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Preface

Declarative languages build on sound theoretical bases to provide attractive
frameworks for application development. These languages have been successfully
applied to many different real-world situations, ranging from database manage-
ment, to active networks, to software engineering, to decision support systems.

New developments in theory and implementation have opened up new appli-
cation areas. At the same time, applications of declarative languages to novel
problems raise numerous interesting research issues. Well-known questions in-
clude designing for scalability, language extensions for application deployment,
and programming environments. Thus, applications drive the progress in the the-
ory and implementation of declarative systems, and benefit from this progress
as well.

PADL is a forum for researchers and practitioners to present original work
emphasizing novel applications and implementation techniques for all forms of
declarative concepts, including functional, logic, constraints, etc. This volume
contains the papers presented at PADL 2013: the 15th International Symposium
on Practical Aspects of Declarative Languages held during January 20–21, 2013,
in Rome.

There were 33 submissions. Each submission was reviewed by at least three,
and on average four, Program Committee members. The committee decided to
accept 17 papers. The program also includes one invited talk by Tom Schrijvers.

PADL 2013 was co-located with ACM’s 40th Symposium on Principles of
Programming Languages. Previous PADL symposia were held in Philadelphia,
Pennsylvania, USA (2012), Austin, Texas, USA (2011), Madrid, Spain (2010),
Savannah, Georgia, USA (2009), San Francisco, California, USA (2008), Nice,
France (2007), Charleston, South Carolina, USA (2006), Long Beach, California,
USA (2005), Dallas, Texas, USA (2004), New Orleans, Louisiana, USA (2003),
Portland, Oregon, USA (2002), Las Vegas, Nevada, USA (2001), Boston, Mas-
sachusetts, USA (2000), and San Antonio, Texas, USA (1999).

PADL 2013 was sponsored by the Association for Logic Programming and
organized in co-operation with ACM SIGPLAN. Thanks to Matt Might, the
POPL workshop chair, for his help and guidance. Thanks also to Gopal Gupta,
president of the Association for Logic Programming, for his help and support.
Lastly, thanks to the EasyChair system that made managing paper submissions,
paper reviewing, and preparation of the proceedings a breeze.

October 2013 Kostis Sagonas
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Zipping Trees Across the Border

From Functional Specification to Logic Programming

Implementation

Tom Schrijvers

Department of Applied Mathematics and Computer Science
Ghent University

tom.schrijvers@ugent.be

Abstract. The story starts in Haskell land: A humble monoidal oper-
ator for zipping trees embarks on an epic journey. Armed with monads
it rides into Prolog land and wears down a meta-interpreter with de-
limited continuations, thereby freeing the Prolog folks from the yoke of
depth-first search. They lived happily ever after with modular declarative
search heuristics.

Prolog has a depth-first procedural semantics. Unfortunately, this procedural
semantics is ineffective for many programs. Instead, to compute useful solutions,
it is necessary to modify the search method that explores the alternative execu-
tion branches with various kinds of heuristics. For instance, the code on the left
implements a typical Constraint Logic Programming labeling predicate, while
the code on the right adds a depth-bounded search heuristic to it.

label([]).

label([Var|Vars]) :-

( var(Var) ->

fd_inf(Var,Value),

( Var #= Value,

label(Vars)

; Var #\= Value,

label([Var|Vars])

)

;

label(Vars)

).

label([],_).

label([Var|Vars],D) :-

( var(Var) ->

D > 0,

ND is D - 1,

fd_inf(Var,Value),

( Var #= Value,

label(Vars,ND)

; Var #\= Value,

label([Var|Vars],ND)

)

;

label(Vars,D)

).

Manually adapting Prolog programs to incorporate search heuristics obviously
has many disadvantages: it is labor intensive, error prone, tedious and the book-
keeping required for adaptations to non-trivial programs quickly exceeds the
mental capacities of programmers.

Some Prolog systems, like Ciao [1], offer a limited number of heuristics
through automatic program transformation of programmer annotated predi-
cates. The drawback is that a new heuristic requires a new full-blown program
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transformation. The Tor library [2], available in SWI-Prolog [3], supports the
development of new search heuristics; with a hookable disjunction these can be
applied in a very flexible, compositional and convenient way to any programs.
However, search heuristics have to be specified in a very operational manner.
This can be an impediment in the development of new heuristics.

In this work we provide a cleaner alternative for specifying new search heuris-
tics by taking a page from the book of functional programming.

We start from a simplified functional specification in Haskell: the zipTree

operation on trees that is similar to the zip and zipWith family of Haskell list
functions. The idea is that one tree (the heuristic) bends the other one (the ac-
tual search) into the desired shape. Then we generalize our trees by interleaving
them with (monadic) effects in the style of Atkey et al. [4] to more faithfully
characterize search in Prolog. Next we ship the Haskell specification across the
language border to construct a Prolog meta-interpreter. Finally, we derive a di-
rect library-based Prolog implementation by transforming the interpreter into
continuation passing style, specializing it and adding support for delimited con-
tinuations to the WAM.

The end result is that we can write the depth-bounded search heuristic as a
simple declarative predicate in Prolog:

dbs(Depth) :-

Depth > 0,

NDepth is Depth - 1,

( dbs(NDepth)

; dbs(NDepth)

).

and neatly apply it to lable/1 as follows:

label(Vars,Depth) :-

zipTree(dbs(Depth),label(Vars)).

Acknowledgments. This work in progress is conducted jointly with Bart De-
moen en Benoit Desouter.
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A Library for Declarative

Resolution-Independent 2D Graphics

Paul Klint and Atze van der Ploeg

Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
{paulk,ploeg}@cwi.nl

Abstract. The design of most 2D graphics frameworks has been guided
by what the computer can draw efficiently, instead of by how graphics can
best be expressed and composed. As a result, such frameworks restrict
expressivity by providing a limited set of shape primitives, a limited
set of textures and only affine transformations. For example, non-affine
transformations can only be added by invasive modification or complex
tricks rather than by simple composition. More general frameworks exist,
but they make it harder to describe and analyze shapes. We present a
new declarative approach to resolution-independent 2D graphics that
generalizes and simplifies the functionality of traditional frameworks,
while preserving their efficiency. As a real-world example, we show the
implementation of a form of focus+context lenses that gives better image
quality and better performance than the state-of-the-art solution at a
fraction of the code. Our approach can serve as a versatile foundation
for the creation of advanced graphics and higher level frameworks.

Keywords: Declarative Graphics, Design, Resolution-Independence,
Optimization, Focus+context lenses.

1 Introduction

The design of traditional 2D graphics frameworks, such as Java2D1 and Pro-
cessing2, has been guided by what the computer can draw efficiently, instead
of by how graphics can best be expressed and composed. This hinders the ease
of programming 2D graphics, since it requires the programmer to express his
ideas using the limited vocabulary that has emerged as a result of the focus on
procedural optimization of such frameworks.

Suppose we have programmed a visualization in such a traditional framework
and we now want to add a focus+context lens, such as the one shown in Figure 1.
Since only affine transformations (that take parallel lines to parallel lines) are
supported, we cannot add this transformation in a compositional way: it requires
trickery or invasive modification.

Instead of worrying about such low-level details, it is desirable to program 2D
graphics in a declarative way that is general, simple, expressive, composable and
resolution-independent while still being efficient. Previous research on declara-
tive graphics has yielded many elegant approaches to 2D graphics, but none of

1 http://docs.oracle.com/javase/6/docs/technotes/guides/2d/
2 http://processing.org

K. Sagonas (Ed.): PADL 2013, LNCS 7752, pp. 1–18, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://docs.oracle.com/javase/6/docs/technotes/guides/2d/
http://processing.org
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Fig. 1. An example focus+context lens (zoomfactor = 2.5)

these exhibit all these traits. This not only restricts direct graphics program-
ming, but it also hinders the creation of higher-level frameworks. For example,
during our efforts on the Rascal figure library[1], a high-level framework for soft-
ware visualization, we noticed that our design was influenced by the limitations
of the procedural framework used and hence could not grow further in terms of
expressiveness and compositionality.

We present a new declarative approach that generalizes and simplifies the
functionality of traditional 2D graphics frameworks, while preserving their ef-
ficiency. This is achieved by a very effective mapping of our approach to an
existing 2D graphics framework (which we will call the graphics host). Our ap-
proach allows more expressive freedom and can hence serve as a more versatile
foundation for advanced 2D graphics and higher-level frameworks. It is available
as a library called Deform3 for Scala. Our contributions are:

– The motivation (Section 2) and design (Section 3) of a small, simple and pow-
erful framework for resolution-independent 2D graphics that enables com-
posability and expressiveness.

– A way to implement and optimize this framework (Section 4) by mapping
it to a readily-available, highly optimized graphics host. This includes opti-
mizations to speed up this mapping and a way to support clipping so that
large scenes can be rendered in real-time.

– An implementation of focus+context lenses that is faster and gives better
image quality than the state-of-the-art approach (Section 5). This also acts
as a validation of our work.

We discuss open questions in Section 6 and conclude in Section 7.

2 Exploring the Design Space

We now discuss design choices for declarative 2D graphics frameworks and to
guide our choices, we use the following design goals:

3 https://github.com/cwi-swat/deform

https://github.com/cwi-swat/deform
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– Simplicity: The programmer should not be overwhelmed by concepts and
functions described in inch-thick manuals.

– Expressivity: Arbitrary graphics can be expressed in a natural way, without
the need to encode them in lower-level concepts.

– Composability: Graphics can be composed and transformed in general ways.
– Resolution-independence: Graphics can be expressed independent of resolu-

tion, so that they can be rendered at any level of detail.
– Analyzability: The concrete geometry of a shape can be obtained, for example

as a list of lines and Bézier curves, so that we can define functions that act
on this information to create derived graphics.

– Optimizability: Efficient algorithms for 2D graphics can be re-used.

Our analysis now focuses on how to represent shapes, textures and transforma-
tions, in the way that has the best fit with our design goals.

2.1 Shapes

Most frameworks offer a fixed set of geometric constructs, such as lines, Bézier
curves and circle segments, that can be used to describe the border of shapes.
For example, a regular polygon with k vertices can be expressed as follows:

regpolyg(k) = [line(onCircle(i×p), onCircle((i + 1)×p))| i← [0 . . . k − 1]]
where onCircle(x) = 〈sin(x), cos(x)〉, p = (1/k)×2×π

Here 〈x, y〉 denotes a point in R
2. A downside of this approach is that shapes that

are not compositions of such geometric constructs, such as sine waves, cannot
be expressed. Instead, they have to be approximated when specifying the shape,
which does not give a resolution-independent description of the shape.

A second approach is to describe the border of a shape as a parametric curve: a
function from R to R2. For example, the border of the unit circle can be described
by c(t) = 〈sin(t×2×π), cos(t×2×π)〉 on the interval [0, 1]. This can be seen as
a generalization of using a fixed set of geometric constructs: each geometric
construct can be described by a parametric curve and hence a combination of
geometric constructs gives rise to a piecewise defined function. For this reason
the expression of a regular polygon with k vertices is exactly the same as when
using a fixed set of geometric constructs. Although a parametric description does
not immediately give an analyzable description of the shape, we can sample the
(resolution-independent) function to obtain such a description.

The third and final approach is to describe a shape implicitly: as a function
that given a point in R

2 tells us whether the point is inside the shape or not. For
example, the implicit representation of the unit circle is c(p) = |p| ≤ 1, where |p|
denotes the Euclidian norm. A downside of this approach is that it is often hard
to encode a shape in this way. For example, as noted in [2], it requires an arcane
insight to understand that the following also represents a regular polygon with
k vertices.

regpolyg (k, 〈x, y〉) = (x− j)×(sin(q + p)− i)− (cos(q + p)− j)×(y − i) ≤ 0
where p = 2×π/k, q = p×�atan2 (y, x)/p�, i = sin(q), j = cos(q)
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It is also hard to analyze a shape that is described in this way, since we do not
have a representation of the border of the shape.

If we could automatically switch between the parametric and implicit repre-
sentations we would not have to make a choice between them. However, trans-
forming a parametric representation into an implicit one or vice-versa is non-
trivial, especially when the functions are not limited to a certain class. In fact,
these are well-known and thoroughly studied problems [3]. In general, exact
conversion is possible for certain classes of functions [4], while other classes of
functions require approximate techniques [5]. Since the implicit representation
makes it hard to express and analyze shapes, and since it is hard and computa-
tionally expensive to automate the conversion between the two representations
we have chosen to describe shapes parametrically.

2.2 Textures

Most frameworks offer a fixed set of textures, such as fill colors, images and
gradients. Another approach is allow arbitrary textures by specifying the colors
of its pixels, but this is not a resolution independent approach. A general, reso-
lution independent way to describe a texture, and the one that we adopt, is by a
function that given a point returns the color of the texture at that point [6,2]. No-
tice that this way of expressing textures bears resemblance to implicitly defined
shapes: implicitly defined shapes are functions of type R

2 → Boolean , whereas
such textures are functions of type R

2 → Color .

2.3 Transformations

Typically, graphics frameworks offer only affine transformations, such as trans-
lation, rotation and scaling. Although these transformations cover many use
cases, they preclude a whole range of interesting transformations, such as fo-
cus+context lenses. A more expressive model is to describe transformations sim-
ply as a function from R

2 to R
2.

Parametrically described shapes then require the forward transformation,
while textures and implicitly defined shapes require the inverse transformation.
For example, to translate a parametrically defined shape to the right, we define a
function that given a parameter first gets the corresponding point on the border
of the shape and then applies the forward transformation to that point, which
moves the point to the right. To translate a texture to the right, we define a
function that given a point first applies the inverse transformation, which moves
the point to the left, and then queries the texture at that point. In the same
fashion, the inverse transformation is also needed to transform implicitly defined
shapes.

If we limit ourselves to affine transformations, obtaining both directions of a
transformation is not a problem since such transformations are easily inverted.
However, if we allow arbitrary transformations we need to either describe all
shapes implicitly and use only the inverse transformation, making it harder to
describe shapes, or describe shapes parametrically in which case we need both
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Table 1. Design choices for graphics libraries

Traditional Func. image
synthesis

Vertigo Deform

Shapes
Fixed •

Parametric • •
Implicit •

Textures
Fixed/pixels •

Function • •

Transformations
Affine •

Function • •
Function−1 • •

the forward transformation and the inverse transformation, making it harder
to describe transformations. We conjecture that shapes are more likely to be
application-specific than transformations, which can often be reused. Hence, we
have chosen to represent shapes parametrically and require a definition of both
directions for transformations.

2.4 Comparison

As a comparison, Table 1 lists the choices made by us and other frameworks.
Traditional frameworks, like as Java2D, Processing and many others, limit the
expressivity of the programmer by only providing support for the most common
use cases. Many declarative graphics frameworks4 make the same choices [7,8].
Functional image synthesis frameworks, such as Pan [6] and Clastic [2], are based
on the notion that an image is simply a function from a point to a color. This al-
lows the elegant definition of many interesting visual mathematical graphics but
precludes real-life graphics, since the requirement of implicitly defined shapes
makes hard to define complex shapes such as letters. Vertigo [9] is an elegant
declarative framework for the geometric modeling of 3D shapes, without textur-
ing. In Deform we have chosen a combination of design decisions that has not
yet been explored: parametric shapes, textures as functions and general transfor-
mations. In the rest of this paper we show that this allows us to define a simple,
general and resolution-independent framework which is applicable to real-life
graphics.

3 Design

It is time to present our approach and illustrate its usage via examples. The
basic unit of our framework is a TexturedShape, that describes a shape and the
texture of its interior. An expression constituting a list of such textured shapes
is first created using the constructors given in Table 2 and then displayed by a
render function which interprets the constructors and produces an image. We will

4 Unfortunately, space limitations do not allow a more extensive discussion.
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Table 2. Constructors and functions. [A] indicates a list of As.

Constructor Type

path (R → R
2) → Path

shape [Path ] → Shape
analyze ∀A.Path× (ConcreteGeom → A) → A
color R× R× R× R → Color
texture (R2 → Color) → Texture
fill Shape ×Texture → TexturedShape
transformation (R2 → R

2)× (R2 → R
2) → Transformation

now show how to express shapes, textures and transformations in this way. Our
examples were programmed in Scala and then hand-transformed into a custom
notation which should be easy to understand. The examples use the constructors
in Table 2 and some library functions of Deform, both of which will be explained
when used.

3.1 Shapes

The basis for describing shapes is the path constructor, which takes a parametric
description of the border of the shape, a function of type R → R

2. To allow
omission of the domain of this function, it simply must be [0, 1]. The shape
constructor can then be used to create a shape from a list of closed paths, paths
of which the start and end points are the same. If one of the paths is not closed,
then it does not define an area and a run-time error will be thrown. A point is
then inside the shape if it is inside any of its closed paths.

As a basic example, consider a circle:

circ = shape([path(λt→ 〈sin(t×2×π), cos(t×2×π)〉)])

The coordinate system of our framework is as follows: if the screen is square
then the north west corner of the screen is 〈−1,−1〉 and the south east corner
is 〈1, 1〉. If the screen is non-square the range of the longest axis is adopted so
that graphics maintain their aspect-ratio. An example of a more complex path
is the spiral shown in Figure 2(a):

spiral = path(λt→ 〈f×cos(s), f×sin(s)〉
where f = 1/50×es/10, s = 6×π×(1 + t)

Paths themselves cannot be drawn as they do not define an area. Hence, to
produce a drawing of this spiral we use the stroke library function to convert
this path to a shape given the width of the “pen”:

stroke(spiral , 1/200)
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We do not have to explicitly define a parametric representation for each shape.
Instead, we provide library functions that mimic the geometric constructs found
in traditional libraries. For example, we can create a triangle as follows:

triangle = shape([join([line(a, b), line(b, c), line(c, a)])])
where a = 〈0, 0〉, b = 〈1, 12 〉, c = 〈1,− 1

2 〉

(a) A simple spiral (b) Circle with triangle
subtracted

(c) A filled triangle

Fig. 2. Basic examples

To define functions which act on the geometry of a path, such as the stroke
function, we offer the analyze constructor which takes a path and a function
transforming the concrete geometry of the path, namely a list of lines and Bézier
curves, into some result, such as a path, texture or transformation. To ensure
resolution-independence, analyze is a constructor rather than a function: in this
way we delay the sampling of the path until we know the desired resolution,
namely when the renderer runs. We also use this constructor to define resolution
independent constructive solid geometry operations on shapes, set operations
such as union and intersection operating on the set of points inside a shape. The
implementation of these operations involves analyzing the intersections between
the concrete geometry of both shapes. As an example, the shape in Figure 2(b)
can be obtained as follows:

pacman = subtract(circ, triangle)

3.2 Textures

To declare the interior of a shape, a texture can be created with the texture
constructor, which requires a function from a point to a color. A color is a value
with four numbers, all in the range [0, 1], namely red, green, blue and alpha
(transparency). For example, consider the following colors:

red = color (1, 0, 0, 1), black = color (0, 0, 0, 1), yellow = color (1, 1, 0, 1)
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We can now create a radial gradient as follows:

radgrad = texture(λ〈x, y〉 → lerp(red , x2 + y2, black ))

Where lerp performs linear interpolation of two colors on each of the four num-
bers. A TexturedShape can then be created using the fill constructor. For exam-
ple, Figure 2(b) shows:

fill(pacman , radgrad)

As another example of defining textures in our framework, consider the in-
terior of the triangle shown in Figure 2(c). For this texture, we first declare a
one-dimensional cyclic gradient that cycles between red and yellow:

gradient(x) = if l ≤ 1
2 then lerp(red , 2×l, yellow)

else lerp(yellow , 2×(l− 1
2 ), red)

where l = x− �x�

We can then define the filling of the triangle as follows:

tritex = texture(λ〈x, y〉 → lerp(gradient(x×10), (2×|y|/x)2, black )

Where x×10 repeats the gradient ten times on the horizontal [0, 1] interval and
the linear interpolation argument5 (2×|y|/x)2 ensures that the color becomes
darker closer to the vertical border of the triangle. A further survey of the power
of this way of describing textures is beyond the scope of this paper, for some
fascinating examples see [6] and [2].

3.3 Transformations

The transformation constructor can be used to describe arbitrary transforma-
tions and requires the forward transformation function and its inverse. For ex-
ample, we can define a scaling transformation as follows:

scale(sx, sy) = transformation(λ〈x, y〉 → 〈sx×x, sy×y〉,
λ〈x, y〉 → 〈x/sx, y/sy〉)

We can use this transformation to scale our previous examples. For example, to
make our filled triangle half as big, we can do the following:

transform(scale(1/2, 1/2), fill(triangle, tritex ))

Where the transform function is expressed as follows:

transform(transformation(f, f−1), path(p)) = path(f ◦ p)
transform(f, shape(l)) = shape([transform(f, p) |p← l])

transform(transformation(f, f−1), texture(t)) = texture(t ◦ f−1)

transform(f, fill(s, t)) = fill(transform(f, s), transform(f, t))

5 When x = 0, |y|/x will be ∞ or not-a-number, which will cause lerp to return black.
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The only constraint on a transformation is that it must be continuous, other-
wise it would be possible to transform a closed path (defining an area) into an
open path (not defining an area). As an example of a non-affine transformation
consider the “wave” transformation shown in Figure 3(a):

wave = transform(λ〈x, y〉 → 〈x+ sin(y), y〉), λ〈x, y〉 → 〈x− sin(y), y〉)

These transformations can be composed using the following compose function,
which uses the well-known rule (f ◦ g)−1 = g−1 ◦ f−1.

compose(transform(f, f−1), transform(g, g−1))= transform(f ◦ g, g−1◦f−1)

A benefit of having both directions of a transformation is that we can also trans-
form transformations. For example, if we have a rotation transformation and we
want to change the center of rotation, we can achieve this by transforming the
rotation by a translation. This is done by first applying the inverse translation,
then the rotation and then the forward translation. In general, we can transform
any transformation by another transformation as follows:

transform(t, r) = compose(t, compose(r, inverse(t)))

where inverse(transform(f, f−1)) = transform(f−1, f)

As an example, we can transform our wave transformation to produce smaller
waves:

scaledWave = transform(scale(1/30, 1/30),wave)

Applying this transformation to our filled triangle produces Figure 3(a).
Another example of a non-affine transformation is a “sweep”: mapping the

[0,1] interval on the x-axis to a given path. For example, by first scaling our
filled triangle to make it thinner we can obtain Figure 3(b) as follows:

fspir = transform(compose(sweep(spiral ), scale(1, 1/40)), ftriangle)

Other papers [10,9] have shown how to implement the sweep transformation
when only the forward transformation is required, we now show how to han-
dle both directions of this transformation. To define this transformation in a
resolution-independent way, we define it as a function which takes the concrete
geometry of the path and returns a transformation. Using the analyze construc-
tor, we make this function into a transformation.

To prevent changes in speed along the path, we want the norm of the derivative
to be constant along the path. To this end, we reparameterize the concrete
geometry of the path to a new geometrical description, q, with the same shape
and a constant norm of the derivative, using an algorithm such as [11]. The
forward transformation can then be expressed as follows:

λ〈x, y〉 → q(x) + y×q̂′(x)
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(a) Wave transformed trian-
gle.

(b) Triangle swept along
spiral.

(c) The filled triangle
swept by a spiral trans-
formed by a wave.

Fig. 3. Non-affine transformation examples

Here x̂ denotes a normalized vector and q′ is the derivative of q.
The inverse transformation works by finding the closest point on the path

to the point that is to be transformed. The horizontal coordinate is then the
parameter at that point on the path, and the vertical coordinate is the distance
of the point to be transformed from the path. More precisely:

λv → 〈t, sgn(q′(t))×|q(t)− v|〉where t = f(v)

Here sgn is the sign function and f computes the parameter of the closest point
on q to a given point, using an algorithm such as [12]. As a final example of the
compositionality this framework gives us, we transform the swept triangle using
our wave transformation to obtain Figure 3(c):

transform(scaledWave , fspir )

4 Implementation and Optimization

Our approach can be efficiently implemented by mapping it to a graphics host.
We first describe a basic implementation and then introduce some extensions
to allow more optimizations. Finally, we show how we can support clipping
and discuss potential further optimization. The implementation of Deform as
sketched in this section is surprisingly concise and simple and consists of just
983 lines of Scala code.

4.1 Basic Implementation

The main function to implement is the render function, which acts as an in-
terpreter for the constructors that may occur in a TexturedShape. The pipeline
of the render function is shown in Figure 4 and is organized as follows; A Tex-
turedShape is produced by the user program and its shape is then translated
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into geometry, i.e., lines and Bézier curves, which are in turn translated to their
equivalent representations in the graphics host. The graphics host then fills the
shape, producing a raster telling us which pixels are inside the shape. We then
simply iterate over these pixels and call the corresponding texture function for
each pixel, producing a color raster which is then sent to the display.

User program

toBézier

Translate

TexturedShape

Shape

Fill

geometry

geometry

Texturer

raster

Display

color raster

render

Texture

Fig. 4. Rendering pipeline.
Gray indicates functionality
from the graphics host.

The toBézier function in this pipeline is also
used to interpret analyze constructors, namely
to generate the concrete geometry which is fed
to the function argument of the constructor. We
currently use a simple implementation of this
function: we sample the function until the sam-
ples are so close to each other that the error is
smaller that the size of a pixel. Afterwards, the
samples are joined by lines.

4.2 Special Cases

We optimize the basic implementation by inter-
cepting special cases and mapping them to the
corresponding functionality of the graphics host.
We add a new constructor for each special case,
which are shown in Table 3. Several of these new
constructors were presented earlier as functions
and by transforming them into constructors the
render function can recognize them and act ac-
cordingly. We now discuss the special cases for
shapes, textures and transformations.

Shapes. The first special case for shapes con-
cerns paths that consist of lines and Bézier
curves. It is of course wasteful to use a combina-
tion of lines and Bézier curves, only to later ap-
proximate it with other lines and Bézier curves.
Hence, we extend our Path type with extra con-
structors for these types of paths and a con-
structor for join, so that the toBézier function
can immediately use these descriptions without
sampling.

The second special case for shapes deals with constructive solid geometry op-
erations. The default implementation of these operations is to obtain a concrete
geometry of the shapes using toBézier and then analyze intersections to pro-
duce the new shape. In the case of union or symmetric difference we can skip
this analysis. The union of a set of shapes can be implemented by supplying
the set of shapes to the fill function of the graphics host and using the non-zero
fill rule. This tells the renderer to fill any pixel that is inside at least one of the
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shapes, effectively rendering the union of the shapes. Analogously, we can render
the symmetric difference of a list of shapes by using the even-odd fill rule, which
states that a pixel should be filled if it is inside an odd number of shapes.

Textures. If the graphics host has support for a texture, we would like to make
use of these optimized capabilities, because then we can completely skip the
Texturer step in the pipeline. Hence, we include the constructor nativeTexture
for these cases, which takes a function that given an affine transformation gives
the specific representation for the graphics host of the transformed texture and
a regular texture function for use when the transformation of the texture is not
affine.

Transformations. If a transformation is affine and the path consists of lines
and Bézier curves, we transform the geometry directly, instead of by sampling a
function. The constructor affineTransformation represents such an affine trans-
formation by two matrices (the specification of this type is left open), one for the
forward transformation and one for the inverse transformation. We also change
the transform function into a constructor so that the toBezier function can in-
tercept this special case. The compose function is also adapted to intercept the
special case of composing an affine transformation with another affine trans-
formation, which can be done using matrix multiplication instead of function
composition, saving computations when points are transformed.

Table 3. Additional constructors for special cases

Constructor Type

line R
2 × R

2 → Path
quadBezier R

2 × R
2 × R

2 → Path
cubicBezier R

2 × R
2 × R

2 × R
2 → Path

join [Path ] → Path
union [Shape ] → Shape
symdiff [Shape ] → Shape
nativeTexture (Matrix → NativeTextureDesc)× (R2 → Color) → Texture
transformation (R2 → R

2)× (R2 → R
2) → Transformation

transform Transformation × A → A
where A ∈ {Path ,Shape ,TexturedShape ,Transformation}

affineTransformation Matrix ×Matrix → Transformation
pathbb (R → R

2)× BBox → Path
transformationbb (R2 → R

2)× (R2 → R
2)× (BBox → BBox ) → Transformation

Performance. Note that in traditional frameworks such as Java2D or Process-
ing, the special cases presented above are the only things that are expressible.
Thus, the interception of these special cases guarantees that drawings that could
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also be produced using such a library are approximately as fast. We verified this
by generating equivalent Java2D and Deform code in which 100,000 shapes (let-
ters) were rendered, each with their own native texture and affine transformation.
The Deform code performed 0.8% slower than the direct Java2D calls. This mi-
nor difference in speed is due to the fact that the Deform code first builds an
intermediate representation of the textured shapes.

4.3 Clipping

For large scenes, involving many shapes, a valuable optimization is clipping:
determining the bounding boxes of shapes and then ignoring the shapes that are
not in view. However, since in our framework shapes and transformations can
be arbitrary functions, it is impossible to discover the bounding box of a shape
without sampling it.

For this reason we add two new constructors: one to declare a path and its
bounding box (the specification of this type is left open) and one to declare a
transformation and also a function to forwardly transform a bounding box. In
this way the user can optionally give the bounding boxes of transformed shapes.
If the bounding boxes are not supplied, the shapes will simply not profit from
clipping. In Deform, all library functions to construct paths and transformations
also deal with bounding boxes. For example, lines and Bézier curves get the
bounding box induced by their (control) points and join produces the smallest
bounding box that contains the bounding boxes of its arguments. Affine trans-
formations transform a bounding box by transforming each of its vertices. We
currently use axis-aligned bounding boxes, but it is also possible to use non-axis-
aligned ones that fit the shapes more tightly, at the cost of more computations.

4.4 Potential Optimization

A potential optimization might be to speed the toBézier function by using tech-
niques from the field of curve fitting. We could do the sampling and fitting in
parallel, by modifying a curve fitting algorithm such as [13]. We can then stop
the sampling earlier if the samples we take lie close enough to the current ap-
proximation. We can also use the parameter of each point to improve the speed
of our approximation since this is often useful information for curve fitting al-
gorithms [13]. Finally, curve fitting algorithms often estimate a derivative of the
shape, so if we numerically compute the derivative, or supply it using an au-
tomated differentiation system [14], we can also use this information to more
quickly find an approximation of the curve.

5 Case Study: Focus+Context Lenses

As a real world example of how this framework enables advanced, resolution-
independent computer graphics techniques in a compositional way, we show
how to implement the form of focus+context lenses that are presented in [15],
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which have been shown to be useful in human computer interaction [16]. A fo-
cus+context lens, such as the one in Figure 1, is a transformation that magnifies
a part of the space (the focus area) and shows how this magnified part fits
into the rest of the space (the context) through a deformation. We compare our
implementation to the previous implementation of this form of focus+context
lenses [16]. Our implementation is slightly harder, since we require both direc-
tions of the transformation. As we will show, this effort is well spent since it
yields a faster implementation that gives better image quality at a fraction of
the code.

5.1 Implementation

focus

deformation

context

v

rf

rl

Fig. 5. Lens elements

We first consider the inverse transformation as pre-
sented in [15,16]. Figure 5 shows the elements of a
lens: rf is the radius of the focus area, rl is the ra-
dius of the lens and we define m as the magnification
factor. The inverse transformation is then defined as
follows:

l−1(v) =

⎧⎪⎨
⎪⎩
v/m |v| < rf
v
|v|×n−1(|v|) rf < |v| < rl

v otherwise

Where n−1 is the function that describes the defor-
mation, by giving the new norm, i.e., distance from
the center of the lens, for the point to be transformed
and is a continuous, monotonically increasing function
from [rf , rl] to [rf/m, rl]:

n−1(d) =
d

(1 − p(z))×(m− 1) + 1
where z = (d− rf )/(rl − rf )

Here z describes how far into the deformation area the point is, with zero if the
point is on the border of the magnification area and one if it is on the border of
the context area. The profile function, p, describes the shape of the deformation
and can be chosen freely as long as it is a continuous, monotonically increasing
function from [0, 1] to [0, 1], such as the identity function. Another variation
point is which norm to use to compute |v|, which decides the shape of the lens.
In general it is possible to use any LP norm, which are of the form p

√
xp + yp.

The lens is circular with L2 and with L∞ the norm resolves to max(x, y) and the
lens is square. The example in Figure 1 uses the Euclidian norm and a Gaussian
profile function and Figure 6 shows two more Deform screenshots of other lenses
in action.

We now need to derive the forward transformation from this inverse transfor-
mation. If we have the inverse of the function n−1, then the forward transfor-
mation can be expressed as follows:
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l(v) =

⎧⎪⎨
⎪⎩
v×m |v| < ri/m
v
|v|×n(|v|) rf/m < |v| < rl

v otherwise

However, for many profile functions, there is no analytic solution for the inverse
of n−1. Luckily, n−1 is a continuous monotonically increasing function, so we
can implement n(t) by numerically searching for the x such that n−1(x) = t.
We use Newton’s method for this, since it is very efficient at finding the roots
of monotonic functions. This method requires the derivative of n−1, which can
be constructed using the derivative of the profile. In this way only the profile
function and its derivative are needed when creating a lens with a different
profile.

(a) L3 norm, linear profile (b) L4 norm, quadratic profile

Fig. 6. Different types of lenses in action

5.2 Comparison

The previous implementation [16] of this form of focus+context lenses is in the
Zoomable Visual Transformation Machine (ZVTM) [17] framework for zoomable
user interfaces. The advantage of their approach to implementing these lenses is
that it is very loosely coupled with the graphics host, and is thus applicable in
many graphical frameworks. In our approach these lenses can be added easily
and this yields a better implementation in terms of length of code, speed and
image quality.

Code Size. In the ZVTM implementation, defining the lenses requires about
700 lines of code, and each new lens (with a different norm or profile) requires
about 100 lines of code [16]. In our declarative framework, the implementation
of these lenses requires 43 lines of code, including the definition of the (reusable)
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numeric approximation code, while defining a new lens can be done in a single
line of code. For example, a rounded square lens with a quadratic profile (with
derivative 2×x), as shown in Figure 6(b), is declared as follows:

lens(λ〈x, y〉 → 4
√
x4 + y4, λx→ x2, λx→ 2×x)

Performance. As a performance comparison, we implemented the setup shown
in Figure 1 in both Deform and ZVTM and measured the time it took to render
a single image at different magnification factors. This was chosen because it is a
simple example of a combination of shapes (text) and a texture (bitmap image).
The entire picture was 1600x1000 pixels big and the lens had a focus radius of
100 pixels and a lens radius of 200 pixels. Note that both ZVTM and Deform
run on the JVM and are built on top of Java2D. Figure 7(a) shows the results
of our measurements on an Intel i7 2.8GHz CPU running OpenJDK 1.11.3. All
measurements are the average of 100 runs.

We can see that in ZVTM the magnification factor has a huge impact on
performance, whereas in Deform it has no effect at all. This is because ZVTM
does not feature non-affine transformations in general and uses a trick to achieve
focus+context lenses; It renders the lens area twice: once without magnification
and once with magnification. Afterwards, both renderings are sampled to pro-
duce the lens area. The second, magnified rendering uses a buffer of width and
height 2×m×r l. Hence the amount of pixels in this buffer is (2×m×r l)2, which
explains the quadratic growth of the ZVTM rendering time.

Image Quality. As a final comparison, we consider the image quality of both
approaches as shown in Figure 7(b). This notable difference in image quality
is caused by the fact that Deform performs the discretization of shapes and
textures later. ZVTM performs the discretization before applying the lens, while
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(b) Difference in image quality.

Fig. 7. Performance and image quality comparison
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Deform performs the discretization after applying the lens. Hence Deform does
not suffer from aliasing artifacts.

6 Discussion

While our framework is very expressive, it currently does not support post-
processing image filters such as blurs. These filters are computationally very ex-
pensive and require low-level optimizations for real-time performance. Halide [18]
is an example of a language that is specifically designed for such filters; the pro-
grammer gives a concise declarative description of the filter along with a schedule
that states how the filter must be implemented. This yields very good results,
outperforming hand tuned assembly code in some cases. It would be interest-
ing to explore how the Halide way of describing filters can be fitted into our
framework.

Another open question is how we can exploit the massive power that is avail-
able via GPUs: which paths, transformations and textures can be executed on
the GPU and how? How can these parts work together with functionality that
cannot be executed on the GPU? Answering these questions will lead to a truly
high-performance implementation of Deform.

7 Conclusion

We have presented a novel declarative framework for resolution-independent 2D
graphics that is simple, expressive and composable while still being applicable
to real-life graphics. We have shown how to implement this framework such
that it easily maps to readily available, highly-optimized procedural graphics
libraries and have also shown how this framework can support clipping, so that
it is possible to render very large scenes. We have shown a simple benchmark
that shows that our framework is as fast as directly using the graphics host,
thanks to the interception of special cases. As a real-world example, we have
implemented focus+context lenses. The result is faster and smaller than the
state-of-the-art implementation and has better image quality. Our framework
liberates the programmer from the limitations of traditional frameworks and we
expect that it forms an excellent foundation for creating resolution-independent
graphics and higher-level visualization tools in a wide range of domains.

Acknowledgements. We thank Robert van Liere and Tijs van der Storm for
their helpful comments.
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Abstract. In this paper we report on our experience of using Database
Supported Haskell (DSH) for analysing the entire Wikipedia history.
DSH is a novel high-level database query facility allowing for the for-
mulation and efficient execution of queries on nested and ordered col-
lections of data. DSH grew out of a research project on the integra-
tion of database querying capabilities into high-level, general-purpose
programming languages. It is an emerging trend that querying facili-
ties embedded in general-purpose programming languages are gradually
replacing lower-level database languages such as SQL as preferred facil-
ities for querying large-scale database-resident data. We relate this new
approach to the current practice which integrates database queries into
analysts’ workflows in a rather ad hoc fashion. This paper would interest
early technology adopters interested in new database query languages
and practitioners working on large-scale data analysis.

1 Introduction

Relational database systems provide scalable and efficient query processing ca-
pabilities for complex data analysis tasks. Despite these capabilities, database
systems often do little more than to hold and reproduce data items for fur-
ther processing and analysis with the help of a programming language. In this
typical setup, the lion share of data analysis tasks thus happens outside the
realm of the database system. This is partly because, for involved analyses, rela-
tional database systems require the mastering of advanced features of specialised
database query languages, such as SQL. This requirement represents a barrier
to many practitioners who need to analyse large-scale data. In this paper, we
report on what this means for social scientists interested in Wikipedia data.

Unfortunately, transferring database-resident data into the runtime heap of a
programming language is not always an option (for example, if the data size is
larger than the available main memory). Even if the transfer is possible, it may
be wasteful if the final result of the computation is small. One approach address-
ing the aforementioned problems is to use relational database systems and their
query processing capabilities as coprocessors for programming languages [4]. This
approach entails the automatic translation of the data-intensive parts of a given
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program into relational queries (SQL statements, say) that can be executed by
a database engine. In effect, the relational database system transparently par-
ticipates in program evaluation. Most importantly, data-intensive computations
are performed by the database engine and thus close to the data.

Under this approach, SQL is regarded as a lower-level target language into
which more familiar and expressive source languages are translated. It is an
emerging trend to rely on higher-level querying facilities for the analysis of large-
scale database-resident data. Perhaps the most widely used example of such a
query facility is LINQ [10] which seamlessly adds advanced query constructs to
the programming languages of Microsoft’s .NET framework.

In this paper we report on our experience of using Database Supported Haskell
(DSH) [4] for analysing the entire history of Wikipedia. DSH is a novel high-
level database query facility allowing for the formulation and efficient execution
of queries over database-resident collections of data. Support for nested and
ordered data structures as well as powerful programming abstractions is what
distinguishes DSH from other language-integrated database query facilities.

DSH grew out of a research project on the tight integration of database query-
ing capabilities into high-level, general-purpose programming languages. While
the project tackles foundational issues of the embedding and compilation of rich
query languages [7,4,5], here we report on our efforts to team up with colleagues
of the social sciences to address topics in large-scale Wikipedia analysis. The use
cases of the following sections are taken from current studies on the collaborative
construction of knowledge [8,9].

This paper would interest early technology adopters interested in new database
query languages and practitioners working on large-scale data analysis. The re-
mainder of the paper is structured as follows. In Section 2, we describe an earlier
study performed by the third author on a small subset of the Wikipedia data.
The data analysis tasks of this study were implemented in terms of a (what we
assume to be typical) ad hoc embedding of SQL queries into R scripts. In Sec-
tion 3, we describe how we scaled the study to the entire Wikipedia data using
DSH. In Section 4, we outline future work and conclude the paper.

2 A Bilingual Approach Based on SQL and R

In a study by the third author of the present paper the development of new
knowledge in Wikipedia was analysed at the level of knowledge domains [8].
The study was based on 4,733 articles and 4,679 authors in the equally large
adjacent knowledge domains of physiology and pharmacology. The boundary
spanners were shown to be a highly relevant group of authors for the whole
knowledge-creating community: these authors work on integrative boundary ar-
ticles between domains and also on the central articles within a single domain.

The analysis has been implemented in terms of a mixture of two main tech-
nologies, SQL and R. Relevant data was sourced from a MySQL database dump
of the German Wikipedia that contained all logged data on articles and authors.
Multiple SQL queries were textually embedded into a single script of R code
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1 library(RODBC)
2 con <− odbcConnect(”· · ·”)
3 # retrieve art ic les in the physiology and pharmacology domains
4 phyA<− dbGetQuery(con,”SELECT pd page id FROM pagedomains
5 WHERE (pd domain = ’physiology ’)”)
6 phaA<− dbGetQuery(con,”SELECT pd page id FROM pagedomains
7 WHERE (pd domain = ’pharmacology’)”)
8 allA <− unique(rbind(phyA,phaA))
9 # Establish direct links between the retrieved art ic les

10 links <− dbGetQuery(con,
11 paste( ”SELECT pl from , page id FROM pagelinks , page
12 WHERE pl t i t le = page title
13 AND page namespace = 0
14 AND page is redirect = 0
15 AND pl from IN (” , toString(allA [ ,1 ] ) , ”)
16 AND page id IN (” , toString(allA [ ,1 ] ) , ”)” , sep = ””))

Fig. 1. R script snippet supporting the analysis of boundary-spanning articles and
authors in the German Wikipedia

that drove the analysis. We consider this to be a representative setup. Similar
studies have used other host languages (e.g., Perl, Python, and C). Our general
observations below remain valid, however. It is inherent to this approach that the
analyst is bilingual, capable of speaking two languages and also fit to translate
logic as well as data formats between the two (SQL and host language).

Figure 1 displays a snippet from the mentioned R script. The code is sprinkled
with SQL fragments: the variable assignment phyA <- dbGetQuery(con,. . .)
sends the quoted SQL statement to a connected database server for execution
and binds the resulting n-ary table to the R variable phyA, a data frame (or
matrix) of n columns.

A number of issues make this style of data-intensive programming problematic
for the analyst. Among the more pressing issues are the following:

(Lack of) Static Safety. R does not understand the quoted SQL text and
sends it as is. The text may contain syntactically invalid or even harmful SQL
code [13]. This is important if fragments of SQL text are spliced at script run-
time. The lack of static safety and the possibility of run time failures is partic-
ularly problematic for long running programs as a runtime error may require
a restart of the entire computation, including those (potentially long-running)
parts executed before the failure occurred.

Query Text Size and Number of Queries.Note how the toString() calls
in lines 15 and 16 refer to a formerly computed query result (R variable allA).
The size of these splices, and thus of the overall generated query text, depends on
the queried data and thus must, in principle, be considered arbitrarily large. In
effect, intermediate query results (here bound to allA) are carried from query
to query in textual form. Besides the obvious inefficiency, this approach may
easily overwhelm the database system’s SQL parser or compiler: both IN clauses
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Table 1. Wall-clock execution times for the R and DSH program fragments from
Sections 2 and 3

#Articles SQL+R DSH

�(sec) �(sec)

10,000 46.25 1.15
20,000 108.89 2.97
30,000 181.63 3.80
40,000 263.77 4.64
50,000 353.31 5.54

in line 15 and 16 end up containing almost five thousand literals (the aforemen-
tioned 4,733 page identifiers, to be more precise).

Alternatively, to avoid the construction of huge queries, carried intermediate
results may be used to issue multiple separate but simple queries in an iterative
fashion. This mode of data-intensive computation, however, incurs considerable
run time overhead associated with the now frequent switches between R’s run-
time system and the database system [7,4]. Note that in this latter scenario, the
boundary spanner analysis would lead to at least 4,733 of these costly context
switches. Scalability clearly suffers.

Computation Outside the Database Realm. The various SQL fragments
contribute sizeable intermediate results which are materialised on the R heap
and then threaded through the script. R operations (e.g., unique: duplicate
elimination, rbind: union, [,]: projection) are used to perform data-intensive
computation on the R heap while the database server would have been perfectly
able to do the job more efficiently close to the source data. Again, this raises
severe scalability and performance issues.

Host Language Dictates Execution Granularity and Order. Following
a typical style, the R script breaks the data-intensive portion of the computation
down into parts that lead to intelligible pieces of SQL code. The synchronous
execution of these pieces through dbGetQuery() prescribes a granularity and
order of query evaluation that leaves little room for query optimisation and
prevents query scheduling by the database engine.

The small snippet of R code in Figure 1 exhibits all four issues mentioned
above. These issues are instances of problems of programming language and
database interoperability that have long been identified [3]. The present paper
was motivated by the assumption that vibrant areas of data-intensive research,
such as the Wikipedia analysis, would particularly benefit from a modern account
of database integration.

3 A Unilingual Approach Based on DSH

Figure 2 gives DSH definitions corresponding to the R script from Figure 1. DSH
allows for formulation of database executable program fragments using Haskell’s
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phyA ::Q [Integer ]
phyA = [pd page idQ p | p ← pageDomains , pd domainQ p ≡ "physiology" ]

phyA ::Q [Integer ]
phyA = [pd page idQ p | p ← pageDomains , pd domainQ p ≡ "pharmacology" ]

allA :: Q [Integer ]
allA = nub (phyA ++ phaA)

links :: Q [(Integer , Integer )]
links = [ tuple (pl fromQ l ,page idQ p)

| p ← pages
, l ← pageLinks
, pl titleQ l ≡ page titleQ p
, page namespaceQ p ≡ 0
, page is redirectQ p ≡ 0
, pl fromQ l ∈ allA
, page idQ p ∈ allA]

Fig. 2. DSH definitions corresponding to the R script given in Figure 1

list prelude and the monad comprehension notation [5]. The former turns DSH
into an expressive database query facility for nested and ordered collections of
data, while the later ensures that DSH queries can be expressed concisely in a
widely understood and adopted notation.

Unlike the R script, all DSH definitions are database-executable. This provides
significant performance benefits as shown in Table 1. In this benchmark, the
increase in the number of Wikipedia articles imitates the scenario where the
total number of articles in the two domains of interest is much larger than
in physiology and pharmacology. As for the rest of the evaluation setup, we
used: the latest complete German Wikipedia database dump (June 3, 2012)
with 3,958,157 entries in the page table and 85,969,266 entries in the pagelinks
table, version 9.1.4 of the PostgreSQL database management system, the Arch
Linux distribution with kernel-3.4.4, version 2.15.0 of the R system, version 7.4.1
of the Glasgow Haskell Compiler (GHC), and a host equipped with an Intel
Xeon X5570 CPU.

How does DSH-based data analysis fare if compared with the widely deployed
ad hoc embedding approach? Have the major issues of bilingual data analysis
actually been addressed?

Static Safety. DSH’s query compiler guarantees that the translation of
database-executable program fragments will not fail at run time and the trans-
lation will generate valid database-executable SQL queries. If a computation has
been tagged with the type constructor Q but cannot actually be performed in-
side the database system DSH will reject the program right from the start. No
analyst time is wasted due to late failure at analysis run time.

Query Text Size and Number of Queries.With DSH, the number of gen-
erated database queries and their query text size does not depend on the size of
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the queried data. In fact, the number of generated SQL queries is predictable: it
is statically determined by the type of the database-executable fragment. Specifi-
cally, the number of generated queries equals the number of list type constructors
(i.e., [ · ]) in the type. For details about the compilation technology that provides
this essential guarantee the reader may refer to [7,4].

Computation Outside the Database Realm. DSH allowed us to perform
all of our analysis using the underlying relational database system, close to the
data. This was instrumental to scale our analysis to the entire Wikipedia history
in our follow-up study investigating an economic view of knowledge creation [9].

Host Language Dictates Execution Granularity and Order. DSH pro-
vides the guarantee that values of Q -types are evaluated by the database copro-
cessor without unnecessary context switches between the host language run-
time system and the relational database management system. This allows the
database to determine the best possible query evaluation strategy as it has access
to the entire query and not just parts of the query.

4 Further Reading, Conclusions and Future Work

Due to the limited space we are not able to discuss all of DSH’s distinguished
features in this paper; particularly its ability to handle nested and ordered collec-
tions, and its embedding and compilation aspects. For these topics the interested
reader may refer to [7,4,5]. TryDSH, which is an interactive web-based environ-
ment for writing, executing, and inspecting the compilation pipeline of DSH
queries, can be accessed from [2]. The source code of DSH is available from [1].

In this paper we reported on how we use DSH for large-scale data analysis of
Wikipedia data. We observed that the widely used combination of SQL queries
interleaved with data analysis in programming languages such as R does not
scale for large data sets such as the entire revision, interlinkage, and page access
history of the German Wikipedia. DSH allowed us to analyse this large data
set from a high level of abstraction and, at the same time, perform the analysis
almost entirely using a relational database management system.

One problem that we encountered while using DSH for the Wikipedia data
analysis is that, in some DSH queries, we found it hard to reason about the
performance behaviour of the resulting SQL queries. This is partly because of the
current somewhat involved automatic translation of high-level DSH constructs
to lower-level relational database languages. Although we managed to overcome
the aforementioned problems with careful reformulations of the DSH queries,
a more systematic solution involving changes in the DSH query compiler and
optimiser would be beneficial. This would be yet another step towards our goal of
allowing practitioners—who are not necessarily expert programmers or database
engineers—to analyse large-scale data, such as the entire Wikipedia history,
using high-level and reusable domain-specific languages and libraries.

This paper focuses on DSH, which allows a relational database management
system to be used as a coprocessor for the Haskell programming language. It is
worthwhile to mention that the query compilation techniques featured in DSH
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are also being used to improve database query facilities in other languages such
as C# [7], Ruby [6], Links [11] and Scala [12]. We conjecture that the tight
integration of general-purpose programming languages with relational database
management systems is a trend that will continue.
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Abstract. While object-oriented programming languages are good at
modelling real-world concepts and benefit from rich libraries and devel-
oper tools, logic programming languages are well suited for declaratively
solving computational problems that require knowledge reasoning. Non-
trivial declarative applications could take advantage of the modelling fea-
tures of object-oriented programming and of the rich software ecosystems
surrounding them. Linguistic symbiosis is a common approach to enable
complementary use of languages of different paradigms. However, the
problem of concepts leaking from one paradigm to another often hinders
the applicability of such approaches. This issue has mainly been reported
for object-oriented languages participating in a symbiotic relation with
a logic language. To address this issue, we present LogicObjects, a lin-
guistic symbiosis framework for transparently and (semi-) automatically
enabling logic programming in Java, that aims to solve most of the prob-
lems of paradigm leaking reported in other works.

Keywords: Linguistic Symbiosis, Object-Oriented Programming, Logic
Programming, Multi-Paradigm Programming.

1 Introduction

Object-oriented languages like Java have demonstrated their usefulness for mod-
elling real-world concepts. In addition, the availability of continuously growing
software ecosystems around them, including advanced IDEs and extensive li-
braries, has contributed to their success. Declarative languages like Prolog are
more convenient for expressing problems of declarative nature, such as expert
systems [1,2]. Linguistic symbiosis [3] has been used in the past to solve the
problem of integrating programs written in different languages [1]. Some limi-
tations and issues when implementing such symbiosis, mainly from the point of
view of the object-oriented language, have been highlighted in [4] and referred
to as paradigm leaking. Building upon an earlier position paper [5], this work
� Work partially supported by the LEAP project (PTDC/EIA-CCO/112158/ 2009),

the ERDF/COMPETE Program and by the FCT project FCOMP-01-0124-FEDER-
022701.
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presents a framework that overcomes most of these limitations, while providing
a transparent, (semi-)automatic and customisable integration from the perspec-
tive of the object-oriented language. New in this paper are the introduction of
improved mechanisms for automatic adaptation of logic routine results in the
object-oriented world, a context dependent mapping of Java objects to multiple
representations in Prolog, and a general mechanism for expressing Java objects
in a convenient logic representation even in pure object-oriented programs. We
validate our technique by comparing it to the well-known JPL library [6] for
invoking logic routines from Java and illustrate the reduction in programming
effort.

This paper is structured as follows. Section 2 presents our running example
and a logic programming solution. Sections 3 and 4 present our framework and
how it enables a transparent and automated access from Java to our implemen-
tation in logic. Section 5 discusses related work and Section 6 concludes and
presents future work.

2 Case Study: The London Underground

Our running example addresses a typical problem that can be implemented easily
with a logic language: a querying system about subway lines and stations. But
public transportation systems also require a user-friendly interface, which can be
developed more easily in an object-oriented language. Therefore, this is a typical
case where we can profit from a symbiotic integration between Prolog and Java.
In this section, we present a straightforward implementation of our example
application in a logic language, discuss how common approaches typically would
integrate its logic routines in an object-oriented language, and give an intuitive
introduction to our approach and its advantages over current techniques.

Implementation in Logic. The first stage of the problem consists in expressing
our knowledge about the London Underground as a set of logic statements. Most
of the code in this section has been adapted from [7], with an interesting variation:
instead of implementing it in plain Prolog, we use Logtalk [8], a portable object-
oriented layer on top of Prolog, facilitating in this way the mapping that needs to
be made between objects belonging to each of the two worlds.

1 :− object ( metro ) .
2 :− publ i c ( [ connected /3 , nearby /2 , reachable /3 , l i n e /1 ] ) .
3
4 connected ( s t a t i on ( green_park ) , s t a t i o n ( char ing_cros s ) , l i n e ( j u b i l e e ) ) .
5 connected ( s t a t i on ( bond_street ) , s ta t i o n ( green_park ) , l i n e ( j u b i l e e ) ) .
6 connected ( s t a t i on ( bond_street ) , s ta t i o n ( ox ford_ci rcus ) , l i n e ( c e n t r a l ) ) .
7 . . .
8
9 nearby (S1 , S2 ) :− connected (S1 , S2 , _) .

10 nearby (S1 , S2 ) :− connected (S1 , S3 , L) , connected (S3 , S2 , L) .
11
12 reachable (S1 , S2 , [ ] ) :− connected (S1 , S2 , _) .
13 r eachable (S1 , S2 , [ S3 | Ss ] ) :− connected (S1 , S3 , L) , reachable (S3 , S2 , Ss ) .
14
15 l i n e (Name) :− s e t o f (L , S1^S2^connected (S1 , S2 ,L) , Ls ) , l i s t : : member ( l i n e (Name) ,

Ls ) .
16 :− end_object .

Listing 2.1. The metro object in Logtalk
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In our example, stations are connected to other stations by underground lines.
A station is nearby another one if there is at most one station in between them.
A station A is reachable from another station B if there exists a list of stations L
that form a path going from B to A. Listing 2.1 shows the Logtalk definition of
the metro object.1 The metro object encapsulates the knowledge about how sta-
tions are connected, plus the rules for the logic predicates nearby/2, reachable/3
and line/1. The messages (queries) that the metro object can respond to are
specified by the public/1 directive in line 2. Messages in Logtalk are sent using
the ::/2 operator, as illustrated on line 15 for the member/2 method.

1 :− object ( l i n e (_Name) ) .
2 :− pub l i c ( [ connects /2 ] ) .
3
4 connects (S1 , S2 ) :− s e l f ( S e l f ) , metro : : connected (S1 , S2 , S e l f ) .
5 :− end_object .

Listing 2.2. The line object in Logtalk

Listing 2.2 shows the definition of a parametric object [9], line/1, which en-
capsulates the operations of an object representing an underground line. The
object parameter denotes the name of the line. A connects/2 predicate (line 4)
answers stations directly connected by the line object receiving the message.
The method implementation is delegated to the metro prototype object.

1 :− object ( s ta t i on (_Name) ) .
2 :− pub l i c ( [ connected /2 , nearby /1 , reachable /2 ] ) .
3
4 connected (S , L) :− s e l f ( S e l f ) , metro : : connected ( Se l f , S , L) .
5
6 nearby (S) :− s e l f ( S e l f ) , metro : : nearby ( Se l f , S) .
7
8 r eachable (S , I S t a t io n s ) :− s e l f ( S e l f ) , metro : : r eachable ( Se l f , S , I S t a t i on s ) .
9 :− end_object .

Listing 2.3. The station object in Logtalk

Our last object is the station object (Listing 2.3). As for the line object it
is also a parametric object having as sole parameter the name of a station. It
defines a method connected/2 that unifies its first parameter with a station that
is connected to this station object, through the underground line unified with
the second parameter. The method nearby/1 answers if this station is nearby
another station received as a parameter. The method reachable/2 unifies its
first parameter with a station that is reachable from this station object, through
a list of intermediate stations unified with the second parameter. As with the
line object, methods in this station object delegate to the metro object.

Integration of Logic Routines in an Object-Oriented Language. Most
approaches for integrating logic routines in an object-oriented language rely on
an explicit mapping between the artefacts of the two worlds. Notions such as a
logic engine, logic terms, queries, and query results are explicitly represented in
1 Note that we are defining a prototype instead of a class as we would do in Java.

Although Logtalk also supports classes, using a prototype is simpler in this case.
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the object-oriented programs. In the best case, the mappings of these artefacts
are simple to implement, but tend to clutter the object-oriented applications
that use them with significant boilerplate code that is not related to the core
functionality of the application, obscuring in this way its understanding and
further evolution. As a representative example of such approaches, we show how
a logic routine can be invoked from within Java using the JPL library.

Listing 2.4 shows a partial implementation of a Java class Station that uses
this library. We include the connected(Line) method (lines 14–27) together with
required mapping methods. This Java method delegates to the connected/2
method of the station/1 Logtalk object (Listing 2.3, line 4). For brevity, we
do not discuss here all the details of this JPL-based implementation but we
highlight that it contains no less than 14 lines of code just for dealing with map-
ping tasks. Furthermore, these mapping tasks rely on the existence of auxiliary
adapter methods like asTerm() and create(Term) that are required everywhere
we need to adapt a Java object to the logic world and back. In more complex
examples, the required boilerplate code can be even more significant.

1 public c lass Stat ion {
2 St r ing name ;
3 . . .
4 //mapping an ins tance o f S ta t ion to a l o g i c Term
5 public Term asTerm () {
6 return new Compound( " s t a t i on " , new Term [ ] {new Atom(name) }) ;
7 }
8 //mapping a l o g i c Term to an ins tance o f S ta t i on
9 public s tat i c Stat ion c r ea t e (Term stationTerm ) {

10 St r ing lineName = ((Compound) stationTerm ) . arg (1 ) . name ( ) ;
11 return new Stat ion ( lineName) ;
12 }
13 //mapping a Java method to a Log ta lk method
14 public Stat ion connected ( Line l i n e ) {
15 S ta t ion connectedStat ion = null ;
16 St r ing stationVarName = " Stat ion " ;
17 Term [ ] arguments = new Term [ ] {new Variab l e ( stationVarName ) ,

l i n e . asTerm () } ;
18 Term message = new Compound( " connected " , arguments ) ;
19 Term objectMessage = new Compound( " : : " , new Term [ ] {asTerm () , message }) ;
20 Query query = new Query ( objectMessage ) ;
21 Hashtable<String , Term> so l u t i o n = query . oneSolut ion ( ) ;
22 i f ( s o lu t i o n != null ) {
23 Term connectedStationTerm = so l u t i o n . get ( stationVarName ) ;
24 connectedStat ion = crea t e ( connectedStationTerm ) ;
25 }
26 return connectedStat ion ;
27 }
28 . . . // o ther methods mapped to l o g i c rout ines
29 }

Listing 2.4. The Station class in Java using JPL

Towards a Conceptual Mapping with LogicObjects. Our framework pro-
vides an alternative to avoid such explicit boilerplate mapping code. As a first
example, lines 7–8 of Listing 2.5 show how the connected(Line) Java method
gets reduced to two lines of code: the method declaration and one annotation.

1 @LObject ( args = {"name" })
2 public abstract c lass Stat ion {
3 S t r i ng name ;
4 public Sta t ion ( St r ing name) { th is . name = name ; }
5
6 //answers a s ta t i on connected to t h i s s t a t i on by means o f a l i n e
7 @LMethod( args = {" LSolution " , "$1" })
8 public abstract Sta t ion connected ( Line l i n e ) ;
9



30 S. Castro, K. Mens, and P. Moura

10 //answers the l i s t o f nearby s ta t i on s
11 @LComposition @LMethod( args = {"LSolution "})
12 public abstract Li s t<Station > nearby ( ) ;
13
14 //answers the l i s t o f intermed ia te s t a t i ons between t h i s and another s ta t i on
15 @LMethod(name = " reachable " , args = {"$1" , " LSolution " })
16 public abstract Li s t<Station > in te rmedi a t eS ta t i on s ( Stat ion s ta t io n ) ;
17 }

Listing 2.5. The Station class in Java using LogicObjects

The Station class is the Java counterpart of the station/1 Logtalk object defined
in Listing 2.3. It declares a name member variable (line 3) denoting the name of
the underground station. The Line class (Listing 2.6) is the Java counterpart
of the line/1 Logtalk object defined in Listing 2.2. It declares a name member
variable denoting the name of the underground line.

1 @LObject ( args = {"name" })
2 public abstract c lass Line {
3 S t r i ng name ;
4 public Line ( S tr ing name) { th is . name = name ; }
5
6 //answers i f two s t a t i ons are connected by t h i s l i n e
7 public abstract boolean connects ( Stat ion s1 , S ta t ion s2 ) ;
8
9 //answers the number o f s t a t i on s connected by t h i s l i n e

10 @LMethod(name = " connects " , args = {"_" , "_"})
11 public abstract int segments ( ) ;
12 }

Listing 2.6. The Line class in Java using LogicObjects

Finally, the Metro class (Listing 2.7) is the Java counterpart of the metro Logtalk
object defined in Listing 2.1.

1 public abstract c lass Metro {
2 //answers a l i s t with a l l l i n e s
3 @LComposition @LMethod(name=" l i n e " , args={"L"})
4 public abstract Li s t<Line> l i n e s ( ) ;
5
6 //answers an e x i s t i n g l i n e with a g iven name
7 public abstract Line l i n e ( St r ing s ) ;
8 }

Listing 2.7. The Metro class in Java using LogicObjects

3 LogicObjects

In this section we describe the linguistic symbiosis techniques employed by our
LogicObjects framework. Figure 1 lists all the annotations currently supported.
Our current implementation focusses on a symbiosis from the Java point of view.
We decided to design and implement our symbiosis from the perspective of the
object-oriented language, since this is the direction that has been reported [1,4]
as the most difficult to achieve transparently and automatically. We start our
discussion by describing the linguistic symbiosis problems we are going to solve
in the remainder of this section.
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Fig. 1. Annotations currently supported by LogicObjects

3.1 Linguistic Symbiosis

Linguistic symbiosis [3] is the ability of a program to transparently invoke rou-
tines defined in another language as if they were defined in its own language [4].
Wuyts and Ducasse [10] add that, to achieve real symbiosis, objects from one lan-
guage must be understood in the other. In our particular context, these generic
symbiosis requirements could be rephrased as being able to:
– Translate Java objects to logic terms, and back.
– Map Java methods to logic queries.

In addition, several problems specific to symbiosis between object-oriented and
logic programming languages have been presented in [1,4]. We repeat the most
significative from the object-oriented language perspective below:
Unbound Variables: Unlike most object-oriented languages, it is common in

logic programming to call a predicate with unbound variables.
Return Values: In object-oriented languages, methods often return objects as

a result of their execution. In logic programming, there are no such return
values: results are returned by binding values to unbound variables. More
than one value can be returned in this way.

Managing Multiplicity: In object-oriented languages there is a difference
(e.g., return type) between methods that return a single value or a col-
lection of values. Logic languages make no distinction between predicates
that produce a single solution or many solutions.

The expression “paradigm leak” [4] has been used in the past to refer to such map-
ping problems, suggesting a leakage of concepts from one paradigm to another.
Let us now discuss how our framework deals with these issues.

3.2 Translating Java Objects to Logic Terms

In the context of symbiosis between Java and Prolog, Java objects should have
a representation as logic terms and logic terms should be manipulatable as Java
objects [10,11]. Since in our technique the first step to map an object to a logic
term is to find a mapping between its class and a predicate name, we start by
explaining how our framework achieves such a mapping.

Mapping Class Names to Predicate Names. Brichau et al. [11] defined a
mapping between class names and predicate names for the specific problem of
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transforming objects representing parse tree nodes to logic terms and vice-versa.
In their work, there is an implicit direct mapping between a logic predicate
name and a class name. The arguments of logic predicates are mapped to the
children of the parse tree nodes by means of the same recursive algorithm. We
generalize their mapping solution by providing, using Java annotations, a gen-
eral customizable mapping between logic predicate names and Java classes and
between predicate arguments and Java object properties.

To illustrate our technique, let us consider the implementation of the Line
class in Java, shown in Listing 2.6. We refer to this class as a symbiotic class
since part of its implementation is transparently managed by an object on the
logic side. The @LObject annotation on line 1 provides custom mapping data for
our framework. For example, its optional name attribute maps instances of this
class to a Logtalk object implementing on the logic side the symbiotic methods
of the class. In this case, given that no predicate name is explicitly specified,
the name of the corresponding Logtalk object is automatically derived from the
class name Line. This default mapping is a transformation from Java camel-
case naming convention to Prolog names with lowercase tokens separated by
underscores. E.g., the Java class FooBar would be translated to the Logtalk object
foo_bar.

This is an example of how, by providing smart default mappings, we reach a
complete automation in common cases. At the same time, a programmer can opt
for explicitly specifying custom mappings when the defaults are not convenient.

Mapping Java Objects to Logic Terms. When the object on the logic
side is a parametric object, its parameters need to be declared on the Java
side by means of an args attribute in the @LObject annotation. In the Line
class example, this attribute is present in the @LObject annotation. It maps the
instance variable name to the single parameter of the parametric object line on
the logic side. An instance of the Java class Line with its name set to “central” is
thus automatically translated to the logic term line(central). In this example,
the transformation of the object property name to a term is straightforward, as it
is just a string. If the property had been a symbiotic object (e.g., when its class or
a superclass includes an @LObject annotation) the transformation process would
continue recursively, as the property object could also have properties that are
symbiotic objects. When the object on the logic side is not a parametric object,
the @LObject annotation can be omitted (e.g., the Metro class in Listing 2.7).

Mapping Logic Terms to Java Objects. Translating a logic term to an
object is the inverse process. However, in this case we need to consider the
translation context, which encapsulates the translation objective and environ-
ment. With this context, we can answer questions such as: Is the translated
object going to be assigned to a field? Or is it the result of a symbiotic method
(a Java method implemented in Prolog)? Are there relevant annotations in the
context (e.g., a field or method) that should influence the translation? What is
the expected type of the object in the Java world?
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The procedure of transforming a logic term into a Java object starts by at-
tempting to find a symbiotic class whose name and number of parameters corre-
spond to the logic predicate’s name and arity. Once we have located and instan-
tiated the logic class, the conversion algorithm continues recursively for mapping
each of the term arguments to the object properties. The context provides valu-
able guidance to choose the right class to instantiate. For example, different
Java types could be mapped to a Prolog list representation (e.g., classes imple-
menting the List or Map interfaces). Therefore, when translating a list term to a
Java object, the expected type will influence the selection of the best mapping
(e.g., symbiotic classes incompatible with the expected type will be ignored).
If many symbiotic classes are compatible with the expected type, by default
the framework returns the first match. This can be customized by means of a
preferedClass attribute in the LSolution annotation.

3.3 Mapping Java Methods to Logic Queries

As in [4], methods are mapped by default to logic predicates with the same name
and arity. An example of this mapping is found in the connects(Station, Station)
method (Listing 2.6, line 7). Since this Java method has two parameters, it is
mapped to the Logtalk method connects/2 in Listing 2.2, line 4.

However, a programmer can always customize this mapping by adding a
@LMethod annotation. The Java method segments() illustrates this (Listing 2.6,
lines 10–11). As specified by the name and args annotation attributes, this method
will also be mapped to the logic predicate connects/2. With this technique, we
are thus able to map a single Logtalk predicate, connects/2, to different Java
methods: int segments() and boolean connects(Station, Station), according to
our needs. The semantics of these mappings is explained in section 3.6.

3.4 Dealing with Unbound Variables

In Prolog, it is common to write queries with unbound variables. In Java, how-
ever, all variables must be bound to a value. Consider the segments() method
mentioned before. Its arguments are explicitly specified by means of the args
attribute of the @LMethod annotation. These arguments are interpreted as Prolog
terms. In this case, both parameters are the symbol “_”, which is interpreted
as an anonymous logic variable.The class Station (Listing 2.5) provides exam-
ples of methods having as arguments non-anonymous variables. For instance, the
predicate to which the method connected (lines 7–8) is mapped, takes as first
argument a logic variable LSolution and as second argument the first parameter
received by the Java method (referred to with the macro expression $1).

3.5 Return Values

The result of a logic query can be seen as a set of frames binding logic variables
to terms, where each frame corresponds to one logic solution. The solution of a
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symbiotic method is a transformation from this set of frames to a Java object.
By default, a Java object representation of the first logic solution (the first
frame) is considered by our framework as the symbiotic method return value.
This section discusses techniques for instantiating such Java object from a single
logic solution. The composition of a set of solutions is discussed in Section 3.6.

Inferring Return Values from a Logic Variable Name. Our first heuristic
is based on a naming convention: If one of the logic variables in a query has as
name LSolution, its binding in the frame of the first solution will be considered
as the term representation of the Java object to return. As an example, reconsider
the implementation of the method connected(Line) in the Station class (List-
ing 2.5, lines 7–8). This method is mapped to the Logtalk method connected/2
(Listing 2.3, line 4). As specified by the args attribute of the @LMethod annota-
tion, the query’s first parameter is a Prolog variable LSolution and the second
parameter is the term representation of the first parameter of the Java method.
Upon evaluation of the query, the LSolution variable will be bound to a com-
pound term of the form station(nameStation). Given the convention introduced
above, the return value of the symbiotic method will be the transformation of
this term to a Java object according to the algorithm discussed in section 3.2.

Inferring Return Values from Method Signatures. If no variable with
name LSolution is found in the query, the framework will attempt to infer its
return value from its signature. The term representation of this value has as name
the method name (adapted to Prolog naming conventions) and as arguments the
parameters of the method. The implementation of the Metro class illustrates this.
The line method (Listing 2.7, line 7) is mapped to a method with the same name
on the logic side. In case that the Logtalk method succeeds, the framework will
consider as the solution to the method the logic term line having as argument
the only string parameter of the method. This term will be converted to an
instance of the Line class according to the algorithm discussed in Section 3.2.
In case a line with the name given as a parameter of the Java method does not
exist in the logic world, the method will return null.

Explicit Specification of Return Values. The previous heuristics reduce
the amount of explicit mappings that need to be specified by a programmer.
However, we do provide a @LSolution annotation to let a programmer specify
explicitly the term representation of the Java object to return, overriding the
heuristics presented above. This term can be of arbitrary complexity and refer
to as many logic variables as required. For instance, if we had wanted to encode
explicitly the heuristics for returning the logic variable LSolution as the return
value of the connected(Line) method (Listing 2.5, lines 7–8), we could have
done so by annotating it with @LSolution("LSolution"). Since this is the default
mapping for the solution, it can be omitted, but if an alternative or more complex
solution is desired, this can be defined explicitly with the @LSolution annotation
as well. An example of this is shown in listing 3.1, line 4.
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Inferring Return Values from Non-symbiotic Methods. The previous
techniques for specifying the return value of a method from a term represen-
tation of its result can be generalized to non-symbiotic methods. Methods that
should not be mapped to logic routines, but that still want to express their return
value as a term expression, can do this by means of the @LExpression annotation.
For example, Listing 3.1 shows the implementation of a factory class. It provides
methods to instantiate certain symbiotic objects that are part of our problem
domain. The first method (lines 4–5) creates a new Station object by specifying
the term representation of its return value with a @LSolution annotation. This
logic term has the form station($1), where $1 gets substituted by the first pa-
rameter of the method. The second factory method (lines 8–9) does something
equivalent to the first one. In this case, no explicit return value is specified with
a @LSolution annotation, implying that the framework will infer its result from
the method signature as discussed before. The term representation of the value
to return will be a functor with the same name as the method and having as
arguments the method parameters (i.e., line(String)).

1 @LObject
2 public abstract c lass MetroFactory {
3 // crea te s a s ta t i on with a g iven name
4 @LExpression @LSolution ( " s t a t i on ( $1 ) " )
5 public abstract Stat ion s t a t i on ( St r ing name) ;
6
7 // crea te s a l i n e with a g iven name
8 @LExpression
9 public abstract Line l i n e ( S t r ing name) ;

10 }

Listing 3.1. The MetroFactory class in Java

3.6 Managing Multiplicity

The previous section illustrated how the framework infers the return value of a
symbiotic method from the first solution of a logic routine. This section discusses
how to compose a value from multiple solutions, or from properties of the logic
solution set.

It is not trivial to infer that a method should return a composition of mul-
tiple solutions (e.g., as a list) instead of a single solution. Initially, we tried to
infer this from the method return type. For example, if the method returns a
collection class, then with certain probability its intention is to return the col-
lection of results rather than a single result. This assumption is not always valid,
however. Consider, for example, the method intermediateStations(Station) in
the Station class (Listing 2.5, lines 15–16). This method is mapped to the pred-
icate reachable/2 in the station Logtalk object (Listing 2.3, line 8). The args
attribute in the @LMethod annotation indicates that the first parameter of the
Logtalk method will be the logic term representation of the first parameter of
the Java method (indicated by the macro-expression $1). The second parame-
ter is the Prolog variable LSolution. As explained in Section 2, upon execution
of the Logtalk method, the LSolution variable is bound to a list with the in-
termediate stations between the receiver station object and the station object
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passed as first parameter. The method return value is the value bound to that
variable in the first solution, according to the heuristics discussed in section 3.5.
The Java method thus returns a list of objects that corresponds to the binding
of one variable in one solution (the first) answered by the Logtalk query. This
is an example where a method returning a collection of objects is not intended
to answer a single collection of different solutions, but rather a single solution
consisting of a collection of objects. In order to resolve ambiguities between both
ways of interpreting collections, LogicObjects provides the @LComposition anno-
tation. The Java method nearby() (Listing 2.5, lines 11–12) in class Station is
an example of the usage of the @LComposition annotation (line 11). This method
is mapped to the Logtalk method nearby/1 which takes as argument an unbound
logic variable LSolution. On the logic side, the unbound variable passed as argu-
ment will be bound to a station nearby the receiver station object. On the Java
side, as in the previous example, a binding of the LSolution variable corresponds
to the term representation of an individual solution. Given the @LComposition
annotation, the framework considers the type of the method (a List class) as a
container of all its solutions.

Another example is the lines() method in the Metro class (Listing 2.7, lines
3–4). In this case, the arguments of the method do not include a LSolution
variable, neither a @LSolution annotation. Therefore, the term representation of
each solution is given by the name and arguments of the Logtalk method (given
explicitly by the name and args attributes of the @LMethod annotation). As in the
previous example, the @LComposition annotation will instruct the framework to
collect all these individual results in a collection. In both cases, the framework
will choose a collection class implementing the Java List interface, given that
this is the return type of the method.

Finally, the return value of a method could be inferred from properties of the
complete logic solution set. For example, in case when none of the heuristics
discussed in this section can be applied, the framework will inspect the return
type of the method. If this is a numeric type, the return value will be the number
of results of the query (e.g., the segments() method in class Line). If it is a
boolean, the method answers whether the query produces at least one solution
(e.g., the connects(Station, Station) method in class Line).

3.7 Delegation Objects

We have found cases where the logic representation of a Java object depends on
the context where such logic representation is required. To illustrate this, con-
sider a list in Prolog, which is represented as a comma separated list of members
as in this example: [a,b,c]. In order for the query [a,b,c]::length(X) to be valid,
two Logtalk objects are required (one object for the empty list, which is an atom,
and a parametric object for the non-empty lists, which are compound terms). To
maintain a one-to-one mapping, the list methods can be encapsulated in a list
Logtalk object instead. This allows us to write e.g. list::length([a,b,c], L).
On the Java side the best logic representation for a list of objects (e.g., an im-
plementation of Iterable) is a logic list term (e.g., [a,b,c]). Then this is the
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default mapping assumed by the framework if nothing else is specified. How-
ever, the Logtalk object that knows how to deal with list operations does not
correspond to this default logic representation, but rather to the Logtalk object
list. Therefore, it can be convenient to use this representation in the context
of a method invocation. To deal with this kind of situations, our framework
provides a @LDelegationObject annotation. This annotation allows a program-
mer to specify mapping data that will be considered in the context of a logic
method invocation, and will be ignored in any other context. The class MyList
(Listing 3.2) shows an example. This class extends the ArrayList class, which is
translated by default to a logic list term (as all implementations of Iterable).

1 @LDelegationObject (name=" l i s t " , imports=" l i b r a r y ( types_loader ) " )
2 public abstract c lass MyList extends ArrayList<String > {
3 @LMethod( args={"$0" , "LSolution " })
4 public abstract int l ength ( ) ;
5 }

Listing 3.2. A list class declaring a delegation object

The @LDelegationObject annotation has the same attributes, with equivalent
semantics, as the @LObject annotation. In our example, the name attribute spec-
ifies that the list object on the logic side will receive the logic messages sent
to instances of this Java class. As we mentioned before, this will not affect the
default logic representation of objects that are instances of this class.

The length() Java method is mapped to a Logtalk method with the same
name. Its first argument is the term representation of an instance of MyList
receiving the message (referred by the macro $0). To build this representation,
the framework ignores the @LDelegationObject annotation and prefers the default
logic representation for lists. The second argument is an unbound logic variable
LSolution. Upon execution of the logic method, the value bound to this variable
in the first solution to the query will become the Java method return value. Given
the @LDelegationObject annotation, the receiver of the method on the logic side
will be the list Logtalk object, which provides the method length/2, which will
bind the second parameter to the length of the list sent as the first parameter.

3.8 Instantiating Symbiotic Classes

To use our framework, a programmer simply needs to instantiate logic classes us-
ing a provided factory method. Everything else, including the transparent import
of dependencies on the logic side, is automatically managed using runtime code
generation and byte code instrumentation techniques. As an example, Listing 3.3
shows an instantiation of a logic class and the invocation of a logic method. The
first argument of the factory method corresponds to the logic class to instanti-
ate. The other arguments correspond to the logic class constructor parameters.
In this code snippet, the output corresponds to the number of segments on the
line central, as specified on the logic side (Listing 2.1).
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1 Line l i n e = LogicObjectFactory . g etDef au lt ( ) . c r ea t e ( Line . class , " c e n t r a l " ) ;
2 System . out . p r i n t l n ( "Number of segments : " + l i n e . segments ( ) ) ;

Listing 3.3. Instantiating a symbiotic class

4 Validation

To validate our approach, we re-implemented with LogicObjects the JPL exam-
ple of Section 2 (Listing 2.4). This implementation required a significant amount
of boilerplate code. Figure 2 shows the notable reduction in code size, and thus
in programming effort, that can be gained by using our LogicObjects framework.

The figure also compares the result of a stress test. We show the difference in
execution time required by each pair of corresponding methods in the two imple-
mentations.2 Since currently LogicObjects employs JPL to invoke logic routines,
the differences in processing time can serve as a measure of the adaptation effort
(i.e., a measure of the complexity of adaptation heuristics in different scenarios).

There are many factors that influence such an effort. For example, methods
that do not require an adaptation of their parameters (i.e., not including an args
attribute in a @LObject annotation) are the ones with less impact on execution
time (e.g., the connects method in class Line and the line method in class Metro).
On the other hand, methods using macro expressions are among the ones with
greater increase in execution time (e.g., the connected and intermediateStations
methods in class Station). In addition, the adaptation effort is greater in methods
manipulating collection of objects (e.g., the connected method in class Station
and the lines method in class Metro), since it grows proportional to the amount
of objects (also requiring adaptation) in such collections.

In spite of the reduction in program size, the increase in execution time is
considerable. However, we regard these results as promising, since there are
many optimisation paths to follow in order to reach an acceptable performance
in a production setting, such as caching certain mappings so they do not have to
be calculated every time, or the usage of a Prolog engine embedded in the JVM.
In addition, our framework does not impose any overhead in the execution of a
logic routine per se, which is often the real bottleneck performance wise, but on
the adaptation of its arguments and the interpretation of its results as objects.
For this reason we have preferred to avoid any premature optimisation.

5 Related Work

Several aspects of this work are inspired by SOUL [12], a Prolog dialect that is
implemented in and symbiotic with the object-oriented language Smalltalk. Par-
ticularly, we improve on the open questions and limitations reported in experi-
ments implementing symbiosis from the object-oriented language perspective. [4]
2 Tests accomplished with a 2.8 GHz Intel Core 2 Duo processor and 4 GB of RAM.
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Fig. 2. A comparison between LogicObjects and JPL

E.g., the reported approach in SOUL for dealing with the problem of returning
multiple vs. just a single solution to a query, consists of always returning a collec-
tion. When a query has just one solution, its solution is wrapped in a collection
wrapper. In order to provide an automatic adaptation, such a wrapper delegates
to its wrapped object any message it cannot understand. Unfortunately, this can
create subtle problems if the wrapped object is also a collection, as explained
in Section 3.6. We have therefore preferred the choice of making logic methods
return by default their first solution, and to explicitly use a @LComposition anno-
tation whenever the expected return value should be a composition of solutions
instead, thus sacrificing a bit on automation to gain on soundness. Concerning
how to return values from methods implemented as logic predicates, SOUL lim-
its this answer to the value of a logic variable or an expression written in the
object-oriented language. Our approach supports this and in addition allows a
programmer to express the value to return as a logic term of arbitrary complex-
ity. We also consider that our technique for mapping method names and their
arguments to their logic counterparts is as automatic as the SOUL technique
(when relying on the default mappings offered by our framework), without ex-
cluding the possibility for other customizations when the defaults do not fit one’s
needs. Furthermore, our technique for dealing with unbound variables (expressed
as annotation arguments) is simpler than the proposal of SOUL of extending the
syntax and semantics of the object-oriented language to support the notion of
unbound variables on the object-oriented side.

In addition to SOUL, other techniques exist that use advanced linguistic sym-
biosis for analyzing object-oriented programs (e.g., [13,14]). However, the focus
of these techniques is on querying (or transforming) object-oriented program-
ming artefacts from the logic side, rather than achieving an automatic and
transparent linguistic symbiosis from the object-oriented language perspective.

There are a number of other works attempting to provide a symbiotic integra-
tion between object-oriented languages and Prolog. Most of them do this from
the perspective of the logic language, mainly by offering a set of built-in Prolog
predicates that enable easy access to the object-oriented language [15,16,17]. In
the best cases, libraries for communication from the object-oriented language
back to the logic world are provided, but they fail to abstract the programmer
from low level mappings, requiring an explicit representation of logic concepts
(logic engine, queries, logic terms) in the object-oriented program (as was the
case with the JPL example). The same problem occurs for rule engines embedded
in Java, like [18], that use a declarative language other than Prolog.
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An interesting mapping technique from methods to logic predicates using
method type parameters and annotations is presented in [19]. The main short-
coming of this approach is that the types participating in the declaration of
symbiotic methods have to be logic term types. Therefore, there is no implicit
mapping between objects and their term representations, but term objects must
be explicitly created every time a method is invoked.

Another interesting approach that integrates Java with a logic constraint
solver is presented in [20]. That work relies on a symbolic virtual machine and
the syntax of Java programs is left unmodified. Methods evaluated as logic com-
putations are identified with an annotation. Logic variables are also identified
with annotations and are limited to Java primitive types. A limitation is the
lack of adaptation of the result of a logic method as in our approach; instead all
logic methods must return an object instance of class Solutions.

6 Conclusions and Future Work

In this work we presented a framework based on linguistic symbiosis to facilitate
the invocation of logic routines from an object-oriented program. The framework
focusses in particular on providing a solution from the object-oriented language
perspective, since for this direction many difficulties and issues have been re-
ported in the past [4]. Our framework proposes an elegant and customizable
solution to each of these previously reported problems. In essence our approach
relies on extending the Java language with annotations expressing the declarative
nature of certain artefacts, having a counterpart in the logic world.

Although our current implementation is based on Java, most of the ideas
presented in this work can be extrapolated to other object-oriented languages.
However, we have found that a statically-typed language on the object-oriented
side offers considerable advantages for attaining an automatic and transparent
symbiosis with a logic language, since valuable information can be extracted from
the types of objects belonging to each of the two worlds. This additional type
information helps to guide the automatic and transparent conversion of objects
from or to the object-oriented world. Nevertheless, in a dynamically-typed lan-
guage our approach could be reproduced by annotating relevant artefacts (e.g.,
symbiotic classes and methods) with type data.

Finally, we believe that achieving a complete automatic symbiosis is only
possible under the assumption that there is a single valid mapping between
artefacts belonging to two different languages. As we have demonstrated, this
is not always the case and it is often desirable to let a programmer specify
explicitly the desired mapping between artefacts. We have thus opted to provide
a “good enough” automation that provides typical default mappings for the most
common cases (thus providing a high degree of automation), while at the same
time leaving enough flexibility to the programmer to provide more information on
the nature and semantics of the desired mapping when required by the problem.

Our future work will focus on implementing a full two-way symbiosis. We plan
to use the reflective mechanisms of Logtalk for transparently and automatically
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referring to Java objects and expressions and invoking their methods in a similar
way as has already been accomplished from the Java side. In addition, we will
explore techniques for establishing a causal connection between objects belonging
to our two different worlds, thus completing a full two-way symbiosis framework.
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Abstract. This paper presents a functional model for timing analysis by
abstract interpretation, used for estimation of worst-case execution times
(WCET) in multicore architectures using a denotational semantics. The
objective aims at surpassing the intrinsic computational complexity of
timing analysis of multiple processing units sharing common resources.
For this purpose, we propose a novel application of latency-rate (LR)
servers, phrased in terms of abstract interpretation, to achieve timing
compositionality on requests to shared resources. The soundness of the
approach is proven with respect to a calculational fixpoint semantics for
multicores that is able to express all possible ways in which a shared
resource can be accessed. Experimental results show that the loss in pre-
cision introduced by the LR server model is about 10% on average and is
fairly compensated by the gain in analysis time, which is above 99%. The
system is implemented in Haskell, taking advantages of the declarative
features of the language for a simpler and more robust specification of
the underlying concepts.

1 Introduction

The timeliness requirement of a software application is defined by the capabil-
ity of the underlying hardware running the application to assure that execution
deadlines are met. In embedded real-time systems, the main timeliness criteria
is the worst-case execution time (WCET) of an application [8]. The WCET de-
pends both on the structure of source code, such as loop iterations and function
calls, and on hardware factors, such as caches and processor pipelines. In gen-
eral, the state space of both input data and hardware initial states is too large
to be exhaustively explored by measurement approaches. This paper presents a
pipeline analysis based on the theory of abstract interpretation [6], aiming at re-
ducing this state space. The design of a proper abstract pipeline domain ensures
that the analyzer stabilizes after a finite number of steps over Kleene sequences
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[10], while exhibiting a trade-off between the precision of the WCET results and
the computational time required by the static analyzer.

When compared to single-core architectures, the complexity of the timing
analysis in multicore environments does not depend only on the processor fea-
tures, but also on the predictability of the timing behavior of each processor
when sharing resources, e.g. instruction and data memories [7]. In practice, this
means that besides the control flow paths through the program, also the “ar-
chitectural flows”, i.e. the number of ways in which a shared resource can be
accessed (also called interleavings), must be taken into account. Unless shared
resources are shared in a composable manner, the different access interleavings
allowed by the scheduling arbiter may produce different intermediate hardware
states during analysis and, consequently, affect future timing behavior.

The complexity of the analysis increases exponentially when analyzing archi-
tectural flows. Suppose a program that consists of two concurrent processes, P1

and P2. The arising conflicts when requesting access to the shared resource are
resolved by “interleaving” the execution sequences of the two processes in such a
way that either P1 or P2 executes by flipping a coin. Hence, for a program with
n processes, each one executing a sequence of m instructions, the number of
possible interleavings is (n.m)!/(m!)n. The numerator (n.m)! gives all possible
interleavings and the denominator (m!)n restricts this number to the number
of allowed sequences, i.e interleavings that preserve the sequential order in the
original machine programs. For realistic programs, the number of execution se-
quences are huge and although their analysis is a decidable problem, it is not
feasible to compute in general.

The five technical contributions of this paper are:

1. a static timing analysis for multicore systems, using our previous two-level
denotational meta-language [12,14] and an intermediate graph language;

2. the use of the latency-rate (LR) server model presented in [17] as an ab-
straction to achieve compositionality in the temporal domain, so that the
analysis of architectural flows can be avoided while preserving the sound-
ness of timing analysis for multicore systems;

3. the formalization and implementation of the LR-server model in the context
of data-flow analysis using an abstract interpretation framework based on
Galois connections;

4. a method for automatic compilation of dependency graphs, including the new
“interleaving” graph operator, into a meta-language based on λ-calculus and
directly implemented in Haskell;

5. showing that Haskell can be used as a language where the mathematical
complex notions underlying the theory of abstract interpretation can be
easily, elegantly, and efficiently implemented and applied to the analysis of
complex hardware architectures.

The rest of this paper is organized as follows.We start by discussing the related
work in pipeline analysis in Section 2, followed by an overview of our approach
to the problem of WCET analysis for multicores in Section 3. Section 4 intro-
duces the necessary background on the LR server model, in particular its ability
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to abstract timing behavior. Previous work on a two-level denotational meta-
language used for static analysis based on abstract interpretation is described in
Section 5 and a method to automatically compile fixpoint interpreters using the
meta-language is described in Section 6. We then briefly describe our functional
approach to a declarative pipeline analysis in Section 7. The formalization of the
LR abstraction in terms of a Galois connection is given in Section 8, followed by
a set of Haskell definitions for resource sharing in Section 9. We conclude after
a discussion on experimental results in Section 10.

2 Related Work on Pipeline Analysis

The theoretical foundations of our complete WCET timing analysis framework
are the methods of static analysis by abstract interpretation [6] combined with
path analysis using linear programming [20]. For the particular case of pipeline
analysis, we base our approach on the “abstract pipeline semantics” proposed
by Schneider et al. [15], where provably sound timing properties are obtained by
abstract interpretation. Since there is no abstraction of sets of concrete timing
properties, the given pipeline analysis is a special case in the abstract interpreta-
tion framework where the abstract timing properties are themselves the “sticky
collecting semantics” of concrete timing properties.

The concrete pipeline semantics in [15] is a simplified semantics of the pro-
cessor, focused only on the aspects related to its temporal behavior, and relies
on former value analysis and cache analysis. In contrast, our approach combines
value and cache analysis with the pipeline analysis in a single data-flow analysis,
which implies that the semantic transformers defined for the register and memory
domains can be invoked during pipeline analysis. Still, the theoretical formalism
given in [15], in particular its definition of resource association, can easily cope
with our definition of “hybrid” pipeline state, i.e. a state that combines concrete
timing properties with abstract cache states and register invariants.

3 Overview of Approach

We consider a tiled multicore architecture with several ARM9 cores, shared
memories and IO, as shown in Figure 1(a). Each processor core has an instruc-
tion pipeline and an instruction cache memory. By definition, pipelining allows
overlapped execution of instructions by dividing the execution of instructions
into a sequence of pipeline stages, k ∈ PS, and by simultaneously processing N
instructions. We consider a generic ARM9 processor with an instruction cache
and a simple in-order pipeline with five pipeline stages: fetch (FI ), decode (DI ),
execute (EX ), memory access (MEM ), and write back (WB). Figure 1(b) illus-
trates a functional view on pipelining.

The functions f1, f2, . . . , fk, . . . , specify the effect of pipeline state transforma-
tions across a variable number of pipeline steps, which is greater than five in the
presence of pipeline bubbles [15]. For example, the instruction B in Figure 1(b)
requires l pipeline steps to complete, where l > k. Each pipeline state includes
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(a) Generic multicore architecture (b) Functional overview of pipeline steps

Fig. 1. Functional model of a pipeline in a multicore architecture

an instruction vector of size N , adjoined with a timing property, 1, 2, . . . , s, s+1.
This property expresses the relation between the elapsed cycles per instruction
(CPI) and the current stage of an instruction inside the pipeline.

The absence of an abstraction for the concrete CPI values in the abstract
interpretation literature [15] implies that the abstract pipeline domain must be
defined as a set of pipeline states. For single-core architectures, this does not
constitute a computational problem, because there is only a finite, and therefore
manageable, number of pipeline states. Although the same principles could apply
to timing analysis in multicore architectures, the major drawback is having the
sets of concrete timing values spread across a huge number of architectural flows,
which is exponentially bigger than the number of control flows.

Let P1 and P2 be two processes running on a homogeneous multicore system
comprising two processor tiles. The corresponding number of architectural flows
is given in Figure 2(a) and the original control flow is given in Figure 2(b).

Assuming composability in the value domain, i.e. there is no application
data shared between processes, the need for timing analysis of architectural
flows depends on the scheduling made by the arbiter of the shared resource.

(a) Non-compositional timing
analysis considering all possible
architectural flows between P1

and P2

(b) Compositional timing analysis
considering only control flows

Fig. 2. Architectural and control flows for two processes P1 and P2, where instructions
A and B belong to P1 and instruction X and Y belong to P2
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Composable arbiters, i.e. arbiters providing complete isolation between applica-
tion in the temporal domain, analysis of interleavings is not required. An exam-
ple of such an arbiter is non-work-conserving time-division multiplexing (TDM),
which statically allocates a constant bandwidth to each processor core. However,
when replacing the TDM arbiter by a work-conserving round-robin arbiter (RR),
the system is no longer composable, since the scheduling of requests depend on
the presence or absence of requests from other processor cores. In this case, the
analysis of every allowed scheduled sequence in Figure 2(a) must be performed.

However, the analysis of the shared resource can be made compositional if the
access times are predictable. This implies that upper bounds on the access times
to shared resources are calculated so that the variation in interference between
processor cores visible in Figure 2(a) is removed (abstracted). The formal model
of LR servers is particularly suitable for determining these upper bounds, since
it provides a timing abstraction applicable to most predictable shared resources
and arbiters. Figure 2(b) shows how the number of architectural flows can be
reduced to the number of control flows when abstracting the temporal behavior
by means of the compositional LR-server model.

4 Latency-Rate Servers

We now introduce the concept of latency-rate (LR) [17] servers as a shared-
resource abstraction. In essence, a LR server guarantees a processor core a min-
imum allocated rate (bandwidth), ρ, after a maximum service latency (interfer-
ence), Θ. As shown in Figure 3, the provided service is linear and guarantees
bounds on the amount of data that can be transferred during any interval in-
dependently of the behavior of other processor cores. The values of the two
parameters Θ and ρ depend on the choice of arbiter in the class of LR servers
and its configuration. Examples of well-known arbiters in the class are TDM,
weighted round-robin (WRR), deficit round-robin (DRR) and credit-controlled
static-priority (CCSP) [1].

Like most other service guarantees, the LR service guarantee is conditional
and only applies if the processor core produces enough requests to keep the
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server busy. This is captured by the concept of busy periods, which are intuitively
understood as periods in which a processor core requests at least as much service
as it has been allocated (ρ) on average. This is illustrated in Figure 3, where the
processor core is busy when the requested service curve is above the dash-dotted
reference line with slope ρ that we informally refer to as the busy line.

We proceed by showing how scheduling times and finishing times of requests
are bounded using the LR server guarantee. From [19], the worst-case scheduling
time, t̂s of the kth request from a processor core, c, is expressed according to
Equation (1), where ta(ω

k) is the arrival time of the request and t̂f(ω
k−1) is

the worst-case finishing time of the previous request from processor core c. The
worst-case finishing time is then bounded by adding the time it takes to finish
a scheduled request of size s(ωk) at the allocated rate, ρ, of the processor core,
which is called the completion latency and is defined as l(ωk) = s(ωk)/ρ. This
is expressed in Equation (2) and is visualized for request ωk in Figure 3.

t̂s(ω
k) = max(ta(ω

k) +Θ, t̂f(ω
k−1)) (1)

t̂f(ω
k) = t̂s(ω

k) + s(ωk)/ρ (2)

5 Meta-language

This section presents background on our denotational meta-language [12,14].
We develop a constructive fixpoint semantics based on expressions of a two-
level denotational meta-language aiming at compositionality in both value and
temporal domains. The main advantage is the possibility to generate type safe
fixpoint interpreters automatically, and in a flexible way, for a variety of control
flow patterns, including the architectural flows originated from shared resources.

Denotational definitions are factored in two stages, which is equivalent to the
definition of a core semantics at compile-time (ct) and an abstract interpretation
at run-time (rt). Supported by the compositionality assumption of Stoy [18], the
core semantics expresses control and architectural flows by means of higher-order
relational combinators of the run-time entities.

ct � ct1 ∗ ct2 | ct1 || ct2 | ct1 ⊕ ct2 | ct1 � ct2 | split rt | merge rt | rt (3)

rt � Σ | (Σ ×Σ) | rt1 → rt2 (4)

Implemented combinatores are the sequential composition (∗), the pseudo-
parallel composition (||), the intra-procedural recursive composition (⊕), and
the inter-procedural recursive composition (�). At the compile-time level, we
can only directly talk about transformations on run-time values of type rt1→rt2,
defined for program states Σ. These run-time types specify functions that can be
regarded as state transformers or simply as “code”, whose effect can be obtained
by executing a piece of code on an appropriate abstract machine.

Therefore, interpretations of the higher-order expressions of the core semantics
(ct) can be used to automatically generate the code of a program (designated
by meta-program), which is composed by several state transformers (rt). The
meta-programs are then given as input to the static analyzer. Let b ::= (· ∗ ·) | (· ||
·) | (· ⊕ ·) | (· � ·) be the syntactical meta-variable for the binary operators in the
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upper level of the meta-language, and u ::= id | split | merge be the syntactical
meta-variable for the unary operators (interface adapters). Then, fixpoints can
be generically defined as the reflexive transitive closure T � of the transition
relation T [4], where T is the initial program relation:

T � �
⊔
n�0

Tn =
⊔
n�0

(⊔
i�n

T i

)
=
⊔
n�0

(λR • ((uT ) b (uR)))i(⊥Σ) (5)

where ⊥Σ is the initial hardware state. In this way, fixpoint semantics can be
efficiently computed by using program-specific chaotic iteration strategies [5],
specified at compile-time level by the type expressions in the meta-language
for free. In complement to type checking, the soundness of the abstract state
transformers, which have the unified type rt1→ rt2 and are defined at run-time
level, can be proven correct by using the calculational approach proposed in [4].

6 Automatic Generation of Fixpoint Interpreters

Next, we describe the calculation process of obtaining fixpoint interpreters. The
generation of fixpoint interpreters is based on the notion of relational semantics
of the program [3], defined as a set of transition relations τ ⊆ (Σ × Instr ×Σ),
where Instr is the set of instructions of the program and Σ is the set of labeled
program states according to a weak topological order (w.t.o) [2]. Moreover, the
w.t.o. is used to induce a partial dominance order � over program instructions.

To represent all the program paths allowed for a program, an intermediate
graph language was defined. The inductive abstract syntax of a dependency
graph is represented by the data type G and allows us to represent a mimic of
the execution order of a program [4], according the program structure known at
compile time. The objective is to abstract the trace semantics [3] of the program
into a set of “connected” transition relations τ , which are denoted in Haskell by
Rel a, where a is a polymorphic variable for the domain Σ.

A dependency graph is either an empty graph, a subgraph consisting of
a single relation (Leaf), two subgraphs connected in sequence (Seq), two
intra-procedural subgraphs connected recursively (Unroll), two inter-procedural
subgraphs connected recursively (Unfold), two subgraphs connected pseudo-
parallely (Choice), representing alternative program paths, or, last but not
least, two subgraphs running on different processor cores (Conc).

data Rel a = (a, Instr, a)

data G a = Empty | Leaf (Rel a) | Seq (G a) (G a) | Unroll (G a) (G a)
| Unfold (G a) (G a) | Choice (Rel a) (G a) (G a) | Conc (G a) (G a)

By taking advantage of the algebraic properties of the higher-order relational
combinators, fixpoint interpreters (meta-programs) are “calculated” using the
denotational approach. The syntactic phrases of a program are their depen-
dency graphs. The denotations of each component of G are expressed by the
combinators in the upper-level of the two-level denotational meta-language. The
main advantage of using Haskell for the calculation of fixpoint interpreters is the
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fact that a definition written in Haskell can be compiled (or interpreted) to give
a type-safe interpreter. This guarantees the correctness of a core semantics (ct)
parameterized by the abstract state transformers defined at run-time (rt).

Along these lines, abstract interpreters in the form of Equation (5) are au-
tomatically compiled into λ-calculus by providing interpretations of the core
semantics, in particular for the binary operators b and the unary operators u.
For example, the sequential combinator (∗) is interpreted as the following:

( ∗ ) :: (a → b) → (b → c) → (a → c)
(f ∗ g) = λs → (g ◦ f ) s

The main advantage of defining the higher-order relational combinators in Equa-
tion (3) is that new functions can be obtained throughout the composition of
more basic functions. In this way, the calculation of meta-programs, all with the
unified type (a→ a), is defined by means of the function derive. For a complete
definition with respect to the patterns in G, we refer to [13].

derive :: (a → a) → G a → (a → a)
derive f (Leaf r) = f ∗ abst r
derive f (Seq a b) = derive (derive f a) b

derive f (Conc a b) = let is = interleavings a b
ms = map (derive (create b)) is

in f ∗ scatter (length ms) ∗ (distribute ms) ∗ reduce

The function abst used in the interpretation of the atomic syntactic phrase Leaf
provides the right-image isomorphism used in the abstraction of the relational
semantics to denotation level, as described by Cousot in [3]. By the fact that
the structure of dependency graphs is inductive, the type signature of derive
requires the definition of the actual meta-program f , which is composed in se-
quence with new interpretations. In this way, the interpretation of (Seq a b) is
straightforward, stating that the subgraphs a and b are connected in sequence.

The meaning of a subgraph Conc a b is given by the composition of the cur-
rent meta-program f with the whole set of interleavings between a and b. The
creation and synchronization of these two processes is modeled by the scatter/re-
duce computational pattern, commonly used in parallel computing. Inductively,
the derivation of each individual trace is accomplished by using derive with the
initial meta-program returned by the function create [13].

The function interleavings is used to obtain the set of architectural flows of
Figure 2(a). This function takes two dependency subgraphs and returns a list of
subgraphs. Using list comprehensions, the allowed sequences are a subset of all
permutations of the transition relations belonging to both processes, main and
thread, (which are first converted into lists using toList). The illegal sequences
are removed by means of the constraint preserve, which excludes any sequence
seq, that, after being filtered from the transition relations belonging to the other
process, is not exactly equal to the original sequence ori.

interleavings :: G a → G a → [G a ]
interleavings main thread

= let preserve ori seq = ori ≡ filter ((flip elem) ori) seq
(mainL, threadL) = (toList main, toList thread)
sequences = [is | is ← permutations (mainL ++ threadL),



A Declarative Compositional Timing Analysis for Multicores 51

preserve mainL is, preserve threadL is ]
ts = map traces (groups sequences)

in map (foldl interleave main) ts

After the computation of the interleaved sequences, it is necessary to transform
these sequences back into dependency graphs. To this end, the functions groups,
traces and interleave are defined according to the logics of the data type G, so
that each architectural flow can be instantiated as set of connected transition
relations, which possibly pertain to different applications.

In summary, the “derivation” of (Conc a b) is first to scatter the output
state taken from the actual meta-program f into an “array” of independent
flows, then distribute this state through the array of flows (ms), and finally
combine the corresponding outputs using the function reduce. The functions
scatter, distribute and reduce are described next.

scatter :: Int → a → [a ]
scatter = replicate

distribute :: [a → a ] → [a ] → [a ]
distribute = zipWith (λf a → f a)

reduce :: (Lattice a) ⇒ [a ] → a
reduce = foldl join bottom

The function scatter is trivially defined by the Haskell function replicate. The
function distribute takes a list of functions [a→ a], and a list of input values [a]
and return a list [a] with the results obtained by applying each input function to
each input value. The function reduce is applied at merge points and is respon-
sible for computing the least upper bound between the elements of the input list
[a], by using the functions bottom and join defined in the type class Lattice [13].

7 Pipeline Analysis

This section describes our functional and declarative approach to the pipeline
analysis of ARM9. The pipeline analysis by abstract interpretation presented
in [15] introduces the notion of resource association as a pair (s, {rj1 , . . . , rjn}),
where s ∈ PS is a pipeline stage and rj1 , . . . , rjn ∈ R is a set of generic resources,
such as functional units or cache memories. These resources can be either static,
such as the resource demand of an instruction according to its type, or dynamic,
when the description of the resource carries its own state. The particularity in
our approach is that the state of the dynamically allocated sequences is updated
after each pipeline stage. For this reason, we redefine the notion of a concrete
pipeline state in [15] and introduce the notion of a hybrid pipeline state P , which
combines concrete timing information with the abstract state of resources.

Let R� be the abstract register domain, D� be the abstract data memory
domain and M � be the abstract instruction memory domain. Since the states
in R�, D� and M � can be updated during every pipeline stage and need to be
shared by all instructions inside the pipeline, we require the definition of an
extra set of store buffers R′�, D′� and M ′�. These domains contain the resource
states that are to be allocated during the pipelining of every single instruction.
This means that, after analyzing an instruction, it is required to compute the
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least upper bound between the top-level domains R�, D� and M � and the store
buffers R′�, D′� and M ′�. The hybrid pipeline state is defined as:

P � (Time × Pc ×Demand ×R′� ×D ′� ×M ′� ×Coord) (6)

where Time is the global number of CPU cycles, Pc is program counter of the
next instruction to fetch, Demand is a 32-bit sized word, used to model the
dependencies between data registers in such a way that each register is either
a blocked or unblocked resource, and Coord is a N -sized vector, N being the
number of instructions allowed inside the pipeline at a given time.

Coord � [TimedTask ]N (7)

A TimedTask is defined for one instruction and consists of the current elapsed
CPU Cycles and the current Stage of a given Task. A Task is associated with an
instruction, Instr, and holds also local copies of the “context” of a hybrid state:

TimedTask � (Cycles × Stage ×Task) (8)

Task � (Instr × Pc ×Demand × R′� ×D ′� ×M ′�) (9)

We now identify semantic transformers required by our functional approach to
pipeline analysis, as illustrated in Figure 1(b). The analysis is performed at
three levels: at the lower level, we define the transformer FT as a morphism on
the composite domain TimedTask (for example, the instances f1, f2, . . . , fn in
Figure 1(b)); at the middle level, we define the transformer FP as a morphism
on the composite domain P , which uses FT to compute the new elements inside
the N-sized vector Coord ; finally, at the higher level, we define the transformer

F �
P as a morphism on sets of hybrid states P � � 2P , which uses FP to transform

the hybrid pipeline states in the input set. The semantic transformers FP and

F �
P are concisely defined as:

FP ∈ Instr �→ P �→ P (10)

FP (i)(p) � toContext (i) ◦ [FT ◦ fromContext(p)]N (11)

F �
P ∈ Instr �→ P � �→ P � (12)

F �
P (i)(p

�) � {F 5+
P (i)(p) | p ∈ p�} (13)

where F 5+
P corresponds to the recursive functional application of FP at least

five times in an ARM9 pipeline. Note that F 5+
P does not correspond to the

transitive closure of FP by the fact that local worst-case timing properties are
always associated with the final pipeline stage of a given task. This is possible
because the value and cache analysis are performed simultaneously with the
pipeline analysis, thus making the timing analysis a deterministic process for
each given input timing property. In this way, the intermediate hybrid pipeline
states can be discarded after completion.

However, even in fully timing compositional architectures [7], such as ARM9,
the non-determinism introduced by the control flow must be taken into account.
Therefore, the soundness can only guaranteed if all hybrid pipeline states arriving

at a join point are collected into a set of type P �. The definition of F �
P naturally

supports the non-determinism intrinsic to sets of hybrid states in the sense that
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F 5+
P is applied to every pipeline state p ∈ P �. Let {sik | k ∈ PS , k � 5} be the

set of ordered pipeline stages (including stalled stages) required to complete the
instruction i. Then, F 5+

P is defined by:

F
sik+1

P (i)(p) � FP (i)(F
sik
P (i)(p)) (14)

F 5+
P � F

siWB
P (15)

The purpose of FT is to compute the effect of pipelining a single instruction.
However, since all the N instructions inside the coordinate vector (Coord) share
the common context defined in P , it is necessary to read/write the state of
the resources in P . In particular, the value of the program counter Pc must be
known to fetch the next instruction from memory when one instruction inside
the pipeline finishes, and the value of Demand must be kept updated depending
on the blocked/unblocked state of register ports.

As an example, consider the case where the current stage is FI (Fetch), i.e.
there is free space inside the pipeline to fetch a new instruction from instruction
memory. Depending on the context of the actual pipeline state P , structural
hazards [15] may block the access to memory and, therefore, cause the pipeline
to stall. Otherwise, the actual TimedTask is updated by means of the function
fetchInstr, which uses the context information about the next program counter
to fetch pc and the actual state of the abstract instruction memory iMem to
calculate the output timing property. Here, a timing property is denoted by the
type variable a implementing the type class Cycles, as defined by Equation (8).

fetchInstr :: (Cycles a) ⇒ a → Task → TimedTask a
fetchInstr cycles t@Task {taskNextPc = pc, taskImem = iMem }

= let (classification, opcode,m ′) = getAbstMem iMem pc
i = decode opcode

pc′ = pc + 4

buffer ′ = setAbstReg bottom R15 (StdVal pc′)
in if classification ≡ Hit

then let t′ = t {taskInstr = i, taskNextPc = pc′, taskImem = m ′}
in TimedTask {property = fetched cycles, stage = DI,

task = Fetched t′ buffer ′}
else let t′ = t {taskInstr = i, taskNextPc = pc′, taskImem = m ′}

in TimedTask {property = missed p, stage = FI,

task = Stalled Structural t′ buffer ′}

Two different scenarios can occur during a fetch: either the opcode of the instruc-
tion is contained in the instruction cache, in which case the memory access is
classified as a Hit and the next stage is set to DI (Decode); or it must be fetched
from instruction main memory, thus causing the pipeline to become Stalled. In
any case, the abstract cache state is updated by means of function getAbstMem.
The type class Cycles a defines two functions, fetched and missed, for each of the
corresponding scenarios. If the instruction fetch was successful, then the abstract
value of the register R15 (the program counter register in ARM9) is updated in
the store buffer using setAbstReg. Due to page limitations, the reader can find
the complete Haskell definition of the pipeline analysis in [13] (see Section 9 for
another example of the use of declarative programming).
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8 The LR-Server Model as a Galois Connection

The meaning of the access times to shared resources in the context of timing
analysis is the range of its possible values, i.e. the interval from lower bounds to
upper bounds. Due to the limited bandwidth of the shared bus, shared accesses
introduce additional delays that stall the pipeline. Therefore, the soundness of
the timing analysis requires the computation of upper bounds on delays. To cope
with this, we redefine TimedTask as:

TimedTask � (Cycles ×Delay × Stage × Task) (16)

As mentioned in Section 7, the pipeline abstract domain is defined as a set of
hybrid pipeline states, each including a “concrete” timing property now given
by Cycles plus Delay. The purpose of the LR-server model is to reduce the
number of joins and provide, at the same time, upper bounds for delays caused
by shared requests. From the observation of Figure 2(a), it is clear that the
number of join operations is proportional to the number of architectural flows.
However, Figure 2(b) shows that when applying the LR model to compute safe
upper bounds for the finishing times of shared requests, the number of joins is
determined solely by the control flows of each process independently.

The soundness of the abstraction provided by the LR-server model relies on
the fact the all timing properties calculated throughout architectural flows are
upper bounded by the finishing times calculated using the LR model. Here, the
objective is to formalize this approximation by means of a Galois connection.

Let Delay be an upper semi-lattice equipped with a partial order � on natural
numbers N, describing both concrete and abstract timing properties and let D

be a set of timing properties. A Galois connection Delay�(⊆) −−−→←−−−α
γ

Delay �(⊆),
where Delay� = Delay� = 2D, is defined in terms of a representation function
β : Delay �→ D that maps a concrete value p ∈ Delay to the best property
describing it in D. This property is the canonical extension of Equation (2) to

sets. Given a subsetX ⊆ D and an abstract property p� ∈ Delay�, the abstraction
and concretization maps are defined by:

α(X) =
⋃

{β(x) | x ∈ X} (17)

γ(p�) = {p ∈ P | β(p) ⊆ p�} (18)

Let wk
c be the kth instruction to fetch from the shared memory when there

is a cache miss in the processor core c. The best property p� is the singleton
set containing the smallest finishing time given by Equation (2) when applied to
wk

c . Therefore, the LR abstraction can be formally defined by the representation
function β:

β(tf (w
k
c )) = {max(ta(w

k
c ) +Θc, t̂f (w

k−1
c )) + s(wk

c )/ρc} = {t̂f (wk
c )} (19)

This formally shows that the predictability of LR servers can be used to abstract
the meta-programs corresponding to architectural flows into meta-programs cor-
responding to control flows only. Since each access time is upper bounded by the
LR server, we have by compositionality that the maximum local timing prop-
erty given by Equation (17), that would be obtained by joining (

⋃
) all abstract
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pipeline states across the architectural flows in Figure 2(a), is exactly equal to
the maximum local timing property when only the control flows are considered.

9 Haskell Definitions for Resource Sharing

This section gives declarative definitions for the temporal behavior of TDM and
LR arbiters. Let the type variable a, defined in the type class Cycles a, be
instantiated by a concrete timing property denoted by the data type WCET.

data WCET = WCET {cycles :: Int, ta :: Int, core :: Int, tf :: Int, delay :: Int}

The analysis of a TDM arbiter is simplified due to its predictable and compos-
able properties, which makes the delay of a request to a shared resource easily
computed using the arrival time, ta, and the processor core identifier. As men-
tioned in Section 7, requests to the main instruction memory occur upon cache
misses. Thus, the function missed belonging to the type class Cycles is:

missed w@WCET {cycles = c, ta, core}
= let d = ta ‘mod‘ frame

first = slots ∗ core
end = first + slots − 1
ts = if first � d ∧ d � end then 0

else if d < first then (first − d) else (frame − d + first)
in w {cycles = c + round (ts + 1), tf = ta + ts + 1, delay = ts + 1}

The frame size of the TDM bus is given by the variable frame. Assuming slots are
equally distributed among the processor cores and that they are consecutively
allocated in the frame and a completion latency of 1 cycle, the delay time is
ts+1 , where ts uses the division remainder of the arrival time ta by frame in
order to check for an allocated slot. If the core needs to wait for an allocated
slot, the required number of cycles can be statically calculated [9].

Now consider a shared bus with an arbitration protocol that is predictable but
not composable, such as work-conserving round robin. In this case, the timing
behavior of each application is dependent on the applications running on other
cores, which makes analysis of all architectural flows mandatory in order to
achieve soundness. In this context, the advantage of the LR-server abstraction
is the possibility to guarantee bounds on the starting times and finishing times
of the requests so that compositionality in the timing domain is achieved.

The LR-server model requires a timing property to model the guaranteed
service rate, which is the finishing time (tf ) of the previous request on the same
core. According to Equation (2), the function missed defines the timing behavior
of a cache miss in terms of an arrival time, ta, and a previous finish time, tf.
Accordingly, the function missed is:

missed w@WCET {cycles = c, ta, tf = tf ′}
= let busy = ta + theta < tf ′

d = if busy then 1/rho else theta + (1/rho)

in w {cycles = c + round d, tf = d + if busy then tf ′ else ta, delay = d }
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10 Experimental Results

The discussion of experimental results include two different experimental sce-
narios. First, we compare the WCET and the analysis time obtained for small
programs from the analysis of architectural flows (TDM) versus control flows
(TDM) in Table 1. Second, we compare the WCET results of composable TDM
versus a LR abstraction of a composable TDM arbiter for Mälardalen WCET
benchmark programs [11] in Table 2. By compositionality of the LR abstrac-
tion and assuming that each processor core has a sufficiently large private data
memory (D-$) and a common initial hardware state, each program is analyzed
independently from the program configured to run on the second core. We con-
sider the simplified multicore architecture in Figure 4(b), where instructions are
shared in a partitioned SRAM memory shared by a TDM arbiter.

By definition, architectural flows cannot be feasibly computed. However, we do
compute interleavings for the simple program in Figure 4(a), where “application
A” and “application X” have only a few instructions each. Due to its natural
composability, the analysis of control flows with TDM arbitration is much faster
than the analysis of architectural flows, requiring only 1% of the time. With
respect to the WCET estimate, the first line in Table 1 shows a lower WCET
(179 CPU cycles) for the interleavings approach compared to composable TDM
analysis (185 CPU cycles). This difference in the WCET is a consequence of
the actual hardware state of the processor core running “application X” upon
the invocation of the fork procedure and demonstrates the impact that the
intermediate hardware states have on the timing analysis of architectural flows.

In fact, when the number of instructions of “application X” is bigger than the
number of instructions of “application A”, the worst-case path corresponds to
that of “application X”. However, since the analysis of “application X” starts
with an empty pipeline state, it naturally takes less CPU cycles to complete.
After increasing the number of instructions in “application A”, this effect is
eliminated because the worst-case path becomes that of “application A”. Con-
sequently, for the two analyses, the WCET is equal in the last two experiments.

Table 1. Comparison results for architectural flows, composable TDM

No. instructions No. instructions No. of Results Architectural Composable

“application A” “application X” interleavings (CPU cycles/sec.) Flows (TDM) TDM

4 5 126
WCET 179 185

Analysis Time 57.0 0.17

5 5 252
WCET 188 188

Analysis Time 140.3 0.18

6 5 462
WCET 195 195

Analysis Time 588.7 0.43

Next, we compare the WCET results in Table 2 obtained using the LR ab-
straction with Θ = 1 and ρ = 0.5 (modeling a particular TDM configuration
with frame size of 2) to the results obtained with composable TDM. The WCET
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(a) Example of a multi-process program
(b) Simplified multicore

architecture

Fig. 4. Simple program running on a simplified multicore architecture

values presented in Table 2 depend not only on the size of the instruction cache
and on the ability of the LR server to stay busy, but also on the program flow,
e.g. number of loop iterations. Since we are considering a blocking multicore
architecture, where a request from a processor core cannot be issued before the
previous request has been served, every request starts a new busy period by def-
inition. This is the most unfavorable situation possible for the LR abstraction,
since every request requires Θ+1/ρ cycles to complete, maximizing the overhead
compared to TDM.

Still, our experiments show that this overhead is limited to between 8.7%
and 12.1% for the considered arbiter, configuration, and applications. This is
partly because the use of a small frame size reduces the penalty of starting a
new busy period upon every cache miss through the low Θ = 1 value, but also
because the case of an SRAM shared by a TDM arbiter is quite simple and is
captured well by the abstraction. A more complex case with DRAM and CCSP
arbitration is shown in [16] along with an optimization to reduce the pessimism
of the abstraction without loss of generality. In terms of the run-time of the
analysis tool, it is approximately (≈) the same for both composable TDM and
the LR abstraction.

From this experiment, we conclude that compositional analysis of control flows
using the LR abstraction is very fast and scalable compared to analysis of ar-
chitectural flows. The analysis time is similar to compositional analysis based
on composable TDM arbitration, although it incurs a reduction in accuracy of
about 8-12% for our configuration and applications. More precise WCET esti-
mates would be obtained for multicore architectures that support high levels of
parallelism. For example, architectures including super-scalar pipelines or caches
allowing multiple outstanding requests. This would reduce the number of busy
periods in the LR server upon cache misses, but would also increase the overall
complexity of the WCET analyzer. Nevertheless, the main benefit of the LR
abstraction is that it is able to perform compositional timing analysis using any
arbiter belonging to the class, as opposed to being limited to composable TDM.
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Table 2. WCET results for some of the Mälardalen benchmarks

Benchmark
No. Source LR-server No. Cache TDM Overhead Analysis Time

Loop Iterations (WCET) Misses (WCET) (%) in sec. (≈)

bs 152 1162 111 1036 10.8 2.3

bsort 156 1459 152 1311 10.1 0.9

cnt 145 1309 175 1171 10.5 0.8

cover 111 796 105 707 11.2 3.9

crc 459 3160 304 2826 10.6 15.0

expint 251 2023 233 1818 10.1 1.9

fdct 1011 10897 720 9892 9.2 20.1

fibcall 111 994 59 885 11.0 2.3

matmult 287 2580 188 2343 9.2 5.2

minmax 221 956 263 873 8.7 2.6

prime 232 1079 196 959 11.1 5.2

ud 418 3943 97 3464 12.1 40.0

11 Final Remarks

This paper presents an approach to timing analysis in multicore architectures
exclusively based on the declarative frameworks of denotational semantics, ab-
stract interpretation and functional programming. The type system of Haskell
is used to define a type safe and parameterizable fixpoint semantics by means
of a two-level denotational meta-language. Fixpoint (abstract)-interpreters are
automatically generated by providing interpretations to the algebraic combina-
tors of the meta-language, providing a generic and compositional framework for
static analysis. A particular abstract interpreter for pipeline analysis is defined
for the WCET analysis of programs running on the ARM9 microprocessor.

The WCET analysis of multicores is defined incrementally by extending the in-
termediate representation language with a new syntactical element, representing
programs running on different processing cores, whose denotational interpreta-
tion reuses the algebraic combinators used for static analysis in single cores. The
complexity of the new fixpoint interpreter is reduced by using the abstraction
provided by the LR server model on the timing behavior of shared resources.

Using declarative programming in Haskell, the temporal behavior of shared
resources is in direct correspondence with the mathematical definitions of the
TDM and LR arbiter models. The outcome is the definition of provably sound
and compositional timing analysis in multicore environments, with a loss of
precision in order of 10% on average that is relatively small compared to the
factor 100 reduction in terms of analysis time.
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Abstract. This paper analyzes issues which appear when supporting pruning op-
erators in tabled LP. A version of the once/1 control predicate tailored for tabled
predicates is presented, and an implementation analyzed and evaluated. Using
once/1 with answer-on-demand strategies makes it possible to avoid computing
unneeded solutions for problems which can benefit from tabled LP but in which
only a single solution is needed, such as model checking and planning. The pro-
posed version of once/1 is also directly applicable to the efficient implementation
of other optimizations, such as early completion, cut-fail loops (to, e.g., prune at
the toplevel), if-then-else, and constraint-based branch-and-bound optimization.
Although once/1 still presents open issues such as dependencies of tabled solu-
tions on program history, our experimental evaluation confirms that it provides
an arbitrarily large efficiency improvement in several application areas.

Keywords: Logic Programming, Tabling, Pruning, Performance.

1 Introduction

Tabled LP [1] overcomes several limitations of the SLD resolution strategy. In par-
ticular, it guarantees termination for programs with the bounded term-size property
and can improve efficiency in programs which repeatedly perform some computation.
These characteristics help make logic programs less dependent on clause and goal or-
der, thereby bringing operational and declarative semantics closer together. Tabled LP
has been successfully applied in many areas including deductive databases, program
analysis, or semantic Web reasoning.

The operational semantics of tabled LP differentiates the first call to a tabled pred-
icate, the generator, from subsequent variant calls (calls which are identical modulo
variable renaming), the consumers. Generators resolve against program clauses and in-
sert the answers they compute in the table space. Consumers read answers from the
table space and suspend when no more answers are available (therefore breaking infi-
nite loops) and wait for the generation of more answers by their generators. A generator
is said to be complete when it is known not to be able to generate more (unseen) an-
swers. In order to check this property, a fixpoint procedure is executed where all the
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consumers inside the generator execution subtree are reading their pending answers
until no more answers are generated. After completion, memory used by consumer sus-
pensions can be reclaimed. The completion operation is complex because a number of
generators may be mutually dependent, thus forming a Strongly Connected Component
(SCC [2]) in the graph of generator dependencies. As new answers for any generator
can result in the production of new answers for any other generator of the SCC, we can
only complete all generators in an SCC at once, when the completion fixpoint has been
reached. The SCC is represented by the leader generator: the youngest generator which
does not depend on older generators. A leader generator defines the next completion
point.

One of the key decisions in the implementation of tabled LP is when a generator
returns its computed answers, i.e., the scheduling or evaluation strategy. Local eval-
uation is the most widely spread evaluation strategy: it executes the full completion
fixpoint procedure before returning any answer outside the generator execution subtree.
It is efficient in terms of time and stack usage when all answers are needed, but per-
forms speculative work when only a subset of the answers is required. The speculative
work performed by local evaluation makes pruning quite ineffective in practice, since it
cannot take place until all answers have already been computed.

A work-around for the speculative work of local evaluation is answer-on-demand
tabled evaluation, where generators return answers as soon as they are computed. The
first attempt proposed is batched evaluation, but it can be very inefficient memory-wise
because it delays completing fixpoint computations without reclaiming the memory
used by consumer suspensions. Swapping evaluation [3] works around this issue with a
memory behavior which is closer to that of local evaluation. Swapping evaluation avoids
speculative work before returning demanded answers, but it performs the same amount
of work as local evaluation when backtracking. This brings the necessity for pruning
operators in tabled LP in order to be able to discard unnecessary alternative execution
paths. The contribution of this paper is a discussion of the issues related to pruning
in tabled LP which motivate the implementation of an efficient pruning operator —a
version of once/1— with a more natural semantics for the realm of tabling than that
of the standard cut operator. once/1 is implemented under swapping tabled evaluation,
and we identify a series of optimizations, programming patterns, and general types
of applications where it can be used advantageously. The final goal is to enlarge the
domains in which tabled LP can be put to work in a natural way.

This paper concentrates on proper tabling (or suspension-based tabling), which does
not recompute execution paths in order to recover the execution state of a suspended
consumer. Also, variant tabling is assumed, i.e., a call is considered a consumer iff it
is identical, modulo variable renaming, to a previous generator. Adapting the proposed
solutions to work under subsumptive tabling, which considers a goal A to be a consumer
of a goal B if Bθ ≡ A for some substitution θ (or, in general, for tabling under constraints
where consumers are defined under the notion of entailment [4]) is left for future work.
We assume some familiarity with the WAM [5] and proper tabling implementations.

The rest of the paper is organized as follows: Section 2 introduces a number of issues
that appear when performing pruning in tabled LP and proposes solutions for them.
Section 3 motivates the use of pruning operators in tabled LP by showing different
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:- table t/2.

t(A,B ) :- p(A,C ), !, ...
t(A,B ) :- ...

p(A,B ) :- t(B ,C ), ...

?−t(X ,Y ).

Fig. 1. !/0 example

:- table t/1.

t(X ) :- t(Y ), !, fail.
t(1).

?−t(X ) vs ?− t(1).

Fig. 2. !/0 inconsistency

:- table t/1, r/1.

t(X ) :- r(X ).
t(1).

r(X ) :- t(X ).
r(2).

?−once(t(X )) vs ?−once(r(Y)),once(t(X )).

Fig. 3. Solution order dependency

applications where this combination is useful. Section 4 shows some implementation
details of the proposed once/1 pruning operator. Section 5 evaluates our solution ex-
perimentally. Finally, Section 6 gives an overview of the related work and Section 7
summarizes some conclusions.

2 Issues to Support Pruning in Tabled LP

A desirable feature of any program language is “to compute only what is needed and to
compute it only once”. Tabled LP is useful to solve the second problem, but it needs the
combination of answer-on-demand tabled evaluation with pruning operators to solve
the first one. This section analyzes the issues of combining tabled LP with pruning
operators, showing the drawbacks of the standard cut operator (!/0) and proposing a
different declarative semantics for our version of the once/1 pruning operator.

2.1 !/0 Operator in Tabled LP

The operational semantics of !/0 is strongly based on the depth-first search strategy of
Prolog. The fact that tabled LP does not follow this strategy — the execution order
of tabled clauses is dynamic — makes the operational semantics of !/0 under Prolog
to be not applicable under tabled evaluation. This is specially relevant in the presence
of mutually recursive calls (Figure 1). It is for example quite possible that !/0 cuts the
second clause for one call to t/2 (when, e.g., t(B ,C ) is a consumer of a complete tabled
call) but not for other calls (when, e.g., t(B ,C ) is a consumer which suspends). This
behavior is caused by the effects of !/0 spanning across clauses. This is inadequate in
the context of tabled LP, since the execution order of the clauses of a generator is not
always easy to predict.

Another example of the ill behavior of !/0 in tabled LP is shown in Figure 2. The
tabled evaluation of the query t(X ) executes the first clause of t/1 and suspends the con-
sumer call t(Y ), executing the second clause of t/1 on backtracking. The second clause
of t/1 generates the answer X =1, which is returned to the toplevel. On backtracking,
X =1 is consumed by the consumer t(Y ) before the final failure of the execution. On the
other hand, the tabled evaluation of the query t(1) executes the first clause of t/1, but now
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t(Y ) does not suspend. t(Y ) can be either a generator — which would return answers af-
ter its evaluation — or a consumer which reads the available t(1) answer. Thereby, t(Y )
succeeds and !/0 prunes the second alternative before executing a failure. Therefore, !/0
produces an inconsistency since t(1) fails and t(X ) succeeds with the answer X = 1.

2.2 Behavior of Once/1

As we have seen, !/0 adapts badly to tabled LP, but pruning is a necessity for gen-
eral program techniques such as generate-and-test programs if the generation of further
potential solutions is to be pruned when a test condition succeeds — i.e., if only one so-
lution (a witness) is necessary. In the context of tabled LP, once/1 provides a much more
appropriate semantics: once(G) executes G but it also cancels any external backtracking
over G . once(G) is guaranteed to produce at most one solution without any guarantee
as to which particular solution it is — it could even be a random pick — and can be
expressed in terms of !/0 for a non-tabled goal as once(G) :− call(G), !. Thereby, once/1
is less dependent on the execution order of the generator clauses than !/0 because once/1
does not span across clauses.

once/1 is also useful in order to extend the functionality of !/0 for updating tabling
data structures. For example, consider a once(G) call which succeeds. The data and con-
trol structures which would be necessary to re-enter the execution of G are not needed
any more. To this end, once/1 must remove not only the choicepoints belonging to the
current execution path — as !/0 does — but also the consumers which appeared inside
the execution subtree of G. The resumption of these consumers might lead to subsequent
solutions of the once/1 call, which would contradict the previous rationale. Note that
these consumers are, in implementations that use proper tabling, either protected from
backtracking or copied away to a separate memory area and would not be pruned by !/0.
Note also that this consumer removal, which is necessary for correctness, is not done
by other tabled LP approaches to pruning and is not trivial. For example, one of these
consumers, say C , might belong to the consumer list of a generator not being pruned,
and the completion fixpoint operation of this other generator would resume C .

One may expect that once/1 will return the solution which is less expensive to com-
pute (e.g., the first one to be computed), but the solution order in tabled LP depends on
the shape of generator dependencies, which in turn depends on the program history in
classical tabled LP implementations. Consider the program in Figure 3 and the query
once(t(X )). Execution enters the first clause of t/1 and calls the generator r(X ). The exe-
cution of the first clause of r/1 suspends since t(X ) is a consumer. r(X ) computes the so-
lution X = 2 and this is the only solution propagated to the toplevel because of the once/1
success. On the other hand, the execution of the query once(r(Y )), once(t(X )) calls the
generator r(Y ) and its first clause calls to the generator t(Y ), whose first clause suspends
because r(Y ) is a consumer. t(Y ) computes the solution Y = 1. After that, once(t(X ))
is called, which can consume the previous solution X = 1. This is the only solution
propagated to the toplevel because of the success of once/1. Therefore, the solution
to once(t(X )) depends on the execution history. Moreover, if we impose X = 1 after call-
ing once(t(X )), the execution succeeds or fails depending on the program history. We
can resume this behavior in the following dependency chain:

program history ⇒ SCCs ⇒ solution order ⇒ once/1 solution ⇒ program results
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The shape of generator dependencies could be made to depend on statically pre-
dictable characteristics which would remove dependencies from the history, but we did
not find any completely satisfactory order. For example, the lexicographical order could
be used, but let us consider the execution of the previous query once(t(X )). When t(X ) is
called from the first alternative of r(X ), t(X ) could be recomputed as if it was a generator
because r(X ) cannot depend on t(X ) (r(X ) comes first under the lexicographical order).
Given a program, its solutions would not depend on the program history since the lex-
icographical generator priority fixes the shape of generator dependencies, but a change
to the names of the tabled predicates could change the order of the solutions, which is
arguably not the best situation. In general, orders which rely on syntactic characteristics
of the source code are sensitive to changes on the program text which are very common
and which programmers do not expect to result in alterations to the behavior of the
program.

This dependency on the program history is an open issue in existing tabled LP sup-
porting pruning operators, although it has not been documented before. However, we
strongly believe that having a once/1 operator available is worthwhile because the com-
bination of pruning and answer on-demand tabled evaluation is very efficient in a variety
of applications, as we will show in the next section. Also, the behavior of the program
execution in tabled LP with pruning operators is consistent as long as the programmer
is aware that (s)he cannot rely on which particular solution will be returned by a call
to once/1. Keeping this property in mind, the query once(t(X )), X = 1 makes little sense
and it is a questionable programming pattern.

3 Applications of Once/1

We motivated the once/1 operator as a general instrument for programs which benefit
from tabled LP but which only need a subset of all the possible solutions. In addition,
there are a number of programming patterns where once/1 is quite useful and which are
worth mentioning.

3.1 Generate and Test Applications

Consider a model checker based on tabled LP, such as XMC [6], which performs reachi-
bility analysis. A typical case is the verification of a mutual exclusion protocol where
each configuration state is a tuple with a state qi for each process Pi . For example, for
three processes the state 〈q1,q2 ,qme 〉 represents a configuration where process P1 is in
state q1, process P2 is in state q2, and process P3 is in a mutual exclusion state.

A model checker application would provide the predicate reach/2, which returns in
its second argument all the configuration states reachable from the configuration state
given by its first argument. Therefore, all the configuration states reachable from the
state I0 are returned by the query ?− reach(I0,X ). Note that, for verification purposes,
the search can be stopped when two processes are in the mutual exclusion state at the
same time. This condition can be expressed with the following facts and query (where
initial/1 returns the initial state):
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check(〈qme ,qme ,_〉).
check(〈qme ,_,qme 〉).
check(〈_,qme ,qme 〉).

?− initial(I0), once(reach(I0,X ), check(X )).

3.2 Early Completion Optimization

Early completion [7] is an optimization for tabled LP which completes a generator call
when a new answer does not further instantiate the call and is therefore the most gen-
eral answer. In that case, further backtracking over the early-completed generator is
unnecessary. This is the same objective that a once/1 which succeeds pursues. Early
completion optimization can then be easily implemented by associating a once/1 call
which does not appear in the program and whose final activation is to be dynamically
decided (which we term a virtual once/1) with all the generator calls. When all the
free variables of a generator call remain unbound when one of the generator answers is
found, a (virtual) success of the generator virtual once/1 call can be simulated. As we
will see in Section 5.2, early completion optimization based on once/1 clearly outper-
forms other early completion optimization implementations. Also, as early completion
optimization is performed when free variables remain uninstantiated, early completion
optimization based on once/1 does not present the issues commented in Section 2.2.

3.3 Pruning at the Top Level

A (virtual) once/1 call can be also associated to the toplevel query in order to perform
pruning at the top level. Similarly to the implementation of early completion optimiza-
tion, pruning at the top level when no more answers are demanded by the user can be
achieved by simulating a (virtual) success of the toplevel virtual once/1 call.

3.4 If-Then-Else Prolog Transformation

The Prolog program transformation for the classical Cond -> A;B statement is as
follows:

if−then−else(Cond,A,B)) :- Cond, !, A.
if−then−else(_,_,B)) :- B.

which does not work if Cond needs tabled evaluation. This is due to two main reasons:
a) Cond might suspend and then, B would be executed; later on, a resumption of Cond
might lead to the execution of A; b) as remarked in Section 2, !/0 does not ensure at most
one solution of pruned tabled calls. The first issue can be solved by supporting negation
in tabled LP [8], which is usually implemented by the tnot/1 operator. The second one
can be solved by using once/1 instead of !/0. The new transformation for if-then-else
statements in tabled LP would be:1

if−then−else(Cond,A,B)) :- once(Cond), A.
if−then−else(Cond,_,B)) :- tnot(Cond), B.

1 Note that the call to tnot/1 succeeds at most once.
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:- table path/3.
path(X ,Y ,Cost ) :-

edge(X ,Y ,Cost ).
path(X ,Y ,C ) :-

C #= C1+C2,
C #>= 0,
edge(X ,Z ,C1),
path(Z ,Y ,C2).

min_path(X ,Y ,Best ,Mi n) :−
once(path(X ,Y ,Best )),
NewBest #< Best ,
once((min_path(X ,Y ,NewBest ,Mi n) ; Mi n = Best )).

?− min_path(X ,Y ,_,Mi n).

Fig. 4. Constraint-based optimization

3.5 Application to Minimization Problems

Although we currently support only variant tabling under swapping evaluation, Ciao can
combine tabled LP and CLP [4] and work to combine them with once/1 under swapping
evaluation is underway. The resulting system can be applied, for example, to a declar-
ative and efficient formulation of optimization. Consider the program in Figure 4.2

min_path/4 iteratively calls path(X ,Y ,Cost ) and successively constrains the path cost.
It is called inside once/1 because we are interested in a single solution. Note that the
recursive calls can perform the reactivation operation (which will be explained in Sec-
tion 4.6) in order to continue the generator execution at the point where it was pruned
after imposing some more tighter constraints. When the constraints are too tight and the
path/3 call fails, the immediately previous cost is returned. The procedure implements
a branch and bound algorithm where tabled LP avoids loops and redundant work, con-
straints are used to implement bounds which cut the search, and once/1 restricts the
search to return only one witness.

4 Implementation Details of the Once/1 Operator

This section recalls the general ideas of swapping evaluation [3] and explains the im-
plementation of the once/1 operator, which is based on the management of once scopes
and the pruning procedure associated with them. We will also see some optimizations
as the reactivation operation or memory reclaiming after a pruning operation.

4.1 Swapping Evaluation

Pruning needs answer-on-demand tabled evaluation to be more effective. Swapping
evaluation [3] is an answer-on-demand strategy for tabled LP which solves the mem-
ory consumption issues of batched evaluation. It implements a different behavior for
internal and external consumers. An internal consumer appears inside the execution
subtree of the leader of the generator of the consumer. E.g., in a program with clauses
{(:−table a/0), (a :− a), (a)} with the query ?− a, a, the leftmost a/0 in the query is a gen-
erator, the a/0 in the body of the first clause is an internal consumer, and the rightmost

2 The symbol # differentiates constraints from arithmetical operators.
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a/0 in the query is an external consumer. Using swapping evaluation, internal consumers
behave as usual, but external consumers read answers from the table space and, when
no more answers are available, they move the choice points and their corresponding
trail cells of their generators to the top of the stacks in order to modify the backtrack-
ing execution order. The original generator is then transformed into a consumer and
the external consumer becomes a generator which can produce more answers, avoiding
the use of memory for external consumer suspensions — which is the most important
source of memory consumption in batched execution.

4.2 Once Scope Data Structure

A once scope is a data structure associated with a once/1 call which keeps track of
relevant information in order to perform the pruning operation. Once scopes are hier-
archically organized, because a once/1 call can be called from the execution subtree of
another once/1 call (the latter being the parent of the former). Note that this hierarchical
structure includes the (virtual) once scopes associated to generator calls. Therefore, the
consumer list of a generator is directly accessible via its virtual once scope.3

A once scope S is composed of the following fields: choicepoint, parent, children set,
consumer set and generator set. choicepoint indicates the choicepoint at time of the
once/1 call corresponding to S. parent indicates the parent once scope of S. children set
stores the set of once/1 calls which are immediately called from S (those once scopes
whose parent field points to S). consumer set is the set of consumer calls which are
called when S is the active once scope. The active once scope is the youngest once
scope of those whose execution subtree is being executed. Similarly, generator set is
the set of generator calls which are called when S is the active once scope.

4.3 The Management of Once Scopes once(G) :-
new_once(Scope)
push_once(Scope),
undo(forward_trail(

push_once(Scope),
pop_once)),

call(G),
once_proceed,
pop_once,
undo(forward_trail(

pop_once,
push_once(Scope))).

Fig. 5. once/1 predicate

Figure 5 shows Prolog code for the once/1 operator,
which is responsible for managing the once scopes.
Once scopes are stored on the once scope stack, whose
topmost element is the active once scope. new_once/1
initializes Scope, a new scope for the current once/1
call. It initializes the choicepoint and parent fields of
Scope and updates its children set field.4 push_once/1
pushes Scope onto the once scope stack to indicate
that it is now the active once scope. If G succeeds,
once_proceed/0 performs the pruning operation re-
lated to the active once scope. After that, pop_once/0
pops off Scope.

One additional difficulty is that consumer calls which suspend within a once/1 call
have discontiguous executions. Let us consider the call once(C ), where C is a consumer

3 We consider the consumer list of a generator as the consumers appearing inside the generator
execution subtree instead of the repeated calls up to variable renaming. This does not affect
the completion operation fixpoint.

4 children set is also updated when a generator completes or after a swapping operation.
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call which suspends. The execution might exit the once/1 subtree on suspension and
reenters it when resuming, which requires the once scope structure to be popped off
on suspension and pushed on on resumption. The mechanism we have used is to leave
actions on the trail to be executed on untrailing (e.g., when suspending to enter another
clause) and on resumption (when reinstalling the trail to continue a suspended call af-
ter a new answer is available). We insert in the trail, via the undo/1 operation,5 the
forward_trail/2 goal, which is defined to execute its second argument when called. This
second argument is then invoked on backtracking when C is suspended. The resump-
tion mechanism in turn recognizes forward_trail/2 when reinstalling the trail and calls
its first argument. Therefore, the first undo/1 always discards the scope when the call
finally fails. In the case of a consumer inside the execution subtree of once/1, it also
uninstalls the scope when performing untrailing to suspend and pushes the scope back
onto the stack on resumption. The second undo/1 performs the reverse operation, which
is needed to neutralize the actions of the first undo/1 in order to resume consumers
outside the execution subtree of the current once/1 call: it reinstalls the once scope on
backtracking which will be popped off by the first undo/1 and pops off the once scope
which has been previously reinstalled by the first undo/1 on consumer resumption.

The virtual once scopes associated with generators and the toplevel execution are
managed by a similar code, but once_proceed/0 is not executed by default. For these
cases, once_proceed/0 is executed if the early completion optimization can be per-
formed or no more answers are demanded by the user, respectively.

4.4 Terminology

Note that the consumers and generators of a once scope S also belong to the once scope
of the parent of S (although they do not directly appear in their consumer/generator set
fields). We recursively define the once-recursive consumer set of a once scope S as
the members of the consumer set field of S plus the once-recursive consumer set of the
members of the children set field of S. We define similarly the once-recursive generator
set of a once scope.

Remember that we have associated a virtual once scope to all generators. The con-
sumer list of a generator — those appearing inside its execution subtree but not in the
execution subtree of internal generator calls — are the members of the once-recursive
consumer set of the once scope associated with the generator. We also define the recur-
sive consumer set of a once scope S as the once-recursive consumer set of S plus the
recursive consumer set of the once scopes associated with the members of the once-
recursive generator set of S, i.e., it also includes the consumers inside the execution
subtree of internal generators, and therefore it is made up of the set of consumers inside
the execution subtree of the once/1 call. We also define the recursive generator set of a
once scope S accordingly.

For example, following Figure 6, there is a once/1 call (associated to the once scope
ONCEB ) which is internal to the execution of another once/1 call (associated to the
once scope ONCE A). ONCEG1 and ONCEG2 are the virtual once scopes associated to,
respectively, the generators G1 and G2. These generators are called from the execution

5 undo/1 is a common facility which leaves a goal call in the trail to be invoked on untrailing.
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ONCE A :
Parent: NU LL
Consumer Set: {C1, C2}
Generator Set: {G1}
Once Set: {ONCEB }

ONCEB :
Parent: ONCE A
Consumer Set: {C3}
Generator Set: {}
Once Set: {}

ONCEG1 :
Parent: ONCE A
Consumer Set: {C4}
Generator Set: {G2}
Once Set: {}

ONCEG2 :
Parent: ONCEG1

Consumer Set: {C5}
Generator Set: {}
Once Set: {}

Fig. 6. Once structures

of the once/1 call associated to ONCE A . The internal consumers of a virtual once scope
are included into the recursive consumer set of any of its parent once scopes, but they
are not included into the once-recursive consumer set of any of its parent calls. Conse-
quently, the once-recursive consumers of the once scope ONCE A are C1, C2 and C3,
and the recursive consumers of the once scope ONCE A are C1, C2, C3, C4 and C5.

4.5 The Pruning of a Once Scope

once_proceed/0 is responsible for pruning the active once scope. Its pseudo-code is:

DELETE act_once_scope from ParentOf(act_once_scope );
cur r ent_choi cepoi nt = InitChoicepoint(act_once_scope);
for each G ∈ recur_gen_set(act_once_scope) do state(G) = PRUNED;

The first line deletes the active once scope from the once scope set of its parent once
scope. This operation causes the removal of all the consumers inside the execution
subtree of the active once scope, because the active once scope (and its consumers) is
not reachable from the once scope of any generator any more and then, these consumers
will not be traversed by the execution of any completion fixpoint procedure. After that,
the current choicepoint is updated to the one of the active once scope in order to discard
pending search of the execution subtree of the once/1 call being pruned. Finally, all
the non-complete generators inside the execution subtree of the active once scope are
marked as PRUNED in order to avoid inconsistencies if one of their consumers appear.
We follow a similar approach to the one of incomplete tables [9], but it is improved with
the use of the reactivation operation (see Section 4.6). The main goal of the incomplete
table proposal is to avoid the generator recomputation when the answers of a PRUNED
generator are enough to evaluate a (future) consumer. (Future) consumers consume the
available answers from its PRUNED table, and only if all such answers are exhausted,
the generator is computed from scratch. Later, if the computation is pruned again, the
same process is repeated until eventually the subgoal is completely evaluated. Note
that each recomputation from scratch computes at least one more solution, keeping the
tabled LP termination property for programs with the bounded term-size.
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:- table t/1, r/1.

t(X ) :- r(X ).
t(1).
...
t(X ) :- ...

r(X ) :- large_comp, once(t(X )). r(X)

t(X)

SCC

r(X)

t(X)

SCC1

SCC2

Fig. 7. Consumer Optimizations

4.6 Pruning Optimizations

We here propose some optimization which can be applied to the implementation of
once/1. They do not affect to the operational semantics of once/1, but can improve the
time/memory execution of tabled LP applications.

The Reactivation Operation. The subtree under a pruned generator might not be fully
explored at the moment of pruning, possibly discarding the computation of pending an-
swers. Thereby, (future) consumers of pruned generators might require answers which
were not computed due to the pruning. Two main approaches have been proposed so
far: either keep the solutions in the answer table and protect the execution subtree from
backtracking [10], or keep the solutions in the answer tables but discarding the execu-
tion subtree [9]. The former, based on the reactivation operation, might be interesting
for applications where the pruned generators are often reactivated, arbitrarily improving
the execution speed. However, we decided to implement the latter because the memory
consumption of the former could be unacceptable. For example, using stack freezing,
the trail section to be saved at time of pruning is unbounded because backtracking might
be performed until the initial choicepoint.

We improve over incomplete tables for cases where the reactivation operation comes
for free. once_proceed/0 marks as PRUNED the generators inside the execution sub-
tree of the active once scope and updates the current choice point, but these operations
can be performed lazily on backtracking (just before entering the pruned alternatives).
Therefore, the execution subtree of pruned generators is kept on the stacks and can be
reused by a swapping operation executed in the continuation code. This special case
of the swapping operation implements the reactivation operation for free. On the other
hand, after backtracking over the prune generators, the execution of the pruned gener-
ators is reclaimed and it must be computed from scratch if future consumers demand
more answers than the ones available.

Memory Optimizations after Pruning Success. Another optimization is related to the
removal of the consumers inside the execution subtree of active once scope — which
trivially speeds up the completion operation because fewer consumers have to be tra-
versed in the completion operation fixpoint. This removal can be also used to reduce
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dependencies between generators being evaluated — fewer dependencies lead to the
sooner completion of generators and better memory use — and to reclaim unneeded
consumer memory of pruned consumers which is protected from backtracking.

In the example in Figure 7 (left-side), the query t(X ) is a generator whose first clause
calls r(X ), another generator. r(X ) starts a large computation and, afterward, once(t(X ))
is called. The first clause of t(X ) suspends when calling r(X ). The generator dependency
graph at this moment is shown in Figure 7 (in the middle), where there is only a comple-
tion point represented by the leader t(X ). After the consumer call to r(X ) suspends, exe-
cution backtracks and the second clause of t(X ) is executed, computing the answer X =1.
This makes the once/1 call succeed and the previously suspended consumer is removed
(and therefore ignored by the completion fixpoint). This can be used for reclaiming the
memory associated to these consumers —which is probably frozen on the stacks —and
for updating the graph of generator dependencies as shown in Figure 7 (right-side),
removing the dependency of r(X ) on t(X ). The new graph of generator dependencies de-
fines two different completion points, corresponding to two different leaders, t(X ) and
r(X ). Therefore, r(X ) can complete on backtracking. The completion of r(X ) improves
the program memory behavior because the memory used by large_comp/0 is reclaimed
before exploring alternative clauses of the generator t(X ). The pseudo-code to perform
this optimization is as follows:6

Ol destleader = oldest(Gen(C ) s. t. (C ∈ recur_cons_set(act_once_scope )));
for (G = Ga ; Ol destleader != G; G = ParentOf(G))

Leader(G) = oldest(G
⋃

{Gen(C ) s. t. (C ∈ recur_cons_set(OnceScope(G)))});

The first line computes the oldest dependency of the active once scope. The sec-
ond line traverses generators starting from the youngest one being executed, Ga , until
Oldestleader , in order to update their generator dependencies.7 Since once_proceed/0
has just been executed, the third line computes the new oldest dependency of G without
taking into account the pruned consumers. At the end of the execution of this code, the
leader fields have been updated according to the new graph of generator dependencies.

There is another optimization for reclaiming the memory frozen by consumers which
is independent from the updating of generator dependencies. This optimization refers
to the case where the topmost frozen memory corresponds to consumers being pruned.
In this case, we can update the value of the frozen memory in order not to protect from
backtracking the memory of consumers which have been pruned. The pseudo-code for
this optimization is as follows:8

M AX f r oz_mem = max(FrozMem(C ) s. t. (C ∈ recur_cons_set(act_once_scope )));
if (F r ozMem == M AX f r oz_mem )

F r ozMem = max(FrozMem(C ) s. t. (C ∈ recur_cons_set(OnceScope(Leader(Ga)))));

The first line computes M AX f r oz_mem , the maximum frozen memory by the con-
sumers inside the execution tree of the once scope being pruned. Since once_proceed/0

6 This code follows the call to once_proceed/0 in Figure 5.
7 Generator dependencies of generators older than Ol destleader are unaffected.
8 This code follows the call to once_proceed/0 in Figure 5.
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has just been executed, the third line computes the new maximum frozen memory with-
out taking into account the pruned consumers. Fr ozMem is only updated if its previous
value is different than the one of M AX f r oz_mem because if these values are the same,
the current frozen memory corresponds to a consumer outside of the execution subtree
of the once scope being pruned.

5 Performance Evaluation

We have implemented the once/1 pruning operator under swapping evaluation in Ciao
and compared its performance w.r.t. XSB version 3.3.6. Both systems were compiled
with gcc 4.5.2 and executed on a machine with Ubuntu 11.04 and a 2.7GHz Intel Core
i7 processor.

5.1 Applications Searching an Answer Subset

Table 1 shows execution times in ms. for a set of applications which can take advan-
tage of once/1 in order to compute a subset of answers. numbers searches for an arith-
metic expression which evaluates to a given natural number (N ), given a list of natural
numbers (S) (100+ lines). Tabled LP is used to avoid the recomputation of recursive
calls with a subset of S. The suffix none indicates a query where N cannot be ob-
tained using S, the suffix easy indicates a query where the first solution implies the
computation of a small fraction of the search space and suffix stand indicates a query
with no special characteristics (i.e., no specific search tree shape was sought). iproto,
leader, and sieve are model checking applications where reachability analysis is per-
formed (600+ lines each). numbers uses once/1 in the definition of its tabled predicates
in order to return only one answer. iproto, leader and sieve queries are embedded in
a once/1 operator in order to prune the search when the first answer is returned, e. g.
once(iproto(init,F i nal St ate )). We measure the time to return the first answer for each
query in the first column and also until final failure the all column (i.e., when all the
solutions are computed, when that is the case). We show execution times of Ciao under
local and swapping evaluation, using once/1 or not.

numbers_none cannot take advantage of either swapping evaluation or once/1 be-
cause it must explore the full search space, since no solutions are found. Its different
execution times provide an intuition regarding the overhead of swapping evaluation and
once/1, which in this case are both almost negligible. In numbers_easy, local evaluation
has to compute all the possible expressions while swapping evaluation can return the
first one and stop, which takes much shorter. The use of once/1 allows swapping evalu-
ation to discard alternative execution paths before performing backtracking — note that
swapping evaluation would compute all the answers on backtracking unless once/1 is
used, which gives us a strong reason for the necessity of combining answer-on-demand
tabled evaluation and pruning operators. With respect to local evaluation, it takes some
more time to return all the solutions than to return the first one, because they have to
be reconstructed from the table space where they were stored after having been com-
puted before returning the first one. once/1 under local evaluation makes it possible to
discard solutions when the first one is found, but recursive tabled calls were still com-
pletely evaluated in a speculative way. We conclude that a pruning operator can be used
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Table 1. Execution time (ms.) of local vs. swapping evaluation with/without pruning operators

Local Swapping
No once/1 once/1 No once/1 once/1

Query first all first all first all first all
num_none 21 912 21 912 22 365 22 365 22 574 22 574 22 982 22 982
num_easy 20 613 21 108 17 023 17 027 1 624 22 421 1 708 1 792
num_stand 24 296 25 312 22 750 22 753 8 403 26 058 8 729 8 906
iproto 2 992 3 184 3 014 3 016 1 112 3 024 1 126 1 141
leader 9 940 10 324 10 182 10 186 3 296 10 963 3 412 3 433
sieve 35 554 36 272 35 986 35 991 7 081 37 139 7 107 7 123

under local evaluation, but it is obviously less interesting than under swapping eval-
uation. numbers_stand has a behavior similar to numbers_easy, but the first solution
takes some more time to be computed. Note that the effects of pruning on execution
time depend heavily on when the first answer is found, because pruning only affects
the remaining search space. iproto, leader, and sieve show an overall behavior similar
to that of numbers.

5.2 Early Completion Based on Once/1

Existing proposals for early completion optimization are highly dependent on the syn-
tactic form of the generator clauses and often allow unnecessary computations. For ex-
ample, the XSB early completion optimization updates the next instruction of the gen-
erator choicepoint to be the completion fixpoint procedure, avoiding the computation of
the alternative generator clauses. It does not perform either reactivation of pruned gen-
erator calls or updating of the graph of generator dependencies based on the consumer
removal. These drawbacks are overcome by our early completion optimization based on
once/1. As an example, let us analyze the behavior of the handcrafted code in Figure 8
in XSB. t1/0 is a generator whose first clause calls t2/0, another generator. t2/0 calls t1/0,
performing a consumer suspension. On backtracking, t2/0 cannot complete because of
this dependency. Now, the second clause of t1/0 is executed and it succeeds. At this
moment, t1/0 can be completed early (discarding pending execution alternatives), but
its fixpoint procedure is still executed. The consumer of t1/0 is resumed, (speculatively)
executing a large computation (sleep(2)). Obviously, the resumption of this consumer
is unnecessary for forward execution and it would not have been performed under early
completion optimization based on once/1. In contrast, the generator t2/0 would have
been marked as pruned to be later reactivated if needed.

Table 2 shows execution times in ms. for a set of benchmarks which can take advan-
tage of early completion optimization. genome computes relations following a genome
structure represented as a graph. The suffixes give some rough indications of the shape
of the graph. We measure Ciao and XSB, using local evaluation in both cases for fair-
ness in the comparison.9 The no_early column shows execution times taken after modi-
fying the XSB sources to deactivate early completion optimization and the early column

9 Note that early completion is effective even under local evaluation since it prunes the generator
execution after computing its first solution.
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Table 2. Execution time (ms.) of early completion optimization

XSB Ciao
no_early early speedup no_early early speedup

bad_xsb 2000 2000 1.00 2000 0.3 6666
genome_chain 28.8 24.8 1.16 33.1 23.5 1.41
genome_grid 102.4 60.4 1.69 116.2 12.7 9.15
genome_cycle 290.0 212.5 1.36 324.7 1.8 180.38
genome_dense 3.2 0.4 8.00 5.1 0.2 25.50

shows execution times with the early completion optimization activated. As explained
previously, the early completion optimization in Ciao is based on once/1.

:- table t1/0, t2/0.

t1 :- t2.
t1.

t2 :- t1, sleep(2).

?− t1.

Fig. 8. bad_xsb example

bad_xsb takes 2000 ms. in XSB and less than 1 ms.
in Ciao, confirming the previous analysis. The rest of
the benchmarks show more realistic scenarios, where
XSB (no_early) executes sometimes faster than Ciao
(no_early). One reason is that the Ciao tabled LP imple-
mentation is based on a program transformation which
imposes some overheads. But the main focus of in-
terest here is the search space which is pruned by
the early completion optimization. XSB takes advan-
tage of early completion optimization, speeding up the
execution between 1.16× and 8×, while Ciao obtains
speedups between 1.41× and 180×, showing that early
completion optimization based on once/1 can clearly
be more effective in many cases. The execution times
of genome_cycle and genome_grid, which generate situations similar to the one of
bad_xsb where the Ciao early completion optimization discards expensive fixpoint
computations which XSB executes, are the ones where Ciao gets the most advantage
w.r.t. XSB.

6 Related Work

To the best of our knowledge, there are five previous attempts to incorporate pruning
operators in tabled LP [11,12,9,13,10]. [11] works under the dynamic reordering of
alternatives (DRA) technique [14]. Because the abstract machine for DRA is much more
WAM-like than the implementations of proper tabling, the authors claim that the DRA
implementation of cut is closer to that of !/0 in the WAM. They argue that, since the
DRA scheduling strategy is deterministic, this allows for a well-defined !/0, with a more
intuitive operational semantics. DRA tries non-looping alternatives first and looping
alternatives later on, and this is the order in which !/0 prunes. In fact, proper tabling
implementations could be made to follow the same order for consumer resumptions
as DRA. However, we tend to agree with [10] that the behavior resulting from the
implementation of !/0 in DRA can still be confusing, as argued in Section 2.2. Also,
DRA is based on recomputation of looping alternatives, while proper tabling does not
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re-execute except for the cost of reinstalling trailed bindings, offering a quite different
trade-off. Our proposal is tailored to proper tabling.

Tabling modes [12] is also based on !/0. It is used at the level of program definition,
which restricts the flexibility for the case of applications which sometimes need all the
solutions and sometimes need a subset of them. It uses a lazy strategy, which computes
all the solutions as local evaluation does. Consequently, tabling modes do not prune the
tabled evaluation. A minimization problem as that in Section 3.5 would not use previous
solutions to prune the search space.

Incomplete tables [9] is also based on !/0. They do not provide a robust implementa-
tion (Yap Prolog documentation alerts that the behavior of tabled LP with !/0 is unde-
fined). Also, its implementation does not support the reactivation operation.

Demanded tables [13] implements a version of once/1. In this work, calls which are
being consumed by external consumers (demanded table) are not pruned, which makes
it necessary to perform runtime analysis to detect if a generator call is being demanded.
We avoid this analysis by supporting reactivation of tables. We do not care if a generator
to be pruned is being demanded, since the demanding consumers would reactivate the
generator if needed.

JET [10] is closer to the spirit of this work, although no implementation is provided.
The ideas presented are also based on reactivation of tables, but this work does not
provide any pruning operator for the user. Instead, pruning takes place on JET points,
which are detected by static analysis. This is a deliberate design decision to facilitate
the job of the programmer, but it implies a loss of pruning power. For example, our
numbers benchmark would not benefit from JET pruning. We strongly believe that the
semantics of once/1 is clear enough for the programmer, although we could of course
adapt our pruning operator to be based on analysis. Other minor advantages of our
pruning operator are that once/1 is linear in the number of generator choicepoints while
JET pruning is linear in the number of choicepoints, that once/1 does not impose any
overhead if pruning is not used, and that once/1 does not store any choicepoint more
than once to allow future reactivations, among others.

Finally, the most important contribution of our pruning mechanism is the pruning of
consumers inside the execution subtree of a pruning operator. They must be removed
in order not to execute the continuation of a pruning operator more than once — the
resumption of these consumers might lead to a new execution of this continuation code.
Moreover, we propose some memory optimizations to take advantage of the consumer
removal after a pruning operation.

7 Conclusions

We argue that none of the previous approaches for pruning in tabled LP is fully sat-
isfactory although a pruning operator under answer-on-demand tabled evaluation is a
necessity in order to enlarge the application domain of tabled LP. To this end, we have
presented and evaluated a pruning operator under swapping evaluation, and reported on
benchmarking of its implementation in Ciao, comparing it to previous proposals, and
showing that it offers advantages in terms of efficiency and programmability. We have
also shown how our pruning operator can be used as a basis for implementing a number
of optimizations.
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Abstract. We describe the portable and efficient implementation of
coinductive logic programming found in Logtalk, discussing its features
and limitations. As Logtalk uses as a back-end compiler a compatible
Prolog system, we also discuss the status of key Prolog features for an
efficient and usable implementation of coinduction.
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1 Introduction

Coinductive logic programming complements classical inductive logic program-
ming by allowing writing of programs that reason about infinite rational entities
such as cyclic terms and ω-automata. Areas of application include modeling and
verification of real-time systems [1,2] and lazy evaluation [3].

This paper describes the current implementation of coinductive logic program-
ming found in Logtalk, discussing its features and limitations.1 As Logtalk uses
as a back-end compiler a compatible Prolog system, we also discuss the status
of key Prolog features for an efficient and usable implementation of coinduction.
We assume that the reader is familiar with the theoretical work in coinduc-
tion (see e.g. [4,5]). Therefore, this paper is written from a practical, technical
point-of-view.

The main motivation for implementing support for coinductive logic program-
ming in Logtalk is to make it the preferred tool for solving problems that require
coinductive reasoning. This is an ambitious and long term goal, but we believe
that the core features of Logtalk, including its code encapsulation and code
reuse mechanisms, provide a strong framework for solving complex problems
where coinduction is one of the solution components. In addition, the inher-
ent requirements on back-end Prolog compiler native features, for example, on
support for rational terms, tabling, and constraints, hopefully help drive future
enhancements to Prolog implementations that will ultimately benefit the logic
programming community at large.

1 The first Logtalk implementation of coinductive logic programming was introduced
in version 2.41.0, released on September 15, 2010.

K. Sagonas (Ed.): PADL 2013, LNCS 7752, pp. 77–92, 2013.
© Springer-Verlag Berlin Heidelberg 2013
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The remainder of the paper is organized as follows. Section 2 provides an
overview of Logtalk. Section 3 describes the coinductive predicate directives
provided by Logtalk. Section 4 describes the hook predicates that support user-
customization of the coinductive proof algorithm. Section 5 describes in detail
our implementation of coinduction, discussing its features and limitations. Sec-
tion 6 presents some examples of coinductive predicates. Section 7 shows Logtalk
built-in support for debugging coinductive predicates. Section 8 compares our
implementation with related work. Section 9 concludes and outlines future work.

2 Logtalk in a Nutshell

Logtalk [6,7] is an open source object-oriented logic programming language that
can use most Prolog implementations as back-end compilers. Logtalk focuses
on code encapsulation and code reuse features, providing a versatile alterna-
tive to Prolog module systems. As a multi-paradigm language, Logtalk supports
classes, prototypes, parametric objects, categories (fine-grained units of code
reuse), separation between interface and implementation using protocols, event-
driven programming, and high-level multi-threading programming. Logtalk uses
object as a generic term: an object can play the role of, e.g., an instance, a class,
or a prototype. The relations between objects, protocols, and categories define
different patterns of code reuse. Logtalk entities can be static, defined in source
files, or dynamic, created at runtime. Computations are performed by sending
messages (corresponding to predicates) to objects. Logtalk enforces predicate
encapsulation (predicates can be declared public, protected, or private) and fea-
tures a clear distinction between predicate declaration and predicate definition
(using a closed-world assumption when a predicate is declared but not defined).
Logtalk is developed with a strong emphasis on portability and reliability. It is
used worldwide in academic and commercial projects. Its distribution includes
extensive documentation, numerous examples, a library, and basic development
tools (for debugging, unit testing, and documenting).

3 Coinductive Predicate Directives

Logtalk requires coinductive predicates to be explicitly declared, as the predicate
clauses must be compiled with support for checking coinductive success and for
keeping a stack of coinductive hypotheses. When constructing a proof for a
coinductive predicate goal, the coinductive hypotheses are the ancestor goals
for the same coinductive predicate. Coinductive success is achieved when the
current goal unifies with a coinductive hypothesis. We can have multiple proofs,
and thus possibly multiple solutions, when the current goal unifies with more
than one coinductive hypothesis.

Coinductive predicates are declared using the coinductive/1 predicate direc-
tive. The argument of this directive can be a predicate indicator when all the
predicate arguments are relevant for coinductive success. As an example, con-
sider Listing 1.1.
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Listing 1.1. Infinite lists with a repeating pattern of binary digits

:- object(binary).

:- public(p/1).

:- coinductive (p/1).

p([0| T]) :- p(T).

p([1| T]) :- p(T).

:- end_object .

When only some arguments should be considered when testing for coinductive
success, the directive argument must be a predicate template. In this case, coin-
ductive predicate arguments are represented by the atom '+', while arguments
that should be disregarded are represented by the atom '-'. Listing 1.2 illus-
trates an example. In this case, we want to find the cyclic paths in a graph whose
length (of the repeating pattern) is bound by a given value.

Listing 1.2. Length-limited cyclic paths in a graph

:- object(cyclic_paths ).

:- public(path /3).

path(From , Path , MaxLength ) :-

path(From , Path , 0, MaxLength ).

:- private(path /4).

:- coinductive (path(+, +, -, -)).

path(From , [From| Path], Length , MaxLength ) :-

arc(From , Next),

Length < MaxLength ,

Length1 is Length + 1,

path(Next , Path , Length1 , MaxLength ).

arc(a, b).

arc(b, c).

arc(c, a). arc(c, d).

arc(d, a).

:- end_object .

In this case, coinductive success depends only on the first two arguments of the
path/4 auxiliary predicate. The remaining two arguments are only used to limit
the solutions found and are ignored when checking for coinductive success.

This representation of relevant arguments is the same representation used in
predicate tabling directives in systems such as B-Prolog, where it is possible
to indicate which arguments should be considered for variant checking, allowing
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selective tabling of answers. The use of a common representation for declaring rel-
evant predicate arguments for coinductive success and for variant checking when
tabling predicate answers may provide, however, benefits other than language
consistency. Intuitively, we expect that the arguments that are relevant for coin-
ductive success are the same that are relevant for variant checking. This would
mean that the coinductive/1 predicate directive would make writing tabling
directives for the same predicates redundant, simplifying programming.

4 Coinductive Success Hook Predicates

Hook predicates are a common solution for user customization of system-imple-
mented algorithms and mechanisms. They may also be used for debugging, by
allowing tracing of the hooked steps.

In the specific case of coinduction, a generic hook predicate, essence_hook/2,
is supported by the DRA meta-interpreter[8]. In this case, the hook predicate is
primarily intended to allow the specification of the relevant predicate arguments
for coinductive success. But, according to the documentation, it may also be
used for defining an alternative to unification when checking for coinductive
success and for calling user code when tabling an answer or using a table answer
(as discussed in the previous section, Logtalk uses an extended coinductive/1

directive for specifying the relevant predicate arguments for coinductive success).
More recently, [9] proposes two hook predicates, finally/1-2, whose usefulness

is demonstrated with several examples. The author shows how these hooks allow
implementation solutions for applications which otherwise would require tabling
support. The current Logtalk development version2 implements these two hook
predicates but under the coinductive_success_hook/1-2 alternative names. The
Logtalk compiler optimizes the calls to these hook predicates and ensures zero
overhead for the coinductive predicates that do not use them. These hook predi-
cates are called in the case of coinductive success. The first argument is the term
resulting from the unification of the current goal with a coinductive hypothesis.
The second argument, when present, is the used coinductive hypothesis. Listing
1.3 shows an example, adapted to Logtalk from [9], of testing for and enumer-
ating the elements of a rational list. An alternative tabling-based definition is
illustrated in Listing 1.7.

Listing 1.3. Testing and enumerating elements of a rational list

:− object ( l i s t s ) .

% Are there ” occurrences ” o f arg1 in arg2?
:− pub l i c (member /2 ) .
:− co induct iv e (member /2 ) .
member (X, [X | ] ) .
member (X, [ | T] ) :−

member(X, T) .

2 Publicly available from https://github.com/LogtalkDotOrg/logtalk3

https://github.com/LogtalkDotOrg/logtalk3
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% Are there i n f i n i t e l y many ” occurrences ” o f arg1 in arg2?
:− pub l i c ( comember /2 ) .
:− co induct iv e ( comember /2 ) .
comember (X, [ | T] ) :−

comember (X, T) .

c o i ndu c t i v e su c c e s s h ook (member ( , ) ) :−
f a i l .

c o i ndu c t i v e su c c e s s h ook ( comember (X, L) ) :−
member(X, L ) .

:− end object .

The idea behind this solution is that the definition of the comember/2 traverses
the list until it finds the repeating pattern (achieving coinductive success at
that point), thus skipping any existing prefix. When that happens, the member/2

predicate enumerates the elements in the repeating pattern, thanks to the sec-
ond clause for the coinductive_success_hook/1 predicate. The first clause of the
hook predicate ensures termination of a call to the member/2 predicate when
coinductive success is achieved.

5 Implementation

A coinductive predicate is compiled by adding a preflight predicate that checks
for coinductive success and, if not yet achieved, pushes the current goal to the
stack of coinductive hypotheses (i.e., the ancestor goals for the coinductive pred-
icate query). This preflight predicate calls the coinductive predicate defined by
the programmer. The user clauses are modified by replacing the recursive call to
the coinductive predicate by a call to the preflight predicate. The per-object ta-
ble of defined predicates ensures that a message corresponding to the coinductive
predicate is translated to a call to the preflight predicate.

The stack of coinductive hypotheses is represented using a list and passed be-
tween predicate calls using a hidden extra argument that is used for representing
the execution context. This extra argument is added by the Logtalk compiler
to the compiled form of all predicates.3 An alternative implementation of the
coinductive hypotheses stack would be to use the destructive assignment built-in
predicates that are found on some Prolog compilers. But these predicates are
not standard and our goal is a portable implementation.

Checking for coinductive success is performed by attempting to unify the cur-
rent goal with an elements of the coinductive hypotheses stack. This unification
may succeed, on backtracking, for more than one hypothesis, thus leading to

3 Logtalk uses an extra predicate argument for passing execution context information,
which includes the sender of a message and the object that received the message
(self ). This allows a simple implementation of the stack of coinductive hypotheses
as just an additional argument of the execution context term.
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multiple solutions. On the other hand, the current goal is only pushed to the
stack of coinductive hypotheses if it does not unify with any of its elements. This
semantics is efficiently implemented using the soft-cut control construct found
on several Prolog compilers, including all of those that provide the necessary
minimal support for rational terms.4

The following example of the compilation of the coinductive predicate p/1

in Listing 1.1 illustrates our current implementation (with all non-relevant de-
tails, including the internal names of the coinductive and preflight predicates,
abstracted for clarity of presentation):

Listing 1.4. Compiled code for a coinductive predicate p/1

p_1_coinduction_preflight(A, Stack) :-

( member(p(A), Stack) *->

true

; p(A, [p(A)| Stack])

).

p([0| A], Stack) :-

p_1_coinduction_preflight(A, Stack).

p([1| A], Stack) :-

p_1_coinduction_preflight(A, Stack).

In the code above, the predicate member/2 has its traditional inductive definition
and the (*->)/2 operator denotes the soft-cut control construct, as found on
several Prolog compilers such as ECLiPSe, GNU Prolog, SWI-Prolog, and YAP.5

When the coinductive_success_hook/1 or the coinductive_success_hook/2

hook predicate are defined for a coinductive predicate, they are called in the
place of the goal true/0 in the code in Listing 1.4 (the Logtalk compiler looks
first for a user definition of the arity two version of the hook predicate).

5.1 Implementation Limitations

In the current Logtalk implementation, the stratification of programs mixing
non-coinductive predicates and coinductive predicates is neither checked nor
enforced. Thus, ensuring stratification is a responsibility left to the programmer.

A second, more fundamental limitation is partially a consequence of the lack
of native Prolog support for tabling of rational terms (see Section 5.3). The
practical consequence is that, while coinductive predicates can recognize any
valid solution, they can only generate a (finite) subset of all possible solutions.

4 In this paper, we use the usual definition of rational term: an infinite term with a
finite representation.

5 Some other Prolog compilers such as SICStus Prolog use a built-in meta-predicate,
if/3, for implementing a soft-cut. Logtalk uses either the (*->)/2 control construct
or the if/3 built-in meta-predicate depending on the used back-end Prolog compiler.
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For example, using the coinductive predicate p/1 in Listing 1.1, we get the results
illustrated in Listing 1.5.6

Listing 1.5. Solutions generated for the coinductive predicate p/1 in Listing 1.1

?- binary::p(X).

X = [0|X] ;

X = [1|X] ;

false.

?- L = [0,1,0| L], binary::p(L).

L = [0, 1, 0|L] ;

false.

We describe the finite set of generated solutions as the set of basic cycles, where
a basic cycle is a solution that cannot be expressed as a combination of other
solutions. Ideally, any possible solution could be generated from a combination
of these basic cycles. But we do not have yet a formal proof and our intuition can
be wrong. With tabling support available, we could use an alternative compila-
tion scheme where the current goal would be added to the stack of coinductive
hypotheses, independently of the current goal unifying with any of the existing
coinductive hypotheses. Without tabling, and for the example in Listing 1.1,
this alternative compilation scheme repeatedly generates, as expected, and as
long as memory is available, the first solution, as illustrated in Listing 1.6. With
a suitable tabling implementation, we would not get stuck repeating the same
solution, but we could still get an infinite number of solutions. As an alterna-
tive, a breadth-first inference mechanism can also avoid repeatedly generating
the same solution. In fact, this approach is used in one of the variations of the
U.T.Dallas Prolog meta-interpreter for coinductive predicates. But a solution
where we generate the finite set of basic cycles and use it to construct an ex-
pression representing all possible combinations of these basic cycles would be
preferable as this expression could then be used to both generate and test solu-
tions as necessary.

Listing 1.6. Solutions generated for the coinductive predicate p/1 in Listing 1.1 using
the alternative compilation scheme

?- binary::p(X).

X = [0|X] ;

X = [0|_S1], % where

_S1 = [0| _S1] ;

X = [0, 0|X] ;

X = [0, 0|_S1], % where

_S1 = [0| _S1] ;

...

6 Using SWI-Prolog as the Logtalk back-end compiler.
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5.2 Implementation Portability

The current coinduction implementation supports a subset of the Logtalk
compatible back-end Prolog compilers. Namely, ECLiPSe, SICStus Prolog,
SWI-Prolog, and YAP. The two main Prolog native features necessary for our
implementation are (1) a soft-cut control construct or built-in predicate7 and
(2) minimal support for rational terms. The soft-cut control construct is already
implemented or is being implemented on most Prolog compilers. The most prob-
lematic feature is the the support for rational terms, as we discuss next.

5.3 Rational Terms Support

Although an implementation of coinductive logic programming must be able
to create, unify, and print bindings with rational terms, there is very limited
standard support for this kind of terms. The latest official revision of the ISO
Prolog Core standard [10] added an acyclic_term/1 built-in predicate but does
not specify a comprehensive set of operations on rational terms that should be
supported. In addition, for a long time, rational terms were regarded more as a
problem than as a feature in Prolog compilers. Thus, the supported operations
on rational terms depend on the Prolog compiler. Fortunately, implementing
coinduction requires only three basic operations: (1) creation of rational terms,
(2) unification of rational terms, and (3) a suitable printing of rational terms,
such that bindings resulting from queries to coinductive predicates can be non-
ambiguously interpreted. Creating and unifying rational terms are supported by
all compatible back-end Prolog compilers. But non-ambiguous printing of ratio-
nal terms is a problem for most compilers. To illustrate the problem, consider
the p/1 coinductive predicate in Listing 1.1 and the query p(X). Our implemen-
tation provides two solutions for this query, the rational terms X = [0|X] and
X = [1|X]. The solutions as printed by ECLiPSe, SICStus Prolog, SWI-Prolog,
and YAP are presented in Table 1.

Table 1. Printing of rational terms bindings

Prolog compiler First solution Second solution

ECLiPSe 6.1.115 X = [0, 0, 0, 0, ...] X = [1, 1, 1, 1, ...]

SICStus Prolog 4.0.4 X = [0, 0, 0, 0, ...] X = [1, 1, 1, 1, ...]

SWI-Prolog 6.1.11 X = [0|X] X = [1|X]

YAP 6.3.2 X = [0|**] X = [1|**]

The only reason we do not get into trouble when using ECLiPSe and SICStus
Prolog is that both limit, by default, the maximum length of a list when printing

7 Although it is possible to implement the preflight predicate without using a soft-cut,
the resulting code would provide poor performance as it would require, in the worst
case, traversing the list that implements the stack of coinductive hypotheses twice.
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terms.8 YAP prints an ambiguous mark, **, to alert the user that is printing a
rational term. Only SWI-Prolog provides a non-ambiguous printing of rational
terms bindings.

5.4 Tabling of Rational Terms

The set of coinductive problems that can be tackled by the current implementa-
tion is limited by the lack of a compatible back-end Prolog compiler that natively
supports tabling of rational terms. A simple example where tabling is required is
in the following alternative definition of the comember/2 predicate. This predicate
succeeds when an element occurs an infinite number of times in a list. It can be
defined as illustrated in Listing 1.7.

Listing 1.7. Definition of the coinductive predicate comember/2

:- coinductive (comember /2).

comember(X, L) :-

drop(X, L, L1),

comember (X, L1).

:- table(drop /3).

drop(H, [H| T], T).

drop(H, [_| T], T1) :-

drop(H, T, T1).

The auxiliary predicate drop/3 is used to drop elements from the input list non-
deterministically. But, without tabling support for rational terms, the call to
this predicate in the definition of the comember/2 will unify the first element
and will limit the coinductive predicate to return that solution repeatedly (on
backtracking) without ever moving to the next solution.

Although it is always possible to implement a high-level tabling solution, the
relatively poor performance of such solution makes it preferable to work with
Prolog implementers that already provide a native tabling system in extending
it to support rational terms. The current alternative, as illustrated in Section 4,
can provide a good alternative. However, more experience is necessary for mean-
ingfully compare the programmer effort of writing the necessary hook predicate
definitions versus writing tabling-based solutions for the same problems. In ad-
dition, the programmer must be aware that tabling-based solutions can feature
better complexity properties by avoiding recomputing solutions.

5.5 Coroutining and CLP(R) Libraries

Some of the recent research on coinduction focuses on model checking and timed
automata (see e.g. [11,2,12]). The implementation of solutions for these classes of

8 ECLiPSe uses, by default, a depth(20) output option. SICStus Prolog uses, by
default, a max_depth(10) output option.
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problems require the use of coroutining and CLP(R) libraries. All the back-end
Prolog compilers we support for coinduction provide built-in coroutining primi-
tives and these constraint libraries, although the ECLiPSe versions differs in its
interface from those found on SICStus Prolog, SWI-Prolog, and YAP. Logtalk
can account for the differences using its conditional compilation directives. Not
an ideal solution, however, as it still results in code duplication. But there are
two other, more significant, potential issues: lack of active maintenance of some
of these libraries and semantic differences between the different implementations
of coroutining and constraint libraries. In fact, there is currently no standardiza-
tion effort for constraint programming in Prolog, despite the area being widely
recognized as fundamental for the practical success of logic programming.

6 Examples

The current Logtalk distribution includes sixteen coinduction examples, most of
them adapted from publications on coinductive logic programming or originating
from discussions with researchers in this area. The examples are complemented
by unit tests, thus providing a handy solution for testing our implementation
across compatible back-end Prolog compilers. In this section, we present and
briefly discuss some of the most interesting examples, mainly to familiarize the
reader on how to define coinductive predicates. The example queries output are
produced using Logtalk with SWI-Prolog as the back-end compiler.

6.1 A Tangle of Coinductive Predicates

Our first example (Listing 1.8) illustrates a coinductive predicate with two start-
ing points and no common solution prefix. This example was originally written
by Feliks Kluźniak in the context of a discussion on how to combine coinductive
predicate solutions to construct other valid solutions.

Listing 1.8. A coinductive predicate with two starting points and no common solution
prefix, wrapped in a tangle object

:- object(tangle).

:- public(p/1).

:- coinductive (p/1).

p([a| X]) :- q(X).

p([c| X]) :- r(X).

:- coinductive (q/1).

q([b| X]) :- p(X).

:- coinductive (r/1).

r([d| X]) :- p(X).

:- end_object .
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Listing 1.9 shows two queries for the tangle::p/1 predicate. The first query works
as a solution generator, while the second query tests a specific solution.

Listing 1.9. Sample queries for the tangle::p/1 coinductive predicate

?- tangle::p(X).

X = [a, b|X] ;

X = [c, d|X] ;

false.

?- L = [a, b, c, d| L], tangle::p(L).

L = [a, b, c, d|L] ;

false.

?- L = [a, c| L], tangle::p(L).

false.

6.2 An Omega-Automaton

Our third example (Listing 1.10) is adapted from [3] and illustrates an ω-
automaton, i.e. an automaton that accepts infinite strings. The commented out
code shows how we can go from an automaton recognizing finite strings to an
ω-automaton by simply dropping the base case in the recursive definition.

Listing 1.10. A omega-automaton

:- object(automaton ).

:- public(automaton /2).

:- coinductive (automaton /2).

automaton (State , [Input| Inputs]) :-

trans(State , Input , NewState),

automaton (NewState , Inputs).

% automaton (State , []) :- % we drop the base case in order

% final(State). % to get an omega -automaton

trans(s0, a, s1).

trans(s1, b, s2).

trans(s2, c, s3).

trans(s2, e, s0).

trans(s3, d, s0).

final(s2).

:- end_object .
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Listing 1.11 shows generating and testing queries for the automaton::automaton/2
coinductive predicate.

Listing 1.11. Sample queries for the automaton::automaton/2 predicate

?- automaton :: automaton (s0, X).

X = [a, b, c, d|X] ;

X = [a, b, e|X] ;

false.

?- L = [a, b, c, d, a, b, e| L], automaton :: automaton (s0, L).

L = [a, b, c, d, a, b, e|L] ;

false.

?- L = [a, b, e, c, d| L], automaton :: automaton (s0, L).

false.

6.3 A Sieve of Eratosthenes Coinductive Implementation

The second example (Listing 1.12) presents our coinductive implementation
of the Sieve of Eratosthenes. An alternative solution, based on coroutining, is
sketched in [3].

Listing 1.12. A Sieve of Eratosthenes coinductive implementation

:- object(sieve).

:- public(primes /2).

% computes a coinductive list with all the

% primes in the 2..N interval

primes(N, Primes) :-

generate_infinite_list(N, List),

sieve(List , Primes).

% generate a coinductive list with a 2..N

% repeating pattern

generate_infinite_list(N, List) :-

sequence (2, N, List , List ).

sequence (Sup , Sup , [Sup| List], List) :-

!.

sequence (Inf , Sup , [Inf| List], Tail) :-

Next is Inf + 1,

sequence (Next , Sup , List , Tail ).

:- coinductive (sieve /2).

sieve([H| T], [H| R]) :-

filter(H, T, F),
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sieve(F, R).

:- coinductive (filter /3).

filter(H, [K| T], L) :-

( K > H, K mod H =:= 0 ->

% throw away the multiple we found

L = T1

; % we must not throw away the integer used for

% filtering in order to return a filtered

% coinductive list

L = [K| T1]

),

filter(H, T, T1).

:- end_object .

Listing 1.13 illustrates how to use our sieve::primes/2 coinductive predicate to
enumerate all the prime numbers in the [1..20] interval.

Listing 1.13. Enumerating prime numbers using coinduction

?- sieve::primes(20, P).

P = [2, 3|_S1], % where

_S1 = [5, 7, 11, 13, 17, 19, 2, 3|_S1] .

7 Debugging Coinductive Predicates

As most extensions to existing logic programming languages, the practical use of
coinduction depends not only on robust implementations with good performance
but also on development tools support, in particular for debugging. Logtalk pro-
vides specific support for debugging coinductive predicates by allowing (1) tracing
of coinductive success checks, (2) tracing of pushing the current goal to the stack
of coinductive hypotheses, and (3) printing of the stack of coinductive hypotheses
at any time. Operations (1) and (2) are collectively described as a coinduction pre-
flight step, which takes place at every coinductive predicate call before proceeding
to the clauses defined by the programmer (as detailed in Section 5). The example
in Listing 1.14 shows a debugging section (with internal variable names renamed
for clarity and using SWI-Prolog as the Logtalk back-end compiler).

Listing 1.14. Debugging a coinductive predicate call

?- binary::p(X).

Call: (1) binary::p(X) ?

Rule: p_1_coinduction_preflight(X) ?
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Call: (2) check_coinductive_success(p(X),[]) ?

Fail: (2) check_coinductive_success(p(X),[]) ?

Call: (3) push_coinductive_hypothesis(p(X),[],S) ?

Exit: (3) push_coinductive_hypothesis(p(X),[],[p(X)]) ?

Call: (4) p(X) ?

Rule: (clause #1) p([0|L]) ?

Call: (5) p_1_coinduction_preflight(L) ? x

Sender: user

This: binary

Self: binary

Meta -call context: []

Coinduction stack: [p([0|L])]

Call: (5) p_1_coinduction_preflight(L) ?

Rule: p_1_coinduction_preflight(L) ?

Call: (6) check_coinductive_success(p(L),[p([0|L])]) ?

Exit: (6) @(check_coinductive_success(p(S_1),[p(S_1)]),

[S_1=[0| S_1]]) ?

Call: (7) true ?

Exit: (7) true ?

Exit: (5) @(p_1_coinduction_preflight(S_1),[S_1 =[0| S_1]]) ?

Exit: (4) @(p(S_1),[S_1 =[0| S_1]]) ?

Exit: (1) @(binary::p(S_1),[S_1 =[0| S_1 ]]) ?

X = [0|X] ;

...

8 Related Work

The U.T.Dallas research group on coinduction makes available a Prolog meta-
interpreter, implemented by Feliks Kluźniak in 2009, that supports both tabling
and coinduction [8]. The meta-interpreter distribution includes example appli-
cations for the model checker. Although the meta-interpreter suffers from slower
performance when compared with the Logtalk implementation, the high-level
implementation of tabling allows it to solve a wider class of problems, with-
out being dependent on native Prolog tabling support. For problems that do not
require tabling, the U.T.Dallas implementation provides a simple program trans-
former that adds an extra argument (with the stack) to coinductive predicates,
thus enabling them to be executed without the overhead of interpretation.

Two Prolog compilers, SWI-Prolog and YAP, include limited support for coin-
duction, implemented by a library module. The YAP implementation takes ad-
vantage of non-portable primitives for destructive assignment for representing
the coinduction stack when constructing a proof for a coinductive predicate. The
SWI-Prolog implementation uses proprietary hook predicates to access a goal
and its parent goal during a proof. Although these choices render the imple-
mentations non-portable, they also make them potentially more efficient than a
portable implementation such as the one found in Logtalk. Both the SWI-Prolog
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and YAP implementations only support the most simple form of the coinduc-
tive directive where only a predicate indicator can be specified. As in the current
Logtalk implementation, stratification of programs mixing non-coinductive pred-
icates and coinductive predicates is neither checked nor enforced.

A set of Prolog meta-interpreters for coinductive logic programming are pre-
sented and discussed in [9], together with several illustrating examples. Although
these meta-interpreters are best viewed as a proof-of-concept (giving the inher-
ent performance penalty of meta-interpretation), they clearly illustrate several
problems and conceptual solutions when implementing coinductive logic pro-
gramming. In particular, the proposed hook predicates provide a practical and
strong alternative to tabling for some problems. These hook predicates are effi-
ciently implemented in the latest Logtalk development versions.

9 Conclusions and Future Work

Logtalk provides a widely available and portable implementation of coinductive
logic programming. It features basic coinductive debugging support and includes
several examples that are complemented by unit tests. It can be easily used for
demoing the basic ideas of coinductive logic programming in the classroom and
for solving actual problems. Its implementation avoids meta-interpretation by
compiling both coinductive predicate definitions and any used hook predicates,
thus providing good performance for coinduction applications that do not require
tabling support.

The current implementation is designed with the intuition is that it can gener-
ate, by backtracking, all basic cycles, whose combinations account for all possible
solutions. If our intuition is correct, it should be possible to derive an expression
that represents that combination and that can be used for checking or gener-
ating any solution. Assuming that deriving such an expression can be soundly
accomplished in practice and for any problem, this would provide a potential
alternative to all current implementations, which all suffer from the fact that an
infinite set of solutions cannot be enumerated in a finite time. Thus, the problem
of how to discover all basic cycles and how to combine them in an expression
appears to be the most interesting open problems and thus a promising line for
future work.

Our plans for better coinduction support in Logtalk, while maintaining or
improving portability, are partially dependent on the evolution of the compatible
Prolog systems. There are two main issues. First, printing of rational terms,
which is used when printing bindings for solutions to coinductive queries, only
works acceptably on SWI-Prolog. For all the other supported back-end Prolog
compilers, the bindings printed are often ambiguous. Second, tabling of rational
terms. This will enable Logtalk to tackle problems that cannot currently be
solved or that can be solved but with non-practical time/space complexity. We
plan to work closely with Prolog implementers on solving both issues.

We are also following progress on the theoretical aspects of coinduction, spe-
cially when combined with constraint programming, and hope to be able to
implement new, proven, ideas when feasible and in a timely manner.
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Abstract. SQL is the de facto standard language for relational data-
bases and has evolved by introducing new resources and expressive capa-
bilities, such as recursive definitions in queries and views. Recursion was
included in the SQL-99 standard, but this approach is limited as only
linear recursion is allowed, mutual recursion is not supported, and nega-
tion cannot be combined with recursion. In this work, we propose a new
approach, called R-SQL, aimed to overcome these limitations and oth-
ers, allowing in particular cycles in recursive definitions of graphs and
mutually recursive relation definitions. In order to combine recursion
and negation, we import ideas from the deductive database field, such
as stratified negation, based on the definition of a dependency graph be-
tween relations involved in the database. We develop a formal framework
using a stratified fixpoint semantics and introduce a proof-of-concept
implementation.
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1 Introduction

Codd’s famous paper on relational model [2] sowed the seeds for current rela-
tional database management systems (RDBMS’s), such as DB2, Oracle, MySQL,
SQL Server and others. Formal query languages were proposed for the relational
model: Relational algebra (RA) and relational calculus, which are syntactically
different but semantically equivalent w.r.t. safe formulas [16]. Such RDBMS’s
rather rely on the SQL query language (current standard SQL:2008 [7]) that
departs from the relational model and goes beyond. Its acknowledged success
builds upon an elegant and yet simple formulation of a data model with rela-
tions which can be queried with a language including some basic RA-operators,
which are all about relations. Original operators became a limitation for practi-
cal applications of the model, and others emerged to fill some gaps, including, for
instance, aggregate operators for, e.g., computing running sums and averages.
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Other additions include representing absent or unknown information, which de-
livered the introduction of null values and outer join operators ranging over such
values. Also, duplicates were introduced to account for bags (multisets) instead
of sets. Finally, we mention the inclusion of recursion (Starburst [10] was the
first non-commercial RDBMS to implement this whereas IBM DB2 was the first
commercial one), a powerful feature to cope with queries that must be other-
wise solved by the intermixing with a host language. However, as pointed out
by many (see, e.g., [9],[13]), the relational model has several limitations. Thus,
such current RDBMS’s include that extended “relational” model, which is far
from the original one and it is even heavily criticized [3] because of nulls and
duplicates.

In this work, we focus on the inclusion of recursion in SQL as current RDBMS’s
lack both a formal support and suffer a narrow coverage of recursion. Regarding
formalization, an extension of the RA is presented in [1], with a looping construct
and assignment in order to deal with the integration of recursion and negation.
[5] is the source of the original SQL-99 proposal for recursion, which is based on
the research in the areas of logic programming and deductive databases [16], as
explained in [4]. Another example of an approach built on an extension of RA
with a fixpoint construct is in [6]. However, as far as we know, these formaliza-
tions do not lead to concrete implementations, while our proposal provides an
operational mechanism allowing a straightforward implementation.

Regarding recursion coverage, there are several main drawbacks in current im-
plementations of recursion: Linearity is required, so that relation definitions with
calls to more than one recursive relation are not allowed. Some other features
are not supported: Mutual recursion, and query solving involving an except

clause. In general, termination is manually controlled by limiting the number of
iterations instead of detecting that there are no further opportunities to develop
new tuples.

Here, we propose R-SQL, a subset of the SQL standard to cope with recursive
definitions which are not restricted as current RDBMS’s do, and also allowing
neater formulations by allowing concise relation definitions (much following the
assignment RA-operator) and avoiding extensive writings (cf. Section 2). For
this language, first we develop a novel formalization based on stratified inter-
pretations and a fixpoint operator to support theoretical results (cf. Section 3).
And, second, we propose a proof-of-concept implementation which takes a set of
database relation (in general, recursive) definitions and computes their meanings
(cf. Section 4). This implementation uses the underlying host SQL system and
Python to compute the outcome, and can be easily adapted to be integrated as
a part of any state-of-the-art RDBMS. Section 5 concludes and presents some
further work.

2 Introducing R-SQL

In this section, we present the language R-SQL by using a minimal syntax that
allows to capture the core expressiveness of standard SQL. Namely, we consider
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basic SQL constructs to cover relational algebra. Nevertheless, this language is
conceived to be able to be extended in order to incorporate other usual features.
R-SQL is focused on the incorporation of recursive relation definitions. The idea
is simple and effective: A relation is defined with an assignment operation as
a named query (view) that can contain a self reference, i.e., a relation R can
be defined as R sch := select . . . from . . . R . . ., where sch is the relation
schema. Next, we introduce the formal grammar of this language, then we show
by means of examples the benefits of R-SQL w.r.t. current RDBMS systems.

2.1 Syntax of R-SQL

The formal syntax of R-SQL is defined by the grammar in Figure 1. In this
grammar, productions start with lowercase letters whereas terminals start with
uppercase (SQL terminal symbols use small caps). Optional statements are de-
limited by square brackets and alternative sentences are separated by pipes. The
grammar defines the following syntactic categories:

– A database sql db is a (non-empty) sequence of relation definitions sepa-
rated by semicolons (“;”). A relation definition assigns a select statement to
the relation, that is identified by its name R and its schema.

– A schema sch is a tuple of attribute names with their corresponding types.
– A select statement sel stm is defined in the usual way. The clauses from and

where are optional. We also allow union and except, but notice that the
syntax for except allows only a relation name instead of a select statement

sql db ::= R sch := sel stm;

...
R sch := sel stm;

sch ::= (A T,...,A T)

sel stm ::= select exp,...,exp [ from R,...,R [ where wcond ] ]

| sel stm union sel stm

| sel stm except R

exp ::= C | R.A | exp opm exp | - exp

wcond ::= true | false | exp opc exp | not (wcond)

| wcond [ and | or ] wcond

opm ::= + | - | / | *

opc ::= = | <> | < | > | >= | <=

R stands for relation names, A for attribute names, T for standard SQL types (as
integer, float, varchar(n)), and C for constants belonging to a valid SQL type.

Fig. 1. A Grammar for the R-SQL Language
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as usual in SQL. This is done in order to keep simple the syntax and does
not imply expressivity losses, because a relation name can be identified with
the select statement that defines it.

– An expression exp can be either a constant value C, an attribute of a relation
(denoted by R.A), or an arithmetic expression.

– A Boolean condition wcond in the where clause of a select statement is
built up in the usual way, using also the standard comparison operators.

Below, we show a syntactic transformation [ ]RA that maps every select state-
ment to an equivalent RA-expression in the usual way1.

– [select exp1, . . . , expk from R1, . . . , Rm where wcond]RA =
πexp1,...,expk(σwcond(R1 × . . .× Rm))

– [sel stm1 union sel stm2]RA = [sel stm1]RA
⋃

[sel stm2]RA
– [sel stm except R]RA = [sel stm]RA − R

The formal meaning of every sel stm w.r.t. an interpretation I, stated in Def-
inition 5 (Section 3), evinces the idea that the expected interpretation of a select
statement [[sel stm]]I should be the set of tuples associated to the corresponding
equivalent RA-expression [sel stm]RA.

2.2 Expressiveness of R-SQL

Next, we illustrate that R-SQL overcomes some limitations present in current
RDBMS’s following SQL-99. These languages use not exits and except clauses
to deal with negation, and with recursive to engage recursion. As it is pointed
out in [5], SQL-99 does not allow an arbitrary collection of mutually recursive
relations to be written in the with recursive clause. Although any mutual
recursion can be converted to direct recursion by inlining [8], our proposal allows
to explicitly define mutual recursive relations, which is an advantage in terms of
program readability and maintenance. For instance, using R-SQL, it is easy to
write the classical example for computing even and odd numbers up to a bound
(100 in the example) as follows:

even(x float) := SELECT 0 UNION

SELECT odd.x+1 FROM odd WHERE odd.x<100;

odd(x float) := SELECT even.x+1 FROM even WHERE even.x<100;

Further, linear recursion in standard SQL restricts the number of allowed
recursive calls to be only one, i.e., Fibonacci numbers cannot be specified as
follows2:

1 Notice that arithmetic expressions are allowed as arguments in projection (π) and
select (σ) operations.

2 The relations fib1 and fib2 simply represent two aliases for fib, which are necessary
because, for simplicity, we have not added support for renamings in R-SQL from

clauses.
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fib1(n float, f float) := SELECT fib.n, fib.f FROM fib;

fib2(n float, f float) := SELECT fib.n, fib.f FROM fib;

fib(n float, f float) := SELECT 0,1 UNION SELECT 1,1 UNION

SELECT fib1.n+1,fib1.f+fib2.f FROM fib1,fib2

WHERE fib1.n=fib2.n+1 AND fib1.n<10;

This means that several graph algorithms specified using non-linear recursion
cannot be directly expressed in current recursive SQL systems [17].

Non-termination is another problem that arises associated to recursion. For
instance, the basic transitive closure over a graph that includes a cycle makes
current SQL systems (such as PostgreSQL and MySQL) either to reject the
query or to go into an infinite loop (some systems allow to impose a maximum
number of iterations as a simple termination condition). Nevertheless, the fix-
point computation used by R-SQL guarantees termination when dealing with
finite relations. The following example written in R-SQL defines the relations
arc (a graph with a cycle) and path (its transitive closure). The computation is
terminating since both relations are finite.

arc(ori varchar(1), des varchar(1)) :=

SELECT a,b UNION SELECT b,c UNION SELECT c,a;

path(ori varchar(1), des varchar(1)) :=

SELECT arc.ori, arc.des FROM arc UNION

SELECT arc.ori, path.des FROM arc,path WHERE arc.des=path.ori

The following running example contains a concrete relation defined using the
classical transitive closure technique mentioned above.

Example 1. A database for flights. As usual, the information about direct flights
can be composed of the city of origin, the city of destination, and the length of
the flight. Cities (Lisboa, Madrid, Paris, London, New York) will be represented
with constants (lis, mad, par, lon, ny, resp.)

flight(frm varchar(10), to varchar(10), time float) :=

SELECT ’lis’,’mad’,1.0 UNION SELECT ’mad’,’par’,1.5 UNION

SELECT ’par’,’lon’,2.0 UNION SELECT ’lon’,’ny’,7.0 UNION

SELECT ’par’,’ny’,8.0;

The relation reachable consists of all the possible trips between the cities of
the database, maybe concatenating more than one flight.

reachable(frm varchar(10), to varchar(10)) :=

SELECT flight.frm, flight.to FROM flight UNION

SELECT reachable.frm, flight.to FROM reachable,flight

WHERE reachable.to = flight.frm;

The relation travel also gives time information about alternative trips.
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travel(frm varchar(10), to varchar(10), time float) :=

SELECT flight.frm, flight.to, flight.time

FROM flight UNION

SELECT flight.frm, travel.to, flight.time+travel.time

FROM flight, travel WHERE flight.to = travel.frm;

Both reachable and travel represent transitive closures of the relation
flight. Notice that if flight has a cycle, then the relation travel that in-
cludes times for each trip is infinite, while reachable is not. As pointed before,
reachable can be finitely computed in our system. But, as travel would pro-
duce an infinite set of different tuples, some computation limitation would have
to be imposed (as the maximum time for a travel, for example). However, this
is not a drawback of our approach, but an issue due to using infinite relations
(built with arithmetic expressions).

The relation madAirport contains travels departing or arriving in Madrid,
while avoidMad contains possible travels that neither begin, nor end in Madrid.

madAirport(frm varchar(10), to varchar(10)) :=

SELECT reachable.frm, reachable.to FROM reachable

WHERE (reachable.frm = ’mad’ OR reachable.to = ’mad’);

avoidMad(frm varchar(10), to varchar(10)) :=

SELECT reachable.frm, reachable.to FROM reachable

EXCEPT madAirport;

This definition includes negation together with recursive relations. This com-
bination can not be expressed in SQL-99 as it is shown in [4].

3 A Stratified Fixpoint Semantics for R-SQL

It is well-known that the combination of negation and recursion in database
languages is a difficult task [1]. This problem has been tackled with stratified
fixpoint semantics in several works [12,11,14], and we have found that these tech-
niques can be also applied to our proposal to obtain an operational semantics for
R-SQL. In this section we present a novel formalization of recursive SQL rela-
tions by means of a stratified fixpoint interpretation that formalizes the meaning
of R-SQL-databases, and we show how to compute such fixpoint.

Next, we introduce the notions of dependency graph and stratification that
provide the basis for the stratified negation formalization we are looking for.
Then, we define the concept of stratified interpretations, and prove the exis-
tence of the fixpoint of a continuous operator as the required interpretation of a
database. The obtained semantics will be the basis of the implementation of a
concrete R-SQL database system.

3.1 Dependency Graph and Stratification

Stratification is based on the definition of a dependency graph for a database. In
the following, we consider a database sql db defined as R1sch1:= sel stm1 ; . . . ;
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Rnschn:= sel stmn. We denote by RN the set {R1,...,Rn} of relation names
of sql db. We assume that relations are well defined, in the sense that the
relation names used inside sel stm1 . . . sel stmn are in RN. The dependency
graph associated to sql db, denoted by DGsql db, is a directed graph whose
nodes are the elements of RN, and the edges, that can be negatively labelled, are
determined by the dependencies between the database relations, that are defined
as follows. A relation definition of the form R sch := sel stm produces edges in
the graph from every relation name inside sel stm to R. Those edges produced by
the relation name that is just to the right of an except are negatively labelled.

Definition 1. For every two relations R1, R2 ∈ RN, we say:

– R2 depends on R1 if there is a path from R1 to R2 in DGsql db.
– R2 negatively depends on R1 if there is a path from R1 to R2 in DGsql db with

at least one negatively labelled edge.

Example 2. Consider the database of Example 1. Its corresponding set of re-
lation names is RN = {flight, reachable, travel, madAirport, avoidMad}. Its
dependency graph is depicted in Figure 2, where negatively labelled edges are
annotated with ¬.
Definition 2. A stratification of sql db is a mapping str : RN → {1, . . . , n},
such that:

– str(Ri) ≤ str(Rj), if Rj depends on Ri,
– str(Ri) < str(Rj) if Rj negatively depends on Ri.

sql db is stratifiable if there exists a stratification for it. In this case, for every
R ∈ RN, we say that str(R) is the stratum of R. We denote by numstr the maxi-
mum stratum of the elements of RN. And str(sel stm) represents the maximum
stratum of the relations included in sel stm.

Intuitively, a relation name preceded by an except plays the role of a negated
predicate (relation) in the deductive database field. A stratification-based solving
procedure ensures that when a relation that contains an except in its definition
is going to be calculated, the meaning of the inner negated relation has been
completely evaluated, avoiding nonmonotonicity, as it is widely studied in Data-
log [16]. The novelty lies on introducing these ideas into the field of the relational
model.

Fig. 2. DGsql db of Example 1
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3.2 Stratified Interpretations and Fixpoint Operator

From now on, we consider a stratifiable sql db, and that str is a stratification
for it. In the previous section, we established that in a relation definition for R
sch, the schema sch is a sequence of type declarations for the attributes of R. In
order to give meaning to this relation, we assume that every type T included in
sch denotes a domainD. In previous examples we have used two types: varchar,
denoting the domain of strings, and float, denoting a numeric domain. We will
consider a universal domain D which is the union of the family of the considered
domains. Relations of arity k will denote a set of k-tuples included in Dk. In
general, every relation denotes a subset of T =

⋃
n≥1Dn.

Interpretations are functions that associate an element of P(T ) to each ele-
ment of RN. So, considering the usual relational model terminology of schema
and instance of a relation, the interpretation of a relation in our model can be
seen as the relationship between the schema and the instance of the relation.
Interpretations are classified by strata. An interpretation of a stratum i gives
meaning to the relations of strata less or qual to i. Next, we formalize the concept
of interpretation over a stratum.

Definition 3. An interpretation I for sql db, over the stratum i, 1 ≤ i ≤
numstr is a function from RN to P(T ), such that, for each R ∈ RN:

– If R has schema (A1T1, . . . , ArTr), and D1, . . . , Dr are, respectively, the do-
mains denoted by T1, . . . , Tr, then I(R) ⊆ D1 × . . .×Dr.

– I(R) = ∅, if str(R) > i.

The set of interpretations for sql db over the stratum i, 1 ≤ i ≤ numstr is
denoted by Isql db

i . The following definition provides an order on Isql db
i .

Definition 4. Let i ≥ 1, and I1, I2 ∈ Isql db
i . I1 is less or equal than I2 at

stratum i, denoted by I1 �i I2, if the following conditions are satisfied for every
R ∈ RN:

– I1(R) = I2(R), if str(R) < i.
– I1(R) ⊆ I2(R), if str(R) = i.

It is straightforward to check that for any i, 1 ≤ i ≤ numstr, (Isql db
i ,�i)

is a poset. The main question is that when an interpretation over a stratum i
increases, the set of tuples associated to the relations whose stratum is i can
increase, but the sets associated to relations of smaller strata remain invariable.
In addition, this poset is a cpo, as it is proved in the following lemma.

Lemma 1. For any i ≥ 1, the pair (Isql db
i ,�i) is a complete partially ordered

set. Moreover, if {In}n≥0 is a chain of interpretations in (Isql db
i ,�i), then Î,

defined as Î(R) =
⋃

n≥0 In(R), is the least upper bound of {In}n≥0.

Proof. It is easy to prove that Î ∈ Isql db
i , and that it is an upper bound. In

addition, if I is another upper bound, that implies: If str(R) < i, I(R) = In(R)
for every n ≥ 0, and hence Î(R) = I(R). If str(R) = i, In(R) ⊆ I(R) for every
n ≥ 0, then

⋃
n≥0 In(R) ⊆ I(R). Therefore Î �i I, by the definition of �i. �
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The following definition formalizes the meaning of a select statement sel stm

in the context of a concrete interpretation I, both associated to a concrete sql db

database. As we pointed out before, the interpretation of a sel stm will be the
set of tuples associated to its corresponding RA-expression, [sel stm]RA, when
the value of the involved relation names is given by I.

Definition 5. Let i ≥ 1, and I ∈ Isql db
i . Let sel stm be a select statement

including only relation names of RN, such that str(sel stm) ≤ i. We recursively
define the interpretation of sel stm w.r.t. I, denoted by [[sel stm]]I , as:

– [[sel stm1 union sel stm2]]
I = [[sel stm1]]

I
⋃

[[sel stm2]]
I , where

⋃
stands

for the set union.
– [[sel stm except R]]I = [[sel stm]]I \ I(R), where \ represents set difference.
– [[select exp1, . . . , expk]]

I = {(exp1, . . . , expk)}, where expi is the mathe-
matical evaluation of expi.

– [[select exp1, . . . , expk from R1, . . . , Rm where wcond]]I=
{(exp1[a/A], . . . , expk[a/A])|a∈I(R1)×. . .×I(Rm) and wcond[a/A] is satisfied}.

A is a sequence of attributes labelled with their corresponding relation names.
More precisely, if Aj1, . . . , A

j
rj are the attributes of Rj , 1 ≤ j ≤ m, then A represents

the complete sequence R1.A
1
1, . . . , R1.A

1
r1 , . . . , Rm.Am1 . . .Rm.Amrm . expj [a/A], 1 ≤

j ≤ k, is the mathematical evaluation of expj , after replacing the tuple a by

A. And wcond[a/A] is the evaluation of the Boolean expression wcond, with the
previous substitution.

Example 3. Consider the definitions of the relations odd and even of Section
2.2. Let us assume a concrete interpretation I such that I(even) = {(0), (2)}
and I(odd) = ∅. Hence, the interpretation of the select statement that defines
the relation odd w.r.t. I is:
[[SELECT even.x+1 FROM even WHERE even.x<100]]I = {(even.x+1)[a/even.x]
|(a) ∈ I(even) and (even.x<100) [a/even.x]is satisfied} = {(1), (3)}.

The case of the relation even is analogous:
[[SELECT 0 UNION SELECT odd.x+1 FROM odd WHERE odd.x<100]]I =
[[SELECT 0]]I

⋃
[[SELECT odd.x+1 FROM odd WHERE odd.x<100 ]]I = {(0)}

⋃
{(odd.x+1)[a/odd.x] |(a) ∈ I(odd), (odd.x<100)[a/odd.x] is satisfied} = {(0)}.

Notice that the interpretation Î defined by Î(even) = {(0), (2), . . . , (100)}
and Î(odd) = {(1), (3), . . . , (99)} satisfies:
Î(even) = [[SELECT 0 UNION SELECT odd.x+1 FROM odd WHERE odd.x<100]]Î.

Î(odd) = [[SELECT even.x+1 FROM even WHERE even.x<100]]Î.

The semantics of sql db will be formalized by means of an interpretation I
over numstr, such that for every R ∈ RN, if R sch := sel stm is the definition
of R in sql db, then I maps the set [[sel stm]]I to R, as the interpretation Î
of Example 3 does. For every stratum i, the appropriate interpretation that
gives the complete meaning to each relation of stratum i is the least fixpoint
of a continuous operator over the set of interpretations of stratum i. These
fixpoint interpretations are constructed sequentially from stratum 1 to numstr.
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The fixpoint of the last stratum numstr provides the semantics for the whole
database. Some technical lemmas are shown in order to ensure the existence of
such fixpoint interpretations.

The following lemma states that the sets of tuples denoted by a select state-
ment of a stratum i, w.r.t. two ordered interpretations, satisfy an inclusion re-
lation that is in accordance with the order �i between the two interpretations.

Lemma 2. Let i ≥ 1, R ∈ RN, with str(R) ≤ i, and I1, I2 ∈ Isql db
i , such that

I1 �i I2. Then, every sel stm included in the select statement that defines R

holds:

– If str(sel stm) < i, then [[sel stm]]I1 = [[sel stm]]I2 .
– If str(sel stm) = i, then [[sel stm]]I1 ⊆ [[sel stm]]I2 .

Proof. The proof is inductive on the structure of sel stm. Here, we only show
the most critical case. The others are similar.

[[sel stm except R′]]I1 = [[sel stm]]I1 \ I1(R′). According to the definition
of stratification, str(R′) < i, because we are assuming that sel stm except

R′ occurs in the definition of R and str(R) ≤ i. Hence I1(R
′) = I2(R

′). Now,
if str(sel stm except R′) ≤ i, then [[sel stm]]I1 ⊆ [[sel stm]]I2 , applying the
induction hypothesis. Therefore [[sel stm except R′]]I1 ⊆ [[sel stm except

R′]]I2 , with equality for the case str(sel stm except R′) < i. �

The following lemma underlies the proof of the continuity of the operator
whose fixpoint provides the semantics of a database (it can be proved by induc-
tion on the structure of sel stm).

Lemma 3. Let i ≥ 1, R ∈ RN, with str(R) ≤ i, and {In}n≥0 be a chain in Isql db
i .

Then, for every sel stm included in the definitions of R, if Î =
⊔

n≥0 In, there

exists n ≥ 0, such that [[sel stm]]Î = [[sel stm]]In .

Next, for every i, a continuous operator Ti over the set Isql db
i of interpre-

tations of stratum i is defined. Analogously to the theoretical foundations that
support Datalog [16], we choose the least fixpoint of Ti, as the interpretation over
i that will give meaning to the relations of stratum i. In accordance with the
Knaster-Tarski theorem, this fixpoint can be obtained as the least upper bound
of the chain of interpretations resulting by successively applying this operator
to a minimal interpretation.

Definition 6. Let 1 ≤ i ≤ numstr. The operator Ti : Isql db
i −→ Isql db

i trans-

forms interpretations over i as follows. For every I ∈ Isql db
i , R ∈ RN:

– Ti(I)(R) = I(R), if str(R) < i.
– Ti(I)(R) = [[sel stm]]I , if str(R) = i and R sch := sel stm is the definition

of R in sql db.
– Ti(I)(R) = ∅, if str(R) > i.

This operator is proved to be monotone (it is a consequence of Lemma 2) and
continuous for every i.
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Lemma 4. [Monotonicity of Ti] Let i ≥ 1 and I1, I2 ∈ Isql db
i , such that I1 �i

I2. Then, Ti(I1) �i Ti(I2).

Proposition 1. [Continuity of Ti] Let i ≥ 1 and {In}n≥0 be a chain of inter-

pretations in Isql db
i (I0�i I1 �i I2 �i . . .). Then, Ti(

⊔
n≥0 In) =i

⊔
n≥0 Ti(In).

Proof. The proof of
⊔

n≥0 Ti(In) �i Ti(
⊔

n≥0 In) is a direct consequence of the
monotonicity of Ti (Lemma 4). Let us prove Ti(

⊔
n≥0 In) �i

⊔
n≥0 Ti(In):

– If str(R) < i, then Ti(
⊔

n≥0 In)(R) =
⊔

n≥0 In(R), by the definition of Ti.
Now, for every n ≥ 0, In(R) = Ti(In)(R), also by definition of Ti. Therefore,
(Ti(

⊔
n≥0 In))(R) = (

⊔
n≥0 Ti(In))(R).

– If str(R) = i, then Ti(
⊔

n≥0 In)(R) = [[sel stm]]
⊔

n≥0 In , by definition of Ti.

And, in accordance with Lemma 3, for some n ≥ 0: [[sel stm]]
⊔

n≥0 In ⊆
[[sel stm]]In . Now [[sel stm]]In = Ti(In)(R), by definition of Ti, and obvi-
ously Ti(In)(R) ⊆

⋃
n≥0 Ti(In)(R), but

⋃
n≥0 Ti(In)(R) = (

⊔
n≥0 Ti(In))(R),

by Lemma 1. Hence, we conclude Ti(
⊔

n≥0 In)(R) ⊆ (
⊔

n≥0 Ti(In))(R). �

Next, the expected result corresponding to the existence of least fixpoint stra-
tum by stratum is shown.

Lemma 5. The operator T1 has a least fixpoint, which is
⊔

n≥0 T
n
1 (∅), where

∅ : RN→ P(T ) is the interpretation such that ∅(R) = ∅ for every R ∈ RN.

Proof. By the Knaster-Tarski fixpoint theorem [15], using Proposition 1. �

We will denote
⊔

n≥0 T
n
1 (∅) by fix1, i.e., fix1 represents the least fixpoint

at stratum 1. Using Example 1, Figure 3 shows the tuples corresponding to the
successive applications of the operator T1 until fix1(travel) is obtained.

Consider now the sequence {T n
2 (fix1)}n≥0 of interpretations in (Isql db

2 ,�2)
greater than fix1. Using the definition of Ti and the fact that fix1(R) = ∅ for
every R such that str(R) ≥ 2, it is easy to prove, by induction on n ≥ 0, that
this sequence is a chain:

fix1 �2 T2(fix1) �2 T2(T2(fix1)) �2 . . . ,�2 T n
2 (fix1), . . .

As before, in accordance with Proposition 1, {T n
2 (fix1)}n≥0 has a least upper

bound,
⊔

n≥0 T
n
2 (fix1), in (Isql db

2 ,�2) that is the least fixpoint of T2 containing
fix1. We denote this interpretation by fix2.

Tn
1 (∅)(travel) Set of tuples

T 1
1 (∅)(travel) {(lon,ny,7.0), (par,lon,2.0), (par,ny,8.0),

(mad,par,1.5), (lis,mad,1.0)}
T 2
1 (∅)(travel) {(lis,par,2.5), (par,ny,9.0), (mad,ny,9.5), (mad,lon,3.5)}

T 3
1 (∅)(travel) {(lis,ny,10.5), (lis,lon,4.5), (mad,ny,10.5)}

T 4
1 (∅)(travel) {(lis,lon,4.5), (mad,ny,10.5), (lis,ny,11.5)}

Fig. 3. Obtaining fix1(travel)
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By proceeding successively, for every i, 1 < i ≤ numstr, a chain:

fixi−1 �i Ti(fixi−1) �i Ti(Ti(fixi−1)) �i . . . �i T
n
i (fixi−1) . . .

can be defined, and a fixpoint of Ti, fixi =
⊔

n≥0 T
n
i (fixi−1), can be found.

Theorem 1. There is a fixpoint interpretation fix : RN −→ P(T ), such that
for every R ∈ RN, if sel stm is the definition of R, then fix(R) = [[sel stm]]fix.

Proof. The interpretation fix we are looking for is fixnumstr , the least fixpoint
of the operator Tnumstr , applied to fixnumstr−1. As it has been pointed out, this
fixpoint exists and verifies fix1 �numstr fix2 �numstr . . . �numstr fixnumstr .
Moreover, if str(R) = i, 1 ≤ i ≤ numstr, and it is defined by the statement
sel stm, then fix(R) = fixi(R) = Ti(fixi)(R), because fixi is the fixpoint
of Ti. Now, Ti(fixi)(R) = [[sel stm]]fixi , by definition of Ti. We can conclude
fix(R) = [[sel stm]]fix, trivially if i = numstr, or using Lemma 2, if i < numstr,
because fixi �numstr fix. �

Therefore, the interpretation fix defines the fixpoint semantics of sql db.
This semantics is the support of the database system prototype we have imple-
mented, which is described next.

4 Implementing R-SQL

In this section we introduce a working proof-of-concept implementation for
the R-SQL language that takes a set of relation definitions and outputs their
meanings if a stratification can be found. More specifically, taking a stratifiable
database definition in the R-SQL syntax as input, we get a SQL database (for
a concrete SQL database system), that corresponds to the fixpoint semantics
of the input database. If the database is not stratifiable, the system throws an
error message and stops.

4.1 An Algorithm to Compute the Database Fixpoint

Let sql db be the definition of a R-SQL database. In order to create the corre-
sponding SQL database we have to generate the appropriate SQL sentences for
building the expected relations, that will be eventually processed by a RDBMS.
The algorithm takes sql db as input, i.e., a sequence of relation definitions,
R1sch1 := sel stm1; . . . ; Rnschn := sel stmn. The computation builds the
dependency graph for sql db, as shown in Section 3.1, then calculates a strati-
fication for it obtaining the sets R1, . . . ,Rnumstr , where Ri is the set of relations
of stratum i, and finally the fixpoint is computed with the following algorithm:
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(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)

str:=1
while str ≤ numstr do

for each Ri ∈ Rstr do create table Ri schi
change := true
while change do

size := rel size sum(Rstr)
for each Ri ∈ Rstr do

insert into Ri select * from sel stmi
except select * from Ri;

change = (size �= rel size sum(Rstr))
end while
str:=str+1

end while

This algorithm generates for each Ri of sql db a SQL table with the elements
of fix(Ri). Each iteration of the external while at line 2 corresponds to a stratum
str, and builds the tables of the relations of this stratum, by calculating fixstr.
To do that, first of all an empty table with the corresponding attributes is
created for every relation in the stratum str (line 3). Then, the iteration n
of the innermost while at line 5 computes T n

str(fixstr−1), as we will explain.
For every relation Ri of str, it submits the insert statement at line 8. The
sentence select * from sel stmi selects all tuples as defined by the relation
Ri (notice that sel stmi is a valid SQL statement). Assuming that the current
database instance coincides with the value of the interpretation T n−1

str (fixstr−1),
then in accordance with Definition 5, the set of tuples that satisfy that SQL

statement coincides with [[sel stmi]]
Tn−1
str (fixstr−1). And this is T n

str(fixstr−1)(Ri),
by Definition 6. The tuples already present in the table are excluded to avoid
repetitions (with the except clause at line 9). In this way, T n

str(fixstr−1)(Ri)
is obtained for every Ri of stratum str. The expression rel size sum(Rstr) at
line 10 is equal to

∑
R∈Rstr

|R|, where |R| is the current number of tuples of the
table corresponding to R. Therefore, the variable change controls changes on
the table sizes in order to stop the process, since change = false means that
T n
str(fixstr−1) = T n−1

str (fixstr−1), so that fixstr has been reached. Then, the
last iteration of the external while calculates fixnumstr , the fixpoint of sql db.

4.2 A Concrete Implementation

The concrete implementation of this algorithm can be done in a number of ways.
We have developed a Prolog program that processes the R-SQL input file, builds
the dependency graph and the stratification (if exists), and finally produces a
Python module with the code of the previous section. In fact, the external while
at line 2 is expanded according to the number of strata, writing explicitly the
corresponding code for each stratum. The for loop at line 7 is also expanded as
we will see in Example 4. We have chosen Python as the host language mainly be-
cause is multiplatform and it provides easy connections with different database
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systems such as PostgreSQL, MySQL, or even via ODBC, which allows con-
nectivity to almost any RDBMS. The additional features required for the host
language are basic: Loops, assignment and basic arithmetic.

Example 4. Below, we show the result of executing our proposed algorithm for
the sql db of Example 1. The system assigns stratum 1 to flight, reachable,
travel, madAirport, and stratum 2 to avoidMad. Next, we detail some parts
of the code generated stratum by stratum. Firstly, for stratum 1, we have:

while change do
size := rel size sum(Rstr)
INSERT INTO flight SELECT ’lis’,’mad’,1 UNION SELECT ’mad’,’par’,1

UNION SELECT ’par’,’lon’,2 UNION SELECT ’lon’,’ny’,7

UNION SELECT ’par’,’ny’,8 EXCEPT SELECT * FROM flight;

INSERT INTO reachable SELECT flight.frm, flight.to

FROM flight UNION SELECT reachable.frm, flight.to

WHERE reachable.to = flight.frm

EXCEPT SELECT * FROM reachable;

INSERT INTO travel SELECT * FROM flight UNION

SELECT flight.frm, travel.to, flight.time+travel.time

FROM flight, travel WHERE flight.to = travel.frm

EXCEPT SELECT * FROM travel;

INSERT INTO madAirport SELECT travel.frm,travel.to

FROM travel EXCEPT SELECT * FROM madAirport;

change = (size �= rel size sum(Rstr))
end while

In the first iteration of this loop, we obtain all the tuples for flight and
madAirport relations. But the recursive definitions for reachable and travel
need more iterations. As mentioned before, those iterations correspond to the
successive applications of T1. The tuples added for travel at each iteration are
shown in Figure 3 (Section 3.2). After five iterations, the loop stops and the first
stratum is completed. In the second stratum we consider the avoidMad relation:

INSERT INTO avoidMad SELECT travel.frm,travel.to FROM travel

EXCEPT SELECT * FROM madAirport EXCEPT SELECT * FROM avoidMad;

This second loop ends after two iterations. This completes fix2 for our sql db,
i.e., it obtains the semantics of the working example database.

4.3 Integrating R-SQL into a RDBMS

Our proposal establishes the core for introducing a novel approach for recursion
in SQL. The current implementation of R-SQL has been conceived as a proof-of-
concept of the theoretical foundations of the language. As we have stated, this
leads to compute the semantics of the whole database from scratch. Nevertheless,
the main goal of the proposal is not to introduce a new database language, but
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to allow less-restricted recursive relation definitions in existing SQL engines.
In that sense, our proposal can be understood as the foundation of an existing
SQL RDBMS that supports extended forms of recursion, allowing users to define
recursive relations as regular views using the R-SQL techniques, developed in
this work. Once an R-SQL database definition has been processed, the tables
obtained can be stored as a database instance in a concrete RDBMS. On the
one hand, the user can formulate queries that will be solved using those tables
(without performing any further fixpoint computation). On the other hand, as
we pointed out before, the user can define new recursive relations using views.
Those views can be readily used in conjunction with other regular views, and
they can be either computed on demand or can be materialized.

In order to compute the answer of new recursive relations, the current (re-
lation) instance can be considered as a stratified R-SQL database. It is correct
to assign higher strata to the new relations, because none of the existing re-
lations depend on the new ones, and a relation definition does not introduce
dependencies between the relations that appear in its select statement. Then,
their tuples can be obtained by executing the algorithm in Section 4.1 to com-
pute the fixpoint of their corresponding strata, therefore saving recalculating the
previous ones. Moreover, it is straightforward to modify the algorithm to get a
lazy evaluation of such relations, performing iterations only when new values are
demanded. To seamlessly integrate this into a RDBMS, we can profit from the
fourth-generation languages (e.g., SQL PL in IBM DB2 and PL/SQL in Oracle).

5 Conclusions

In this paper, we have introduced the R-SQL language as a new approach for in-
corporating recursion in SQL. This is not a trivial task, and it was not addressed
in the initial proposals of SQL. It was firstly introduced in the 1999 standard,
allowing only a limited form of recursion, namely linear recursion, which does
not allow neither multiple recursive calls nor mutually recursive definitions. The
difficulties increase when recursion is combined with negation.

We have developed a theoretical framework and a suitable implementation
for R-SQL, inspired on the stratification techniques and fixpoint computations
used for instance in Datalog. The stratification mechanism implies to impose
some syntactic conditions on the database definitions, that guarantee that the
fixpoint for such a database can be computed in a finite number of steps. This
condition is less restrictive than the linearity conditions required by the standard
SQL. This means that our approach is more expressive than the one adopted
in SQL; in addition our language is supported by a solid computational se-
mantics. We have presented a proof-of-concept implementation of the R-SQL
database definition language based on this semantics. This implementation pro-
duces as output a set of standard SQL statements embedded in a Python pro-
gram that builds the relational tables corresponding to the fixpoint of the input
database definition. This implementation has been tested with PostgreSQL, but
the architecture can be easily ported to any RDBMS. The system is available at
https://gpd.sip.ucm.es/trac/gpd/wiki/GpdSystems/RSQL.

https://gpd.sip.ucm.es/trac/gpd/wiki/GpdSystems/RSQL
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As already suggested, our approach can be integrated into a state-of-the-art
RDBMS. This can be dealt by resorting to database function definitions, which
allow cursor-returning functions. In addition for this integration to be practi-
cal, performance improvements play a key role as, e.g., indexing of temporary
relations during fixpoint computations and identifying tuple seeds in relation
definitions that do not need to be recomputed.
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Abstract. The Document Object Model (DOM) is the document ma-
nipulation API provided to the JavaScript developer by the browser. It
allows the programmer to update the currently displayed Web page from
a client side script. For this, DOM primitives can create, remove or mod-
ify element nodes in the internal tree representation of the document.
Interactive documents can be created by attaching event handlers and
other auxiliary data to these nodes. The principle is interesting and pow-
erful, and no modern Web development could be possible without it. But
the implementation is not satisfactory when seeking predictability and
reliability, such as expected with declarative languages or static type sys-
tems. Primitives are too generic, and when called in abnormal conditions
can either throw exceptions or perform implicit imperative actions. In
particular, DOM primitives can conditionally and implicitly move nodes
in the document, in a way very difficult to be statically prevented or
even detected. In this article, we introduce cDOM, an alternative docu-
ment model that performs implicit deep copies instead of moves. By not
moving their children implicitly, it preserves the structure of nodes after
their creation and between explicit mutations. Side data embedded in
the document are also duplicated in a sensible way so that the copies are
completely similar in structure to the originals. It thus provides a more
usual semantics, over which existing declarative abstractions and type
systems can be used in a sound way.1

Keywords: document manipulation, Web programming, multi-paradigm.

1 Introduction

In most widespread Web programming solutions, the programmer has to mas-
ter numerous programming languages and environments. At least, she has to
know HTML and CSS, the content description languages, some server language
to generate pages like PHP or Perl, and the JavaScript programming language
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to make Web pages interactive. Moreover, she has to handle the interactions
between these languages, a task usually done with very rudimentary techniques,
like directly writing client code using strings of the server language. This issue
is known in the literature as an impedance mismatch problem. Recent Web solu-
tions, from industry (such as Google Web Toolkit or Node.js) as well as research
projects (such as Links [4], Ocsigen [1] or HOP [9]), have already tackled this
problem, putting a great amount of work to give a uniform solution to program
the server and the browser at language level.

However, another impedance mismatch problem remains in these solutions.
The document manipulation APIs are different on the server and in the browser,
making the programmer work with the same document in very different ways. In
the past, this has not really been an issue. The server only produced the docu-
ment, while the client updated it by inserting new document parts dynamically
requested to the server. But in modern Web applications, this separation of roles
is not true anymore. The server side may want to perform mutations on the doc-
ument, while the client side certainly wants to create new content without asking
for the server to generate it. Providing the same document manipulation API on
both sides has thus become a key point for integrated client-server frameworks.

For untyped, imperative software, such as Node.js which brings JavaScript
to the server, this can simply be done by using the DOM on both sides. This
indeed provides a uniform API, albeit a very low level one. However, as we
detail in Section 2, the unusual semantics of the DOM make it incompatible
with declarative languages and advanced static type systems, neither directly
as an API, nor even as a low level implementation layer. Several solutions or
workarounds have already been tried to enable the use of the DOM in these
contexts, but none is completely satisfactory. The solution we present in this
article takes another direction by designing an alternative document model. This
model, cDOM, is as low level as the DOM so it can be used as a replacement.
However, its semantics is much more suited to be used by high level abstractions.
One of the main goals is to be able to reuse existing high levels languages and
tools for XML to manipulate the document in the browser. We present the
intuition behind cDOM in Section 3 and then give its formal description in
Section 4, along with a few implementation details. Section 5 then presents
the related works, and we finally conclude this article by presenting our future
research works around the topic.

2 What Is Wrong with the DOM

This section explains why using the DOM for document manipulation is not an
option both for declarative programming and static typing. Section 2.1 presents
our main source of concern: implicit moves. It features an example that be-
haves counter-intuitively from the point-of-view of a declarative programmer.
Section 2.2 presents the problems indirectly introduced by implicit moves. It
explains why implicit moves make some type checking problems too difficult for
existing static type systems, how they hinder even purely functional document
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construction, and how they impact client-server programming. Section 2.3 then
makes a quick tour of existing solutions and workarounds to these problems.

2.1 Implicit Moves

In specific situations, the DOM can implicitly move nodes in the document tree.
Let us examine an example which leads to such an implicit move in order to
understand why and when. An initial page consists of two lists containing two
items each. The elements of interest have been marked by hand with id attributes
in order to be able to retrieve the corresponding DOM nodes from JavaScript
(the standard technique). Figure 1 shows the HTML code, the rendering and a
visualization of the DOM tree. Within this page, we run JavaScript code that
calls DOM primitives to take the first element of the first list, and append it to
the second list. The effect on the DOM is indeed the insertion of the item in the
second list, but at the same time its deletion from the first list. Figure 2 shows
the code and the outcome. This behaviour may appear counter-intuitive to the
programmer unfamiliar with the DOM. She asked for an append operation, not
a move. As a result of implicit moves, the outcome of a series of DOM operations
can depend a lot on the initial state and be hard to predict.

... <ul id="L1">
<li id="A">A</li>
<li id="B">B</li>
</ul>

... <ul id="L2">
<li id="X">X</li>
<li id="Y">Y</li>
</ul> ...

• A • X
• B • Y

Lists - Browser

ul

li li

id
"L1"

id

"A"

id

"B"

ul

li li

id
"L2"

id

"X"

id

"Y"

Fig. 1. A simple page

var l2 = getElementById ("L2")
var a = getElementById ("A")
l2.appendChild (a) ;;

• B • X
• Y
• A

Lists - Browser

ul

li li

id
"L1"

id

"B"

ul

li li li

id
"L2"

id

"A"

id

"X"

id

"Y"

Fig. 2. An example of implicit
move

Implicit moves are introduced to compensate the fact that the set of DOM
primitives does not exactly fit the internal structure of the document. The mem-
ory representation of the page has to be a tree. The reason is obvious: page
elements are bound to graphical objects, so cycles or sharing in the structure
would not make sense. However, the set of primitives describes imperative op-
erations on a general graph structure. A DOM primitive application that would
introduce sharing or cycles in the structure is thus given an alternative behaviour
that preserves the tree shape.

2.2 Side Effects of Implicit Moves

To be correctly handled by browsers, documents have to conform to precise for-
mats. Specific, strongly typed XML processing languages such as CDuce [3] make
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it possible to ensure the validity of generated documents on the server. But for
DOM intensive applications, verifying the validity of the initial Web page is not
enough. It is often just a stub, enriched as data arrives from independent HTTP
requests. It ensues that page modifications also have to be proven preserving the
grammar.

Breaking validity during manipulations. Unfortunately, static checking of DOM
operations is difficult, mainly because of implicit moves (which are not present
in high level XML APIs). For instance, figure 3 shows a program which is well
typed at first glance, since it takes references to li elements and adds them to
an ul element, which is correct according to the XHTML grammar. But the
outcome of executing this program with the initial (valid) Web page of figure 1
is a broken Web page, since the first list is now empty, and thus not well typed
anymore. Of course this minimal example is trivial and is presented only to
exhibit the problem: a DOM manipulation on one node can dynamically break
the validity of another node.

var l2 = getElementById ("L2")
var a = getElementById ("A")
var b = getElementById ("B")
l2.appendChild (a)
l2.appendChild (b)

? • X
• Y
• A
• B

Lists - Browser ul

li li

id
"L1" ul

li li li li

id
"L2"

id

"A"

id

"X"

id

"Y"

id

"B"

Fig. 3. A validity breaking implicit move

Breaking validity during construction. It is even possible to obtain an invalid
result from a purely constructive code that would lead to a correct result using
an XML language. The reason is that XML manipulation APIs allow sharing,
whereas the DOM forbids sharing using implicit moves. Figure 4 shows an ex-
ample HOP program, its evaluation on the server (where an XML representation
that allows sharing is used) and on the client (where the back-end is the DOM).
On the server, the result is the one expected by the programmer while on the
client, an implicit move occurs and the first list ends up empty. Ensuring that
these cases do not occur is left to the programmer. As a result, using the DOM
as a back-end for high-level abstractions is not a reliable option.

(let ((a (<LI> "A"))
(b (<LI> "B")))

(<DIV> (<UL> (a))
(<UL> (a b))))

X
Y

Z

<DIV>
<UL><LI>A</LI></UL>
<UL><LI>A</LI><LI>B</LI></UL>

</DIV>

<DIV>
<UL> </UL>
<UL><LI>A</LI><LI>B</LI></UL>

</DIV>

HOP source Result on the server Result on the client

? ?
Lists - Browser

Client eval. at point X

ul ul • A ?
Lists - Browser

At point Y

ul

li

ul ? • A
• B

Lists - Browser

At point Z

ul

li

ul

li li

Fig. 4. Well-typed code leading to an invalid result
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Influence on server document models. In integrated client-server applications,
the task is not only to produce a valid document. The server also has to produce
a document that will be manipulated by a client program in a valid way. In this
respect, existing, server side only document models are insufficiently expressive.
The problem resides in the transition between the server representation and the
DOM. The technique used is always the same: nodes referenced by the server side
are retrieved by the client side by searching the DOM tree for unique identifiers
inserted in the XML (manually of automatically). If the server representation
allows sharing, which is the case for most high level solutions, a shared node in
this representation will be expanded to duplicate XML elements. Thus, any iden-
tifier it may contain will be duplicated as well, leading to undefined behaviour
on the client.

2.3 Existing Solutions to Handle Implicit Moves

Of course, this problem is not new. Several solutions have been introduced by
Web frameworks as well as research works. But to our knowledge, none of them
offer as much versatility as the one we propose and most of them have non
negligible drawbacks.

Client-server JavaScript solutions (for instance using Node.js) can use the
DOM on both sides. But as we already explained, this is only an option in such
untyped, imperative contexts.

High level, language based client-server frameworks (eg. HOP, Ocsigen, Links,
OPA, Ur/Web) use an intermediate representation as we explained earlier. This
solution has many advantages for document construction, but when it comes to
document mutations, it is not better than using the DOM. The programmer has
to make sure not to introduce sharing in the documents she builds, otherwise
nasty side effects (including implicit moves) may occur later. Moreover, the task
is actually as difficult as ensuring that no implicit move occurs with the DOM.

More mainstream frameworks hide the document structure and rely on pre-
built components instead. User code is mostly glue code, written either in server
code (eg. Ruby on Rails, django) or in JavaScript (eg. ExtJS, Dojo). The main
restriction is that the programmer has to compose its pages only of existing com-
ponents of some framework. Frameworks are often incompatible, and writing a
custom component means learning hackish internal details.

Research solutions already exist to prevent implicit moves by programs using
the DOM. However, their integration to existing mainstream solutions is difficult
due to the very advanced techniques used. Related research works will be detailed
in Section 5.

3 An Implicitly Copying Document Model

All the existing solutions we just presented try to prevent situations which lead
to implicit moves. Our solution takes a different path. cDOM is an alternative
document model, as imperative and low level as the DOM but without implicit
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moves. Instead, cDOM performs implicit copies. It leaves the original node in
place, and inserts a copy of it at destination.

3.1 Deep Copies and Auxiliary Data

To preserve document validity, deep (as opposed to shallow) copies have to be
performed so the grammatical structure of original and copied nodes are the
same. With existing solutions, the programmer can already detect when an im-
plicit move can occur and replace it manually by a copy. cDOM simply makes
this operation systematic. Recursively copying children nodes is not difficult and
the DOM primitive cloneNode already does that very operation. But for inter-
active documents, such a recursive copy of nodes is not enough. To preserve the
behaviour of nodes, associated auxiliary data have to be copied along with the
nodes, in particular event handlers. With existing solutions, this task is manual
and non trivial. It requires the programmer to make sensible decisions about
what to copy, what not to and what to share with the original node. If auxiliary
data are structured language values, the programmer has to decide how deep the
copy has to be. Moreover, in the case of static typing, the copy operation has
to preserve the types of original auxiliary data. For all these reasons, it is not
possible to provide a generic deep copy algorithm for the DOM. Figure 5 shows
the definition of a node and two examples of non trivial decisions to be made
during a copy of this node.

var cpt = new Counter (0);
var node = document.createElement ("button");
node.appendChild (document.createTextNode("0"));
node.onclick = function () {
cpt.incr ();
var lbl = cpt.stringValue();
node.appendChild (document.createTextNode(lbl));

}

Should a copy of node use the same counter cpt or a copy?

Should a copy of node modify itself or the original?

Fig. 5. Different options for the deep copy of a node

3.2 A Sensible Deep Copy Algorithm

In the previous example, the lack of convention made it hard to decide whether
side data had to be copied or not. Providing a usable copy mechanism thus
means providing such a convention, preferably an intuitive one. The major con-
tribution of this work is thus the convention we propose, which is as follows:
(1) let the programmer decide whether side data are associated to some node or
not, and (2) reuse the familiar notion of lexical scope to materialize this choice.
In practice, the idea is to introduce a clearly delimited syntactic construction
for node definition, and use it to delimit the set of values to be copied along.
Figure 6 gives an example written in such a high level (here ML based) language.
In this example, if a copy of the node occurs, in both cases the callback will be
copied along and act on the copied node rather than the original. However, in
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With shared reference
let with_shared_counter =
let r = ref 0 in (* outside *)
let rec self =
node <a>
[ node <text> content = "incr" end ]
prop on_click = fun () ->
r := !r + 1 ;
replace self
[ node <text> ()

content = string_of_int !r
end ]

end
in self ;;

With local references
let with_copied_counter =
let rec self =
node <a>
let r = ref 0 in (* inside *)
[ node <text> content = "incr" end ]
prop on_click = fun () ->
r := !r + 1 ;
replace self
[ node <text> ()

content = string_of_int !r
end ]

end
in self ;;

Fig. 6. Self modifying graphical counter in an ML frontend to cDOM

one case it will use a shared counter and in the other a local copy, depending on
the location of its definition.

This mechanism is more predictable, not only by the programmer but also
by tools, in particular type systems. With implicit copies, the implicit mutation
of nodes content is now gone. The only times when a node is modified are its
creation and explicit modification. These cases can be handled by type checking
the new assigned content, for instance with existing type systems for XML.
The only additional restriction is that the node should not be used until it is
completely built, so that a copy of an incomplete node cannot occur.

We chose not to limit our solution to a specific high level language, but to build
a foundation on top of which various languages and abstractions could be built or
ported. The solution we propose is to add meta-information to nodes directly in
the low-level document model. This information is used as an oracle for a generic
copy algorithm to decide which objects are to be copied along with the node.
As we just explained, these meta-information can be used to maintain lexical
scoping information at run-time. However, cDOM’s meta information storage
is actually flexible enough for meta-information to be used in other ways, for
instance to be adapted to language not equipped with a clear lexical scoping.

4 Formal Specification of cDOM

As the DOM, cDOM takes the form of a language independent API. However,
cDOM is specified more formally by an operational semantics. This section first
gives precise yet informal definitions of the concepts and then the specification.

4.1 Main Concepts

− Document The main concept we are formalizing is the document as used in
the Web (eg. XML, DOM). A document assembles nodes that can represent
textual content, graphical and semantic elements in a hierarchical structure.

− Node A node can have children nodes, and can have (at most one) parent
node. It has a tag which defines its role in the document. Several nodes can
have the same tag in a document. This role is not defined by the document
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itself but by the program interpreting it (for instance, a Web browser will
render a bullet list when it encounters a ul tag). The formalism presented
stays at the DOM level in this sense: it is a uniform representation and does
not bear any grammar notion.

− Values To handle textual content and programmable interactions, document
nodes are enriched with side data. Values is the term we use to designate
both nodes and side data. We distinguish immediate data such as integers
and strings from structured data that we call blocks (in JavaScript, blocks
designate language objects, including functions). The relation between these
types is the following: Value = Imm ∪Object , Object = Block ∪ Node.

− Properties Nodes and side data are linked using properties : associations be-
tween objects and values labeled with keys. Unlike nesting, properties can
lead to sharing and cycles in the document.

− Imperative Document The document notion we just defined is inherently
static, and thus not appropriate to formalize the DOM. We define the notion
of imperative document combining a document as previously defined that we
call the state with a set of primitives to manipulate it.

− Primitives To implement this separation, cDOM is specified as a set of prim-
itives, an API, much as the DOM. They take parameters and return results,
which are values as specified earlier.

4.2 Parameters

In the previous section, we described the main concepts and associated types pro-
vided by our formal model. These definitions are made more flexible by defining
some of the notions as parameters, so they are not fixed by the model but are
to be instantiated specifically for each implementation.

− Tag The set of possible node tags. There are no constraints on this parameter
for the semantics to be sound but a specific implementation may add some.

− Imm The (unrestricted) domain of immediate values.
− Key The domain of object property names. It has to be enumerable and

provided with a total order. In practice, keys have to be immutable.
− Nil The type of unimportant values. In this formalism, Nil is not an implicit

subtype of everything. Types that contain Nil will be written as such.
− Int The representation of integers. The formalism relies on the mathematical

definition, but in practice, there is no chance for a document to contain a
node with a number of children that would trigger computer arithmetic
overflows, so the approximation is reasonable.

− Enum(S) Some primitives return not only one but a collection of results.
Enum(S) is the representation of collections of elements of a type S. In the
semantics, the transition between mathematical sets and concrete collections
is exhibited by the use of the function enum : P(S)→ Enum(S).

4.3 Document State

The document state is specified in cDOM by a tuple (H,L, T, P, S, s). Letters
are mnemonics for Heap, Labels, Tree, Properties, Scopes and Stack. The first
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four components (H,L, T, P ) describe the document structure while the last two
(S, s) describe the dynamic scoping information.

− H ⊆ Node ∪ Block is the domain of existing objects.
− L ⊆ Node × Tag gives a tag to each node of the document.
− T ⊆ Node × List(Node) associates to each node the list of its children.
− P ⊆ Object ×Key ×Value associates objects to values through labels.
− S ⊆ Node ×Object records for each nodes the objects under its scope.
− s ∈ List(Node) represents the stack of currently opened scopes.

We intentionally chose a simple mathematical structure to ease implementa-
tion, and be close to data structures. But this structure is not precise enough
to express the document structure. We thus restrict it using the following well-
formed predicate. A notable point is that this predicate is only useful at specifi-
cation level and is transparent to the implementer: well-formedness is preserved
by definition of the primitives. The implementer only has to correctly map the
specification to her data structure and the body of her primitives.

Definition 1. A tuple (H,L, T, P, S, s) is a well-formed cDOM state if and only
if (1) L maps each node in H to a unique tag (2) T is a forest (no sharing, no
cycles) over H∩Node (3) T and P only reference nodes present in H (4) P only
references blocks present in H (5) An object can be in the scope of only one node
in S (6) No cyclic scope chain exist in S.

Notations. To increase readability, in the following formulas and figures,
means a node, a block and an object. Labeled versions are used when dis-
ambiguation is required (eg. x, y). We also define operators to compute the
descendants and ancestors of a node.

Desc( ) =
⋃

′∈T ( ) ({ ′} ∪Desc( ′))
Anc( ) = { ′} ∪ Anc( ′) if ∃ ′, ∈ T ( ′), ∅ otherwise

4.4 API

The following list gives the complete cDOM API, the parameters and result types
in the form return type primitive (types of parameters). cDOM primitives are
divided into two main subsets: accessing (reading) primitives and modifying
(writing) primitives.

− Int children (Node) − Node + Nil child (Node , Int)
− Enum(Node) roots (Nil) − Enum(Key) properties (Object)
− Value + Nil get (Object , Key) − Tag tag (Node)
− Node create_node (Tag) − Object create_block (Nil)
− Nil close (Node) − Nil reopen (Node)
− Nil detach (Node) − Node copy (Node)
− Nil bind (Node, Node) − Nil set (Object , Key , Value)
− Nil unset (Object , Key)

Semantic rules. The behaviour of each primitive is described by a set of (for
some only one) semantic rule(s). Each rule is of the form
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conditions
S � prim(a0, · · · , an) = r, S′
(rule)

reading: given arguments (a0, · · · , an) and an initial state S, if the conditions are
verified, the primitive prim can be applied, and the rule (Rule) can be elected
to describe the behaviour of this application. If so, its return value is r, and the
original state is transformed into the new state S′.

Accessing primitives. Figure 7 gives the semantics of primitives which are only
meant to read the document state from the host language, without modifying
it. To browse the document tree, roots gives the root nodes (more than one
document root can be present, for instance any newly created node is considered
a root), children and child allow to browse the structure by respectively giving
the number of children and the nth child of a node. The set of properties defined
by a given node is obtained with properties, and get gives the value of a given
property. The tag of a node is given by tag.

∈ H ∩ Node 0 � i < length(T ( ))
S � child( , i) = nth(T ( ), i), S

(child) ∈ H ∩ Node
S � children( ) = length(T ( )), S
(children)

∈ H ∩ Node ¬(0 � i < length(T ( )))
S � child( , i) = nil , S

(child-unbound)

S � roots(nil) = enum({ |Anc( ) = ∅}), S
(roots) ( , t) ∈ L

S � tag( ) = t, S
(tag)

∈ H
S � properties( ) = enum({k|( , k, v) ∈ P}), S
(properties)

∃( , k, v) ∈ P
S � get( , k) = v, S

(get) �( , k, v) ∈ P
S � get( , k) = nil , S

(get-unbound)

Fig. 7. Semantics of accessing primitives

Modifying primitives. Figure 8 gives the semantics of primitives that modify the
document state. For block related primitives, create_block allocates a new,
empty one, set either creates or assigns a property depending on its preexis-
tence and unset removes a property. For node related primitives, create_node

allocates a fresh one, detach removes the link between a node and its parent,
and bind links a node to a parent. Two rules describe the evaluation of the later:
either (1) the node is simply attached to its new parent if it is a root and if the
new link does not create a cyclic chain in T , or (2) a deep copy of the node is
performed by delegation to the explicit copy primitive and the result is attached
to the parent.

Scope information. When a new node is allocated, its scope is automatically
opened on the scope stack. Scopes are explicitly closed, using the close primi-
tive. We also added a reopen primitive to push again on the scope stack a node
whose scope has already been closed. This primitive may or may not be necessary,
depending on the high level primitives given to the programmer. For instance,
in an object oriented language, it may be sensible to consider a method call on
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v ∈ H ∪ Imm k ∈ Key ∈ H �v′,
(

, k, v′) ∈ P

(H,L, T, P, S, s) � set( , k, v) = nil , (H,L,T, P ∪ ( , k, v), S, s)
(set)

v ∈ H ∪ Imm ∃v′ ( , k, v′) ∈ P

(H,L,T, P, S, s) � set( , k, v) = nil ,
(
H,L,T, P\{( , k, v′)} ∪ {( , k, v)}, S, s)(modify)

∃ ( , k, v) ∈ P
(H,L, T, P, S, s) � unset( , k, v) = nil , (H,L, T, P\ {( , k, v)} , S, s)
(unset-1)

� ( , k, v) ∈ P
(H,L,T, P, S, s) � unset( , k, v) = nil , (H,L, T, P, S, s)
(unset-2)

n /∈ H
(H,L, T, P, S, p :: s) � create_node(nil) = n, (H ∪ { n} , L, T, P, S ∪ {( p, n)} , n :: p : : s)
(create )

n /∈ H
(H,L,T, P, S, p :: s) � create_block(nil) = n, (H ∪ { n} , L, T, P, S ∪ {( p, n)} , p :: s)
(create )

n /∈ H
(H,L,T, P, S, [ ]) � create_node(nil) = n, (H ∪ { n} , L, T, P, S, n :: [ ])
(create-root )

(H,L,T, P, S, p :: s) � close(nil) = nil , (H,L, T, P, S, s)
(close-scope)

n /∈ H
(H,L, T, P, S, [ ]) � create_block(nil) = n, (H ∪ { n} , L, T, P, S, [ ])
(create-root )

p ∈ H ∩ Node
(H,L,T, P, S, s) � reopen( p) = nil , (H,L,T, P, S, p :: s)
(reopen-scope)

∃ p ∈ H ∩ Node, n ∈ T ( p)
(H,L, T, P, S, s) � detach( n) = nil , (H,L,T\{( p, l)} ∪ {( p, l − n)}, P ) , S, s
(detach-1)

n ∈ H ∩ Node Anc( n) = ∅
(H,L,T, P, S, s) � detach( n) = nil , (H,L, T, P, S, s)
(detach-2)

p ∈ H ∩ Node n ∈ H ∩ Node Anc( n) = ∅ n /∈ Anc( p)
(H,L, T, P, S, s) � bind( p, n) = nil , (H,L, T [ p → n :: T ( p)] , P, S, s)

(attach)

p ∈ H ∩ Node n ∈ H ∩ Node Anc( n) �= ∅ ∨ n ∈ Anc( p)
(H,L,T, P, S, s) � copy( n) = n′ ,

(
H′, T ′, P ′, S′, s

)
(H,L, T, P, S, s) � bind( p, n) = nil ,

(
H′, L′, T ′ [

p → n′ :: T ′( p)
]
, P ′, S′, s

)(attach-copy)

Fig. 8. Semantics of modifying primitives

a node as within its scope. Every new object alocated by one of the create

primitives is associated in S to the top node present in the scope stack s. If the
scope stack is empty, the new object is considered not associated to any node.

Copy. cDOM provides an explicit copy primitive which takes a node and
returns its deep copy ′. Descendent nodes are duplicated unconditionally so
that no sharing or cycle can occur, and blocks are copied or not depending
on scope information. The links between nodes are copied as well, so that the
duplicated value has the same memory shape than the original. We will not
elaborate on that matter which is a bit out of scope, but as explained earlier,
the idea is of course to ensure that both can be considered of the same type,
so that the model is usable with strongly typed languages. Let us start with an
intuitive description, using the graphical example of figure 10. In (1) and (2)
The programmer calls copy on a node . The set of objects to copy is composed
of all the objects which are reachable from using both the tree structure or
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H′ = H ∪ { |(·, ) ∈ C}
L′ = L ∪ {

( ′, l)
∣∣( , ′) ∈ C, ( , l) ∈ L

}
T ′ = T ∪ {

( ′, l′)
∣∣( , ′) ∈ C, l = T ( ), l′ = map(rebind , l)

}
where rebind( ∈ H) = ′ if ( , ′) ∈ C, otherwise

P ′ = P ∪ {
( ′, k, v′)

∣∣( , ′) ∈ C, v′ = rebind(P ( , k))
}

S′ = S ∪ {
( ′, ′)

∣∣( , ′) ∈ C, ( , ′) ∈ C ∪ C
}

(H,L,T, P, S, s) � copy( n) = A ( n),
(
H′, L′, T ′, P ′, S′, s

)(copy)

with C = {( , ′)| ∈ R, ′ /∈ H (fresh node/block)}
where R = fix(Restrict, { n}) / Restrict(E) =

⋃
∈E Desc( ) ∪⋃

∈E{ ′|( , ·, ′) ∈ P ∧ ′ ∈ I}
and I = fix(Collect, { n}) / Collect(E) =

⋃
∈E Desc( ) ∪ ⋃

∈E{ ′|( , ′) ∈ S}

Fig. 9. Semantics of cDOM copy operation

properties, and scope information. In (3) Selected nodes are copied by creating
fresh nodes in H . In (4) and (5) The parenting links between original nodes
are replicated between the duplicates, so that the forest structures of the two
groups are the same. All the properties of original blocks are replicated, and the
associated values are as follows. If the value is a duplicated node or block its
copy is used. Otherwise the value is used as is. In the end (6), all the objects
reachable from and in the scope of are duplicated, the internal links between
duplicated objects reflect the structure of the originals, and external links are
duplicated as is. Figure 9 gives the formal semantics of the copy primitive.
The resulting state is the original state augmented with the objects and links
resulting from the copy. For this, the rule premises involve a set C of associations
between copied objects and their copies. The specification of C is decomposed
into the following three steps. First, we collect the set I of all the objects which
are descendants or under the scope of , taking care of potential nested scopes.
The Collect function describes one step of the traversal and its iteration to a
fix-point gives the complete collection. We then extract from I the subset R of
objects which are reachable from through the document tree or properties.
Finally, C associates original objects to fresh copies.

( )← copy target

(1) initial graph

( )
( )( )

( )

(2) nodes in scope

( )
( )( )

( )

(3) duplication of nodes

(4) internal relink (5) external relink

( )

(6) copied node

Fig. 10. Illustrated example of a copy operation
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4.5 Consistency

To ensure that the API specification is sound and actually corresponds to our
needs of modeling the behaviour of the DOM, we have to state that it is de-
terministic (in other words that it does not bypasses DOM behaviour traits by
introducting indeterminism) and that it preserves the well formedness through-
out primitive applications, in particular that the copy operation preserves a
DOM-like structure.

Definition 2. A primitive application is deterministic if at most one rule can
be selected to describe it.

Theorem 41 (Determinism). For one initial state and choice of arguments,
at most one rule can be elected to describe the behaviour of a given primitive
application.

Proof. For each primitive, by showing that any pair of associated rules have
mutually exclusive conditions. ��

Theorem 42 (Well-formedness preservation). A well defined application
in a well formed initial state results in a well-formed final state.

Proof. For most rules, simply by observing that the required conditions are a
sufficient subset of the well-formed predicate clauses. The difficulty resides in the
copy operation. We have to prove that all the clauses of the validity predicate are
verified over the final state of the copy operation. For this, we observe that every
component X ′ of the resulting state is the union of the original component X
and a new set X+, and that X and X+ are always disjoint. The union of two
forests over disjoint sets of nodes being also a forest, H and H+ being disjoint,
and T+ being a forest over H+ (because it is a copy of a subforest of T over H),
we have that T ′ is also a forest. The same reasoning can be used to show that the
structural restrictions over S′ (no sharing and no cycles) are respected. Finally,
a proof that the added properties only reference existing objects is obtained by
definition of the rebind function, used to give values to properties in P ′ using
only values of H and H+. ��

We have proven that the copy operation does not break the model, now we
have to prove that it is indeed useful. For this, we define a notion of similarity
of structure between two nodes, and prove that the copy operation preserves the
structure.

Definition 3. Two nodes are structurally similar iff (1) they have the same tag,
(2) they have the same number of children, and their children are structurally
similar pairwise, and (3) They have the same set of properties, and the associated
values are structurally similar pairwise. Two objects are the same if they have
the same set of properties, and the associated values are structurally similar
pairwise. Two immediate values are similar if they are equal.

Theorem 43 (Structure preservation). The node resulting of a copy opera-
tion is structurally similar to the the original.
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Proof. By definition of the copy operation, we have directly the respect of tags,
number of children and set of properties for all objects duplicated in the copy. It
remains to prove that children and properties’ values are similar pairwise. For
each of these pairs (v, v′) where v is the original and v′ the duplicate, by definition
of rebind, either v′ is v or v′ is a copy of v using the same copy definition. For
the first case, we use the fact that v is structurally similar to itself. The second
case is then proven by coinduction. ��

4.6 Implementing cDOM

The difficulty of implementing cDOM comes from scope information, which can-
not remain static. It has to be managed at run time. We wrote two (non dis-
tributed) research prototypes using two techniques to store the scope informa-
tion. This section discusses these possibilities.

The first possibility is to store a list in each allocated node, initially empty
and dynamically filled with pointers to all the objects allocated within the node’s
scope. The copy algorithm can remain close to the specification: (1) build transi-
tively the set of objects in the scope starting from the root to copy, (2) traverse
the graph, duplicating encountered objects and links, memoizing already copied
objects to respect sharing and cycles, and (3) stop following links when they
point out of the set built in the first step. The memory overhead is very local-
ized, implying no memory overhead on programs which do not perform document
manipulations. By dynamically switching the allocator when not in the scope of
any node, there can also be no performance overcost for such programs. Imple-
menting this methods requires an advanced memory mechanism such as weak
references or a node specific garbage collection in order not to consider alive
forever any value allocated within the scope.

The second possibility is to store in each allocated object a backpointer to
the node whose scope it belongs to. The algorithm is a little more complex here,
because one cannot easily compute the objects in the scope of a node, apart from
traversing the whole memory graph. The method is to build the deep copy by
steps, maintaining a set of already copied nodes. At each step, (1) traverse the
leaves of the already copied subtree and duplicate nodes and blocks backpoint-
ing to an already copied subtree, (2) traverse again the subtree, update pointers
considered external at the previous step but now pointing to copied objects,
redirecting them to the copies, and (3) iterate until a fix point is reached. For
this method too, obtaining exact memory collection is doable only with weak
pointers, but the memory leak is much more reasonable. It only arises when
a node local value is put in a global reference, and not for any local value. It
is thus the technique to choose to implement cDOM over current JavaScript
implementations. With both methods, having a memory exact JavaScript im-
plementation of cDOM over the DOM implies writing a garbage collection helper
function, which browses the document regularly and unlinks unused objects us-
ing scope information, enabling the next JavaScript collection to actually delete
them. Anyway, this will not remain a major concern for long. Weak references are
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already present in some browsers and are planned for a forthcoming ECMAScript
specification.

5 Related Works

Works on DOM calls verification. The most advanced theoretical work has been
led by Peter Thiemann [10], who proposed to integrate an ad-hoc type system
into a general purpose language to check DOM calls in order to refuse statically
programs which could result in implicit moves. In the same vein, there have been
works on automatic tests generation to reject erroneous DOM transactions [7].
This approach is indeed a possible way to solve the problem of implicit moves,
and gives direct solutions to the theoretical problems explained in section 2.
However, we have two main concerns, which led us to propose our alternative
approach.(1) This kind of checks cannot be directly encoded in type systems or
tools available in general purpose languages. Moreover, the types or test cases
to produce are complex, so these works rely on automatic solvers. Both these
aspects imply practical difficulties to obtain good integration to languages and
environments, in particular the difficulty to produce useful error messages and
debugging possibilities. (2) This solution rejects programs that appear intuitively
correct to the declarative programmer and are accepted by advanced XML func-
tional languages such as CDuce. We thus chose to orient our solution on an
alternative document model which accepts such programs.

Works on DOM specification. There have been several efforts to formalize the
different components of the Web browser. We can cite the formal specification
of the now defunct JavaScript 2.0 [8], a minimal formal model of JavaScript [6]
or closer to our work a semantics of DOM primitives [5]. We shall not elaborate
on these works, because we take an alternative approach: the formal model we
develop in this paper is a simplification of the DOM.

Deep copy of DOM nodes. Libraries such as jQuery define smart copy operations
able to duplicate auxiliary data but only to a limited extent. In particular, event
handlers are cloned but their environment is copied only in a shallow way. Hence,
the copied node will react to events, but the associated action has a good chance
to be performed on the original node instead of the duplicate. It is possible to
work around this behaviour by being very careful about what ends up in the
environment of the event handler closure. This means having a great knowledge
of the language and writing trickier code, such as flattening all the environment
by hand in the DOM node, so a shallow copy will suffice, assuming that the
event code only accesses its environment in an indirect way through the node.

6 Conclusion, Ongoing and Future Works

This article has presented cDOM, an alternative to the DOM. The implicit moves
of the DOM are replaced by implicit deep copies that take into account auxiliary
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data, including event handlers. As a result, cDOM is more suited than the DOM
for contexts in which predictability is important such as declarative languages or
static type systems. In particular, existing functional XML languages and type
systems can be ported without major modifications to the browser.

Of course, we want to prove our approach correct and usable by experimen-
tation. For this, we have specified [2] and are currently implementing an ML-
based language on top of cDOM (the one shown in one of the examples), which
can run over JavaScript and the DOM, and brings static typing of document
manipulations.
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Abstract. KiCS2 is a new system to compile functional logic programs of the
source language Curry into purely functional Haskell programs. The implemen-
tation is based on the idea to represent the search space as a data structure and
logic variables as operations that generate their values. This has the advantage
that one can apply various, in particular, complete search strategies or even user-
defined strategies to compute solutions. However, the generation of all values for
logic variables might be inefficient for applications that exploit constraints on
partially known values. To overcome this drawback, we propose new techniques
to implement equational constraints in this framework. In particular, we show
how unification modulo function evaluation and functional patterns can be added
without sacrificing the efficiency of the kernel implementation.

1 Introduction

Functional logic languages combine the most important features of functional and
logic programming in a single language (see [6,16] for recent surveys). In particular,
they provide higher-order functions and demand-driven evaluation from functional pro-
gramming together with logic programming features like non-deterministic search and
computing with partial information (logic variables). This combination has led to new
design patterns [3,7] and better abstractions for application programming, but it also
gave rise to new implementation challenges.

In order to implement a functional logic language, one can develop a suitable ab-
stract machine and implement it in some (typically, imperative) language, like C [24] or
Java [8,20]. One could also compile into logic languages like Prolog and reuse existing
backtracking implementations for non-deterministic search as well as logic variables
and unification for computing with partial information [2,23]. More recent approaches
[10,12,13] compile functional logic programs into non-strict functional programs to
reuse the implementation of lazy evaluation and higher-order functions. Although this
requires the implementation of non-deterministic computations in a deterministic lan-
guage, it has the advantage that the explicit handling of non-determinism allows for
various search strategies, like depth-first, breadth-first, parallel, or iterative deepening,
instead of committing to a fixed (incomplete) strategy like backtracking [12].

This paper is related to the latter implementation approach. In particular, we con-
sider KiCS2 [11], a new system that compiles functional logic programs of the source
language Curry [21] into purely functional Haskell programs. KiCS2 is based on the
idea to represent the search space, i.e., all non-deterministic results of a computation,
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as a data structure that can be traversed by operations implementing various strategies.
Logic variables are replaced by generators, i.e., operations that non-deterministically
evaluate to all possible ground values of the type of the logic variable. This is justified
by the fact that computing with logic variables by narrowing [28,31] and computing
with generators by rewriting are equivalent, i.e., yield the same values [5]. Although
this implementation technique outperforms other implementations of Curry on deter-
ministic programs and can compete with them on non-deterministic programs (see [11]
for benchmarks), the generation of all values for logic variables might be inefficient for
applications that exploit constraints on partially known values. For instance, the equal-
ity constraint “X=c(a)” is solved in Prolog by instantiating the variable X to c(a), but
the equality constraint “X=Y” is solved by binding X to Y without enumerating any val-
ues for X or Y. In order to obtain a similar behavior in KiCS2, we propose in this paper
new techniques to implement equational constraints (in contrast to Prolog, Curry per-
forms unification modulo function evaluation) in a purely functional target language.
A purely functional, i.e., side-effect free, implementation is reasonable in order to sup-
port different, in particular, parallel or user-defined search strategies. Beyond equational
constraints, we also show how functional patterns [4], i.e., patterns containing evaluable
operations for more powerful pattern matching than in logic or functional languages,
can be implemented in this framework. We show that both extensions lead to efficiency
improvements without sacrificing the efficiency of the kernel implementation.

In the next section, we review the source language Curry and the features considered
in this paper. Section 3 recapitulates the implementation scheme of KiCS2 originally
presented in [11]. Sections 4 and 5 discuss our new extensions to implement unification
modulo function evaluation and functional patterns, respectively. Benchmarks demon-
strating the usefulness of these extensions are presented in Sect. 6 before we conclude
in Sect. 7.

2 Curry Programs

The syntax of the functional logic language Curry [21] is close to Haskell [27], i.e., type
variables and names of defined operations usually start with lowercase letters and the
names of type and data constructors start with an uppercase letter. The application of f
to e is denoted by juxtaposition (“f e”). In addition to Haskell, Curry allows free (logic)
variables in conditions and right-hand sides of defining rules. Hence, an operation is
defined by conditional rewrite rules of the form:

f t1 . . . tn | c = e where vs free (1)

where the condition c is optional and vs is the list of variables occurring in c or e but
not in the left-hand side f t1 . . . tn.

In contrast to functional programming and similarly to logic programming, opera-
tions can be defined by overlapping rules so that they might yield more than one re-
sult on the same input. Such operations are also called non-deterministic. For instance,
Curry offers a choice operation that is predefined by the following rules:

x ? _ = x
_ ? y = y
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Thus, we can define a non-deterministic operation aBool by

aBool = True ? False

so that the expression “aBool” has two values: True and False.
If non-deterministic operations are used as arguments in other operations, a seman-

tical ambiguity might occur. Consider the operations

not True = False xor True x = not x
not False = True xor False x = x

xorSelf x = xor x x

and the expression “xorSelf aBool”. If we interpret this program as a term rewriting
system, we could have the reduction

xorSelf aBool → xor aBool aBool → xor True aBool
→ xor True False → not False → True

leading to the unintended result True. Note that this result cannot be obtained if we
use a strict strategy where arguments are evaluated prior to the function calls. In or-
der to avoid dependencies on the evaluation strategies and exclude such unintended
results, the rewriting logic CRWL is proposed in [15] as a logical (execution- and
strategy-independent) foundation for declarative programming with non-strict and non-
deterministic operations. This logic specifies the call-time choice semantics [22], where
values of the arguments of an operation are determined before the operation is evalu-
ated. In a lazy strategy, this can be enforced by sharing actual arguments. For instance,
the expression above can be lazily evaluated provided that all occurrences of aBool are
shared so that all of them reduce either to True or to False consistently.

The condition c in rule (1) typically is a conjunction of equational constraints of the
form e1 =:= e2. Such a constraint is satisfiable if both sides e1 and e2 are reducible to
unifiable data terms. For instance, if the symbol “++” denotes the usual list concatena-
tion operation, we can define an operation last that computes the last element e of a
non-empty list xs as follows:

last xs | ys++[e] =:= xs = e where ys, e free

Like in Haskell, most rules defining functions are constructor-based [26], i.e., in (1)
t1, . . . , tn consist of variables and/or data constructor symbols only. However, Curry
also allows functional patterns [4], i.e., ti might additionally contain calls to defined
operations. For instance, we can also define the last element of a list by the more concise
definition

last’ (xs++[e]) = e

Here, the functional pattern (xs++[e]) states that (last’ t) is reducible to e pro-
vided that the argument t can be matched against some value of (xs++[e]) where xs
and e are free variables. By instantiating xs to arbitrary lists, the value of (xs++[e])
is any list having e as its last element. Functional patterns are a powerful feature to ex-
press arbitrary selections in term structures. For instance, they support a straightforward
processing of XML data with incompletely specified or evolving formats [17].
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3 The Compilation Scheme of KiCS2

To understand the extensions described in the subsequent sections, we review the trans-
lation of Curry programs into Haskell programs as performed by KiCS2. More details
about this translation scheme can be found in [10,11].

As mentioned in the introduction, the KiCS2 implementation is based on the ex-
plicit representation of non-deterministic results in a data structure. This is achieved by
extending each data type of the source program by constructors to represent a choice
between two values and a failure, respectively. For instance, the data type for Boolean
values defined in a Curry program by

data Bool = False | True

is translated into the Haskell data type1

data Bool = False | True | Choice ID Bool Bool | Fail

where Fail represents a failure and (Choice i t1 t2) a non-deterministic value,
i.e., a selection of two values t1 and t2 that can be chosen by some search strategy. The
first argument i of type ID of a Choice constructor is used to implement the call-time
choice semantics discussed in Sect. 2. Since the evaluation of xorSelf aBool dupli-
cates the argument operation aBool, we have to ensure that both duplicates, which later
evaluate to a non-deterministic choice between two values, yield either True or False.
This is obtained by assigning a unique identifier (of type ID) to each Choice construc-
tor. The difficulty is to get a unique identifier on demand, i.e., when some operation
evaluates to a Choice. We cannot thread an identifier supply, e.g., a counter, through
the search tree without fixing an evaluation order. Since we want to compile into purely
functional programs (in order to enable powerful program optimizations), we can nei-
ther use unsafe features with side effects to generate such identifiers. Hence, we follow
the idea presented in [9] and pass a (conceptually infinite) set of identifiers, also called
identifier supply, to each operation so that a Choice can pick its unique identifier from
this set. For this purpose, we assume a type IDSupply, representing an infinite set of
identifiers, with operations

initSupply :: IO IDSupply
thisID :: IDSupply → ID
leftSupply :: IDSupply → IDSupply
rightSupply :: IDSupply → IDSupply

The operation initSupply creates such a set (at the beginning of an execution),
the operation thisID takes some identifier from this set, and leftSupply and
rightSupply split this set into two disjoint subsets without the identifier obtained
by thisID. There are different implementations available (see below for a simple one)
and our system is parametric over concrete implementations of IDSupply.

When translating Curry to Haskell, KiCS2 adds to each operation an additional
argument of type IDSupply. For instance, the operation aBool defined in Sect. 2 is
translated into:

1 Actually, our compiler performs some renamings to avoid conflicts with predefined Haskell
entities and introduces type classes to resolve overloaded symbols like Choice and Fail.
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aBool :: IDSupply → Bool
aBool s = Choice (thisID s) True False

Similarly, the operation

main :: Bool
main = xorSelf aBool

is translated into

main :: IDSupply → Bool
main s = xorSelf (aBool (leftSupply s)) (rightSupply s)

so that the set s is split into a set (leftSupply s) containing identifiers for the eval-
uation of the argument aBool and a set (rightSupply s) containing identifiers for
the evaluation of the operation xorSelf.

Since all data types are extended by additional constructors, we must also extend
the definition of operations performing pattern matching.2 For instance, consider the
definition of polymorphic lists

data List a = Nil | Cons a (List a)

and an operation to extract the first element of a non-empty list:

head :: List a → a
head (Cons x xs) = x

The type definition is then extended as described above:

data List a = Nil | Cons a (List a) | Choice ID (List a) (List a) | Fail

The operation head is extended by an identifier supply and further matching rules:

head :: List a → IDSupply → a
head (Cons x xs) s = x
head (Choice i x1 x2) s = Choice i (head x1 s) (head x2 s)
head _ s = Fail

The second rule transforms a non-deterministic argument into a non-deterministic result
and the final rule returns Fail in all other cases, i.e., if head is applied to the empty list
as well as if the matching argument is already a failed computation (failure propaga-
tion). Since deterministic operations do not introduce new Choice constructors, head
does not use the identifier supply s.

To show a concrete example, we use the following implementation of IDSupply
based on unbounded integers:

type IDSupply = Integer
initSupply = return 1
thisID n = n
leftSupply n = 2 * n
rightSupply n = 2 * n + 1

If we apply the same transformation to the rules defining xor and evaluate the main
expression (main 1), we obtain the result

2 To obtain a simple compilation scheme, KiCS2 transforms source programs into uniform pro-
grams [11] where pattern matching is restricted to a single argument. This is always possible
by introducing auxiliary operations.
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Choice 2 (Choice 2 False True) (Choice 2 True False)

Thus, the result is non-deterministic and contains three choices, whereby all of them
have the same identifier. To extract all values from such a Choice structure, we have
to traverse it and compute all possible choices but consider the choice identifiers to
make consistent (left/right) decisions. Thus, if we select the left branch as the value of
the outermost Choice, we also have to select the left branch in the selected argument
(Choice 2 False True) so that False is the only value possible for this branch.
Similarly, if we select the right branch as the value of the outermost Choice, we also
have to select the right branch in its selected argument (Choice 2 True False),
which again yields False as the only possible value. In consequence, the unintended
value True is not extracted as a result.

The requirement to make consistent decisions can be implemented by storing the
decisions already made for some choices during the traversal. For this purpose, we
introduce the type

data Decision = NoDecision | ChooseLeft | ChooseRight

where NoDecision represents the fact that the value of a choice has not been decided
yet. Furthermore, we assume operations to lookup the current decision for a given iden-
tifier or change it (depending on the implementation of IDSupply, KiCS2 supports
several implementations based on memory cells or finite maps). For a top-level opera-
tion that prints all values contained in a choice structure in a depth-first manner, these
operations would be of the following types:

lookupDecision :: ID → IO Decision
setDecision :: ID → Decision → IO ()

Now the search operation can be defined by the I/O operation below:3

printValsDFS :: a → IO ()

printValsDFS Fail = return ()

printValsDFS (Choice i x1 x2) = lookupDecision i >>= follow
where
follow ChooseLeft = printValsDFS x1
follow ChooseRight = printValsDFS x2
follow NoDecision = do newDecision ChooseLeft x1

newDecision ChooseRight x2

newDecision d x = do setDecision i d
printValsDFS x
setDecision i NoDecision

printValsDFS v = print v

This operation ignores failures and prints values that are not rooted by a Choice con-
structor. For a Choice constructor, it checks whether a decision for this identifier has
already been made (note that the initial value for all identifiers is NoDecision). If
a decision has been made for this choice, it follows this decision. Otherwise, the left
alternative is used and this decision is stored. After printing all values w.r.t. this

3 Note that this code has been simplified and slightly renamed compared to [11] for readability.
The type system of Haskell does not allow this direct definition.
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decision, the decision is undone (like in backtracking) and the right alternative is used
and stored.

In general, this operation is applied to the normal form of the main expression (where
initSupply is used to compute an initial identifier supply passed to this expression).
The normal form computation is necessary for structured data, like lists, so that a failure
or choice in some part of the data is moved to the root.

Other search strategies, like breadth-first search, iterative deepening, or parallel
search, can be obtained by different implementations of this top-level operation to print
all values. Instead of printing them, one can also collect the values in a tree-like data
structure for further processing. Thus, KiCS2 supports a primitive

getSearchTree :: a → IO (SearchTree a)

that returns the search tree corresponding to the evaluation of its argument, where the
search tree is some computed value, a failure, or a choice between two trees:

data SearchTree a = Value a | Fail | Or (SearchTree a) (SearchTree a)

This primitive is useful to encapsulate non-deterministic operations and select some
result value, e.g., the “first” or the “best” one according to some ordering. Since the
search tree is created in a demand-driven manner, the primitive is also applicable to
infinite search spaces (in contrast to Prolog’s findall primitive [25]). Based on this
representation, a Curry programmer can define his own search strategies as tree traver-
sals in his source program without any modification of the Curry compiler (see [19]
for detailed examples). Note that these kinds of applications demand for a side-effect
free implementation of non-deterministic computations (in contrast to traditional Prolog
implementations [1])—which is the challenge addressed in this paper.

Since large parts of typical functional logic computations are deterministic, KiCS2
performs an optimization for deterministic operations. If an operation is defined by
non-overlapping rules and does not call, neither directly nor indirectly through other
operations, an operation defined by overlapping rules, the evaluation of such an opera-
tion (like head) cannot introduce non-deterministic values. Thus, it is not necessary to
pass an identifier supply to the operation. In consequence, only the matching rules are
extended by additional cases for handling Choice and Fail so that the generated code
is nearly identical to a corresponding functional program. Actually, the benchmarks pre-
sented in [11] show that for deterministic operations this implementation outperforms
all other Curry implementations, and, for non-deterministic operations, outperforms
Prolog-based implementations of Curry and can compete with MCC [24], a Curry im-
plementation that compiles to C.

As mentioned in the introduction, KiCS2 translates occurrences of logic variables
into generators. For instance, the expression “not x”, where x is a logic variable, is
translated into “not (aBool s)”, where s is an IDSupply provided by the context of
the expression. The latter expression is evaluated by reducing the argument (aBool s)

to a choice between True or False followed by applying not to this choice. This is
similar to a narrowing step [28] on “not x” that instantiates the variable x to True

or False. Since such generators are standard non-deterministic operations, they are
translated like any other operation and, therefore, do not require any additional run-time
support. However, in the presence of equational constraints, there are methods which
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are more efficient than generating all values. These methods and their implementation
are discussed in the next section.

4 Equational Constraints and Unification

As known from logic programming, predicates or constraints are important to restrict
the set of intended values in a non-deterministic computation. Apart from user-defined
predicates, equational constraints of the form e1 =:= e2 are the most important kind of
constraints. We have already seen a typical application of an equational constraint in
the operation last in Sect. 2.

Due to the presence of non-terminating operations and infinite data structures, “=:=”
is interpreted as the strict equality on terms [14], i.e., the equation e1 =:= e2 is sat-
isfied iff e1 and e2 are reducible to unifiable constructor terms. In particular, expres-
sions that do not have a value are not equal w.r.t. “=:=”, e.g., the equational constraint
“head [] =:= head []” is not satisfiable.4

According to this definition, “=:=” can be considered as a binary function defined
by the following rules (we only present the rules for the Boolean and list types, where
Success denotes the only constructor of the type Success of constraints):

True =:= True = Success
False =:= False = Success

[] =:= [] = Success
(x:xs) =:= (y:ys) = x =:= y & xs =:= ys

Success & c = c

If we translate these operations into Haskell by the scheme presented in Sect. 3, the
following rules are added to these rules in order to propagate choices and failures:

Fail =:= _ = Fail
_ =:= Fail = Fail
Choice i l r =:= y = Choice i (l =:= y) (r =:= y)
x =:= Choice i l r = Choice i (x =:= l) (x =:= r)
_ =:= _ = Fail

Fail & _ = Fail
Choice i l r & c = Choice i (l & c) (r & c)
_ & _ = Fail

Although this is a correct implementation of equational constraints, it might lead to
an unnecessarily large search space when it is applied to generators representing logic
variables. For instance, consider the following generator for Boolean lists:

aBoolList = [] ? (aBool : aBoolList)

This is translated into Haskell as follows:

4 From now on, we use the standard notation for lists, i.e., [] denotes the empty list and
(x:xs) denotes a list with head element x and tail xs.
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aBoolList :: IDSupply → [Bool]
aBoolList s = Choice (thisID s) [] (aBool (leftSupply s)

: aBoolList (rightSupply s))

Now consider the equational constraint “x =:= [True]”. If the logic variable x is re-
placed by aBoolList, the translated expression “aBoolList s =:= [True]” cre-
ates a search space when evaluating its first argument, although there is no search
required since there is only one binding for x satisfying the constraint. Furthermore
and even worse, unifying two logic variables introduces an infinite search space. For
instance, the expression “xs =:= ys & xs++ys =:= [True]” results in an infinite
search space when the logic variables xs and ys are replaced by generators.

To avoid these problems, we have to implement the idea of the well-known unifi-
cation principle [29]. Instead of enumerating all values for logic variables occurring in
an equational constraint, we bind the variables to another variable or term. Since we
compile into a purely functional language, the binding cannot be performed by some
side effect. Instead, we add binding constraints to the computed results to be processed
by a search strategy that extracts values from choice structures.

To implement unification, we have to distinguish free variables from “standard
choices” (introduced by overlapping rules) in the target code. For this purpose, we refine
the definition of the type ID as follows:5

data ID = ChoiceID Integer | FreeID Integer

The new constructor FreeID identifies a choice corresponding to a free variable, e.g.,
the generator for Boolean variables is redefined as

aBool s = Choice (FreeID (thisID s)) True False

If an operation is applied to a free variable and requires its value, the free variable is
transformed into a standard choice. For this purpose, we define a simple operation to
perform this transformation:

narrow :: ID → ID
narrow (FreeID i) = ChoiceID i
narrow x = x

We use this operation in narrowing steps, i.e., in all rules operating on Choice con-
structors. For instance, in the implementation of the operation not we replace the rule

not (Choice i x1 x2) s = Choice i (not x1 s) (not x2 s)

by the rule

not (Choice i x1 x2) s = Choice (narrow i) (not x1 s) (not x2 s)

to ensure that the resulting choice is not considered a free variable.
As mentioned above, the consideration of free variables is relevant in equational

constraints where binding constraints are generated. For this purpose, we introduce a
type to represent a binding constraint as a pair of a choice identifier and a decision for
this identifier:

data Constraint = ID :=: Decision

5 For the sake of simplicity, in the following, we consider the implementation of IDSupply to
be unbounded integers.
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Furthermore, we extend each data type by the possibility to add constraints:

data Bool = . . . | Guard [Constraint] Bool
data List a = . . . | Guard [Constraint] (List a)

A single Constraint provides the decision for one constructor. In order to support
constraints for structured data, a list of Constraints provides the decision for the
outermost constructor and the decisions for all its arguments. Thus, (Guard cs v)

represents a constrained value, i.e., the value v is only valid if the constraints cs are
consistent with the decisions previously made during search. These binding constraints
are created by the equational constraint operation “=:=”: if a free variable should be
bound to a constructor, we make the same decisions as it would be done in the successful
branch of the generator. In case of Boolean values, this can be implemented by the
following additional rules for “=:=”:

Choice (FreeID i) _ _ =:= True = Guard [i :=: ChooseLeft ] Success
Choice (FreeID i) _ _ =:= False = Guard [i :=: ChooseRight] Success

Hence, the binding of a variable to some known value is implemented as a binding con-
straint for the choice identifier for this variable. However, if we want to bind a variable
to another variable, we cannot store a concrete decision. Instead, we store the informa-
tion that the decisions for both variables, when they are made to extract values, must be
identical. For this purpose, we extend the Decision type to cover this information:

data Decision = . . . | BindTo ID

Furthermore, we add to the definition of “=:=” the rule that an equational constraint
between two variables yields a binding for these variables:

Choice (FreeID i) _ _ =:= Choice (FreeID j) _ _
= Guard [i :=: BindTo j] Success

The consistency of constraints is checked when values are extracted from a choice
structure, e.g., by the operation printValsDFS. For this purpose, we extend the defi-
nition of the corresponding search operations by calling a constraint solver for the con-
straints. For instance, the definition of printValsDFS is extended by a rule handling
constrained values:

. . .
printValsDFS (Guard cs x) = do consistent <- add cs

if consistent then do printValsDFS x
remove cs

else return ()
. . .

The operation add checks the consistency of the constraints cs with the decisions made
so far and, in case of consistency, stores the decisions made by the constraints. In this
case, the constrained value is evaluated before the constraints are removed to allow
backtracking. Furthermore, the operations lookupDecision and setDecision are
extended to deal with bindings between two variables, i.e., they follow variable chains
in case of BindTo constructors.

Finally, with the ability to distinguish free variables (choices with an identifier of the
form (FreeID . . .)) from other values during search, values containing logic variables
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can also be printed in a specific form rather than enumerating all values, similarly to
logic programming systems. For instance, KiCS2 evaluates the application of head to
an unknown list as follows:

Prelude> head xs where xs free
{xs = (_x2:_x3)} _x2

Here, free variables are marked by the prefix _x.

5 Functional Patterns

A well-known disadvantage of equational constraints is the fact that “=:=” is inter-
preted as strict equality. Thus, if one uses equational constraints to express requirements
on arguments, the resulting operations might be too strict. For instance, the equational
constraint in the condition defining last (see Sect. 2) requires that ys++[e] as well
as xs must be reducible to unifiable terms so that in consequence the input list xs is
completely evaluated. Hence, if failed denotes an operation whose evaluation fails,
the evaluation of last [failed,True] has no result. On the other hand, the evalu-
ation of last’ [failed,True] yields the value True, i.e., the definition of last’
is less strict thanks to the use of functional patterns. Beyond this improved operational
behavior, functional patterns can lead to more expressive programs (e.g., matching and
unification on infinite structures, pattern matching at arbitrary depth in recursive data
structures) and more elegant program patterns (see [4,7,17] for examples).

Conceptually, a functional pattern like (xs++[e]) abbreviates all values to which it
can be evaluated (by narrowing), like [e], [x1,e], [x1,x2,e], and so on. In conse-
quence, the rule defining last’ abbreviates the following (infinite) set of rules:

last’ [e] = e
last’ [x1,e] = e
last’ [x1,x2,e] = e
. . .

Obviously, one cannot implement functional patterns by a transformation into an infi-
nite set of rules. Instead, they are implemented by a specific lazy unification procedure
“=:<=” [4]. For instance, the definition of last’ is transformed into

last’ ys | (xs++[e]) =:<= ys = e where xs, e free

The behavior of “=:<=” is similar to “=:=”, except for the case that a variable in the
left argument should be bound to some expression: instead of evaluating the expression
to some value and binding the variable to the value, the variable is bound to the uneval-
uated expression (see [4] for more details). Due to this slight change, failures or infinite
structures in actual arguments do not cause problems in the matching of functional pat-
terns.

Our proposed implementation of functional patterns in KiCS2 has a structure that
is quite similar to that of equational constraints with the exception that variables could
be also bound to unevaluated expressions. Only if such variables are later accessed, the
expressions they are bound to are evaluated. This can be achieved by adding a further
alternative to the type of decisions:

data Decision = . . . | LazyBind [Constraint]
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The implementation of the lazy unification operation “=:<=” is almost identical to the
strict unification operation “=:=” as shown in Sect. 4. The only difference is in the
rules where a free variable occurs in the left argument. All these rules are replaced by
the single rule

Choice (FreeID i) _ _ =:<= x
= Guard [i :=: LazyBind (lazyBind i x)] Success

where the auxiliary operation lazyBind implements the demand-driven evaluation of
the right argument x:

lazyBind :: ID → a → [Constraint]
lazyBind i True = [i :=: ChooseLeft]
lazyBind i False = [i :=: ChooseRight]

The use of the additional LazyBind constructor allows the argument x to be stored in
a binding constraint without evaluation (due to the lazy evaluation strategy of the target
language Haskell). However, it is evaluated by lazyBind to head normal form when its
binding is required by another part of the computation, whereas the binding constraints
for any sub-expression are in turn lazily computed using lazyBind.

Similarly to equational constraints, lazy bindings are processed by a solver when val-
ues are extracted. In particular, if a variable has more than one lazy binding constraint
(which is possible if a functional pattern evaluates to a non-linear term), the corre-
sponding expressions are evaluated and unified according to the semantics of functional
patterns [4].

In order to demonstrate the operational behavior of our implementation, we sketch
the evaluation of the lazy unification constraint xs++[e] =:<= [failed,True] that
occurs when the expression last’ [failed,True] is evaluated (we omit failed
branches and some other details). Note that logic variables are replaced by generators,
i.e., we assume that xs is replaced by aBoolList 2 and e is replaced by aBool 3:

aBoolList 2 ++ [aBool 3] =:<= [failed, True]
� [aBool 4, aBool 3] =:<= [failed, True]
� aBool 4 =:<= failed & aBool 3 =:<= True & [] =:<= []
� Guard [ 4 :=: LazyBind (lazyBind 4 failed)

, 3 :=: LazyBind (lazyBind 3 True)] Success

If the value of the expression last’ [failed,True] is later required, the value of
the variable e (with the identifier 3) is in turn required. Thus, (lazyBind 3 True)

is evaluated to [3 :=: ChooseLeft] which corresponds to the value True of the
generator (aBool 3). Note that the variable with identifier 4 does not occur anywhere
else so that the binding (lazyBind 4 failed) will never be evaluated, as intended.

6 Benchmarks

In this section we evaluate our implementation of equational constraints and func-
tional patterns by some benchmarks. The benchmarks were executed on a Linux ma-
chine running Debian 5.0.7 with an Intel Core 2 Duo (3.0GHz) processor. KiCS2 has
been used with the Glasgow Haskell Compiler (GHC 7.0.4, option -O2) as its backend
and an efficient IDSupply implementation that makes use of IORefs. For a compari-
son with other mature implementations of Curry, we considered PAKCS [18] (version
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Expression == =:= =:<=
last (map (inc 0) [1..10000]) 2.91 0.05 0.01
simplify 10.30 6.77 7.07
varInExp 2.34 0.24 0.21
fromPeano (half (toPeano 10000)) 26.67 5.95 11.19
palindrome 30.86 14.05 20.26
horseman 3.24 3.31 n/a
grep 1.06 0.10 n/a

Fig. 1. Benchmarks: comparing different representations for equations

1.9.2, based on a SICStus-Prolog 4.1.2) and MCC [24] (version 0.9.10). The timings
were performed with the time command measuring the execution time (in seconds)
of a compiled executable for each benchmark as a mean of three runs. The programs
used for the benchmarks, partially taken from [4], are last (compute the last ele-
ment of a list),6 simplify (simplify a symbolic arithmetic expression), varInExp
(non-deterministically return a variable occuring in a symbolic arithmetic expression),
half (compute the half of a Peano number using logic variables), palindrome (check
whether a list is a palindrome), horseman (solving an equation relating heads and feet
of horses and men based on Peano numbers), and grep (string matching based on a
non-deterministic specification of regular expressions [6]).

In Sect. 4 we mentioned that equational constraints could also be solved by genera-
tors without variable bindings, but this technique might increase the search space due to
the possibly superfluous generation of all values. To show the beneficial effects of our
implementation of equational constraints with variable bindings, in Fig. 1 we compare
the results of using equational constraints (=:=) to the results where the Boolean equal-
ity operator (==) is used (which does not perform bindings but enumerate all values).
As expected, in most cases the creation and traversal of a large search space introduced
by “==” is much slower than our presented approach with variable bindings. In addi-
tion, the example last shows that the lazy unification operator (=:<=) improves the
performance when unifying an expression which has to be evaluted only partially. Us-
ing strict unification, all elements of the list are (unnecessarily) evaluated. On the other
hand, lazy unification causes some overhead when the expressions are fully evaluated,
which is shown by the fromPeano and palindrome examples. Thus, it is reasonable
to use it only if its improved computational power is really required, as intended by its
design.

In contrast to the Curry implementations PAKCS and MCC, our implementation of
strict unification is based on an explicit representation of the search space instead of
backtracking and manipulating a global state containing bindings for logic variables.
Nevertheless, the benchmarks in Fig. 2, using equational constraints only, show that
it can compete with or even outperform the other implementations. The results show
that the implementation of unification of MCC performs best. However, in most cases
our implementation outperforms the Prolog-based PAKCS implementation, except for
some examples. In particular, simplify does not perform well due to expensive

6 “inc x n” is a naive addition that n times increases its argument x by 1.
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Expression KiCS2 PAKCS MCC
last (map (inc 0) [1..10000]) 0.05 0.40 0.01
simplify 6.77 0.15 0.00
varInExp 0.24 0.89 0.07
fromPeano (half (toPeano 10000)) 5.95 108.88 3.22
palindrome 14.05 32.56 1.07
horseman 3.31 8.70 0.42
grep 0.10 2.88 0.14

Fig. 2. Benchmarks: strict unification in different Curry implementations

Expression KiCS2 PAKCS
last (map (inc 0) [1..10000]) 0.01 0.33
simplify 7.07 0.27
varInExp 0.21 1.87
fromPeano (half (toPeano 10000)) 11.19 ∞
palindrome 20.26 ∞

Fig. 3. Benchmarks: functional patterns in different Curry implementations

bindings of free variables to large arithmetic expressions in unsuccessful branches of
the search. Further investigation and optimization will hopefully lead to a better perfor-
mance in such cases.

As MCC does not support functional patterns, the performance of lazy unification
is compared with PAKCS only (Fig. 3). Again, our compiler performs well against
PAKCS and outperforms it in most cases (“∞” denotes a run time of more than 30
minutes).

7 Conclusions and Related Work

We have presented an implementation of equational constraints and functional patterns
in KiCS2, a purely functional implementation of Curry. In addition to the kernel im-
plementation described in [11], we add binding constraints to computed values which
are processed when values are extracted at the top level of a computation. Since only
new constructors and pattern matching rules for them are added in our implementation,
no overhead is introduced for programs without equational constraints, i.e., our imple-
mentation does not sacrifice the high efficiency of the kernel implementation shown in
[11]. However, if these features are used, they usually lead to a comparably efficient
execution, as demonstrated by our benchmarks. Although the benchmarks were small
in order to evaluate our unification implementation, it should be noted that KiCS2 is
used in larger applications, like the curricula and module information system of our
department7. In these and similar applications, where large parts are purely functional
computations, KiCS2 is 15-20 times faster than PAKCS [18].

Other implementations of equational constraints in functional logic languages are
based on side effects. For instance, PAKCS [18] exploits the implementation of logic

7 http://www-ps.informatik.uni-kiel.de/~mh/studiengaenge/

http://www-ps.informatik.uni-kiel.de/~mh/studiengaenge/
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variables in Prolog, which are implemented on the primitive level by side effects. MCC
[24] compiles into C where a specific abstract machine implements the handling of logic
variables. We have shown that our implementation is competitive to those. In contrast
to those systems, our implementation supports a variety of “top-level” search strategies,
like iterative deepening, breadth-first or parallel search, as well as user-programmable
search strategies, where the avoidance of side effects is important.

For future work it might be interesting to add further constraint structures to our
implementation, like real arithmetic or finite domain constraints. This might be possi-
ble by extending the kinds of constraints of our implementation and solving them by
functional programming approaches like [30].
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Abstract. Mode-directed tabling is an extension to the tabling tech-
nique that supports the definition of modes for specifying how answers
are inserted into the table space. In this paper, we focus our discus-
sion on the efficient support for mode-directed tabling in the YapTab
tabling system, which uses tries to implement the table space. We dis-
cuss 7 different modes and explain how we have extended and optimized
YapTab’s table space organization to provide engine support for them.
Experimental results, in the context of benchmarks taking advantage of
mode-directed tabling, show that our implementation compares favor-
ably with the B-Prolog and XSB state-of-the-art tabling systems.

1 Introduction

Tabling [1] is a recognized and powerful implementation technique that solves
some limitations of Prolog’s operational semantics in dealing with recursion
and redundant sub-computations. Tabling based models are able to reduce the
search space, avoid looping, and always terminate for programs with the bounded
term-size property1. Tabling consists of saving and reusing the results of sub-
computations during the execution of a program and, for that, the calls and
the answers to tabled subgoals are stored in a proper data structure called the
table space. The tabling technique can be viewed as a natural tool to implement
dynamic programming algorithms. Dynamic programming is a general recursive
strategy that consists in dividing a problem in simple sub-problems that, often,
are really the same. Tabling is thus suitable to use with this kind of problems
since, by storing and reusing intermediate results while the program is executing,
it avoids performing the same computation several times.

In a traditional tabling system, all the arguments of a tabled subgoal call are
considered when storing answers into the table space. When a new answer is
not a variant2 of any answer that is already in the table space, then it is always
considered for insertion. Therefore, traditional tabling is very good for problems

1 A logic program has the bounded term-size property if there is a function f : N → N
such that whenever a query goal Q has no argument whose term size exceeds n, then
no term in the derivation of Q has size greater than f(n).

2 Two terms are considered to be variant if they are the same up to variable renaming.
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that require storing all answers. However, with dynamic programming, usually,
the goal is to dynamically calculate optimal or selective answers as new results
arrive. Writing dynamic programming algorithms can thus be a difficult task
without further support. Mode-directed tabling [2] is an extension to the tabling
technique that supports the definition of modes for specifying how answers are
inserted into the table space. The idea is to use the modes to define the arguments
to be considered for variant checking and to define how variant answers should
be tabled regarding the remaining arguments. Mode-directed tabling has proved
its viability for applications areas such as Machine Learning [3], Justification [4],
Preferences [5], Answer Subsumption [6], among others.

To evaluate a predicate p/n using traditional tabling, we just need to declare it
as ‘table p/n’. With mode-directed tabling, tabled predicates are declared using
statements of the form ‘table p(m1, ...,mn)’, where the mi’s are modes for the
arguments. Implementations of mode-directed tabling are already available in
ALS-Prolog [2] and B-Prolog [3], and a restricted form of mode-directed tabling
can also be reproduced in XSB Prolog by using answer subsumption [7].

In this paper, we focus our discussion on the efficient implementation of mode-
directed tabling in the YapTab tabling system [8], which uses tries [9] to imple-
ment the table space. Our implementation uses a more general approach to the
declaration and use of modes and, currently, it supports 7 different modes: index,
first, last, min, max, sum and all. To the best of our knowledge, no other tabling
system supports all these modes and, in particular, the sum mode is not supported
by any other system. Experimental results, using a set of benchmarks that take
advantage of mode-directed tabling, show that our implementation compares fa-
vorably with the B-Prolog and XSB state-of-the-art tabling systems. This work
is already fully integrated with the latest development version of Yap3.

The remainder of the paper is organized as follows. First, we introduce some
background concepts about tabling. Next, we describe the modes and we show
examples of their use. Then, we introduce YapTab’s table space organization and
describe how we have extended it to efficiently support mode-directed tabling.
At last, we present experimental results and outline some conclusions.

2 Tabled Evaluation

In tabling, variant calls to tabled subgoals are not re-evaluated against the pro-
gram clauses, instead they are resolved by consuming the answers already stored
in the corresponding table entries. During this process, as further new answers
are found, they are stored in their tables and later returned to all variant calls.

Figure 1 illustrates the execution of a tabled program. The top left corner
shows the program code and the top right corner shows the final state of the
table space. The program defines a small directed graph, represented by two
edge/2 facts, with a relation of reachability, defined by a path/2 tabled predicate.
The bottom of the figure shows the evaluation sequence, numbered in order of
evaluation, for the query goal path(a,Z).

3 http://www.dcc.fc.up.pt/~vsc/Yap

http://www.dcc.fc.up.pt/~vsc/Yap
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:- table path/2.

path(X,Z) :- path(X,Y), edge(Y,Z).
path(X,Z) :- edge(X,Z).

edge(a,b).
edge(b,a).

0. path(a,Z)

1. path(a,Y), edge(Y,Z) 2. edge(a,Z)

3. Z=b

subgoals answers

0. path(a,Z)
3. Z=b
5. Z=a

Table

4. edge(b,Z) 6. edge(a,Z)

5. Z=a 7. Z=b
(fail)

Fig. 1. An example of a tabled evaluation

First calls to tabled subgoals correspond to generator nodes (nodes depicted
by white oval boxes) and, for first calls, a new entry, representing the subgoal,
is added to the table space (step 0). Next, path(a,Z) is resolved against the first
matching clause, calling in the continuation path(a,Y) (step 1). Since path(a,Y)
is a variant call to path(a,Z), we do not evaluate the subgoal against the program
clauses, instead we consume answers from the table space. Such nodes are called
consumer nodes (nodes depicted by black oval boxes). However, at this point,
the table does not have answers for this call, so the computation is suspended4.

The only possible move after suspending is to backtrack and try the second
matching clause for path(a,Z) (step 2). This produces the answer {Z=b}, which
is then stored in the table space (step 3). At this point, the computation at
node 1 can be resumed with the newly found answer (step 4), giving rise to
one more answer, {Z=a} (step 5). This second answer is then also stored in the
table space and propagated to the consumer node (step 6), which produces the
answer {Z=b} (step 7). This answer had already been found at step 3. Tabling
does not store duplicate answers in the table space and, instead, variant answers
fail. This is how tabling avoids unnecessary computations, and even looping in
some cases. Since there are no more answers to consume nor more clauses left
to try, the table entry for path(a,Z) is then marked as completed.

3 Mode-Directed Tabling

Traditional tabling can be viewed as a composition of two procedural opera-
tions: Generate() and Aggregate(). The Generate() operation corresponds to
performing tabled evaluation from where a bag of answers is generated, i.e., we

4 We are assuming a suspension-based tabling mechanism, where a tabled evaluation
can be seen as a sequence of computations that suspend and later resume. Alterna-
tively, linear tabling mechanisms use iterative computations to compute fix-points
and for that they maintain a single execution tree (no suspension is needed).
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may have duplicate (and infinite) answers as in Prolog. The Aggregate() oper-
ation then defines the criterion for specifying how answers are tabled which, for
traditional tabling, is to eliminate variant answers.

Mode-directed tabling can be thought of as an extension to the Aggregate()
operation that allows to define alternative criteria for specifying how variant
answers (the index arguments) should be tabled (the output arguments). Index
arguments are represented with mode index, while arguments with modes first,
last, min, max, sum and all represent output arguments. Given the generic dec-
laration p(m1, ...,mj,mj+1, ...,mn), where for 1 <= i <= j, mi is an index ar-
gument and for j+1 <= i <= n, mi is an output argument, the Aggregate(p/n)
operation can be defined as the set of answers:

{p(x1, ..., xn) | ∃(zj+1, ..., zn) : p(x1, ..., xj , zj+1..., zn) ∈ Generate(p/n)
∧ xj+1 ∈ mj+1(Outj+1(x1, ..., xj))
∧ . . .
∧ xn ∈ mn(Outn(x1, ..., xn−1))}

where Outj(x1, ..., xj−1) = {y | ∃(zj+1, ..., zn) :
p(x1, ..., xj−1, y, zj+1..., zn) ∈ Generate(p/n)}

For example, consider a p/3 predicate declared as p(index,min, all) and the
set of answers {p(a, 2, 2), p(b, 2, 1), p(b, 1, 2), p(b, 1, 1)}. The Aggreg(p/3) opera-
tion is then:

{p(x1, x2, x3) | ∃(z2, z3) : p(x1, z2, z3) ∈ {p(a, 2, 2), p(b, 2, 1), p(b, 1, 2), p(b, 1, 1)}
∧ x2 ∈ min(Out2(x1)) ∧ x3 ∈ all(Out3(x1, x2))}

Since min(Out2(a)) = min({2}) = {2}, all(Out3(a, 2)) = max({2}) = {2}
and min(Out2(b)) = min({2, 1}) = {1}, all(Out3(b, 1)) = all({2, 1}) = {2, 1}
then Aggreg(p/3) = {p(a, 2, 2), p(b, 1, 2), p(b, 1, 1)}.

3.1 Index/First/Last Modes

Starting from the example in Fig. 1, consider now that we modify the program
so that it also calculates the number of edges traversed in a path. As we can see
in Fig. 2, the program does not terminate. Such behavior occurs because there
is a path with an infinite number of edges starting from a, thus not satisfying
the bounded term-size property necessary to ensure termination. In particular,
the answers found at steps 3 and 7 and at steps 5 and 9 have the same answer
for variable Z ({Z=b} and {Z=a}, respectively), but they are both inserted in
the table space because they are not variants for variable N. For programs with
an infinite number of answers, traditional tabling is thus not enough.

In Fig. 2, the problem relies on the fact that the third argument gener-
ates an infinite number of answers. We can thus define the path/3 predicate as
path(index,index,first) meaning that only the first and second arguments must
be considered for variant checking and that, for the third argument, only the first
answer must be tabled. With this declaration, the answer {Z=b, N=3} found at
step 7 is no longer inserted in the table space and execution fails.
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2. edge(a,Z)

3. Z=b, N=1

0. path(a,Z,N)

...
(infinite answers)

4. edge(b,Z),
   N is 1+1

6. edge(a,Z),
   N is 2+1

5. Z=a, N=2 7. Z=b, N=3

1. path(a,Y,N1), edge(Y,Z), N is N1 + 1

8. edge(b,Z),
   N is 3+1

9. Z=a, N=4

:- table path/3.

path(X,Z,N) :- path(X,Y,N1), edge(Y,Z),
               N is N1+1.
path(X,Z,1) :- edge(X,Z).

edge(a,b).
edge(b,a).

0. path(a,Z,N)

3. Z=b, N=1
5. Z=a, N=2 
7. Z=b, N=3
9. Z=a, N=4
      ... 

N = 1

Table

subgoals answers

Fig. 2. A tabled evaluation with an infinite number of answers

The last mode implements the opposite behavior of the first mode, i.e., it
always stores the last answer being found and discards the previous one, if any.
Remember that with tabling, the order of answers is not important. However,
in a particular implementation, the order of answers may depend on the tabling
mechanism and on the evaluation strategy being use. Hence, we may question
the necessity and/or correctness of the first and last modes.

The first mode can be seen as a way to prune the search space, once an answer
is found. This mode can also be read as any, don’t care or none. We adopted the
name first mainly to reflect the fact that, at the implementation level, we are
storing the first answer as a way to represent a justification for that.

On the other hand, the last mode can be seen as a way to dynamically compute
preferable answers. It is usually used in conjunction with a preferable predicate
that is responsible for computing the preferable answers as new results arrive
or fail if no preferable answer exists. In particular, all the other modes can be
reproduced by using the last mode with appropriate preferable predicates. Please
refer to [5,6] for examples where the last mode has shown to be very useful for
implementing problems involving Preferences and Answer Subsumption.

3.2 Min/Max Modes

The min and max modes allow to specify a selective criterion that stores, re-
spectively, the minimal and maximal answers for an argument. At the implemen-
tation level, we assume that when using the min and/or max modes, a tabled
predicate is monotonic. Figure 3 shows an example using the min mode. The
program’s goal is to compute the paths with the shortest distances. The path/3
predicate is declared as path(index,index,min), meaning that the third argument
should store only the minimal answers for the first two arguments.

By observing the example in Fig. 3, the most interesting part happens at step
8, where the answer {Z=d, C=3} is found. This answer is a variant of the answer
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5. Z=c, C=2 6. Z=d, C=5

2. edge(a,Z,C)

3. Z=b, C=1

0. path(a,Z,C)

4. edge(b,Z,C2),
   C is 1+C2

7. edge(c,Z,C2),
   C is 2+C2

8. Z=d, C=3

1. path(a,Y,C1), edge(Y,Z,C2), C is C1+C2

9. edge(d,Z,C2),
   C is 3+C2

10. fail

:- table path(index,index,min).

path(X,Z,C) :- path(X,Y,C1), edge(Y,Z,C2),
               C is C1+C2.
path(X,Z,C) :- edge(X,Z,C).

edge(a,b,1).
edge(b,c,1).
edge(b,d,4).
edge(c,d,1).

0. path(a,Z,C)

3. Z=b, C=1
5. Z=c, C=2 
6. Z=d, C=5
8. Z=d, C=3

Table

subgoals answers

Fig. 3. Using the min mode to compute the paths with the shortest distances

{Z=d, C=5} found at step 6. In the previous example, with the first mode, the
old answer would have been kept in the table. Here, as the new answer is minimal
on the third argument, the old answer is replaced by the new answer.

The max mode works similarly, but stores the maximal answer instead. For
programs without the bounded term-size property, we must be careful when
using these two modes as they may not ensure termination. For instance, this
would be the case if, in Fig.3, we used the max mode instead of the min mode.

3.3 Sum/All Modes

Two other modes are the sum and the all. The sum mode allows to sum all
the answers for an argument and the all mode allows to store all the answers.
Consider now the example in Fig. 4 where a path/4 predicate is declared as
path(index,index,min,all) meaning that, for each path, we want to store the
shortest distance (third argument) and, for the paths with the same shortest
distances, the number of edges traversed (fourth argument). By following the
example, the most interesting part happens when the answer {Z=b, C=2, N=2}
is found at step 8. This answer is a variant of the answer found at step 3 and al-
though both have the same minimal value (C=2 ), the new answer is still inserted
in the table space since the number of edges (fourth argument) is different.

Notice that when the sum or all modes are used in conjunction with another
mode, like the min mode in the example, it is important to keep in mind that
the aggregation of answers made for the sum or all argument depends on the
corresponding answer for the min argument. Consider, for example, that in the
previous example we had found one more answer {Z=b, C=1, N=4}. In this
case, the new answer would be inserted and the answers {Z=b, C=2, N=1} and
{Z=b, C=2, N=2} would be deleted because the new answer corresponds to a
shorter distance, as defined by the value C=1 in the min argument.



On the Efficient Implementation of Mode-Directed Tabling 147

N = 1

:- table path(index,index,min,all).

path(X,Z,C,N) :- path(X,Y,C1,N1),
                 edge(Y,Z,C2),
                 C is C1+C2, N is N1+1.
path(X,Z,C,1) :- edge(X,Z,C).

edge(a,b,2).
edge(a,c,1).
edge(c,b,1).

0. path(a,Z,C,N)
3. Z=b, C=2, N=1
4. Z=c, C=1, N=1 
8. Z=b, C=2, N=2

Table

subgoals answers

3. Z=b, C=2 4. Z=c, C=1

2. edge(a,Z,C)

0. path(a,Z,C,N)

5. edge(b,Z,C2),
   C is 2+C2,
   N is 1+1

7. edge(c,Z,C2),
   C is 1+C2,
   N is 1+1

8. Z=b, C=2, N=2

1. path(a,Y,C1,N1), edge(Y,Z,C2), C is C1+C2, N is N1+1

9. edge(b,Z,C2),
   C is 2+C2,
   N is 2+1

10. fail6. fail

Fig. 4. Using the all mode to compute the paths with the shortest distances together
with the number of edges traversed

3.4 Related Work

The ALS-Prolog [2] and B-Prolog [3] systems also implement mode-directed
tabling but using a different syntax. For example, the index and first modes
are known as + and - and in ALS-Prolog the all mode is known as @. The
sum mode is not supported by any other system and B-Prolog also does not
implement the last and all modes. On the other hand, B-Prolog includes an
extra mode, named nt, to indicate that a given argument should not be tabled
and, thus, not considered to be inserted in the table space. B-Prolog also extends
the mode-directed tabling declaration to include a cardinality limit that allows
to define the maximum number of answers to be stored in the table space [3].

Mode-directed tabling can also be reproduced in the XSB system by using
two answer subsumption mechanisms [7]. One is called partial order answer sub-
sumption and can be used to mimic, in terms of functionality, the min and max
modes. Consider that we want to use it with the program in Fig. 3 that com-
putes the paths with the shortest distances. Then, we should declare the path/3
predicate as path( , , po(< /2)) meaning that the third argument will be evalu-
ated using partial order answer subsumption, where < /2 implements the partial
order relation. The other two arguments are considered to be index arguments.

The other XSB’s mechanism, called lattice answer subsumption, is more pow-
erful and can be used to mimic, in terms of functionality, the other modes.
Considering the same example, we only need to change the path/3 declaration
to path( , , lattice(min/3)). The min/3 predicate has three arguments since,
with this mechanism, we must generate a third answer starting from the new
answer and from the answer stored in the table:

min(Old,New,Res) : − Old < New→ Res = Old ; Res = New.
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4 Implementation

In this section, we start by presenting some background about the table space
organization in YapTab and then we discuss in more detail how we have extended
it to efficiently support mode-directed tabling.

4.1 YapTab’s Table Space Organization

Like we have seen, during the execution of a program, the table space may be
accessed in a number of ways: (i) to find out if a subgoal is in the table and, if
not, insert it; (ii) to verify whether a newly or preferable answer is already in
the table and, if not, insert it; and (iii) to load answers from the tables.

With these requirements, a careful design of the table space is critical to
achieve an efficient implementation. YapTab uses tries which is regarded as a
very efficient way to implement the table space [9]. A trie is a tree structure where
each different path through the trie nodes corresponds to a term described by the
tokens labeling the traversed nodes. For example, the tokenized form of the term
path(X, 1, f(Y )) is the sequence of 5 tokens path/3, V AR0, 1, f/1 and V AR1,
where each variable is represented as a distinct V ARi constant. Two terms with
common prefixes will branch off from each other at the first distinguishing token.
Consider, for example, a second term path(Z, 1, b). Since the main functor, token
path/3, and the first two arguments, tokens V AR0 and 1, are common to both
terms, only one additional node will be required to fully represent this second
term in the trie, thus allowing to save three nodes in this case.

YapTab implements tables using two levels of tries. The first level, named
subgoal trie, stores the tabled subgoal calls and the second level, named answer
trie, stores the answers for a given call. More specifically, each tabled predicate
has a table entry data structure assigned to it, acting as the entry point for
the predicate’s subgoal trie. Each different subgoal call is then represented as a
unique path in the subgoal trie, starting at the table entry and ending in a subgoal
frame data structure, with the argument terms being stored within the path’s
nodes. The subgoal frame data structure acts as an entry point to the answer trie.
Contrary to subgoal tries, answer trie paths hold just the substitution terms for
the free variables that exist in the argument terms of the corresponding call [9].

An example for a tabled predicate p/3 is shown in Fig. 5. Initially, the table
entry for p/3 points to an empty subgoal trie. Then, the subgoal p(X, 1, Y )
is called and three trie nodes are inserted to represent the arguments in the
call: one for variable X (V AR0), a second for integer 1, and a last one for
variable Y (V AR1). Since the predicate’s functor term is already represented by
its table entry, we can avoid inserting an explicit node for p/3 in the subgoal
trie. Then, the leaf node is set to point to a subgoal frame, from where the
answers for the call will be stored. The example shows two answers for p(X, 1, Y ):
{X=V AR0, Y=f(V AR1)} and {X=V AR0, Y=b}. Since both answers have the
same substitution term for argument X , they share the top node in the answer
trie (V AR0). For argument Y , each answer has a different substitution term and,
thus, a different path is used to represent each.
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f/1

VAR1

VAR0

1

VAR1

subgoal
trie

subgoal frame for
p(VAR0,1,VAR1)

VAR0

b

answer
trie

1st
argument

2nd
argument

3rd
argument

substitution
term for

1st argument

substitution
term for

3rd argument

table entry for
p/3

Fig. 5. Table space organization

When adding answers, the leaf nodes are
chained in a linked list in insertion time or-
der, so that the recovery may happen the
same way. In Fig. 5, we can observe that the
leaf node for the first answer (node V AR1)
points (dashed arrow) to the leaf node of the
second answer (node b). To maintain this list,
two fields in the subgoal frame data structure
point, respectively, to the first and last an-
swer of this list (for simplicity of illustration,
these pointers are not shown in Fig. 5). When
consuming answers, a consumer node only
needs to keep a pointer to the leaf node of its
last loaded answer, and consumes more an-
swers just by following the chain. Answers are
loaded by traversing the trie nodes bottom-
up (again, for simplicity of illustration, such
pointers are not shown in Fig. 5).

4.2 Mode-Directed Tabled Subgoal Calls

In YapTab, mode-directed tabled predicates are compiled by extending the table
entry data structure to include a mode array, where the information about the
modes is stored. In this mode array, the modes appear in the order in which the
arguments are accessed, which can be different from their position in the original
declaration. For example, index arguments must be considered first, irrespective
of their position. Or, if using the all and min modes in a declaration, all min
arguments must be considered before any all argument, since the all means that
all answers must be stored, making meaningless the notion of being minimal in
this case. As we will see in Section 4.3, changing the order is also strictly neces-
sary to achieve an efficient implementation. In YapTab, the mode information is
thus stored in the order mentioned below, together with the argument’s position:

1. arguments with index mode;
2. arguments with min and max mode;
3. arguments with all mode;
4. arguments with last or first or sum (only one sum argument is allowed)

mode (the combination of different modes is not allowed).

index

min

all

2

3

1

table entry for
p(all,index,min)

Fig. 6. Mode array

Figure 6 shows an example for a
p(all,index,min) mode-directed tabled pred-
icate. The index mode is placed first in the
mode array, then themin mode and last the
all mode. With traditional tabling, tabled
calls are inserted in their own subgoal tries by following the order of the argu-
ments in the call. With mode-directed tabling, we follow the order defined in
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the corresponding mode array. Figure 7 shows the difference between the result-
ing subgoal tries with and without mode-directed tabling for the subgoal call
p(X,1,Y). The values in the mode array indicate that we should start by insert-
ing first the second argument of the subgoal call (1), then the third argument
(Y or V AR0) and last the first argument (X or V AR1).

(b)(a)

VAR0

1

VAR1

subgoal
trie

1

VAR0

VAR1

subgoal
trie

table entry for
p/3

table entry for
p(all,index,min)

subgoal frame for
p(VAR0,1,VAR1)

subgoal frame for
p(1,VAR0,VAR1)

Fig. 7. Subgoal tries for p(X,1,Y) considering
p/3 declared (a) with and (b) without mode-
directed tabling

The mode information is used
when creating the subgoal frame as-
sociated with the subgoal call at
hand. With mode-directed tabling,
subgoal frames were extended to in-
clude a new array, named substitu-
tion array, where the mode infor-
mation is stored, together with the
number of free variables associated
with each argument in the subgoal
call. The argument’s order is the
same as in the mode array. Figure 8
shows the substitution array for the
subgoal call p(X,1,Y). The first po-
sition, corresponding to the argu-
ment with constant 1, has no free variables and thus we store a 0 in the substitu-
tion array. The other two arguments are free variables and, thus, they have a 1
in the substitution array. It is possible to optimize the array by removing entries
that have 0 variables and by joining contiguous entries with the same mode. As
we will see next, the substitution array plays an important role in the process of
inserting answers in the answer trie.

4.3 Mode-Directed Tabled Answers

index

min

all

0

1

1

subgoal frame for
p(1,VAR0,VAR1)

Fig. 8. Substitution array

Like in traditional tabling, tabled answers
are only represented by the substitution
terms for the free variables in the arguments
of the corresponding subgoal call. However,
for mode-directed tabling, when we are con-
sidering the substitution terms individually,
it is important to know beforehand which mode applies to each, and for that,
we use the information stored in the corresponding substitution array.

Consider again the substitution array for the subgoal call p(X,1,Y). Now, if
we find the answer {X=f(a), Y=5}, the first binding to be considered is {Y=5}
with min mode and then {X=f(a)} with all mode. Please note that the substi-
tutions are considered in the same order that the variables they substitute have
been inserted in the subgoal trie. Since the answer trie is initially empty, both
terms can be inserted as usual. Later, if another answer is found, for example,
{X=b, Y=3}, we begin the insertion process by considering the binding {Y=3}
with min mode. As there is already an answer in the table, we must compare
both accordingly to the min mode. Since the new answer is preferable (3 < 5),
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the old answer must be invalidated and the new one inserted in the table. The in-
validation process consists in: (a) deleting all intermediate nodes corresponding
to the answers being invalidated; and (b) tagging the leaf nodes of such answers
as invalid nodes. Invalid nodes are only deleted when the table is later completed
or abolished. Figure 9 illustrates the aspect of the answer trie before and after
the invalidation process.

subgoal frame for
p(1,VAR0,VAR1)

5

f/1

aanswer
trie

5

f/1

subgoal frame for
p(1,VAR0,VAR1)

3

b

a

(b)(a)

3
min

Fig. 9. Aspect of the answer trie (a) before
and (b) after the invalidation process

Invalid nodes are opaque to sub-
sequent subgoal calls, but can be
still visible from the consumer calls
already in evaluation. Hence, when
invalidating a node, we may have
consumers still pointing to it. By
deleting leaf nodes, this would make
consumers unable to follow the
chain of answers. An alternative
would be to traverse the stacks and
update the consumers pointing to
invalidated answers, but this could
be a very costly operation.

Notice also that the mode’s order in the substitution array is crucial for the
simplicity and efficiency of the invalidation process. When, at a given node N ,
we decide that an answer should be invalidated, the substitution array’s order
ensures that all nodes below node N (including N) are the ones we want to
invalidate and that the upper nodes are the ones we want to keep.

subgoal frame for
p(VAR0,1,VAR1)

f/1

a

5answer
trie

b

3

min

Fig. 10. Before the
invalidation process
if using a bad order

This might not be the case if we used a bad order. For
example, Fig. 10 illustrates the aspect of the answer trie
before the invalidation process if we considered the orig-
inal arguments order for p(X,1,Y). In Fig. 10, to detect
that the second answer is preferable (3 < 5), we need to
navigate in the trie until reaching the leaf node 5 for the
first answer. Thus, the invalidation process may require
deleting upper nodes (as the example in Fig. 10 shows)
and/or traverse several paths to fully detect all preferable
answers (this would be the case if we had two interme-
diate answers with the same minimal values, for instance
{X=f(a), Y=5} and {X=h(c), Y=5}), making therefore
the invalidation process much more complex and costly.

4.4 Scheduling and Mode-Directed Tabling

In a tabled evaluation, there are several points where we may have to choose
between continuing forward execution, backtracking, consuming answers or com-
pleting subgoals. Such decision is determined by the scheduling strategy. The two
most successful strategies are batched scheduling and local scheduling [10].

Batched scheduling evaluates programs in a depth-first manner as does the
WAM. When new answers are found for a particular tabled subgoal, they are
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added to the table space and the evaluation continues with forward execution.
Only when all clauses have been resolved, the newly tabled answers will be
forwarded to the consumers. Batched scheduling thus tries to delay the need to
move around the search tree by batching the consumption of answers.

Local scheduling is an alternative strategy that tries to complete subgoals
sooner. The key idea is that whenever new answers are added to the table space,
the execution then fails. Local scheduling thus explores the whole search space
for a tabled predicate before returning answers for forward execution.

To the best of our knowledge, YapTab is the only tabling system that supports
the dynamic mixed-strategy evaluation of batched and local scheduling within
the same evaluation [10]. This is very important, because for mode-directed
tabled predicates, the ability of being able to use local evaluation can be crucial
to correctly and/or efficiently support some modes.

: − table num links(index, sum).
num links(A, 0) : − edge( , A).
num links(A, 1) : − edge(A, ).

: − table num nodes(sum).
num nodes(0).
num nodes(1) : − num links( , ).

edge(a, b). edge(a, c). edge(b, c).

Fig. 11. A cascade of two mode-directed
tabled predicates using the sum mode

This is the case for the sum
mode, that we discuss next in more
detail. As it sums all the answers
for a given argument, we might
end with wrong results if we re-
turn partial results instead of ag-
gregating them and only return-
ing the aggregated result. Consider,
for example, the two mode-directed
tabled predicates num links/2 and
num nodes/1 in Fig. 11 and
the query goal num nodes(N). If
num links/2 is evaluated using lo-
cal scheduling, we get the right result (N=3 ) but, with batched scheduling, we
end with a wrong result (N=6 ). This occurs because, with batched evaluation,
the num links( , ) call in the second clause of num nodes/2 succeeds 2 times
for each edge/2 fact. Moreover, with batched scheduling, there is no means to
return the partial sums while the table is being computed. With local scheduling,
since the result is only returned at the end, this problem does not apply.

Batched evaluation can also yield useless computations for mode-directed
tabled predicates. Consider a p(max) tabled predicate and the query goal:

: − p(Max), do work(Max,Res).

With batched evaluation, the call to do work(Max,Res) will be executed for
each Max partial result computed by p(Max), hence producing many useless
computations as the number of non-maximal results.

5 Experimental Results

In this section, we present some experimental results for a set of benchmarks that
take advantage of mode-directed tabling. The environment for our experiment
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was a machine with a AMD FX(tm)-8150 8-core processor with 32 GBytes of
main memory and running the Linux kernel 64 bits version 3.2.0. To put our
results in perspective, we compare our implementation, on top of Yap Prolog
(development version 6.3), with the B-Prolog (version 7.8 beta-6) and the XSB
(version 3.3.6) systems, both using local scheduling. For XSB, we adapted the
benchmarks to use lattice answer subsumption (as discussed in Section 3.4)5.
For benchmarking, we used the following set of programs:

short(N) uses the min mode to determine all-pairs shortest paths in a graph
representing the flight connections between the N busiest commercial air-
ports in US6.

short first(N) uses the first mode to extend the all-pairs shortest paths pro-
gram to also include the first justification for each shortest path.

short all(N) uses the all mode to extend the all-pairs shortest paths program
to also include all the justifications for each shortest path.

short pref(N) uses the last mode to solve the all-pairs shortest paths program
using Preferences [6].

knapsack(N) uses the max mode to determine the maximum number of items
to include in a collection, from N weighted items, so that the total weight is
equal to a given value.

lcs(N) uses the max mode to find the longest subsequence common to two
different sequences of size N.

matrix(N) uses the min mode to implement the matrix chain multiplication
problem that determines the most efficient way to multiply a sequence of N
matrices.

pagerank(N) uses the sum mode to measure the rank values of web pages in
a realistic dataset of web links called search engines7, using N iterations.

Table 1 shows the execution times, in milliseconds, for running the benchmarks
with YapTab, B-Prolog and XSB. In parentheses, it also shows the execution
time ratios against YapTab with local evaluation. The execution times are the
average of 3 runs. The entries marked with n.a. correspond to programs using
modes not available in B-Prolog. The ratios marked with (—) mean that we
are not considering them in the average results (they correspond either to n.a.
entries or to execution times much higher than YapTab).

In addition to these results, we also collected some statistics for YapTab when
running with local and batched evaluation. Table 2 shows the number of answer
trie nodes (column #nodes) and the number of tabled answers (column #ans)
present in the table space for YapTab at the end of the execution (columns
Final) and the respective differences for the full execution with local and batched
evaluation (columns Extra/Deleted). These differences represent the extra trie
nodes and answers that were allocated/found during the evaluation and later
deleted and, thus, are not present in the final tables.

5 For programs using min/max modes, we also tried with partial order answer sub-
sumption but, unexpectedly, we got worse results.

6 http://toreopsahl.com/datasets
7 http://www.cs.toronto.edu/~tsap/experiments/download/download.html

http://toreopsahl.com/datasets
http://www.cs.toronto.edu/~tsap/experiments/download/download.html
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Table 1. Execution times, in milliseconds, for YapTab, B-Prolog and XSB and the
respective ratios when compared with YapTab’s local evaluation

Programs
YapTab

B-Prolog XSB
Local Batched

short(300) 1,088 1,261 (1.16) 2,990 (2.75) 2,922 (2.69)
short(400) 1,544 1,785 (1.16) 4,216 (2.73) 4,321 (2.80)
short(500) 2,170 2,472 (1.14) 5,792 (2.67) 6,218 (2.87)

short first(300) 1,394 2,641 (1.89) 3,225 (2.31) 5,013 (3.60)
short first(400) 2,052 3,432 (1.67) 4,614 (2.25) 7,257 (3.54)
short first(500) 2,866 4,488 (1.57) 6,379 (2.23) 10,328 (3.60)

short all(300) 4,324 8,383 (1.94) n.a. (—) 61,803 (—)
short all(400) 5,861 10,590 (1.81) n.a. (—) 122,985 (—)
short all(500) 8,337 13,598 (1.63) n.a. (—) 239,451 (—)

short pref(300) 2,882 4,241 (1.47) n.a. (—) 6,666 (2.31)
short pref(400) 4,152 5,621 (1.35) n.a. (—) 9,932 (2.39)
short pref(500) 5,773 7,473 (1.29) n.a. (—) 14,129 (2.45)

knapsack(1000) 1,013 998 (0.99) 837 (0.83) 2,684 (2.65)
knapsack(1500) 1,581 1,561 (0.99) 1,229 (0.78) 3,977 (2.52)
knapsack(2000) 2,037 2,040 (1.00) 1,582 (0.78) 5,473 (2.69)

lcs(1000) 1,196 1,170 (0.98) 2,900 (2.42) 3,060 (2.56)
lcs(1500) 2,768 2,722 (0.98) 5,784 (2.09) 7,128 (2.58)
lcs(2000) 4,864 4,804 (0.99) 10,116 (2.08) 13,338 (2.74)

matrix(100) 192 224 (1.17) 582 (3.03) 396 (2.06)
matrix(150) 925 1,076 (1.16) 2,549 (2.76) 1,610 (1.74)
matrix(200) 3,005 3,534 (1.18) 7,816 (2.60) 4,688 (1.56)

pagerank(1) 365 n.a. (—) n.a. (—) 128,377 (—)
pagerank(16) 813 n.a. (—) n.a. (—) > 10 min (—)
pagerank(36) 1,260 n.a. (—) n.a. (—) > 10 min (—)

Average ratio (1.31) (2.15) (2.63)

In general, the results show that, for all combinations of experiments and sys-
tems, there is no clear tendency showing that the execution time ratios increase
or decrease as we increase the size of the corresponding set of programs.

Comparing the results for local and batched evaluation, they show that, on
average, batched evaluation is around 31% worse than local evaluation. These
results are confirmed in Table 2, where we can observe that batched evalua-
tion always allocates/deletes more trie nodes and inserts/deletes more tabled
answers than local evaluation. In particular, batched evaluation gets worse the
more answers are inserted into the table space. This affects in particular the
short first(), short all() and short pref() set of programs, which confirms
our discussion regarding the fact that, in general, local evaluation is more suit-
able to reduce the search space for mode-directed tabled predicates.

Regarding the comparison with the other systems, YapTab’s results clearly
outperform those of B-Prolog and XSB. On average, B-Prolog and XSB are,
respectively, around 2.15 and 2.63 times worse than YapTab using local evalua-
tion. Please note that for B-Prolog and XSB we do not include the performance
of some programs into the average results. For B-Prolog, this is because these
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Table 2. Number of answer trie nodes and tabled answers for YapTab at the end of
the execution and the respective differences (extra nodes and answers allocated/found
that were later deleted) for the full execution with local and batched evaluation

Programs
Final

Extra/Deleted
Local Batched

#nodes #ans #nodes #ans #nodes #ans

short(300) 179,401 89,401 77,911 77,911 586,488 586,488
short(400) 317,618 157,618 122,435 122,435 706,060 706,060
short(500) 500,000 250,000 196,831 196,831 877,913 877,913

short first(300) 661,458 89,401 586,348 77,911 16,476,991 586,488
short first(400) 1,213,352 157,618 947,584 122,435 18,733,939 706,060
short first(500) 1,997,262 250,000 1,609,053 196,831 21,760,014 877,913

short all(300) 2,615,740 690,614 5,609,890 1,584,000 30,418,627 4,740,397
short all(400) 4,351,566 1,084,942 8,129,237 2,172,438 35,762,267 5,632,706
short all(500) 6,806,102 1,611,082 12,039,458 3,017,929 43,281,969 6,835,251

short pref(300) 179,401 89,401 77,911 77,911 586,488 586,488
short pref(400) 317,618 157,618 122,435 122,435 706,060 706,060
short pref(500) 500,000 250,000 196,831 196,831 877,913 877,913

knapsack(1000) 1,960,131 973,453 87,816 87,816 307,055 307,055
knapsack(1500) 2,963,665 1,475,220 109,613 109,613 450,276 450,276
knapsack(2000) 3,960,969 1,973,872 127,957 127,957 584,980 584,980

lcs(1000) 1,980,191 989,118 101,997 101,997 206,485 206,485
lcs(1500) 4,445,865 2,221,466 234,713 234,713 484,700 484,700
lcs(2000) 7,917,402 3,956,741 420,051 420,051 866,027 866,027

matrix(100) 10,100 5,050 11,089 11,089 14,862 14,862
matrix(150) 22,648 11,324 17,791 17,791 39,775 39,775
matrix(200) 40,194 20,097 36,325 36,325 68,848 68,848

pagerank(1) 85,111 30,896 1,825,175 1,240,703 n.a. n.a.
pagerank(16) 378,783 104,314 3,237,305 1,711,413 n.a. n.a.
pagerank(36) 741,343 194,954 4,828,085 2,241,673 n.a. n.a.

programs use the all, last and sum modes, which are not supported in B-Prolog.
For XSB, the execution times for the short all() and pagerank() are much
higher than YapTab and including them would have distorted the comparison
between the three systems. To the best of our knowledge, YapTab is thus the only
system that supports the all, last and sum modes and handles them efficiently.

6 Conclusions

We discussed how we have extended YapTab’s table space organization to pro-
vide engine support for mode-directed tabling. In particular, we presented how
we deal with mode-directed tabled subgoal calls and answers and we discussed
the role of scheduling in mode-directed tabled evaluations. Our implementation
uses a more general approach to the declaration and use of modes and, currently,
it supports 7 different modes. To the best of our knowledge, no other tabling sys-
tem supports all these modes and, in particular, the sum mode is not supported
by any other system.
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Experimental results on benchmarks that take advantage of mode-directed
tabling, showed that our implementation clearly outperforms the B-Prolog and
XSB state-of-the-art tabling systems. In particular, YapTab is the only system
that efficiently handles programs that use the all mode.

Further work will include extending our implementation to support multi-
threaded mode-directed tabling and explore the impact of applying mode-
directed tabling to other problems.
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Abstract. The intensional transformation is a promising technique for
implementing lazy functional languages based on a demand-driven ex-
ecution model. Despite its theoretical elegance and its simple and ef-
ficient execution model, the intensional transformation suffered, until
now, from two main drawbacks: it could only be applied to programs
that manipulate primitive data-types and it could only compile a simple
(and rather restricted) class of higher-order functions. In this paper we
remedy the above two deficiencies, obtaining a transformation algorithm
that is applicable to mainstream lazy functional languages. The proposed
transformation initially uses defunctionalization in order to eliminate
higher-order functions from the source program. The original intensional
transformation is then extended in order to apply to the target first-order
language with user-defined data types that resulted from the defunction-
alization. It is demonstrated that the proposed technique can be used to
compile a relatively large subset of Haskell into portable C code whose
performance is comparable to existing mainstream implementations.

Keywords: intensional transformation, dataflow programming, defunc-
tionalization, compilation, lazy functional languages.

1 Introduction

The intensional transformation [20,16,17] has been proposed as an alternative
technique for implementing lazy functional languages based on a demand-driven
execution model. The key idea behind the intensional approach is to transform
a source functional program into a program consisting of nullary variable defini-
tions enriched with intensional (i.e., context-switching) operators. The trans-
formation was initially proposed as a technique for implementing first-order
functional languages [20] and was also used in the implementation of the first-
order dataflow language Lucid [19]. Later on, the correctness of the transfor-
mation was formally established [16] and it was extended to apply to a simple
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class of higher-order programs [17], in which partially applied objects can only
be top-level function names. For the class of programs that it can compile, the
transformation has been demonstrated to be quite efficient [4].

Despite its theoretical elegance and its simple and efficient execution model,
the intensional transformation continues to suffer from the two main drawbacks
that were present since its inception:

– It can only be applied to programs with primitive data-types (such as in-
tegers, characters, boolean values, and so on). For example, the dataflow
language Lucid never supported user-defined data-types [19, Sec. 7.1].

– It can only compile a simple (and rather restricted) class of higher-order func-
tions. More specifically, the extension of the intensional transformation [17]
can only compile programs that make a Pascal-like use of higher-order func-
tions (i.e., programs that do not use function closures and therefore do not
support currying in its full-generality).

In this paper we remedy the above two deficiencies, obtaining a transfor-
mation algorithm that is applicable to mainstream higher-order lazy functional
languages. The proposed transformation initially uses defunctionalization [15]
in order to eliminate higher-order functions from the source program (at the
cost of introducing data constructors representing explicit closures in the target
first-order program). In this way, the two problems above are trivially reduced
to the first one. The first problem is then solved by demonstrating that the
original intensional transformation can be appropriately extended to handle a
language with user-defined data types (and pattern matching). This problem is
solved in this paper, which extends an idea that was presented last year in an
informal symposium [6]. It is also demonstrated that the proposed technique
can be used to compile a relatively large subset of Haskell into portable C code
whose performance is comparable to existing Haskell implementations, based on
more traditional compilation techniques.

The rest of the paper is organized as follows: Section 2 provides background on
the original intensional transformation and introduces the proposed generalized
transformation at an intuitive level, whereas Section 3 presents a formalization
thereof. Section 4 discusses the details of an implementation of the proposed
technique. Section 5 provides a performance comparison with several well-known
and efficient Haskell compilers. The paper concludes (Sections 6 and 7) with a
discussion of related work and directions for future research.

2 From the Original to the Generalized Transformation

In this section we introduce the intensional transformation in an intuitive way.
We start by outlining the original transformation (for an extensive discussion,
see [20,16]) and proceed by sketching our new approach with a simple example.
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2.1 The Original Intensional Transformation

The input to the original intensional transformation [20,16] is a first-order func-
tional program that only uses base data-types (such as integers, Boolean values,
and so on). We assume that all the variables in the program (i.e., function
names and their formal parameters) are distinct; this can obviously be achieved
by a straightforward preprocessing. The source program is then transformed
into a zero-order intensional program that only contains nullary definitions. The
name “intensional” reflects the fact that the resulting program additionally uses
two context-switching operators, whose semantics will be shortly described. The
transformation can be intuitively described as follows [16]:

1. Let f be a function defined in the source functional program. Number the
textual occurrences of calls to f in the program, starting at 0 (including calls
in the body of the definition of f).

2. Replace the i-th call of f in the program by call i (f). Remove the formal
parameters from the definition of f, so that f is defined as an ordinary
individual variable.

3. Introduce a new definition for each formal parameter of f. The right hand
side of the definition is the operator actuals applied to a list of the actual
parameters corresponding to the formal parameter in question, listed in the
order in which the calls are numbered.

To illustrate the algorithm, consider the following simple first-order program
on the left. The transformation produces the target program on the right:

result = f 3 + f 5

f x = g (x*x)

g y = y+2

result = call0(f) + call1(f)

f = call0(g)

g = y+2

x = actuals(3, 5)

y = actuals(x*x)

The above intensional code can be easily evaluated with respect to an initially
empty context. Evaluation contexts are in fact lists of natural numbers which,
intuitively, keep track of the exact position in the recursion tree where the ex-
ecution currently is. The operators call i and actuals are context-switching
operators: call i augments a list w by prefixing it with i, whereas actuals

takes the head i of a list, and uses it to select its i-th argument. One can now
easily define an EVAL function which evaluates the intensional program that
results from the transformation, as shown in Figure 1. The function is param-
eterized by the program p in which all evaluation takes place; this will often
be omitted to simplify presentation. The function body(v, p) returns the defining
expression of a variable v in program p. The evaluation of the usual constructs of
functional languages (if-then-else, arithmetic operations, etc.) are all expressed
by the rule for n-ary constants c (which, when n = 0 also covers the case of
nullary constants, such as numbers, characters, and so on). Notice that the or-
der of evaluation in this case depends on the meaning of the constant c: if c is
an arithmetic operator (e.g., “+”) then the recursive calls to EVAL will have to
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EVALp(v, w) = EVALp(body(v, p), w)
EVALp(call i (e), w) = EVALp(e, i : w)
EVALp(actuals(e0, . . . , en−1), i : w) = EVALp(ei, w)
EVALp(c(e0, . . . , en−1), w) = c(EVALp(e0, w), . . . ,EVALp(en−1, w))

Fig. 1. The EVAL function for the intensional language

EVAL(result, [ ])
= EVAL(call0(f) + call1(f), [ ])
= EVAL(call0(f), [ ]) + EVAL(call1(f), [ ])
= EVAL(f, [0]) + EVAL(f, [1])
= EVAL(call0(g), [0]) + EVAL(call0(g), [1])
= EVAL(g, [0, 0]) + EVAL(g, [0, 1])
= EVAL(y, [0, 0]) + EVAL(2, [0, 0]) + EVAL(y, [0, 1]) + EVAL(2, [0, 1])
= EVAL(actuals(x*x), [0, 0]) + 2 + EVAL(actuals(x*x), [0, 1]) + 2
= EVAL(x*x, [0]) + 2 + EVAL(x*x, [1]) + 2
= EVAL(x, [0]) ∗ EVAL(x, [0]) + 2 + EVAL(x, [1]) ∗ EVAL(x, [1]) + 2
= EVAL(actuals(3, 5), [0]) ∗ EVAL(actuals(3, 5), [0]) + 2+

EVAL(actuals(3, 5), [1]) ∗ EVAL(actuals(3, 5), [1]) + 2
= EVAL(3, [ ]) ∗ EVAL(3, [ ]) + 2 + EVAL(5, [ ]) ∗ EVAL(5, [ ]) + 2
= 9 + 2 + 25 + 2 = 38

Fig. 2. Execution of the target intensional program

be computed strictly; if on the other hand c corresponds to a non-strict operator
(e.g., if-then-else), then evaluation is dictated by the meaning of this operator.

The execution of our example intensional program derived above is given in
Figure 2. Notice that we assume that all source programs have a distinguished
variable result whose value we want to compute.

The evaluation function just described roughly corresponds to call-by-name:
notice how x is evaluated again and again under the same context. To obtain
a call-by-need implementation, one can use an appropriate warehouse, in which
triples of the form (variable, context, value) are stored — see [16, Sec. 12] for a
more extensive discussion on the history and details of this issue. Every time
the value of a variable under a given context is demanded, the warehouse is
searched. If an entry is found, the corresponding value is returned; otherwise,
the value of the variable under the current context is computed and placed in the
warehouse for possible future reuse. A more efficient way of memoizing results,
using lazy activation records (LARs), has been proposed in [4]; the idea of LARs
is generalized and used in Section 4.

2.2 The New Intensional Transformation

As mentioned in the introductory section, the intensional transformation was
never generalized to apply to a fully higher-order functional language nor to a
language that supports user-defined data-structures. From an implementation



The Generalized Intensional Transformation 161

point of view, higher-order functions and data-structures are closely connected,
since, using Reynold’s defunctionalization, one can reduce a higher-order pro-
gram to a first-order one that is enriched with appropriate data-structures [15].
In other words, the two problems can be simultaneously solved if we generalize
the intensional transformation to apply to first-order programs with user-defined
data types. For example, consider the following second-order Haskell program:

result = inc (add 1) 2 + inc sq 3

inc f x = f (x+1)

add a b = a+b

sq z = z*z

The source program is initially defunctionalized as shown below:

result = inc (fadd 1) 2 + inc fsq 3

inc f x = apply f (x+1)

add a b = a+b

sq z = z*z

data Func = Fadd Int | Fsq

fadd c = Fadd c

fsq = Fsq

apply cl d = case cl of

Fadd c → add c d

Fsq → sq d

The above is a standard defunctionalization with two small tricks. First, we have
introduced functions fadd and fsq which have replaced all occurrences of the
constructors Fadd and Fsq. Second, in the case pattern corresponding to Fadd,
we have used the same variable c that appears in the definition of fadd. These
two conventions (to be discussed more generally in Section 3) ensure that we
can apply the intensional transformation and obtain an equivalent zero-order
intensional program, exactly as we did before:

result = call0(inc) + call1(inc)

inc = call0(apply)

add = a+b

sq = z*z

fadd = Fadd

fsq = Fsq

apply = case cl of

Fadd → call0(add)

Fsq → call0(sq)

f = actuals(call0(fadd), fsq)
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x = actuals(2, 3)

a = actuals(c)

b = actuals(d)

z = actuals(d)

c = actuals(1)

cl = actuals(f)

d = actuals(x+1)

The above program can be executed following the same basic principles as the
one presented in the previous subsection, using a demand-driven interpreter in
the form of a function EVALp(e, w) that will be defined formally in Section 3.

3 A Formal Account of the Generalized Transformation

In this section we present the generalized transformation in a more formal way.
Since defunctionalization is a well-known and broadly used technique, in the
following we will not discuss it any further. Instead, from now on we will as-
sume that our source language is a lazy first-order functional language with
user defined data-types (i.e., a language whose syntax matches the syntax of the
programs that are produced by defunctionalization). We will call this language
FOFL (First-Order Functional Language).

The syntax of FOFL is defined by the following context-free grammar, where
f and v range over variables, c ranges over constants, κ ranges over constructors,
and n,m ≥ 0. When n = 0, we will omit the empty parentheses.

p ::= d0, . . . , dn program

d ::= f(v0, . . . , vn−1) = e definition

e ::= c(e0, . . . , en−1) | f(e0, . . . , en−1) | κ(e0, . . . , en−1) expression

| case e of { b0 ; . . . ; bn } | #m(v)

b ::= κ(v0, . . . , vn−1)→ e case clause

As outlined in the previous section, we assume that FOFL programs are in
a normalized form. We assume that the formal parameters of all functions are
distinct. This can be achieved by simple renaming. Furthermore, for each con-
structor κ with n arguments, there will be a function defined as:

fκ(v0, . . . , vn−1) = κ(v0, . . . , vn−1)

and all occurrences of κ in the program will be replaced by occurrences of fκ. We
also assume that patterns corresponding to κ in all case expressions will use the
same variables v0, . . . , vn−1 that appear in the definition of fκ. Unfortunately,
this cannot be achieved by simple renaming, as there may be nested case ex-
pressions. For this reason, we introduce a special form of expressions #m(v) that
will resolve such scoping issues.

Roughly speaking, #m(v) corresponds to the variable v that is bound in a
pattern of the m-th enclosing case expression. For example, function apply in
the example of the previous section will be written as:
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apply (cl , d) = case cl of {
Add(c)→ add(#0(c), d);
Sq → sq(d)

}

where #0(c) corresponds to the variable c bound by the pattern Add(c) of the
case expression. An example with nested case follows, where the expression on
the left (in Haskell syntax, calculating the sum of the first two elements of a list)
can be normalized as shown on the right:

case l of

Nil → 0

Cons x xs →
case xs of

Nil → x

Cons y ys → x+y

case l of {
Nil → 0;
Cons(h, t)→

case #0(t) of {
Nil → #1(h);
Cons(h, t)→ +(#1(h), #0(h))

}
}

Notice here that the same set of variables (h, t) is used in both patterns for Cons
and that x and y, which both correspond to h, are distinguished by the value of
m (the nesting depth of case expressions).

3.1 The Generalized NVIL

FOFL programs are transformed into zero-order intensional ones in the language
NVIL (Nullary Variables Intensional Language). For more background on such
languages, the interested reader can consult the first sections of [16]. The only
difference of NVIL from the corresponding language defined in [16] is that the
former supports user-defined data types. The syntax of NVIL is given by the
following context-free grammar. Notice that the syntax of the intensional opera-
tors (call and actuals) is slightly different from the one informally introduced
in Section 2 and that #m(v) has been replaced by the more general #m(e).

p ::= d0, . . . , dn program

d ::= f = e definition

e ::= c(e0, . . . , en−1) | f | κ | case e of { b0 ; . . . ; bn } expression

| #m(e) | call	(e) | actuals(〈e	〉	∈I)

b ::= κ→ e case clause

In Section 2, operator call was labeled by a natural number i and opera-
tor actuals received a sequence of expressions, indexed by i. Here, we slightly
change this and take the index to be any element � from an appropriate set
Labels . Therefore, call is labeled by � and actuals receives a sequence of ex-
pressions e	 indexed by labels ranging over a subset I ⊆ Labels . We represent
this sequence as 〈e	〉	∈I . This convention does not affect the semantics of NVIL
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EVALp(c(e0, . . . , en−1), w) = c(EVALp(e0, w), . . . ,EVALp(en−1, w))
EVALp(f, w) = EVALp(body(f, p), w)
EVALp(κ, w) = 〈κ,w〉
EVALp(case e of {κ0 → e0; . . . ; κn → en}, 〈
, w, μ〉) = EVALp(ei, 〈
, w,w′ :μ〉)

if EVALp(e, 〈
,w, μ〉) = 〈κi, w
′〉

EVALp(#
m(e), 〈
,w, μ〉) = EVALp(e, μm)

EVALp(call�(e), w) = EVALp(e, 〈
, w, •〉)
EVALp(actuals(〈e�〉�∈I), 〈
, w, μ〉) = EVALp(e�, w)

Fig. 3. Semantics of NVIL

but will be useful in the definition of the intensional transformation and its proof
of correctness (not discussed in this paper).

The semantics of NVIL is given in Figure 3. As discussed in Section 2, it
is defined in the form of an evaluation function EVALp(e, w), where p is the
program, e is the expression to be evaluated, and w is the intensional context.
In contrast to the simple structure of contexts (lists of labels) used in [16], the
introduction of user-defined data types requires a more complex kind of contexts,
similar to lists with backpointers (b-lists) defined by Yaghi [20].

Contexts are defined by the following grammar. The new element is μ, which
is a list of contexts corresponding to nested case expressions.

w ::= • | 〈�, w, μ〉
μ ::= • | w :μ

The result of function EVALp(e, w) is either a ground value, which is returned
by the meaning of some operator c (e.g., an integer number), or a pair of the form
〈κ,w〉, which corresponds to a value of a user-defined data type. In the latter case,
κ is the constructor that was used to build this value and w is the context that
must be used to evaluate the constructor’s arguments. This semantics is captured
in the equation for EVALp(κ,w); remember that such expressions can only occur
in the bodies of functions fκ that have been introduced for all constructors κ.

The semantics of call and actuals operate on the context in the same way
as informally introduced in Section 2; call adds a new label to the context and
actuals selects the expression to evaluate based on the current label, which it
removes from the context. The most interesting parts of the semantics are the
equations for case and for #m. In the former, the expression to be analyzed is
evaluated and is found to be of the form 〈κi, w

′〉 for some constructor κi that
is mentioned in one of the clauses of case. (This is guaranteed if the program
is well typed and case clauses are exhaustive, but we do not discuss typing
issues in this paper.) Evaluation proceeds with the body ei of that clause but
the context w′ is prepended to the list μ of contexts corresponding to nested
case expressions. If later, in the evaluation of ei, an expression of the form
#m(e) is found, the context μm found in the m-th position of the list μ is used
for evaluating e, instead of the current context.
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E(c(e0, . . . , en−1)) = c(E(e0), . . . , E(en−1))
E(f) = f
E(f(e0, . . . , en)) = call�(f) where 
 = 〈e0, . . . , en〉
E(κ(e0, . . . , en−1)) = κ
E(case e of {b0; . . . ;bn}) = case E(e) of {B(b0); . . . ; B(bn)}
E(#m(e)) = #m(E(e))
B(κ(v0, . . . , vn−1) → e) = κ → E(e)

actdefs(f, p) =

n−1⋃
j=0

{vj = actuals(〈E(lj)〉l∈I)}

where v0, . . . , vn−1 are the formal parameters of f and I = labels(f, p)

Trans(p) =
⋃

f(v0,...,vn−1)=e in p

{f = E(e)} ∪ actdefs(f, p)

Fig. 4. The transformation algorithm from FOFL to NVIL

3.2 The Intensional Transformation from FOFL to NVIL

We start by defining the set labels(f, p), i.e., the set of labels of calls to f in
program p. These labels will form the indices of call operators. More specifically,
the label of a function call f(e0, . . . , en−1) is simply the sequence of its arguments
〈e0, . . . , en−1〉. In other words, the transformed form of the call f(e0, . . . , en−1)
will be call	 where � = 〈e0, . . . , en−1〉. This assumption is slightly different from
the one presented in Section 2.1 but it helps us in two ways. First, using this
assumption, two identical function calls in the program receive exactly the same
label. Second, since a label � is a sequence of the actual parameters of a function
call, we can write �m in order to specify the m-th actual parameter of this call.
This helps us simplify notation. Recapitulating:

labels(f, p) = {〈e0, . . . , en−1〉 | f(e0, . . . , en−1) in p}

We can now define the overall transformation from FOFL to NVIL, as shown in
Figure 4. Given a program p, the function Trans(p) removes the formal parame-
ters from all definitions and adds one extra definition for every formal parameter
of every function in the program. The creation of these extra definitions is per-
formed by the function actdefs . More specifically, given a function f with formal
parameters v0, . . . , vn−1, the function actdefs(f, p) creates one actuals defini-
tion for each vj ; this definition contains a sequence of all the (processed) actual
parameters of f in p that correspond to the j-th position. Finally, we have the
functions E and B, which process expressions and case clauses. The main role of
these two functions is to replace function calls with corresponding occurrences
of the operator call.
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4 The Implementation

In this section we describe an implementation of the generalized intensional
transformation. The key idea of the implementation is that for every definition
in the target intensional program, a corresponding piece of C code is generated,
parameterized by the current context. In fact, the C code implements a more
efficient version of the EVAL function in Figure 3. The runtime system uses a
stack and a heap. However, in contrast to the standard implementation of user-
defined data types that are represented as heap objects, the only entities that
are stored in the stack and the heap are Lazy Activation Records (LARs), which
we adapt here from our previous work [4]. A LAR is created when an expression
of the form call	(f) is encountered during the execution of the program. LARs
are similar to traditional activation records where, among other things, function
parameters are stored. Some of the fields in a LAR are not filled at the time
of the function call, when the LAR is constructed, but only when their value
is actually demanded by the implementation. Notice that when the value of
a formal parameter under a given context is demanded again during execution,
then the existing value for this formal parameter can be retrieved from the LAR.
In other words, the LARs implement a call-by-need semantics, as discussed at
the end of Subsection 2.1.

A LAR corresponds directly to a context of the form w = 〈�, w′, μ〉 in the
definition of function EVAL in Figure 3. More specifically, it contains the fields:

– prev : a pointer to the parent LAR, i.e., the LAR of the function that invoked
this one. It corresponds directly to w′ above.

– arg0, . . . , argn−1: each argi points to the code corresponding to the i-th for-
mal parameter of the function call that generated this LAR. This is an
encoding of �, in the formal semantics of NVIL, and can be directly used to
evaluate the function’s arguments.

– val0, . . . , valn−1: each val i memoizes the value of the corresponding arg i. It
is initially empty and will be filled on demand: if at some point the code
stored in arg i is executed and computes a value, this value will be stored in
val i for future use. This implements a call-by-need semantics.

– nested : this field corresponds directly to μ. It is in fact an array which mem-
oizes the values of expressions used in nested case constructs. In particular,
when an expression of the form #m(e) is later encountered, nested [m] points
to the LAR that must be used to evaluate e.

With all this in mind, the compilation of the NVIL program to C code faithfully
follows the rules of EVALp given in Figure 3.

The main difference between our approach and the standard implementation
of non-strict functional languages is the absence of closures. In the traditional
implementation of call-by-need, the field arg i would contain a closure consisting
of: (i) a pointer to the code that will compute the i-th parameter, and (ii) an
environment, providing the values of the captured variables that this code needs
to use. On the other hand, in our implementation, arg i is just a code pointer.
The environment has been eliminated, as the intensional transformation has
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encoded it in the context (i.e., a pointer to a LAR) that will be passed to arg i.
All variables correspond to top-level, zero-order definitions and it is the context
that guides evaluation and produces the correct values of these variables.

The implementation includes certain rather simple optimizations which focus
on allocating LARs on the stack whenever this is possible:

– Functions returning ground values (e.g., integers or booleans) or data types
with only nullary constructors allocate their LARs on the stack and deallo-
cate them on return.

– Functions that may return data types built by non-nullary constructors al-
locate their LARs on the heap.

Using this scheme, programs that do not make extensive use of user-defined data
types can benefit from stack allocation. Further optimizations are possible, such
as tail call elimination, but have not yet been implemented. Usage analysis can
also be handy for further optimizations. If, for example, it is known that the
value of some arg i is only used once, then it need not be stored in val i.

Stack-allocated LARs are discarded immediately when the active function call
terminates. On the other hand, a garbage collector is required to discard heap-
allocated LARs. We have currently implemented a simple semi-space copying
garbage collector but we intend to investigate this further and expect that much
better performance can be achieved with a garbage collector more suitable for
the nature and usage of LARs; this is one of the primary goals for our future
research. The root set for garbage collection is calculated by traversing stack-
allocated LARs and the active context.

5 Performance Evaluation

In order to evaluate the performance of our implementation, we benchmarked it
against four other well-known Haskell compilers:1

– The Glasgow Haskell Compiler (GHC): the definitive compiler for Haskell.
– The Utrecht Haskell Compiler (UHC): implemented using attribute gram-

mars and supporting most features of Haskell 98 and Haskell 2010.
– The NHC98: a small and portable compiler for Haskell 98.
– The JHC: an experimental and fast compiler for Haskell, implemented in

order to test various optimizations for the language.

The comparison is based on a set of 13 benchmark programs, most of which are
standard benchmarks for lazy functional languages, e.g. coming from the NoFib
benchmark suite [11]. Some of the programs perform purely numerical compu-
tations (such as the programs ack, fib, primes and queens-num), pure list pro-
cessing (such as naive-reverse and fast-reverse), numerical computations
combined with list-processing and/or higher-order functions (such as church,

1 The code of our implementation and the benchmark programs that we used are
available from http://www.softlab.ntua.gr/~gfour/dftoic/

http://www.softlab.ntua.gr/~gfour/dftoic/
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Program GIC GIC-llvm GHC7 GHC6 NHC UHC JHC

ack 2.47 1.25 0.62 0.48 6.18 40.03 0.05
church 3.55 2.09 0.61 0.55 11.58 68.37 0.17
collatz 0.69 0.41 1.07 2.66 84.28 46.90 0.16
digits of e1 2.30 2.09 0.77 1.74 60.71 75.29 –1

fast-reverse 3.03 1.95 1.74 1.82 1.35 9.41 –2

fib 1.35 1.12 0.50 0.51 10.43 55.55 0.17
naive-reverse 3.02 2.87 0.49 0.42 0.79 3.56 0.75
ntak 8.62 5.87 2.91 3.65 154.74 91.95 7.18
primes 2.55 1.58 2.19 2.30 172.45 173.81 0.73
queens-num 0.33 0.23 0.31 0.33 21.16 12.43 0.14
queens 3.92 3.24 0.44 0.48 27.17 123.98 0.82
quick-sort 3.18 2.77 1.92 1.90 1.51 5.42 8.58
tree-sort 2.19 1.97 0.39 0.33 0.91 6.58 0.72

GMR3 1.38 1.00 0.51 0.57 7.28 18.49 0.33

1 jhc compilation error, 2 jhc runtime error.
3 Geometric mean of the ratios, compared to GIC-llvm.

Fig. 5. Runtime comparison for 13 benchmarks. Execution times are in seconds.

ntak, collatz, digits of e1, quick-sort), and other user-defined data types
(such as queens and tree-sort).

The benchmarks were performed on a machine with four quad-core Intel Xeon
E7340 2.40GHz processors and 16 GB memory, running Debian 6.0.5. The ver-
sions of the compilers tested were GHC 7.4.1 and GHC 6.12.1, UHC/EHC 1.1.4,
NHC98 1.22, and JHC 0.8.0. Our own compiler is shown in the benchmarks table
as GIC (the Generalized Intensional Compiler). All benchmarks were executed
five times and the median (elapsed) execution time was recorded. For all compil-
ers the effects of garbage collection were minimized by setting a large size for the
heap — in practice all programs either did no garbage collection at all or only
a few. Finally, we disabled strictness analysis from all compilers that supported
such an option, so as to focus on the performance of genuine lazy implementa-
tions. As this results in a significant slowdown for compilers like GHC, we will
have to repeat the experiment when a competitive strictness analysis has been
implemented for our compiler.

The performance results are depicted in Figure 5. In this table, GIC-llvm is
the generalized intensional compiler whose C output is compiled using llvm-gcc,
the front-end of gcc to the LLVM compiler. We used GCC 4.4.5 and LLVM 2.6.
The benchmarks appear to suggest the following conclusions:

– Compiling the target C code of the generalized intensional compiler with
llvm-gcc is quite more efficient than with standard gcc. Very similar re-
sults were also obtained using clang. In the following, when we refer to the
intensional compiler, we mean GIC-llvm.

– The intensional implementation is on the average 2-3 times slower than
the fully optimized implementations GHC6 and GHC7. Notably, for collatz,
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primes, and queens-num, the intensional system performs better than GHC6

and GHC7. Since the intensional compiler does not currently support any so-
phisticated optimizations, we believe that there is room for much improve-
ment in our implementation.

– In certain programs (e.g., ack and church) GHC6 performs better that GHC7.
This has been reported (ticket #5888 in the GHC bug tracking system); it
is related to a GHC optimization for unboxing integer values which seems
to have deteriorated in GHC 7. It is expected to be fixed in release 7.6.1.

In general, we feel that the performance results are quite promising for the
intensional approach, especially if we take into consideration that it is a far less
mature compiler and that its implementation mainly aimed at simplicity and
not performance, at this point.

6 Related Work

The work described in this paper, has its roots in the area of dataflow program-
ming, which flourished more than three decades ago. It is also connected to the
area of intensional and multidimensional programming [2] which was later devel-
oped as an extension of dataflow programming. The proposed technique has its
origins in the key ideas that have been developed in order to implement dataflow
and intensional languages.

Implementation Techniques for Dataflow Languages. In the dataflow model of
computation, data are processed while they are flowing through a network of
interconnected nodes (or dataflow network). A dataflow network is a system of
processing units (or nodes) which are connected with communication channels
(or arcs). Nodes can have multiple input and output arcs. The most advanced
form of dataflow is the so-called tagged token dataflow in which the data-items
are labeled with tags (or contexts). A node can fire if it receives in its input arcs
data-items that have the same tags. The tagged-token approach obviates the
need of data-items to arrive in a strictly pipelined way.

The majority of languages that were used to program dataflow computers
were functional in flavor. Therefore, there existed an obvious need to compile
recursive functions in a way compatible with the tagged-token model. Many such
implementations were developed (e.g., see [9,1]). The key idea of such implemen-
tations was to use tags to distinguish data items that belong to different function
invocations. This tag-based implementation of recursive functions was known in
the dataflow circles as coloring. Under the coloring scheme, higher-order func-
tions were implemented by introducing special apply nodes in the dataflow graph
that used a closure representation for function dispatch [18,12].

The similarity of coloring with the approach proposed in this paper should be
apparent by now. Tags correspond to the contexts in our technique. In particular,
a context in our technique is used in order to uniquely identify a particular
function call in the recursion tree of a program. One can say that the proposed
approach transfers the key ideas of dataflow implementations to mainstream lazy
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functional languages. The novel aspects of our approach are the extension of the
coloring technique to a language with user-defined data-types and its efficient
implementation on stock hardware.

Intensional Languages and their Implementation. The development of dataflow
languages was continued during the nineties with the invention of an extension
of dataflow programming, namely intensional programming [2]. The first inten-
sional/dataflow language was Lucid [19] whose implementation was based on
the original intensional transformation which was formalized through the use of
intensional logic in A. Yaghi’s Ph.D. dissertation [20]. The correctness of the in-
tensional transformation was established in [16]. The novel aspect of the current
approach with respect to the original intensional transformation is the support
of user-defined data-types and pattern matching.

A recent extension of Lucid is the language TransLucid [13]. The problem
of implementing higher-order functions in the context of TransLucid has been
considered and the solution that has been proposed is through an explicit rep-
resentation for closures using extra dimensions (which amount to multiple con-
texts). To our knowledge, the technique for implementing TransLucid has not
been applied to more mainstream functional languages.

Finally, we should note that (to our knowledge) all implementations of in-
tensional languages rely on a runtime structure known as the warehouse. The
warehouse is a hash-table in which intermediate results are stored in order to
be reused when demanded again. Despite the fact that our technique shares the
same underlying demand-driven execution model with the intensional languages
(since they all rely on the original intensional transformation), our runtime struc-
tures and implementation decisions are completely different.

Implementations of Functional Languages. In general, the intensional approach
to implementing functional languages appears to differ in philosophy with re-
spect to the graph-reduction-based implementations. The work that appears to
be closest to our approach is Boquist’s GRIN compiler [3], which is also based
on a defunctionalized representation. While GRIN uses a variety of “tags” to
characterize different constructs of a lazy language (constructors, function ap-
plications, and partial applications), we use a uniform representation for these
three types of constructs. GRIN was based on a strict first-order language, in
contrast to our source language, FOFL, which is non-strict. Moreover, GRIN
directly compiled its language for graph reduction using custom optimizations
such as a unique interprocedural register allocation algorithm; we transform it
to a zero-order intensional language and compile the intensional representation
into C code, using a runtime that is based on lazy activation records.

The generalized intensional transformation has some conceptual similarities
with environment-based abstract machines, like the work of Friedman and Wise
[7], Henderson and Morris [8], and Krivine [10], or the environment-based STG
machines of De La Encina and Peña [5]. One important distinction of the in-
tensional approach with respect to the above, is that our technique is based on
a first-order source language. However, one could say that the contexts of our
technique play in some sense the role of the environment, since they guide the
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execution mechanism to perform the correct substitution in the body of a func-
tion. We feel that a further investigation of the connections between the two
approaches is quite worthwhile.

7 Conclusions and Future Work

We have introduced the generalized intensional transformation, an extension
of the original intensional transformation that can be used to implement lazy
functional languages with user-defined data types. We have demonstrated the
usefulness of the proposed technique by implementing such a compiler for a
subset of Haskell and by comparing its performance with existing Haskell imple-
mentations. There are certain aspects of the technique that appear to require a
more extensive investigation:

– Our implementation currently compiles only a fragment of Haskell. It is our
intention to extend the implementation to cover the full language. One pos-
sibility would be to make our implementation a back-end to GHC, since the
GHC core language is (roughly speaking) a higher-order version of our FOFL
language. This would allow us to take advantage of all the optimizations and
language extensions of GHC.

– Our technique is heavily based on defunctionalization. It is a well-known
fact that defunctionalization is a whole-program transformation and there-
fore one cannot do separate compilation. This is one aspect of our approach
which we intend to further investigate. The discussion given in the con-
cluding section of [14] might be a good start on lifting this shortcoming of
defunctionalization.

– At present, the compiler only supports a minimal set of optimizations and the
runtime system was implemented having simplicity as the driving criterion
rather than efficiency. We are currently investigating optimizations at the
intensional level and we plan to fine-tune the runtime in order to achieve
a better performance. We also intend to investigate the possibility of using
LLVM (instead of C) as the compiler’s target language.

– We have implemented a simple-minded garbage collection scheme for LARs,
which is currently non-portable and not mature enough to be discussed in
this paper. We expect the implementation of an efficient garbage collector
to be one of the major efforts of our future research, in conjunction with a
possible re-implementation of the runtime system.

We feel that the simplicity of the technique and the promising performance
results suggest that the intensional approach is worth further consideration as
an alternative technique for implementing lazy functional languages.
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Abstract. There have been many studies on termination analysis of
logic programs but little has been done to analyze their non-termination,
an even more important task, in our opinion. Non-termination analysis
examines program execution history when non-termination is suspected
and attempts to inform the programmer about possible ways to fix the
problem. This paper attempts to fill in the void. We study the prob-
lem of non-termination in tabled logic engines with subgoal abstraction,
such as XSB, and propose a suite of algorithms, called non-Termination
Analyzer, Terminyzer, for automatic detection of non-termination and
explaining it to the user. Terminyzer includes several non-termination
analysis approaches of different computational complexity. These ap-
proaches are all based on analyzing forest logging traces and supply
sequences of tabled calls that are likely causes of non-terminating cycles.
It also provides the sequences of functors that are applied repeatedly
to generate infinitely many answers and thus helps programmers debug
large programs by focusing on much smaller subsets of rules.

Terminyzer is included in both XSB and Flora-2 , and all examples
used in this paper are available online1.

Keywords: non-termination analysis, termination analysis, logic
programming, forest logging, tabling, subgoal abstraction.

1 Introduction

The development of high-level logic languages such as Flora-2 and SILK aims
at making logic-based knowledge representation accessible to knowledge engi-
neers who are not programmers. This type of users cannot be expected to de-
bug the procedural aspects of the rule bases that they create and thus they
require special support. In the course of the SILK project we discovered that
non-termination due to the use of HiLog [2] and function symbols is one of the
most vexing problems such users are facing, which motivated the present work.
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There are three main scenarios where programs may not terminate. First,
recursion can cause non-termination under the usual Prolog evaluation strategy.
For instance, the following simple program will not terminate in Prolog:

p(X) :- p(X).

?- p(a).

This kind of problems have been successfully addressed by adding SLG resolution
(also known as tabling) to Prolog, and a number of systems support it to various
degrees (XSB [17], Yap [3], B-Prolog [21], Ciao [5]).

The second scenario where programs might not terminate, even under SLG
resolution, occurs when increasingly deep nested calls are generated during the
evaluation. Consider the following simple program:

:- table p/1.

p(X) :- p(f(X)).

?- p(a).

In this case, the following calls will be successively generated: p(a), p(f(a)),

p(f(f(a))), and so on. Since neither call subsumes the other, tabling will not
be able to evaluate the query and terminate. However, the technique known as
subgoal abstraction can take care of this problem. The essence of the technique
is to modify the calls by replacing (“abstracting”) subterms with new variables
once certain term depth limit has been reached. For instance, in our example
we could abstract calls once the depth limit of 4 has been reached. As a re-
sult, p(f(f(f(f(a))))) and all the subsequent calls would be abstracted to
p(f(f(f(X)))).

For instance, in XSB (which to our knowledge is the only system that sup-
ports both tabling and subgoal abstraction), the above program will terminate.
Generally, tabling with subgoal abstraction will evaluate queries that have finite
number of answers. Thus, the only remaining scenario is when both tabling and
subgoal abstraction are used, but query evaluation does not stop because the
number of answers to the query or its subqueries is infinite. An example one
program that exhibits this behavior is

:- table p/1.

p(a).

p(f(X)) :- p(X).

?- p(X).

where the query has the answers p(a), p(f(a)), p(f(f(a))) and so on.
In general, such queries cannot be evaluated completely, but if the program is

what the user intended, the user could ask the system to stop after getting the
first few answers. The problem arises when this was not the intended result. For
small programs with only a few rules, expert programmers might be able to find
the causes of the problem. However, for large knowledge bases with hundreds
or thousands of rules this becomes a difficult task even for a seasoned logic
programmer. For a knowledge engineer who is not a programmer, debugging
non-termination is out of the question.
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Note that neither program termination (the halting problem) nor the problem
of whether the number of answers is finite is decidable [14,15], so no algorithm
can provide guarantees of termination or to prove non-termination in general.
Sufficient conditions for termination of logic programs have been proposed in the
literature [14,18,8,1,10,11,13], but most deal with Prolog or Prolog-like evalua-
tion strategies. Neither tabling nor subgoal abstraction were taken into account,
so these works have very limited use for advanced logic engines like XSB and
its derivatives, Flora-2 and SILK. This paper therefore takes a different track
on the problem: developing techniques that can help users analyze the causes
of non-termination. We introduce a suite of algorithms, called Non-termination
Analyzer, or Terminyzer, which are based on the analysis of logs produced by
table operations for calls to tabled predicates. The algorithms report the poten-
tial causes of non-termination with increasing level of fidelity and precision. Of
course, the higher-fidelity algorithms have higher complexity.

The paper is organized as follows. Section 2 provides the basics of tabling
and forest logging in XSB. Section 3 introduces three algorithms underlying
Terminyzer and discusses their complexity. Section 4 describes the experimental
studies, and Section 5 discusses related work and concludes the paper.

2 Tabling and Forest Logging in XSB

The limitations of the standard SLD resolution-based evaluation strategy used in
Prolog are well-known: it is woefully incomplete and can go into an infinite loop
even for simple Datalog rule sets. To address this limitation, SLG resolution (also
known as “tabling”) was developed and implemented [17]. In tabled evaluation,
calls to certain predicates, which are declared as tabled, are cached in a table T
to be used by subsequent calls. T can be viewed as a set of pairs of the form
(call, answers) where answers are proven instances of call.

When a tabled call, call, is issued, SLG examines whether there is a pair
(call′, answers′) ∈ T such that call is similar (to be explained shortly) to call′.
If so, then answers′ are used to satisfy call and no clause resolution is performed
for call. In this case, call is referred to as the consumer of call′ while call′ is
the producer of call. Otherwise, a new table entry of the form (call, answers)
is added to T , where initially answers = ∅. Then call is resolved against pro-
gram clauses as usual in Prolog. All newly derived answers for call are added
to answers, call becomes a producer of these answers, and all subsequent calls
that are similar to call become consumers of call’s answers.

There are two main ways to define call-similarity mentioned above. Depending
on which notion is chosen, the tabling strategy is called variant or subsumptive.
In variant tabling, call is similar to call′ if call is a variant of call′, i.e., they
are identical up to variable renaming. In subsumptive tabling, call is similar to
call′ if call is subsumed by call′, i.e., there is a variable substitution σ such that
σ(call′) = call. Note that in this case the notion of similarity is asymmetric. Since
only unique answers are added to the table and returned to consumers, tabled
evaluation terminates if there is only a finite number of tabled calls and each
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tabled call has finitely many answers. For instance, this is the case in Datalog,
i.e., when function symbols are not present. It has been proven that tabled
evaluation terminates for any program with the bounded term depth property,
i.e., all terms that are ever generated in the course of SLG resolution, including
all calls and answers, have an upper bound on their depth [17].

The workings of SLG resolution can be captured by an SLG forest, which has
an SLG tree for every new (dissimilar) call to a tabled predicate. The SLG tree
for call has root of the form call :- call, and each non-root node is of the form
θ(call) :- θ(subgoals), where θ(subgoals) are the remaining calls needed to prove
call and θ is the substitution obtained from resolving call against the knowledge
base. If θ(subgoals) is an empty clause, θ(call) is an answer to call. Each edge
in the tree corresponds to a derivation step of clause resolution or an answer
lookup by consumers.

Example 1. The SLG forest for the following program is shown in Figure 1,
where each node is labeled with an ordinal denoting the creation order of the
node during evaluation.

:- table path/2.

edge(1,2). edge(1,3). edge(2,1).

path(X,Y) :- edge(X,Y).

path(X,Y) :- edge(X,Z), path(Z,Y).

?- path(1,Y).

This is a simplified version of an example in [16]. �

Fig. 1. The SLG Forest for Example 1

Compared to Prolog systems, logic engines that support tabling are much
more involved. They suspend and resume computation paths, delay negated calls
that are involved in loops through negation, simplify these calls once their truth
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values become known, and manage the table accordingly. For debugging and
performance optimization, programmers sometimes need to inspect table opera-
tions during evaluation. To this end, XSB provides forest logging (logforest),
which makes the table events available to the programmer. These events include:

– Call to a tabled predicate.When a subgoal call, child, is made during the eval-
uation of parent, a Prolog fact of the form tc(child, parent, status, counter)
is logged. Here counter is an ordinal representing the unique id and sequence
order of the above event and status, the current status of child, is

• new if child is a newly issued call;
• cmp if the evaluation of child has been completed; and
• incmp if child is not a new call, but is yet to be completely evaluated.

If child is the first tabled call in an evaluation, parent is the node root.
– Derivation of a new answer. When a new answer ans is derived for call and

added to the table, the fact na(ans, call, counter) is added to the log.
– Return of an answer to a consumer. If an answer ans is returned to a con-

sumer child which is issued during evaluation of parent, the fact ar(ans,
child, parent, counter) is added to the log.

– Subgoal completion.

• When a set S of mutually recursive subgoals are completely evaluated,
logforest records cmp(call, sccnum, counter) for each call ∈ S, where
sccnum is an ordinal that identifies this set of mutually recursive calls.
• If a subgoal call is completed early (i.e., its truth is established with-
out the need to fully evaluate all the dependent subgoals), cmp(call, ec,
counter) is logged where ec stands for early completion.

– Table abolishes and errors. These events correspond to user-requests to abol-
ish parts of the table or to errors issued by the evaluation mechanism. Such
events are not needed for our purposes and we will omit them in the sequel.

Example 2. For the SLG forest of Example 1, the logforest trace is given in the
first column of Table 1. The second column in the table is the label of the node
in the tree of Figure 1 where a corresponding event happens. The third column is
an explanation. An answer for a call is represented as a substitution for the list of
variables in the call. For instance, in the second log entry na([2], path(1, v0), 1),
the answer is represented as [2] and the list of variables in the call path(1, v0)
are [ v0]. It means that the substitution v0 = 2 is an answer. �

3 Terminyzer: Non-termination Analyzer

Since logforest records only table operations during evaluation and is imple-
mented in C, it works much faster and produces much smaller logs compared
with traditional tracing facilities [16]. This makes it possible to analyze forest
logging traces and thus help to debug large programs. Recall that with SLG and
subgoal abstraction, the only scenario where query evaluation may not terminate
is when it or its subqueries have an infinite number of answers.
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Table 1. Forest Log for the Evaluation of Example 1

Log Label Explanation

tc(path( 1, v0),root,new,0) 1 initial call
na([ 2],path( 1, v0),1) 3 new answer
na([ 3],path( 1, v0),2) 4 new answer
tc(path( 2, v0),path( 1, v0),new,3) 7 new call made by node 6
na([ 1],path( 2, v0),4) 9 new answer
tc(path( 1, v0),path( 2, v0),incmp,5) 11 repeated incomplete call
ar([ 2],path( 1, v0),path( 2, v0),6) 12 table look up, answer to consumer
na([ 2],path( 2, v0),7) 12 new answer
ar([ 3],path( 1, v0),path( 2, v0),8) 13 table look up, answer to consumer
na([ 3],path( 2, v0),9) 13 new answer
tc(path( 3, v0),path( 1, v0),new,10) 15 new call made by node 14
cmp(path( 3, v0),3,11) 15 evaluation completed
ar([ 1],path( 2, v0),path( 1, v0),12) 9 return to consumer
na([ 1],path( 1, v0),13) 6 new answer
ar([ 2],path( 2, v0),path( 1, v0),14) 12 return to consumer
ar([ 3],path( 2, v0),path( 1, v0),15) 13 return to consumer
ar([ 1],path( 1, v0),path( 2, v0),16) 6 return to consumer
cmp(path( 1, v0),1,17) 1 evaluation completed
cmp(path( 2, v0),1,18) 7 evaluation completed

In this section, we describe three algorithms from the non-termination analysis
suite Terminyzer. These algorithms target different aspects of non-termination
and are useful separately and in combination—they are incomparable in terms of
their usefulness. However, of the three, the first method, call sequence analysis, is
both sound and complete, and is computationally less expensive. The other two
algorithms are only complete, i.e., they enumerate all causes of non-termination,
but some of the causes that they flag may turn out to be false-positives.

The algorithms are based on stopping the execution after a time limit set by
the user or after the evaluation starts producing answers that exceed certain size
limits, and then analyzing the logs. Our examples assume that the system stops
after generating query answers of depth greater than 5. We emphasize that due
to the undecidability results mentioned in the introduction, one cannot algo-
rithmically prove non-termination in all cases unless infinite logs are available.
Pragmatically, this means that, in working with Terminyzer, one must assume
that the available logs are “long enough.”

3.1 Call Sequence Analysis

Call sequence analysis finds sequences of calls to tabled predicates and each such
sequence is a potential cause for non-termination. As discussed in Section 2, when
a call to tabled predicate has been completely evaluated and all its answers have
been recorded in the table, logforest dumps a corresponding log entry of the
form cmp(call, sccnum, counter). We say that such calls are finished. Otherwise,
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the call is unfinished. We write unfinished call(child, parent, counter) to indi-
cate that the call child has been issued in the SLG tree for parent by an event
with id counter but the call is still unfinished. Since parent is waiting for the
answers from the table created for child, parent is a child of another unfinished
call. The initial call, root, has no parent.

The unfinished-call child-parent graph (CPG) for a forest logging trace is a
directed graph Gunfinished = (N , E) where the set of nodes is N = {child |
unfinished call(child, parent, counter)}∪{root}. Each node call ∈ N is labeled
with the counter value of the event that originally issued call; this label is written
as call.label. The label of initial call root is -1. A directed edge (call1, call2) ∈ E
exists in Gunfinished if and only if call1 is an unfinished call parent of call2, i.e.,
unfinished call(call2, call1, counter) is true. Also, the edge that corresponds to
unfinished call(call2, call1, counter) is labeled by counter. The labels of nodes
and edges preserve the temporal order of their creation in forest logging trace.

An unfinished-call path is a path with no repeated edges in Gunfinished; it is
called an unfinished-call loop if it is a cycle. An unfinished-call path of the form
[call, call] means that there is an edge (call, call) ∈ E and it is also an unfinished-
call loop. Loops that represent the same cycles in CPG are considered to be the
same and we keep only one representative for each such set of loops. For instance,
[a, b, c, a] and [b, c, a, b] are the same loop while [a, b, c, a] and [a, c, b, a] are not.

Example 3. The evaluation of query ?- p(X) against the following program

:- table p/1, q/1.

p(a). q(b).

p(f(X)) :- q(X). q(g(X)) :- p(X).

will produce logs containing unfinished calls shown in Figure 2(A) where the calls
are sorted according to counter values. The corresponding unfinished-call CPG
is depicted in Figure 2(B) with each node and edge labeled. The unfinished-call
CPG has seven unfinished-call paths shown in Figure 2(C); [p( v0), q( v0), p( v0)]
and [q( v0), p( v0), q( v0)] are also unfinished-call loops (they are marked with a
square in Figure 2(B)). Since they are the same loop, we keep only one of them,
[p( v0), q( v0), p( v0)]. �

Fig. 2. The Unfinished Call Loop of Example 3
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Theorem 1 (Completeness). Consider a query and a program all of whose
predicates are tabled and assume that the system supports subgoal abstraction.
If the evaluation does not terminate, then there exists at least one unfinished-
call loop in the unfinished-call child-parent graph for its complete infinite forest
logging trace. �

The proof of Theorem 1 is omitted due to space limitation and can be found in
[7]. Clearly, one cannot obtain the complete infinite trace for a non-terminating
evaluation. In practice, one would let the program execute long enough until
it starts producing answers exceeding some size limits and then analyze the
available portion of the log.

Algorithm 1 constructs the unfinished-call CPG Gunfinished = (N , E) from
the set of unfinished calls of a forest logging trace. For each unfinished call
(child, parent, counter), the node child is added, if it does not already exist, plus
the edge (parent, child). All unfinished calls are processed in the order of their
creation in forest logging, which is also the order in which these unfinished calls
are issued during evaluation. Thus, when unfinished call(child, parent, counter)
is encountered we know that parentmust have been added to the graph as an un-
finished child call of some other parent, i.e., unfinished call(parent, p′, counter′)
must be true for some p′ and counter′ < counter. We have two cases:

1. child ∈ N . The evaluation calls a previously issued subgoal.
2. child /∈ N . A new subgoal is called and a new node is added to the graph.

In the first case, an unfinished-call loop exists, so the current evaluation path of
parent is suspended and alternative derivations will be explored. This implies an
important property of unfinished-call CPGs: an unfinished-call loop is created
out of an (acyclic) path always by adding a final edge of the form (call1, call2),
where call1.label ≥ call2.label. We call such an edge a critical loop edge.

1 Let UnfinishedCalls be the set of all unfinished calls;
2 E = ∅; N = {root}; root.label = −1;
3 while UnfinishedCalls �= ∅ do
4 Remove unfinished call(child, parent, counter), where counter is the

smallest among UnfinishedCalls;
5 if child /∈ N then {N = N ∪ {child}; child.label = counter};
6 E = E ∪ {(parent, child)}; (parent, child).label = counter;

7 end
8 return Gunfinished = (N , E)

Algorithm 1. Unfinished-Call CPG Construction

If critical loop edges are taken out, any unfinished-call CPG becomes a con-
nected directed acyclic graph in which every edge goes from a node with a smaller
label to a node with a larger label. A path, path, connecting the root node root
to a call, call, exists if and only if the evaluation process issues a sequence of
calls, as specified by the edges in path. There is at least one such path for every
call ∈ N .



Terminyzer: An Automatic Non-termination Analyzer for Logic Programs 181

After computing all unfinished-call paths from root to other nodes, all distinct
unfinished-call loops can be computed by checking whether there are repeated
vertices in each path. Consider an unfinished-call path P = [root, call1, . . . , calln].
If calln = calli, 1 ≤ i ≤ n, then the part of P from calli to calln [calli, . . . , calln]
is an unfinished-call loop. In this case, P is said to contain an unfinished-call
loop and we also know that P is a sequence of calls that may have caused
non-termination.

Example 4. The unfinished-call CPG in Figure 2(B) of Example 3 is constructed
from the calls in Figure 2(A) using Algorithm 1. The third edge, (q( v0), p( v0)),
is the only critical loop edge. The unfinished-call paths starting from root are
P1 = [root, p( v0)], P2 = [root, p( v0), q( v0)]), and P3 = [root, p( v0), q( v0),
p( v0)]). Since P3 contains a repeated vertex p( v0), [p( v0), q( v0), p( v0)] is an
unfinished-call loop and and thus this sequence of calls in P3 may be responsible
for non-termination. �

3.2 Soundness of Call Sequence Analysis

One problem with the previous algorithm for call sequence analysis is that finding
all unfinished-call paths in an unfinished-call CPG is in NP. Even if it were
polynomial, we could practically present only 2 or 3 paths to the user without
risking to overwhelm him and making the technique useless. Furthermore, these
paths better be useful for identifying sources of non-termination: Theorem 1
guarantees only the completeness of call-sequence analysis, which means it can
give us false-positives.

We say that an unfinished-call path or loop is culprit if it is a cause for
non-termination. This section presents a linear algorithm to find one culprit
unfinished-call path in an unfinished-call CPG Gunfinished = (N , E).

Let callmax ∈ N be the node with the maximal label. We will show that
callmax is contained in a culprit unfinished-call loop. If callmax is not part of
any such loop, then all the culprit unfinished-call loops in Gunfinished contain
only calls that are issued before callmax. We also know that there exists at least
one culprit unfinished-call loop when non-termination happens. This means that
non-termination happens before callmax is issued and in fact callmax should
never have been issued at all. This contradicts the fact that callmax ∈ N and,
thus, callmax must be contained in a culprit unfinished-call loop.

Algorithm 2 finds a culprit unfinished-call path, path, from root to callmax. It
starts with child = callmax and follows reverse directions of edges until reaching
root. During each while-loop iteration from line 2 to 6, child is the current call
under consideration and path is an unfinished-call path from child to callmax

which is also part of the culprit unfinished-call path to be computed. The parent
of child, parentmax, chosen in line 3 satisfies two conditions:

1. parentmax.label < child.label because parentmax must have been first issued
prior to child; and
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2. (parentmax, child).label = max{label | (parent, child).label}, where (parent,
child).label is the label assigned to the edge (parent, child). This means that
among all edges going into child, (parentmax, child) has the maximal label.

These two conditions tell us that the call child is issued from the SLG tree for
parentmax, and this is the last time that child was called during evaluation of
the previous calls to it. We know that parentmax must be in a culprit unfinished-
call path of the form [root, ..., parentmax, child, ..., callmax], since otherwise non-
termination must have happened before child was called from the SLG tree for
parentmax. In this case, the call to child should have never been made at all—
contrary to the assumption that (parentmax, child) ∈ E .

1 path = [callmax]; child = callmax;
2 while child �= root do
3 Let parentmax be a parent of child such that parentmax.label < child.label

and (parentmax, child).label = max{label | (parent, child).label};
4 path = [parentmax|path];
5 child = parentmax;

6 end
7 return path

Algorithm 2. Culprit Unfinished-Call Path Computation

Consider an edge (parent, child) ∈ E , it will only be examined once in line 3
when child is under consideration. Therefore, Algorithm 2 is linear in the graph
size. We have the following theorem:

Theorem 2 (Soundness). If Algorithm 2 finds a culprit path then the compu-
tation is non-terminating.

3.3 Answer Flow Analysis

Call sequence analysis begins with the initial call root and follows the sequences
of unfinished calls produced by query evaluation. However, it was not designed to
identify the patterns among these unfinished calls. Answer flow analysis looks for
the log entries that specify the answers being returned to parents (the ar-facts)
and produces patterns of calls for which answers are still being produced. It also
tracks how information contained in these answers flows among these calls.

When non-termination happens because the number of answers is infinite,
each new answer, answer, to an unfinished call, call, is returned to the parents
of call and these parents use answer to derive their own answers. The newly
derived answers for the parents of call are returned to the parents of the parents,
and this gives rise to an endless process in which calls continue to receive, derive
and return answers. Answer flow analysis detects such child-parent relationships
among calls by analyzing the logs for answers returned to parents at the end of
the logforest trace.
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Given a logforest trace, we can find the maximal counter of subgoal comple-
tions as max{counter | cmp(call, sccnum, counter)}. It makes sense to consider
only the trace entries whose counter value is larger than the maximal subgoal
completion counter, since only these entries can possibly be involved in the end-
less process of returning answers to parents. We consider only these log entries
in the rest of this section.

Answer flow child-parent sequence is the sequence of child-parent pairs found
in all the log entries for answers returned to parents (the ar -facts). The pairs in
the sequence are sorted by their creation order counter. A child might continue
returning multiple answers to a certain parent before the parent starts deriving
its own answers. In this case, only one child-parent pair is recorded for all such
answers, since all these pairs are identical.

An answer-flow child-parent sequence, cps, contains a child-parent pattern of
length n, denoted cpp = [pair1, . . . , pairn], if the sequence cpp repeats at least
twice at the end of cps, i.e., cps = [. . . , pair1, . . . , pairn, pair1, . . . , pairn]. For in-
stance, [(c2, p2), (c3, p3)] is a child-parent pattern of length two in [(c1, p1), (c2, p2),
(c3, p3), (c2, p2), (c3, p3)]. Thus, every child-parent sequence cps has a prefix that
does not end with a cpp and a suffix that consists of two or more repeated cpp’s.
We will call this suffix the cpp-suffix of that cps. The optimal child-parent pattern
in a child-parent sequence cps is the shortest child-parent pattern, cpp, such that
its cpp-suffix is the longest in cps (among all suffixes of child-parent patterns in
cps). We use optimal cpp(child, parent) to denote the fact that (child, parent)
is in the optimal child-parent pattern. In case of non-termination, there exists
an optimal child-parent pattern, as stated in Theorem 3, below.

Example 5. The forest logging trace for Example 3 has the child-parent sequence
[(p( v0), q( v0)), (q( v0), p( v0)), (p( v0), q( v0)), (q( v0), p( v0)), (p( v0),
q( v0)), (q( v0), p( v0)), (p( v0), q( v0)), (q( v0), p( v0)), (p( v0), q( v0)),
(q( v0), p( v0))]. It has two child-parent patterns:
cpp1 = [(p( v0), q( v0)), (q( v0), p( v0)), (p( v0), q( v0)), (q( v0), p( v0))]

of length four, twice repeated;
cpp2 = [(p( v0), q( v0)), (q( v0), p( v0))] of length two, repeated five times.

The optimal child-parent pattern is cpp2, as it covers 2× 5 = 10 entries in cps
compared to cpp1, which covers only 4× 2 = 8 entries. �

As in the call sequence analysis, child-parent relationships are modeled as a
directed graph. An answer-flow child-parent graph for a forest logging trace is
a directed graph Ganswer = (N , E), defined as follows. Let cppoptimal be the
optimal child-parent pattern for the forest logging trace in question. Then N is
the set of children and parent-calls in cppoptimal, i.e., N = {call | (call, ...) ∈
cppoptimal or (..., call) ∈ cppoptimal}. Edges in Ganswer are the child-parent pairs
in cppoptimal, i.e., E = {(child, parent) | (child, parent) ∈ cppoptimal}.

A path in Ganswer is called an answer-flow path; such a path is called an
answer-flow loop if it is a cycle. Two answer-flow loops that consist of the same
nodes and edges are considered to be the same and we will keep only one repre-
sentative of the loop in such a case. Answer-flow paths depict how information
flows among calls.



184 S. Liang and M. Kifer

The answer-flow CPG for a forest logging trace can be constructed from its
optimal child-parent pattern cppoptimal similarly to the unfinished-call CPG con-
struction in Algorithm 1. All answer-flow paths and loops can then be computed.

Example 6. The optimal child-parent pattern in Example 5 is cppoptimal =
[(p( v0), q( v0)), (q( v0), p( v0))]. Its answer-flow graph is the subgraph shown
inside the rectangle in Figure 2(B). There are four answer-flow paths: [p( v0),
q( v0)], [p( v0), q( v0), p( v0)], [q( v0), p( v0)], and [q( v0), p( v0), q( v0)];
[p( v0), q( v0), p( v0)] and [q( v0), p( v0), q( v0)] represent the same answer-flow
loop.

Theorem 3 (Completeness). Consider a query to a program all of whose
predicates are tabled. As before, assume that the inference engine supports subgoal
abstraction. If the query evaluation does not terminate, then:

i. There exists an optimal child-parent pattern in its complete infinite trace,
ii. Ganswer = (N , E) contains at least one answer flow loop, and
iii. Every call ∈ N appears in at least one answer-flow loop. �

The proof of Theorem 3 can be found in [7]. In the call sequence analysis,
an unfinished-call CPG is constructed, all distinct unfinished-call loops are com-
puted, and the suspected unfinished-call loops emanating from root are flagged.
Similarly, in answer-flow analysis, one builds answer-flow CPG and computes
answer-flow loops, which shed light on how answers flow among subgoals when
non-termination happens. The following Theorem 4 connects these two analytic
approaches. Again, the proof is found in [7].

Theorem 4. Let Gunfinished = (Nunfinished, Eunfinished) be the unfinished-call
CPG and Ganswer = (Nanswer, Eanswer) be the answer-flow CPG for a non-
terminating forest logging trace. Then Nanswer ⊂ Nunfinished, and for every
edge (child, parent) ∈ Eanswer there is an edge (parent, child) ∈ Eunfinished.
Furthermore, any answer-flow loop is also an unfinished-call loop. �

3.4 Functor Pattern Analysis

The answer-flow analysis produces an optimal child-parent pattern, whose rep-
etitions cover the tail of a forest logging trace. During each such repetition, new
answers are derived and returned to their parents. Thus, these repetitions divide
the log entries into answer segments, where each segment contains log entries for
answers derived during one repetition. Functor pattern analysis attempts to dis-
till sequences of functor application that are repeatedly applied in each segment
and thus are responsible for the ability of those repeated segments to produce
more and more answers.

Let as1, . . . , asn be answer segments of a forest logging trace, and answers(asi)
be the set of answers contained in asi. We say that an answer ansi ∈ answers(asi)
is constructed out of an answer ansj ∈ answers(asj), j < i, if ansj is a subterm
of ansi, and the sequence of functors that are applied to derive ansi from ansj
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are called the increment from ansj to ansi, denoted by inc(ansj, ansi). Check-
ing subterm relationship between two terms is an expensive operation which
depends on how terms are stored and indexed. So, in general, functor pattern
analysis is impractical. However, for safe2 knowledge bases, we can approximate
subterm matching with a much more efficient operation of substring matching.

If an answer, ansi, is constructed out of another answer ansj , we know that
str(ansj) is a substring of str(ansi) where str(...) is the string representation
of a term. That is, str(ansi) can be represented as inc str · str(ansj) · tail str,
where “·” denotes the string concatenation operation. The sequence of functors
contained in inc str is an approximation of inc(ansj , ansi). We call the approx-
imation contained in the shortest such inc str the optimal approximation of
inc(ansj, ansi), written as inc∗(ansj , ansi). For instance, the two approxima-
tions of inc(f4(a), f1(f2(f4(a)), f3(f4(a))) are [f1, f2] and [f1, f2, f4, f3]; [f1, f2]
is the optimal approximation.

Assume that all answers(i) is the sequence of answers contained in all answer
segments asj such that j ≤ i, and all answers(i) is sorted by creation orders
of its answers in forest logging trace. To compute the increment for an answer
ansi ∈ answers(asi), functor pattern analysis tries to find the last answer ans ∈
all answers(i-1), such that ansi is constructed out of ans. If ans is found,
we say that the optimal increment approximation inc∗(ans, ansi) is the best-fit
increment for ansi, denoted by inc(ansi).

The increment approximation for a forest logging trace is the set of best-fit
increments for all answers: {inc(ans) | ans ∈ answers(asi)}. They are likely to
be the functors applied repeatedly to derive more and more answers and thus
causing the computation to not terminate. This analysis can help the program-
mer identify the rules of the program, which are actually being fired in these
derivation cycles.

Theorem 5 (Completeness). Consider a query to a program all of whose
predicates are tabled and assume that the inference engine supports subgoal ab-
straction, as before. If query evaluation does not terminate, then the increment
approximation of the complete infinite trace contains all the functors that repeat
themselves in the answer segments and for which the number of repetitions grows
to infinity. �

A proof of this theorem and an algorithm for computing increment approxima-
tions can be found in [7].

Example 7. The first column of Table 2 shows the first three answer segments
of the forest logging trace for Example 3. Column 2 is the answer contained in
each answer-generating log entry, and column 3 contains the best-fit increment
for each answer. The increment approximation of the trace is the union of all
answer increments: {[g], [f, g]}. �

2 A safe knowledge base is one in which all base facts are ground and rules have no
unsafe variables, i.e., all variables in the rule heads also occur in the rule bodies.



186 S. Liang and M. Kifer

Table 2. Answer Increments for Example 3

Answer Segments Answers Best-fit Increments

na([g(a)],q( v0),6) g(a)
na([f(b)],p( v0),8) f(b)
na([f(g(a))],p( v0),10) f(g(a))

na([g(f(b))],q( v0),12) g(f(b)) [g]
na([g(f(g(a)))],q( v0),14) g(f(g(a))) [g]
na([f(g(f(b)))],p( v0),16) f(g(f(b))) [f, g]
na([f(g(f(g(a))))],p( v0),18) f(g(f(g(a)))) [f, g]

na([g(f(g(f(b))))],q( v0),20) g(f(g(f(b)))) [g]
na([g(f(g(f(g(a)))))],q( v0),22) g(f(g(f(g(a))))) [g]
na([f(g(f(g(f(b)))))],p( v0),24) f(g(f(g(f(b))))) [f, g]
na([f(g(f(g(f(g(a))))))],p( v0),26) f(g(f(g(f(g(a)))))) [f, g]

3.5 Computational Complexity

Consider a forest logging trace and let Ntc, Nar and Nna be the numbers of tc-
facts, ar -facts and na-facts in the trace, respectively. We assume that the number
of unfinished calls in the trace is Nunfinished and the size of optimal child-parent
pattern found in answer flow analysis is Ncpp. Nunfinished is typically much
smaller than Ntc since many calls would have been completely evaluated before
non-termination occurs. Similarly, Ncpp is usually much smaller than Nar. The
complexity of different operations in Terminyzer is summarized in Table 3, and
detailed analysis can be found in [7].

Table 3. Complexity Summary

Operation Complexity

Computing uncompleted calls O(Ntc)
Constructing uncompleted-call CPG O(Nunfinished)
Computing all uncompleted-call paths from root NP
Computing a culprit uncompleted-call path O(Nunfinished)

Computing optimal child-parent pattern O(N2
ar)

Constructing flow-pattern CPG O(Ncpp)
Computing all flow-pattern paths NP
Computing all flow-pattern loops NP

Computing best-fit increment for one answer O(Nna)
Computing increment approximation for a trace O(N2

na)

4 Experiments

We implemented a prototype of Terminyzer in XSB-Prolog, which works both
for the XSB and Flora-2 deductive systems. We tested the analyzer using
several programs and some of the results are shared in this section. In the exper-
iments, we set XSB to abort queries after the answer depth reached the depth
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of 30. All tests were performed on a dual core 2.4GHz Lenovo X200 with 3
gigabytes of main memory running Ubuntu 11.04 with Linux kernel 2.6.38.

Test Programs. Here we present the results for four test cases: T1, T2, T3 and T4

of which only T1 terminates. Test T1 evaluates the query ?- path(1,Y) against
the transitive closure program, as in Example 1. T2 evaluates the query ?- p(X)

against the program in Example 3. T3 computes the query ?- p(X) for the
following program:

:- table p/1.

p(a). p(b).

p(f(X)) :- p(X).

Unlike the other three cases, T4 is a very large program, which was derived from
a Flora-2 program used in the SILK Project3 that has 4,774 rules and 919
facts. The corresponding XSB program (after the Flora-2 -to-XSB translation)
is estimated to have over 1,000 facts and over 5,500 rules. Execution produces a
log trace in excess of 500 megabytes with 2,749,822 log entries.4

Test Results. Terminyzer produced expected results in all the test cases. For
T1, it produced an unfinished-call CPG ({root}, ∅) and an empty answer-flow
CPG. No answer increments were produced. For T2, Terminyzer produced the
unfinished-call graph shown in Figure 2(B) of Example 3 and the unfinished-
call loop as in Example 4. It also constructed the answer-flow graph and found
the answer-flow loop given in Example 6. Furthermore, it found the increment
{[g], [f, g]} as in Example 7.

For T3, Terminyzer computed two unfinished calls: unfinished call(p( v0),
root, 0) and unfinished call(p( v0), p( v0), 3). It also constructed the unfinished-
call CPG ({root, p( v0)}, {(root, p( v0)), (p( v0), p( v0))}) and answer-flowCPG
({p( v0)}, {(p( v0), p( v0))}). The unfinished-call loop and answer-flow loop are
both [p( v0)]. Terminyzer also correctly found the increment {[f ]}.

For T4, the unfinished-call CPG has eight nodes and twelve edges, and it
contains five unfinished-call loops. Its answer-flow CPG has three nodes and six
edges with four answer-flow loops. Terminyzer also identified an increment of
length 8.

Computation Times. Call-sequence, answer-flow and functor-pattern analyz-
ers all took less than one second for T1, T2, and T3. For T4, the call-sequence
analysis finished within 1 second, while answer-flow and functor-pattern analysis
together took 23 seconds.

One optimization would be to split forest logging traces into multiple files
for different analyzers, since different analyzers largely make use of different
entries in the trace: call sequence analysis uses only the tc-facts and cmp-facts;
answer-flow analysis needs ar-facts; while functor-pattern analysis uses ar-facts
and na-facts. Entries that are irrelevant for a particular analysis can be deleted

3 http://silk.semwebcentral.org/
4 We also tested other, smaller, but still fairly large real programs from the SILK
project with similarly positive results.

http://silk.semwebcentral.org/
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thereby significantly reducing the size of the data set that we need to deal with.
This optimization is implemented in Terminyzer as a pre-processor.

5 Related Work and Conclusion

There have been extensive studies on termination analysis for logic programs
[14,18,8,1,10,11,13] and much less work on non-termination analysis [4,9,12,20,19].
There are two major points that differentiate our work. First, the termination
and non-termination problems discussed in most previous works are non-issues
in our framework: those problems stem from the incompleteness of the Prolog in-
ference mechanism and therefore do not apply to our case. Second, Terminyzer
utilizes traces to help the programmer debug his programs without syntactic re-
strictions . All other approaches perform static or dynamic analysis in order
to prove termination and non-termination properties of restricted classes logic
programs.

Our immediate future plans include adding program justification, When jus-
tification is included, Terminyzer will not only be able to produce the sequences
of calls that might be causing non-termination, but also sequences of rules that
were fired in SLG resolution for each such call. We are also working on auto-
repair of non-terminating behaviors once non-termination is detected.

Acknowledgments. We would like to thank Terry Swift for enabling this work
by implementing subgoal abstraction and forest logging in XSB. We are also
thankful to the referees for their helpful critique.
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Abstract. We present r..eal, a library that integrates the R statistical environment
with Prolog. Due to R’s functional programming affinity the interface introduced
has a minimalistic feel. Programs utilising the library syntax are elegant and suc-
cinct with intuitive semantics and clear integration. In effect, the library enhances
logic programming with the ability to tap into the vast wealth of statistical and
probabilistic reasoning available in R. The software is a useful addition to the ef-
forts towards the integration of statistical reasoning and knowledge representation
within an AI context. Furthermore it can be used to open up new application areas
for logic programming and AI techniques such as bioinformatics, computational
biology, text mining, psychology and neuro sciences, where R has particularly
strong presence.

1 Introduction

Logic programming provides a powerful framework for reasoning with complex, struc-
tured data and is an important vehicle for AI research. The Prolog language is a popular
example of logic programming that provides a query driven inference mechanism. Pro-
log has been shown to be useful in diverse AI application domains, including machine
learning, natural language, data-base interfacing, web services, and program analysis.
Often, Prolog applications require computing aggregate properties of data. Common op-
erations, such as computing the mean or standard deviation, can be easily programmed
in Prolog. More complex operations, such as clustering, pattern extraction or likelihood
computations can be hard to implement efficiently.

The R environment [15] is an open source software package for statistical data analy-
sis. R is widely used by the statistical and data mining communities, with major applica-
tions in areas such as bioinformatics. The R environment provides a set of effective tools
for data storage and manipulation, namely of arrays, and it implements a well developed
programming language, S [5]. Although S is not a pure declarative language, it contains
a strong functional programming component. R also has an excellent packaging and
distribution system through which a multitude of researchers and programmers make
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© Springer-Verlag Berlin Heidelberg 2013
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their code available to the community. The comprehensive R archive network (CRAN,
http://cran.r-project.org/) contains a vast selection of contributed code
that deals with the full gamut of statistical inference and data analysis. Examples in-
clude several implementations of the pagerank algorithm [8], machine learning tools
such as support vector machines [10] and several clustering tools [13].

Prolog has been the main practical vehicle of logic programming with a number
of open source implementations available to the community. YAP [7] and SWI [21]
are two such systems. The first is widely accepted as one of the fastest open source
Prolog implementation in, among other areas, machine learning and particularly in in-
ductive logic programming (ILP) [18]. Machine learning is one application where it is
natural to interface a Prolog system to R, namely to extend the ILP paradigm with re-
gression capabilities [1]. The SWI Prolog system is the most widely used open source
Prolog with many educational, research and industrial installations. It is well regarded
for its stability and extensive palette of libraries. The software presented here has been
developed to run on both of these Prolog systems, and is made available as open source
software in the hope that it can be widely adopted and become a standard that enhances
Prolog’s capabilities.

A further motivation for integrating R with logic programming stems from the ob-
servation that traditionally, work on logic programming has focused in representing
crisp knowledge. More recent work on the interplay between knowledge representation
and statistical inference has attracted substantial interest in recent years. Work in this
area includes the PRISM system and its EM-based parameter algorithm [16], Stochas-
tic logic programs with an MCMC structure learning system [2] and the FAM algo-
rithm [9], the ProbLog language and system [12] with a variety of learning algorithms
and CLP(BN ) [6], with EM learning and an interface to Aleph [18]. The interface to
R allows the integrated statistical-logic inference systems access to a wide range of tools
from random number generators to sophisticated algorithms for probabilistic inference.

Our work, the r..eal library, overcomes significant shortcomings present in earlier
attempts to interface Prolog to R [1,4]. The first approach, YapR, used the C interface
to pass R commands as sequences of characters with little conversion. In the second
approach, r session, the interface provided an expression based communication via an
independent R process to which the operating system channelled I/O from Prolog. This
approach was more flexible, but inefficient and hard to maintain across operating sys-
tems. The new approach, r..eal, introduces a completely new design that provides a
tightly integrated interface to R for the Prolog programmer. In our approach R is invoked
as a shared operating system library while the communication of large data between
Prolog and R is facilitated by C code utilising the C-interfaces for the two systems.

We argue that critical to Prolog’s success as a vehicle for AI research is its ability
to address statistical aspects of knowledge representation and reasoning. Consider one
domain which is currently experiencing a rapid expansion: computational biology. In
this domain, vast volumes of data need to be interpreted and resulting knowledge to be
represented. R packages such as Bioconductor [11] are among the most successful tools
in this area, but they lack the knowledge representation strengths of Prolog. Thus, by
combining logic programming with the extensive statistical functionality of R, we hope

http://cran.r-project.org/
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to contribute to progress in this field while engaging more of the logic programming
community in this area of research.

The rest of the paper is organised as follows. Section 2 presents the developed in-
terface. Data representation in R and Prolog and the translation process is described in
Section 3. Section 4 shows some illustrative examples and the conclusions are sum-
marised in Section 5.

2 Interface

R..eal enables the communication between the Prolog system and R. The R environment
executes as an operating system library: from the Prolog point of view, R is just another
set of functions; from the R point of view, Prolog is the top-level. The user interface is
designed to satisfy the following requirements:

– Minimality: ideally, most interactions should be performed through a small number
of predicates.

– R Flavour: using the interface should be as close as possible to the standard usage
of R. It should feel as if we are writing R code. To do so, most common R constructs
should just work.

– Prolog Flavour: the interface should not require the user program to construct a se-
quence of characters to be interpreted by R. Instead, it should be about Prolog terms
that are constructed and manipulated by Prolog code.

Arguably, the two last goals are incompatible, given the conceptual and syntactic dif-
ferences between Prolog and R. R..eal tries to be as close to R as possible, but respecting
the observation that ultimately one has to construct a valid Prolog program.

The library leaves the management of R variables to the programmer. On backtrack-
ing there is no removal of variables from the R environment. In practice, this is rarely
a limitation, particularly since R variables can be destructively assigned new values.
In our experience, the strengths of Prolog search through solutions spaces, merge well
with a sequential application of R functions that can provide statistical computations.

2.1 Access Predicates

The R language uses <- as the assignment operator. In order to be as close to possible
to R syntax, r..eal uses <-/1 and <-/2 to channel the bulk of the interactions between
Prolog and R. The predicate names are defined as prefix and infix operators, respec-
tively. The <-/1 predicate sends an R expression, represented as a ground Prolog term,
to R. The <-/2 operator facilitates bi-directional communication. If the left-hand side
is a free variable, the library assumes that we are passing data from R to Prolog. If the
left-hand side is bound, r..eal assumes that we are passing data or function calls to R.
The library implements two communication mechanisms:

– arbitrary R expressions of function calls which possibly embed data items within
their arguments, are transformed from Prolog terms to strings and passed to R for
native parsing

<-
<-/1
<-/2
<-/1
<-/2
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– Prolog lists and R vectors are passed by r..eal through C code that understands how
Prolog and R represent data;

More concretely, the calling modes for <-/2 are:

+Rvar <- +PLvalue
-PLvar <- +Rvar
-PLvar <- +Rexpr
+Rexpr1 <- +Rexpr2

In the first, top-most mode, the C interface is employed to transfer Prolog data value(s),
PLvalue, to an R variable identified by Rvar. In the second mode, r..eal instantiates
the Prolog variable PLvar to the contents of the R variable Rvar. In the second mode
Rexpr is evaluated in R and its result is unified to Prolog variable PLvar. In the
current implementation this is done by first assigning the result to a hidden R variable
and then using the second mode to copy this onto PLvar. In the last mode, r..eal will
pass Rexpr1 <- Rexpr2 to R subject to the syntactic conversions described in the
next section. R..eal will automatically distinguish between the four modes. A variable
in the left side of the operator is taken to be a Prolog variable, an atom is recognised as
an R variable (Rvar above) and a ground term is considered to be an R expression. On
the right side, a list or a number are taken as Prolog data, an atom corresponding to a
known R variable is recognised as such and all other terms are R expressions.

In the following example a list of 6 Prolog integers is passed to the R variable v and
then passed to Prolog variable V.

?- v <- [0,1,1,2,3,5],
V <- v.

V = [0, 1, 1, 2, 3, 5].

In the arity 1 version of the assignment predicate, if the argument can be interpreted
as a known R variable then it is printed using the R function call print(). The fol-
lowing example prints the contents of an R variable (v) that has been passed a list of
Prolog integers.

?- v <- [0,1,1,2,3,5],
<- v.

[1] 0 1 1 2 3 5

When r..eal cannot establish that the argument of <-/1 is an R variable, it passes the
argument to R as an expression right after all syntactic transformations have been com-
pleted. This allows for calling of functions to which the return value is of no interest
to the user. For instance the value of the plotting function is often ignored. The follow-
ing example uses R’s plot() function to plot 3 points with x-coordinates [1, 2, 3] and
y-coordinates [4, 5, 6]. The plot appears on R’s default plot display.

<- plot( [1,2,3], [4,5,6] ).

<-/2
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3 Data Representation in R

R recognises several types of objects:

– Floating point numbers, integers, Boolean and ascii values (character strings) pro-
vide the base types.

– Lists or vectors are the main forms of serialised compound objects.
– Arrays are multi-dimensional compound objects with two dimensional arrays

treated as special arrays called matrices.
– R supports several useful data-types: dotted-pairs are used to represent lists; the
: operator is supported for ranges, and NULL objects represent uninitialised R
objects.

– Programs can be constructed by using symbols, functions or closures, and
environments.

Regarding base types, there are matches between floating point and integers in R and
Prolog. Boolean values can be matched to true and false atoms. Character strings
are traditionally represented by Prolog as lists of character codes. These principles cor-
respond to the following rules:

Prolog --- R
integer <-> integer
float <-> double
atom <-> char
char -> char
true/false <-> logical

The three other major types supported by the interface are symbols, vectors and
matrices. Symbols are R identifiers used for variable and function names. They naturally
map to Prolog atoms and they are contextually distinguished from chars. Compound
objects are described in detail next.

3.1 Vectors and Matrices

Vectors are a key generic data type in R. It is important to make two observations on the
nature of vectors in R. First, that R vectors are typed and second that they have attributes.
R has six basic vector types: logical, integer, real, complex, string (or character) and raw.
The other major data types in R include lists, expressions and functions. As an example,
the R variable v, defined by

?- v <- as..integer(c(1,2,3)).

is of type integer vector and its contents are the values 1, 2 and 3. Note that c() is a
generic method in R. The default function of this method is to combine its arguments
into a vector. A vector naturally translates to a list in Prolog. Multi-dimensional arrays
are mapped to lists of lists. This principle works both ways: Prolog lists are mapped
to vectors, and lists of lists to matrices (which are 2 dimensional arrays in R parlance).
R..eal provides two main ways to pass Prolog data to R. The more efficient method is
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by using the C interface while the alternative method constructs a string representation
of an R command. The former method is accessible to the user via the mode of <-/2
in which Prolog data is passed to an R variable. Goals have the following form, where
PLvalue is the Prolog data and Rvar is the R variable.

+Rvar <- +PLvalue

This mode is implemented in C and transfers via C data from Prolog to R. The type
of values of the vector or matrix is taken to be the type of the first data element of
the PLvalue. An example of passing a list of the integers between 1 and 100 to an
R variable (i), printing the first ten elements through R and then passing the vector
back to Prolog after adding 1 to each number follows:

?- findall( I, between(1,100,I), Is ),
i <- Is,
<- iˆ[1:10], % prints via R
Js <- as..integer(i+1).

[1] 1 2 3 4 5 6 7 8 9 10
Is = [1, 2, 3, 4, 5, 6, 7, 8, 9|...],
Js = [2, 3, 4, 5, 6, 7, 8, 9, 10|...].

3.2 Object Types

When passing Prolog objects to R, r..eal attempts to build the R structure by extrapo-
lating the object type from the type of the first element in the Prolog structure. If later
on this breaks down, the structure is rebuilt if the type that introduced the failure can be
used for the overall data structure.

For example, the Prolog list in the following query contains a float value in its third
position. As Prolog is untyped, we do not have this information when the list starts be-
ing transferred across. Instead, at the start of passing the list through, the first element
is inspected and the list is assumed to contain integers. At the third element, upon en-
countering a float value, the work done so far is scrapped and the more general type is
used to translate the list to a vector of float values.

?- r <- [1,2,3.2,4],
<- r,
R <- r.

[1] 1.0 2.0 3.2 4.0
R = [1.0, 2.0, 3.2, 4.0].

3.3 The Expression Mechanism

Data appearing in an arbitrary R expression is parsed and placed into a string that will
then be passed from Prolog to R for evaluation. For instance, in the following example
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the c() combinator function is used to combine 5 values into an R vector before print-
ing it and then pasting all vector elements to a single value vector (s). For illustration
purposes we also include a goal that combines the two function calls (assignment to
R variable t).

?- state <- c("tas","sa","qld","nsw"),
<- state,
s <-paste(state,collapse="+"),
t <-paste(c("tas","sa","qld","nsw"),collapse="+"),
<- s,
<- t.

[1] "tas" "sa" "qld" "nsw"
[1] "tas+sa+qld+nsw"
[1] "tas+sa+qld+nsw"

The implementation of r..eal recognises that the expression to be assigned to R variable
t is not a single Prolog data term but a number of R function calls, so it transforms this
expression into a string containing an R expression. Note that when using this interface
it is convenient to represent R chars by Prolog list of codes, as in the above example.

Passing long objects through the expression mechanism is both inefficient and can
easily lead to buffer limitations as it is only intended as a mechanism for passing func-
tion calls on existing R objects. R..eal circumvents both these limitations by automat-
ically detecting Prolog lists and c() terms and passing them via a hidden R variable
which is then substituted in the call passed for evaluation to R. The temporary name of
the hidden variable is selected so as not to clash with the current R name-space.

For instance, the following code generates a list of 50, 000 elements and computes
the mean of its elements via a call to R through the expression mechanism. Without the
use of hidden variables this call would generate a resource error and even shorter lists
would take much longer to transfer. The example code that follows was executed on
SWI-Prolog 6.3.0 on a Linux 11.10 desktop having a dual core 3.16 GHz processor.

?- findall(I, between(1,50000,I), Is),
time( A <- mean(Is) ).

% 181 inferences,0.002 CPU in 0.002 seconds
(100% CPU,75597 Lips)

Is = [1, 2, 3, 4, 5, 6, 7, 8, 9|...],
A = 25000.5.

In the above calls, A <- mean(Is) becomes t <- Is, A <- mean(t).

3.4 Syntactic Issues

There are syntactic conventions in R which result in non-parsable Prolog code. Notably
function and variable names are allowed to contain dots, square brackets are used to
access parts of vectors and arrays, and functions are allowed empty argument tuples.
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We have introduced syntax which allows for easy translation between Prolog and R.
Prolog constructs are converted by the library as follows:

– R code often uses the ‘.’ symbol with function and variable names. As this syntax
conflicts with standard Prolog usage, r..eal allows the use of the operator ‘..’, e.g.:

as..integer(c(1,2)) => as.integer(c(1,2))

The library’s name is a word play on the ‘..’ operator.
– R allows matrix subscripts. In the style of BProlog [22], r..eal uses the ‘ˆ’ operator:

aˆ[2] => a[2]

– R allows ranges over subscripts, say a[,,2] which in R is a way of to refer to all
the values of the first and second dimension of a. R..eal uses * for this purpose:

aˆ[*,*,2] => a[,,2]

Note that r..eal follows R conventions to access arrays.
– We map the ‘$’ R operator to a Prolog library operator (op(400,yfx,$)). In R,
$ is one of the possible ways in which parts of vectors, matrices, arrays and lists
can be extracted or replaced. In most contexts there is no ambiguity so the operator
can be used freely, however in some situations it might be necessary to quote.

a$val => a$val or 'a$val' => a$val

– R..eal uses (.) to denote R functions with zero arity:

dev..off(.) => dev.off()

– The R NULL value is coded as the empty list.
– Simple R functions can be coded by using the Prolog implication operator ‘:-’:

(f(x) :- (...)) => f(x) (...)

This is only advised for very small functions, and does not support conditionals yet.
– As mentioned previously, lists of lists are converted to matrices. In contrast to the

flexibility of R, all levels of the lists must have the same length.
– Prolog represents character strings as lists of integers. It is thus impossible to dis-

tinguish strings from genuine lists of integers appearing in arbitrary R expressions.
We define ‘+’ as a prefix operator to identify strings.

source(+"String") => source("String")

– Some R operators should be quoted in Prolog:

a '%*%' b => a %*% b

The majority of R operators can be used unquoted as they are defined as infix operators
and present no issues. Finally, expressions that r..eal cannot translate can always be
passed as Prolog atoms or strings.
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Fig. 1. Left: pie-chart example of a Prolog list of integers. Right: plotting two sequences of 50
random numbers as X and Y coordinates.

4 Applications

4.1 Plot Drawing

Visualising data is a particular strength of R, whereas Prolog systems traditionally have
only limited access to graphics. The r..eal interface enables access to the extensive fa-
cilities of R. Simple plots such as scatter plots, histograms, box plots and pie charts
can be easily drawn for Prolog data objects. In Figure 1 a pie chart and a scatter plot
are shown. In the first example a list of integers is passed and plotted as a pie-chart,
where each integer indicates the relative area of each slice. The following is the code
for drawing the pie-chart shown in the LHS of Fig. 1.

?- cars <- [1, 3, 6, 4, 9],
<- pie(cars).

The next example, also from Fig. 1, shows how to create a plot of 50 random samples
whose coordinates have been drawn from a normal distribution (rnorm()). The coor-
dinates are stored in R variables x and y before being plotted on a new plotting window
created with the x11() function. Over twenty different probability distributions are
present in R, with more available in add-on packages.

?- <- set..seed(1),
y <- rnorm(50),
x <- rnorm(y),
<- x11(width=5,height=3.5),
<- plot(x,y).

A third plotting example is shown in Figure 2. In this case, the nested outer product of
two vectors defined implicitly using the column notation (0:9) is computed. The results
are then tabled and plotted. Labels are passed to the plot via variables instantiated to
character strings. The generating code is as follows:
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Fig. 2. Tabled nested outer product of 0 : 9 to itself

?- d <- outer( 0:9, 0:9 ),
fr <- table(outer(d, d, +"-")),
Xl = "Determinant", Yl = "Frequency",
fr..names <- as..numeric(names(fr)),
<- plot(fr..names,fr,type=+"h",xlab=+Xl,ylab=+Yl).

4.2 Interacting with Datasets

Interfacing to R allows access to a large variety of data formats. As an example, consider
the comma-separated values (csv) format file trees91.csv:

C,N,CHBR,REP,LFBM,STBM,RTBM,LFNCC,STNCC,RTCACC,LFKCC,STKCC,...
1,1,CL6,1,0.43,0.13,0.29,1.84,0.4,0.96,0.13,0.06,0.23,0.3,...
1,1,CL7,1,0.4,0.15,0.25,1.82,0.37,0.95,0.18,0.06,0.22,0.22,...
1,2,A1,9,0.45,0.2,0.21,1.54,0.96,0.69,0.16,0.08,0.3,0.35,...
...

The first line contains headers, and the remaining lines contain data in a tabular format,
separated by commas. Reading the file into an R variable (tree) is done by simply
calling:

?- tree <- read..csv(file="trees91.csv",
sep=",",head='TRUE').

For instance, to get the column names in a Prolog list we can do:

?- X <- names(tree).

X = ['C','N,'CHBR','REP'|...].
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Fig. 3. Reading csv data. Left: histogram of LFBM column. Right: box plot of LFBM column.

The $ operator is used to access columns of the read table:

?- X <- tree$'LFBM'.

X = [0.43,0.4,0.45,0.82,0.52,1.32,0.9,1.18,0.48|...].

It is straightforward to obtain and plot a histogram of a specific column (LHS, Fig. 3):

?- X <- hist(tree$'LFBM').

X = [breaks=[0.0, 0.2, 0.4, ...], ... ].

This will both fill X with the histogram and plot it in the graphical interface (RHS,
Fig. 3). Plotting can be avoided when passing the FALSE value to the argument plot,
while the histogram can also be plotted without any value being explicitly returned by
using <-/1:

?- X <- hist(tree$'LFBM', plot = 'FALSE').

X = [breaks=[0.0, 0.2, 0.4, ...], ... ].

?- <- hist(tree$'LFBM').

The same plot can be saved in a PDF file. The function pdf() opens a new graphics
device with output to the named PDF file, while the R function dev.off() closes the
graphics device that was opened last.

?- <- pdf(+"plot.pdf"),
X <- hist(tree$'LFBM'),
<- dev..off(.).

X = [breaks=[0.0, 0.2, 0.4, ...], ... ].

<-/1
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The data can be displayed in a variety of different formats, for example as box plots
(RHS, Fig.3).

?- Main="Stem BioMass in different C02 environments",
Y = "BioMass of Stems",
<- boxplot(tree$'STBM', main=+Main, ylab=+Y).

4.3 Pagerank on Prolog Programs

We have so far seen how Prolog can command R and pass data to it. We can further
observe that Prolog programs are term structures themselves, suggesting that we might
want to apply a variety of well known statistical algorithms to the analysis of Pro-
log programs. The next example shows an application where we take advantage of the
respective strengths of Prolog and R. The goal is to find the most important, or cross-
referenced, procedure in a Prolog program by using a graph algorithm on a network
representing the call dependencies of the program under investigation. We use the pop-
ular pagerank algorithm [14] and its implementation in R’s igraph package [8]. We
apply our analysis on the source code of the ILP program Aleph [18].

The first building block of our program visits the Prolog source and constructs a
graph where the nodes are the predicates used by Aleph. We define procedureparse/2
to collect all edges in a source file:

parse(File, Nodes) :-
open(File, read, S),
findall(Node, clause_to_nodes(S, Node), Nodes),
close(S).

The program scans every clause in the file. For each clause, it first maps the head and
every sub-goal in the body to an integer corresponding to its defining predicate. Then, it
creates an edge between every sub-goal and the head. As an example, in the following
clause

subtract([E|T], D, R) :-
memberchk(E, D), !,
subtract(T, D, R).

the program will first map subtract/3 to 0 and memberhck/2 to 1 and then gen-
erate the graph {1 �→ 0, 0 �→ 0}. As R’s graph() function prefers to receive the graph
as a list of nodes we make clause to nodes/2 succeed four times with answers
Node = 1, Node = 0, Node = 0, and Node = 0, so that two consecutive solutions
represent an edge. Solutions are then captured by findall/3 as a list that is passed
on to the R environment and the graph function.

We define the pagerank/1 procedure to find the maximum element of the graph
nodes in a file as computed by page.rank().

pagerank(File,nav(Name,Arity,Value)) :-
parse(File,Graph),
g <- graph(Graph),
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Fig. 4. Histogram of pagerank scores for Aleph predicates

r <- page..rank(g),
Scores <- r$vector,
max_element(Scores, Name, Arity, Value).

This predicate obtains the list of edges, and calls graph() to create a weighted graph
g, where the weight is the number of repeated occurrences. It then computes the page
rank scores into the R object r and reads the vector component of the object to list
Scores. The max element/3 procedure simply extracts the predicate with highest
pagerank.

Applying the program to ILP system Aleph generates a graph with 968 nodes and
7296 edges. The highest score in the graph is for !, which is unsurprising. If we remove
all built-in predicates the highest score is for $aleph global/2. We can also reverse
the graph. In this case the highest score is for reduce/0. Figure 4 shows a histogram
of pagerank scores for the predicates in Aleph.

4.4 Search and Visualisation

R and Prolog are complementary in that the former has strong presence in data ana-
lysis and visualisation while the latter has strengths in knowledge representation and
search based reasoning. In order to underline this and point at computational biology
and bioinformatics as important areas of applications, we employ r..eal as a bridge be-
tween a search algorithm implemented in Prolog and visualisation component via the
RCytoscape [17] Bioconductor package.

The objective is to build a network of interactions between genes that encode proteins
that are involved in cell motility. Direct edges, representing interactions within this set
of genes (the adhesome library), are extracted from the Kyoto Encyclopedia of Genes
and Genomes (KEGG). We then employ a breadth first algorithm to join disconnected
adhesome genes to the main network by finding one of the shortest paths involving the
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Fig. 5. KEGG interactions for a subset of the members of an adhesome library. Nodes are proteins
and edges denote interactions. Blue nodes are connecting proteins that do not appear in the library.
Edges are coloured as per type of interaction.

minimum number of intermediary genes that are not in the library. The results can then
be displayed via the RCytoscape package which interfaces R to the Cytoscape biological
network visualiser.

Figure 5 shows the graph of the adhesome library as searched by Prolog and dis-
played by RCytoscape via calls to r..eal. This example utilises an in-house library that
uses R and its bridge to Cytoscape (RCytoscapse) to display arbitrary Prolog graphs (as
those managed with the ugraph library). We hope to publish this soon, inclusive of the
code for this example. The connection established with RCytoscape is bi-directional.
The user can use all facilities in Cytoscape, such as selecting nodes or edges. Lists
of such selections can be queried via r..eal which can be a starting point for further
analysis and search within Prolog. A more general discussion on Prolog and r..eal for
bioinformatics can be found in [3].

5 Conclusions

The library presented here achieves a tight integration of the R statistical software sys-
tem with two open source Prolog implementations. Our designing principles have been
those of simplicity and transparency across the systems. This has been accomplished by
(a) keeping to a minimum the transformations the user needs to be aware of, and by (b)
providing intuitive, mnemonic syntax to the inconsistencies between the two languages.
As a result, r..eal programs are clear and easy to follow. The functional inheritance of
R corresponds well with the logical underpinning of Prolog. R..eal provides a produc-
tive environment for building highly effective pipelines and interactive, query-based
data exploration.
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Interfacing the R environment with Prolog widens the range of applications for logic
programming and inductive logic programming. It has the potential to facilitate the
development of systems combining logic and probabilistic reasoning and will signifi-
cantly improve the development of ILP applications requiring statistical and numerical
computations. We also hope that this interface will encourage logic programming re-
searchers to engage in areas of research where a synergy of knowledge representation
and statistical prowess is needed such as in bioinformatics and computational biology.
Symmetrically, our library increases the tools available to R researchers and program-
mers who wish to exploit Prolog’s advanced AI capabilities.

Possible extensions to the library include tighter integration with backtracking, al-
though this has not been a limitation to the current applications. One specific aspect of
such closer integration that might be of immediate value is the re-use of hidden vari-
ables (Section 3.3). An even tighter integration might be possible by allowing hidden
and other R variables to be available for garbage collection. Finally, it would be inter-
esting to investigate an even tighter syntactic integration by means of extensions to the
syntax admitted by Prolog.

R..eal was originally designed, developed and tested on YAP 6.3.1 under the Linux
operating system. It has also been compiled for, and known to be working on MS operat-
ing systems and Mac OS. It was later ported [19] to the SWI [21] engine via a complete
re-write of the C code. This has become the main development code as YAP provides a
comprehensive compatibility layer to SWI’s C interface [20]. The library and examples
presented here can be downloaded from our website (http://bioinformatics.
nki.nl/˜nicos/sware/r..eal/ ).
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Abstract. A range of methodologies and techniques are available to
guide the design and implementation of language extensions and domain-
specific languages on top of a base language. A simple yet powerful
technique to this end is to formulate the extension via source-to-source
transformation rules that are interleaved across the different compilation
passes of the base language. Despite being a very successful approach, it
has the main drawback that the input source code is lost in the process.
As a result, during the whole workflow of program development (warning
and error reporting, source-level debugging, or even program analysis)
the tools involved report in terms of the base language, which is confusing
to users. In this paper, we propose an augmented approach to language
extensions for Prolog, where symbolic annotations are included in the
target program. These annotations allow the selective reversal of the
translated code. We illustrate the approach by showing that coupling
it with minimal extensions to a generic Prolog debugger allows us to
provide users with a familiar, source-level view during the debugging of
programs which use a variety of language extensions, such as functional
notation, DCGs, or CLP{Q,R}.

Keywords: language extensions, debuggers, logic programming, con-
straint programming.

1 Introduction

One of the key decisions when specifying a problem or writing a program to solve
it is choosing the right language. Even when using recent high-level and multi-
paradigm languages, the programmer often still needs precise, domain-specific
vocabulary, notations, and abstractions which are usually not readily available.
These needs are the main motivation behind the development of domain-specific
languages, which enable domain experts to express their solutions in terms of
the most appropriate constructs.

However, designing a new language can be an intimidating task. A range of
methodologies and tools have been developed over the years in order to simplify
this process, from compiler-compilers to visual environments [13]. A simple, yet
powerful technique for the implementation of domain-specific languages is based
on source-to-source transformations. Although in this process the source and
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target language can be completely different, it is frequent to be just interested
in some idiomatic extensions, i.e., adding domain-specific features to a host lan-
guage while preserving the availability of most of the facilities of this language.
Examples of such extensions are adding functional notation to a language that
does not support it, adding a special notation for grammars (such as Definite
Clause Grammars (DCGs) [16]), etc. Such transformations have been proposed
in the context of object-oriented programming (e.g., Polyglot for Java, [15]),
functional programming (e.g., Embedded DSL facilities for Haskell, [9]), or logic
programming (e.g., the term_expansion facility in most Prolog systems, or the
extended mechanisms of Ciao [2,8]). In this approach, the language implemen-
tations provide a collection of hooks that allow the programmer to extend the
compiler and implement both syntactic and semantic variations.

An important practical aspect is that, in addition to appropriate notation, the
programmer also needs environments that help during program development. In
particular, basic tools such as editors, analyzers, and, specially, debuggers are
fundamental to productivity. However, in contrast to the significant attention
given to mechanisms and tools for defining language extensions, comparatively
few approaches have been proposed for the efficient construction of such develop-
ment environments for domain-specific languages. In some cases ad-hoc editors,
debuggers, analyzers, etc. have been developed from scratch. However, this ap-
proach is time consuming, error prone, hard to maintain, and usually not scalable
to a variety of language extensions.

A more attractive alternative, at least conceptually, is to reuse the tools avail-
able for the target language, such as its debuggers or analyzers. This can in
principle save much implementation effort, in the same way in which the source-
to-source approach leverages the implementation of the target language to sup-
port the domain-specific extensions. However, the downside of this approach is
that these tools will obviously communicate with the programmer in terms of
the target language. Since a good part of the syntactic structure of the input
source code is lost in the transformation process, these messages and debugger
steps in terms of the target language are often not easy to relate with the source
level and then the target language tools are not really useful for their intended
purposes. For example, a debugging trace may display auxiliary calls, temporary
variables, and obscure data encodings, with no trivial relation with the control
or data domain at the source level. Much of that information is not only hard
to read, but in most cases it should be invisible to the programmer or domain
expert, who should not be forced to understand how the language at the source
level is embedded in the supporting language.

In this paper, we propose an approach for recovering symbolically the source
of particular translations (that is, reversing them and providing an unexpanded
view when required) in order to make target language level development tools
useful in the presence of language extensions. Our solution is presented in the
context of Ciao [8], which uses a powerful language extension mechanism for
supporting several paradigms and (sub-)languages. We augment this extension
mechanism with support for symbolic annotations that enable the recovery of
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the source code information at the target level. As an example application, we
use these annotations to parameterize the Ciao interactive debugger, so that it
displays domain-specific information, instead of plain Prolog goals. Our approach
requires only very small modifications in the debugger and the compiler, which
can still handle other language extensions in the usual way.

The paper is organized as follows: Section 2 presents a concrete extension
mechanism and illustrates the limitations of the traditional translation approach
in our context. Section 3 presents our approach to unexpansion, and guidelines
for instrumenting language extensions so that the intervening translations can be
reversed as needed into their input source code. Section 4 presents the application
of the approach to the case of debuggers. Finally, Section 5 presents related work
and Section 6 concludes and suggests some future work.

2 Language Extensions and Their Limitations

We present a concrete language extension mechanism based on translations (the
one implemented in the Ciao language) and then illustrate the limitations of
the traditional translation-based extension approach in our context. In Ciao [8],
language extensions are implemented through packages [2], which encapsulate
syntactic extensions for the input language, translation rules for code generation
to support new semantics, and the necessary run-time code. Packages are sep-
arated into compile-time and run-time parts. The compile-time parts (termed
compilation modules) are only invoked during compilation, and are not included
in executables, since they are not necessary during execution. On the other hand,
the run-time parts are only required for execution and are consequently included
in executables. This phase distinction has a number of practical advantages, in-
cluding obviously the reduction of executable sizes.

More formally, let us assume that an extension for some language denoted as
Le is defined by package PkgMode, and that the compiler passes include calls
to a generic expansion mechanism �expand�, which takes a package, an input
program in the source language, and generates a program in the target language
L. That is, given �expand�e = �expand�(PkgMode), for a program Pe ∈ Le we
can obtain the expanded version �expand�e(Pe) = P ∈ L. Note that in practice,
Ciao contains finely grained translation hooks, which allow a better integration
with the module system and the composition of translations [14]. This level of
detail is not necessary for the scope of this paper; thus, for the sake of simplicity,
the expansion will work on whole programs at a time.

Functional Notation. We illustrate the translation process in Ciao with an
example from the functional notation package [3]. This package extends the lan-
guage with functional-like syntax for relations. Informally, this extension allows
including terms with predicate symbols as part of data terms, while interpreting
them as predicate calls with an implicit last argument. It also allows defining
clauses in functional style where the last argument is separated by a := symbol
(other functionalities are provided, such as expanding goals in the last argument
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after the body). The translation can be abstractly specified as a collection of
rewrite rules such as:

(Clauses) tr� p(ā) := C :- B � = (p′(v̄, T ) :- v̄ = ā, B, T = C)
(Calls) tr� q(. . . p(ā) . . .) � = (p′(ā, T ), q(. . . T . . .))

The first rule describes the meaning of a clause in functional notation, where p′

is the predicate in plain syntax corresponding to the definition of p in functional
notation (i.e., using :=). The second rule must be applied using a leftmost-
innermost strategy for every p function symbol that appears in the goal q, where
T is a new variable (skipping higher-order terms).

The usual evaluation order in logic programming corresponds to eager, call-
by-value evaluation (but lazy evaluation is possible as shown in [3]). We refer to
the actual implementation later in this section.

Example 1. The program excerpt below defines a predicate f/2 in functional
notation and its translation into plain Prolog code. Its body contains nested
calls to k/2 and l/2, and also syntactic sugar for a conditional (if-then-else)
construct (using the syntax: CondGoal ? ThenExpr | ElseExpr) .

Source code (functional notation)

f(X) := X < 42 ?
(k(l(m(X))) * 3)

| 1000.
k(X) := X + 1.
l(X) := X - 2.
m(X) := X.

Target code (plain Prolog)

f(X,Res) :- X < 42, !,
m(X, M), l(M, L), k(L, K),
T is K * 3, T = Res.

f(X,1000).
k(X,Res) :- Res is X+1.
l(X,Res) :- Res is X-2.
m(X, X).

Forgetful Translations and Loss of Symbolic Information. Both the stan-
dard compilation and the translations for language extensions are typically fo-
cused on implementing some precise semantics during execution. That is, the
correctness of the translation guarantees that for all programs Pe ∈ Le, the
expected semantics �exec�e for that language can be described in terms of a pro-
gram P ∈ L and its corresponding execution mechanism �exec�. That is, for all
Pe ∈ Le there exists a P = �expand�e(Pe) so that �exec�e(Pe) = �exec�(P ).

Most of the time, symbolic information at the source level is lost, since it is
not necessary at run time. In particular, such information removal and loss of
structure is necessary to perform important program optimizations (e.g., assign-
ing some variables to registers without needing to keep the symbolic name, its
relation to other variables in the same scope, etc.). When programs are not exe-
cuted, but manipulated at a symbolic level, the translation-based approach is no
longer valid on its own. For example, assume a simple debugger that interprets
the source and allows the user to inspect variable values at each program point
interactively. In this case the translation, as a program transformation, must
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PkgMode DbgMod

Pe �expand� P �expand� Pdbg

Fig. 1. The translation process and application of the standard debugger

2 2 Call: f(3,_6378) ?
3 3 Call: <(3,42) ?
4 3 Call: m(3,_6658) ?
5 3 Call: l(3,_6663) ?
6 4 Call: is(_6663,3-2) ?
...
9 3 Call: is(_6673,2*3) ?
10 3 Call: =(_6378,6) ?

Fig. 2. Excerpt of the display of the interactive debugger

preserve not only the input/output behaviour but also some other observable
features (such as line numbers or variable names).

In order to explore the particular case of debuggers more closely, Figure 1 il-
lustrates the translation process of a source program, using a compilation module
PkgMode containing the translation rules for extension e. If the developer asks
the Ciao interpreter to debug this program, further instrumentation is applied
that is also defined in part as a language extension, DbgMod in Figure 1; this
instrumentation customizes the code by encapsulating it into a predicate that
specifies whether a part of the code is spy-able or not. The following example
illustrates in a concrete case the limitations of this process.

Example 2 (Interactive debugging). Consider the code and transformation of Ex-
ample 1. If the target-level debugger is used without any other provision, follow-
ing the process of Figure 1, debugging a call to f(3,T) amounts to debugging
its translation, as illustrated in the trace of Figure 2 (the exit calls are omitted
in order to save space). The problem of this trace is twofold: first, the interac-
tive debugging does not make explicit the actual source-level predicate that is
currently being tested. Second, understanding the trace forces the developer to
make the mental effort of analyzing the debugged data and mapping it back to
the source code. This effort increases if the source code contains operators that
do not exist on the target (Prolog) side. The first case can be easily overcome
when operator definitions are shared, e.g., using a graphical editor and catch-
ing the operator with the line number and the occurence number of the call.
However, the second case implies remembering the mapping between the source
and the target operator. Furthermore, things get even more tedious when one
instruction in the source language is translated into a composition of goals.
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Pe P
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Obse(i)

�expand�e

Obs(i)

Pe (P, Sym)
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�expand�sym
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unexpv
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e (i)

Fig. 3. Observation problem at the source level (left); Observation using symbolic
information (right)

3 Building Reversible Extensions

In this section we provide an informal definition of unexpansion with respect
to a language extension. We then present guidelines in order to instrument a
compilation module for such a language extension. This instrumentation aims to
drive the process of reconstructing a program in terms of the language extension
(or source language) in which the program is written. Through this mechanism,
a language extension can be made reversible. To illustrate our purpose, we apply
the guidelines and parameterize one of the translation rules used in the functional
notation extension.

3.1 Expansion, Unexpansion, and Observers

We use the term unexpansion to designate the inverse of the expansion �expand�e,
that is, the recovering of the original Pe source program from P . Unfortunately,
this inverse is rarely a one-to-one mapping. For example, f(3,T) in L corre-
sponds to both T=f(3) and f(3,T) (with f/1 using functional notation). For
another example, a clause can either be translated into one or many clauses, as
depicted in Example 1 for f in functional notation.

Having multiple solutions for unexpansion can be confusing for the user and
impractical for automatic transformations. However, the most important use of
unexpansion in our context is to observe the behavior of only certain program
aspects at the source language level. In this case, unexpansion seems more treat-
able. For that purpose we define the term observer accordingly: an observer is
an interface that provides some specific source-level information about a par-
ticular program. The observer can be either static or dynamic. Specifically, we
can consider as observers monitors (e.g., interactive debuggers, tracers, and pro-
filers) for dynamic observation, and verifiers (e.g., static analyzers and model
checkers) for static observation. Thus, a source-level view may correspond to the
current instruction being invoked in an interactive debugger, or to a trace of the
memory state, in a tracer, or perhaps the dependencies between the program
variables, in a static analyzer, all of them represented in terms of the source
language abstractions.

The correspondance between expansion and unexpansion, in the context of an
observer, is sketched in Figure 3. We assume that we have observers Obse(i) and
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Obs(i) for the source and target languages, respectively. We denote by i some
particular observable aspect and by V the aspect (e.g., “line numbers” and an
integer). On the left diagram we depict the impossibility of getting information
at the Le level in general. To provide the programmer with source-level observers,
our approach relies on extending the expansion (�expand�sym

e ) with additional
symbolic information (which can be significantly smaller than the sources). Then,
observers Obssym(i) can retrieve V (e.g., a single number encoding the row and
columns) and map it back to Ve (e.g., the row and columns). This composition
provides an effective Obssym

e (i).
We now propose guidelines for easily instrumenting the translation module of

a language extension, in such a way that observers can be parameterized with
respect to this instrumentation.

3.2 Instrumentation of a Compilation Module

Instrumenting a compilation module involves annotating its translation rules
with source code information that can then be used by an observer (i.e., the
debugger in our application example). We illustrate the instrumentation process
on the functional extension example.

Guidelines. The first step in making a language extension reversible is to deter-
mine which parts of the source code need to be kept available in the expansion
process. The second step is to determine how and where to propagate this infor-
mation, so that it can be accessed whenever the developer requires observation
during program execution. The third step is to determine the representation of
the observable data.

Event and data analysis. What events do we want to observe? What do we
want to observe about them? These selections should be useful for following
the control flow and state changes during program execution. For example, in
a λ-calculus-like language, the definition and the application of a function are
two of the key elements to follow in order to debug a program [17]. As another
example, in a goal involving expressions in functional notation, the debugger
must be aware of which positions correspond to data terms and which positions
to predicate calls.

Decomposition. How is a source statement decomposed into target code? The
answer to this question implies in part how the data that we want to observe
should be propagated. For example, while the generic debugger may step through
a number of target-level statements, a source-specific debugger may have to con-
sider a single source statement as corresponding to all those steps. This applies
for example in the conditional statement C ? A | B of the functional notation,
where A is translated into an (at least) two-goal target code segment.

Representation. How should the data to be observed be represented? In a purely
syntactic extension, data always represents elements of the concrete syntax. Nev-
ertheless, it is interesting to consider this question when displaying the runtime
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Fig. 4. Annotated translation: source-level code (left) and target-level code (right)

context, such as the state of the memory, for semantic extensions. For example,
in a CLP{Q,R} extension, variables are bound at run-time to complex terms
attached to attributed variables which reflect the internal, low-level represen-
tation of the constraint store, while what the programmer would like to see is
a symbolic representation of the constraints among the variables in the source
constraint language.

Some Examples. We now present three excerpts of code written using language
extensions, namely CLPQ (the case for CLPR is analogous), DCG, and the
functional notation. The source-level code is represented as a concrete syntax
tree in Figure 4, left part. It is translated into Prolog code as depicted in Figure 4,
right part.

The annotation process implies tagging each element of the source code that
is intended to be observed, i.e., each element meant to be or to refer to a “first-
class” concept of the language extension, whether it is defined as a clause or
a goal. For example, in a DCG rule such as “rel --> rpn, vt” (Figure 4, top
part), rpn and vt are annotated, as these functors lead to a call to another
grammar rule. In contrast, elements surrounded by brackets (e.g., {vt(VT)})
correspond to plain Prolog, and thus do not require any source level-related
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special handling. During the expansion process of the source-level code, the
target goals correspondingly keep a reference to the source identifiers.

3.3 Implementation of the Instrumentation Process

To instrument the translation rules we propose to annotate the target parameter
of each rule (i.e., the argument in which the code generated by the translation
is returned). This annotation is defined as a predicate and provides the symbolic
information, encoded as a Prolog term, to drive the process of recovering source
code data within the observer. Symbolic information could be a list of variables
(along with a function that recovers their value at the source level from the
target context, i.e., its environment and store), or a single string to be displayed
at the observer output at run time, e.g., in the case of an interactive debugger.

Definitions. We currently distinguish two types of annotations: the
$clause_info annotation, which is wrapped around target clauses, and the
$goal_info annotation (or meta-information), which is wrapped around target
goals. The purpose of each of these annotations is to gather symbolic information
to recover a source-level statement or a source-level call, respectively. Addition-
ally, this distinction enables handling clauses and goals properly, in particular
to retrieve their location in source modules.

Both annotations are handled according to the wrapped target element.
Specifically, $clause_info takes three arguments: the target clauses (Clauses in
Example 3), a source-level representation (SI), and an identifier (Id) to option-
ally enable later retrieval of the translated statement. The body of the source-
level statement is itself tagged so as to map to the corresponding target goals
when the statement is evaluated. The $goal_info annotation takes two ar-
guments: the target goal or goal composition, and an identifier, enabling the
retrieval of the source-level call in the body of a statement.

Application to the Functional Notation Translation. We illustrate this
annotation process with Example 3. Specifically, we instrument the two trans-
lation predicates defunc and defunc_goal, translating the source-level clauses
and goals. The text in italic corresponds to the instrumentation code added over
the original translation predicates. Note that defining this code’s body (accord-
ing to the data to observe) can defined as a hook of an extension module.

Example 3. Instrumentation of the translation rules for functional notation.

defunc((FuncHead := FuncVal), $clause_info(Clauses, Id, SI) :−
identify_functional_calls(FuncVal, FuncVal_withIds),
defunc_rec((FuncHead := FuncVal_withIds), Clauses, SI0),
build_syminfo([FuncHead,’:=’|SI0],SI).

defunc_rec((FuncHead := FuncValOpts_withIds), Clauses, [SI1|SIR]) :−
FuncValOpts_withIds = (FuncVal1 | FuncValR), !,
Clauses = [Clause1 | ClauseR],
defunc_rec((FuncHead := FuncVal1), Clause1, SI1), (1)
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defunc_rec((FuncHead := FuncValR), ClauseR, SIR). (2)

defunc_goal(FuncCall, Goal) :−
recover_id(FuncCall, Id),
normalize(FuncCall, NormGoal),...,
Goal = ’Eval’(’$goal_info’(NormGoal, Id), _Ret_Arg).

Clause translation. The FuncHead part on the left corresponds to a predicate
declaration; the FuncValOpts part on the right corresponds to goal invocations
(this results from the data analysis guideline). As introduced in Section 3.2, the
source-level elements of the predicate body are tagged using the user-defined
functor identify_functional_calls. Specifically, each relevant element of the
body is associated with a unique identifier, in order to enable the retrieval of its
position by the observer.

The symbolic information attached to the annotation is represented by the
contents of variable SI, created by predicate build_syminfo. This variable is
handled by an observer, according to the nature of the program view it aims to
provide. For example, line numbers, variables, or function names can be attached
to it. It can even be left as a free variable, if the observer can automatically
retrieve the information.

Notice that the declaration FuncHead := FuncValOpts is decomposed into
many goals, marked (1) and (2), if the | operator appears inside its right part.
Therefore, the translation needs to indicate to the observers that the declaration
is to be treated as a single one. This is done by grouping the symbolic information
computed by the evaluation of goals (1) and (2) into the $clause_info wrapper,
set as its last argument in the first predicate defunc.

Goal translation. To relate target goals with their symbolic information the
goal translation predicates are instrumented with (1) predicate recover_id
which extracts identifier Id of the annotated source-level goal, and (2) predi-
cate $goal_info which is wrapped around the translation code NormGoal. Eval
is not wrapped since it is an intermediate goal in the expansion process.

This approach based on symbolic information enables us to envision a range of
program views, from simple syntax recovery to high-level representation of analy-
sis results: annotations can be enriched with source-specific procedures to handle
various representations of the target program, enabling different instantiations of
the annotation variable. They can even hold procedures that perform advanced
computations parameterized with the symbolic information (e.g., counting the
number of times a function is invoked).

The instrumentation method is outlined in the schema of Figure 5, which
depicts a declaration of the form f(X) := Cond ? B1 | B2. In this figure, the
variable names Sx correspond to identifiers of some program elements associ-
ated with some symbolic information, and the expressions tr�x� correspond to a
translation of the term x. Overlined elements represent syntactic nodes.
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SI1
︷ ︸︸ ︷

f(X) :=

SCond
︷ ︸︸ ︷
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︷︸︸︷

B1 |

SB2
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B2 .
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’$goal_info’((!, tr�B1�), SB1)),

(f(X, R) :- ’$goal_info’(tr�B2�, SB2)
],

[f(X),’:=’,SCond:Cond,’?’,SB1:B1, ’|’,SB2:B2],
SI1)

(Decomposition)

(Translation with sym-
bolic annotations)

Fig. 5. Instrumented translation of a clause in functional notation

Implementation Overview. The annotations are integrated into the compi-
lation process of an extension module. The overall process of making program
behavior observable at the source level through an observer is depicted in Fig-
ure 6. Let us describe the extractor and the controller parts of this process.

compilation module (e) + annotations (Sym)

source 
program (Pe)

Observer (Obsesym(i))
controller processor

translated
program (P, Sym)

Compiler ([expand])
translatorextractor

program view (Ve) program view (V)

Fig. 6. Overview of the compilation process extended with annotations

Extending the translation process: extractor. Handling the annotations required
a slight extension of the translation phase of the compiler. The extension is as fol-
lows: the $clause_info annotation is handled inside the original processing step
of clauses; the $goal_info annotation is handled in the processing step of goals.
Specifically, the annotation attached to each clause is encapsulated into an aux-
iliary clause generated in the same phase as the regular target clause(s). In doing
so, the symbolic information is available whenever an observer needs it. During
the goal translation step, the target goals that are wrapped by a $goal_info
annotation are kept executable, enabling the annotation to be ignored whenever
the source code needs to be processed by a target-level observer.
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Customizing the observer: controller. Existing observers for Prolog (such as
debuggers, profilers, or static analyzers) can then be customized according to
the generated symbolic information. This customizing process is necessarily
application-specific, but we provide some general hints as guidelines:

(Hint 1) Collect all the elements requested by the observer (e.g., line numbers,
function names, or some text) and make them accessible as a data structure
in the arguments of the observer predicates.

(Hint 2) Complement the observer functions that do some processing on some
element (clause or goal), by checking if this element holds some sym-
bolic information (i.e., as $clause_info or $goal_info). For example, if
a $goal_info wrapper is encountered, extract the name of the source-level
goal and make it display it instead of the name of its corresponding target-
level goal(s). Otherwise, preserve the target-level behavior.

(Hint 3) Identify locations in the observer where it needs to remember the last
data computed with source-level information. For example, such data can
correspond to a counter of execution times of a given function, when the
observer is a profiler.

4 Application to the Interactive Debugger

We now illustrate the use of a reversible language extension to parameterize the
generic interactive debugger of Ciao. We describe the modifications performed
on the debugger, and show the resulting source-level trace for our initial example
(Example 1).

4.1 Implementation Details

In the case of the debugger, the required symbolic information corresponds to a
source node (e.g., [k(X), ’:=’, +(X, 1)] as in Example 1). As a result, the
extraction process consists solely of storing each source node before its expansion.

Once the source-level information is extracted and mapped to the appropriate
target term (or composition of target terms, cf. the guidelines in Section 3), it
is interpreted by the debugger. To step through the source code instead of the
target code, the controller part of the debugger checks for the presence of
a meta-information call at the level of the translated program (Hint 1), and
displays a trace step accordingly. In particular, it is responsible for locating the
name and execution counter of the target goal in the nodes corresponding to this
goal, and for replacing it with the related symbolic information, e.g., the name
and the counter of the source-level goal associated with this target goal (Hint
2). Note that if a source-level goal maps to a composition of goals, the controller
will behave as if only one step occurs, hiding the underlying target goals in the
trace display either until another annotated goal is encountered, or until the last
target-level goal has been (silently) executed. The information necessary to this
source-level step is stored, in order to refer to it in a later step (e.g., exit or failure
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2 2 Call: ex0:f(3,_6371) ?
3 3 Call: f(3) := 3 < 42 ? k(l(m(3))) * 3 | 1000 ?
4 4 Call: f(3) := 3 < 42 ? k(l(m(3))) * 3 | 1000 ?
5 5 Call: m(3) := 3 ?
6 4 Call: f(3) := 3 < 42 ? k(l(m(3))) * 3 | 1000 ?
7 5 Call: l(3) := 3 - 2
8 4 Call: f(3) := 3 < 42 ? k(l(m(3))) * 3 | 1000 ?
9 5 Call: k(1) := 1 + 1
10 3 Call: f(3):= 3 < 42 ? k(l(m(3))) * 3 1000 ?
2 2 Exit: ex0:f(3,12) ?

Fig. 7. An excerpt of the debugger trace, customized with source information

step implying backtracking) (Hint 3). When a goal invoked in the debugger is
neither annotated nor part of an annotation, the controller executes its original
procedure to display the standard, expanded debug information.

4.2 Source-Level Tracing: The Functional Example Revisited

With this instrumentation, Example 1 is now debugged in source code terms,
as illustrated in Figure 7. Note that the debugger now displays the complete
declaration (see second line) defining f, instead of a single part of a clause (see
the second line in Example 1). When a function evaluation returns a value (which
is the case of all the functions f/1, k/1, l/1, m/1), intermediate unifications are
performed by the generic debugger. When the debugger is instrumented with a
controller (i.e., the handler of annotations), these unification steps are ignored
(skipped over), since they have no representation in the original source code.

5 Related Work

There exist frameworks and generative approaches that facilitate the develop-
ment of DSL tools for programming, including debuggers [6,20]. For example,
the Eclipse Integrated Development Environment [6], provides an API and an
underlying framework that can greatly help in the development of a debugger [5].
Emacs is another example of such environments, with facilities in the same line
as Eclipse. However, these tools are large and have a significant learning curve,
and, more importantly, their facilities are centered more around the graphical
navigation of the source code and interfacing with a command-line debugger,
while the focus of our work is on bridging syntactic or semantic aspects between
two sides of a translation, within such a command-line debugger. In that sense
our work is complementary to (and in practice combines well with) the facilities
in Eclipse, Emacs, and related environments. Generative approaches have been
suggested (e.g., based on aspect weaving into the language grammar [22]) in
order to reduce developer burden when using intricate APIs.

However, none of these approaches provide a methodology for developing reli-
able and maintainable debuggers. As a result, the development of debuggers has
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remained difficult, inciting DSL tool developers to implement ad-hoc solutions,
through extension-specific modifications and adaptations of the debugger code.
For example, SWI-Prolog and Logtalk include a debugger for Prolog with built-in
support for language extensions like DCGs programs [21], which is purely based
on storing line numbers within the code. As mentioned in the introduction, this
approach, although useful in practice, is limited to a reduced kind of extensions.

Our objective has been to develop a more general approach, which we have
illustrated by applying the same methodology to several extensions including
functional notation, DCGs, and CLP{Q,R}.

Lindeman et al. [11] have proposed recently a declarative approach to defining
debuggers. To this end, they use SDF [19], a rewriting system, to instrument the
abstract syntax tree with debugging annotations. However, it does not seem
obvious that their approach could be applied to other observer tools. Indeed,
instrumentation is achieved by providing debugger-specific information, in the
form of events. In contrast, our instrumentation process makes it possible to
easily add and handle different kinds of meta-information.

Unexpansion and decompilation only differ in the hypothesis used in decom-
pilation: that the original source code may not be available. It is interesting
however to compare to existing related decompilation approaches. Bowen [1]
proposes a compilation process from Prolog to object code which makes it pos-
sible to define decompilation as an inverse call to compilation, provided some
reordering of calls is performed. Gomez et al. [7] also propose a decompilation
process for Java based on partial evaluation. However, these approaches have not
been designed to be applicable to a large class of different language extensions.
More generally, while it is in theory possible (although predictably hard with
current technology) to implement fully reversible transformations, this approach
runs into the problem that such inversions are non-deterministic in general, in
the sense that a given target code can be generated from multiple source texts.
Presenting the programmer with a different code that what is in the source
program could be even more confusing that debugging the target code directly.

More similar to our solution is the approach of Tratt [18], which also targets
language extensions, and where source information is injected into the abstract
syntax tree of the source program. This information is exploited to report errors
in terms of the language extension. However, they only discuss how to inject such
information in the syntax tree, and do not explain how to use this information
when building or adapting tools.

The macro-expansion passing style [4] approach makes it possible to easily
implement observers. Our approach differs from this one by relying on the ex-
isting generic debugger (Ciao’s in our examples): it focuses on what changes are
required in the debugger and the extension framework so that symbolic informa-
tion for unexpansion is handled in a way that is independent from the concrete
language extension.
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6 Conclusion and Future Work

We have presented a generic approach that enables a debugger for a target lan-
guage to display trace information in terms of the language extension in which a
source program is written, using the Ciao debugger as an example. The proposed
approach is based on an extension of the usual mechanisms for term expansion,
and in particular of their modular implementation in Ciao through packages.
Nevertheless, we believe that our proposal could be ported to other Prolog sys-
tems with minor modifications. More specifically, we have defined a methodology
for making relevant parts of the source text and other characteristics available
at the target level by enriching the translation rules. We have shown that the
compiler and the debugger require only small adaptations in order to take this
mechanism into account; these adaptations are generic in the sense that while
the transformation rules are specific to the extension, the compiler and the de-
bugger do not require further modification, for what is arguably a large class of
extensions. In particular, in the paper we have illustrated this approach by ap-
plying it on the functional notation. In the system, we have successfully applied
it also to the DCG and CLP{Q,R} constraint packages.

In future work, we plan to extend the flexibility of the approach by enriching
the annotations to serve different purposes, such as performing computations on
symbolic information. Also, we feel that this initial work on augmenting the lan-
guage extension mechanism already provides us with the basis for adapting the
Ciao pre-processor. In doing so, errors, warnings, or other reports are reported in
terms of the source, domain-specific language, for different extensions, without
requiring further modification of the pre-processor itself. The same would apply
of course to the auto-documenter and the profiler [12]. Finally, we believe we
could leverage Kishon et al.’s framework [10] to check the soundness of our ap-
proach with regard to the intended semantics of a language extension. Doing so
would also make it possible to show the equivalence between the behavior of an
ad-hoc source level debugger and our customization of the target level debugger.
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Abstract. We present a succinct yet powerful interface library to the SQLite
database system. The single file, server-less approach of SQLite along with the
natural integration of relational data within Prolog, render the library a useful ad-
dition to the existing database libraries in modern open-source engines. We detail
the architecture and predicates of the library and provide example deployment
scenarios. A simple bioinformatics example is presented throughout to illustrate
proSQLitet’s main functions. Finally, this paper discusses the strengths of the
system and highlights possible extensions.

Keywords: databases, SQL, Prolog libraries, SQLite.

1 Introduction

SQLite [1] is a powerful, open source server-less database management system that re-
quires no configuration as its databases are stored in a single file. Ran from a lightweight
operating system (OS) library executable, it can be deployed in a number of scenarios
where a traditional server-client database management system (DBMS) is not possible,
advisable or necessary. This paper presents an implementation of a Prolog library that
uses the C-interface to communicate with the SQLite OS library.

The relational nature of Prolog makes its co-habitation with relational database sys-
tems an attractive proposition. Not only databases can be viewed and used as external
persistent storage devices that store large predicates that do not fit in memory, but it
is also the case that Prolog is a natural choice when it comes to selecting an inference
engine for database systems. The ODBC library in SWI-Prolog [18] is closely related
to our work since we have used the library as a blue print both for the C-interface code
and for the library’s predicates naming and argument conventions.

The field of integrating relational databases has a long tradition going back to the
early years of Prolog [8]. For instance the pioneering work of Draxler[7], although
based on writing out SQL rather than directly interrogating the database, provided ex-
tensive support for translating combinations of arbitrary Prolog and table-associated
predicates to optimised SQL queries. The code has been ported to a number of Pro-
log systems[13]. Another approach which targeted machine learning and tabling as well
as importing tables as predicates is MYDDAS, [5]. An early ODBC interface for Quintus
Prolog was ProDBI [12]. Prolog has also been used to implement a database manage-
ment system based on the functional data model [10]. In this contribution we concen-
trate on describing an open-source modern library that can be used out-of-the-box with
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Table 1. Predicates for proSQLite library. Left: connection management and SQL queries. Right:
auxiliary predicates on formatted queries and database introspection.

predicate name/arity moded arguments predicate name/arity moded arguments
sqlite connect/2 +File, ?Conn
sqlite connect/3 +File, ?Conn, +Opts sqlite format query/3 +Conn, +SQL, -Row
sqlite disconnect/1 +Conn sqlite current table/2 +Conn, -Row
sqlite current connection/1 -Conn sqlite table column/3 +Conn, ?Table, -Column
sqlite default connection/1 -Conn sqlite table count/3 +Conn, +Table, -Count
sqlite query/2 +SQL, -Row
sqlite query/3 +Conn, +SQL, -Row

a zero configuration, community supported database system. We hope that the library
will be a useful tool for the logic programming community and provide a solid basis
in which researchers can contribute rather than having to reinvent the basic aspects of
such integrations.

2 Library Specifics

Here we present the overall architecture of the system along with the specific details
of the three component architecture. Our library was developed on SWI 6.1.4 under a
Linux operating system. It is also expected to be working on the Yap 6.3.2 [6] by means
of the C-interface emulation [16] that has been also used in the porting other low-level
libraries [2]. We publish1 the library as open source and we encourage the porting to
other Prolog engines as well as contributions from the logic programming community
to its further development. Deployment is extremely simple and only depend on the
location of the SQLite binary.

Our library is composed of three main components. At the lower level, written in C,
the part that handles opening, closing and communicating with the SQLite OS library.
The C code is modelled after, and borrows crucial parts from the ODBC library of SWI.
On top of the low-level interface, sit two layers that ease the communication with the
database. On the one hand, a set of predicates allow the interrogation of the database
dictionary, while a third layer associates tables to Prolog predicates.

The heart of the library is its interface to SQLite. This is implemented in C and has
strong affinity to the ODBC layer in SWI. The left part of Table 1 lists the interface
predicates to the core system. Management predicates allow users to open, close and
interrogate existence of connections to databases. The C code creates a unique, opaque
term to keep track of open connections. However, this is not particularly informative to
the users/programmers. More conveniently, the library allows for aliases to connections
that can act as mnemonic handles. As a running example we will use the connection
to a large but simple protein database2 from Uniprot. It has two tables referenced on a
single key and having 286, 525 and 3, 044, 651 entries. The single file SQLite database
is 184Mb in size. Table 2 summarises the basic parameters of the database

1 http://bioinformatics.nki.nl/˜nicos/sware
2
http://bioinformatics..nki.nl/˜nicos/sware/prosqlite/uniprot.sqlite

http://bioinformatics.nki.nl/~nicos/sware
http://bioinformatics.
.nki.nl/~nicos/sware/prosqlite/uniprot.sqlite
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Table 2. Structure of the uniport example database which stores protein identifier maps

table name population columns

secondary accessions 286525 secondary accession, primary accession
identifier mapping 3044651 uniprot accession, identifier type, target identifier

The type of connection we wish to establish to the database file is controlled by
sqlite connect/3 . The user can interrogate all open connections and the existence of a
specific connection via sqlite current connection/1. This predicate backtracks over all
open connection if it is queried with a variable as its argument. The bulk of the traffic
with SQLite is directed via sqlite query/2,3 through which data in tables can be added,
deleted and queried. We include in the library a small number of predicates that assist
user interaction with databases. These include parametrised query strings, interrogating
the database dictionary and simple aggregate operations.

The formatted query mechanism provides a means for parametrised queries. This
is useful for encoding common patterns of queries in an application. The function of
the rest of the wrapping predicates follows directly their naming. The information they
provide is gathered from the database dictionary which is managed by SQLite. For
illustration purposes and for comparison with alternative ways of obtaining the counts
of a table, we show in the code that follows how to use backtracking to obtain all tables
in the Uniprot database along with their populations.

?- sqlite_current_table(uniprot, Table),
time(sqlite_table_count(uniprot, Table, Count)),
write(Table:Count),nl,fail.

% 7 inferences,0.007 CPU in 0.007secs (99% CPU,1013 Lips)
secondary_accessions:286525
% 7 inferences,0.083 CPU in 0.083 secs (100% CPU,85 Lips)
identifier_mapping:3044651

2.1 Tables as Predicates

With the as predicates/1 option of sqlite connect/3 we can direct the library to create
linking predicates for each table in the database. That is a predicate is created for each
table in the underlying database. The predicates are created at module identified by
option at module/1. It is the responsibility of the user to ensure there are no name
clashes. Once thus declared, the table predicates behave as normal Prolog predicates.
The system makes simple transformations when filling the predicates with results from
the database. Currently, this is by mean of creating an SQL SELECT statements in
which the WHERE sub-clause is formed from the ground arguments of the corresponding
goal. For a table with name Name and columns that have a one-to-one correspondence
with the list of variables in Args, and Module being the module provided at the
at module option of sqlite connect/3 . Predicates that correspond to database tables
interact as if defined by a number of facts: each table row corresponds to a fact assertion
to the Prolog database. To illustrate, we show the predicated goals for the two queries
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from the preceding section. Times are shown from a run on a Linux dual-core 3.16GHz
desktop computer.

?- findall(S, secondary_accessions(S, 'P64943'), All).
All = ['A0A111', 'Q10706'].

?- sqlite_current_table(uniprot, Table),
findall(C,sqlite_table_column(uniprot,Table,C),Cs),
length( Cs, Arity ), length( As, Arity ),
Pred =.. [Table|As],
time( ( findall(1,Pred,Ones),

length(Ones,Count))),
write(Table:Count), nl, fail.

%286,560 inf,0.561 CPU in 0.575 secs(98% CPU,510692Lips)
secondary_accessions:286525
%3,044,689inf,10.486CPUin10.516secs(100%CPU,290360Lips)
identifier_mapping:3044651

Predicated tables only depend on SQL transformations and as such are not specific to
SQLite but can be easily ported to other interface libraries such as ODBC.

3 Applications

The last decades have witnessed a phenomenal increase in the amount of biological
knowledge that has been published and codified [9]. This acceleration can be directly
attributed to the evolution of high throughput technologies such as genome wide ex-
pression assays, microscopy and deep sequencing. One important way in which bio-
logical knowledge is codified is in the form of databases and ontologies. These include
protein-protein interaction databases such as STRING [14] and HPRD [11] and protein
information databases such as the universal protein resource Uniprot [15].

Prolog is a powerful platform for bioinformatics research and analysis. Its ability
to query relational datasets and express recursive searches succinctly are of particular
interest to ontologies and databases tabulating millions of relations. One of the main
roadblocks hindering the use of Prolog in this research area is the lack of effective tools
that give access to the resources available. Databases form the basic layer of biolog-
ical knowledge available. The use of effective tools to connect databases in efficient,
resilient and integrative manners to the logic engine can assist in narrowing this gap.
Currently, we use proSQLite as one of the possible caching mechanisms in pubGraph
a graph search tool that mines the citation relations from the PubMed3 website to built
visualisations of the relational networks.

Engaging Prolog with the world wide web (WWW) in the role of a web-server has
been well advocated and served by supporting libraries [4,17]. Furthermore, there has
been previous motivating work on systems that realise Prolog servers that mediate the

3 http://www.ncbi.nlm.nih.gov/pubmed

http://www.ncbi.nlm.nih.gov/pubmed
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web-publication of material stored in relational databases [3]. The library presented
here further facilitates the role of Prolog in this area. Particularly, with small to medium
size web services. The main benefits of SQLite in this context are:

persistence - Prolog based servers need persistent storage of data. It is conceivable
that such data can be realised as external files managed privately.

threading - Web-servers are inherently multi-threaded and the ability to communicate
through a shared file-based database provides further plurality.

ease of deployment - SQLite is arguably one of the easiest database back-ends to
install and maintain.

filestore abstraction - One of the main success stories for SQLite has been in providing
application specific filestore solutions. This fits well within a web-server setting.

Currently, a large number of applications are reported to be using SQLite as an
embedded database transaction system that is used to store application data in a uni-
form and robust manner. These include major open source projects such as the Fire-
fox/Mozilla4 browser and the Powerdns5 DNS server. The embedded nature of SQLite
reduces overheads and simplifies installation. Applications can use the layer to abstract
their interactions with the operating system. Databases are stored in single files and are
cross-platform compatible.

4 Conclusions

We presented a stable and efficient library for integrating a file-based DBMS to mod-
ern open-source Prolog engines. We have argued that Prolog is a powerful platform
for data analysis and computational research in bioinformatics and for the realisation
of agile web-servers that require minimal programming effort. Biological knowledge
captured in the growing list of databases can be efficiently reasoned with, within logic
programming. There are a number of possible extensions that can be envisaged on top
of the presented library. These are not necessarily specific to this library but can also
be of relevance to similar approaches such as the ODBC library of SWI. One such ex-
tension is db facts6 which implements term based table interactions for proSQLite and
ODBC databases. It also allows for a notation that selects columns from tables indepen-
dently of their position in the respective table. This would allow decoupling of a table’s
precise list of constituent columns from accessing specific fields, making code easier to
maintain as additions to the database structure do not need to be propagated to parts of
the code that are not accessing the new columns.
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4 http://www.mozilla.org/
5 http://doc.powerdns.com/gsqlite.html
6 http://bioinformatics.nki.nl/˜nicos/sware/db_facts

http://www.mozilla.org/
http://doc.powerdns.com/gsqlite.html
http://bioinformatics.nki.nl/~nicos/sware/db_facts
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Dependently Typed Web Client Applications

FRP in Agda in HTML5

Alan Jeffrey

Alcatel-Lucent Bell Labs

Abstract. In this paper, we describe a compiler back end and library for
web client application development in Agda, a dependently typed func-
tional programming language. The compiler back end targets ECMA-
Script (also known as JavaScript), and so is executable in a browser.
The library is an implementation of Functional Reactive Programming
(FRP) using a constructive variant of Linear-time Temporal Logic (LTL)
as its type system.

1 Introduction

Client-side applications are typically model-view-controller architectures, and
often include features such as imperative state, concurrency and continuation-
passing. These features can result in code which is difficult to reason about,
debug and maintain. In this paper, we propose adapting Functional Reactive
Programming (FRP) [13] to the setting of a pure, dependently typed, functional
programming language, Agda [1].

Figure 1 shows some simple applications running in a browser. What is inter-
esting about these applications is that they are written in Agda, and compiled to
ECMAScript [7]. We have developed a compiler back end, foreign function inter-
face, and library bindings for FRP, and for HTML5 [15] Document Object Model
(DOM ) node and event bindings. The compiler extensions have been released
as part of Agda 2.3.0, and the libraries are released under an MIT License [4].
Novel features of the compiler and libraries include:

– Interoperability with ECMAScript idioms. The compiler makes use of com-
mon ECMAScript idioms, to simplify the use of existing ECMAScript li-
braries in Agda. For example, the Visitor and Observer patterns [14] are
used to implement inductive datatypes and notification.

– Singleton analysis for type erasure. We perform a static analysis that con-
servatively approximates singleton types (which have only one inhabitant
at run time). Any term of singleton type is replaced by the singleton value
at compile time. In particular, we regard Set as having singleton value null,
which allows many type-level computations to be eliminated.

– View patterns in the FFI. We support a ECMAScript Foreign Function In-
terface (FFI ) which, as well as providing bindings for constants and func-
tions, also allows inductive datatypes in Agda to be bound to any ECMA-
Script type. A variant of view patterns [24] allows pattern-matching to be

K. Sagonas (Ed.): PADL 2013, LNCS 7752, pp. 228–243, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Fig. 1. Example Agda programs running in the browser

compiled to any ECMAScript conditional, for example an Agda boolean
type can be compiled to ECMAScript native booleans, without any addi-
tional support from the Agda compiler.

– Linear-time Temporal Logic (LTL) types for FRP. The semantics of FRP
is defined in terms of signals, which are time-dependent values. In previous
work [16], we showed that signals can be typed using time-dependent types,
using the combinators of LTL [23], such that any FRP program is a proof of
an LTL tautology.

– Resource reclamation of FRP signals. The FRP implementation makes use of
techniques from self-adjusting computation [8], where signals form a dataflow
graph, making use of notifications whenever a signal value changes. We are
recording the creation time of each signal in its type, and so can maintain
time-sensitive invariants which allow resource reclamation of irrelevant sig-
nals, even when the garbage collector regards the signal as still live.

– Inference of DOM node locations. A difficult problem in GUI libraries for
functional languages is the binding of event listeners to GUI components.
In an OO language, binding makes use of object identity, which violates ref-
erential transparency since components with identical definitions may have
different event streams. In a functional language, this could be modeled by a
name creation mechanism [22] or nondeterminism [19], but such models are
not compatible with Agda’s semantics. We provide a novel form of location
inference, which supports the creation of DOM event streams from DOM
nodes without violating referential transparency.

Agda is used throughout this paper, but we expect the results would apply to
other dependently typed languages, such as Coq [3] or Epigram [5].

Thanks to Sebastian Bocq for detailed comments on this paper.

2 Compiling Agda to ECMAScript

We first consider the design of the ECMAScript back end for the Agda compiler,
which is included in Agda 2.3. The compiler translates a dependently typed λ-
calculus with inductive datatypes and records into an untyped λ-calculus with
records. The interesting features of the compiler are its treatment of singleton
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data List (A : Set) : Set where
nil : List A
cons : A → List A → List A

append : ∀ {A} → List A → List A → List A
append nil bs = bs
append (cons a as) bs = cons a (append as bs)

Fig. 2. Example program in Agda

dataListA : Set 0 where {
nil : ListA,
cons : Πa . Πas . ListA

}
function append : ΠA . Πas . Πbs . ListA

= λA . λas . case as of {
nil �→λbs . bs,
cons a as �→ λbs . cons a(append A as bs)

}

Fig. 3. Example program in Agda IL

exports = {
nil �→λ() . λ(v) . (v.nil()),
cons �→λ(a, as) . λ(v) . (v. cons(a, as)),
append �→λ(A) . λ(as) . (as({

nil �→λ() . λ(bs) . bs,
cons �→λ(a, as) . λ(bs) . (exports. cons(a, exports. append(A)(as)(bs)))

})
}

Fig. 4. Example program in ECMAScript IL

define(["exports",function(exports) {
exports.nil = function() { return function(v) { return v.nil(); }; };
exports.cons = function(a,as) { return function(v) { return v.cons(a,as); }; };
exports.append = function(A) { return function(as) { return as({
nil: function() { return function(bs) { return bs; }; },
cons: function(a,as) { return function(bs) {
return exports.cons(a,exports.append(A)(as)(bs));

}; }
}); }; };

});

Fig. 5. Example program in ECMAScript
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types (including type erasure, since Set is treated as a singleton type) and the
translation of datatypes to a use of the visitor pattern.

In Figures 2–5, we show how a simple datatype and recursive function (append
over lists) is translated first into an Agda Intermediate Language (IL), then an
ECMAScript IL, and finally into ECMAScript:

– The translation from Agda (Figure 2) to Agda IL (Figure 3) is not novel, and
handles issues such as making implicit arguments explicit and η-normalizing
function applications. In this paper, we give a presentation using case state-
ments in the IL rather than pattern matching. We compile pattern matches
to case using decision trees (credited by Cardelli [11] to Kahn and MacQueen
in the HOPE compiler [10]).

– The translation from the Agda IL (Figure 3) to the ECMAScript IL (Fig-
ure 4) is the interesting one, and is discussed in more detail below. Note
that in this translation, case statements over inductive datatypes have been
replaced by uses of the visitor pattern, and that top-level declarations in an
Agda module have been replaced by fields in an ECMAScript record exports.

– The translation from the ECMAScript IL (Figure 4) to ECMAScript (Fig-
ure 5) is routine. We make use of the Asynchronous Module Definition
(AMD) [2] module system for ECMAScript, which supports a special ob-
ject exports. The translation of an Agda module is an ECMAScript module
which assigns to the appropriate exports field.

Figure 6 shows a simplified grammar for the Agda IL, which is a λ-calculus
with records, inductive datatypes, Π types, stratified Set types and postulates
(uninterpreted constants). The main differences between this presentation of the
IL and the actual implementation are modules, namespacing, type information,
and the use of case expressions rather than pattern matching functions.

Figure 7 shows a simplified grammar for the ECMAScript IL, which is an
untyped λ-calculus with records. The main differences between this presentation
of the IL and the actual implementation are namespacing, conditionals and infix
and prefix operators. Note that many features of ECMAScript are missing from
the ECMAScript IL, such as mutable state, prototypes and constructors. The
ECMAScript IL allows importing arbitrary AMD modules, so these features can
still be used, as long as they are in an imported module.

We define β-reduction as per usual in a λ-calculus with records. The only
point of interest in the definition is the use of undef in ECMAScript’s semantics.
For example, we define capture-avoiding substitution M [ �N/�x] in the usual way

whenever | �N | = |�x|, then generalize to arbitrary �N and �x by substituting undef
if necessary:

M [( �N, �L)/�x] = M [ �N/�x] when | �N | = |�x|
M [ �N/(�x, �y)] = M [ �N/�x, undef/�y] when | �N | = |�x|

from which we define β-reduction of functions:

(λ(�x) . M)( �N)→M [ �N/�x]



232 A. Jeffrey

A,B,C ::= x �A | λx . A | {�
 �→ �B} | A.
 | g �A | k |
| Πx . A | Set A | c �A | caseA of {�P �→ �B}

P,Q ::= c �x

D,E ::= function g : A = B | data g �x : B where {�c : �C} |
record g �x : B where {�
 : �C} | postulate g : A

Fig. 6. Agda IL

L,M,N ::= x | λ(�x) . M | M( �N) | { �
 �→ �M } | M.
 | k

Fig. 7. ECMAScript IL

Similarly, field access of an object returns undef for missing fields:

{ �� �→ �M }.�→
{
Mi if � = �i

undef otherwise

In Figures 8–9 we show how Agda IL is translated into ECMAScript IL. Most
of the translation is direct, but there are two points of interest: a static approx-
imation of singleton types, and the visitor pattern [14] for inductive datatypes.

For singleton types, we include a judgement “A has singleton B”, meaning
that any closed instance of type A must be equal to B. For example:

– � (a record type with no fields) has singleton { }.
– ⊥ (an inductive type with no constructors) has no closed instances, so we

can declare that ⊥ has singleton undef. Since ¬A is defined to be A→⊥, it
has singleton λx.undef, and so we can eliminate many instances of negations.

– Since we are using a type-erasing translation, Set A (the type of types at
universe level A) has singleton null. This eliminates many instances of run-
time type computation.

The visitor pattern uses double callbacks to emulate case statements (in [9], this
form of visitor is called an external visitor, in contrast to an internal visitor
which emulates a recursion scheme). For example, if as is a list, then:

as({ nil: f, cons: g })

will call back f() if as is an empty list, and g(b,bs) if as has head b and tail bs.
The translation of case statements into visitors is direct.

Recall that recursive declarations are translated to imperative updates to the
mutable exports variable. For mutually recursive declarations under a λ (such as
the traditional even and odd functions) this presents no problem, but for top-
level recursive declarations, we have to ensure that exports are defined before
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�x 
A� = x(�A1�) · · · (�An�)

�λx . A� = λx . �A�

�{
	 �→ 
A}� = { 
	 �→ � 
A� }
�A.	� = �A�.	

�g 
A� =

{
C if g 
A : B and B has singleton C

exports.g � 
A� otherwise
�k� = k

�Πx . A� = null

�Set A� = null

�c 
A� = c(� 
A�)

�caseA of {
P �→ 
B}� = A({ �
P �→ 
B� })
�c 
x �→ B� = c �→ λ(
x) . �B�

data g 
x : Set A where { }
g 
A has singleton undef

data g 
x : Set A where {c : g 
x}
g 
A has singleton c

record g 
x : Set A where { }
g 
A has singleton { }

A has singleton B

Πx . A has singleton λx . B Set A has singleton null

Fig. 8. Translation of Agda expressions to ECMAScript

�function g : A = B� = g �→
{

C if A has singleton C

�A� otherwise

�data g �x : A where {�c : �B}� = ��c : �B�

�record g(�x : �A) : B where {�
 : �C}� = ε

�postulate g : A� = g �→
{

B if A has singleton B

undef otherwise

�c : Π�x . g �A� = c �→ λ(�x) . λ(v) . v.c(�x)

Fig. 9. Translation of Agda declarations to ECMAScript

their use. Consider the Agda IL declaration:

functionx : N = y + 1 function y : N = 3

and then translated into ECMAScript IL it is:

{ x �→ exports.y + 1; y �→ 3 }

Unfortunately, translated directly into ECMAScript, this would be:

define(["exports"],function(exports) {exports.x = exports.y + 1;exports.y = 3;});

which generates a load-time error, since exports.y is undefined at the point of its
use. To avoid this, we inline any occurrences of exports which occur outside of
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an enclosing λ. In this example, inlining exports produces:

{ x �→ { x �→ exports.y + 1; y �→ 3 }.y + 1; y �→ 3 }

which β-reduces to:
{ x �→ 3 + 1; y �→ 3 }

and translates into ECMAScript as:

define(["exports"],function(exports) {exports.x = 3 + 1;exports.y = 3;});

As this example shows, we use a n̈ıave strategy of always inlining top-level occur-
rences of exports. Since Agda is total, this process must terminate (unless Agda’s
termination checker is disabled, in which case the compiler is not guaranteed to
terminate) but may result in an exponential blowup in program resource usage.
We leave a more sophisticated treatment of inlining for future work.

3 Foreign Function Interface

For Agda to be useful for writing web applications, it must interact with native
ECMAScript APIs, notably those defined by HTML5. The translation of Agda
into ECMAScript is designed to make this as simple as possible (for example,
translating functions to functions, and records to records) but there is still a need
for a Foreign Function Interface (FFI ) to provide bindings for native types. In
Agda, FFIs are defined via pragmas, for example to bind Agda identifier g to
ECMAScript term M :

COMPILED JS g M

In the case of functions, constructors or postulates, the semantics of FFI code
is direct: the ECMAScript is inlined (and β-reduced) whenever the identifier is
used. For example if we define:

data N : Set where
zero : N
suc : N → N

+ : N → N → N

zero + y = y
suc x + y = suc (x + y)

* : N → N → N

zero * y = zero
suc x * y = y + (x * y)

then the following pragma declarations bind zero, suc, + and * to their native
counterparts:

COMPILED JS zero 0
COMPILED JS suc function(x) { return x+1; }
COMPILED JS + function(x) { return function(y) { return x+y; }; }
COMPILED JS * function(x) { return function(y) { return x*y; }; }

By itself, however, this is not sufficient, as user code may include recursive func-
tions over naturals, such as the ever-popular factorial:

fact : N → N

fact zero = suc zero
fact (suc x) = suc x * fact x
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To support this, we allow FFI bindings from datatypes to the acceptor function
for that datatype, similar to view patterns [24]. The acceptor is a function f(x, v)
which takes as parameters a value x, and a visitor v, and calls the appropriate
visitor method. For example if we declare:

COMPILED JS N function (x,v) {
if (x < 1) { return v.zero(); } else { return v.suc(x-1); }
}

then the generated ECMAScript for the factorial function is:

exports.fact = function (x) {
if (x < 1) { return 0+1; } else { return ((x-1)+1) * exports.fact(x-1); }
}

4 Functional Reactive Programming

The style of programming used in web applications such as those in Figure 1 is
Functional Reactive Programming (FRP) [13]. The semantics of FRP is defined
in terms of signals, which are thought of as time-dependent values. For example,
the clock application is:

main = text(map toUTCString(every(1 sec)))

where:

– every(1 sec) is a signal of Time, which updates every second,
– map f(σ) applies a function f : A→ B to a signal σ of A to get a signal of

B, here toUTCString : Time→ String, and
– text(σ) converts a signal σ of String to a signal of DOM nodes.

The types of these combinators are (ignoring some issues about the type for
DOM nodes, which we return to in Section 6):

every :Delay→ ��〈Time〉�
map : �A⇒B�→ ��A⇒�B�

text : ��〈String〉 ⇒�DOM�

which gives the type of main as ��DOM�, that is a signal of DOM nodes, suitable
for rendering in a browser.

These types are based on Linear-time Temporal Logic (LTL) [23]. In previ-
ous work [16] we showed that FRP programs in a dependently typed program-
ming language can be given types in a constructive variant of LTL, such that
any well-typed FRP program is a proof of an LTL tautology. The correspon-
dence between FRP programs and LTL proofs was discovered independently by
Jeltsch [18]. Since LTL propositions are parameterized over time, we consider
types parameterized over time, that is reactive types :

RSet = Time→ Set
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where Time is a totally ordered set (implemented using ECMAScript’s time
model, which is an integer number of milliseconds since 1 Jan 1970). Some com-
binators on reactive types are:

〈·〉 : Set→RSet 〈A〉 = λt . A

(· ⇒ ·) : RSet→ RSet→ RSet A⇒ B = λt . A(t)→ B(t)

�·� : RSet→ Set �A� = ∀{t} . A(t)
� : RSet→ RSet �A = ?

These combinators are:

– 〈A〉 is a constant reactive type; viewed as a temporal proposition 〈A〉 is true
at time t when A is true.

– A⇒B is the pointwise function space between A and B; viewed as a temporal
proposition, A⇒ B is true at time t when A being true at time t implies
that B is true at time t.

– �A� embeds RSet back into Set; viewed as a proposition �A� is true whenever
A is a tautology, that is A is true at all times t.

– �A is the type of signals of A; viewed as a temporal proposition, �A is true
at time t whenever A is true at any time u ≥ t.

The FRP combinators can be viewed as a proof system for LTL, for example
one of the axioms of S4 modal logic is given by:

map : �A⇒ B�→ ��A⇒�B�

Note that we do not give a definition for �A (the library defines it as a postulate).
It is isomorphic to LTL’s “global” modality:

�A ≈ λt . ∀u . True(t ≤ u)→ Au

where:
True(·) : Bool→ Set

True(b) =

{
1 if b = true
0 otherwise

The implementation of �A in ECMAScript is not given functionally. Instead it is
given as a dataflow graph, where the nodes implement the observer pattern [14].
The implementation is based on self-adjusting computation [8,20], and is similar
to FrTime [12], Flapjax [21] and Froc [6].

Consider the dataflow graph for the expression x ∗ (y + x):

x ∗

y +
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This is implemented as an object graph, where every node implements the Ob-
server pattern, and memoizes its current value. When an update takes place (for
example, an external event arrives) the nodes send notifications to their obervers,
requesting that they update themselves, and recursively inform their observers if
necessary. Note that nodes only notify their observers when their values change,
so unchanged nodes are not involved in any updates. For example, if x’s value
is 3, and y’s value is updated to 6 then the following notifications are sent:

x ∗

y +

6
9

27

Unfortunately, a simple application of the observer pattern results in glitches.
These are transient erroneous values, due to nodes receiving multiple notifica-
tions. For example, if x’s value is updated to 4 then the following notifications
could be sent:

x ∗

y +

4
36

4
10

40

In this example, the ∗ node has been notified twice, and as result has sent two
notifications, the first of which does not match the FRP semantics. To avoid
such glitches, we adopt the same strategy as [12,21], and rank nodes, such that
every node has smaller rank than all of its observers1. Notifications are now

1 Acar [8] uses post-order traversal order rather than height order, because his target
languages allow for exceptions and other error behaviours, and so (for example)
conditionals must be evaluated before branches in an if-expression. Agda is total,
and so we can use a simpler ordering strategy, at the possible cost of wasted effort.
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asynchronous rather than synchronous, and are executed in rank order. For
example, the above glitchy behaviour is replaced by:

x ∗

y +

4

4
10

40

For efficiency, we use synchronous notification for nodes with fan-in one, and
reserve asynchronous notification for nodes with fan-in of two or more. The
implementation of flow graphs makes use of a task scheduler, which handles
asynchronous notification, and ensures that notifications are processed in rank
order. The scheduler also supports delayed notification (using the HTML5 time-
out mechanism) and rank updates (a node may switch its observed neighbours,
causing its rank to change, which must be propagated upwards).

5 Garbage Collecting FRP

Nodes in the flow graph of an FRP program maintain a set of observer nodes
(which should be notified on state updates) and observed nodes (whose mem-
oized values can be queried when a notification is processed). This presents a
challenge to a garbage collector, since bidirectional links may keep nodes alive
unnecessarily. For example, consider the graph:

x ∗

y +

−

Here there is a node − with no observers, which should be reclaimed. Such
unobserved nodes can arise dynamically due to switches, which reconfigure the
node graph. To reclaim unobserved nodes, some FRP implementations [12] make
use of weak pointers for observers, which would allow garbage collection in this
case. Unfortunately, ECMAScript does not support weak pointers.

An alternative is to have the FRP library handle node reclamation. Nodes
have addObserver and removeObservermethods: when a node has its last observer
removed, it calls removeObserver on each of its observed neighbours to remove
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itself. Essentially, this is a reference counting garbage collector (cyclic flow graphs
are handled by an explicit fixed point function, which does not increase the
reference count, so cycles can be collected). These functions are only visible in
ECMAScript: they have mutable semantics, so must be kept hidden from Agda.

Unfortunately, this is not always safe, since a node might be added back into
the graph after it has been reclaimed:

// node1 starts out with just observer node2
node1.removeObserver(node2);
// at this point node1 reclaims its resources
node1.addObserver(node3);

Without some additional guarantees, node1 would reclaim its resources, only
later to be added back into the flow graph in an unsafe state. To avoid this, we
maintain two invariants:

1. the state of a node is only ever queried by its observers, and
2. a node only ever has observers added during the time slice that it is created.

In the presence of these invariants, we have a safe variant of removeObserver:
when a node has its last observer removed and we have finished processing the
time slice that created the node, it calls removeObserver on each of its observed
neighbours to remove itself. In ECMAScript, there is no way to statically enforce
the invariants, but in Agda we can do this because the LTL type for a signal
�A(t) carries a time parameter t which records its start time. The API for
signals only allows signals to be built at their start time (for example map f
converts a signal of type �A(t) to a signal of type �B(t), that is the start time
is preserved). This technique for tracking creation times is similar to Jeltsch’s era
parameters [17]. Since Agda is a dependent language, we can embed start times
directly in types, rather than having to use phantom types for this purpose.

6 Bindings for DOM Nodes and Events

In Figure 1 we showed a calculator application, built in Agda. A prototypical
example of a GUI is a single button:

The source for this program is quite simple:

main = lab++ but where

but = element"button"(text(const"OK"))

clk = listen click but

lab = text(hold "Press me: " (tag "Pressed: " clk))
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This declares a button but, and then some text lab whose value depends on the
stream clk of click events coming from but. The boilerplate holdx (tag y σ) is a
behaviour which starts as value x, and switches to y after the first event from σ.

The types of the functions used here are (somewhat simplified):

∗ : RSet→ RSet

Mouse : RSet

EventType : RSet→ Set

click : EventTypeMouse

listen : ∀{A}→ EventTypeA→ ��DOM⇒ ∗A�

const : ∀{A}→ �A�→ ��A�

tag : ∀{AB}→ �B�→ �∗A⇒ ∗B�

hold : ∀{A}→ �〈A〉 ⇒ ∗〈A〉 ⇒�〈A〉�
element : String→ ��DOM⇒�DOM�

(·++ ·) : ��DOM⇒�DOM⇒�DOM�

Here:

– ∗A is the reactive type of event streams, where any event at time t has type
A(t). It is implemented in a similar fashion to �A.

– Mouse is the reactive type of mouse events.

– EventType A is the type of codes for events of type A, for example click is a
code for events of type Mouse.

– listen c σ is an event stream which listens for events with code c coming
from DOM nodes σ. For example, listen click but is the stream of click events
coming from the button but.

– constx is a constant signal that always returns x.

– tag xσ is a stream of x events which fires whenever σ fires.

– holdxσ converts an event stream to a signal, by returning the most recent
value from σ (or x if there is none).

– elementa σ constructs a DOM node with tag a and children σ.

– σ ++ τ concatenates the DOM nodes from σ with those from τ .

The implementation of these functions is fairly straightforward ECMAScript pro-
gramming using the HTML5 API, for example Mouse(t) is inhabited by mouse
events processed at time t, and listen clickσ registers a click event handler to each
DOM node generated by σ (and deregisters them when the event stream has no
observers). DOM nodes are sinks for notifications, for example in the program:

text (const "x=") ++ text (map show x)

if x’s value is updated to 4 then the following notifications are sent; note that
the text node does not update its parent:
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const "x=" text

++

x map show text

4

"4"

The library behaves as expected if a user declares multiple buttons, for example:

main = lab++ but1 ++ but2 where

but1 = element"button"(text(const"OK"))

but2 = element"button"(text(const"OK"))

clk = listen click but1

lab = text(hold "Press me: " (tag "Pressed: " clk))

only changes the text when the first button is pressed, not the second, since it
only listens to but1 and not but2. On the surface, this appears to violate Agda’s
semantics, which includes β-equivalence, and hence referential transparency. It
appears that but1 and but2 have the same definition, but yet the behaviour
depends on which button we listen to.

Krishnaswami and Benton [19] resolve this by giving event streams a nonde-
terministic semantics, which the implementation is given freedom to resolve in
any way it likes. In practice, the implementation uses node identity to resolve
nondeterminism. Since the semantics is nondeterministic, it is no longer defined
in a cartesian closed category of sets and functions, but instead in the monoidal
closed category of sets and relations. Krishnaswami and Benton provide a DSL
with a linear type system for writing such nondeterministic programs. In our GUI
library, we are using Agda’s native function space to express reactive programs,
so we cannot use a nondeterministic semantics.

In fact, the above example does not violate referential transparency, and in-
stead is using implicit arguments to name components. Above, we noted that
we had simplified the presentation of the types for DOM nodes. In fact, we do
not have DOM : RSet, instead we have:

DOM : DOW→ RSet

where DOW is a type of Document Object Worlds (or “upside-down DOMs”).
A value of type DOW records where in a DOM tree a node lives, for example in
the DOM flow graph:
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++

text

. .
.

++

button button

"OK" "OK"

the route from the the first button node to the root node is left, then right,
which we write as left(right(�)) where � is the location of the root node. DOWs
are postulated as:

DOW : Set

left, right : DOW→ DOW

child : String→ DOW→DOW

Under the hood, a DOW is implemented as a container of DOM nodes, with
pointers to all of the DOM nodes at that location (typically there is just one,
but since Agda does not support linear types there is no way to enforce that
convention).

We can now reveal the “real” types for the DOM-manipulating functions:

text : ∀{�}→ ��〈String〉 ⇒�(DOM �)�

element : ∀a {�}→ ��(DOM(child a �))⇒�(DOM �)�

(·++ ·) : ∀{�}→ ��(DOM(left �))⇒�(DOM(right �))⇒�(DOM �)�

listen : ∀{A �}→ EventTypeA→ ��DOM �⇒∗A�

For example, we can make the inferred types explicit in our problematic example:

main : ∀{�}→ ��(DOM �)�

main{�}{t} = lab++ but1 ++ but2 where

but1 : �(DOM(left(right(�)))) t

but1 = element"button"(text(const"OK"))

but2 : �(DOM(right(right(�)))) t

but2 = element"button"(text(const"OK"))

clk : ∗Mouse t

clk = listen{Mouse}{left(right(�))}click but1
lab : �(DOM(left(�))) t

lab = text(hold "Press me: " (tag "Pressed: " clk))

With the optional arguments in place, we can see how referential transparency is
being maintained: the optional argument to listen is left(right(�)), which is why
the value of lab depends on but1 being pressed but not but2. Agda’s ability to infer
expressions as well as types is being used to provide a referentially transparent
semantics to a program which looks like it depends on object identity.



Dependently Typed Web Client Applications 243

References

1. The Agda wiki, http://wiki.portal.chalmers.se/agda/
2. Asynchronous module definition API, https://github.com/amdjs/
3. The Coq proof assistant, http://coq.inria.fr/
4. ECMAScript back end for functional reactive programming in Agda,

https://github.com/agda/agda-frp-js
5. The Epigram 2 programming language, http://www.e-pig.org/darcs/Pig09/web/
6. Froc: Functional reactive programming in O’Caml, https://jaked.github.com/froc/
7. ECMAScript language specification. ECMA Standard 262, 5.1 Edn. (2011)
8. Acar, U.A.: Self-Adjusting Computation. PhD thesis, Carnegie Mellon Univ. (2005)
9. Buchlovsky, P., Thielecke, H.: A type-theoretic reconstruction of the visitor pat-

tern. In: Proc. Mathematical Foundations of Programming Semantics, pp. 309–329
(2006)

10. Burstall, R.M., MacQueen, D.B., Sannella, D.: HOPE: An experimental applicative
language. In: Proc. LISP Conf., pp. 136–143 (1980)

11. Cardelli, L.: Compiling a functional language. In: Proc. ACM Symp. LISP and
Functional Programming, pp. 208–217 (1984)

12. Cooper, G.H., Krishnamurthi, S.: Embedding dynamic dataflow in a call-by-value
language. In: Sestoft, P. (ed.) ESOP 2006. LNCS, vol. 3924, pp. 294–308. Springer,
Heidelberg (2006)

13. Elliott, C., Hudak, P.: Functional reactive animation. In: Proc. Int. Conf. Func-
tional Programming, pp. 263–273 (1997)

14. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley (1994)

15. Hickson, I., et al.: HTML5: A vocabulary and associated APIs for HTML and
XHTML. W3C Working Draft (2011), http://www.w3.org/TR/html5/

16. Jeffrey, A.S.A.: LTL types FRP: Linear-time temporal logic propositions as types,
proofs as functional reactive programs. In: Proc. ACM Workshop Programming
Languages Meets Program Verification (2012)

17. Jeltsch, W.: Signals, not generators! In: Proc. Symp. Trends in Functional Pro-
gramming, pp. 283–297 (2009)

18. Jeltsch, W.: The Curry-Howard correspondence between temporal logic and func-
tional reactive programming (2011),
http://www.cs.ut.ee/∼varmo/tday-nelijarve/jeltsch-slides.pdf

19. Krishnaswami, N., Benton, N.: A semantic model for graphical user interfaces. In:
Proc. ACM Int. Conf. Functional Programming, pp. 45–57 (2011)

20. Ley-Wild, R.: Programmable Self-Adjusting Computation. PhD thesis, Carnegie
Mellon Univ. (2010)

21. Meyerovich, L.A., Guha, A., Baskin, J., Cooper, G.H., Greenberg, M., Bromfield,
A., Krishnamurthi, S.: Flapjax: a programming language for Ajax applications. In:
Proc. ACM Conf. Object Oriented Programming Systems Languages and Appli-
cations, pp. 1–20 (2009)

22. Pitts, A.M., Stark, I.D.B.: Observable properties of higher order functions that
dynamically create local names, or: What’s new? In: Borzyszkowski, A.M.,
Sokolowski, S. (eds.) MFCS 1993. LNCS, vol. 711, pp. 122–141. Springer,
Heidelberg (1993)

23. Pnueli, A.: The temporal logic of programs. In: Proc. Symp. Foundations of Com-
puter Science, pp. 46–57 (1977)

24. Wadler, P.: Views: a way for pattern matching to cohabit with data abstraction.
In: Proc. ACM Symp. Principles of Programming Languages, pp. 307–313 (1987)

http://wiki.portal.chalmers.se/agda/
https://github.com/amdjs/
http://coq.inria.fr/
https://github.com/agda/agda-frp-js
http://www.e-pig.org/darcs/Pig09/web/
https://jaked.github.com/froc/
http://www.w3.org/TR/html5/
http://www.cs.ut.ee/~varmo/tday-nelijarve/jeltsch-slides.pdf


Parallel Performance of Declarative

Programming Using a PGAS Model

Rui Machado1,2, Salvador Abreu2, and Daniel Diaz3

1 Fraunhofer ITWM, Kaiserslautern, Germany
rui.machado@itwm.fhg.de
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Abstract. Constraint Programming is one approach to declarative pro-
gramming where a problem is modeled as a set of variables with a domain
and a set of relations (constraints) between them. Constraint-based Local
Search builds on the idea of using constraints to describe and control local
search. Problems are modeled using constraints and heuristics for which
solutions are searched, using Local Search. With the progressing move to-
ward multi and many-core systems, parallelism has become mainstream
as the number of cores continues to increase. Declarative programming
approaches such as those based on constraints need to be better under-
stood and experimented in order to understand their parallel behaviour.
In this paper, we discuss experiments we have been carrying out with
Adaptive Search and present a new parallel version of it based on GPI,
a recent API and programming model for the development of scalable
parallel applications. Our experiments on different problems show inter-
esting speed-ups and, more importantly, a better understanding of how
these gains are obtained, in the context of declarative programming.

Keywords: Constraint Programming, Local Search, Parallel
Programming.

1 Introduction

There is an inevitable paradigm shift towards multicore technologies where par-
allelism is now omnipresent. In recent systems, parallelism spreads over several
systems levels and heterogeneity is growing on the node as well as on the chip
level. Data must be maintained across a hierarchy of memory levels and most
applications and algorithms are not ready to take full advantage of the available
capabilities.

Parallel programming is usually a difficult and error-prone task. Although
MPI [11] has become the de facto standard for parallel programming, there
has been a demand for programming models with a flexible threads model and
asynchronous communication. PGAS (Partitioned Global Address Space) pro-
gramming models have been emerging as a valid alternative to MPI.
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One of the great features of declarative programming approaches is their po-
tential simplification of the development of parallel programs, relieving the pro-
grammer from error-prone aspects related to explicit control, which can be very
difficult to handle with parallel programming, while retaining enough expres-
sive power to model complex real-world problems. One declarative approach is
Constraint Programming: a problem is modeled as a set of variables over some
domain and a set of relations (constraints) is required to hold between them.
Program execution consists in finding a solution to (i.e., solving) the stated
constraint problem. The solving process can use different methods, one of which
is Local Search where, instead of exploring the complete search space, heuristics
are used to guide the search to portions of the search space where solutions are
more likely to be found. Local Search is based on the simple idea of “searching”
by iteratively moving from one candidate solution to one of its neighbours. De-
spite its simplicity and effectiveness to handle hard problems, in order to solve
large problem instances, parallelism should be introduced to cope with the large
running time.

Our general aim is not only to simplify the use of parallelism of current systems
with a declarative approach based on constraints but, at the same time, exploit
that parallelism to tackle large and difficult problems.

We have been developing parallel designs for both complete (propagation-
based [14]) and local search constraint solvers. This article reports on the latter.

The contribution of this paper is twofold: a new parallel design for the Adap-
tive Search method based on a PGAS Model and a better understanding of
its parallel behaviour, easily extended to Local Search algorithms in general. We
present and evaluate our new design based on GPI, showing interesting speed-up
gains on benchmarks known to have scalability issues. We discuss the results and
provide a deeper interpretation of the parallel behaviour of Adaptive Search in
particular and of Local Search methods in general, based on some characteristics
of the benchmarks.

The rest of the paper is organized as follows: in section 2 we present GPI
and its programming model, hightlighting its important features. Section 3 pro-
vides some background on the Adaptive Search algorithm and section 4 focuses
on its parallelization. In section 5, we detail our parallelization strategy based
on GPI and in section 6 we show the obtained results and compare it to the
previous implementation. Section 7 examines and interprets our experimental
findings, correlating them with the characteristics of the problems. Finally, sec-
tion 8 presents a short conclusion and perspectives of future work.

2 GPI

The Partitioned Global Address Space (PGAS) is a parallel programming model
which has been seen as a good alternative to the established MPI. The PGAS
approach offers the programmer an abstract shared address space model which
simplifies the programming task and at the same time facilitates data-locality,
thread-based programming and asynchronous communication. GPI (Global
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address space Programming Interface) [9]1 is a PGAS API for parallel appli-
cations running on clusters. The thin communication layer delivers the full per-
formance of RDMA-enabled2 networks directly to the application without inter-
rupting the CPU. Fig. 1 depicts the architecture of GPI.

Fig. 1. GPI

The local memory is the internal memory available only to the node and allo-
cated through typical allocators (e.g. malloc). This memory cannot be accessed
by other nodes. The global memory is the partitioned global shared memory,
available to other nodes, and where shared data should be placed. The DMA
interconnect connects all nodes and is the underlying mechanism for most GPI
operations. On each node, the Manycore Threading Package (MCTP) is used to
take advantage of all cores present on the system. MCTP is a threading package
based on thread pools that abstracts the native threads of the platform and a
component of GPI.

The GPI core includes different functionalities but in the context of this work,
the most important functionality is the read/write of global data.

Two operations exist to read and write from global memory independent
of whether it is a local or remote location. One important point is that those
operations are one-sided that is, only the peer that issues such operation takes
part in it. This is different from a two-sided scheme (message passing) where the
peer that sends (sender) has a corresponding peer (receiver) that needs to issue
a receive operation. Moreover, this functionality is non-blocking and completely
off-loaded to the interconnect, allowing the program to continue its execution

1 GPI was previously known as Fraunhofer Virtual Machine (FVM).
2 RDMA - Remote Direct Memory Access.
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and hence take better advantage of CPU cycles. The data movement does not
require any intermediate buffers and protocols to maintain those buffers. If the
application needs to make sure the data was transferred (read or write), it needs
to call a wait operation that blocks until the transfer is finished and asserting
that the data is usable.

3 Adaptive Search

Local Search is based on the simple idea of “chasing” a solution by iteratively
moving from one candidate (call this a “configuration”) to one of its neighbours.
The neighbourhood of a configuration is the set of configurations that can be
obtained by applying a move. A move is a local change (hence the name Local
Search).

The mechanism used to select a neighbour and thus the definition of what
constitutes a neighbourhood is the main issue that differentiates between differ-
ent local search methods. In general, it is problem dependent and is related to
the definition of the objective function.

The Adaptive Search method [4] is one of many different local search methods
and has proved to be very efficient in the types of problems where it was tested.
It is a generic, domain-independent constraint-based local search method.

This meta-heuristic takes advantage of the structure of the problem in terms of
constraints and variables and can guide the search more precisely than a single
global cost function to optimize, such as for instance the number of violated
constraints. The algorithm also uses a short-term adaptive memory in the spirit
of Tabu Search [12] in order to prevent stagnation in local minima and loops.
This method is generic, can be applied to a large class of constraints (e.g. linear
and non-linear arithmetic constraints, symbolic constraints, etc) and naturally
copes with over-constrained problems.

The input of the method is a problem in CSP format, that is, a set of variables
with their (finite) domains of possible values and a set of constraints over these
variables. For each constraint, an “error function” needs to be defined; it will
give, for each tuple of variable values, an indication of how much the constraint is
violated. For instance, the error function associated with an arithmetic constraint
|X − Y | < c, for a given constant c ≥ 0, could be max(0, |X − Y | − c).

Adaptive Search relies on iterative repair, based on variable and constraint
error information, seeking to reduce the error on the worst variable so far. The
basic idea is to compute the error function for each constraint, then combine for
each variable the errors of all constraints in which it appears, thereby projecting
constraint errors onto the relevant variables. Finally, the variable with the highest
error will be taken and its value will be modified. In this second step, the well
known min-conflict heuristic is used to select the value in the variable domain
which is the most promising, that is, the value for which the total error in the
next configuration is least. In order to prevent being trapped in local minima, the
Adaptive Search method also includes a short-term memory mechanism to store
variables to avoid (variables can be marked Tabu and “frozen” for a number
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of iterations). It also integrates reset transitions to escape stagnation around
local minima. A (partial) reset consists in assigning fresh random values to some
variables (also randomly chosen). A reset is guided by the number of variables
being marked Tabu. As in any local search method, it is also possible to restart
from scratch when the number of iterations reaches a given limit.

4 Parallel Adaptive Search

When parallelizing an algorithm one aims at identifying hotspots and sources
of parallelism. As with most meta-heuristics, in Adaptive Search these sources
of parallelism are essentially: (1) the inner loop of the algorithm i.e., computing
and combining the errors of variables and selecting the variable with highest
error and (2) the search space of the problem.

The problem with exploiting the inner loop of the algorithm is its granularity:
it is too fine-grained and the associated overhead might come at a too high cost.

The second main source of parallelism is the search space (domain) of the
problem itself. Theoretically, this domain could be decomposed into several dis-
joint partitions, to be explored in parallel and without dependencies. However,
in practice several issues arise with this: each partition is in general still too
large for a sequential execution and, more importantly, the search space is not
uniformly valid and the exploration should avoid areas that are known to lead
to poor solutions. Moreover, it is hard and expensive to control and maintain
the search conducted in the different partitions since a Local Search algorithm
only has a local view of the search space. One example is the class of problems
that have the best solutions clustered in a certain ’zone’ of the search space.
In this case, the algorithm should converge to that zone but in case of parallel
execution avoid too much redundant work.

The Adaptive Search method has already been subject to some research on its
parallel behaviour. Previous work on parallel implementations of the Adaptive
Search algorithm have mostly focused on independent multiple-walks. Recal that
independent multiple-walks are the simplest approach to parallel local search.
A walk is carried out by each processor without any communication between
them. Processors (search threads) start at a different solution and perform their
own walk, intersecting or not, with walks from other processors. The same or
different algorithms can be used to perform the walk, with the same or different
parameters.

In [6], the authors present a parallel implementation of the Adaptive Search
algorithm for the Cell/BE, a heterogenous multicore architecture. The system
includes 16 processors (the SPEs3) where each one starts with a different random
initial configuration. The PPE4 acts as the master processor, waiting for the
message of a found solution. For this number of processing units, the results
were very promising, achieving linear speed-up for most problems.

3 Synergistic Processing Element.
4 Power Processor Element.
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Further work with Parallel Adaptive Search continued to follow the same
approach with no communication between workers, but more interestingly, con-
centrating on cluster systems with a larger number of cores.

In [2], the authors experiment and investigate the performance of a multiple
independent-walk search on a system with up to 256 cores. The parallelization
was done with MPI and involves the introduction of a “communication step”
which tests if termination was detected (a solution was found) and terminates
the execution properly. The results are relatively modest in terms of parallel
efficiency, far for the ideal speed-up, which is in contrast with the results obtained
at a smaller scale (on the Cell/BE, ie. with up to 16 cores). This points out
the need for better alternative strategies in order to better exploit large-scale
parallelism.

Since the independent multiple-walk approach still leaves space for improve-
ment in terms of parallel efficiency and scalability for some problems, new ways
to take full advantage of parallel systems must be found.

In [1], the authors experiment with more complex strategies, where processes
exchange messages resembling branch-and-bound methods where the bound is
exchanged between all participants. In their work, two alternatives are attempted:
exchanging the cost of the current configuration of each process and the current
cost plus the number of iterations needed to achieve that cost. Unfortunately,
neither approach achieves better results than an independent multiple-walk.

5 Adaptive Search with GPI

Previous work with parallel Adaptive Search provides some groundwork to build
upon and has shown that some benchmarks exhibit scalability problems when
run on a large number of cores.

GPI appears to be, à priori, an interesting match to the problem of paralleliz-
ing Adaptive Search: local search methods work with local information, trying
to progress and converge on solutions in a global search space, requiring little
global information. However, as demonstrated by previous work, some problems
exhibit low parallel efficiency and communication and cooperation becomes re-
quirements to obtain good scalability. The communication with GPI is based on
one-sided primitives that ought to benefit the local view on a global search space,
as it allows threads to cooperate asynchronously. Moreover, communication is
very efficient as GPI exploits the full performance of the interconnect with little
or no CPU intervention. Hence, we continue to explore ways to further improve
the parallelization of the Adaptive Search algorithm, exploiting GPI and its pro-
gramming model, with the objective of getting some further benefits. But more
importantly, to find mechanisms, concepts or limitations that are general.

In general, we can define the following objectives:

– further investigate and understand the behaviour of parallel Adaptive
Search on different problems.
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– investigate the possibilites given by GPI and devise more sophisticated
mechanisms for the parallel execution of Adaptive Search, improving its
performance

– identify the, possibly new, problems generated by the previous point.

The new parallel version of Adaptive Search based on GPI includes two variants
which we name TDO (Termination Detection Only) and PoC (Propagation of
Configuration).

The TDO variant implements the simple independent multiple-walk and serves
mostly has our basis for comparison. First, with the existing MPI version, making
sure that the implementation is correct and the performance is as expected. Sec-
ond, to allow us to measure the improvement (if any) obtained with the more
complex PoC variant. The PoC variant introduces more communication and
sharing between working threads, by means of GPI primitives and its threaded
model, but it is our expectation that this overhead will be offset by the perfor-
mance gain.

The next sections present the two different variants in more detail.

5.1 Termination Detection Only

The variant with Termination Detection Only (TDO) is straightforward and
implements the idea of independent multiple-walks : all available cores execute
the sequential version of the Adaptive Search algorithm.

We name this variant “Termination Detection Only” because it amounts to
a termination detection problem i.e., detecting the termination of a distributed
computation. Termination Detection is in itself a subject of much research and
several algorithms have been and continue to be proposed( [7,10,15]).

In the case of the Parallel Adaptive Search method, we are interested in
detecting termination as soon as one of the participating threads has found a
solution: we want to get the first (earliest) solution. The implementation of this
variant is simple as it only requires a triggering mechanism.

The GPI implementation follows a line similar to the previous work with MPI.
Whenever a thread finds a solution, it triggers termination by writing to its peers
that it has found a solution. Thus, the wall-clock time of the parallel execution
is the time taken by this fastest thread.

Other threads must detect termination. This entails introducing a communi-
cation step in the internal loop of the Adaptive Search algorithm. This is required
since there is no other way for a GPI instance to react on an remote event (i.e.,
termination) other than with communication. In this step, a check for termi-
nation is done on a particular memory address that is written on termination
emission as described above. The communication step introduces some overhead
that needs to be kept low, thus it is only executed every k iterations.

5.2 Propagation of Configuration

The experiments in previous work and with the TDO variant have found that
the simple approach to parallelization, namely, the independent multiple-walk, is
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insufficient to obtain parallel efficiency on some problems especially when experi-
menting with a large number of cores. Moreover, exchanging simple information
such as the cost leads to no improvement. This result goes to show that this
is not a reliable metric, at least not by itself: it just says that cost C (better
than the current cost) can be achieved but says nothing about when and how to
reach it.

Hence, we aim at communicating more, and more meaningful information, in-
troducing cooperation. By cooperation we mean mechanisms that allow threads
to share information about their state and thus benefit from the collective search.
Also, we would like to exploit the potential and benefits of GPI and its program-
ming model (one-sided communication, no wait for communication, global access
to data, threaded model, etc.) This can be achieved, for instance, by moving to-
wards algorithms which resort to more communication than in previous cases.

One of the most powerful aspects of Local Search is its simplicity. Because of
this, it is not obvious what could be considered as the meaningful information to
be shared and communicated to other threads. One promising candidate which
hasn’t yet been tried is the whole current configuration.5 The final configuration
represents the solution when the algorithm stops.

The current implementation of the Adaptive Search method deals only with
permutation problems and thus, a configuration is the permutation vector of the
problems’ variables.

Similarly to other approaches to parallelization which introduce cooperation,
several important questions arise, namely:

1. Who does the communication?
2. When to do the communication?
3. How to do the communication?
4. What to communicate?

Our approach, which we call Propagation of Configuration (PoC), aims at
answering these questions and giving a better understanding of how coopera-
tion can help with increasing the scalability of Local Search in general and the
Adaptive Search method in particular.

Who Does the Communication?

Note that on each node, there are as many threads as the number of availble
cores. Communication is performed between nodes, by reading or writing the
global memory of GPI. Hence, to answer this question we consider if, for each
node, all or only a single thread actually performs communication with the other
nodes.

There are potential advantages and disvantages with both options. If all
threads perform communication, any shared resources must be protected by a
mutual exclusion mechanism, which might suffer from high contention. Moreover,

5 Because the term solution is sometimes misleading, we refer to the current solution
as a configuration.
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when all threads perform communication, a lot more pressure on the intercon-
nect follows, increasing the parallel overhead and with possibly a lot of redun-
dant communication happening (the same configuration being passed around
several times). On the other hand, there will be a rapid progress towards the
best promising neighbourhood, intensifying the search. Of course, this can be
positive but can also become dangerous since most of threads might get trapped
in a local minimum or poor quality neighbourhood. A good trade-off between
intensification and diversification needs to be achieved.

If a single master thread communicates, the effects are potentially the oppo-
site: less intensification but also less contention, less pressure on the interconnect
and less redundant work.

Preliminary tests have made it clear that the best option is the one with a
single communicating thread since it reduces the parallel overhead. Moreover,
with GPI, all threads in a single node benefit immediately from the results
obtained by the master thread without any messages exchange.

When to Do the Communication?

The first possible answer to this question is to follow the same strategy as with
the Termination Detection Only variant: introduce a communication step and
perform communication every k iterations. The value of k has a very significant
impact on performance: with a low value (e.g., k = 10), a strong intensification
of the search is achieved but with the danger that threads might give up too soon
on a promising neighbourhood. With a high value of k, we avoid that danger but
less intensification will be achieved since less information will be propagated.

The other option is to not interrupt the normal flow of the algorithm for
communication, letting the search progress normally and independently until a
local minimum is achieved. Only at this point the configuration is propagated
and possibly used. One danger, however, is if threads do not hit local minima
that often, the propagation of configuration will not progress and some threads
might never see an up-to-date configuration. A solution to this problem is to still
have communication every k iteration, where threads only use the propagated
information when they are “in trouble” i.e., they hit a local minimum. However,
this option increases the overhead by adding the extra communication step in
some iterations.

In principle the second option might seem more promising as no disturbance
is caused when the algorithm is progressing well. But the aforementioned danger
that the propagation of configurations won’t progress can have the consequence
that there won’t be any benefit from the communication scheme when compared
to the simple TDO variant. Prelimary tests on a problem with low number of
local minima (Magic Squares) confirmed this fact. Hence and based on this
reasoning, we opted to have a communication step. Our PoC variant combines
termination detection and the propagation of configurations in a single step that
happens every k iterations and we focus the experimentation on finding an good
value for k.
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How to Do the Communication?

With this question, we consider a single alternative. Since we aim at large scale
executions (hundreds to thousands of nodes), we need an efficient approach.
Communication is done along a tree-based topology, where each node only com-
municates with its parent and children (if any). Currently, a binary tree is used
but this can be parametrized at initialization. At each communication step, the
propagation of the configuration is done either up (to parent) or down (to the
children) the tree. This only happens if a configuration was propagated from the
children (in case of the up direction) or from the parent (down direction). The
propagation of the communication behaves then like a wave, up and down the
tree, with possibly different configurations being propagated at different points
of the tree and contributing to some diversification.

Communication is performed by using GPI one-sided primitives. A thread
posts a write operation and returns immediately to work. The configuration to
be propagated will be directly written to the memory of the remote node, asyn-
chronously, without any acknowledgement and overlapped with the algorithm’s
computation. The remote node on the other hand, on its communication step,
checks if a valid configuration was written to its memory, decides how to act on
it and propagates its decision further.

We consider this single alternative since it gives us a good balance between
intensification and diversification and because having a tree-based topology pro-
vides an efficient pattern to achieve communication scalability, with good local-
ity. The final objective is to have a communication step with low overhead and
here GPI provides us with mechanisms to do so.

What to Communicate?

The Adaptive Search method (as many other Local Search methods) is very
simple and includes very few elements that can be communicated.

The proposed option has been already mentioned: to communicate a full con-
figuration. To this, we only add the cost of the configuration as it is the metric
to evaluate the configuration, and we need only compute it once.

Still, the question remains of which configuration to communicate. In our de-
sign the best configuration (with better cost) is communicated. At a communi-
cation step, a thread decides whether to propagate its own current configuration
or the propagated configuration(s) it received from its neighbour(s).

Communicating configurations is advantageous because configurations implic-
itly contain more information about the global state of the search: as the best
configurations are being propagated, threads that are currently on poorer neigh-
bourhoods might benefit from moving to the best ones. With the stochastic
behaviour of Adaptive Search and enough diversification, the whole search pro-
cedure can be performed on the best neighbourhoods and, hopefully, converge
faster onto good solutions.
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6 Experimental Results

In this section we present the obtained results using a few benchmark problems.

– costas-array: the Costas Array problem [5],
– all-interval: the All Interval Series problem (prob007 in CSPLib [8]),
– magic-square: the Magic Square problem (prob019 in CSPLib).

The experiments were conducted on a cluster system where each node includes
a dual Intel Xeon 5148LV “Woodcrest” (i.e., 4 CPUs per node) with 8 GB
of RAM. The full system is composed of 620 cores connected with Infiniband
(DDR). We performed our experiments on the system using up to 256 cores on
some problems and 512 cores on others. The difference is due to the fact that
the system is heavily in use and it is hard to get access to the full cluster.

Note that Adaptive Search, as many other Local Search methods, has a
stochastic behaviour to achieve diversity on the search. To benchmark such be-
haviour, several executions must be done and averaged. In our experiments we
ran each problem 100 times in order to obtain meaningful results.

 16

 32

 64

 128

 256

 16  32  64  128  256

S
pe

ed
-u

p

No. of cores

Costas Array 20

GPI
MPI
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We compare both GPI vari-
ants (TDO and PoC) with
the MPI implementation, as
a basis for comparison. Fig-
ure 2 depicts the obtained
results for the Costas Array
problem (CAP) with n=20.

As already observed
in [3], the CAP shows an
almost optimal scalabil-
ity using an independent
multiple -walk with no co-
operation. We can observe
that our implementation
obtains similar, although

slight better, results. This is the expected result since both approaches (TDO
and MPI) are equivalent: communication is only used for detecting termination.
Nevertheless, it is a confirmation that our implementation performs as expected.

Although we aspired at obtaining even better results with the PoC variant
(possibly super linear) for this problem, our experiments showed that this variant
performs much worse than the simple TDO variant and thus we only present
the speedup obtained with GPI using the TDO variant.

Figure 3 depicts the obtained results for the Magic Square problem up to 512
cores. For this problem we present the speedup obtained with the TDO and PoC
variants and compare it with the MPI version. The GPI TDO variant presents
again, as expected, results similar to the MPI version.
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The Magic Square problem is one
of the problems that results in dis-
appointing scalability when using
the simple independent multiple-
walk and therefore a major target
for improvement with more sophis-
ticated approaches. Indeed, for this
problem, our PoC variant improves
the performance and scales better
as we increase the number of cores
used.
We wanted to answer the question
of when to do communication: as

we mentioned, in our preliminary experiments it turned out that the best ap-
proach is to have a communication step every k iterations where the value of k
is decisive. Surprinsingly, for this problem, a lower value of k (k=10 in contrast
to k=1000) improves scalability by a factor of 2, achieving a speedup of 97 with
512 cores. Still a low parallel efficiency but a very significant improvement over
the other options and variants.

The results we obtained for the last problem, the All Interval series (n=400),
are shown in Figure 4.
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The All Interval Series
benchmark is also one of the
problems where good scal-
ability was hard to reach
when using a large num-
ber of cores. In Figure 4,
one may observe this fact
where both the MPI and
GPI TDO versions reach
a modest speedup factor
of 20 and 25, respectively
(with 256 cores). Our PoC
variant however, performs
much worse than the TDO
variant at a low number of

cores but it improves as we increase the number of cores, hinting that this vari-
ant can be of advantage if we increase the number of cores and the problem size.
In Fig. 4 we only depict the obtained results for the PoC variant with k = 1000
since, for this benchmark, it is the best value. In contrast to the Magic Squares
benchmark, a lower value of k results in a much worse performance.
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7 Discussion

The experimental results presented large differences in how the different prob-
lems benefit from parallelism and the implemented variants. One of our main
objectives is to investigate and understand why this happens.

In order to be able to draw some conclusions on our experiments, it is im-
portant to characterize the chosen problems from different perspectives. We do
so, resorting to different information such as the number of iterations and lo-
cal minima. This characterization will give us a basis to better understand the
problems at hand and ultimately explain our results.

Table 1 presents the obtained values for acquired information when running
some instances of the previously presented problems. This information is the
following:

Problem The problem instance.
Iterations The number of iterations required to find a solution.
Local Minima The number of local minima found.
Resets The number of partial resets performed (not full restart).
Same var / Iteration The number of times there was more than one candidate vari-

able (highest error value) to be chosen from.

This information allows us to better understand how does the Adaptive Search
algorithm progress towards a solution, the neighbourhood structure and extract
further information (e.g., number of local minima per iteration).

Table 1. Information collected for different problems instances

Local Same var/

Problem Iterations Minima Resets Iteration

Magic Square 200 413900 25864 3 23.36

Costas 18 389932 204024 204024 1.00

Costas 19 3364807 1714299 1714299 0.99

All Interval 200 11229 495 495 5.97

All Interval 400 41122 1422 1422 9.19

From Table 1 we can see that the different problems exhibit a significantly
different behaviour. Magic Square performs a low number of partial resets when
compared to the total number of iterations or to the number of identified local
minima. On the other hand, it is the problem where the number of candidate
variables per iterations (Same var/Iteration) is highest, meaning that at each
iteration there are several possible moves towards the next configuration.

The Costas Array problem exhibits a completely different behaviour. In this
case, the number of identified local minima is very large (almost every second
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iteration finds a local minimum) and the number of partial resets is also very
high, coincident with the number of local minima i.e., at each local minimum
found, a partial reset is performed. Also the number of possible moves at each
iteration is close to 1.

All Interval is yet another kind of problem. Here, the number of resets is
as with the CAP equal to the number of local minima but these happen much
less often. The number of possible variable choices or moves is higher than 1,
meaning that some diversification could be achieved.

If we relate this characterization of problems with the obtained experimen-
tal results, some conclusions can be drawn in order to better understand the
parallelization behaviour of this algorithm or, more concretely, how much can it
benefit from a communication scheme such as the one we designed.

We argue that one critical aspect is the density of the neighbourhood of a
configuration or the set of possible moves, which define transitions between con-
figurations. Since we are propagating configurations we can look at our problems
at hand according to this aspect. If a problem has a dense neighbourhood or, in
other words, the set of possible moves at each transition is (much) larger than
one, each of these moves can be explored in parallel. Thus, when a promising
configuration is propagated and several moves are possible and explored in par-
allel, the probability that one of these moves leads to a faster path towards an
optimal solution increases.

Another important aspect is the number of local minima and resets and how
both relate. A problem that finds a large number of local minima before encoun-
tering an optimal solution benefits less from processing a configuration which
seems promising. This configuration is heuristically promising but in reality this
information is less meaningful than it should. Similarly, a problem with a high
number of partial resets suffers from the same problem.

Looking back at our experimental results with the different problems, we can
better understand a) the difference in scalability and b) the improvement factor
brought by the PoC variant to some problems.

In the Magic Square problem, each configuration has a dense neighbourhood
and benefits from the parallel exploration of different moves. Thus, the PoC vari-
ant improves the performance and scalability of the algorithm. When a work-
ing thread adopts a propagated configuration, it will define its own path from
that configuration and differently from one other thread that receives that same
promising configuration. Moreover, this problem has a low number of local min-
ima and resets meaning that paths from one (initial) configuration towards an
optimal solution are a series of transitions from neighbour configurations.

The Costas Array Problem exhibits optimal scalability with the independent
multiple-walk MPI version or with our TDO variant and this is already per
se satisfactory. On the other hand, it performs worse with the PoC variant:
propagating a configuration is only a source of parallel overhead and will limit
the search allowing less diversification. A propagated configuration will allow,
on average, a single move and two threads taking the same configuration results
in redundant work. This is also probably unfruitful since the CAP is one of the
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problems with a high number of local minima and resets. This also explains
the good scalability using the TDO variant, where increasing the number of
cores allows covering more of the total search space together with the fact that
solutions for this problem are well spread over it.

Finally, the All Interval Series problem shows a mixed behaviour. Similarly
to the CAP, the larger number of local minima found and same number of re-
sets point to the same situation: there is less benefit from taking a propagated
configuration since its meaningfulness is low. The PoC variant only introduces
unnecessary overhead and this could explain the much worse performance at a
lower number of cores. On the other hand, and similarly to the Magic Square
benchmark, there is more than one possible move, on average i.e., some diver-
sification can be achieved. With a large enough number of cores, the parallel
overhead can be amortized by the gain obtained with this diversification. This
could be the reason for the steeper curve for the PoC variant on Fig. 4. Of course,
with further experiments we will be able to understand this better.

In summary, problems that follow a trajectory with a single possible move
won’t benefit from a communication scheme that propagates the best current
configuration(s). Also, if a large number of local minima is found and partial
resets are required in the same number, the expectation for improvement in
performance is rather low. On the contrary, problems where configurations have a
denser neighbourhood benefit from a cooperation scheme such as the PoC variant
where the full configuration is communicated and improvements in performance
are expected.

8 Conclusion

In this paper we presented our work on the parallel implementation of the Adap-
tive Search method using an alternative programming model. GPI is an API
designed for high-performance and scalable parallel applications. We aimed at
investigating and understanding the behaviour of Adaptive Search in a parallel
setting, focusing on different problems particularly those that, in previous work,
showed scalability problems when targeting a large number of cores. GPI and its
programming model allowed us to design a new communication and paralleliza-
tion scheme which in our experimental evalution allowed a gain of a factor of
2 in terms of speedup for some problems. More importantly, it provided deeper
insight and understanding on the parallelization of Local Search methods given
different problems with disparate characteristics such as the density of a config-
uration neighbourhood, the number of local minima and partial resets.

We point out that GPI performs well and allows us to adopt more commu-
nication -intensive schemes, which supports the claim that solving local search
problems is a good use case for GPI.

In the future, we intend to examine our design and conclusions with other
larger problems and experiment with more sophisticated parallelization schemes.
One possible direction is, instead of using promising information (configurations,
cost, statistics) directly, to act on its complement, avoiding redundant work
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and thereby cover as much as possible from the search space since this is the
main source of parallelism. Another direction is to revisit the modeling of each
problem knowing that it will be executed in parallel; this is relevant as the current
models are designed and optimized for sequential execution. Models designed
with parallelism in mind, even if less efficient in serial execution, will benefit at
scale as more cores are used in the solving process.

One of our potential final goals is the design of a new Local Search algorithm
based on Adaptive Search and more amenable to parallelization, building upon
the experiences presented in this paper.

Ultimately, the work described herein will be integrated with MaCS, a GPI
port of the PaCCS hierarchical distributed constraint solving system [13], pro-
viding additional insight on how to reach good parallel performance on CSPs.
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