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Abstract. The Knödel graph WΔ,n is a regular graph of even order and
degree Δ where 2 ≤ Δ ≤ �log2 n�. Despite being a highly symmetric and
widely studied graph, the diameter of WΔ,n is known only for n = 2Δ.
In this paper we present a tight upper bound on the diameter of the
Knödel graph for general case. We show that the presented bound differs
from the diameter by at most 2 when Δ < α �log2 n� for some 0 < α < 1
where α → 1 when n → ∞. The proof is constructive and provides a
near optimal diametral path for the Knödel graph WΔ,n.
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broadcast graph.

1 Introduction

The Knödel graph WΔ,n is a regular graph of even order and degree Δ where
2 ≤ Δ ≤ �logn� (all logarithms in this paper are base 2, unless otherwise
specified). It was introduced by Knödel for Δ = �logn� and was used in an
optimal gossiping algorithm [17]. For smaller Δ, the Knödel graph is defined
in [8].

The Knödel graph was widely studied as an interconnection network topology
and proven to be having good properties in terms of broadcasting and gossiping.
The Knödel graph WΔ,2Δ is one of the three non-isomorphic infinite graph fam-
ilies known to be minimum broadcast and gossip graphs (graphs that have the
smallest possible broadcast and gossip times and the minimum possible num-
ber of edges). The other two families are the well known hypercube [5] and the
recursive circulant graph [18].

The Knödel graph WΔ−1,2Δ−2 is a minimum broadcast and gossip graph also
for n = 2Δ − 2(Δ ≥ 2) [16],[3]. One of the advantages of the Knödel graph,
as a network topology, is that it achieves the smallest diameter among known
minimum broadcast and gossip graphs for n = 2Δ(Δ ≥ 1). All the minimum
broadcast graph families — k-dimensional hypercube, C(4, 2k)-recursive circu-
lant graph and Wk,2k Knödel graph — have the same degree k, but have diam-

eters equal to k,
⌈
3k−1

4

⌉
and

⌈
k+2
2

⌉
respectively. A detailed description of some

graph theoretic and communication properties of these three graph families and
their comparison can be found in [6].
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As shown in [1], the edges of the Knödel graph can be grouped into dimensions
which are similar to hypercube dimensions. This allows to use these dimensions
in a similar manner as in hypercube for broadcasting and gossiping. Unlike the
hypercube, which is defined only for n = 2k, the Knödel graph is defined for any
even number of vertices. Properties such as small diameter, vertex transitivity
as a Cayley graph [15], high vertex and edge connectivity, dimensionality, em-
bedding properties [6] make the Knödel graph a good candidate as a network
topology and good architecture for parallel computing. W�logn�,n guarantees the
minimum time for broadcasting and gossiping. So, it is a broadcast and gos-
sip graph [1],[7],[8]. Moreover, W�logn�,n is used to construct sparse broadcast
graphs of a bigger size by interconnecting several smaller copies or by adding
and deleting vertices [13],[10],[9],[2],[4],[11],[16],[12].

Multiple definitions are known for the Knödel graph. We use the following def-
inition from [8], which explicitly presents the Knödel graph as a bipartite graph.

Definition 1. The Knödel graph on an even number of vertices n and of degree
Δ were 2 ≤ Δ ≤ �logn� is defined as WΔ,n = (V,E) where

V = {(i, j) | i = 1, 2 j = 0, ..., n/2− 1},
E = {((1, j), (2, (j + 2k − 1) mod (n/2))) |

j = 1, ..., n/2 k = 0, 1, ..., Δ− 1}.
We say that an edge ((1, j′), (2, j′′)) ∈ E is r-dimensional if j′ = (j′′ + 2r −
1) mod (n/2) where r = 0, 1, ..., Δ− 1. In this case, (1, j′) and (2, j′′) are called
r-dimensional neighbors.

Fig. 1 illustrates W3,14 and its 0, 1 and 2-dimensional edges. We can simplify
the illustration of the Knödel graph by minimizing the number of intersecting
edges. For this, we repeat few vertices and present the Knödel graph from Fig.
1 as illustrated in Fig. 2.

Despite being a highly symmetric and widely studied graph, the diameter of
the Knödel graph D(WΔ,n) is known only for n = 2Δ. In [7], it was proved
that D(WΔ,2Δ ) =

⌈
Δ+2
2

⌉
. The nontrivial proof of this result is algebraic and

the actual diametral path is not presented. The problem of finding the shortest
path between any pair of vertices in the Knödel graph WΔ,2Δ is studied in [14],
where an 2-approximation algorithm with the logarithmic time complexity is
presented.
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Fig. 1. The W3,14 graph and its 0, 1 and 2-dimensional edges
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Fig. 2. The W3,14 graph

Most properties of the Knödel graph are known only forWΔ,2Δ andWΔ−1,2Δ−2.
In this paper we present a tight upper bound on the diameter of the Knödel graph
D(WΔ,n) for all even n and 2 ≤ Δ ≤ �logn�. We show that the presented bound
may differ from the actual diameter by at most 2 for almost all Δ. Our proof is
constructive and provides a near optimal diametral path in WΔ,n.

Usually the partition in which a vertex occurs is not relevant, so we just use
x to refer to either vertex (1, x) or vertex (2, x). The distance between vertices u
and v is denoted by dist(u, v). Using these notations and the vertex transitivity
of the Knödel graph, we can state that D(WΔ,n) = max{dist(0, x)|0 ≤ x <
n/2}. In this paper, we actually give a tight upper bound on dist(0, x) for all
0 ≤ x < n/2.

2 Paths in the Knödel Graph

In this section we construct three different paths between two vertices in the
Knödel graph WΔ,n. These paths have certain properties and are used in the
next section to prove the upper bound on the diameter of WΔ,n.

Before presenting our formal statements, let us get better understanding of the
Knödel graph and the set of vertices which can be reached from vertex 0 using
only 0 and (Δ− 1)-dimensional edges. Note that we can “move” in two different
directions from vertex 0 = (1, 0) or 0 = (2, 0) of WΔ,n. Fig. 3 illustrates the
discussed paths. We can choose the path (1, 0) → (2, 2Δ−1−1) → (1, 2Δ−1−1) →
(2, 2(2Δ−1−1)) → ... or we can move in the opposite direction following the path
(1, 0) → (2, 0) → (1, n/2 − (2Δ−1 − 1)) → (2, n/2 − (2Δ−1 − 1)) → ... . Every
second edge in these paths is 0-dimensional. The (Δ− 1)-dimensional edges are
used to move “forward” by 2Δ−1 − 1 vertices, while the 0-dimensional edges are
only to change the partition. These two paths will eventually intersect or overlap
somewhere near vertex �n/4	. Excluding vertex 0, we have only n/2− 1 vertices

in each partition. The (Δ− 1)-dimensional edges will split WΔ,n into
⌈

n/2−1
2Δ−1−1

⌉

segments, each having length 2Δ−1 − 1, except the one containing vertex �n/4	.
We can perform only

⌊
1
2

⌈
n/2−1
2Δ−1−1

⌉⌋
=

⌊
1
2

⌈
n−2
2Δ−2

⌉⌋
(Δ−1)-dimensional passes in

each of these two paths before they intersect. Therefore, we will never use more

than
⌊
1
2

⌈
n−2
2Δ−2

⌉⌋
(Δ− 1)-dimensional passes to reach a vertex in WΔ,n.
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Fig. 3. Schematic illustration of the paths. c =
⌊

1
2

⌈
n−2
2Δ−2

⌉⌋

Our first lemma constructs a path between vertex 0 and some vertex y which
is relatively close to our destination vertex x. Vertex y will have a special form
making such construction straightforward. Recall that x refers to (1, x) or (2, x),
and y refers to (1, y) or (2, y).

Lemma 2. For any vertex x of WΔ,n, by using at most 2c + 1 edges where

c =
⌊
1
2

⌈
n−2
2Δ−2

⌉⌋
, we can construct a path from vertex 0 to reach some vertex y

such that |x− y| ≤ 2Δ−1 − 1.

Proof. Our goal is to reach some vertex y of form y = c(2Δ−1 − 1) or y =
n/2 − c(2Δ−1 − 1) such that |x − y| ≤ 2Δ−1 − 1. We use only 0 and (Δ − 1)-
dimensional edges and one of two paths described above and illustrated in Fig.
3. We consider two cases. In the first case we cover the values of x that can be
reached by moving in “clockwise” direction from vertex 0. For the remaining
values of x, we use the path from Fig. 3 moving to the opposite direction.

Case 1: x < (c + 1)(2Δ−1 − 1). By alternating between 0 and (Δ − 1)-
dimensional edges, we can reach a vertex y of form y = c′(2Δ−1 − 1) and closest
to x from vertex 0 = (2, 0). We will need at most 2c′+1 edges for that. The path
to reach y = (1, y) will be (2, 0) → (1, 0) → (2, 2Δ−1 − 1) → (1, 2Δ−1 − 1) →
(2, 2(2Δ−1 − 1)) → ... → (2, c′(2Δ−1 − 1)) → (1, c′(2Δ−1 − 1)) = y. It is clear

that c′ ≤ c =
⌊
1
2

⌈
n−2
2Δ−2

⌉⌋
, hence the bound on the length of constructed path

follows. From the form of y follows that |x − y| ≤ 2Δ−1 − 1. Fig. 4 shows the
described path from (2, 0) to y = 6 = (1, 6).

Case 2: x > n/2− c(2Δ−1 − 1). This case is similar to case 1 except in order
to construct shorter path to y of form y = n/2 − c′(2Δ−1 − 1), we are moving
from vertex 0 = (1, 0) in anticlockwise direction. The path for y = (2, y) will



210 H. Grigoryan and H.A. Harutyunyan

(1,4)

(2,4)

(1,5)

(2,5)

(1,6)

(2,6)

(1,1)

(2,1)

(1,2)

(2,2)

(1,3)

(2,3)

(1,0)

(2,0)

(2,6)

(1,11)

(2,11)

(1,12)

(2,12)

(1,13)

(2,13)

(1,8)

(2,8)

(1,9)

(2,9)

(1,10)

(2,10)

(1,7)

(2,7) (2,1) (2,2)(2,0)

Fig. 4. A path between (2, 0) and (1, 6) vertices in W3,28 graph

be (1, 0) → (2, 0) → (1, n/2 − (2Δ−1 − 1) → (2, n/2 − (2Δ−1 − 1)) → ... →
(1, n/2− (c′ − 1)(2Δ−1 − 1)) → (2, n/2− (c′ − 1)(2Δ−1 − 1)) = y and will have
length at most 2c+ 1. Obviously we will have |x− y| ≤ 2Δ−1 − 1 as well. 
�

The following lemma constructs a path between two vertices of WΔ,n that are
relatively close to each other. More precisely, when the difference of their labels
is upper bounded by 2Δ−1−1. We construct a path between two vertices x1 and
x2 which is not necessarily a shortest path between them. To reach the given
vertex with label x2 > x1 from vertex labeled x1, we first use a large dimensional
edge to “jump over” vertex x2 and reach some vertex y ≥ x2, such that y − x2

is the smallest. After that, we start moving from y in backward direction till
we reach x2 from right. This backward steps are performed in a greedy way. At
each step, we are using the largest dimensional edge to reach some new vertex
y′ such that y′ − x2 is minimal and y′ is on the right side of x2 i.e. y′ ≥ x2.

Lemma 3 (Existence of a special path). For any two vertices of WΔ,n

labeled x1 and x2, if |x2 − x1| ≤ 2Δ−1 − 1, then there exists a special path
between x1 and x2 of length at most 2Δ − 3. This path contains one “direct”
d-dimensional edge where d ≤ Δ− 1, some 0-dimensional edges and some edges
having dimensions between 1 and d − 1 pointing in “backward” direction. The
number of these backward edges is at most Δ− 2.

Proof. Without loss of generality, we assume that x1 = 0 and x2 > x1. In order
to construct the described path, we use an edge to get from vertex 0 to some
vertex y closest to x2 such that y > x2 and y is directly connected to 0. This will
be our “direct” d-dimensional edge. After reaching vertex y, we start to move in
“backward” direction towards x2. Once started moving in backward direction,
the distance from y to x2 which is upper bounded by 2Δ−2, will be cut at least
by half with each backward edge. Therefore we need at most Δ − 2 backward
edges. Combined with the 0-dimensional edges between these backward edges,
this will give a path of length 2(Δ − 2). By adding the initial edge, we get the
2Δ− 3 upper bound on the length of the constructed path.

Fig. 5 shows the described path between vertices x1 = (1, 0) and x2 = (2, 5).
In the illustrated example y = 7, d = 4, the “direct” edge is ((1, 0), (2, 7)) and
the “backward” edges are ((2, 7), (1, 6)) and ((2, 6), (1, 5)).

The reason we chose this particular path between x1 to x2 is that the backward
passes can be performed in the path constructed by Lemma 2. This will be crucial
in the proof of the main theorem. 
�
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Fig. 5. A path between (1, 0) and (2, 5) vertices in a section of the Knödel graph of
degree 5

Our last lemma deals with the problem of finding the shortest path in a
particular section of the Knödel graph.

Lemma 4 (Shortest path approximation). For any two vertices of WΔ,n

labeled x1 and x2, if |x2 − x1| ≤ 2d − 1 for some d ≤ Δ − 1, then there exist a
path between x1 and x2 of length at most 3 �d/4	+ 4.

Proof. Without loss of generality, we assume that x1 = 0 and x2 > x1. Our goal
is to construct a short path from vertex 0 to vertex x2 = x ≤ 2d − 1. The proof
is based on a recursive construction of a path between vertices 0 and x having
length at most 3 �d/4	+ 4. The recursion will be on d.

The base case is when d ≤ 3. This case is illustrated in Fig. 6, from which we
observe that we can reach any vertex x where 0 ≤ x ≤ 2d − 1 = 7 with a path
of length at most 4.

For d > 3, using at most three edges, we can cut the distance between 0 and
x by a factor of 16. Fig. 7 presents a schematic illustration of this. We divide the
initial interval of length 2d − 1 into eight smaller intervals A1, A2, ..., A8, each
having length at most

⌈
(2d − 1)/8

⌉
, where Ai = [(i − 1)m, im), i = 1, ..., 8 and

m = 2d−3.
It is not difficult to see that all these intervals, except A6, have both their

end vertices reachable from 0 by using at most three edges. For A6, using at
most 3 edges we can reach its middle vertex 11m/2− 1 and the end vertex 6m.
The paths, which use at most 3 edges, are illustrated in Fig. 7. This means that
when x ∈ Ai for all 1 ≤ i ≤ 8, using at most three edges, we will be within
distance m/2 from x. After relabeling the vertices, we will get the same problem
of finding a path between vertices 0 and x, but the new x will be at least 16
times smaller.

It will take at most
⌈
log16 (2

d − 1)
⌉
recursive steps to reach the base case, and

we will use at most three edges in each step. By combining this with at most 4
edges used for the base case, we will get that dist(0, x) ≤ 3

⌈
log16 (2

d − 1)
⌉
+4 ≤

3 �d/4	+ 4. 
�
We note that each recursive step in Lemma 4 involves only constant number of
operations. Therefore the described path can be constructed by an algorithm of
complexity O(log n).

Lemma 4 can be used to construct a short path between any two vertices of
WΔ,n for the case when Δ = �logn�. The length of the constructed path will
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Fig. 6. Paths from vertex 0 to all other vertices x ≤ 7 in a section of the Knödel graph

Fig. 7. Illustration of the recursive step. m = 2d−3

be at most 3 �(Δ− 1)/4	+ 4. It follows that D(WΔ,n) ≤ 3 �(Δ− 1)/4	+ 4 for
Δ = �logn�.

3 Upper Bound on Diameter

In this section, using the lemmas from Section 2, we construct a path between
vertices 0 and x for any vertex x in WΔ,n. The maximum length of such a path
will be an upper bound on the diameter of WΔ,n.

Our first upper bound on D(WΔ,n) will trivially follow from Lemma 2 and
Lemma 4.

Theorem 5 (Trivial). D(WΔ,n) ≤ 2
⌊
1
2

⌈
n−2
2Δ−2

⌉⌋
+ 3 �(Δ− 1)/4	+ 5.

Proof. According to Lemma 2, for any vertex x in WΔ,n, we need at most

2
⌊
1
2

⌈
n−2
2Δ−2

⌉⌋
+ 1 edges to reach from vertex 0 to a vertex y of form y =

c(2Δ−1 − 1) or y = n/2−c(2Δ−1 − 1) within distance 2Δ−1−1 from x i.e. |x−y| ≤
2Δ−1 − 1. Now we can apply Lemma 4 and claim that dist(x, y) ≤ 3 �d/4	 + 4
where d ≤ Δ − 1. Thus, we have that dist(0, x) ≤ dist(0, y) + dist(y, x) ≤
2
⌊
1
2

⌈
n−2
2Δ−2

⌉⌋
+ 3 �(Δ− 1)/4	+ 5. 
�

Theorem 5 combines the paths described in Lemmas 2 and 4 in the most
trivial way. With the slight modification of the path described in Lemma 2 and
combining it with paths from Lemmas 3 and 4 we can significantly improve the
presented upper bound on D(WΔ,n).
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Theorem 6 (Main). Let a =
⌊
1
2

⌈
n−2
2Δ−2

⌉⌋
and b = Δ − 2 (Δ ≥ 3). If a ≥

b then D(WΔ,n) ≤ 2a + 3 = 2
⌊
1
2

⌈
n−2
2Δ−2

⌉⌋
+ 3, otherwise D(WΔ,n) ≤ 2a +

3 �(Δ− 2− a)/4	+ 7 ≤ 3
4Δ+ 5

4a+ 17
2 .

Proof. Case 1: a ≥ b. From Lemma 2, we recall that a is the maximum number of
(Δ−1)-dimensional edges necessary to reach a vertex of form y = c(2Δ−1 − 1) or
y = n/2− c(2Δ−1 − 1) closest to our destination vertex x. Recall that b = Δ− 2
is the maximum number of “backward” edges used in the path from Lemma 3.
We observe that when a ≥ b, then all the “backward” passes can be performed
by modifying the path described in Lemma 2 used to reach vertex y. We just
need to replace some of the 0-dimensional edges from Lemma 2 used only for
switching the graph partition with the corresponding “backward” passes from
Lemma 3. As a result of this modification, instead of reaching y, with 2a + 1
edges we will reach some vertex y′ precisely at distance 2Δ− 1 from x. By using
one more (Δ−1)-dimensional and one more 0-dimensional edge, we can perform
the final pass and reach x with a path of length at most 2a+ 3.

Case 2: a < b. In this case we will be able to perform only some of the reverse
passes from Lemma 3 by modifying the path from Lemma 2. More precisely,
out of b = Δ − 2 reverse passes, we will be able to perform only a of them
in the modified path. We note that each reverse pass in Lemma 3 cuts the
distance to x by half. This means that performing b − a reverse passes in the
path constructed by Lemma 2 of length 2a+3, we will be within distance 2Δ−2−a

from x compared to 2Δ−2 without performing these reverse passes. Now we can
use Lemma 4 with d = Δ − 2 − a and claim that we will be able to reach
x by using at most 3 �(Δ− 2− a)/4	 + 4 additional edges. Thus, D(WΔ,n) ≤
(2a+ 3) + (3 �(Δ− 2− a)/4	+ 4) ≤ 3

4Δ+ 5
4a+ 17

2 . 
�

4 Tightness of the Upper Bound

In this section we analyze the tightens of the upper bound on the diameter of the
Knödel graph from Theorem 6. To do that we will first present a lower bound
on the diameter of the Knödel graph.

Theorem 7 (Lower bound). D(WΔ,n) ≥ 2
⌊
1
2

⌈
n−2
2Δ−2

⌉⌋
+ 1.

Proof. First, note that in order to reach vertex x = (1, c(2Δ−1 − 1)) where

c =
⌊
1
2

⌈
n−2
2Δ−2

⌉⌋
from vertex (2, 0), we cannot construct a path shorter than the

one described in Lemma 2 and illustrated in Fig. 3. This path contains exactly
c+ 1 0-dimensional edges used for changing the graph partition and c (Δ− 1)-
dimensional edges used for moving towards x in the fastest possible way. Thus,

the lower bound D(WΔ,n) ≥ 2c+ 1 = 2
⌊
1
2

⌈
n−2
2Δ−2

⌉⌋
+ 1 follows. 
�

The following theorem shows that the presented upper bound is tight, in
particular it is within additive factor 2, for almost all possible values of Δ.
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Theorem 8 (Tightness). For any 0 < α < 1, there exists some N(α) such
that for all n ≥ N(α) and Δ < α �logn�, the D(WΔ,n) ≤ 2a + 3 upper bound

from Theorem 6 (a =
⌊
1
2

⌈
n−2
2Δ−2

⌉⌋
) differs from actual diameter by at most 2,

i.e. 2
⌊
1
2

⌈
n−2
2Δ−2

⌉⌋
+ 1 ≤ D(WΔ,n) ≤ 2

⌊
1
2

⌈
n−2
2Δ−2

⌉⌋
+ 3.

Proof. From Theorem 7 it follows that the upper bound from Theorem 6 for the
case when a ≥ b may differ from actual diameter by at most 2. Now, we find a

sufficient condition for a ≥ b to be true. By observing that a =
⌊
1
2

⌈
n−2
2Δ−2

⌉⌋
≥

n/2
2Δ −1 and b = Δ−2 ≤ Δ−1 we get that if n/2

2Δ −1 ≥ Δ−1 then a ≥ b equality
is true. After further simplification, we get the 2Δ2Δ ≤ n sufficient condition
for a ≥ b to be true.

It follows that for given n andΔ, where 2 ≤ Δ ≤ �logn� such thatΔ2Δ+1 ≤ n,
we have 2a+1 ≤ D(WΔ,n) ≤ 2a+3. Finally, we observe that for any 0 < α < 1
and Δ < α �logn� the Δ2Δ+1 ≤ n inequality is always true for sufficiently large
n. 
�

Note that Theorem 6, in almost all cases, actually gives an approximation
algorithm to find the diameter of WΔ,n with an additive factor 2.

5 Summary

In this paper we obtained tight lower and upper bounds on the diameter of the
Knödel graph WΔ,n for all even n and 2 ≤ Δ ≤ �logn�. We showed that the
presented bound differs from actual diameter by at most 2 for almost all Δ. Our
proofs are constructive and provide a near optimal diametral path in WΔ,n.

Recall that the only known results, regarding the diameter of the Knödel
graph, were the exact value D(WΔ,2Δ) =

⌈
Δ+2
2

⌉
[7] and an 2-approximation al-

gorithm with logarithmic time complexity for finding shortest path between any
pair of vertices in WΔ,2Δ [14]. Lemma 4 provides D(WΔ,2Δ) ≤ 3 �(Δ− 1)/4	+4.
Comparing this with the exact expression above, we see that Lemma 4 provides
an 3/2-approximation algorithm for the problem of finding a diametral path.
This is much better than the 2-approximation algorithm presented in [14]. How-
ever, we note that [14] addresses more general problem of finding a shortest
path in the Knödel graph and the 2-approximation ratio is for the shortest path
between any two vertices, while our result is only for the diametral path.

Our future research will be focused on routing and broadcasting problems in
the Knödel graph WΔ,n for all 2 ≤ Δ ≤ �logn�.
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ics 137(2), 173–195 (2004)
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