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Abstract. Let P be a set of n > d points in R
d for d ≥ 2. It was

conjectured by Schur that the maximum number of (d− 1)-dimensional
regular simplices of edge length diam(P ), whose every vertex belongs to
P , is n. We prove this statement under the condition that any two of the
simplices share at least d − 2 vertices. It is left as an open question to
decide whether this condition is always satisfied. We also establish upper
bounds on the number of all 2- and 3-dimensional simplices induced by
a set P ⊂ R

3 of n points which satisfy the condition that the lengths of
their sides belong to the set of k largest distances determined by P .

1 Introduction

The investigation of the distribution of distinct distances induced by a finite set of
points in Euclidean space was initiated by Erdős in 1946. It has become a classical
topic in discrete and computational geometry, with applications in combinatorial
number theory, the theory of geometric algorithms, pattern recognition, etc. A
typical problem in the area is Erdős’ unit distance problem [2,11]: what is the
maximum number of unit distance pairs among n points in R

d?
In the present paper, we concentrate on graphs of diameters. The diameter

graph D(P ) of a finite set of points P in R
d is the graph whose vertex set is P ,

and two vertices are connected by an edge if and only if their distance is the
diameter of P .

Throughout this paper, d will always denote an integer which is at least 2.
One of the basic properties of graphs of diameters was formulated by Erdős [2]:

the maximum number of diameters among n points in the plane is n., Erdős
generously attributed the statement to Hopf and Pannwitz [4], who in fact proved
a slightly different statement. In 3 dimensions, a similar result was conjectured
by Vázsonyi and proved by Grünbaum [5], Heppes [6], and Straszewicz [12]: the
maximum number of diameters generated by n > 3 points in R

3 is 2n − 2. In
higher dimensions, the analogous problem turned out to have a different flavor:
Lenz found some simple constructions with a quadratic number of diameters.

In [10], instead of counting the number of edges, Schur, Perles, Martini, and
Kupitz initiated the investigation of the number of cliques in a graph of di-
ameters. A k-clique, that is, a complete subgraph of k vertices, in the graph
of diameters of P corresponds to a regular (k − 1)-dimensional simplex (or, in
short, (k − 1)-simplex) of side length diam(P ) generated by P .

J. Akiyama, M. Kano, and T. Sakai (Eds.): TJJCCGG 2012, LNCS 8296, pp. 120–131, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Remarks on Schur’s Conjecture 121

Theorem A (Schur et al.). Any finite subset P ⊂ R
d contains the vertices of

at most one regular d-simplex of edge length diam(P ).

The main result in [10] is the following.

Theorem B (Schur et al.). Any set P of n points in R
3 can generate at most

n equilateral triangles of side length diam(P ).

Theorem B can be regarded as another 3-dimensional generalization of the
Hopf-Pannwitz result, according to which any set of n points in the plane has at
most n diameters. It was conjectured by Z. Schur (see [10]) that this result can
be extended to all dimensions d.

Conjecture 1 (Schur). The number of d-cliques in a graph of diameters on n
points in R

d is at most n.

The fact that this bound is tight for any n > d can be shown by the fol-
lowing simple construction given in [10]. Let p0, p1, . . . , pd be the vertices of a
regular d-simplex inscribed in the unit sphere. The edge length of the simplex is
λd =

√
2(1 + 1/d). Denote by c the center of the (d − 2)-simplex p0p1 . . . pd−2.

Consider the circle centered at c and passing through pd−1 and pd, and let
pd+1, pd+2, . . . , pn−1 be arbitrary points on the short arc between pd−1 and pd
of the circle. It is not difficult to see that the set P = {p0, p1, . . . , pn−1} has
diameter λd and determines exactly n regular (d − 1)-simplices of edge length
λd. Figure 1 illustrates the case d = 3 of this construction.

In a recent manuscript Kupavskii proved Conjecture 1 for d = 4.

Fig. 1. Construction for d = 3
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We can prove Schur’s conjecture for point sets satisfying a special condition.

Theorem 1. The number of d-cliques in a graph of diameters on n vertices in
R

d is at most n, provided that any two d-cliques share at least d− 2 vertices.

We do not have any example violating the additional condition and we believe
that, in fact, it holds for all graphs of diameters. However, we were unable to
prove that it is true in general.

Problem 1. Is it true that any two unit regular (d−1)-simplices in R
d must share

at least d− 2 vertices, provided the diameter of their union is one?

This is vacuously true for d = 2. For d = 3 it follows, e.g., from Dolnikov’s
theorem [1,14] (a direct proof is given in [10]), and it is open for d ≥ 4. We
cannot even verify that two simplices must share at least one vertex (for d ≥ 4),
so this step would already be a breakthrough. We propose the following still
weaker conjecture.

Conjecture 2. Given two unit regular (d − 1)-simplices in R
d with d ≥ 3, we

can choose a vertex u of one simplex and a vertex v of the other one, so that
|uv| ≥ 1.

This is only known to be true for d = 3. Obviously, a positive answer to
Problem 1 would imply Conjecture 2. It seems that regularity of the simplices is
not a crucial condition in Conjecture 2, and the following stronger version may
be true.

Conjecture 3. Let a1 . . . ad and b1 . . . bd be two (d−1)-simplices in R
d with d ≥ 3,

such that all their edges have length at least α. Then there exist i, j ∈ {1, . . . , d}
such that |aibj| ≥ α .

In other words, given d red and d blue points, we can find a red-blue distance
that is at least as large as the smallest monochromatic distance. We can ask
another more general question, which is probably very hard.

Problem 2. For given d, characterize all pairs k, � of integers such that for any
set of k red and � blue points we can choose a red point r and a blue point b
such that |rb| is at least as large as the smallest distance between two points of
the same color.

From an easy packing argument one can see that there is a good choice of
r and b, whenever at least one of the numbers k and � is large enough. The
following theorem is a first step towards Problem 2.

Theorem 2. For any set of 2k points a1, . . . , ak, b1, . . . , bk in R
d the following

inequality holds:

max{|aibj | : 1 ≤ i, j ≤ k} ≥ min{|aiaj |, |bibj | : 1 ≤ i < j ≤ k} ,

provided that k ≥ c · √d · 2 3d
2 with a large enough absolute constant c.
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Some generalizations of Theorems A and B to graphs of the k-th largest
distances were established in [9]. In this paper we show how these theorems can
be extended to non-regular triangles in R

3 whose all sides are large (i.e., among
the k largest distances). For a given finite set P ⊂ R

3, we let d1 > d2 > . . . be
all distinct inter-point distances generated by point pairs in P , so that by dk we
denote the k-th largest distance generated by P .

Theorem 3. For any k ∈ N there is a constant ck such that the following holds:
any set P of n points in R

3 can generate at most ckn triangles whose all sides
have length at least dk.

This can be viewed as a 3-dimensional analogue of the well-known observation
by Vesztergombi: the number of pairs at distance dk among n points in the plane
is at most 2kn (see [15]). The analogous statement for large non-regular (d− 1)-
simplices in R

d probably holds for d ≥ 4 as well, but this is open.
The corresponding result for (not necessarily regular) tetrahedra with large

edges in R
3 is somewhat weaker in the sense that the bound depends not only

on k, but also on the given tetrahedron. We will see in Section 4 that this kind
of dependence is necessary.

Theorem 4. For any tetrahedron T and any k there is a constant c(T, k) such
that the following holds: any finite set P of points in R

3 spans at most c(T, k)
tetrahedra congruent to T , provided that all edges of T have length at least dk.

If Conjecture 3 holds, then Theorem 4 can be generalized to higher dimensions.
As for the planar case, it is an easy exercise to show that, for every k, there is
a constant ck such that any finite set of points in the plane spans at most ck
triangles, whose all sides have length at least dk.

2 Proof of Theorem 1

We start with two lemmas that are borrowed from [13], where they are attributed
to [8].

Lemma 1 (Kupitz et al.). Let a, b, c, d be points on a 2-sphere of radius at
least 1/

√
2 such that diam{a, b, c, d} = 1 and |ab| = |cd| = 1. Then the short

great circle arcs ab and cd must intersect.

The maximum number of diameters in a finite set of points on a 2-sphere is
the same as in the plane, as long as the radius of the sphere is large enough,
compared to the diameter of the set.

Lemma 2 (Kupitz et al.). Let S be a 2-sphere of radius at least 1/
√
2 in R

3.
If a set of n points on S has diameter 1, then the diameter occurs at most n
times.

Next, we establish Theorem 1, which says that Schur’s conjecture (Conjec-
ture 1) holds, provided that the given graph of diameters satisfies an additional
condition: any two d-cliques share at least d− 2 vertices.
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Proof of Theorem 1.. Assume without loss of generality that the diameter of our
set is equal to 1. We can also assume that every vertex belongs to at least two
d-cliques, since otherwise we can proceed by induction. We start with several
geometric observations.

Note that the vertices of a d-clique represent d affinely independent points, so
their affine hull is (d − 1)-dimensional, i.e., a hyperplane. Therefore, the affine
hull of the d vertices divides the space into two half-spaces.

We will use the expression angle uvw and notation α(u, v, w) to refer to the
following set of points:

α(u, v, w) = {μ1(u− v) + μ2(w − v) : μ1, μ2 ≥ 0} .

Lemma 3. If two d-cliques a1 . . . ad−2xy and a1 . . . ad−2zt share exactly d − 2
vertices, then the open segment zt has exactly one common point with aff(a1, . . . ,
ad−2, x, y), which lies inside α(x, c, y), where c = a1+···+ad−2

d−2 is the center of
gravity of a1 . . . ad−2.

Proof. Since |aix| = |aiy| = |aiz| = |ait| = 1 for all i = 1, . . . , d− 2, and

|cx| = |cy| = |cz| = |ct| =
√

d− 1

2(d− 2)
,

we know that the points x, y, z, t lie on a 2-sphere with center c and radius≥ 1/
√
2

(Figures 2(a), 2(b)) . Hence, we can apply Lemma 1 to the points x, y, z, t to con-
clude that the arcs xy and zt intersect at some point p. But then the segment cp is
contained in α(x, c, y) and it is intersected by the open segment zt. Therefore, the

a1

c

a2

y

z

xt

(a)

zz

x

c

t

y

p

(b)

Fig. 2. Proof of Theorem 1, Lemma 3
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open segment zt intersects aff(a1, . . . , ad−2, x, y) at a point which lies in α(x, c, y),
and in no other point, since otherwise the two d-cliques would lie in the same hy-
perplane and would necessarily coincide by Theorem A.

Lemma 4. There are no three d-cliques that share a (d− 1)-clique.

Proof. Suppose the contrary: let a1 . . . ad−1x, a1 . . . ad−1y and a1 . . . ad−1z be
three d-cliques. Denote by c the center of gravity for a1, . . . , ad−1. Then the

points x, y, z lie on the circle with center c and radius
√

d
2(d−1) , that is orthogonal

to aff(a1, . . . , ad−1). Since the radius of the circle is at least 1/
√
2, we have that

∠xcy,∠ycz,∠zcx ≤ π
2 . Hence, the points x, y, z lie on a half-circle and we can

assume without loss of generality that y is between x and z. Note that |xy|, |yz| <
1 and the points x and z lie on different sides of aff(a1, . . . , ad−1, y). According
to our initial assumption, there is at least one d-clique C containing y apart
from a1 . . . ad−1y. Since C shares at least d − 2 points with each of the cliques
a1 . . . ad−1x, a1 . . . ad−1y and a1 . . . ad−1z and, moreover, C cannot contain x
or z, we conclude that C contains exactly d − 2 of the points a1, . . . , ad−1.
Without loss of generality, let C = ya1 . . . ad−2u and let u lie on the same side
of aff(a1, . . . , ad−1, y) as x. Now, because of Lemma 3, the open segment ad−1z
contains a point from α(u, c′, y), where c′ is the center of gravity for a1, . . . , ad−2.
However, the whole set α(u, c′, y) lies in the closed half-space that contains x,
while the open segment ad−1z lies entirely in the open half-space that contains
z. This is a contradiction.

It turns out that the above geometric observations provide enough information
so that the proof can be finished more or less combinatorially. We distinguish
two cases.

Case 1. There is a (d+ 1)-clique a1 . . . ad+1.
Suppose there is a d-clique C that contains a vertex x /∈ {a1, . . . , ad+1}.

By the assumption, C shares d− 2 vertices with the clique a1 . . . ad, so
we can assume that C contains a1, . . . , ad−2. But C also shares d − 2
vertices with the clique a2 . . . ad+1, so we can also assume that C con-
tains ad−1. Therefore, C = a1 . . . ad−1x . Thus, we have three d-cliques
containing a1, . . . , ad−1: namely, a1 . . . ad, a1 . . . ad−1ad+1 and C. This
is forbidden by Lemma 4. Hence we conclude that all d-cliques must be
contained in a1 . . . ad+1, which gives us at most d+ 1 cliques, so in this
case the statement is proven, since n ≥ d+ 1.

Case 2. There is no (d+ 1)-clique.
We have two subcases.

Subcase 2.1 There are two d-cliques that share d− 1 vertices.
Let the cliques be a1 . . . ad−1x and a1 . . . ad−1y. Observe that

|xy| < 1, since we assume there is no (d+ 1)-clique. If there are no
more d-cliques except for those generated by a1, . . . , ad−1, x, y, we
are done. So we can suppose that there are some more d-cliques.
Any new d-clique shares d − 2 points both with a1 . . . ad−1x and
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Fig. 3. (a) Proof of Theorem 2; (b) construction for d = 4: two equilateral triangles in
two orthogonal planes with a common center at the origin

with a1 . . . ad−1y. Hence, any new clique contains exactly d − 2 of
the vertices a1, . . . , ad−1. We say that a d-clique is of type k if it
contains all the vertices a1, . . . , ad−1 except for ak. Now we will
again branch out into different cases.

First, let us see what happens if all d-cliques have the same type,
e.g., they all contain the points a1, . . . , ad−2. The remaining two ver-
tices of any d-clique must lie on the 2-sphere with center a1+···+ad−2

d−2

and radius
√

d−1
2(d−2) >

1√
2
. Thus, the number of d-cliques is no more

than the number of unit-diameters among n − (d − 2) points on a
2-sphere of radius > 1/

√
2, which is at most n−(d−2), by Lemma 2.

Therefore, we can assume that there are at least two d-cliques
of different types. Any two cliques of different types share exactly
d − 3 vertices among a1, . . . , ad−1, so they must share at least one
more vertex. Again, we consider different cases.

Suppose there are two d-cliques of different types that share a
vertex v outside of {a1, . . . , ad−1, x, y}. Let the cliques be a1 . . .
ad−2uv and a2 . . . ad−1vw. Clearly, a1 . . . ad−1v is also a d-clique, so
we have three d-cliques sharing d − 1 points a1, . . . , ad−1, which is
impossible, according to Lemma 4.

The second possibility that remains is that any two cliques of
different types contain x or y. This means that either all cliques
(apart from the initial two) contain x or all of them contain y.
Without loss of generality, let all new cliques contain x. Notice
that there can be at most one clique of each type, for if C1 and C2

were d-cliques of the same type, say, type 1, there would be three
d-cliques sharing d − 1 points x, a2, . . . , ad−1, contrary to Lemma
4. Consequently, in this case we have at most d+1 cliques, and the
total number of vertices is at least d+ 2.
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Subcase 2.2 Any two d-cliques share at most d− 2 vertices.
Let a1 . . . ad−2xy and a1 . . . ad−2zt be two d-cliques. None of the

points x and y forms a diameter with any of the points z and t, since
it would produce two d-cliques that share d− 1 vertices. If all other
cliques contain a1, . . . , ad−2, we are done as above, so without loss of
generality suppose that there is a d-clique a1 . . . ad−3xuv. Clearly,
u, v are new points, i.e., different from a1, . . . , ad−2, x, y, z, t. But
now a1 . . . ad−3xuv and a1 . . . ad−2zt have only d− 3 points in com-
mon, contradicting the assumption.

We have proved that n is an upper bound for the number of d-cliques. A construc-
tion from [10] showing that this bound can be achieved is given in Introduction.
This completes the proof of Theorem 1.

Remark. If the statement from Problem 1 is true, then Theorem 1 would con-
firm Schur’s conjecture. The following weaker statement might be easier to prove:
There is a constant K(d) such that among any K(d) cliques in a graph of di-
ameters, there are two cliques sharing a vertex. If true, this would give a bound
of the form k(d) · n for Schur’s conjecture. However, it appears that even this
weaker form requires a new insight.

It is natural to extend Problem 1 to cliques that might have fewer than d
vertices. In particular, is it true that a d-clique and a (d−1)-clique in a graph of
diameters in R

d must share a vertex? For d = 2 and d = 3, this is clearly false.
It is also false in R

4, as shown by the following construction (for k = 2).

Proposition 1. For every k ≥ 2, there exist a unit regular (2k−1)-simplex and
a unit regular k-simplex in R

2k that do not share a vertex, while the diameter of
their union is 1.

Proof. Consider a unit regular (2k − 1)-simplex Δ = a1 . . . a2k in R
2k and let

u1, . . . , uk be the midpoints of the edges a1a2, a3a4, . . . , a2k−1a2k, respectively.
Let the origin o = (0, . . . , 0) be the center of the simplex Δ and let the simplex
lie in the hyperplane x2k = 0. For every n ≥ 1, denote by rn the circumradius of

a unit regular n-simplex. We have that rn =
√

n
2n+2 . Denote by v1, . . . , vk the

points such that |ovi| = rk−1 and ui lies on the segment ovi for i = 1, 2, . . . , k.
Then v1v2 . . . vk is a unit regular (k − 1)-simplex with center o. Translate the

points v1, . . . , vk by the vector (0, . . . , 0,

√
3−2

√
2

4k ) to get points w1, . . . , wk, and

let wk+1 = (0, . . . , 0,

√
3−2

√
2

4k −
√

k+1
2k ). Now it is not difficult to verify that Δ̃ =

w1 . . . wkwk+1 is a unit regular k-simplex and that the pair of simplices Δ and
Δ̃ satisfies the needed conditions (we omit the straightforward calculation).

The question whether a d-clique and a (d− 1)-clique in a graph of diameters
in R

d must share a vertex remains open for d ≥ 5.
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3 Proof of Theorem 2

Proof of Theorem 2. Suppose the contrary, i.e., that the maximum is strictly
smaller than the minimum, while k ≥ c · √d · 2 3d

2 for a large enough c. Without
loss of generality, we assume that

min{|aiaj |, |bibj | : 1 ≤ i < j ≤ k} = 1

and |a1a2| = 1. Denote by C the intersection of two balls with centers a1 and
a2 and radius 1 (Figure 3(a)). Then C contains all the points b1, . . . , bk. Since
|bibj | ≥ 1, the balls centered at b1, . . . , bk with radii 1

2 do not overlap. Moreover,
all these balls are contained in C′, which is the intersection of the balls with
centers a1 and a2 and radius 3

2 . Let us estimate the volume of C′. Using the fact
that the volume of a spherical cap of height h is

π
d−1
2 rd

Γ
(
d+1
2

)
∫ arccos r−h

h

0

sind(t) dt ,

where r is the radius of the sphere, we get

Vol(C′) = 2 · π
d−1
2 (3/2)d

Γ
(
d+1
2

)
∫ arccos 1

3

0

sind(t) dt

≤ 2 · π
d−1
2 (3/2)d

Γ
(
d+1
2

) ·
(
2
√
2

3

)d

· arccos 1
3
= O

(
(2π)

d
2

Γ
(
d+1
2

)

)

.

But C′ contains k non-overlapping balls of radius 1
2 , and, therefore,

k · π
d
2 2−d

Γ
(
1 + d

2

) ≤ O

(
(2π)

d
2

Γ
(
d+1
2

)

)

.

Finally, taking into account the asymptotics Γ (x) ∼ xx− 1
2 e−x

√
2π, we obtain

k = O(
√
d · 23d/2) , with a contradiction, as long as c is large enough.

Remark. On the other hand, we know that Theorem 2 does not hold with
k ≤ �d+1

2 	 . To see this, consider the following construction. Let a1 . . . ak be a
regular (k − 1)-dimensional simplex inscribed in the sphere

{(x1, . . . , xd) : x2
1 + · · ·+ x2

k−1 = 1, xk = · · · = xd = 0}
and let b1 . . . bk be a regular (k− 1)-dimensional simplex inscribed in the sphere

{(x1, . . . , xd) : x2
k + · · ·+ x2

2k−2 = 1, x1 = · · · = xk−1 = 0} .

Then |aiaj | = |bibj | =
√

2k
k−1 for all i 
= j, while |aibj| =

√
2 (Figure 3(b)).

Thus, the smallest k(d) for which Theorem 2 holds is somewhere between d/2

and c
√
d · 2 3d

2 . The gap is obviously quite large, and Conjecture 3 suggests the
answer should be closer to the lower bound.
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4 Proofs of Theorems 3 and 4

The proofs of Theorem 3 and Theorem 4 are both analogous to the proofs of the
corresponding statements for regular simplices given in [9], with the only new
ingredient being the next lemma.

Lemma 5. Let a1a2a3 and b1b2b3 be two triangles in R
3 such that all their sides

have length at least α. Then there exist i, j ∈ {1, 2, 3} such that |aibj| ≥ α .

Proof. Suppose the contrary, i.e., that the two triangles are placed so that
|aibj | < α for all i and j. Without loss of generality, let a1a2a3 lie in the plane
x3 = 0. By the pigeon hole there are two vertices of b1b2b3 that lie on the same
side of x3 = 0. Without loss of generality, let b1 and b2 lie in the half-space
x3 ≥ 0 and let b1 = (0, 0, p) and b2 = (0, q, r), where p, q, r are non-negative and
r ≥ p (Figure 4). Translate the points b1 and b2 by the vector (0, 0,−p) to get
new points c1 = (0, 0, 0) and c2 = (0, q, r − p). Note that |c1c2| = |b1b2| ≥ α
and |ciaj | ≤ |biaj | < α for all i ∈ {1, 2}, j ∈ {1, 2, 3}. It follows that the points
a1, a2, a3 must have non-negative second coordinates. Now we rotate the point
c2 around c1 in the plane x1 = 0 until it hits the plane x3 = 0. Thus, we replace
c2 by c′2 = (0, s, 0), where s =

√
q2 + (r − p)2 . Again, |c1c′2| = |c1c2| ≥ α and

the distances between c′2 and aj for j ∈ {1, 2, 3} are all smaller than α. Indeed,
letting aj = (t, u, 0), we have

|c′2aj | =
√
t2 + (u− s)2 ≤

√
t2 + (q − u)2 + (r − p)2 = |c2aj | < α ,

where we used that u ≥ 0 and q ≤ s.

x3

x1

x2

b2 = (0, q, r)

c2

c′2

c1

a3

a1

a2

b1 = (0, 0, p)

Fig. 4. Proof of Lemma 5
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The points c1, c
′
2, a1, a2, a3 lie in the same plane and segment c1c

′
2 can intersect

at most two sides of triangle a1a2a3 at their interior points. So, without loss of
generality, assume that c1c

′
2 does not intersect a1a2 at an interior point. Then

either c1, c
′
2, a1, a2 are in convex position or an extension of one of the segments

c1c
′
2 and a1a2 intersects the other one. In either case one can easily show that one

of the segments c1a1, c1a2, c
′
2a1, c

′
2a2 has length at least min{|c1c′2|, |a1a2|} ≥ α.

Contradiction.

a

q0
p0

b

(a)

p0(ε)

p1(5ε)

p2(9ε)
p3(13ε)

q0(π − ε)

q1(π + 3ε)

q2(π + 7ε)

q3(π + 11ε)

(b)

Fig. 5. (a) Construction with many congruent large non-regular simplices; (b) points
in the plane x3 = 0

Remark. Note that some dependence on T is necessary in Theorem 4, as shown
by this simple construction. Take two points a = (0, 0, 1), b = (0, 0,−1), and 2n
points in the plane x3 = 0 on the circle x2

1 + x2
2 = 1/4 with polar coordinates as

follows:

pi =

(
1

2
, (1 + 4i)ε

)
, qi =

(
1

2
, π + (4i− 1)ε

)
,

for i = 0, 1, . . . , n− 1 and small enough ε > 0 (Figures 5(a),5(b)). In this set of
2n+ 2 points we have that

d1 = |ab| = 2, d2 = |api| =
√
5

2
and d3 = |piqi| =

√
1

2
+

1

2
cos(2ε) < 1 .

Recall that the distance between the points (r1, θ1) and (r2, θ2) in polar coordi-
nates is equal √

r21 + r22 − 2r1r2 cos(θ1 − θ2).

Also, we can check that for all i, j we have

|piqj | =
√

1

2
+

1

2
cos((4(j − i)− 2)ε) ≤

√
1

2
+

1

2
cos(2ε) = d3 ,
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since |4(j − i)− 2| ≥ 2 . It remains to notice that the chosen points span 2n− 1
tetrahedra with edge lengths d1, d2, d2, d2, d2, d3. Those are the tetrahedra abpiqj
for all i, j ∈ {0, 1, . . . , n−1} such that j− i ∈ {0, 1}. Thus, for k = 3 we can have
an arbitrarily large number of tetrahedra whose all edges have lengths at least dk.
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