
Supporting Pruning in Tabled LP�

Pablo Chico de Guzmán1, Manuel Carro2,3, and Manuel V. Hermenegildo2,3

1 ElasticBox, Inc.
2 IMDEA Software Institute, Spain

3 School of Computer Science, Univ. Politécnica de Madrid, Spain
pchico@clip.dia.fi.upm.es, {mcarro,herme}@fi.upm.es

Abstract. This paper analyzes issues which appear when supporting pruning op-
erators in tabled LP. A version of the once/1 control predicate tailored for tabled
predicates is presented, and an implementation analyzed and evaluated. Using
once/1 with answer-on-demand strategies makes it possible to avoid computing
unneeded solutions for problems which can benefit from tabled LP but in which
only a single solution is needed, such as model checking and planning. The pro-
posed version of once/1 is also directly applicable to the efficient implementation
of other optimizations, such as early completion, cut-fail loops (to, e.g., prune at
the toplevel), if-then-else, and constraint-based branch-and-bound optimization.
Although once/1 still presents open issues such as dependencies of tabled solu-
tions on program history, our experimental evaluation confirms that it provides
an arbitrarily large efficiency improvement in several application areas.

Keywords: Logic Programming, Tabling, Pruning, Performance.

1 Introduction

Tabled LP [1] overcomes several limitations of the SLD resolution strategy. In par-
ticular, it guarantees termination for programs with the bounded term-size property
and can improve efficiency in programs which repeatedly perform some computation.
These characteristics help make logic programs less dependent on clause and goal or-
der, thereby bringing operational and declarative semantics closer together. Tabled LP
has been successfully applied in many areas including deductive databases, program
analysis, or semantic Web reasoning.

The operational semantics of tabled LP differentiates the first call to a tabled pred-
icate, the generator, from subsequent variant calls (calls which are identical modulo
variable renaming), the consumers. Generators resolve against program clauses and in-
sert the answers they compute in the table space. Consumers read answers from the
table space and suspend when no more answers are available (therefore breaking infi-
nite loops) and wait for the generation of more answers by their generators. A generator
is said to be complete when it is known not to be able to generate more (unseen) an-
swers. In order to check this property, a fixpoint procedure is executed where all the

� Work partially funded by MINECO project TIN-2008-05624 DOVES and CAM project
S2009TIC-1465 PROMETIDOS.

K. Sagonas (Ed.): PADL 2013, LNCS 7752, pp. 60–76, 2013.
© Springer-Verlag Berlin Heidelberg 2013



Supporting Pruning in Tabled LP 61

consumers inside the generator execution subtree are reading their pending answers
until no more answers are generated. After completion, memory used by consumer sus-
pensions can be reclaimed. The completion operation is complex because a number of
generators may be mutually dependent, thus forming a Strongly Connected Component
(SCC [2]) in the graph of generator dependencies. As new answers for any generator
can result in the production of new answers for any other generator of the SCC, we can
only complete all generators in an SCC at once, when the completion fixpoint has been
reached. The SCC is represented by the leader generator: the youngest generator which
does not depend on older generators. A leader generator defines the next completion
point.

One of the key decisions in the implementation of tabled LP is when a generator
returns its computed answers, i.e., the scheduling or evaluation strategy. Local eval-
uation is the most widely spread evaluation strategy: it executes the full completion
fixpoint procedure before returning any answer outside the generator execution subtree.
It is efficient in terms of time and stack usage when all answers are needed, but per-
forms speculative work when only a subset of the answers is required. The speculative
work performed by local evaluation makes pruning quite ineffective in practice, since it
cannot take place until all answers have already been computed.

A work-around for the speculative work of local evaluation is answer-on-demand
tabled evaluation, where generators return answers as soon as they are computed. The
first attempt proposed is batched evaluation, but it can be very inefficient memory-wise
because it delays completing fixpoint computations without reclaiming the memory
used by consumer suspensions. Swapping evaluation [3] works around this issue with a
memory behavior which is closer to that of local evaluation. Swapping evaluation avoids
speculative work before returning demanded answers, but it performs the same amount
of work as local evaluation when backtracking. This brings the necessity for pruning
operators in tabled LP in order to be able to discard unnecessary alternative execution
paths. The contribution of this paper is a discussion of the issues related to pruning
in tabled LP which motivate the implementation of an efficient pruning operator —a
version of once/1— with a more natural semantics for the realm of tabling than that
of the standard cut operator. once/1 is implemented under swapping tabled evaluation,
and we identify a series of optimizations, programming patterns, and general types
of applications where it can be used advantageously. The final goal is to enlarge the
domains in which tabled LP can be put to work in a natural way.

This paper concentrates on proper tabling (or suspension-based tabling), which does
not recompute execution paths in order to recover the execution state of a suspended
consumer. Also, variant tabling is assumed, i.e., a call is considered a consumer iff it
is identical, modulo variable renaming, to a previous generator. Adapting the proposed
solutions to work under subsumptive tabling, which considers a goal A to be a consumer
of a goal B if Bθ ≡ A for some substitution θ (or, in general, for tabling under constraints
where consumers are defined under the notion of entailment [4]) is left for future work.
We assume some familiarity with the WAM [5] and proper tabling implementations.

The rest of the paper is organized as follows: Section 2 introduces a number of issues
that appear when performing pruning in tabled LP and proposes solutions for them.
Section 3 motivates the use of pruning operators in tabled LP by showing different



62 P.C. de Guzmán, M. Carro, and M.V. Hermenegildo

:- table t/2.

t(A,B ) :- p(A,C ), !, ...
t(A,B ) :- ...

p(A,B ) :- t(B ,C ), ...

?−t(X ,Y ).

Fig. 1. !/0 example

:- table t/1.

t(X ) :- t(Y ), !, fail.
t(1).

?−t(X ) vs ?− t(1).

Fig. 2. !/0 inconsistency

:- table t/1, r/1.

t(X ) :- r(X ).
t(1).

r(X ) :- t(X ).
r(2).

?−once(t(X )) vs ?−once(r(Y)),once(t(X )).

Fig. 3. Solution order dependency

applications where this combination is useful. Section 4 shows some implementation
details of the proposed once/1 pruning operator. Section 5 evaluates our solution ex-
perimentally. Finally, Section 6 gives an overview of the related work and Section 7
summarizes some conclusions.

2 Issues to Support Pruning in Tabled LP

A desirable feature of any program language is “to compute only what is needed and to
compute it only once”. Tabled LP is useful to solve the second problem, but it needs the
combination of answer-on-demand tabled evaluation with pruning operators to solve
the first one. This section analyzes the issues of combining tabled LP with pruning
operators, showing the drawbacks of the standard cut operator (!/0) and proposing a
different declarative semantics for our version of the once/1 pruning operator.

2.1 !/0 Operator in Tabled LP

The operational semantics of !/0 is strongly based on the depth-first search strategy of
Prolog. The fact that tabled LP does not follow this strategy — the execution order
of tabled clauses is dynamic — makes the operational semantics of !/0 under Prolog
to be not applicable under tabled evaluation. This is specially relevant in the presence
of mutually recursive calls (Figure 1). It is for example quite possible that !/0 cuts the
second clause for one call to t/2 (when, e.g., t(B ,C ) is a consumer of a complete tabled
call) but not for other calls (when, e.g., t(B ,C ) is a consumer which suspends). This
behavior is caused by the effects of !/0 spanning across clauses. This is inadequate in
the context of tabled LP, since the execution order of the clauses of a generator is not
always easy to predict.

Another example of the ill behavior of !/0 in tabled LP is shown in Figure 2. The
tabled evaluation of the query t(X ) executes the first clause of t/1 and suspends the con-
sumer call t(Y ), executing the second clause of t/1 on backtracking. The second clause
of t/1 generates the answer X =1, which is returned to the toplevel. On backtracking,
X =1 is consumed by the consumer t(Y ) before the final failure of the execution. On the
other hand, the tabled evaluation of the query t(1) executes the first clause of t/1, but now



Supporting Pruning in Tabled LP 63

t(Y ) does not suspend. t(Y ) can be either a generator — which would return answers af-
ter its evaluation — or a consumer which reads the available t(1) answer. Thereby, t(Y )
succeeds and !/0 prunes the second alternative before executing a failure. Therefore, !/0
produces an inconsistency since t(1) fails and t(X ) succeeds with the answer X = 1.

2.2 Behavior of Once/1

As we have seen, !/0 adapts badly to tabled LP, but pruning is a necessity for gen-
eral program techniques such as generate-and-test programs if the generation of further
potential solutions is to be pruned when a test condition succeeds — i.e., if only one so-
lution (a witness) is necessary. In the context of tabled LP, once/1 provides a much more
appropriate semantics: once(G) executes G but it also cancels any external backtracking
over G . once(G) is guaranteed to produce at most one solution without any guarantee
as to which particular solution it is — it could even be a random pick — and can be
expressed in terms of !/0 for a non-tabled goal as once(G) :− call(G), !. Thereby, once/1
is less dependent on the execution order of the generator clauses than !/0 because once/1
does not span across clauses.

once/1 is also useful in order to extend the functionality of !/0 for updating tabling
data structures. For example, consider a once(G) call which succeeds. The data and con-
trol structures which would be necessary to re-enter the execution of G are not needed
any more. To this end, once/1 must remove not only the choicepoints belonging to the
current execution path — as !/0 does — but also the consumers which appeared inside
the execution subtree of G. The resumption of these consumers might lead to subsequent
solutions of the once/1 call, which would contradict the previous rationale. Note that
these consumers are, in implementations that use proper tabling, either protected from
backtracking or copied away to a separate memory area and would not be pruned by !/0.
Note also that this consumer removal, which is necessary for correctness, is not done
by other tabled LP approaches to pruning and is not trivial. For example, one of these
consumers, say C , might belong to the consumer list of a generator not being pruned,
and the completion fixpoint operation of this other generator would resume C .

One may expect that once/1 will return the solution which is less expensive to com-
pute (e.g., the first one to be computed), but the solution order in tabled LP depends on
the shape of generator dependencies, which in turn depends on the program history in
classical tabled LP implementations. Consider the program in Figure 3 and the query
once(t(X )). Execution enters the first clause of t/1 and calls the generator r(X ). The exe-
cution of the first clause of r/1 suspends since t(X ) is a consumer. r(X ) computes the so-
lution X = 2 and this is the only solution propagated to the toplevel because of the once/1
success. On the other hand, the execution of the query once(r(Y )), once(t(X )) calls the
generator r(Y ) and its first clause calls to the generator t(Y ), whose first clause suspends
because r(Y ) is a consumer. t(Y ) computes the solution Y = 1. After that, once(t(X ))
is called, which can consume the previous solution X = 1. This is the only solution
propagated to the toplevel because of the success of once/1. Therefore, the solution
to once(t(X )) depends on the execution history. Moreover, if we impose X = 1 after call-
ing once(t(X )), the execution succeeds or fails depending on the program history. We
can resume this behavior in the following dependency chain:

program history ⇒ SCCs ⇒ solution order ⇒ once/1 solution ⇒ program results



64 P.C. de Guzmán, M. Carro, and M.V. Hermenegildo

The shape of generator dependencies could be made to depend on statically pre-
dictable characteristics which would remove dependencies from the history, but we did
not find any completely satisfactory order. For example, the lexicographical order could
be used, but let us consider the execution of the previous query once(t(X )). When t(X ) is
called from the first alternative of r(X ), t(X ) could be recomputed as if it was a generator
because r(X ) cannot depend on t(X ) (r(X ) comes first under the lexicographical order).
Given a program, its solutions would not depend on the program history since the lex-
icographical generator priority fixes the shape of generator dependencies, but a change
to the names of the tabled predicates could change the order of the solutions, which is
arguably not the best situation. In general, orders which rely on syntactic characteristics
of the source code are sensitive to changes on the program text which are very common
and which programmers do not expect to result in alterations to the behavior of the
program.

This dependency on the program history is an open issue in existing tabled LP sup-
porting pruning operators, although it has not been documented before. However, we
strongly believe that having a once/1 operator available is worthwhile because the com-
bination of pruning and answer on-demand tabled evaluation is very efficient in a variety
of applications, as we will show in the next section. Also, the behavior of the program
execution in tabled LP with pruning operators is consistent as long as the programmer
is aware that (s)he cannot rely on which particular solution will be returned by a call
to once/1. Keeping this property in mind, the query once(t(X )), X = 1 makes little sense
and it is a questionable programming pattern.

3 Applications of Once/1

We motivated the once/1 operator as a general instrument for programs which benefit
from tabled LP but which only need a subset of all the possible solutions. In addition,
there are a number of programming patterns where once/1 is quite useful and which are
worth mentioning.

3.1 Generate and Test Applications

Consider a model checker based on tabled LP, such as XMC [6], which performs reachi-
bility analysis. A typical case is the verification of a mutual exclusion protocol where
each configuration state is a tuple with a state qi for each process Pi . For example, for
three processes the state 〈q1,q2 ,qme 〉 represents a configuration where process P1 is in
state q1, process P2 is in state q2, and process P3 is in a mutual exclusion state.

A model checker application would provide the predicate reach/2, which returns in
its second argument all the configuration states reachable from the configuration state
given by its first argument. Therefore, all the configuration states reachable from the
state I0 are returned by the query ?− reach(I0,X ). Note that, for verification purposes,
the search can be stopped when two processes are in the mutual exclusion state at the
same time. This condition can be expressed with the following facts and query (where
initial/1 returns the initial state):



Supporting Pruning in Tabled LP 65

check(〈qme ,qme ,_〉).
check(〈qme ,_,qme 〉).
check(〈_,qme ,qme 〉).

?− initial(I0), once(reach(I0,X ), check(X )).

3.2 Early Completion Optimization

Early completion [7] is an optimization for tabled LP which completes a generator call
when a new answer does not further instantiate the call and is therefore the most gen-
eral answer. In that case, further backtracking over the early-completed generator is
unnecessary. This is the same objective that a once/1 which succeeds pursues. Early
completion optimization can then be easily implemented by associating a once/1 call
which does not appear in the program and whose final activation is to be dynamically
decided (which we term a virtual once/1) with all the generator calls. When all the
free variables of a generator call remain unbound when one of the generator answers is
found, a (virtual) success of the generator virtual once/1 call can be simulated. As we
will see in Section 5.2, early completion optimization based on once/1 clearly outper-
forms other early completion optimization implementations. Also, as early completion
optimization is performed when free variables remain uninstantiated, early completion
optimization based on once/1 does not present the issues commented in Section 2.2.

3.3 Pruning at the Top Level

A (virtual) once/1 call can be also associated to the toplevel query in order to perform
pruning at the top level. Similarly to the implementation of early completion optimiza-
tion, pruning at the top level when no more answers are demanded by the user can be
achieved by simulating a (virtual) success of the toplevel virtual once/1 call.

3.4 If-Then-Else Prolog Transformation

The Prolog program transformation for the classical Cond -> A;B statement is as
follows:

if−then−else(Cond,A,B)) :- Cond, !, A.
if−then−else(_,_,B)) :- B.

which does not work if Cond needs tabled evaluation. This is due to two main reasons:
a) Cond might suspend and then, B would be executed; later on, a resumption of Cond
might lead to the execution of A; b) as remarked in Section 2, !/0 does not ensure at most
one solution of pruned tabled calls. The first issue can be solved by supporting negation
in tabled LP [8], which is usually implemented by the tnot/1 operator. The second one
can be solved by using once/1 instead of !/0. The new transformation for if-then-else
statements in tabled LP would be:1

if−then−else(Cond,A,B)) :- once(Cond), A.
if−then−else(Cond,_,B)) :- tnot(Cond), B.

1 Note that the call to tnot/1 succeeds at most once.



66 P.C. de Guzmán, M. Carro, and M.V. Hermenegildo

:- table path/3.
path(X ,Y ,Cost ) :-

edge(X ,Y ,Cost ).
path(X ,Y ,C ) :-

C #= C1+C2,
C #>= 0,
edge(X ,Z ,C1),
path(Z ,Y ,C2).

min_path(X ,Y ,Best ,Mi n) :−
once(path(X ,Y ,Best )),
NewBest #< Best ,
once((min_path(X ,Y ,NewBest ,Mi n) ; Mi n = Best )).

?− min_path(X ,Y ,_,Mi n).

Fig. 4. Constraint-based optimization

3.5 Application to Minimization Problems

Although we currently support only variant tabling under swapping evaluation, Ciao can
combine tabled LP and CLP [4] and work to combine them with once/1 under swapping
evaluation is underway. The resulting system can be applied, for example, to a declar-
ative and efficient formulation of optimization. Consider the program in Figure 4.2

min_path/4 iteratively calls path(X ,Y ,Cost ) and successively constrains the path cost.
It is called inside once/1 because we are interested in a single solution. Note that the
recursive calls can perform the reactivation operation (which will be explained in Sec-
tion 4.6) in order to continue the generator execution at the point where it was pruned
after imposing some more tighter constraints. When the constraints are too tight and the
path/3 call fails, the immediately previous cost is returned. The procedure implements
a branch and bound algorithm where tabled LP avoids loops and redundant work, con-
straints are used to implement bounds which cut the search, and once/1 restricts the
search to return only one witness.

4 Implementation Details of the Once/1 Operator

This section recalls the general ideas of swapping evaluation [3] and explains the im-
plementation of the once/1 operator, which is based on the management of once scopes
and the pruning procedure associated with them. We will also see some optimizations
as the reactivation operation or memory reclaiming after a pruning operation.

4.1 Swapping Evaluation

Pruning needs answer-on-demand tabled evaluation to be more effective. Swapping
evaluation [3] is an answer-on-demand strategy for tabled LP which solves the mem-
ory consumption issues of batched evaluation. It implements a different behavior for
internal and external consumers. An internal consumer appears inside the execution
subtree of the leader of the generator of the consumer. E.g., in a program with clauses
{(:−table a/0), (a :− a), (a)} with the query ?− a, a, the leftmost a/0 in the query is a gen-
erator, the a/0 in the body of the first clause is an internal consumer, and the rightmost

2 The symbol # differentiates constraints from arithmetical operators.



Supporting Pruning in Tabled LP 67

a/0 in the query is an external consumer. Using swapping evaluation, internal consumers
behave as usual, but external consumers read answers from the table space and, when
no more answers are available, they move the choice points and their corresponding
trail cells of their generators to the top of the stacks in order to modify the backtrack-
ing execution order. The original generator is then transformed into a consumer and
the external consumer becomes a generator which can produce more answers, avoiding
the use of memory for external consumer suspensions — which is the most important
source of memory consumption in batched execution.

4.2 Once Scope Data Structure

A once scope is a data structure associated with a once/1 call which keeps track of
relevant information in order to perform the pruning operation. Once scopes are hier-
archically organized, because a once/1 call can be called from the execution subtree of
another once/1 call (the latter being the parent of the former). Note that this hierarchical
structure includes the (virtual) once scopes associated to generator calls. Therefore, the
consumer list of a generator is directly accessible via its virtual once scope.3

A once scope S is composed of the following fields: choicepoint, parent, children set,
consumer set and generator set. choicepoint indicates the choicepoint at time of the
once/1 call corresponding to S. parent indicates the parent once scope of S. children set
stores the set of once/1 calls which are immediately called from S (those once scopes
whose parent field points to S). consumer set is the set of consumer calls which are
called when S is the active once scope. The active once scope is the youngest once
scope of those whose execution subtree is being executed. Similarly, generator set is
the set of generator calls which are called when S is the active once scope.

4.3 The Management of Once Scopes once(G) :-
new_once(Scope)
push_once(Scope),
undo(forward_trail(

push_once(Scope),
pop_once)),

call(G),
once_proceed,
pop_once,
undo(forward_trail(

pop_once,
push_once(Scope))).

Fig. 5. once/1 predicate

Figure 5 shows Prolog code for the once/1 operator,
which is responsible for managing the once scopes.
Once scopes are stored on the once scope stack, whose
topmost element is the active once scope. new_once/1
initializes Scope, a new scope for the current once/1
call. It initializes the choicepoint and parent fields of
Scope and updates its children set field.4 push_once/1
pushes Scope onto the once scope stack to indicate
that it is now the active once scope. If G succeeds,
once_proceed/0 performs the pruning operation re-
lated to the active once scope. After that, pop_once/0
pops off Scope.

One additional difficulty is that consumer calls which suspend within a once/1 call
have discontiguous executions. Let us consider the call once(C ), where C is a consumer

3 We consider the consumer list of a generator as the consumers appearing inside the generator
execution subtree instead of the repeated calls up to variable renaming. This does not affect
the completion operation fixpoint.

4 children set is also updated when a generator completes or after a swapping operation.



68 P.C. de Guzmán, M. Carro, and M.V. Hermenegildo

call which suspends. The execution might exit the once/1 subtree on suspension and
reenters it when resuming, which requires the once scope structure to be popped off
on suspension and pushed on on resumption. The mechanism we have used is to leave
actions on the trail to be executed on untrailing (e.g., when suspending to enter another
clause) and on resumption (when reinstalling the trail to continue a suspended call af-
ter a new answer is available). We insert in the trail, via the undo/1 operation,5 the
forward_trail/2 goal, which is defined to execute its second argument when called. This
second argument is then invoked on backtracking when C is suspended. The resump-
tion mechanism in turn recognizes forward_trail/2 when reinstalling the trail and calls
its first argument. Therefore, the first undo/1 always discards the scope when the call
finally fails. In the case of a consumer inside the execution subtree of once/1, it also
uninstalls the scope when performing untrailing to suspend and pushes the scope back
onto the stack on resumption. The second undo/1 performs the reverse operation, which
is needed to neutralize the actions of the first undo/1 in order to resume consumers
outside the execution subtree of the current once/1 call: it reinstalls the once scope on
backtracking which will be popped off by the first undo/1 and pops off the once scope
which has been previously reinstalled by the first undo/1 on consumer resumption.

The virtual once scopes associated with generators and the toplevel execution are
managed by a similar code, but once_proceed/0 is not executed by default. For these
cases, once_proceed/0 is executed if the early completion optimization can be per-
formed or no more answers are demanded by the user, respectively.

4.4 Terminology

Note that the consumers and generators of a once scope S also belong to the once scope
of the parent of S (although they do not directly appear in their consumer/generator set
fields). We recursively define the once-recursive consumer set of a once scope S as
the members of the consumer set field of S plus the once-recursive consumer set of the
members of the children set field of S. We define similarly the once-recursive generator
set of a once scope.

Remember that we have associated a virtual once scope to all generators. The con-
sumer list of a generator — those appearing inside its execution subtree but not in the
execution subtree of internal generator calls — are the members of the once-recursive
consumer set of the once scope associated with the generator. We also define the recur-
sive consumer set of a once scope S as the once-recursive consumer set of S plus the
recursive consumer set of the once scopes associated with the members of the once-
recursive generator set of S, i.e., it also includes the consumers inside the execution
subtree of internal generators, and therefore it is made up of the set of consumers inside
the execution subtree of the once/1 call. We also define the recursive generator set of a
once scope S accordingly.

For example, following Figure 6, there is a once/1 call (associated to the once scope
ONCEB ) which is internal to the execution of another once/1 call (associated to the
once scope ONCE A). ONCEG1 and ONCEG2 are the virtual once scopes associated to,
respectively, the generators G1 and G2. These generators are called from the execution

5 undo/1 is a common facility which leaves a goal call in the trail to be invoked on untrailing.



Supporting Pruning in Tabled LP 69

ONCE A :
Parent: NU LL
Consumer Set: {C1, C2}
Generator Set: {G1}
Once Set: {ONCEB }

ONCEB :
Parent: ONCE A
Consumer Set: {C3}
Generator Set: {}
Once Set: {}

ONCEG1 :
Parent: ONCE A
Consumer Set: {C4}
Generator Set: {G2}
Once Set: {}

ONCEG2 :
Parent: ONCEG1

Consumer Set: {C5}
Generator Set: {}
Once Set: {}

Fig. 6. Once structures

of the once/1 call associated to ONCE A . The internal consumers of a virtual once scope
are included into the recursive consumer set of any of its parent once scopes, but they
are not included into the once-recursive consumer set of any of its parent calls. Conse-
quently, the once-recursive consumers of the once scope ONCE A are C1, C2 and C3,
and the recursive consumers of the once scope ONCE A are C1, C2, C3, C4 and C5.

4.5 The Pruning of a Once Scope

once_proceed/0 is responsible for pruning the active once scope. Its pseudo-code is:

DELETE act_once_scope from ParentOf(act_once_scope );
cur r ent_choi cepoi nt = InitChoicepoint(act_once_scope);
for each G ∈ recur_gen_set(act_once_scope) do state(G) = PRUNED;

The first line deletes the active once scope from the once scope set of its parent once
scope. This operation causes the removal of all the consumers inside the execution
subtree of the active once scope, because the active once scope (and its consumers) is
not reachable from the once scope of any generator any more and then, these consumers
will not be traversed by the execution of any completion fixpoint procedure. After that,
the current choicepoint is updated to the one of the active once scope in order to discard
pending search of the execution subtree of the once/1 call being pruned. Finally, all
the non-complete generators inside the execution subtree of the active once scope are
marked as PRUNED in order to avoid inconsistencies if one of their consumers appear.
We follow a similar approach to the one of incomplete tables [9], but it is improved with
the use of the reactivation operation (see Section 4.6). The main goal of the incomplete
table proposal is to avoid the generator recomputation when the answers of a PRUNED
generator are enough to evaluate a (future) consumer. (Future) consumers consume the
available answers from its PRUNED table, and only if all such answers are exhausted,
the generator is computed from scratch. Later, if the computation is pruned again, the
same process is repeated until eventually the subgoal is completely evaluated. Note
that each recomputation from scratch computes at least one more solution, keeping the
tabled LP termination property for programs with the bounded term-size.



70 P.C. de Guzmán, M. Carro, and M.V. Hermenegildo

:- table t/1, r/1.

t(X ) :- r(X ).
t(1).
...
t(X ) :- ...

r(X ) :- large_comp, once(t(X )). r(X)

t(X)

SCC

r(X)

t(X)

SCC1

SCC2

Fig. 7. Consumer Optimizations

4.6 Pruning Optimizations

We here propose some optimization which can be applied to the implementation of
once/1. They do not affect to the operational semantics of once/1, but can improve the
time/memory execution of tabled LP applications.

The Reactivation Operation. The subtree under a pruned generator might not be fully
explored at the moment of pruning, possibly discarding the computation of pending an-
swers. Thereby, (future) consumers of pruned generators might require answers which
were not computed due to the pruning. Two main approaches have been proposed so
far: either keep the solutions in the answer table and protect the execution subtree from
backtracking [10], or keep the solutions in the answer tables but discarding the execu-
tion subtree [9]. The former, based on the reactivation operation, might be interesting
for applications where the pruned generators are often reactivated, arbitrarily improving
the execution speed. However, we decided to implement the latter because the memory
consumption of the former could be unacceptable. For example, using stack freezing,
the trail section to be saved at time of pruning is unbounded because backtracking might
be performed until the initial choicepoint.

We improve over incomplete tables for cases where the reactivation operation comes
for free. once_proceed/0 marks as PRUNED the generators inside the execution sub-
tree of the active once scope and updates the current choice point, but these operations
can be performed lazily on backtracking (just before entering the pruned alternatives).
Therefore, the execution subtree of pruned generators is kept on the stacks and can be
reused by a swapping operation executed in the continuation code. This special case
of the swapping operation implements the reactivation operation for free. On the other
hand, after backtracking over the prune generators, the execution of the pruned gener-
ators is reclaimed and it must be computed from scratch if future consumers demand
more answers than the ones available.

Memory Optimizations after Pruning Success. Another optimization is related to the
removal of the consumers inside the execution subtree of active once scope — which
trivially speeds up the completion operation because fewer consumers have to be tra-
versed in the completion operation fixpoint. This removal can be also used to reduce



Supporting Pruning in Tabled LP 71

dependencies between generators being evaluated — fewer dependencies lead to the
sooner completion of generators and better memory use — and to reclaim unneeded
consumer memory of pruned consumers which is protected from backtracking.

In the example in Figure 7 (left-side), the query t(X ) is a generator whose first clause
calls r(X ), another generator. r(X ) starts a large computation and, afterward, once(t(X ))
is called. The first clause of t(X ) suspends when calling r(X ). The generator dependency
graph at this moment is shown in Figure 7 (in the middle), where there is only a comple-
tion point represented by the leader t(X ). After the consumer call to r(X ) suspends, exe-
cution backtracks and the second clause of t(X ) is executed, computing the answer X =1.
This makes the once/1 call succeed and the previously suspended consumer is removed
(and therefore ignored by the completion fixpoint). This can be used for reclaiming the
memory associated to these consumers —which is probably frozen on the stacks —and
for updating the graph of generator dependencies as shown in Figure 7 (right-side),
removing the dependency of r(X ) on t(X ). The new graph of generator dependencies de-
fines two different completion points, corresponding to two different leaders, t(X ) and
r(X ). Therefore, r(X ) can complete on backtracking. The completion of r(X ) improves
the program memory behavior because the memory used by large_comp/0 is reclaimed
before exploring alternative clauses of the generator t(X ). The pseudo-code to perform
this optimization is as follows:6

Ol destleader = oldest(Gen(C ) s. t. (C ∈ recur_cons_set(act_once_scope )));
for (G = Ga ; Ol destleader != G; G = ParentOf(G))

Leader(G) = oldest(G
⋃

{Gen(C ) s. t. (C ∈ recur_cons_set(OnceScope(G)))});

The first line computes the oldest dependency of the active once scope. The sec-
ond line traverses generators starting from the youngest one being executed, Ga , until
Oldestleader , in order to update their generator dependencies.7 Since once_proceed/0
has just been executed, the third line computes the new oldest dependency of G without
taking into account the pruned consumers. At the end of the execution of this code, the
leader fields have been updated according to the new graph of generator dependencies.

There is another optimization for reclaiming the memory frozen by consumers which
is independent from the updating of generator dependencies. This optimization refers
to the case where the topmost frozen memory corresponds to consumers being pruned.
In this case, we can update the value of the frozen memory in order not to protect from
backtracking the memory of consumers which have been pruned. The pseudo-code for
this optimization is as follows:8

M AX f r oz_mem = max(FrozMem(C ) s. t. (C ∈ recur_cons_set(act_once_scope )));
if (F r ozMem == M AX f r oz_mem )

F r ozMem = max(FrozMem(C ) s. t. (C ∈ recur_cons_set(OnceScope(Leader(Ga)))));

The first line computes M AX f r oz_mem , the maximum frozen memory by the con-
sumers inside the execution tree of the once scope being pruned. Since once_proceed/0

6 This code follows the call to once_proceed/0 in Figure 5.
7 Generator dependencies of generators older than Ol destleader are unaffected.
8 This code follows the call to once_proceed/0 in Figure 5.



72 P.C. de Guzmán, M. Carro, and M.V. Hermenegildo

has just been executed, the third line computes the new maximum frozen memory with-
out taking into account the pruned consumers. Fr ozMem is only updated if its previous
value is different than the one of M AX f r oz_mem because if these values are the same,
the current frozen memory corresponds to a consumer outside of the execution subtree
of the once scope being pruned.

5 Performance Evaluation

We have implemented the once/1 pruning operator under swapping evaluation in Ciao
and compared its performance w.r.t. XSB version 3.3.6. Both systems were compiled
with gcc 4.5.2 and executed on a machine with Ubuntu 11.04 and a 2.7GHz Intel Core
i7 processor.

5.1 Applications Searching an Answer Subset

Table 1 shows execution times in ms. for a set of applications which can take advan-
tage of once/1 in order to compute a subset of answers. numbers searches for an arith-
metic expression which evaluates to a given natural number (N ), given a list of natural
numbers (S) (100+ lines). Tabled LP is used to avoid the recomputation of recursive
calls with a subset of S. The suffix none indicates a query where N cannot be ob-
tained using S, the suffix easy indicates a query where the first solution implies the
computation of a small fraction of the search space and suffix stand indicates a query
with no special characteristics (i.e., no specific search tree shape was sought). iproto,
leader, and sieve are model checking applications where reachability analysis is per-
formed (600+ lines each). numbers uses once/1 in the definition of its tabled predicates
in order to return only one answer. iproto, leader and sieve queries are embedded in
a once/1 operator in order to prune the search when the first answer is returned, e. g.
once(iproto(init,F i nal St ate )). We measure the time to return the first answer for each
query in the first column and also until final failure the all column (i.e., when all the
solutions are computed, when that is the case). We show execution times of Ciao under
local and swapping evaluation, using once/1 or not.

numbers_none cannot take advantage of either swapping evaluation or once/1 be-
cause it must explore the full search space, since no solutions are found. Its different
execution times provide an intuition regarding the overhead of swapping evaluation and
once/1, which in this case are both almost negligible. In numbers_easy, local evaluation
has to compute all the possible expressions while swapping evaluation can return the
first one and stop, which takes much shorter. The use of once/1 allows swapping evalu-
ation to discard alternative execution paths before performing backtracking — note that
swapping evaluation would compute all the answers on backtracking unless once/1 is
used, which gives us a strong reason for the necessity of combining answer-on-demand
tabled evaluation and pruning operators. With respect to local evaluation, it takes some
more time to return all the solutions than to return the first one, because they have to
be reconstructed from the table space where they were stored after having been com-
puted before returning the first one. once/1 under local evaluation makes it possible to
discard solutions when the first one is found, but recursive tabled calls were still com-
pletely evaluated in a speculative way. We conclude that a pruning operator can be used



Supporting Pruning in Tabled LP 73

Table 1. Execution time (ms.) of local vs. swapping evaluation with/without pruning operators

Local Swapping
No once/1 once/1 No once/1 once/1

Query first all first all first all first all
num_none 21 912 21 912 22 365 22 365 22 574 22 574 22 982 22 982
num_easy 20 613 21 108 17 023 17 027 1 624 22 421 1 708 1 792
num_stand 24 296 25 312 22 750 22 753 8 403 26 058 8 729 8 906
iproto 2 992 3 184 3 014 3 016 1 112 3 024 1 126 1 141
leader 9 940 10 324 10 182 10 186 3 296 10 963 3 412 3 433
sieve 35 554 36 272 35 986 35 991 7 081 37 139 7 107 7 123

under local evaluation, but it is obviously less interesting than under swapping eval-
uation. numbers_stand has a behavior similar to numbers_easy, but the first solution
takes some more time to be computed. Note that the effects of pruning on execution
time depend heavily on when the first answer is found, because pruning only affects
the remaining search space. iproto, leader, and sieve show an overall behavior similar
to that of numbers.

5.2 Early Completion Based on Once/1

Existing proposals for early completion optimization are highly dependent on the syn-
tactic form of the generator clauses and often allow unnecessary computations. For ex-
ample, the XSB early completion optimization updates the next instruction of the gen-
erator choicepoint to be the completion fixpoint procedure, avoiding the computation of
the alternative generator clauses. It does not perform either reactivation of pruned gen-
erator calls or updating of the graph of generator dependencies based on the consumer
removal. These drawbacks are overcome by our early completion optimization based on
once/1. As an example, let us analyze the behavior of the handcrafted code in Figure 8
in XSB. t1/0 is a generator whose first clause calls t2/0, another generator. t2/0 calls t1/0,
performing a consumer suspension. On backtracking, t2/0 cannot complete because of
this dependency. Now, the second clause of t1/0 is executed and it succeeds. At this
moment, t1/0 can be completed early (discarding pending execution alternatives), but
its fixpoint procedure is still executed. The consumer of t1/0 is resumed, (speculatively)
executing a large computation (sleep(2)). Obviously, the resumption of this consumer
is unnecessary for forward execution and it would not have been performed under early
completion optimization based on once/1. In contrast, the generator t2/0 would have
been marked as pruned to be later reactivated if needed.

Table 2 shows execution times in ms. for a set of benchmarks which can take advan-
tage of early completion optimization. genome computes relations following a genome
structure represented as a graph. The suffixes give some rough indications of the shape
of the graph. We measure Ciao and XSB, using local evaluation in both cases for fair-
ness in the comparison.9 The no_early column shows execution times taken after modi-
fying the XSB sources to deactivate early completion optimization and the early column

9 Note that early completion is effective even under local evaluation since it prunes the generator
execution after computing its first solution.



74 P.C. de Guzmán, M. Carro, and M.V. Hermenegildo

Table 2. Execution time (ms.) of early completion optimization

XSB Ciao
no_early early speedup no_early early speedup

bad_xsb 2000 2000 1.00 2000 0.3 6666
genome_chain 28.8 24.8 1.16 33.1 23.5 1.41
genome_grid 102.4 60.4 1.69 116.2 12.7 9.15
genome_cycle 290.0 212.5 1.36 324.7 1.8 180.38
genome_dense 3.2 0.4 8.00 5.1 0.2 25.50

shows execution times with the early completion optimization activated. As explained
previously, the early completion optimization in Ciao is based on once/1.

:- table t1/0, t2/0.

t1 :- t2.
t1.

t2 :- t1, sleep(2).

?− t1.

Fig. 8. bad_xsb example

bad_xsb takes 2000 ms. in XSB and less than 1 ms.
in Ciao, confirming the previous analysis. The rest of
the benchmarks show more realistic scenarios, where
XSB (no_early) executes sometimes faster than Ciao
(no_early). One reason is that the Ciao tabled LP imple-
mentation is based on a program transformation which
imposes some overheads. But the main focus of in-
terest here is the search space which is pruned by
the early completion optimization. XSB takes advan-
tage of early completion optimization, speeding up the
execution between 1.16× and 8×, while Ciao obtains
speedups between 1.41× and 180×, showing that early
completion optimization based on once/1 can clearly
be more effective in many cases. The execution times
of genome_cycle and genome_grid, which generate situations similar to the one of
bad_xsb where the Ciao early completion optimization discards expensive fixpoint
computations which XSB executes, are the ones where Ciao gets the most advantage
w.r.t. XSB.

6 Related Work

To the best of our knowledge, there are five previous attempts to incorporate pruning
operators in tabled LP [11,12,9,13,10]. [11] works under the dynamic reordering of
alternatives (DRA) technique [14]. Because the abstract machine for DRA is much more
WAM-like than the implementations of proper tabling, the authors claim that the DRA
implementation of cut is closer to that of !/0 in the WAM. They argue that, since the
DRA scheduling strategy is deterministic, this allows for a well-defined !/0, with a more
intuitive operational semantics. DRA tries non-looping alternatives first and looping
alternatives later on, and this is the order in which !/0 prunes. In fact, proper tabling
implementations could be made to follow the same order for consumer resumptions
as DRA. However, we tend to agree with [10] that the behavior resulting from the
implementation of !/0 in DRA can still be confusing, as argued in Section 2.2. Also,
DRA is based on recomputation of looping alternatives, while proper tabling does not



Supporting Pruning in Tabled LP 75

re-execute except for the cost of reinstalling trailed bindings, offering a quite different
trade-off. Our proposal is tailored to proper tabling.

Tabling modes [12] is also based on !/0. It is used at the level of program definition,
which restricts the flexibility for the case of applications which sometimes need all the
solutions and sometimes need a subset of them. It uses a lazy strategy, which computes
all the solutions as local evaluation does. Consequently, tabling modes do not prune the
tabled evaluation. A minimization problem as that in Section 3.5 would not use previous
solutions to prune the search space.

Incomplete tables [9] is also based on !/0. They do not provide a robust implementa-
tion (Yap Prolog documentation alerts that the behavior of tabled LP with !/0 is unde-
fined). Also, its implementation does not support the reactivation operation.

Demanded tables [13] implements a version of once/1. In this work, calls which are
being consumed by external consumers (demanded table) are not pruned, which makes
it necessary to perform runtime analysis to detect if a generator call is being demanded.
We avoid this analysis by supporting reactivation of tables. We do not care if a generator
to be pruned is being demanded, since the demanding consumers would reactivate the
generator if needed.

JET [10] is closer to the spirit of this work, although no implementation is provided.
The ideas presented are also based on reactivation of tables, but this work does not
provide any pruning operator for the user. Instead, pruning takes place on JET points,
which are detected by static analysis. This is a deliberate design decision to facilitate
the job of the programmer, but it implies a loss of pruning power. For example, our
numbers benchmark would not benefit from JET pruning. We strongly believe that the
semantics of once/1 is clear enough for the programmer, although we could of course
adapt our pruning operator to be based on analysis. Other minor advantages of our
pruning operator are that once/1 is linear in the number of generator choicepoints while
JET pruning is linear in the number of choicepoints, that once/1 does not impose any
overhead if pruning is not used, and that once/1 does not store any choicepoint more
than once to allow future reactivations, among others.

Finally, the most important contribution of our pruning mechanism is the pruning of
consumers inside the execution subtree of a pruning operator. They must be removed
in order not to execute the continuation of a pruning operator more than once — the
resumption of these consumers might lead to a new execution of this continuation code.
Moreover, we propose some memory optimizations to take advantage of the consumer
removal after a pruning operation.

7 Conclusions

We argue that none of the previous approaches for pruning in tabled LP is fully sat-
isfactory although a pruning operator under answer-on-demand tabled evaluation is a
necessity in order to enlarge the application domain of tabled LP. To this end, we have
presented and evaluated a pruning operator under swapping evaluation, and reported on
benchmarking of its implementation in Ciao, comparing it to previous proposals, and
showing that it offers advantages in terms of efficiency and programmability. We have
also shown how our pruning operator can be used as a basis for implementing a number
of optimizations.



76 P.C. de Guzmán, M. Carro, and M.V. Hermenegildo

References

1. Chen, W., Warren, D.S.: Tabled Evaluation with Delaying for General Logic Programs. Jour-
nal of the ACM 43(1), 20–74 (1996)

2. Tarjan, R.: Depth-First Search and Linear Graph Algorithms. SIAM J. Comput. 1, 140–160
(1972)

3. Chico de Guzmán, P., Carro, M., Warren, D.S.: Swapping Evaluation: A Memory-Scalable
Solution for Answer-On-Demand Tabling. TPLP 10 (4-6), 401–416 (2010)

4. Chico de Guzmán, P., Carro, M., Hermenegildo, M.V., Stuckey, P.: A general implementa-
tion framework for tabled CLP. In: Schrijvers, T., Thiemann, P. (eds.) FLOPS 2012. LNCS,
vol. 7294, pp. 104–119. Springer, Heidelberg (2012)

5. Ait-Kaci, H.: Warren’s Abstract Machine, A Tutorial Reconstruction. MIT Press (1991)
6. Ramakrishnan, C.R., Ramakrishnan, I.V., Smolka, S., Dong, Y., Du, X., Roychoudhury, A.,

Venkatakrishnan, V.: XMC: A Logic-Programming-Based Verification Toolset. In: Emerson,
E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 576–580. Springer, Heidelberg
(2000)

7. Sagonas, K., Swift, T.: An Abstract Machine for Tabled Execution of Fixed-Order Strati-
fied Logic Programs. ACM Transactions on Programming Languages and Systems 20(3),
586–634 (1998)

8. Swift, T., Warren, D.S.: XSB: Extending Prolog with Tabled Logic Programming.
TPLP 12(1-2), 157–187 (2012)

9. Rocha, R.: Handling Incomplete and Complete Tables in Tabled Logic Programs. In:
Etalle, S., Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079, pp. 427–428. Springer,
Heidelberg (2006)

10. Sagonas, K.F., Stuckey, P.J.: Just Enough Tabling. In: PPDP 2004, pp. 78–89. ACM (August
2004)

11. Guo, H.F., Gupta, G.: Cuts in Tabled Logic Programming. In: Demoen, B. (ed.) CICLOPS
2002, pp. 62–73 (July 2002)

12. Guo, H.F., Gupta, G.: Simplifying Dynamic Programming via Mode-directed Tabling. Softw.
Pract. Exper. 38(1), 75–94 (2008)

13. Castro, L.F., Warren, D.S.: Approximate Pruning in Tabled Logic Programming. In:
Degano, P. (ed.) ESOP 2003. LNCS, vol. 2618, pp. 69–83. Springer, Heidelberg (2003)

14. Guo, H.-F., Gupta, G.: A Simple Scheme for Implementing Tabled Logic Programming
Systems Based on Dynamic Reordering of Alternatives. In: Codognet, P. (ed.) ICLP 2001.
LNCS, vol. 2237, pp. 181–196. Springer, Heidelberg (2001)


	Supporting Pruning in Tabled LP
	1 Introduction

	2 Issues to Support Pruning in Tabled LP
	2.1 !/0 Operator in Tabled LP

	2.2 Behavior of Once/1


	3 Applications of Once/1

	3.1 Generate and Test Applications

	3.2 Early Completion Optimization

	3.3 Pruning at the Top Level

	3.4 If-Then-Else Prolog Transformation

	3.5 Application to Minimization Problems

	4 Implementation Details of the Once/1 Operator

	4.1 Swapping Evaluation

	4.2 Once Scope Data Structure

	4.3 The Management of Once Scopes

	4.4 Terminology

	4.5 The Pruning of a Once Scope

	4.6 Pruning Optimizations


	5 Performance Evaluation

	5.1 Applications Searching an Answer Subset

	5.2 Early Completion Based on Once/1


	6 Related Work

	7 Conclusions
	References





