiltonian forms etc.

MCTDH method has been proven being efficient and memory-saving for deal-
ing with polyatomic molecular dynamics. Theoretical methods for approximately
extracting state-to-state differential cross section using MCTDH method would be
worth more investigating, particularly for the reaction H C CH4 and its isotopic
analogs.

Resonances in triatomic reactive scattering from the reactants in ground vibra-
tional state have been identified and characterized, which help us to deepen the
understanding of the chemical reaction dynamics at a single quantum state level.
Reactive resonances in a polyatomic reaction and reaction starting with initial
states other than ground vibrational states will receive more interest, along with the
experimental techniques development [141]. This in turn stimulates the theoretical
endeavors for more efficient theoretical methods. In a cold chemical reaction,
similar resonance would, in principle, easier to be experimentally observed since
there are only very limited partial waves involved. The techniques developed in
this chapter can be applied to study the resonance in a cold chemical reaction
straightforward.
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