
Expanding the Expressive Power of Monadic

Second-Order Logic on Restricted Graph Classes

Robert Ganian1 and Jan Obdržálek2

1 Vienna University of Technology, Austria�

rganian@gmail.com
2 Masaryk University, Brno, Czech Republic��

obdrzalek@fi.muni.cz

Abstract. We combine integer linear programming and recent advances
in Monadic Second-Order model checking to obtain two new algorithmic
meta-theorems for graphs of bounded vertex-cover. The first one shows
that the model checking problem for cardMSO1, an extension of the
well-known Monadic Second-Order logic by the addition of cardinality
constraints, can be solved in FPT time parameterized by vertex cover.
The second meta-theorem shows that the MSO partitioning problems
introduced by Rao can also be solved in FPT time with the same pa-
rameter.

The significance of our contribution stems from the fact that these
formalisms can describe problems which are W[1]-hard and even NP-
hard on graphs of bounded tree-width. Additionally, our algorithms have
only elementary dependence on the parameter and formula. We also show
that both results are easily extended from vertex cover to neighborhood
diversity.

1 Introduction

It is a well-known result of Courcelle, Makowski and Rotics that MSO1 (and
LinEMSO1) model checking is in FPT on graphs of bounded clique-width [4].
However, this leads to algorithms which are far from practical – the time com-
plexity includes a tower of exponents, the height of which depends on the MSO1

formula. Recently it has been shown that much faster model checking algorithms
are possible if we consider more powerful parameters such as vertex cover [15] –
with only an elementary dependence of the runtime on both the MSO1 formula
and parameter.

Vertex cover has been generally used to solve individual problems for which
traditional width parameters fail to help (see e.g. [1,6,9,10]). Of course, none of
these problems can be described by the standard MSO1 or LinEMSO1 formalism.
This raises the following, crucial question: would it be possible to naturally ex-
tend the language of MSO1 to include additional well-studied problems without
sacrificing the positive algorithmic results on graphs of bounded vertex-cover?

� Robert Ganian acknowledges support by ERC (COMPLEX REASON, 239962).
�� Jan Obdržálek is supported by the Czech Science Foundation, project P202/11/0196.

T. Lecroq and L. Mouchard (Eds.): IWOCA 2013, LNCS 8288, pp. 164–177, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Expanding the Expressive Power of Monadic Second-Order Logic 165

We answer this question by introducing cardMSO1 (Definition 2.3) as the ex-
tension of MSO1 by linear cardinality constraints – linear inequalities on vertex
set cardinalities and input-specified variables. The addition of linear inequalities
significantly increases the descriptive power of the logic, and allows to capture in-
teresting problems which are known to be hard on graphs of bounded tree-width.
We refer to Section 4 for a discussion of the expressive power and applications
of cardMSO1, including a new result for the c-balanced partitioning problem
(Theorem 4.1).

The first contribution of the article lies in providing an FPT-time model check-
ing algorithm for cardMSO1 on graphs of bounded vertex cover. This extends
the results on MSO1 model checking obtained by Lampis in [15], which intro-
duce an elementary-time FPT MSO1 model checking algorithm parameterized
by vertex cover. However, the approach used there cannot be straightforwardly
applied to formulas with linear inequalities (cf. Section 3 for further discussion).

Theorem 1.1. There exists an algorithm which, given a graph G with vertex
cover of size k and a cardMSO1 formula ϕ with q variables, decides if G |= ϕ in

time 22
O(k+q)+|ϕ| + 2k|V (G)|.

The core of our algorithm rests on a combination of recent advances in MSO1

model checking and the use of Integer Linear Programming (ILP). While using
ILP to solve individual difficult graph problems is not new [9], the goal here was
to obtain new graph-algorithmic meta-theorems for frameworks containing a
wide range of difficult problems. The result also generalizes to the neighborhood
diversity parameter introduced in [15] and to MSO2 (as discussed in Section 6).

In the second part of the article, we turn our attention to a different, already
studied extension of MSO1: the MSO partitioning framework of Rao [19]. MSO
partitioning asks whether a graph may be partitioned into an arbitrary number
of sets so that each set satisfies a fixed MSO1 formula, and has been shown
to be solvable in XP time on graphs of bounded clique-width. Although MSO
partitioning is fundamentally different from cardMSO1 and both formalisms ex-
pand the power of MSO1 in different directions, we show that a combination of
MSO1 model checking and ILP may also be used to provide an efficient FPT
model-checking algorithm for MSO1 partitioning parameterized by vertex-cover
or neighborhood diversity.

Theorem 1.2. There exists an algorithm which, given a graph G with vertex
cover of size k and a MSO partitioning instance (ϕ, r) with q variables, decides

if G |= (ϕ, r) in time 22
O(q2k) · |(ϕ, r)| + 2k|V (G)|.

2 Preliminaries and Definitions

2.1 Vertex Cover and Types

In the following text all graphs are simple and without loops. For a graph G we
use V (G) and E(G) to denote the sets of its vertices and edges, and use N(v)
to denote the set of neighbors of a vertex v ∈ V (G).

166 R. Ganian and J. Obdržálek

The graph parameter we are primarily interested in is vertex cover. A key
notion related to graphs of bounded vertex cover is the notion of a vertex type.

Definition 2.1 ([15]). Let G be a graph. Two vertices u, v ∈ V are of the same
type T if N(u) \ {v} = N(v) \ {u}. We use TG to denote the set of all types of
G (or just T if G is clear from the context).

Since each type is associated with its vertices, we also use T to denote the set
of vertices of type T . Note that then TG forms a partition of the set V (G).

For the sake of simplicity, we adopt the convention that, on a graph with a
fixed vertex cover X , we additionally separate each cover vertex into its own
type. Then it is easy to see that each type is an independent set, and a graph
with vertex cover of size k has at most 2k + k types.

It is often useful to divide vertices of the same type further into subtypes. The
subtypes are usually identified by a system of sets, and all subtypes of a given
type form a partition of that type:

Definition 2.2. Let G be a graph and U ⊆ 2V (G) a set of subsets of V (G). Then
two vertices u, v ∈ V (G) are of the same subtype (w.r.t. U) if u, v ∈ T for some
T ∈ TG and ∀U ∈ U .u ∈ U ⇐⇒ v ∈ U . We denote by SU

T the set of all subtypes
of a type T ∈ TG, and also define the set of all subtypes of (w.r.t. U) as SU

G. (If
G and U are clear form the context, we may write S instead of SU

G)

Finally, notice that |SU
G | ≤ 2|U||TG|.

2.2 MSO1 and Its Cardinality Extensions

Monadic Second Order logic (MSO1) is a well established logic of graphs. It is
the extension of first order logic with quantification over vertices and sets of
vertices. MSO1 in its basic form can only be used to describe decision problems.
To solve optimization problems we may use LinEMSO1 [4], which is capable of
finding maximum- and minimum-cardinality sets satisfying a certain MSO1 for-
mula. This is useful for providing simple descriptions of well-known optimization
problems such as Minimum Dominating Set (adj is the adjacency relation):

Min(X) : ∀a∃b ∈ X: (adj(a, b) ∨ a = b)

The crucial point is that LinEMSO1 only allows the optimization of set car-
dinalities over all assignments satisfying a MSO1 formula. It is not possible to
use LinEMSO1 to place restrictions on cardinalities of sets considered in the
formula. In fact, such restrictions may be used to describe problems which are
W[1]-hard on graphs of bounded tree-width, whereas all LinEMSO1-definable
problems may be solved in FPT time even on graphs of bounded clique-width
[4].

In this paper we define cardMSO1, an extension of MSO1 which allows re-
strictions on set cardinalities.

Definition 2.3 (cardMSO1). The language of cardMSO1 logic consists of ex-
pressions built from the following elements:

Expanding the Expressive Power of Monadic Second-Order Logic 167

– variables x, y . . . for vertices, and X,Y . . . for sets of vertices
– the predicates x ∈ X and adj(x, y) with the standard meaning
– equality for variables, quantifiers ∀, ∃ and the standard Boolean connectives
– tt and ff as the standard valuation constants representing true and false
– the expressions [ρ1 ≤ ρ2], for which the syntax of the ρ expressions is defined

as ρ ::= n | |X | | ρ + ρ, where n ∈ Z ranges over integer constants and X
over (vertex) set variables.

We call expressions of the form [ρ1 ≤ ρ2] linear (cardinality) constraints, and
write [ρ1 = ρ2] as a shorthand for [ρ1 ≤ ρ2] ∧ [ρ2 ≤ ρ1], and [ρ1 < ρ2] for
[ρ1 ≤ ρ2] ∧ ¬[ρ2 ≤ ρ1]. A formula ϕ of cardMSO1 is an expression of the form
ϕ = ∃Z1 . . . ∃Zm.ϕ such that ϕ is a MSO1 formula with linear constraints and
Z1, . . . , Zm are the only variables which appear in the linear constraints.

To give the semantics of cardMSO1 it is enough to define the semantics of
cardinality constraints, the rest follows the standard MSO1 semantics. Let V :
X → Z be a valuation of set variables. Then the truth value of [ρ1 ≤ ρ2] is
obtained be replacing each occurrence of |X | with the cardinality of V(X) and
evaluating the expression as standard integer inequality.

To give an example, the following cardMSO1 formula is true if, and only if, a
graph is bipartite and both parts have the same cardinality:

∃X1∃X2.(∀v ∈ V.(v ∈ X1 ⇐⇒ ¬v ∈ X2)) ∧ [|X1| = |X2|]∧
(∀u ∈ V.(adj(u, v) =⇒ ((u ∈ X1 ∧ v ∈ X2) ∨ (u ∈ X2 ∧ v ∈ X1)))

For a cardMSO1 formula ϕ = ∃Z1 . . . ∃Zm.ϕ we call ∃Z1 . . . ∃Zm the prefix
of ϕ, and the variables Zi prefix variables. We also put Z(ϕ) = {Z1, . . . , Zm},
and often write just Z if ϕ is clear from the context. Note that, since all prefix
variables are existentially quantified set variables, checking whether G |= ϕ (for
some graph G) is equivalent to finding a variable assignment χ : Z → 2V (G)

such that G |=χ ϕ. We call such χ the prefix assignment (for G and ϕ). Note
that the sets χ(Zi) can be used to determine subtypes, and therefore we often
write Sχ

G with the obvious meaning.

2.3 ILP Programming

Integer Linear Programming (ILP) is a well-known framework for formulating
problems, and will be used extensively in our approach. We provide only a brief
overview of the framework:

Definition 2.4 (p-Variable ILP Feasibility (p-ILP)). Given matrices A ∈
Z
m×p and b ∈ Z

m×1, the p-Variable ILP Feasibility (p-ILP) problem is whether
there exists a vector x ∈ Z

p×1 such that A · x ≤ b. The number of variables p is
the parameter.

Lenstra [16] showed that p-ILP, together with its optimization variant p-OPT-
ILP, can be solved in FPT time. His running time was subsequently improved
by Kannan [14] and Frank and Tardos [11].

168 R. Ganian and J. Obdržálek

Theorem 2.5 ([16,14,11,9]). p-ILP and p-OPT-ILP can be solved using
O(p2.5p+o(p) · L) arithmetic operations in space polynomial in L, L being the
number of bits in the input.

3 cardMSO1 Model Checking

The main purpose of this section is to give a proof of Theorem 1.1. The proof
builds upon the following result of Lampis:

Lemma 3.1 ([15]). Let ϕ be an MSO1 formula with qS set variables and qv
vertex variables. Let G1 be a graph, v ∈ V (G1) a vertex of type T such that
|T | > 2qS · qv, and G2 a graph obtained from G1 by deleting v. Then G1 |= ϕ iff
G2 |= ϕ.

In other words, a formula ϕ of MSO1 cannot distinguish between two graphs
G1 and G2 which differ only in the cardinalities of some types, as long as the
cardinalities in both graphs are at least 2qS · qv.

This gives us an efficient algorithm for model checking MSO1 on graphs of
bounded vertex cover: We first “shrink” the sizes of types to 2qS · qv and then
recursively evaluate the formula, at each quantifier trying all possible choices for
each set and vertex variable1.

Theorem 3.2 ([15]). There exists an algorithm which, for a MSO1 sentence ϕ
with q variables and a graph G with n vertices and vertex cover of size at most

k, decides G |= ϕ in time 22
O(k+q)

+O(2kn).

However, a straightforward adaptation of the approach sketched above does
not work with linear constraints. To see this, simply consider e.g. the formula
∃Z1∃Z2.[|Z1| = |Z2|+1]. Changing the cardinality of Z1 by even a single vertex
can alter whether the linear constraint is evaluated as true or false, even if |Z1∩T |
is large for some type T . On the other hand, observe that the truth value of a
linear inequality [ρ1 ≤ ρ2] depends only on the prefix variables, not on the rest
of the formula. With this in mind, we continue by sketching the general strategy
for proving Theorem 1.1:

Given a graph G and a formula ϕ we begin by creating the graph Gϕ from G
by reducing the size of each type to 2qS · qv. Since this construction can impact
the possible values of linear constraints in ϕ, we replace each linear constraint
with either tt or ff, effectively claiming which linear constraints we expect to be
satisfied in G (for some assignment to prefix variables). We try all 2l possible
truth valuations of linear constraints.

For each MSO1 formula ψ obtained from ϕ by fixing some truth valuation of
linear constraints we now check whether Gϕ |= ψ, generating all prefix assign-
ments χ for which Gϕ |=χ ψ. The remaining step is to check whether some prefix
assignment (in Gϕ) can be extended to a prefix assignment in G in such a way

1 Note that both Lemma 3.1 and Theorem 3.2 implicitly utilize the symmetry between
vertices of the same type.

Expanding the Expressive Power of Monadic Second-Order Logic 169

that ψ would still hold in G and all linear cardinality constraints would evaluate
to their guessed values. This check is performed by the construction of an p-ILP
formulation which is feasible if, and only if, there is such an extension.

We now formalize the proof we have just sketched. First, we need a few def-
initions. We start by formalizing the process of “shrinking” (some types of) a
graph.

Definition 3.3. Given a graph G and a cardMSO1 formula ϕ = ∃Z1 . . . ∃Zm.ϕ
with qv vertex and m + qS set variables, we define the reduced graph Gϕ to be
the graph obtained from G by the following prescription:

1. For each type T ∈ TG s.t. |T | > 2qS+mqv we delete the “extra” vertices of
type T so that exactly 2qS+mqv vertices of this type remain, and

2. we take the subgraph induced by the remaining vertices.

Note that vertices of a type with cardinality at most 2qS+mqv are never deleted
in the process of “shrinking”G, and |V (Gϕ)| ≤ |TGϕ |·2qS+mqv. Next we formalize
the process of fixing the truth values of linear cardinality constraints.

Definition 3.4. Let l(ϕ) = {l1, . . . , lk} be the list of all linear cardinality con-
straints in the formula ϕ. Let α : l(ϕ) → {tt,ff}, called the pre-evaluation func-
tion, be an assignment of truth values to all linear constraints. Then by α(ϕ)
we denote the formula obtained from ϕ by replacing each linear constraint li by
α(li), and call α(ϕ) the pre-evaluation of ϕ. Note that α(ϕ) is a MSO1 formula.

As we mentioned earlier, the truth value for each linear cardinality constraint
depends only on the values of prefix variables. Therefore all linear constraints
can be evaluated once we have fixed a prefix assignment. We say that a prefix
assignment χ, of a cardMSO1 formula ϕ, complies with a pre-evaluation α if each
linear constraint l ∈ l(ϕ) evaluates to true (under χ) if, and only if, α(l) = tt.

We also need a notion of extending a prefix assignment for Gϕ to G. In the
following definition we use the implicit matching between the subtypes S of G
and the subtypes Sϕ of its subgraph Gϕ.

Definition 3.5. Given a graph G and a cardMSO1 formula ϕ = ∃Z1 . . . ∃Zm.ϕ
with qv vertex and qS set variables in ϕ, we say that a prefix assignment χ for
G extends a prefix assignments χϕ for Gϕ if for all S ∈ Sχ

G:

1. S = Sϕ if |Sϕ| ≤ 2qSqv
2. S ⊇ Sϕ if |Sϕ| > 2qSqv

Finally we will need the following statement, which directly follows from the
proof of Lemma 3.1 [15]:

Lemma 3.6. Let ϕ = ∃Z1 . . . ∃Zm.ϕ be an MSO1 formula, with qS set variables
in ϕ and qv vertex variables, and let χ1 : Z → 2V (G1) be a prefix assignment in
G1. Let v ∈ V (G1) be a vertex of subtype S ∈ Sχ

G1
such that |S| > 2qsqv, and G2

a graph obtained from G1 by deleting v. Then G1 |=χ1 ϕ iff G2 |=χ2 ϕ, where χ2

is the prefix assignment induced by χ1 on G2.

170 R. Ganian and J. Obdržálek

For the remainder of this section let us fix a cardMSO1 formula ϕ =
∃Z1 . . .∃Zm.ϕ with qv vertex variables, qS set variables in ϕ and with linear
cardinality constraints l(ϕ) = {l1, . . . , lk}. We are now ready to state the main
lemma:

Lemma 3.7. Let G be a graph, ϕ be a cardMSO1 formula, χϕ be a prefix as-
signment for Gϕ, and α a pre-evaluation such that Gϕ |=χϕ α(ϕ). Then we can,
in time O(|TG| · 2m|l(ϕ)|), construct a p-ILP formulation which is feasible iff χϕ

can be extended to a prefix assignment χ for G such that (a) χ complies with α,
and (b) G |=χ ϕ. Moreover, the formulation has |TG| · 2m variables.

Proof. We start by showing the construction of the p-ILP formulation. The
set of variables is created as follows: For each subtype S ∈ Sχϕ

Gϕ
we introduce

a variable xS which will represent the cardinality of S in G. There are three
groups of constraints:

1. We need to make sure that, for each type T ∈ TG, the cardinalities of all
subtypes of T sum up to the cardinality of a type T . This is easily achieved by
including a constraint

∑
S⊆T xS = |T | for each type T (note that here |T | is a

constant).
2. We need to guarantee that χ extends χϕ. Therefore we include xS = |Sϕ|

for each subtype with |Sϕ| ≤ 2qSqv, and xS > |Sϕ| if |Sϕ| > 2qSqv.
3. We need to check that χ complies with α, i.e. that each linear constraint

l is either true or false based on the value of α(l). For each constraint l we
first replace each occurrence of |Zi| with the sum of cardinalities of all subtypes
which are contained in Zi, i.e. by

∑
Sϕ⊆Zi

xS . Then if α(l) = tt, we simply
insert the modified constraint into the formulation. Otherwise we first reverse
the inequality (e.g. > instead of ≤), and then also insert it.

To prove the forward implication, let us assume that the p-ILP formulation is
feasible. To define χ we start with χ = χϕ. Then for each subtype S ∈ SG if xS >
|Sϕ| we add xS − |Sϕ| unassigned vertices of type T , where T is the supertype
of S. This is always possible thanks to constraints in 1. and 2. The constraints
in 3. guarantee that χ complies with α. Finally G |=χ ϕ by Lemma 3.6.

For the reverse implication let S ∈ SG be the subtype identified by the set
Y ⊂ Z. Then we put xS = |{v ∈ V (G)|∀Z ∈ Z.v ∈ χ(Z) ⇐⇒ Z ∈ Y}, and the
p-ILP formulation is satisfiable by our construction. Finally, it is easy to verify
that the size of this p-ILP formulation is at most O(|TG| · 2qS |l(ϕ)|).

Proof of Theorem 1.1. We start by constructing Gϕ from G, which may be
done by finding a vertex cover in time O(2k · n), dividing vertices into at most
2k + k types (in linear time once we have a vertex cover) and keeping at most
2qS+mqv vertices in each type.

Now for each pre-evaluation α : l(ϕ) → {tt,ff} we do the following: We run the
trivial recursive MSO1 model checking algorithm on Gϕ, by trying all possible
assignments of vertices of Gϕ to set and vertex variables. Each time we find a
satisfying assignment, we remember the values of the prefix variables Z, and
proceed to finding the next satisfying assignment. Since the prefix variables of
ϕ (and α(ϕ)) are existentially quantified, their value is fixed before α(ϕ) starts

Expanding the Expressive Power of Monadic Second-Order Logic 171

being evaluated and therefore is the same at any point of evaluating α(ϕ). At
the end of this stage we end up with at most (2|V (Gϕ)|)m different satisfying
prefix assignments of Z1, . . . , Zm for each pre-evaluation α.

We now need to check whether some combination of a pre-evaluation α and
its satisfying prefix assignment χϕ from the previous step can be extended to a
satisfying assignment for ϕ and G. This can be done by Lemma 3.7.

To prove correctness, assume that there exists a satisfying assignment χ for G.
We create G′

ϕ by, for each T ∈ TG such that |T | > 2qS+mqv, inductively deleting
vertices from subtypes S ⊆ T such that |S| > 2qsqv, until |T | = 2qS+mqv for every
T . Observe that G′

ϕ is isomorphic to Gϕ and that there is a satisfying assignment
χ′ induced by χ on G′

ϕ. Then applying the isomorphism to χ′ creates a satisfying
assignment χ2 on Gϕ, and Lemma 3.7 ensures that our p-ILP formulation is
feasible for χ2.

To compute the time complexity of this algorithm, note that we first need time
O(2k ·n) to compute Gϕ. Then for each of the 2|l| pre-evaluations we compute all

the satisfying prefix assignments in time 22
O(k+qS+m)qv by Theorem 3.2. For each

of the at most (2|V (Gϕ)|)m = (2(2
k+k)·2qS+mqv)m satisfying prefix assignments

for Gϕ, we check whether it can be extended to an assignment for G, which

can be done in time at most 22
O(k+qS+m)

by applying Theorem 2.5 on the p-ILP
formulation constructed by Lemma 3.7. We therefore need time O(2k · n) + 2m ·
(22

O(k+qS+m)qv+|l| + (2(2
k+k)·2qS+mqv)m · 22O(k+qS+m)

), and the bound follows.

Remark: The space complexity of the algorithm presented above may be
improved by successively applying Lemma 3.7 to each iteratively computed sat-
isfying prefix assignment (for each pre-evaluation).

Before moving on to the next section, we show how these results can be ex-
tended towards well-structured dense graphs. It is easy to verify that the only
reference to an actual vertex cover of our graph is in Theorem 3.2 – all other
proofs rely purely on bounding the number of types. In [15] Lampis also con-
sidered a new parameter called neighborhood diversity, which is the number of
different types of a graph. I.e. graph G has neighborhood diversity k iff |TG| = k.
Since there exist classes of graphs with unbounded vertex cover but bounded
neighborhood diversity (for instance the class of complete graphs), parameter-
izing by neighborhood diversity may in some cases lead to better results than
using vertex cover.

Corollary 3.8. There exists an algorithm which, given a graph G with neighbor-
hood diversity k and a cardMSO1 formula ϕ with q variables, decides if G |= ϕ

in time 2k2
O(q)+|ϕ| + k · poly(|V (G)|).

Proof. The proof is nearly identical to the proof of Theorem 1.1. The only
change is that we begin by computing the neighborhood diversity and the asso-
ciated partition into types (which may be done in polynomial time, cf. Theorem
5 in [15]), and we of course use the fact that the number of types is now at most
k instead of 2k + k.

172 R. Ganian and J. Obdržálek

4 Applications

4.1 Equitable Problems

Perhaps the most natural class of problems which may be captured by cardMSO1

but not by MSO1 (or even MSO2) are equitable problems. Equitable problems
generally ask for a partitioning of the graph into a (usually fixed) number of
specific sets of equal (±1) cardinality.

Equitable c-coloring [18] is probably the most extensively studied example of an
equitable problem. It asks for a partitioning of a graph into c equitable indepen-
dent sets and has applications in scheduling, garbage collection, load balancing
and other fields (see e.g. [5,3]). While even equitable 3-coloring is W[1]-hard on
graphs of bounded tree-width [8], equitable c-coloring may easily be expressed
in cardMSO1:

∃A,B,C : part(A,B,C)∧∀x, y : ((x, y ∈ A∨x, y ∈ B∨x, y ∈ C) =⇒ ¬adj(x, y))
∧equi(A,B) ∧ equi(A,C) ∧ equi(B,C), where

• part(A,B,C) =
(
∀x : (x ∈ A∧¬x ∈ B ∧¬x ∈ C)∨ (¬x ∈ A∧ x ∈ B ∧¬x ∈

C) ∨ (¬x ∈ A ∧ ¬x ∈ B ∧ x ∈ C)
)
.

• equi(T, U) = (
[
|T | = |U |+ 1

]
∨
[
|T |+ 1 = |U |

]
∨
[
|T | = |U |

]
).

Equitable connected c-partition [6] is another studied equitable problem which is
known to be W[1]-hard even on graphs of bounded path-width but which admits
a simple description in cardMSO1:

∃A,B,C : part(A,B,C) ∧ conn(A) ∧ conn(B) ∧ conn(C)
∧equi(A,B) ∧ equi(A,C) ∧ equi(B,C), where

• conn(U) =
(
∀T : (∀x : x ∈ T =⇒ x ∈ U) =⇒ (T = U ∨ (¬∃a : a ∈

T) ∨ ∃a, b : a ∈ U ∧ ¬a ∈ T ∧ b ∈ T ∧ adj(a, b)
)
.

4.2 Solution Size as Input

cardMSO1 allows us to restrict the set cardinalities by constants given as part
of the input. For instance, the formula below expresses the existence of an Inde-
pendent Dominating Set of cardinality k:

∃X : (∀a, b ∈ X.¬adj(a, b))∧
∧(∀b ∈ V.b ∈ X ∨ (∃a ∈ X. adj(a, b))) ∧ [|X | = k]

Notice that there is an equivalent MSO1 formula for any fixed k. However,
the number of variables in the MSO1 formula would depend on k, which would
negatively impact on the runtime of model checking. On the other hand, using
an input-specified variable only requires us to change a constant in the p-ILP
formulation, with no impact on runtime.

Expanding the Expressive Power of Monadic Second-Order Logic 173

4.3 c-Balanced Partitioning

Finally, we show an example of how our approach can be used to obtain new
results even for optimization problems, which are (by definition) not expressible
by cardMSO1. While the presented algorithm does not rely directly on Theorem
1.1, it is based on the same fundamental ideas.

The problem we focus on is c-balanced partitioning, which asks for a parti-
tion of the graph into c equitable sets such that the number of edges between
different sets is minimized. The problem was first introduced in [17], has appli-
cations in parallel computing, electronic circuit design and sparse linear solvers
and has been studied extensively (see e.g. [7,2]). The problem is notoriously hard
to approximate, and while an exact XP algorithm exists for the c-balanced par-
titioning of trees parameterized by c [7,17], no parameterized algorithm is known
for graphs of bounded tree-width.

Theorem 4.1. There exists an algorithm which, given a graph G with vertex

cover of size k and a constant c, solves c-balanced partitioning in time 22
O(k+c)

+
2k|V (G)|.

Proof. We begin by applying the machinery of Theorem 1.1 to the cardMSO1

formula ϕ for equitable c-partitioning ϕ:

∃A,B,C : part(A,B,C) ∧ equi(A,B) ∧ equi(A,C) ∧ equi(B,C)

Recall that this means trying all possible assignments of the c set variables
in Gϕ and testing whether each assignment can be extended to G in a manner
satisfying ϕ. Unlike in Theorem 1.1 though, we need to tweak the p-ILP formu-
lations to not only check the existence of an extension χ for our pre-evaluation
α, but also to find the χ which minimizes the size of the cut between vertex sets.

To do so, we add one variable β into the formulation and use a p-OPT-ILP
formulation minimizing β. We also add a single equality into the formulation
to make β equal to the size of the cut between the c vertex sets. While it is
not possible to count the edges directly, the fact that we always have a fixed
satisfying prefix assignment in Gϕ allows us to calculate β as:

β = const0 +
∑

S∈U constS xS , where

– const0 is the number of edges between all pairs of cover vertices with different
types (this is obtained from the prefix assignment in Gϕ),

– U is the set of subtypes which do not contain cover vertices (recall that each
cover vertex has its own subtype),

– xS is the ILP variable for the cardinality of subtype S (cf. Lemma 3.7),
– For each subtype S, constS is the number of adjacent vertices in the cover

assigned to a different vertex set than S. The values of constS depend only
on the subtype S and the chosen prefix assignment χϕ in Gϕ.

For each satisfying prefix assignment χϕ in Gϕ, the p-OPT-ILP formulation
will not only check that this may be extended to an assignment χ in G, but also

174 R. Ganian and J. Obdržálek

find the assignment in G which minimizes β. All that is left is to store the best
computed β for each satisfying prefix assignment and find the satisfying prefix
assignment with minimum β after the algorithm from Theorem 1.1 finishes.

For correctness, assume that there exists a solution which is smaller than
the minimal β found by the algorithm. Such a solution would correspond to an
assignment of ϕ in G, which may be reduced to a prefix assignment χ of a pre-
evaluation α(ϕ) in Gϕ. If we construct the p-ILP formulation for χ and α(ϕ),
then the obtained β would equal the size of the cut. However, our algorithm
computes the β for all pre-evaluations and satisfying prefix assignments in Gϕ,
so this gives a contradiction.

5 MSO Partitioning

The MSO (or MSO1) partitioning framework was introduced by Rao in [19]
and allows the description of many problems which cannot be formulated in
MSO, such as Chromatic number, Domatic number, Partitioning into Cliques
etc. While a few of these problems (e.g. Chromatic number) may be solved
on graphs of bounded tree-width in FPT time by using additional structural
properties of tree-width, MSO partitioning problems in general are W[1]-hard
on such graphs.

Definition 5.1 (MSO partitioning). Given a MSO formula ϕ, a graph G
and an integer r, can V (G) be partitioned into sets X1, X2, . . . , Xr such that
∀i ∈ {1, 2, . . . , r} : Xi |= ϕ ?

Similarly to Section 3, we will show that a combination of ILP and MSO
model checking allows us to design efficient FPT algorithms for MSO partitioning
problems on graphs of bounded vertex cover. However, here the total number of
sets is specified on the input and so the number of subtypes is not fixed, which
prevents us from capturing the cardinality of subtypes by ILP variables. Instead
we use the notion of shape:

Definition 5.2. Given a graph G and a MSO1 formula ϕ with qS , qv set and
vertex variables respectively, two sets A,B ⊆ V (G) have the same shape iff for
each type T it holds that either |A∩T | = |B∩T | or both |A∩T |, |B∩T | > 2qSqv.

Let A be any set of shape s. We define |s ∩ T |, for any type T , as:

|s ∩ T | =
{
|A ∩ T | if |A ∩ T | ≤ 2qSqv

� otherwise

Since ϕ is a MSO1 formula, from Lemma 3.1 we immediately get:

(5.3) For any two sets A,B ⊆ V (G) of the same shape, it holds that A |= ϕ iff
B |= ϕ, and

Expanding the Expressive Power of Monadic Second-Order Logic 175

(5.4) Given a MSO formula with q variables, a graph G with vertex cover of

size k has at most (2qSqv)
2k+k distinct shapes.

With these in hand, we may proceed to:

Proof of Theorem 1.2. First, we consider all at most (2qSqv)
2k+k shapes of

a set X . For each such shape s, we decide whether a set Xs of shape s satisfies
ϕ by Theorem 3.2. We then create an ILP formulation with one variable xs for
each shape s satisfying ϕ. The purpose of xs is to capture the number of sets
Xs of shape s in the partitioning of G.

Two conditions need to hold for the number of sets of various shapes. First,
the total number of sets needs to be r. This is trivial to model in our formulation
by simply adding the constraint that the sum of all xs equals r.

Second, it must be possible to map each vertex in G to one and only one set
X (to ensure that the sets form a partition). Notice that if a partition were to
only contain shapes with at most 2qSqv vertices in each T , then the cardinality
of s ∩ T would be fixed and so the following set of constraints for each T ∈ T
would suffice:∑

∀s xs · |s ∩ T | = |T |
However, in general the partition will also contain shapes with more than 2qSqv

vertices in T , and in this case we do not have access to the exact cardinality of
their intersection with T . To this end, for each T ∈ T we add the following two
sets of constraints:

a)
∑

∀s:|s∩T |≤2qS qv
xs · |s ∩ T |+

∑
∀s:|s∩T |=	 xs · (2qSqv) ≤ |T |

b)
∑

∀s:|s∩T |≤2qS qv
xs · |s ∩ T |+

∑
∀s:|s∩T |=	 xs · |T | ≥ |T |

Here a) ensures that a partitioning of G into
∑

∀s xs sets of shape s can “fit”
into each T and b) ensures that there are no vertices which cannot be mapped to
any set. Notice that if the partition contains any shape s which intersects with
T in over 2qSqv vertices then b) is automatically satisfied, since all unmapped
vertices in T can always be added to s without changing Xs |= ϕ.

If the p-ILP formulation specified above has a feasible solution, then we can
construct a solution to (ϕ, r) on G by partitioning G as follows: For each shape
s we create sets Xs,1 . . . Xs,xs . Then in each type T in G, we map |T ∩ s| yet-
unmapped vertices to each set Xs,i. Constraints a) make sure this is possible. If
there are any vertices left unmapped in T , then due to constraint b) there must
exist some set X ′ such that |X ′ ∩T | > 2qSqv. We map the remaining unmapped
vertices in T to any such set X ′, resulting in a partition of G. Finally, the fact
that each of our sets satisfies ϕ follows from our selection of shapes.

On the other hand, if a solution to (ϕ, r) onG exists, then surely each set in the
partition has some shape and so it would be found by the p-ILP formulation. The
total runtime is the sum of finding the vertex cover, the time of model-checking

all the shapes and the runtime of p-ILP, i.e. O(2k|V (G)) + 22
O(k+q) · q(2k+k) +

q(2
k+k)·qO(2k+k)

.

176 R. Ganian and J. Obdržálek

Theorem 1.2 straightforwardly extends to neighborhood diversity as well. Di-
rectly bounding the number of types by k results in a bound of (2qSqv)

k on the
number of distinct shapes in Claim 5.4, and so we get:

Corollary 5.5. There exists an algorithm which, given a graph G with neighbor-
hood diversity at most k and a MSO partitioning instance (ϕ, r) with q variables,

decides if G |= (ϕ, r) in time 22
O(qk) · |(ϕ, r)| + k|V (G)|.

6 Concluding Notes

The article provides two new meta-theorems for graphs of bounded vertex cover.
Both considered formalisms can describe problems which are W[1]-hard on
graphs of bounded clique-width and even tree-width. On the other hand, we
provide FPT algorithms for both cardMSO1 and MSO partitioning which have
an elementary dependence on both the formula and parameter (as opposed to
the results of Courcelle et al. for tree-width).

The obtained time complexities are actually fairly close to the lower bounds

provided in [15] for MSO1 model checking (already 22
o(k+q) ·poly(n) would violate

ETH); this is surprising since the considered formalisms are significantly more
powerful than MSO1. Our methods may also be of independent interest, as they
show how to use p-ILP as a powerful tool for solving general model checking
problems.

Let us conclude with future work and possible extensions of our results. As
correctly observed by Lampis in [15], any MSO2 formula can be expressed by
MSO1 on graphs of bounded vertex cover. This means that an (appropriately
defined) cardMSO2 or MSO2 partitioning formula could be translated to an
equivalent cardMSO1 or MSO partitioning formula on graphs of bounded vertex
cover. However, the details of these formalisms would need to be laid out in
future work.

Another direction would be to extend the results of Theorems 1.1 and 1.2 to
more general parameters, such as twin-cover [12] or shrub-depth [13]. Finally,
it would be interesting to extend cardMSO1 to capture more hard problems.
Theorem 4.1 provides a good indication that the formalism could be adapted to
also describe a number of optimization problems on graphs.

References

1. Adiga, A., Chitnis, R., Saurabh, S.: Parameterized algorithms for boxicity. In:
Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010, Part I. LNCS, vol. 6506,
pp. 366–377. Springer, Heidelberg (2010)

2. Andreev, K., Räcke, H.: Balanced graph partitioning. Theory Comput. Syst. 39(6),
929–939 (2006)

3. Bazewicz, J., Ecker, K., Pesch, E., Schmidt, G., Weglarz, J.: Scheduling Computer
and Manufacturing Processes, 2nd edn. Springer-Verlag New York, Inc., Secaucus
(2001)

Expanding the Expressive Power of Monadic Second-Order Logic 177

4. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization prob-
lems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150
(2000)

5. Das, S., Finocchi, I., Petreschi, R.: Conflict-free star-access in parallel memory
systems. J. Parallel Distrib. Comput. 66(11), 1431–1441 (2006)

6. Enciso, R., Fellows, M.R., Guo, J., Kanj, I., Rosamond, F., Suchý, O.: What makes
equitable connected partition easy. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009.
LNCS, vol. 5917, pp. 122–133. Springer, Heidelberg (2009)

7. Feldmann, A., Foschini, L.: Balanced Partitions of Trees and Applications. In:
STACS 2012. Leibniz International Proceedings in Informatics (LIPIcs), vol. 14,
pp. 100–111. Schloss Dagstuhl, Dagstuhl (2012)

8. Fellows, M., Fomin, F., Lokshtanov, D., Rosamond, F., Saurabh, S., Szeider, S.,
Thomassen, C.: On the complexity of some colorful problems parameterized by
treewidth. Inf. Comput. 209, 143–153 (2011)

9. Fellows, M.R., Lokshtanov, D., Misra, N., Rosamond, F.A., Saurabh, S.: Graph
layout problems parameterized by vertex cover. In: Hong, S.-H., Nagamochi, H.,
Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 294–305. Springer, Heidel-
berg (2008)

10. Fiala, J., Golovach, P., Kratochv́ıl, J.: Parameterized complexity of coloring prob-
lems: Treewidth versus vertex cover. Theoret. Comput. Sci. 412(23), 2513–2523
(2011)

11. Frank, A., Tardos, É.: An application of simultaneous diophantine approximation
in combinatorial optimization. Combinatorica 7(1), 49–65 (1987)

12. Ganian, R.: Twin-cover: Beyond vertex cover in parameterized algorithmics. In:
Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp. 259–271.
Springer, Heidelberg (2012)

13. Ganian, R., Hliněný, P., Nešetřil, J., Obdržálek, J., Ossona de Mendez, P., Ra-
madurai, R.: When trees grow low: Shrubs and fast MSO1. In: Rovan, B., Sassone,
V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 419–430. Springer, Hei-
delberg (2012)

14. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math.
Oper. Res. 12, 415–440 (1987)

15. Lampis, M.: Algorithmic meta-theorems for restrictions of treewidth. Algorith-
mica 64(1), 19–37 (2012)

16. Lenstra, H.: Integer programming with a fixed number of variables. Math. Oper.
Res. 8, 538–548 (1983)

17. MacGregor, R.: On partitioning a graph: a theoretical and empirical study. PhD
thesis, University of California, Berkeley (1978)

18. Meyer, W.: Equitable coloring. American Mathematical Monthly 80, 920–922
(1973)

19. Rao, M.: MSOL partitioning problems on graphs of bounded treewidth and clique-
width. Theoret. Comput. Sci. 377, 260–267 (2007)

	Expanding the Expressive Power of Monadic Second-Order Logic on Restricted Graph Classes
	1 Introduction
	2 Preliminaries and Definitions
	2.1 Vertex Cover and Types
	2.2 MSO1 and Its Cardinality Extensions
	2.3 ILP Programming

	3 cardMSO1 Model Checking
	4 Applications
	4.1 Equitable Problems
	4.2 Solution Size as Input
	4.3 c-Balanced Partitioning

	5 MSO Partitioning
	6 Concluding Notes
	References

