
Dynamising Interval Scheduling:

The Monotonic Case

Alexander Gavruskin1, Bakhadyr Khoussainov1,
Mikhail Kokho1, and Jiamou Liu2

1 Department of Computer Science, University of Auckland, New Zealand
2 School of Computing and Mathematical Sciences,
Auckland University of Technology, New Zealand

{a.gavruskin,m.kokho}@auckland.ac.nz, bmk@cs.auckland.ac.nz,

jiamou.liu@aut.ac.nz

Abstract. We investigate dynamic algorithms for the interval schedul-
ing problem. We focus on the case when the set of intervals is mono-
tonic. This is when no interval properly contains another interval. We
provide two data structures for representing the intervals that allow effi-
cient insertion, removal and various query operations. The first dynamic
algorithm, based on the data structure called compatibility forest, runs
in amortised time O(log2 n) for insertion and removal and O(log n) for
query. The second dynamic algorithm, based on the data structure called
linearised tree, runs in time O(log n) for insertion, removal and query. We
discuss differences and similarities of these two data structures through
theoretical and experimental results.

1 Introduction

Background. Imagine a number of processes all need to use a particular resource
for a period of time. Each process i specifies a starting time s(i) and a finish-
ing time f(i) between which it needs to continuously occupy the resource. The
resource cannot be shared by two processes at any instance. One is required to
design a scheduler which chooses a subset of these processes so that 1) there
is no time conflict between processes in using the resource; and 2) there are as
many processes as possible that get chosen.

The above is a typical set-up for the interval scheduling problem, one of the
basic problems in the study of algorithms. Formally, given a collection of intervals
on the real line all specified by starting and finishing times, the problem asks for
a subset of maximal size consisting of pairwise non-overlapping intervals. The
interval scheduling problem and its variants appear in a wide range of areas in
computer science and applications such as in logistics, telecommunication, and
manufacturing. They form an important class of scheduling problems and have
been studied under various names and with application-specific constraints [9].

The interval scheduling problem, as stated above, can be solved by a greedy
scheduler as follows [8]. The scheduler sorts intervals based on their finishing
time, and then iteratively selects the interval with the least finishing time that

T. Lecroq and L. Mouchard (Eds.): IWOCA 2013, LNCS 8288, pp. 178–191, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Dynamising Interval Scheduling: The Monotonic Case 179

is compatible with the intervals that have already been scheduled. The set of
intervals chosen in this manner is guaranteed to have maximal size. This algo-
rithm works in a static context in the sense that the set of intervals is given a
priori and it is not subject to change.

In a dynamic context the instance of the interval scheduling problem is usu-
ally changed by a real-time events, and a previously optimal schedule may be-
come not optimal. Examples of such real-time events include job cancelation,
arrival of an urgent job, change in job processing time. To avoid the repetitive
work of rerunning the static algorithm every time when the problem instance
has changed, there is a demand for efficient dynamic algorithms for solving the
scheduling problem on the changed instances. In this dynamic context, the set
of intervals change through a number of update operations such as insertion or
removal. Our goal is to design data structures that allow us to solve the interval
scheduling problem in a dynamic setting.

In our effort to dynamise the interval scheduling problem, we focus on a
special class of interval sets which we call monotonic interval sets. In monotonic
interval sets no interval is properly contained by another interval. Considering
monotonic intervals is a natural setting for the problem. For example, if all
processes require the same amount of time to be completed, then the set of
intervals is monotonic. Moreover, monotonic interval sets are closely related to
proper interval graphs. An interval graph is an undirected graph whose nodes are
intervals and two nodes are adjacent if the two corresponding intervals overlap.
A proper interval graph is an interval graph for a monotonic set of intervals.
There exist linear time algorithms for representing a proper interval graph by a
monotonic set of intervals [1,6,2]. Furthermore, solving the interval scheduling
problem for monotonic intervals corresponds to finding a maximal independent
set in a proper interval graph.

Related work. On a somewhat related work, S. Fung, C. Poon and F. Zheng [3]
investigated an online version of interval scheduling problem for weighted in-
tervals with equal length (hence, the intervals are monotonic), and designed
randomised algorithms. We also mention that R. Lipton and A. Tompkins [5]
initiated the study of online version of the interval scheduling problem. In this
version a set of intervals are presented to a scheduler in order of start time. Upon
seeing each interval the algorithm must decide whether to include the interval
into the schedule.

A related problem on a set of intervals I asks to find a minimal set of points S
such that every interval from I intersects with at least one point from S. Such a
set S is called a piercing set of I. A dynamic algorithm for maintaining a minimal
piercing set S is studied in [4]. The dynamic algorithm runs in time O(|S| log |I|).
We remark here that if one has a maximal set J of disjoint intervals in I, one
can use J to find a minimal piercing set of I, where each point in the piercing set
corresponds to the finishing time of an interval in J in time O(|J |). Therefore our
dynamic algorithm can be adapted to one that maintains a minimal piercing set.
Our algorithm improves the results in [4] when the interval set I is monotonic.

180 A. Gavruskin et al.

Kaplan et al. in [7] studied a problem of maintaining a set of nested intervals
with priorities. The problem asks for an algorithm that given a point p finds the
interval with maximal priority containing p. Similarly to our dynamic algorithm,
the solution in [7] also uses dynamic trees to represent a set of intervals.

Our results. We provide two dynamic algorithms for solving the interval schedul-
ing problem on monotonic set of intervals. Both algorithms allow efficient inser-
tion, removal and query operation. Formal explanation are in the next sections.

The first algorithm maintains the compatibility forest data structure denoted
by CF. We say the right compatible interval of an interval i is the interval j such
that f(i) < s(j) and there does not exist an interval � such that f(i) < s(�)
and f(�) < f(j). The CF data structure maintains the right compatible interval
relation. The implementation of the data structure utilises, nontrivially, the dy-
namic tree data structure of Sleator and Tarjan [10]. As a result, in Theorem 4
of Section 3 we prove that the insert and remove operations take amortised time
O(log2 n) and the query operation takes amortised time O(log n).

The second dynamic algorithm maintains the linearised tree data structure
denoted by LT. We say that intervals are equivalent if their right compatible
intervals coincide. The LT data structure maintains both the right compatibility
relation and the equivalence relation. Then, in Theorem 9 of Section 4 we prove
that the insertion, removal and query operations take time amortised O(log n).
However, this comes with a cost. As opposed to the CF data structure that keeps
a representation of an optimal set after each update operation, the linearised tree
data structure does not explicitly represent the optimal solution.

To test the performance of our algorithms, we carried out experiments on
random sequences of update and query operations. The experiments show that
the two data structures CF and LT perform similarly. The reason for this is
that the first dynamic algorithm based on CF reaches the bound of log2 n only
on specific sequences of operations, while on uniformly random sequences the
algorithm may run much faster. Both algorithms outperform the modified naive
algorithm (described in Sec. 2).

Organisation of the paper. Section 2 introduces the problem, monotonic interval
sets and the modified naive dynamic algorithm. Section 3 and 4 describe the CF
and LT data structures and present our dynamic algorithms. Section 5 extends
the data structures by adding the report operation that outputs the full greedy
solution. Section 6 discusses the experiments.

2 Preliminaries

Interval scheduling basics. An interval is a pair (s(i), f(i)) ∈ R
2 with s(i) < f(i),

where s(i) is the starting time and f(i) is the finishing time of the interval. We
abuse notation and write i for the interval (s(i), f(i)). Two intervals i and j are
compatible if f(i) < s(j) or f(j) < s(i). Otherwise, these two intervals overlap.
Given a collection of intervals I = {i1, i2, . . . , ik}, a compatible set of I is a subset
J ⊆ I such that the intervals in J are pairwise compatible. An optimal set of I

Dynamising Interval Scheduling: The Monotonic Case 181

is a compatible set of maximal size. The interval scheduling problem consists of
designing an algorithm that finds an optimal set.

We recall the greedy algorithm that solves the problem [8]. The algorithm
sorts intervals by their finishing time, and then iteratively chooses the interval
with the least finishing time compatible with the last selected interval. The set of
thus selected intervals is optimal. The algorithm is in O(n logn) where n is the
size of I. If the sorting is already given then the algorithm runs in linear time.
Below, we formally define the greedy optimal set found by this greedy algorithm.

Let � be the ordering of the intervals by their finishing time. Throughout,
by the least interval, the greatest interval, the next interval, the previous inter-
val, we mean the least, greatest, next and previous interval with respect to �.
Without loss of generality we may assume that the intervals in I have pairwise
distinct finishing times. Given the collection I, we inductively define the set
J = {i1, i2, . . .}, the greedy optimal set of I, as follows. The interval i1 is the
least interval in I. The interval ik+1 is the least interval compatible with ik such
that ik ≺ ik+1. The set J obtained this way is an optimal set [8].

Dynamic setting. In this setting the collection I of intervals changes over time.
Thus, the input to the problem is an arbitrary sequence o1, . . . , om of update
and query operations described as follows:

– Update operations: insert(i) inserts an interval i and remove(i) removes an
interval i.

– Query operation: The operation query(i) returns true if i belongs to the
greedy optimal set and false otherwise.

Our goal is to design algorithms for performing these operations that minimise
the total running time. We will use the following data structures.

– Interval tree. We maintain the ordered set of intervals I in a balanced binary
search tree. We call this tree the interval tree and denote it by T (I). The
interval tree supports all operations of a binary search tree and performs
them in O(log n) worst-case time.

– Splay tree. A splay tree is a self-balancing binary search tree for storing
linearly ordered objects. In addition to the standard binary search tree op-
erations, the splay tree data structure supports the following operations.
Operation splay(u) reorganises a splay tree so that u becomes the root.
Operation join(A,B) merges two splay trees A and B, such that any ele-
ment in A is less than any element in B, into one tree. Finally, operation
split(A, u) divides a splay tree into two splay trees R(u) and L(u), where
R(u) = {x ∈ A | u ≤ x} and L(u) = {x ∈ A | x < u}. All the operations
for splay trees take O(log n) amortised time [11].

– Dynamic trees. This data structure maintains a forest. Basic update opera-
tions are link(v, w), which creates an edge from a root v to a vertex w (thus v
becomes a child of w) and cut(v), which deletes the edge from v to its parent.
Query operations for dynamic tree depend on specific application. Usually, a
query operation searches for a node or an edge on a path from a given node.

182 A. Gavruskin et al.

For example, operation findmin(u) returns an edge with a minimal value on
a path from u to a root. These operations have O(log n) amortised time
complexity [10].

Monotonic Interval Sets. The set I of intervals is calledmonotonic if no interval in
I contains another interval. Since I changes over time through update operations,
to preserve monotonicity we assume that the insert(i) operation never adds an
interval i which contains or is contained in an existing interval. Recall that the
right compatible interval of i, denoted by rc(i), is the least interval j compatible
with i such that i ≺ j. Similarly, the left compatible interval of i, written lc(i),
is the greatest interval j compatible with i such that j ≺ i.

Monotonicity of I implies an important property of the interval tree T (I): if
an interval i ∈ T (I) is not compatible with an interval j, then the left subtree
of i does not contain rc(j) and the right subtree of i does not contain lc(j). This
allows us to define two efficient operations: right compatible(j), which is defined
below, and left compatible(j), which is similar except we replace “�” with “�”
and swap “left” and “right”.

Algorithm 1. right compatible(i)

1: r ← nil
2: j ← the root in the interval tree T (I).
3: while j �= nil do
4: if j � i or j overlaps i then
5: j ← the right child of j
6: else
7: r ← j
8: j ← the left child of j

9: return r

Lemma 1. On monotonic set I of intervals the operations right compatible(i)
and left compatible(i) run in time Θ(log n) and return rc(i) and lc(i) respectively.

To prove the lemma we observe that for a monotonic set I of intervals and
i, j ∈ I, if i overlaps j, then each of the intervals between i and j overlaps both
i and j.

Proof. We only prove the lemma for right compatible. The operation takes time
Θ(log n) as the length of paths from a leaf to the root in T (I) is �logn	+ 1.

For the correctness of right compatible, we use the following loop invariant: If
I contains rc(i), then the subtree rooted at j contains rc(i) or r equals rc(i).

Initially, j is the root of T (I), so the invariant holds. Each iteration of the
while loop executes either line 5 or lines 7-8 of Alg. 1. If line 5 is executed, then
we have j � i or j overlaps i. If j � i then all intervals in the left subtree of
j are less than i. If j � i but j overlaps i, then by the observation above, all
intervals between i and j overlap i. In both cases, none of the intervals in the

Dynamising Interval Scheduling: The Monotonic Case 183

left subtree of j is rc(i). Therefore setting j to be the right child of j preserves
the invariant.

If lines 7-8 are executed, then we have j � i and j is compatible with i. If
there exists an interval that is less than j and compatible with i, then such an
interval is in the left subtree of j. If such an interval does not exist, j is the
smallest interval which is compatible with i. Therefore setting r to be j and j
to be the right child of j preserves the invariant.

Thus, the algorithm outputs rc(i) if it exists and outputs nil otherwise. Indeed,
the loop terminates when j = nil. Hence if the set of intervals I contains rc(i) then
r = rc(i). If I does not contain rc(i) then line 5 is executed at every iteration,
so r = nil.
�

Modified naive dynamic algorithm. A naive dynamic algorithm for the interval
scheduling problem is to keep intervals sorted and construct the greedy optimal
set from scratch at each query operation. Another modified yet still naive dy-
namic algorithm is this. Store the greedy optimal set in a self-balancing binary
search tree T . After each insert(i) or delete(i) operation search for the greatest in-
terval j0 ∈ T such that f(j0) < s(i). Then insert a sequence j1 = rc(j0), . . . , jk =
rc(jk−1) of intervals into T . The sequence ends with the interval jk such that
rc(jk) does not exist or is already in T . While inserting, we remove all inter-
vals between j0 and jk+1 from T . The query(i) operation of this algorithm takes
O(log n) worst-case time. The insert(i) and remove(i) operations take O(k logn)
worst-case time, where k is the number of intervals inserted into T . In Section 6
we compare this modified algorithm with the algorithms provided by the CF and
LT data structures.

3 Compatibility Forest Data Structure (CF)

Building the data structure. Let I be a set of intervals. We define the compatibility
forest as a graph F(I) = (V,E) where V = I and (i, j) ∈ E if j = rc(i). By a
forest we mean a directed graph where the edge set contains links from nodes
to their parents. We use p(v) to denote the parent of node v. The roots and
leaves are standard notions that we do not define. Figure 1 shows an example
of a monotonic set of intervals with its compatibility forest. We note that for
every forest one can construct in a linear time a monotonic set of intervals whose
compatibility forest coincides (up to isomorphism) with the forest.

a

b

c

d

e

f

g

h g

c

h

d e

a b

f

Fig. 1. Example of a monotonic set of intervals and its compatibility forest

184 A. Gavruskin et al.

A path in the compatibility forest F(I) is a sequence of nodes i1, i2, . . . , ik
where (it, it+1) ∈ E for any t = 1, . . . , k−1. It is clear that any path in the forest
F(I) consists of compatible intervals. Essentially, the forest F(I) connects nodes
by the greedy rule: for any node i in the forest F(I), if the greedy rule is applied
to i, then the rule selects the parent j of i in the forest. Hence, the longest paths
in the compatibility forest correspond to optimal sets of I. In particular, the
path starting from the least interval is the greedy optimal set. Our first dynamic
algorithm amounts to maintaining this path in the forest F(I).

We explain how we maintain paths in the compatibility forest F(I). The
representation of the forest is developed from the dynamic tree data structure
as in [10]. The idea is to partition the compatibility forest into a set of node-
disjoint paths. Paths are defined by two types of edges, solid edges and dashed
edges. Each node in the compatibility forest is required to have at most one
incoming solid edge. A sequence of edges (u0, u1), (u1, u2), . . . , (uk−1, uk) where
each (ui, ui+1) is a solid edge is called a solid path. A solid path is maximal if
it is not properly contained in any other solid path. Therefore, the solid edges
in F(I) form several maximal solid paths in the forest. Furthermore, the data
structure ensures that each node belongs to some maximal solid path. There is
an important subroutine in the dynamic tree data structure called the expose
operation [10]. The operation starts from a node v and traverses the path from v
to the root: while traversing, if the edge (x, p(x)) is dashed, we declare (x, p(x))
solid and declare the incoming solid edge (if it exists) incident to p(x) dashed.
Thus, after exposing node v, all the edges on the path from v to the root become
solid. Note that in CF data structure the p(x) and rc(x) are the same.

To represent CF we use two data structures. The first is the interval tree
T (I). The operation right compatible computes the outgoing dashed edges of the
compatibility forest. The second is a set of splay trees. Each splay tree stores the
nodes of a maximal solid path in the compatibility forest with the underlying
order �. We denote by STu the splay tree containing the node u.

Dynamic Algorithm 1. We now describe algorithms for maintaining compatibil-
ity forest data structure. We call the algorithms queryCF, insertCF and removeCF
for the query, insertion, and removal operations, respectively.

The operation queryCF: To perform this operation on an interval i, we first find
in the interval tree T (I) the minimum element m. We then check if i belongs to
the splay tree STm. We return true if i ∈ STm; otherwise we return false.

The operation expose: To expose an interval i, we find the maximum element j
in the splay tree STi. Then find the right compatible interval i′ = rc(j). If i′ does
not exist (that is, j is a root in the compatibility forest), we stop the process.
Otherwise, (j, i′) is a dashed edge. We split the splay tree at i′ into trees L(i′)
and R(i′) and join STi with R(j′). We then repeat the process taking i′ as i.

The operation insertCF: To insert an interval i, we add i into the tree T (I). Then
we locate the next interval r of i in the ordering �. If such r exists, we access r in
the splay tree STr and find the interval j such that (j, r) is a solid edge. If such
a j exists and j is compatible with i, we delete the edge (j, r) and create a new

Dynamising Interval Scheduling: The Monotonic Case 185

edge (j, i) and declare it solid. We restore the longest path of the compatibility
forest by exposing the least interval in T (I).

The operation removeCF: To delete an interval i, we delete the incoming and
outgoing solid edges of i if such edges exist. We then delete i from the tree T (I).
We restore the longest path of the CF by exposing the least interval in T (I).

Correctness of the operations. For correctness, we use the following invariants.

(A1) Every splay tree represents a maximal path formed from solid edges.
(A2) Let m be the least interval in I. The splay tree STm contains all intervals

on the path from m to the root.

Note that (A2) guarantees that the query operation correctly determines if a
given interval i is in the greedy optimal set. The next lemma shows that (A1) and
(A2) are invariants indeed and that the operations correctly solve the dynamic
monotonic interval scheduling problem.

Lemma 2. (A1) and (A2) are invariants of insertCF, removeCF, and queryCF.

Proof. For (A1), first consider the operation of joining two splay trees A and
B via the operation expose(i). Let j be the maximal element in A and j′

be the minimum element in B. In this case, j′ is obtained by the operation
right compatible(j). It is clear that (j, j′) is an edge in the forest F(I). Next,
consider the case when we apply insertCF(i) into the splay tree A. In this case,
A is L(r) where r is the next interval of i in I. Let j be the previous interval
of r in the tree STr. By (A1), before inserting i, (j, r) is an edge in F(I) and
thus r = rc(j). Note we only insert i to L(r) when j is compatible with i. Since
i < r, after inserting i, i becomes the new right compatible interval of j. So,
joining L(r) with i preserves (A1). Operations removeCF(i) and queryCF(i) do
not create new edges in splay trees. Thus, (A1) is preserved under all operations.

For (A2), the expose(i) operation terminates when it reaches a root of the
compatibility forest. As a result, STi contains all nodes on the path from i to
the root. Since expose(minimum(T (I))) is called at the end of both insertCF(i)
and removeCF(i) operations, (A2) is preserved under every operation.
�
Complexity. Let n be the number of intervals in I. As discussed in Section 2,
all operations for the interval tree have O(log n) worst case complexity, and
all operations for splay trees have O(log n) amortised complexity. The query
operation, involves finding the minimum interval in T (I) and searching i in a
splay tree. Hence, the query operation runs in amortised time O(log n). For each
insert and remove operation, we perform a constant number of operations on
T (I) and the splay trees plus one expose operation.

To analyse expose operation, define the size size(i) of an interval i to be the
number of nodes in the subtree rooted at i in F(I). Call an edge (i, j) in F(I)
heavy if 2 · size(i) > size(j), and light otherwise. It is not hard to see that this
partition of edges has the following properties:

186 A. Gavruskin et al.

(�) Every node has at most one incoming heavy edge.
(��) Every path in the compatibility forest consists of at most logn light edges.

Lemma 3. In a sequence of k update operations, the total number of dashed
edges, traversed by expose operation, is O(k log n).

Proof. The number of iterations in expose operation is the number of dashed
edges in a path from the least interval to the root. A dashed edge is either
heavy or light. From (��), there are at most logn light dashed edges in the path.
To count the number of heavy edges, consider the previous update operations.
After deletion of i, all children of i become children of the next interval of i.
After inserting i, the children of the next interval of i that are compatible with
i become children of i. Figure 2 illustrates these structural changes. Thus, an
update operation transforms at most logn light dashed edges to heavy dashed
edges in each path, starting at the next interval or the right compatible interval
of i. Execution of expose in an update operation creates at most logn heavy
dashed edges from heavy solid edges. Hence, the total number of heavy dashed
edges created after k update operations is O(k logn).
�

a b c

j
i

Pj Pi

Inserting i. Removing i.

a b c

i
j

rc(i)

Prc(i)

Pj

Fig. 2. Redirections of edges in CF, where j is the next interval of i

Lemma 2 and Lemma 3 give us the following theorem:

Theorem 4. The algorithms queryCF, insertCF and removeCF solve the dynamic
monotonic interval scheduling problem. The algorithms perform insert interval
and remove interval operations in O(log2 n) amortised time and query operation
in O(log n) amortised time, where n is the size of the set I of intervals.

Remark. Tarjan and Sleator’s dynamic tree data structure has amortised time
O(log n) for update and query operations. To achieve this, the algorithm main-
tains dashed edges explicitly. Their technique cannot be adapted directly to
CF because insertion or removal of intervals may result in redirections of a
linear number of edges. Therefore, more care should be taken; for instance,

Dynamising Interval Scheduling: The Monotonic Case 187

one needs to maintain dashed edges implicitly in T (I) and compute them calling
right compatible operation.

Proposition 5 (Sharpness of the log2 n bound). In CF data structure there
exists a sequence of k update operations with Θ(k log2 n) total running time.

Proof. Consider a sequence which creates a set of n < k intervals. We assume
that n = 2h+1 − 1 for an h ∈ ω. The first n operations of the sequence are
insertCF such that the resulted compatibility forest is a perfect binary tree Tn,
that is, each internal node of Tn has exactly two children and the height of each
leaf in Tn is h. The next k − n operations starting form Tn are pairs of insertCF
followed by removeCF. At stage s = n+2m+1, insertCF inserts an interval is into
Ts producing the tree Ts+1. The interval is is such that in Ts+1 the path from is
to the root is of length h+ 1 and the path consists of dashed edges only. Then,
at stage s+ 1 we delete is. This produces a tree Ts+2 which is a perfect binary
tree of height h. We repeat this k − n times. We can select is as desired since
each perfect binary tree Ts always has a path of length h consisting of dashed
edges only. Therefore a sequence of k such operations takes time Θ(k log2 n).
�

4 Linearised Tree Data Structure (LT)

Building the data structure. We describe a second dynamic algorithm for solving
the monotonic interval scheduling problem. Our goal is to improve the running
time for the update operations by introducing the linearised tree data structure.

We say that intervals i and j are equivalent, written as i ∼ j, iff rc(i) = rc(j).
Denote the equivalence class of i by [i]. Thus, two intervals are in the same
equivalence class if they are siblings in the compatibility forest. In the linearised
tree we arrange all intervals in an equivalence class in a path using the �-order.
The linearised tree consists of all such “linearised” equivalence classes joined
by edges. Hence, there are two types of edges in the linearised tree. The first
type connects intervals in the same equivalence class. The second type joins
the greatest interval in an equivalence class with its right compatible interval.
Formally, the linearised tree L(I) is a triple (I;E∼, Ec), where E∼ and Ec are
disjoint set of edges such that:

– (i, j) ∈ E∼ if and only if i ∼ j and i is the previous interval of j. Call i the
equivalent child of j.

– (i, j) ∈ Ec if and only if i is the greatest interval in [i] and j = rc(i). Call i
the compatible child of j.

Figure 3 shows an example of a linearised tree. We stress three crucial dif-
ferences between the CF and LT data structures. The first is that a path in a
linearised tree may not be a compatible set of intervals. The second is that lin-
earised trees are binary. The third is when we insert or remove an interval we
need to redirect at most two existing edges in the linearised tree. We explain the
last fact in more details below when we introduce the dynamic algorithm.

188 A. Gavruskin et al.

g

c

h

d e

a b

f

a b

d e fc

g h

Fig. 3. Example of a compatibility forest (left) and linearised tree (right)

We use the dynamic tree data structure to represent the linearised tree. We
also maintain the interval tree T (I) as an auxiliary data structure. The interval
tree is used to compute previous and next intervals as well as left compatible
and right compatible intervals of a given interval.

Dynamic Algorithm 2. We now describe algorithms for maintaining linearised
tree data structure. We call the algorithms queryLT, insertLT and removeLT for
the query, insertion, and removal operations, respectively.

The operation queryLT: To detect if an interval i is in the greedy optimal set,
consider the path P from the least node m to the root in the linearised tree L(I).
If i /∈ P , return false. Otherwise, consider the direct predecessor j of i in the
path P . If j does not exist or (j, i) ∈ Ec, return true. Otherwise, we return false.

Algorithm 2. queryLT(i)

1: m← minimum(T (I))
2: if i = m then � i is the least interval
3: return true
4: expose(m) � Make the path from m to the root solid
5: if i �= find(STm, i) then � i is not on the path from m to the root
6: return false
7: j ← predecessor(STm, i) � (j, i) is an edge in LT
8: if i is compatible with j then
9: return true
10: else
11: return false

Lemma 6. The operation queryLT(i) returns true if and only if a given interval
i belongs to the greedy optimal set of I.

The operation insertLT: Given i, we insert i into T (I). If i is the greatest interval
in [i], then we add the edge (i, rc(i)) into Ec. Otherwise, we add the edge (i, j)
to E∼, where j is the next interval equivalent to i. If i has an equivalent child
k then we add the edge (k, i) to E∼ and delete the old outgoing edge from k in
case such edge exists. If i has a compatible child � then we add the edge (�, i) to
Ec and delete the old outgoing edge in case such edge exists.

Dynamising Interval Scheduling: The Monotonic Case 189

Lemma 7. The operation insertLT(i) preserves linearised tree data structure.

The operation removeLT: Given i, we delete i from T (I). We delete an edge from
i to the parent of i and redirect the edge from the equivalent child j of i to the
parent of i. Then we redirect an edge from the compatible child � of i. Removing
i may add new intervals to the equivalence class of �. Therefore if � is still the
greatest interval in the updated equivalence class, we add an edge (�, rc(�) to Ec.
Otherwise, we add the edge (i, j) to E∼, where j is the next interval of �.

Lemma 8. The operation removeLT(i) preserves linearised tree data structure.

Lemmas 6-8 lead us to the following theorem:

Theorem 9. The queryLT, insertLT and removeLT operations solve the dynamic
monotonic interval scheduling problem in O(log n) amortised time, where n is
the size of the set I of intervals.

Note. The time complexity of the operations above depends on the type of
dynamic trees, representing paths of LT. We can achieve the worst-case bound
instead of amortized if we use globally biased trees instead of splay trees [10].
However, after each operation we must ensure that for every pair of edges (v, u)
and (w, u) of the linearised tree, nodes v and u are in the same dynamic tree if
and only if the numbers of nodes in the subtree rooter at v is greater or equal
to the number of nodes in the subtree rooted at u.

5 Extending Functionality of CF and LT Data Structures

The operations queryCF and queryLT detect if a given interval i belongs to the
current greedy optimal set. Alternatively, another intuitive meaning of the query
operation is to report the full greedy optimal set. The report operation, given a
set I of monotonic intervals, outputs all the intervals (with their starting and
finishing times) in the greedy optimal set. It turns out, our data structures allow
an efficient implementation of reportCF and reportLT operations.

In the CF data structure, the greedy schedule is the set of intervals on the
path from the least node m to the root. This path is represented by the splay
tree STm and is maintained after every update operation. Therefore the reportCF
amounts to in-order traversal of STm. The only thing we need to remember is
the root of STm after every update operation.

Theorem 10. The amortised complexity of the reportCF operation is O(|STm|),
where STm is the greedy optimal set.

The theorem above also shows a subtle difference between the two data struc-
tures CF and LT. In the LT data structure, in order to perform the reportLT
operation, one needs to examine the path P starting form the minimal element
in the tree L(I). But the path might contain nodes that are not necessarily in
the greedy optimal solution. Namely, we need to filter out those nodes v in P

190 A. Gavruskin et al.

for which there exists a u ∈ P such that (u, v) ∈ E∼. Hence, reportLT runs in
linear time on the size of P , where in the worst case P = I.

In the modified naive algorithm, reporting of the greedy optimal set J takes
O(|J |) time. However, to maintain the set J , update operations of the algorithm
take O(k logn) time as described in Section 2, where k is the number of changes
in J . In the worst case, k = Θ(n).

6 Experiments

Here we experimentally compare the naive (N), modified naive (MN), CF and
LT data structure algorithms. We implemented these algorithms in Java and run
experiments on a laptop with 4GB of RAM memory and Intel Core 2 Duo 2130
Mhz, 3MB of L2 cache memory processor.

In our tests, we measure the average running time in a randomly chosen
sequence of m = n+ rn+ qn operations on initially empty interval set, where n,
rn and qm are the number of insert, remove and query operations respectively.
Here both q and r are parameters. For insert(i) operation, the starting time s(i)
is a random number in [0, 1] and the finishing time is s(i)+ 1/n. The operations
remove and query are always randomly applied to the current set I of intervals.
The summary of our experiments are the following:

– CF performs similarly to LT in spite of the fact that CF takes O(log2 n) in
average as opposed to O(log n) of LT data structure. Figure 4 shows the
results of an experiment with q = n and r = 0.5n. Here our sequences of
operations do not contain report operation.

– CF data structure performs better than LT if we replace q query operations
with q report operations. This confirms our remarks at the end of Section 5.

18500014000095000500005000

0.010

0.009

0.008

0.007

0.006

0.005

0.004

n

av
er

ag
e

tim
e,

 m
s

CF
LT

Similarity of CF and LT

18000140001000060002000

0.4

0.3

0.2

0.1

0.0

n

av
er

ag
e

tim
e,

 m
s

CF
LT
MN

Reporting the greedy optimal set

Fig. 4. The parameters of the experiment on the left plot are q = n and r = 0.5. The
parameters of the experiment on the right plot are q = n and r = 0.

Dynamising Interval Scheduling: The Monotonic Case 191

– More surprisingly, even MN performs better than LT if we replace q query
operations with q report operations.

– CF outperformsMN if we replace q query operations with q report operations.
– N is outperformed by all algorithms in most of the settings.

7 Conclusions and Open Problems

Several directions for further research remain open. One of them is to remove
the monotonic restriction and allow intervals to be contained in other intervals.
To treat this general case a result in line with Lemma 1 would perhaps play a
crucial role. Another direction is to allow an arbitrary, but fixed number of avail-
able resources. Data structures, solving these more general interval scheduling
problems, would be valuable in practical applications.

References

1. Corneil, D.: A simple 3-sweep LBFS algorithm for the recognition of unit interval
graphs. Discrete Applied Mathematics 138(3), 371–379 (2004)

2. Deng, X., Hell, P., Huang, J.: Linear-time representation algorithms for proper
circular-arc graphs and proper interval graphs. SIAM Journal on Computing 25(2),
390–403 (1996)

3. Fung, S.P.Y., Poon, C.K., Zheng, F.: Online interval scheduling: Randomized and
Multiprocessor cases. In: Lin, G. (ed.) COCOON 2007. LNCS, vol. 4598, pp. 176–
186. Springer, Heidelberg (2007)

4. Katz, M.J., Nielsen, F., Segal, M.: Maintenance of a piercing set for intervals with
applications. Algorithmica 36(1), 59–73 (2003)

5. Lipton, R., Tompkins, A.: Online interval scheduling. In: Proceedings of the Fifth
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 302–311 (1994)

6. Heggernes, P., Meister, D., Papadopoulos, C.: A new representation of proper in-
terval graphs with an application to clique-width. Electronic Notes in Discrete
Mathematics 32, 27–34 (2009)

7. Kaplan, H., Molad, E., Tarjan, R.: Dynamic rectangular intersection with prior-
ities. In: Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of
Computing, pp. 639–648 (June 2003)

8. Kleinberg, J., Tardos, E.: Algorithm Design (2006)
9. Kolen, A., Lenstra, J.K., Papadimitriou, C.H., Spieksma, F.C.: Interval scheduling:

A survey. Naval Research Logistics 54(5), 530–543 (2007)
10. Sleator, D., Tarjan, R.: A Data Structure for Dynamic Trees. Journal of Computer

and System Sciences 26(3), 362–391 (1983)
11. Sleator, D., Tarjan, R.: Self-adjusting binary search trees. Journal of the

ACM 32(3), 652–686 (1985)

	Dynamising Interval Scheduling: The Monotonic Case
	1 Introduction
	2 Preliminaries
	Compatibility Forest Data Structure (CF)
	4 Linearised Tree Data Structure (LT)
	5 Extending Functionality of CF and LT Data Structures
	6 Experiments
	7 Conclusions and Open Problems
	References

