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Abstract. In addition to the well-known classification of 3-dimensional
parallelohedra we describe this important class of polytopes classified by
the affine equivalence relation and parametrize representatives of their
equivalent classes.

1 Introduction

For each dimension, parallelohedra constitute a very important class of Euclidean
polyhedra that have important applications in geometry, especially in geometry
of numbers, combinatorial geometry, and in some other fields of mathematics.
Three-dimensional parallelohedra play a significant role in geometric crystallog-
raphy. The concept and the term of a paralleloherdon were introduced by the
Russian eminent crystallographer E.S.Fedorov ([1]).

A d-parallelohedron is defined as a polyhedron whose parallel copies tile the
space Rd in a face-to-face manner. Classical theorems by H. Minkowski [2] and
B. A. Venkov [3] are equivalent to the following criterion:

Theorem 1. ([3,4]). A d-dimensional convex bounded polyhedron is a parallelo-
hedron if and only if
(i) P is centrally symmetric;
(ii) all its faces are centrally symmetric;
(iii) the projection of P along each of its (d − 2)-faces is either a parallelogram
or a centrally symmetric hexagon.

E.S.Fedorov [1] determinedall five combinatorial types of convex3-parallelohedra.
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Theorem 2. ([1]) There are five combinatorial types of convex parallelohedra in
R3: the cube, the right hexagonal prism, the rhombic dodecahedron, the elongated
dodecahedron, and the truncated octahedron.

A well-developed, algorithmical theory of a very important subclass of paral-
lelohedra had been elaborated by G.Voronoi [4]. This subclass consists of those
parallelohedra which can be represented as Dirichlet-Voronoi domains of points
in a integer point lattice. Now such parallelohedra are called Voronoi parallelo-
hedra. Not every parallelohedron is a Voronoi parallelohedron. So, for instance
in a plane every 2-dimensional parallelohedron (syn. parallelogon) is either a
parallelogram or a centrally symmetric hexagon. However, a parallelogon is a
Voronoi 2-dimensional parallelohedron if and only if it is either a rectangle or a
centrally symmetric hexagon inscribed into a circle.

Voronoi introduced a notion of a primitive parallelohedron as a parallelohe-
dron to tile a space in such a way that each vertex belongs to the least possible
number (for a given dimension d) of tiling cells, namely, d + 1. In a space of
dimension 2 or 3 there is the only combinatorial type of primitive parallelohedra
(if d = 2 it is the hexagon but not the parallelogram, if d = 3, it is the trun-
cated octahedron only). If d = 4 or 5, there are 3 or 222 combinatorial types of
primitive parallelohedra, respectively. Voronoi proved that every primitive paral-
lelohedron is affine equivalent to some Voronoi parallelohedron and suggested a
conjecture: For any parallelohedron there exists an affine equivalent (for brevity,
a-equivalent) Voronoi parallelohedron. Regardless of serious efforts and signifi-
cant progresses this centennial conjecture on the existence of the a-equivalent
Voronoi parallelohedron still remains unsolved. Among recent results we select
out so-called uniqueness theorems. In [5] it was proved that if a parallelohedron
P is primitive, then an a-equivalent Voronoi parallelohedron P ′ is determined
uniquely up to similarity. The uniqueness theorem was proved in [6] in a very
elementary way for a wider class of parallelohedra, namely for those parallelohe-
dra whose boundary after the removal of all standard faces (see [6] for definition)
remains connected.

The uniqueness theorem easily implies a surprising fact. As already said,
Voronoi developed a deep theory of Voronoi parallelohedra ([4]). According to
this theory, all Voronoi parallelohedra of a given primitive combinatorial type
correspond to lattices which fill a so-called Voronoi type domain in the cone of
positive quadratic forms. If, instead a Voronoi tiling by primitive parallelohedra,
one considers dual Delaunay tiling (in the primitive case by simplexes), in the in-
terior of a given Voronoi type domain all the Delaunay tilings are pairwise affine
equivalent. The surprising fact to follow from the uniqueness theorem is that all
Voronoi tilings are pairwise affine non-equivalent, in contrast to the uniqueness
of affine classes of Delaunay tilings within the domain.

In the case of d-dimensional primitive parallelohedra the dimension of each

Voronoi type domain is equal to d(d+1)
2 . Thus, from the uniqueness theorem

([5,6]) it follows that the dimension of the space of affine equivalence classes is
equal to d(d + 1)/2 − 1. So, if d = 2, for example, in the primitive case (the
centrally symmetrical hexagon) the dimension of the space of affine equivalence
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classes of a primitive parallelohedron is 2. If d = 3 the dimension of the space of
affine equivalence classes with combinatorial type of the truncated octahedron
is equal to 5.

We see that the affine classification of parallelohedra turns out a delicate
question relevant to the Voronoi conjecture. In this paper, we classify convex
parallelohedra in R3 by the affine equivalence relation and realize their repre-
sentatives in geometric formulation. In this way we will find the dimension of
the space of affine equivalence classes of all 5 different combinatorial types of
parallelohedra in 3-space (Theorems 4-6).

We study on centrally symmetric hexagons in Sect. 2 and truncated octahe-
drons in Sect. 3. The main theorems are showed in Sect. 3 for primitive paral-
lelohedra and in Sect. 4 for non-primitive parallelohedra. The affine equivalent
classes of parallelohedra with the combinatorial type of the truncated octahe-
dron, are parameterized by a 5-tuple (α, β, h, δ, l) which satisfies 0 < α, 0 < β ≤
(π−α)/2, 0 ≤ h, 0 < π−γ < tan−1(sin(α/2)/h), 0 < π−δ < tan−1(sin(β/2)/h),
and the inequalities (4) and (5) given in the section 3 (Theorem 4). The affine
classes of parallelohedra with the combinatorial type of the rhombic dodeca-
hedron are parameterized by a 3-tuple (α, β, h) where 0 < α, 0 < β ≤ (π −
α)/2, 0 < h (Theorem 5).

2 Two-Dimensional Case

We start with parallelogons, i.e. 2-dimensional parallelohedra. There are two
combinatorial types of parallelogons: the quadrangle and the hexagon. More-
over, since parallelohedra are centrally symmetric, a parallelogon is either a
parallelogram or a centrally symmetrical hexagon.

All parallelograms are obviously pairwise a-equivalent, i.e. belonging to one
affine class. The dimension of the space of affine classes of parallelograms is zero.

Now give a centrally symmetric (c.-s.) hexagon. A c.-s. hexagon is inscribed
into an ellipse. By an appropriate affine map the ellipse is transformed on a unit
circle. Let O be the center of the unit circum-circle of the hexagon transformed
by the affine map, and let A1, A2, A3, A4, A5, A6 be vertices of the hexagon. A
centrally symmetric hexagon has three pairs of central angles symmetric each
other: ̂A1OA2 = ̂A4OA5, ̂A2OA3 = ̂A5OA6, and ̂A3OA4 = ̂A6OA1. Let α, β, γ
be the values of these angles. Without loss of generality we can and will consider
only the following triples

0 < α ≤ β ≤ γ, whereα+ β + γ = π. (1)

Each triple α, β, γ with (1) determines a unique (up to congruence) a-
equivalent c.-s. hexagon inscribed into a unit circle, and vice versa. On the
other hand, two inscribed c.-s. hexagons with different triples satisfying (1)
(α, β, γ) �= (α′, β′, γ′) are not a-equivalent.

Theorem 3. The configuration space of a-equivalence classes of centrally sym-
metric (c.-s.) hexagons has dimension 2 and can be parameterized by ordered
triples (α, β, γ) provided 0 < α ≤ β ≤ γ, α+ β + γ = π.
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3 The Truncated Octahedron

For a given combinatorial type K of parallelohedra, we denote by A(K) the
set of the affine equivalence classes of parallelohedra combinatorially equivalent
to K.

For a given parallelohedron P and each (d − 2)-face of P , there is a cycle of
four or six (d− 1)-faces by Theorem 1 (iii). We call this cycle a belt of P .

In the rest of this section, we consider P a parallelohedron with its combina-
torial type of the truncated octahedron. So, P has six different belts. Each belt
consists of six faces (two parallelograms and four centrally symmetric hexagons)
and it has six parallel edges by Theorem 1 (iii).

Lemma 1. Six centers of faces on a belt and the center of P are coplanar.

Proof. Let the center of P be the origin O in R3, and Gi be centers of six
consecutive faces Fi (1 ≤ i ≤ 6) of a belt of P . Since P is centrally symmetric,−−→
OGi = −−−−−→

OGi+3 for 1 ≤ i ≤ 3. Since P is a parallelohedron, P tiles the space
by its parallel copies in a face-to face manner. Let P1 and P2 be the copies of P
obtained by the parallel translations along 2

−−→
OG1 and 2

−−→
OG2 respectively. Since

P is primitive, the edge F1 ∩ F2 belongs to exactly three parallel copies of P
(including itself) in its tiling. So, P2 is obtained by the parallel translation of

P1 along 2
−−→
OG3. Hence

−−→
OG3 =

−−→
OG2 − −−→

OG1. Therefore, Gi (1 ≤ i ≤ 6) and the
origin are coplanar.

Nowwe fix a belt ofP , and define a reduced parallelohedronPr ofP corresponding
to the belt, which is described in R3 with the origin O as the center of P .

Step 1. We can assume all centers of the faces of the belt is on the xy-plane
by Lemma 1 and the center of P is the origin. The orthogonal projection of P
to the xy-plane is a centrally symmetric hexagon by Theorem 1 (iii).

Step 2. There is an affine transformation which satisfies the following condi-
tions:
i) the c.-s. hexagon in the xy-plane is mapped to a c.-s. hexagon inscribed in the
unit circle with center O in xy-plane, by Theorem 3, and
ii) the parallel six edges of the belt are mapped to edges with unit length, which
are parallel to the z-axis.

We denote such transformation by fa = fa,B which depends on the belt B.
We call the image Pr of P by fa a reduced parallelohedron of P . Now we show
that Pr is uniquely determined by the following five parameters.

Definition of Parameters. Let ±F1 be two parallelograms and ±Fi (i = 2, 3)
be four hexagons in the belt of Pr, where F1, F2 and F3 are consecutive in
order. Let α (resp. β) be � A1OA2 (resp. � A2OA3) where the line segment A1A2

(resp. A2A3) is the projection of F1 (resp. F2) to the xy-plane. We can assume
β ≤ (π − α)/2 by considering −F3 instead of F2 if necessary.
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Let B1, B2, B3, B4, B5 and B6 be consecutive vertices of F2, where the line
segment B1B2 is the common edge of F1 and F2 and the z-coordinate of B2 is
greater than the one of B1. Notice that we can assume the z-coordinate of the
midpoint of the edge B1B2, denoted by h, satisfies h ≥ 0, by considering −F1

and −F2 instead of F1 and F2 if necessary. Denote � B1B2B3 and � B3B4B5 by
γ and δ respectively (see Fig. 2).

Let C1 and C2 be vertices of F1 so that F1 = B1B2C2C1. By |A1A2| =
2 sin(α/2), � B1B2C2 = tan−1(|A1A2|/2h) = tan−1(sin(α/2)/h), where |XY |
means the Euclidean distance of X, Y ∈ R3. Since P is convex, �B2B3C2 is up-
per than the parallelogramB2C2(−B1)(−C1), and so γ > π−tan−1(sin(α/2)/h).
Since F2 is convex, γ < π. Hence

0 < π − γ < tan−1(sin(α/2)/h). (2)

Since � B2B4B5 < δ < π and � B2B4B5 = π − tan−1(sin(β/2)/h), δ satisfies

0 < π − δ < tan−1(sin(β/2)/h). (3)

For a point Q and a set S in R3, we denote by −Q the symmetric point of
Q about the origin, and by −S the set {−Q : Q ∈ S}. For three points P1, P2

and P3 in R3 which are not collinear, we denote by Π(x, y, z; P1, P2, P3) = 0 the
equation of the plane including those three points and by Π(Q; P1, P2, P3) the
value Π(qx, qy, qz; P1, P2, P3) for a point Q = (qx, qy, qz).

Since the plane including �B2B3C2 (resp. �(−B1)(−B6)(−C1)) does not
intersect with the edge (−B1)(−B6) (resp. (B2)(B3)),

Π(A2; B2, B3, C2) ·Π(−B6; B2, B3, C2) > 0 (4)

and
Π(A2; −B1, −C1, −B6) ·Π(B3; −B1, −C1, −B6) > 0 (5)

hold , where
(i) A1A2 · · ·A6 is the hexagon centrally symmetric about the origin with ver-

tices A1 = (cosα, sinα, 0), A2 = (1, 0, 0), A3 = (cosβ, − sinβ, 0),
(ii) B1B2 · · ·B6 is the hexagon centrally symmetric about the midpoint of

A2A3 with vertices B1 = (1, 0, −1/2+ h), B2 = (1, 0, 1/2+ h) and the point B3

determined by � B1B2B3 = γ and � B3B4B5 = δ, and
(iii) C1 and C2 are the points symmetric to B2 and B1 respectively about the

midpoint of A1A2 (see Figs. 1, 2 and 4).
We call such 5-tuple (α, β, h, δ, l) a parameterization of Pr. We show that for

each 5-tuple satisfying the above conditions, there exists a unique parallelohe-
dron with the given parametrization and the combinatorial type of the truncated
octahedron.

Theorem 4. The affine equivalent classes A(K) of parallelohedra with the com-
binatorial type K of the truncated octahedron are parameterized by a 5-tuple
(α, β, h, δ, l) which satisfies the following:

0 < α, 0 < β ≤ (π − α)/2, 0 ≤ h,
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0 < π − γ < tan−1(sin(α/2)/h),

0 < π − δ < tan−1(sin(β/2)/h),

and the conditions (4) and (5).

Proof. Let (α, β, h, δ, l) be a 5-tuple satisfying all conditions in the theorem.
Step 1. Take a c.-s. hexagon A1A2 · · ·A6 in R3 satisfying the following condi-

tions (1)-(4): (1) inscribed in the unit circle with the center of the origin O, (2)
included in the xy-plane, (3) � A1OA2 = α and � A2OA3 = β, and (4) the point
A2 is in the positive x-axis (see the left figure in Fig. 1).
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Fig. 1. Steps to obtain a truncated octahedron

Step 2. Let e1 be the line segment with unit length included in the line pass-
ing through A1, and orthogonal to the xy-plane, whose midpoint has the z-
coordinate −h. Draw five edges ei (i = 2, · · · , 6) with unit length parallel to
e1 such that ei+1 is symmetric to ei about the midpoint of AiAi+1 for each
i = 1, · · · , 6, where e7 means e1. Denote by e1 = C1C2, e2 = B1B2, and
e3 = B4B5, where the z-coordinate of B2 (resp. B4) is greater than the one
of B1 (resp. B5) (see the right figure in Fig. 1).

Step 3. Let F1 be the parallelogram C1C2B2B1 spanned by e1 and e2. Let F2

be a c.-s. hexagon B1B2 · · ·B6 with angles � B1B2B3 = γ and � B3B4B5 = δ
(see Fig. 2).

Step 4. Let Π1 be the plane including the edges B2B3 and B2C2 . Let Π2 be
the plane including the edges (−C1)(−B1) of −F1 and (−B1)(−B6) of −F2.

By the conditions (2) and (3), B3 and −B6 are higher than the plane including
the parallelogram B2C2(−B1)(−C1).

Since Π1 and Π2 include parallel lines B2C2 and (−C1)(−B1) respectively,
and cannot be parallel planes from the existence of B3 (upper than B2) and −B6

(upper than −B1), the two planes Π1 and Π2 intersect in a line (denoted by l)
which is parallel to B2C2 and (−C1)(−B1).

By the assumption (4), two points −B6 and A2 are in the same half-space di-
vided by the equationΠ(x, y, z; B2, B3, C2) = 0. So, l does not intersect with the
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Fig. 2. Construction of four faces for the given parameters

edge (−B1)(−B6), Similarly, by the assumption (5), Π(A2; −B1, −C1, −B6) ·
Π(B3; −B1, −C1, −B6) > 0, the line l does not intersect with B2B3 (see the
left figure in Fig. 3 which is the orthogonal projection to the xy-plane).
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Fig. 3. The orthogonal projection to the xy-plane

Step 5. Let Π3 (resp. Π4) be the plane which is orthogonal to the xy-plane,
parallel to A3A4, and which includes the point B3 (resp. −B6). Denote by D1

(resp. D2) the intersection point of the line l and Π3 (resp. Π4) (see the left
figure in Fig. 3).

Step 6. Let E1 (resp. E2) be the point such that the line segment D1E1 (resp.
D2E2) is parallel and congruent to the edge B3B4 (resp. B2B3) (see the right
figure in Fig. 3). Now we obtain a belt (see the left figure in Fig. 4). By drawing
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Fig. 4. Process to obtain a truncated octahedron

edges, we obtain the unique parallelohedron with its combinatorial type K of
the truncated octahedron and the given parameters.

Remark. For each parallelohedron with its combinatorial type of the truncated
octahedron, there are six belts. So, at most six different 5-tuples of parameters
may correspond to a-equivalent parallelohedra in Theorem 4.

4 Non-primitive Parallelohedra

By applying the method used in the proof of Theorem 4, we get the following
results.

Theorem 5. The set of affine classes A(K) with the combinatorial type K of
the rhombic dodecahedron are parameterized by a 3-tuple (α, β, h) where

0 < α, 0 < β ≤ (π − α)/2, 0 < h.

Proof. Since all faces of parallelohedra with the combinatorial type K of the
rhombic dodecahedron are parallelograms, Step 3 in the proof of Theorem 4, we
take a parallelogram B1B2B4B5 instead of the hexagon B1B2 · · ·B6. Then we
get a figure of the orthogonal projection to the xy-plane showed in Fig. 5. By
drawing edges, we obtain the unique parallelohedron with combinatorial type K
and the given parameters.
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Fig. 5. The orthogonal projection of a parallelohedron with the combinatorial type of
the rhombic dodecahedron to the xy-plane

Theorem 6. The set of affine classes A(K) where K is the combinatorial type
of the elongated dodecahedron is parameterized by a 4-tuple (α, β, h, l) where

0 < α, 0 < β ≤ (π − α)/2, 0 < h, 0 < l

.

Proof. It is proved by Theorem 6.
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