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Abstract. Non-uniform hypergraphs appear in several domains of com-
puter science as in the satisfiability problems and in data analysis. We
analyze their typical structure before and near the birth of the complex
component, that is the first connected component with more than one
cycle. The model of non-uniform hypergraph studied is a natural gen-
eralization of the multigraph process defined in the “giant paper” [1].
This paper follows the same general approach based on analytic com-
binatorics. We study the evolution of hypergraphs as their complexity,
defined as the excess, increases. Although less natural than the num-
ber of edges, this parameter allows a precise description of the structure
of hypergraphs. Finally, we compute some statistics of the hypergraphs
with a given excess, including the expected number of edges.
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1 Introduction

In the seminal article [2], Erdös and Rényi discovered an abrupt change of the
structure of a random graph when the number of edges reaches half the number of
vertices. It corresponds to the emergence of the first connected component with
more than one cycle, immediately followed by components with even more cycles.
The combinatorial analysis of those components improves the understanding
of the objects modeled by graphs and has application in the analysis and the
conception of graph algorithm. The same motivation holds for hypergraphs which
appear for example for the modelisation of databases and xor-formulas.

Much of the literature on hypergraphs is restricted to the uniform case, where
all the edges contain the same number of vertices. In particular, the analysis of
the birth of the complex component can be found in [3] and [4].

There is no canonical choice for the size of a random edge in a hypergraph;
thus several models have been proposed. One is developed in [5], where the size of
the largest connected component is obtained using probabilistic methods. In [6],
Darling and Norris define the important Poisson random hypergraphs model and
analyze its structure via fluid limits of pure jump-type Markov processes.
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We have not found in the literature much use of the generating function of
non-uniform hypergraphs to investigate their structure, and we intend to fill this
gap. However, similar generating functions have been derived in [7] for a different
purpose: Gessel and Kalikow use it to give a combinatorial interpretation for a
functional equation of Bouwkamp and de Bruijn. The underlying hypergraph
model is a natural generalization of the multigraph process defined in [1].

In section 2 we introduce the hypergraph models, the probability distribution
and the corresponding generating functions. The important notion of excess is
also defined. Section 3 is dedicated to the asymptotic number of hypergraphs
with n vertices and excess k. Some statistics on the random hypergraphs are
derived, including the expected number of edges. The critical excess at which the
first complex component appears is obtained in section 4. For a range of excess
near and before this critical value, we compute the probability that a random
hypergraph contains no complex component. The classical notion of kernel is
introduced for hypergraphs in section 5. It is then used to derive the asymptotic
of connected hypergraphs with n vertices and excess k up to a multiplicative
factor independent of n. Finally, we present in section 6 a surprising result:
although the critical excess is generally different for graphs and hypergraphs,
both models share the same structure at their respective critical excess.

2 Definitions

In this paper, a hypergraph G is a multiset E(G) of m(G) edges. Each edge e is
a multiset of |e| vertices in V (G), where |e| ≥ 2. The vertices of the hypergraph
are labelled from 1 to n(G). We also set l(G) for the size of G, defined by

l(G) =
∑

e∈E(G)

|e| =
∑

v∈V (G)

deg(v).

The notion of excess was first used for graphs in [8], then named in [1], and
finally extended to hypergraphs in [9]. The excess of a connected component C
expresses how far from a tree it is: C is a tree if and only if its excess is −1
and is said to be complex if its excess is strictly positive. Intuitively, a connected
component with high excess is “hard” to treat for a backtracking algorithm. The
excess k(G) of a hypergraph G is defined by

k(G) = l(G)− n(G) −m(G).

A hypergraph may contain several copies of the same edge and a vertex may
appear more than once in an edge; thus we are considering multihypergraphs.
A hypergraph with no loop nor multiple edge is said to be simple. Let us recall
that a sequence is by definition an ordered multiset. We define NumbSeq(G)
as the number of sequences of nonempty sequences of vertices that lead to G.
For example, the sequences (1, 2), (2, 3) and (3, 2), (1, 2) represent the same
hypergraph, but not (2, 1), (1, 3). If G is simple, then NumbSeq(G) is equal
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to m(G)!
∏

e∈E(G) |e|!, otherwise it is smaller. We associate to any family F of
hypergraphs the generating function

F (z, w, x) =
∑

G∈F

NumbSeq(G)

m(G)!

( ∏

e∈E(G)

ω|e|
|e|!

)
wm(G)xl(G) z

n(G)

n(G)!
(1)

where ωt marks the edges of size t, w the edges, x the size of the graph and z
the vertices. Therefore, we count hypergraphs with a weight κ

κ(G) =
NumbSeq(G)

m(G)!

∏

e∈E(G)

ω|e|
|e|! (2)

that is the extension to hypergraphs of the compensation factor defined in sec-
tion 1 of [1]. If F is a family of simple hypergraphs, then we obtain the simpler
and natural expression

F (z, w, x) =
∑

G∈F

( ∏

e∈E(G)

ω|e|
)
wm(G)xl(G) z

n(G)

n(G)!
. (3)

Remark that the generating function of the subfamily of hypergraphs of excess k
is [yk]F (z/y, w/y, xy), where [xn]

∑
k akx

k denotes the coefficient an.
We define the exponential generating function of the edges as

Ω(z) :=
∑

t≥1

ωt
zt

t!
.

For now on, the (ωt) are considered as a bounded sequence of nonnegative real
numbers with ω0 = ω1 = 0. The value ωt represents how likely an edge of
size t is to appear. Thus, for graphs we get Ω(z) = z2/2, for d-uniform hy-
pergraphs Ω(z) = zd/d!, and for hypergraphs with weight 1 for all size of
edge Ω(z) = ez. To simplify the saddle point proofs, we also suppose that Ω(z)/z
cannot be written as f(zd) for an integer d > 1 and a power serie f with a non-
zero radius of convergence. This implies that eΩ(z)/z is aperiodic. Therefore, we
do not treat the important, but already studied case of uniform hypergraphs.

The generating function of all hypergraphs is

hg(z, w, x) =
∑

n

ewΩ(nx) z
n

n!
. (4)

This expression can be derived from (1) or using the symbolic method presented
in [10]. Indeed, Ω(nx) represents an edge of size marked by x and n possible types
of vertices, and ewΩ(nx) a set of edges. For the family of simple hypergraphs,

shg(z, w, x) =
∑

n

(
∏

t

(1 + ωtx
tw)(

n
t)

)
zn

n!
. (5)
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Similar expressions have been derived in [7]. The authors use them to give a com-
binatorial interpretation of a functional equation of Bouwkamp and de Bruijn.

Comparing (1) with (3), simple hypergraphs may appear more natural than
hypergraphs. But their generating function is more intricated and the asymp-
totics results on hypergraphs can often be extended to simple hypergraphs. This
is another reason not to confine our study to simple hypergraphs.

So far, we have adopted an enumerative approach of the model, but there is
a corresponding probabilistic description. We define HGn,k (resp. SHGn,k) as
the set of hypergraphs (resp. simple hypergraphs) with n vertices and excess k,
and equippe it with the probability distribution induced by the weights (2).
Therefore, the hypergraph G occurs with probability κ(G)/

∑
H∈HGn,k

κ(H).

3 Hypergraphs with n Vertices and Excess k

In this section, we derive the asymptotic of hypergraphs and simple hypergraphs
with n vertices and global excess k. This result is interesting by itself and is a
first step to find the excess k at which the first component with strictly positive
excess is likely to appear.

Theorem 1. Let λ be a strictly positive real value and k = (λ − 1)n, then the
sum of the weights of the hypergraphs in HGn,k is

hgn,k ∼
nn+k

√
2πn

e
Ω(ζ)

ζ n

ζn+k

1√
ζ Ω′′(ζ) − λ

where Ψ(z) denotes the function Ω′(z) − Ω(z)
z and ζ is defined by Ψ(ζ) = λ. A

similar result holds for simple hypergraphs:

shgn,k ∼
nn+k

√
2πn

e
Ω(ζ)

ζ n

ζn+k

exp
(
−ω2

2ζ
2

4 − ζ Ω′′(ζ)
2

)

√
ζ Ω′′(ζ) − λ

.

More precisely, if k = (λ−1)n+xn2/3 where x is bounded, then the two previous

asymptotics are multiplied by a factor exp
(

−x2

2(τ Ω′′(τ)−λ)n
1/3

)
.

Proof. With the convention (1), the sum of the weights of the hypergraphs with n
vertices and excess k is

n![znyk] hg(z/y, 1/y, y) = n![znyk]
∑

n

e
Ω(ny)

y
(z/y)n

n!
= nn+k[yn+k]e

Ω(y)
y n.

The asymptotic is then extracted using the large power scheme presented in [10].

Remark that Ψ(z) =
∑

t ωt(t − 1) z
t−1

t! has nonnegative coefficients, so there is
a unique solution of Ψ(ζ) = λ, and that Ψ(ζ) = λ implies ζ Ω′′(ζ) − λ > 0. For
simple hypergraphs, the coefficient we want to extract from (5) is now

[yn+k]
∏

t

(1 + ωty
t−1)(

n
t) =

nn+k

2iπ

∮
exp

(∑
t

(
n
t

)
log

(
1 + ωt

(
y
n

)t−1
)) dy

yn+k+1
.
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The sum in the exponential can be rewritten

Ω(y)

y
n+

∑

t

(
n

t

)(
log(1 + ωt

( y
n

)t−1

)− ωt

( y

n

)t−1
)
−
(
nt

t!
−
(
n

t

))
ωt

( y
n

)t−1

which is Ω(y)
y n − ω2

2y
2

4 − yΩ′′(y)
2 + O(1/n) when y is bounded (we use here the

hypothesis that ω0 = ω1 = 0). In the saddle point method, y is close to ζ, which
in our case is fixed with respect to n. Therefore,

n![znyk] shg

(
z

y
,
1

y
, y

)
∼ exp

(
−ω2

2ζ
2

4
− ζ Ω′′(ζ)

2

)
hgn,k .

The factor exp
(−ω2

2ζ
2

4 − ζ Ω′′(ζ)
2

)
is the asymptotic probability for a hyper-

graph in HGn,k to be simple. For graphs, with Ω(z) = z2/2 and λ = 1/2, we
obtain the same factor e−3/4 as in [1].

We study the evolution of hypergraphs as their excess increases. This choice of
parameter is less natural than the number of edges, but it significantly simplifies
the equations. On the other hand, we can compute statistics on the number of
edges of hypergraphs with n edges and excess k.

Corollary 1. Let λ be a positive value and G a random hypergraph in HGn,k

or in SHGn,k with k = (λ − 1)n, then the asymptotic expectations and factorial
moments of the number m of edges and size l of G are

En,k(m) ∼ Ω(ζ)
ζ n,

∀t ≥ 0, En,k

(
m(m− 1) . . . (m− t)

) ∼
(

Ω(ζ)
ζ n

)t+1

,

En,k(l) ∼ Ω′(ζ)n.

where Ψ(z) denotes the function Ω′(z)− Ω(z)
z and ζ is the solution of Ψ(ζ) = λ.

Reversely, the expectation and variance of the excess k of a random hypergraph
with n vertices and m edges are

En,m(k) = nm
Ω′(n)
Ω(n)

− n−m,

Vn,m(k) =
nm

Ω(n)

(
nΩ′′(n)− n

Ω′(n)2

Ω(n)
+ Ω′(n)

)
.

Proof. Let us recall that if pt denotes the probability that a discret random
variable X takes the value t and f(z) =

∑
n pnz

n, then the expectation of X
is f ′(1) and its kth factorial moment is E(X(X− 1) . . . (X− k)) = ∂t+1f(1). By
extraction from (4), the generating functions of the hypergraphs with n vertices
and excess k (resp. m edges) and of the simple hypergraphs in SHGn,k are

hgn,k(w) = nn+k[yn+k]ew
Ω(y)

y n,

hgn,m(y) =
Ω(ny)m

yn+mm!
,

shgn,k(w) = nn+k[yn+k]ew
Ω(y)

y ne−
y Ω′′(y)

2 w−ω2
2y2

4 w2+O(1/n)
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where w and y mark respectively the number of edges and the excess. There-
fore, the probability generating function corresponding to the distribution of m
is hgn,k(w)/ hgn,k(1), and similarly for k. The asymptotics are then derived as
in the proof of theorem 1.

The variance of m(G) for G in HGn,k cannot be straightforward derived from
this corollary, because the asymptotic approximations of the factorial moments
cannot be summed. If more terms of the asymptotic expansion of the factorial
moments are derived, this variance can be bounded. However, it varies greatly
with the parameters (ωt). For example, the variance for graphs is 0, since all the
graphs with n vertices and excess k have exactly k + n edges.

4 Birth of the Complex Component

Let us recall that a connected hypergraph is complex if its excess is strictly posi-
tive. In order to locate the global excess k at which the first complex component
appears, we compare the asymptotic numbers of hypergraphs and hypergraphs
with no complex component.

We follow the conventions established in [11]: a walk of a hypergraph G
is a sequence v0, e1, v1, . . . , vt−1, et, vt where for all i, vi ∈ V (G), ei ∈ E(G)
and {vi−1, vi} ⊂ ei. A path is a walk in which all vi and ei are distinct. A walk
is a cycle if all vi and ei are distinct, except v0 = vt. Connectivity, trees and
rooted trees are then defined in the usual way.

A unicycle component is a connected hypergraph that contains exactly one
cycle. We also define a path of trees as a path that contains no cycle, plus a
rooted tree hooked to each vertex, except to the two ends of the path. It can
equivalently be defined as an unrooted tree with two distinct marked leaves.

Lemma 1. Let T , U , V and P denote the generating functions of rooted trees,
unrooted trees, unicycle components and paths of trees, using the variable z to
mark the number of vertices, then

T (z) = zeΩ
′(T (z)), (6)

U(z) = T (z) + Ω(T (z))− T (z)Ω′(T (z)), (7)

V (z) =
1

2
log

1

1− T (z)Ω′′(T (z))
, (8)

P (z) =
Ω′′(T (z))

1− T (z)Ω′′(T (z))
. (9)

Proof. Those expressions can be derived from the tools presented in [10]. Equa-
tion (6) means that a rooted tree is a vertex (the root) and a set of edges from
which a vertex has been removed and the other vertices replaced by rooted trees.
Equation (7) is a classical consequence of the dissymmetry theorem described
in [12] and studied in [13]. It can be checked that z∂zU = T . Unicycle compo-
nents are cycles of rooted trees, which implies (8).
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Theorem 3 counts the hypergraphs with no complex component. A phase
transition occurs when k

n reaches the critical value Λ − 1, defined in the next
theorem, which corresponds to the coalescence of two saddle points. To extract
the asymptotics, we need the following general theorem, borrowed from [14] and
adapted for our purpose (in the original theorem, μ = 0). It is also close to the
lemma 3 of [1].

Theorem 2. We consider a generating function H(z) with nonnegative coeffi-
cients and a unique isolated singularity at its radius of convergence ρ. We also
assume that it is continuable in Δ := {z | |z| < R, z /∈ [ρ,R]} and there is
a λ ∈]1; 2[ such that H(z) = σ − h1(1 − z/ρ) + hλ(1 − z/ρ)λ + O((1 − z/ρ)2)
as z → ρ in Δ. Let k = σ

h1
n+xn1/λ with x bounded, then for any real constant μ

[zn]
Hk(z)

(1− z/ρ)μ
∼ σkρ−n 1

n(1−μ)/λ
(h1/hλ)

(1−μ)/λG

(
λ, μ;

h
1+1/λ
1

σh
1/λ
λ

x

)
(10)

where G(λ, μ;x) = 1
λπ

∑
k≥0

(−x)k

k! sin
(
π 1−μ+k

λ

)
Γ
(

1−μ+k
λ

)
.

Proof. In the Cauchy integral that represents [zn] Hk(z)
(1−z/ρ)μ we choose for the con-

tour of integration a positively oriented loop, made of two rays of angle ±π/(2λ)
that intersect on the real axis at ρ− n−1/λ, we set z = ρ(1 − tn−1/λ)

[zn]
Hk(z)

(1− z/ρ)μ
∼ −σkρ−n

2iπn(1−μ)/λ

∫
t−μe

hλ
h1

tλ
e−x

h1
σ tdt

The contour of integration comprises now two rays of angle ±π/λ intersecting
at −1. Setting u = tλhλ/h1, the contour transforms into a classical Hankel
contour, starting from −∞ over the real axis, winding about the origin and
returning to −∞.

−σkρ−n

2iπn(1−μ)/λ

1

λ
(h1/hλ)

(1−μ)/λ

∫ (0)

−∞
eue−xu1/λh

1+1/λ
1 /(σh

1/λ
λ )u

1−μ
λ −1du

Expanding the exponential, integrating termwise, and appealing to the comple-
ment formula for the Gamma function finally reduces this last form to (10).

Theorem 3. Let thgn,k denote the sum of the weights of the hypergraphs with
no complex component, n vertices and global excess k. Let Ψ(z) denote the func-

tion Ω′(z)− Ω(z)
z , τ be implicitely defined by τ Ω′′(τ) = 1 and Λ = Ψ(τ).

If k = (λ− 1)n+O(n1/3) with 0 < λ < Λ, and Ψ(ζ) = λ, then

thgn,k ∼
nn+k

√
2πn

e
Ω(ζ)

ζ n

ζn+k

1√
ζ Ω′′(ζ)− λ

. (11)

If k = (Λ− 1)n+ xn2/3 where x is bounded, then thgn,k is equivalent to

nn+k

√
2πn

e
Ω(τ)

τ n

τn+k

1√
1− Λ

√
3π

2
e
− x2

2(1−Λ)n
1/3− x3

3(1−Λ)2 G

(
3

2
,
1

4
;−32/3γ1/3x

2(1− Λ)

)
(12)
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where G(λ, μ;x) is defined in theorem 2 and γ = 1 + τ2 Ω′′′(τ). For simple

hypergraphs, there is an additional factor exp
(
− ζΩ′′(ζ)

2 − ω2
2ζ

2

4

)
for the first

asymptotic, and exp
(
− 1

2 − ω2
2τ

2

4

)
for the second one.

Proof. A hypergraph G with no complex component is a forest of trees and uni-
cycle components. The excess of a tree is −1, the excess of a unicycle component
is 0. Since the excess of a hypergraph is the sum of the excesses of its compo-
nents, the excess of G is the opposite of the number of trees. The sum of the
weights of the hypergraphs with no complex component, n vertices and excess k
(which is negative) is

n![zn]
U−k

(−k)!e
V =

n!

(−k)! [z
n]

U−k

√
1− T Ω′′(T )

=
n!

(−k)!
1

2iπ

∮
U−k

√
1− T Ω′′(T )

dz

zn+1
.

For k = (λ−1)n, there are two saddle points: one implicitly defined by Ψ(ζ) = λ
and the other at τ . Those two saddle points coalesce when λ = Ψ(τ). For smaller
values of λ, the first saddle point dominates and an application of the large power
theorem of [10] leads to (11). When k is around its critical value (Λ − 1)n, we
apply theorem 2. The Newton-Puiseux expansions of T , eV and U can be derived
from lemma 1

T (z) ∼ τ − τ

√
2

γ

√
1− z/ρ,

eV (z) ∼ (2γ)−1/4(1− z/ρ)−1/4,

U(z) = τ(1 − Ψ(τ)) − τ(1 − z/ρ) + τ
2

3

√
2

γ
(1− z/ρ)3/2 +O(1 − z/ρ)2,

where Ψ(z) = Ω′(z)− Ω(z)
z and γ = 1 + τ2 Ω′′′(τ). Using Theorem 2, we obtain

thgn,k ∼ n!
(−k)!

√
3
2

(τ(1−Λ))−k

ρn
√
n

G
(

3
2 ,

1
4 ;− 32/3γ1/3x

2(1−Λ)

)
which reduces to (12).

In the analysis of simple hypergraphs, the generating function V (z) is re-

placed by V (z)− T Ω′′(T )
2 − ω2

2T
2

4 to avoid loops and multiple edges (in unicycle
components, those can only be two edges of size 2).

Combining theorems 1 and 3, we deduce that when k = (λ − 1)n + O(n1/3)
with λ < Λ, the probability that a random hypergraph in HGn,k has no complex
component approaches 1 as n tends towards infinity. When k = (Λ − 1)n +
O(n1/3), this limit becomes

√
2/3 because G(2/3, 1/4; 0) is equal to 2/(3

√
π).

It is remarkable that this value does not depend on Ω, therefore it is the same
as in [15] for graphs. However, the evolution of this probability between the
subcritical and the critical ranges of excess depends on the (ωt).

Corollary 2. For k = (Λ − 1)n + xn2/3 with x bounded, the probability that a
hypergraph in HGn,k or in SHGn,k has no complex component is

√
3π

2
exp

( −x3

3(1− Λ)2

)
G

(
3

2
,
1

4
;−32/3γ1/3x

2(1− Λ)

)
.
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Theorem 2 does not apply whenH(z) is periodic. This is why we restricted ω(y)/y
not to be of the form f(zd) where d > 1 and f(z) is a power serie with a
strictly positive radius of convergence. An unfortunate consequence is that the-
orems 1 and 3 do not apply to d-uniform hypergraphs. However, the expression

of the critical excess is still valid. For the d-uniform hypergraphs, Ω(z) = zd

d! ,

Ψ(z) = (d−1)
d! zd−1 and τd−1 = (d − 2)!, so we obtain k = 1−d

d n for the critical
excess, which corresponds to a number of edges m = n

d(d−1) , a result already

derived in [5].

5 Kernels

In the seminal articles [8] and [16], Wright establishes the connection between the
asymptotic of connected graphs with n vertices and excess k and the enumeration
of the connected kernels, which are multigraphs with no vertex of degree less
than 3. This relation was then extensively studied in [1] and the notions of
excess and kernels were extended to hypergraphs in [9].

A kernel is a hypergraph with additional constraints that ensure that:

– each hypergraph can be reduced to a unique kernel,
– the excesses of a hypergraph and its kernel are equal,
– for any integer k, there is a finite number of kernels of excess k,
– the generating function of hypergraphs of excess k can be derived from the

generating function of kernels of excess k.

Following [9], we define the kernel of a hypergraph G as the result of the
repeated execution of the following operations:

1. delete all the vertices of degree ≤ 1,
2. delete all the edges of size ≤ 1,
3. if two edges (a, v) and (v, b) of size 2 have one common vertex v of degree 2,

delete v and replace those edges by (a, b),
4. delete the connected components that consist of one vertex v of degree 2 and

one edge (v, v) of size 2.

The following theorem has already been derived for uniform hypergraphs
in [9]. We give a new proof and an expression for the generating function of
the clean kernels.

Theorem 4. The number of kernels of excess k is finite and each of them con-
tains at most 3k edges of size 2. We say that a kernel is clean if this bound is
reached. The generating functions of connected clean kernels of excess k is

ck(1 + ω3z
2)2kω3k

2 z2k (13)

where ck = [z2k] log
∑

k
(6k)!

(3!)2k23k(3k)!
z2k

(2k)! and the variables w and x have been

omitted.
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Proof. By definition, k + n + m =
∑

e∈E |e| =
∑

v∈V deg(v). By construction,
the vertices (resp. edges) of a kernel have degree (resp. size) at least 2, so

k + n+m ≥ 3m−m2, (14)

k + n+m ≥ 3n− n2, (15)

where n2 (resp. m2) is the number of vertices of degree 2 (resp. edges of size 2).
Furthermore, each vertex of degree 2 belongs to an edge of size at least 3, so

k + n+m ≥ 2m2 + n2. (16)

Summing those three inequalities, we obtain 3k ≥ m2.
This bound is reached if and only if (14), (15) and (16) are in fact equal-

ities. Therefore, the vertices (resp. edges) of a clean kernel have degree (resp.
size) 2 or 3, each vertex of degree 2 belongs to exactly one edge of size 3 and all
the vertices of degree 3 belongs to edges of size 2. Consequently, any connected
clean kernel can be obtained from a connected cubic multigraph with 2k vertices
through substitutions of vertices of degree 3 by groups of three vertices of de-
gree 2 that belong to a common edge of size 3. This means that if f(z) represent
the cubic multigraphs where z marks the vertices, then the generating function
of clean kernels is f(z + ω3z

3). The generating function of cubic multigraphs of

excess k is (6k)!
(3!)2k23k(3k)!

z2k

(2k!) , and a cubic multigraph is a set of connected cubic

multigraphs, so the value (2k)!ck defined in the theorem is the sum of the weights
of the connected cubic multigraphs.

To prove that the total number of kernels of excess k is bounded, we introduce
the dualized kernels, which are kernels where each edge of size 2 contains a vertex
of degree at least 3. This implies the dual inequality of (16) k+n+m ≥ 2n2+m2

that leads to 7k ≥ n+m. Finally, each dualized kernel matches a finite number
of normal kernels by substitution of an arbitrary set of vertices of degree 2 by
edges of size 2.

The previous theorem implies that the generating function of the connected
kernels of excess k is a multivariate polynomial of degree 3k in ω2. One can de-
velop a kernel into a hypergraph by adding rooted trees to its vertices, replacing
its edges of size 2 by paths of trees and adding rooted trees into the edges of
size greater than 2. This matches the following substitutions in the generating

functions: z ← T (z), w2 ← Ω′′(T )
1−T Ω′′(T ) and wt ← Ω(t)(T ) for all t > 2. There-

fore, there exists a polynomial Pk(X) in Q[X,Ω(X),Ω′(X), . . .] such that the
generating function of connected hypergraphs of excess k is expressed as

chgk(z) =
Pk(T )

(1− T Ω′′(T ))3k
. (17)

From there, a singularity analysis gives the asymptotics of connected hyper-
graphs in HGn,k

n![zn] chgk(z) ∼
√
2π

Pk(τ)(2 + 2τ2 Ω′′′(τ))−
3k
2

Γ
(
3k
2

) e(Ω
′(τ)−1)n

τn
nn+ 3k−1

2
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where τ , value of T at its dominant singularity, is characterized by τ Ω′′(τ) = 1.
This formula gives the asymptotic number of connected hypergraphs with

respect to n, up to a constant factor Pk(τ), which is computable through the
enumeration of the connected kernels of excess k. This is however unsatisfactory,
because the complexity of this computation is too high. We believe that the ap-
proach developed in [17] for graphs may be the solution. It starts by considering
hypergraphs as sets of trees, unicycle components and connected components of
higher order

hg(z, y) =
∑

n

e
Ω(yn)

y
(z/y)n

n!
= exp

(
y−1U + V +

∑

k

Pk(T )

(1− T Ω′′(T ))3k

)
,

from which it may be possible to extract informations on the values Pk(τ).

6 Hypergraphs with Complex Components of Fixed
Excess

The next theorem describes the structure of critical hypergraphs. It general-
izes theorem 5 of [1] about graphs. Interestingly, the result does not depend on
the (ωt).

Theorem 5. Let r1, . . . rq denote a finite sequence of integers and r =
∑q

t=1 trt,
then the limit of the probability for a hypergraph or simple hypergraph with n
vertices and global excess k = (Λ− 1)n+O(n1/3) to have exactly rt components
of excess t for t from 1 to q is

(
4

3

)r
r!

(2r)!

√
2

3

cr11
r1!

cr22
r2!

. . .
c
rq
q

rq!
. (18)

where the (ci) are defined as in Theorem 4. For k = (Λ − 1)n + xn2/3 and x
bounded, the limit of this probability is

3−r c
r1
1

r1!

cr22
r2!

. . .
c
rq
q

rq !

√
3π

2
exp

( −x3

3(1− Λ)2

)
G

(
3

2
,
1

4
+

3r

2
;−32/3γ1/3x

2(1− Λ)

)
.

Proof. Let Ck(z) denote the generating function of connected hypergraphs of
excess k. Those can be obtained by expansion of the connected kernels of ex-

cess k, so Ck(z) = ck(1 + T 2Ω′′′(T ))2k Ω′′(T )3k

(1−T Ω′′(T ))3k
T 2k + . . . plus terms with a

denominator (1 − T Ω′′(T )) of smaller order. Therefore, when z tends towards

the dominant singularity ρ of T (z), Ck(z) ∼ ck

( √
γ

23/2τ

)k

(1−z/ρ)−3k/2. The sum

of the weights of hypergraphs with global excess k and rt components of excess t

is n![zn] UK−k

(K−k)!e
V C1(z)

r1

r1!
C2(z)

r2

r2!
. . .

Cq(z)
rq

rq !
and an application of Theorem 2 ends

the proof, with G(3/2, 1/4 + 3r/2; 0) = 2
3
√
π

4rr!
(2r)! . Those computations are the

same as in Theorem 3.
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Remark. We have seen in the proof that around the critical value of the ex-
cess k = (Λ − 1)n, the kernel of a hypergraph is clean with high probability.
In [1], the authors remark that the theorem holds true when q is unbounded,
because the sum of the probabilities (18) over all finite sequences (rt) is 1.

7 Future Directions

Much more information can be extracted from the generating functions (4)
and (5), as the number of edges at which the first cycle appears [15], more statis-
tics on the parameters n, m, k and l for random hypergraphs and more error
terms on the asymptotics presented. In particular, connected non-uniform hy-
pergraphs deserve a dedicated paper, with an expression for the constants Pk(τ)
defined in (17).

In the present paper, for the sake of the simplicity of the proofs, we restrained
our work to the case where eΩ(z)/z is aperiodic. This technical condition can
be waived in the same way Theorem VIII.8 of [10] can be extended to periodic
functions.

In the model we presented, the weight ωt of an edge only depends on its size t.
For some applications, one may need weights that also vary with the number of
vertices n. It would be interesting to measure the impact of this modification on
the phase transition properties described in this paper.

More generally, the study of the relation to other models, as the one presented
in [6] and [18], could lead to new developments and applications.
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3. Karoǹski, M., �Luczak, T.: The phase transition in a random hypergraph. Journal
of Computational and Applied Mathematics 42(1), 125–135 (2002); Probabilistic
Methods in Combinatorics and Combinatorial Optimization

4. Ravelomanana, V.: Birth and growth of multicyclic components in random hyper-
graphs. Theor. Comput. Sci. 411(43), 3801–3813 (2010)

5. Schmidt-Pruzan, J., Shamir, E.: Component structure in the evolution of random
hypergraphs. Combinatorica 5(1), 81–94 (1985)

6. Darling, R.W.R., Norris, J.R.: Structure of large random hypergraphs. Ann. Appl.
Probab., 125–152 (2004)

7. Gessel, I.M., Kalikow, L.H.: Hypergraphs and a functional equation of Bouwkamp
and de Bruijn. J. Comb. Theory, Ser. A 110(2), 275–289 (2005)

8. Wright, E.M.: The number of connected sparsely edged graphs. Journal of Graph
Theory 1, 317–330 (1977)
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