
Exact Algorithms for Weak Roman Domination�

Mathieu Chapelle1, Manfred Cochefert2, Jean-François Couturier2,
Dieter Kratsch2, Mathieu Liedloff3, and Anthony Perez3

1 LIGM, Université Paris-Est Marne-La-Vallée
77454 Marne-La-Vallée Cedex 2, France

mathieu.chapelle@univ-mlv.fr
2 LITA, Université de Lorraine
57045 Metz Cedex 01, France

{couturier,cochefert,kratsch}@univ-metz.fr
3 LIFO, Université d’Orléans
45067 Orléans Cedex 2, France

{mathieu.liedloff,anthony.perez}@univ-orleans.fr

Abstract. We consider the Weak Roman Domination problem.
Given an undirected graph G = (V,E), the aim is to find a weak ro-
man domination function (wrd-function for short) of minimum cost, i.e.
a function f : V → {0, 1, 2} such that every vertex v ∈ V is defended
(i.e. there exists a neighbor u of v, possibly u = v, such that f(u) � 1)
and for every vertex v ∈ V with f(v) = 0 there exists a neighbor u of v
such that f(u) � 1 and the function fu→v defined by:

fu→v(x) =

⎧
⎨

⎩

1 if x = v
f(u)− 1 if x = u
f(x) if x /∈ {u, v}

does not contain any undefended vertex. The cost of a wrd-function f
is defined by cost(f) =

∑
v∈V f(v). The trivial enumeration algorithm

runs in time O∗(3n) and polynomial space and is the best one known
for the problem so far. We are breaking the trivial enumeration barrier
by providing two faster algorithms: we first prove that the problem can
be solved in O∗(2n) time needing exponential space, and then describe
an O∗(2.2279n) algorithm using polynomial space. Our results rely on
structural properties of a wrd-function, as well as on the best polynomial
space algorithm for the Red-Blue Dominating Set problem.

Keywords: exact algorithm, graph algorithm, roman domination.

1 Introduction

In this paper we investigate a domination-like problem from the exact expo-
nential algorithms viewpoint. In the classical Dominating Set problem, one is
given an undirected graph G = (V,E), and asked to find a dominating set S,
i.e. every vertex v ∈ V either belongs to S or has a neighbor in S, of minimum
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size. The Dominating Set problem ranges among one of the most famous NP -
complete covering problems [8], and has received a lot of attention during the
last decades. In particular, the trivial enumeration algorithm of runtime O∗(2n) 1

has been improved by a sequence of papers [7,14,23]. The currently best known
algorithms for the problem run in time O∗(1.4864n) using polynomial space, and
in time O∗(1.4689n) needing exponential space [14].

Many variants of the Dominating Set problem have been introduced and
studied extensively both from structural and algorithmic viewpoints. The num-
ber of papers on domination in graphs and its variants is in the thousands, and
several well-known surveys and books are dedicated to the topic (see, e.g., [12]).
One of those variants called Roman Domination was introduced in [5] and
motivated by the articles “Defend the Roman Empire!" of I. Stewart [21] and
“Defendens Imperium Romanum: a classical problem in military strategy” of
C.S. ReVelle and K.E. Rosing [20]. In general, the aim is to protect a set of
locations (vertices of a graph) by using a smallest possible amount of legions (to
be placed on those vertices). Motivated by a decree of the Emperor Constantine
the Great in the fourth century A.D., Roman Domination uses the following
rules for protecting a graph: a vertex can protect itself if it has one legion, and
protect all its neighbors if it owns two legions, since Constantine decreed that
two legions must be placed at a location before one may move to a nearby loca-
tion (adjacent vertex) to defend it. The Roman Domination problem asks to
minimize the number of legions used to defend all vertices.

Since then, numerous articles have been published around this problem, which
has been studied from different viewpoints (see, e.g., [1,2,4,6,17,18,24]). In par-
ticular, this NP -complete problem has been tackled using exact exponential
algorithms. The first non-trivial one achieved had running time O∗(1.6183n)
and used polynomial space [15]. This result has recently been improved to
O∗(1.5673n) [22], which can be lowered to O∗(1.5014n) at the cost of expo-
nential space [22]. Moreover, the Roman Domination problem can be related
to several other variants of defense-like domination, such as secure domination
(see, e.g., [3,4,11]), or eternal domination (see, e.g., [9,10]).

We focus our attention on yet another variant of the Roman Domination
problem. In 2003, Henning et al. [13] considered the following idea: location t can
also be protected if one of its neighbors possesses one legion that can be moved
to t in such a way that the whole collection of locations (set of vertices) remains
protected. This variation adds some kind of dynamics to the problem and gives rise
to theWeakRomanDominationproblem.Formally, it canbe defined as follows:

Weak Roman Domination:
Input: An undirected graph G = (V,E).
Output: A weak roman domination function f of G of minimum cost.

A weak roman domination (wrd-function) is a function f : V → {0, 1, 2} such
that every vertex v ∈ V is defended (i.e. there exists a neighbor u of v, possibly

1 The notation O∗(f(n)) suppresses polynomial factors.
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u = v, such that f(u) � 1) and for every vertex v ∈ V with f(v) = 0 there
exists a neighbor u of v such that f(u) � 1 and the function fu→v defined by
fu→v(x) = 1 if x = v, fu→v(x) = f(x)−1 if x = u and fu→v(x) = f(x) otherwise
does not contain any undefended vertex. The cost of a wrd-function f is defined
by cost(f) =

∑
v∈V f(v).

Our Contribution. While several structural results on Weak Roman Dom-
ination are known, see, e.g., [3,4,13,19], its algorithmic aspects have not been
considered so far. In this paper, we give the first algorithms tackling this prob-
lem faster than by the O∗(3n) bruteforce algorithm obtained by enumerating
all legion functions. Both our algorithms rely on structural properties for weak
roman domination functions, described in Section 3. In Section 4, we first give an
O∗(2n) time and exponential space algorithm. We then show how the exponen-
tial space can be avoided by using an exponential algorithm for the Red-Blue
Dominating Set problem [22], which leads to an O∗(2.2279n) algorithm.

2 Preliminaries and Notations

We consider simple undirected graphs G = (V,E) and assume that n = |V |.
Given a vertex v ∈ V , we denote by N(v) its open neighborhood, by N [v] its
closed neighborhood (i.e. N [v] = N(v)∪{v}). For X ⊆ V , let N [X ] = ∪v∈XN [v]
and N(X) = N [X ] \ X . Similarly, given S ⊆ V , we use NS(v) to denote the
set N(v) ∩ S. A subset of vertices S ⊆ V is a dominating set of G if for every
vertex v ∈ V either v ∈ S or NS(v) �= ∅. Furthermore, Y ⊆ V dominates X ⊆ V
in G = (V,E) if X ⊆ N [Y ]. A subset of vertices S′ ⊆ V is an independent
set in G if there is no edge in G between any pair of vertices in S′. Finally, a
graph G = (V,E) is bipartite whenever its vertex set can be partitioned into two
independent sets V1 and V2.

Legion and wrd-Functions. A function f : V → {0, 1, 2} is called a legion
function. With respect to f , a vertex v ∈ V is said to be secured if f(v) � 1,
and unsecured otherwise. Similarly, a vertex v ∈ V is said to be defended if
there exists u ∈ N [v] such that f(u) � 1. Otherwise, v is said to be undefended.
The function f is a weak roman domination function (wrd-function for short)
if there is no undefended vertex with respect to f , and for every vertex v ∈ V
with f(v) = 0 there exists a secured vertex u ∈ N(v) such that the function
f ′ : V → {0, 1, 2} defined by:

f ′(x) =

⎧
⎨

⎩

1 if x = v
f(u)− 1 if x = u
f(x) if x /∈ {u, v}

has no undefended vertex (see Figure 1 (a)). In the following, given any legion
function f and two vertices v and u ∈ N(v) such that f(v) = 0 and f(u) � 1,
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we use fu→v to denote the function f ′ as defined above. In other words, fu→v

denotes the legion function obtained by moving one legion from u to v.
Given a legion function f , we let V 1

f , V
2
f denote the sets {v ∈ V : f(v) = 1}

and {v ∈ V : f(v) = 2}, respectively, and define its underlying set as Vf =
V 1
f ∪ V 2

f . The cost of f is then defined by cost(f) =
∑

v∈V f(v) = |V 1
f |+ 2|V 2

f |.
Notice that when f is a wrd-function, the set Vf is a (not necessarily minimal)
dominating set of G.

Safely-Defended Vertices. We now distinguish two types of defended vertices.
Let v ∈ V be any vertex and f be a legion function. We say that v is safely
defended by f if one of the following holds:

– v is secured (i.e. f(v) � 1).
– there exists a neighbor u of v such that f(u) = 2.
– there exists a neighbor u of v such that f(u) = 1 and the vertices undefended

by fu→v are the same as the ones undefended by f , i.e., fu→v creates no
new undefended vertex.

Otherwise, we say that v is non-safely defended. Notice that a legion function
f is a wrd-function if and only if every vertex v ∈ V is safely-defended by f .

Observe that for any non-safely defended vertex v, we have f(v) = 0, f(u) = 1
for every secured neighbor u of v and the legion function fu→v previously defined
contains (among possibly others) an undefended vertex w ∈ N(u) for any such
neighbor u. In the following, we will refer to w as weakly defended by u, weakly
defended due to v, or simply weakly defended when the context is clear. Observe
that a weakly defended vertex has exactly one secured neighbor. These notions
are illustrated in Figure 1 (b).

3 Structure of a Weak Roman Domination Function

In this section, we prove several key structural properties of a wrd-function that
will be used in our algorithms.

Given a graph G = (V,E) and a subset of vertices V ′ ⊆ V , we define the
legion function χV ′

as the indicator function of the subset V ′:

χV ′
(x) =

{
1 if x ∈ V ′

0 otherwise.

Lemma 1. Let G = (V,E) be a graph, f be a wrd-function of G of minimum
cost, and Vf its underlying set. Then V 2

f is a minimum dominating set of the
vertices non-safely defended by χVf .

Proof. Let u ∈ V \ Vf be a vertex non-safely defended by χVf . Recall that u is
non-safely defended by χVf if for every u′ ∈ NVf

(u) the legion function χ
Vf

u′→u

contains an undefended vertex. Hence, for every vertex u′ ∈ NVf
(u), there exists

a vertex u′′ weakly defended due to u. In particular, this means that u′u′′ ∈ E
and uu′′ /∈ E. We prove Lemma 1 through the following claims.



Exact Algorithms for Weak Roman Domination 85

(a) (b)

Fig. 1. (a) A graph G = (V,E), and a wrd-function where each legion is represented by
a cross. Any vertex is safely defended. (b) The black vertex is safely defended (one can
safely move a legion on it without creating any undefended vertex), the gray vertices are
non-safely defended (any move creates an undefended vertex) and the disked vertices
are weakly defended.

Claim 1. V 2
f is a dominating set of the vertices non-safely defended by χVf .

Proof. Assume for a contradiction that there exists a vertex u ∈ V \ Vf

non-safely defended by χVf such that NV 2
f
(u) = ∅. Let u′′ be any vertex

weakly defended due to u, and let u′ be the common neighbor of u and u′′ in
Vf . Recall that N(u′′) ∩ Vf = {u′}, since otherwise u′′ would be defended by
χ
Vf

u′→u. Moreover, we know by assumption that f(u′) = 1. Hence, the vertex
u′′ is undefended by χ

Vf

u′→u, which contradicts the fact that f is a wrd-function. 	

Claim 2. V 2
f is a minimal dominating set of the vertices non-safely defended

by χVf .

Proof. Assume for a contradiction that there exists u ∈ V 2
f such that V 2

f \ {u}
is a dominating set of the vertices non-safely defended by χVf . We claim that
the legion function fu defined as:

fu(x) =

{
1 if x = u
f(v) otherwise

is a wrd-function. To see this, observe that since V 2
f \ {u} is a dominating set

of the vertices non-safely defended by χVf , any vertex of NV \Vf
(u) is safely

defended by fu. It follows that fu is a wrd-function with cost(fu) < cost(f), a
contradiction. 	

Now, since f is a wrd-function of minimum cost, it follows from Claims 1
and 2 that V 2

f is a minimum dominating set of the vertices non-safely defended
by χVf . This completes the proof of Lemma 1. 
�



86 M. Chapelle et al.

We conclude this section by showing that, given a dominating set V ′ of a
graph G = (V,E), a wrd-function can be obtained by computing a dominating
set of the set D of all vertices non-safely defended by χV ′

.

Lemma 2. Let V ′ ⊆ V be a dominating set of a graph G = (V,E), and let S be
a dominating set of all vertices D non-safely defended by χV ′

. Then the function
f : V → {0, 1, 2} defined by

f(x) =

⎧
⎨

⎩

2 if x ∈ (V ′ ∩ S)
1 if x ∈ (V ′ ∪ S) \ (V ′ ∩ S)
0 otherwise

is a wrd-function.

Proof. Let S be a dominating set of D in G. Observe first that since Vf = V ′∪S,
and since V ′ is a dominating set, then so is Vf . We now show that the set D

′

of vertices non-safely defended by f is empty. Observe that since V ′ ⊆ Vf , we
have D

′ ⊆ D\S. Assume for a contradiction that D
′ �= ∅, and let x ∈ D

′
. We

distinguish two cases:

(i) If N(x) ∩ (V ′ ∩ S) �= ∅ then x has a neighbor of f -value 2, and thus x is
safely-defended, contradicting the choice of x.

(ii) Otherwise, by definition of V ′ and S, x has a neighbor y in S which does
not belong to V ′. We claim that the legion function fy→x cannot contain
any undefended vertex. Indeed, since y does not belong to the original
dominating set V ′, all vertices are defended by V ′ in fy→x (recall that any
vertex v of V ′ satisfies f(v) � 1).

These two cases imply that D
′
is empty, and thus f is a wrd-function. 
�

4 Exact Algorithms for Weak Roman Domination

We now describe our exact algorithms solving the Weak Roman Domination
problem. Observe that this problem can trivially be solved in O∗(3n) time by
enumerating all three-partitions of the set of vertices, which constitutes the best
known bound for the problem so far. We first present an O∗(2n) time and space
algorithm, then an O∗(2.2279n) time algorithm that only uses polynomial space.

4.1 Using Exponential Space

We first show that a wrd-function of minimum cost can be computed in O∗(2n)
time and space. Thanks to Lemma 1, a wrd-function f of minimum cost can be
obtained by first guessing its underlying set Vf and then computing a minimum
dominating set V 2

f ⊆ Vf of the vertices non-safely defended by χVf . Finding such
a set V 2

f is done by a preprocessing step which involves a dynamic programming
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Algorithm 1. The preprocessing step algorithm.

for k = 0 to n do
DS[∅, k] = ∅;

foreach X ⊆ V s.t. |X| ≥ 1 do
DS[X, 0] = {∞};
// The set {∞} is a sentinel used to denote the non existence of

a set Yk which dominates a nonempty set X; its cardinality is
set to ∞.

foreach X ⊆ V by increasing order of cardinality do
for k = 1 to n do

DS[X, k] =

{
a set of minimum cardinality chosen amongst
DS[X, k − 1] and {vk} ∪ DS[X \N [vk ], k − 1].

}

inspired by the one given in [16]. This preprocessing step results in an exponential
space complexity, which will be reduced to polynomial space in Section 4.2.
However, instead of guaranteeing that indeed V 2

f ⊆ Vf , the preprocessing step
computes a minimum dominating set V 2

f of the vertices non-safely defended
by χVf without constraint, i.e. V 2

f ⊆ V is allowed. We show in Lemma 3 the
correctness of this approach. Let us first describe the preprocessing step; its
correctness is shown after the description of the main algorithm.

Let G = (V,E) be a graph of the Weak Roman Domination problem,
and let V = {v1, v2, . . . , vn}. For each subset X ⊆ V we start by computing a
minimum dominating set Y of X in G, i.e. a subset Y ⊆ V such that X ⊆ N [Y ].
This is done by dynamic programming: for each subset X and each integer k
(1 � k � n), DS[X, k] denotes a minimum dominating set Yk of X such that
Yk ⊆ {v1, v2, . . . , vk}, if one exists. Algorithm 1 computes a corresponding table
DS by dynamic programming.

Main Algorithm. The main steps of our exact algorithm are depicted in Al-
gorithm 2. For each subset V ′ ⊆ V , we first verify whether χV ′

is (already) a
wrd-function, i.e., whether the set D of vertices non-safely defended by χV ′

is
empty. Otherwise, we need to compute the set V 2

f . The preprocessing step then
ensures that S = DS[D,n] is a minimum dominating set of D. If S is a subset
of V ′, then a wrd-function f can be computed by Lemma 2; otherwise Lemma 3
ensures that there exists some other underlying set V ′′, being better than V ′.

Lemma 3. Let V ′
1 ⊆ V be a dominating set of a graph G = (V,E) and let S1

be a minimum dominating set of the set D1 of all vertices non-safely defended
by χV ′

1 . Suppose that S1 � V ′
1 . Then there exists a superset V ′

2 ⊃ V ′
1 such that

for any minimum dominating set S2 of the set D2 of all vertices non-safely
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Algorithm 2. An O∗(2n) exponential space algorithm for Weak Roman
Domination.

foreach dominating set V ′ ⊆ V do
foreach v ∈ V do

Let f(v) = 1 if v ∈ V ′, and f(v) = 0 otherwise;

Compute the set D of vertices non-safely defended by χV ′
;

if D 	= ∅ then
S = DS[D,n];
if S ⊆ V ′ then

foreach v ∈ S do
Let f(v) = f(v) + 1;

return the computed wrd-function f of minimum cost;

defended by χV ′
2 , it holds that cost(f2) ≤ cost(f1), where fi (i ∈ {1, 2}) is the

legion function defined as:

fi(x) =

⎧
⎨

⎩

2 if x ∈ (V ′
i ∩ Si)

1 if x ∈ (V ′
i ∪ Si) \ (V ′

i ∩ Si)
0 otherwise

Proof. Assume that there exist three sets V ′
1 , S1 and D1 as stated in the lemma

and assume that S1 � V ′
1 . Let V ′

2 = V ′
1 ∪ S1. Since S1 � V ′

1 , it follows that
V ′
2 ⊃ V ′

1 . Let D2 be the set of vertices non-safely defended by χV ′
2 . Observe that

D2 ⊆ D1, since V ′
1 ⊂ V ′

2 . By Lemma 2, we know that the legion function f1
is in fact a wrd-function. Hence, by Lemma 1, we also have that (V ′

1 ∩ S1) is a
dominating set of D1, and thus of D2.

Denote by S2 a minimum dominating set of D2. Then |S2| � |V ′
1 ∩ S1|. We

now consider the legion function f2 as defined in the lemma. By Lemma 2,
we know that f2 is a wrd-function. Finally, since |V ′

2 | = |V ′
1 | + |S1 \ V ′

1 | and
|S2| ≤ |V ′

1 ∩ S1|, we conclude the proof by the relation cost(f1) = |V ′
1 | + |S1| =

|V ′
1 |+ |S1 \ V ′

1 |+ |S1 ∩ V ′
1 | ≥ |V ′

2 |+ |S2| = cost(f2). 
�

Correctness. The correctness of the preprocessing step is based on arguments
of [16]. If the set X is empty then the initialization DS[∅, k] = ∅, for any 0 ≤
k ≤ n, is clearly correct. If the set X is non empty but no vertex can be used
to dominate X (i.e. k = 0), then DS[X, 0] is set to {∞} as a sentinel, meaning
that there is no set Y (with Y = ∅) that can dominate X . The cardinality of
{∞} is set to ∞. Finally the computation of DS[X, k] is done via an induction
formula: either vk /∈ DS[X, k] or vk ∈ DS[X, k] and in that latter case, N(vk) is
dominated by vk. As the sets X are considered by increasing order as well as the
values of k, we note that the values DS[X, k − 1] and DS[X \N [vk], k − 1] have
already been computed when the computation of DS[X, k] is done.
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Now we show the correctness of Algorithm 2. It enumerates all possible sets V ′

as being possible candidates for the underlying set Vf . In particular, we discard
any subset V ′ that does not induce a dominating set. By Lemma 1, it is sufficient
to compute a dominating set S ⊆ V ′ of the set of vertices D being non-safely
defended by χV ′

. Lemma 3 shows that if S is not included in V ′, then there
exists a proper superset of V ′ which gives a wrd-function of cost being no more
than the one obtained from V ′ and S, by Lemma 2. Let V ′

0 = V ′ and S0 = S.
As the graph is finite and the superset given by Lemma 3 is proper, there exists
a finite � ≤ n and a sequence V ′

0 ⊂ V ′
1 ⊂ ... ⊂ V ′

� ⊆ V such that Si � V ′
i , for all

0 ≤ i < �, and S� ⊆ V ′
� . Since the algorithm enumerates all supersets of V ′, it

follows that the set V ′
� will be considered at some iteration of the for-loop. This

shows the correctness of Algorithm 2.

Complexity. The preprocessing step needs to consider each subset X of V and
each value of k, 1 ≤ k ≤ n. For each such couple (X, k), it retrieves the values
of DS[X, k − 1] and DS[X \ N [vk], k − 1] previously computed, and stores the
new value in DS. Thus the preprocessing step requires O∗(2n) time and space.
The main part of the algorithm considers each (dominating set) V ′ ⊆ V , and
computes in polynomial-time the set D of vertices non-safely defended by χV ′

.
A dominating set S of D is then retrieved in the already computed table DS in
polynomial-time.

Theorem 3. Weak Roman Domination can be solved in O∗(2n) time and
space.

4.2 Using Polynomial Space

In order to obtain an exact exponential algorithm using only polynomial space,
we need to avoid any exponential space consuming preprocessing step such as the
one in the previous section. For this purpose, we use instead an exact exponential
algorithm for Red-Blue Dominating Set using polynomial space to decide
which vertices will be valued 2 to dominate the non-safely defended vertices.

Red-Blue Dominating Set:
Input: A bipartite graph G = (R ∪B,E).
Output: A subset S ⊆ R of minimum size dominating B.

Theorem 4 ([22]). The Red-Blue Dominating Set problem can be solved
in O∗(1.2279|R|+|B|) time and polynomial space.

Algorithm. We consider the algorithm depicted in Algorithm 3, which might
be seen as some modification of the previous Algorithm 2.

Observe that before computing a minimum red-blue dominating set on the
bipartite graph (C∪D,E), we may modify the sets C and D as follows: for every
vertex v ∈ C, if v has at least two weakly non-safely defended neighbors, then
we set f(v) = 2, and remove v from C and ND(v) from D.
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Algorithm 3. An O∗(2.2279n) poly-space algorithm for the Weak Ro-
man Domination problem.

foreach dominating set V ′ ⊆ V do
foreach v ∈ V do

Let f(v) = 1 if v ∈ V ′, and f(v) = 0 otherwise;

Compute the set D of vertices non-safely defended by χV ′
;

if D 	= ∅ then
Compute the set C ⊆ V ′ of secured vertices which have at least one
neighbor in D;
/* Cleaning step */
foreach v ∈ C with at least two weakly non-safely defended neighbors in
D do

Set f(v) = 2;
Remove ND(v) from D;
Remove v from C;

Let I = (C ∪D,E) be an instance of Red-Blue Dominating Set;
if I admits a minimum red-blue dominating set S ⊆ C then

Set f(v) = 2 for every v ∈ S;

else
The current function f cannot yield a wrd-function;

return the computed wrd-function f of minimum cost;

Proposition 1. The cleaning step on C and D does not modify a solution for
Red-Blue Dominating Set on instance I = (C ∪D,E).

Proof. Let v ∈ C be a secured vertex with at least two weakly non-safely de-
fended neighbors, say w1 and w2. Since w1 and w2 are weakly defended, their
only secured neighbor is v ∈ V ′; since they are non-safely defended, they need
to be dominated by V 2

f in order for f to be a wrd-function (Lemma 1). Thus
we must set f(v) = 2. It follows that any minimum red-blue dominating set on
instance I = (C ∪ D,E) must put v ∈ C into the red-blue dominating set in
order to dominate all weakly non-safely defended neighbors of v in D.

Now, observe that since all the neighbors of v are safely defended (because
dominated by V 2

f ), they can safely be removed from D. Since v has no non-safely
defended neighbor left, it can be removed from C. 
�

Correctness. The correctness of the algorithm follows from Lemma 1 and the
proof of correctness of Algorithm 2. The main difference lies in the computation
of the dominating set of the vertices non-safely defended by χV ′

. Indeed, in that
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case, we use Theorem 4 to find the vertices of V ′ that must have value 2 in order
to dominate the vertices non-safely defended by χV ′

. The correctness of this step
follows from Lemma 1 and Proposition 1.

Complexity. Let us now give the time and space complexities of Algorithm 3.
It is easy to see that for every subset V ′ ⊆ V , the initialisation of f(x) for every
x ∈ V as well as the computation of the set D can be done in polynomial time
and space, and that the cleaning step is also polynomial.

Regarding the legion function f being constructed, for any V ′ ⊆ V , our algo-
rithm computes and reduces the set D of vertices non-safely defended by χV ′

,
and the set C of secured vertices which have at least one neighbor in D. Those
two sets are considered as an instance of Red-Blue Dominating Set to be
solved in O∗(1.2279|D|+|C|) time and polynomial space using an algorithm from
van Rooij [22]. To conclude our analysis, we need the following result.

Proposition 2. For any V ′ ⊆ V , |D|+ |C| ≤ |V | − |V ′|.

Proof. For every vertex v ∈ V ′, one of the following statements holds:

(i) v has no neighbor in D, that is no neighbor non-safely defended by χV ′
;

(ii) there exists at least one vertex w ∈ V \ V ′ which is weakly defended by v.

First notice that (i) and (ii) are the only two possible cases. Indeed, if there
exists v ∈ V ′ such that ND(v) �= ∅ but no vertex in V \ V ′ is weakly defended
by v, then the vertices in ND(v) are safely defended, which is a contradiction.

If the first statement holds, then v is not included in C. If the second
statement holds, then either w is safely defended, or w is non-safely defended.
If w is safely defended (that is no other neighbor of v is weakly defended by v),
then w is not included in D. If w is non-safely defended, then v has at least two
weakly non-safely defended neighbors. Indeed, since w is weakly defended by v
(as the second statement holds), v is the only neighbor of w in V ′. Hence, there
exists a nonempty set Dv,w = ND(v) \ N(w) such that w is weakly defended
due to each vertex in Dv,w. Now, since w is non-safely defended by v, there
must exist a vertex w′ ∈ Dv,w which is also weakly defended due to w. Then
the cleaning step on D and C applies, which implies that v is removed from C
and all neighbors of v (including w) are removed from D. Altogether, for every
vertex v ∈ V ′, at least one vertex from V is not included in C ∪D, and hence
at least |V ′| vertices from V are not included in D ∪ C. 	

The overall algorithm iteratively runs all the previously described computa-
tions for every subset V ′ ⊆ V , and stores the minimum wrd-function considered
so far using polynomial space. We claim that its worst-case time complexity
corresponds to the following:

O∗
( n∑

i=1

(
n

i

)

· T (n− i)
)
= O∗(

n∑

i=1

(
n

i

)

· 1.2279n−i
)
= O∗(2.2279n

)
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where T (p) stands for the time complexity needed to compute a minimum
red-blue dominating set in a graph with p vertices (here we use the one of [22]).
Indeed, for any subset V ′ ⊆ V containing i vertices, we apply Theorem 4 on the
bipartite graph induced by C and D, which contain less than |V | − |V ′| = n− i
vertices (Proposition 2).

Theorem 5. Weak Roman Domination can be solved in O∗(2.2279n) time
and polynomial space.

References

1. Chambers, E.W., Kinnersley, B., Prince, N., West, D.B.: Extremal problems for
roman domination. SIAM J. Discret. Math. 23(3), 1575–1586 (2009)

2. Chellali, M., Rad, N.J., Volkmann, L.: Some results on roman domination edge
critical graphs. AKCE Int. J. Graphs Comb. 9(2), 195–203 (2012)

3. Cockayne, E.J., Favaron, O., Mynhardt, C.M.: Secure domination, weak roman
domination and forbidden subgraphs. Bull. Inst. Combin. Appl. 39, 87–100 (2003)

4. Cockayne, E.J., Grobler, P.J.P., Gründlingh, W.R., Munganga, J., van Vuuren,
J.H.: Protection of a graph. Util. Math. 67, 19–32 (2005)

5. Cockayne, E.J., Dreyer Jr., P.A., Hedetniemi, S.M., Hedetniemi, S.T.: Roman dom-
ination in graphs. Discret. Math. 278(1-3), 11–22 (2004)

6. Favaron, O., Karami, K., Khoeilar, R., Sheikholeslami, S.M.: On the roman domi-
nation number of a graph. Discret. Math. 309, 3447–3451 (2009)

7. Fomin, F.V., Grandoni, F., Kratsch, D.: A measure & conquer approach for the
analysis of exact algorithms. J. ACM 56(5) (2009)

8. Garey, M.R., Johnson, D.S.: Computers and intractability. Freeman (1979)
9. Goddard, W., Hedetniemi, S.M., Hedetniemi, S.T.: Eternal security in graphs. J.

Combin. Math. Combin. Comput. 52, 160–180 (2005)
10. Goldwasser, J.L., Klostermeyer, W.F.: Tight bounds for eternal dominating sets in

graphs. Discret. Math. 308, 2589–2593 (2008)
11. Grobler, P.J.P., Mynhardt, C.M.: Secure domination critical graphs. Discret.

Math. 309, 5820–5827 (2009)
12. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Domination in graphs: advanced

topics. Pure and Applied Mathematics, vol. 209. Marcel Dekker Inc. (1998)
13. Henning, M.A., Hedetniemi, S.T.: Defending the Roman Empire: a new strategy.

Discret. Math. 266(1-3), 239–251 (2003)
14. Iwata, Y.: A faster algorithm for dominating set analyzed by the potential method.

In: Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp. 41–54.
Springer, Heidelberg (2012)

15. Liedloff, M.: Algorithmes exacts et exponentiels pour les problèmes NP-difficiles:
domination, variantes et généralisations. Phd thesis, Laboratoire d’Informatique
Théorique et Appliquée, Université Paul Verlaine, Metz (2007)

16. Liedloff, M.: Finding a dominating set on bipartite graphs. Inf. Proc. Lett. 107(5),
154–157 (2008)

17. Liedloff, M., Kloks, T., Liu, J., Peng, S.-L.: Efficient algorithms for roman domi-
nation on some classes of graphs. Discret. App. Math. 156, 3400–3415 (2008)

18. Liu, C.-H., Chang, G.J.: Roman domination on 2-connected graphs. SIAM J. Dis-
cret. Math. 26(1), 193–205 (2012)



Exact Algorithms for Weak Roman Domination 93

19. Malini Mai, T.N.M., Roushini Leely Pushpam, P.: Weak roman domination in
graphs. Discussiones Mathematicae Graph Theory 31(1), 161–170 (2011)

20. ReVelle, C.S., Rosing, K.E.: Defendens Imperium Romanum: a classical problem
in military strategy. Math. Assoc. of America 107(7), 585–594 (2000)

21. Stewart, I.: Defend the Roman Empire!. Scientific American 281(6), 136–139 (1999)
22. van Rooij, J.M.M.: Exact exponential-time algorithms for domination problems in

graphs. Phd thesis, Utrecht University, Netherlands (2011)
23. van Rooij, J.M.M., Bodlaender, H.L.: Exact algorithms for dominating set. Discret.

App. Math. 159(17), 2147–2164 (2011)
24. Xing, H.-M., Chen, X., Chen, X.-G.: A note on roman domination in graphs. Dis-

cret. Math. 306, 3338–3340 (2006)


	Exact Algorithms for Weak Roman Domination
	1 Introduction
	2 Preliminaries and Notations
	3 Structure of a Weak Roman Domination Function
	4 Exact Algorithms for Weak Roman Domination
	4.1 Using Exponential Space
	4.2 Using Polynomial Space

	References




