
Thierry Lecroq
Laurent Mouchard (Eds.)

 123

LN
CS

 8
28

8

24th International Workshop, IWOCA 2013
Rouen, France, July 2013
Revised Selected Papers

Combinatorial
Algorithms

Lecture Notes in Computer Science 8288
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Thierry Lecroq Laurent Mouchard (Eds.)

Combinatorial
Algorithms
24th International Workshop, IWOCA 2013
Rouen, France, July 10-12, 2013
Revised Selected Papers

13

Volume Editors

Thierry Lecroq
Université de Rouen
UFR des Sciences et Techniques, LITIS EA 4108
76821 Mont Saint Aignan Cedex, France
E-mail: thierry.lecroq@univ-rouen.fr

Laurent Mouchard
Université de Rouen
UFR des Sciences et Techniques, LITIS EA 4108
76821 Mont Saint Aignan Cedex, France
E-mail: laurent.mouchard@univ-rouen.fr

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-45277-2 e-ISBN 978-3-642-45278-9
DOI 10.1007/978-3-642-45278-9
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013955008

CR Subject Classification (1998): G.2.1, G.2.2, I.1, I.3.5, F.2, E.1, E.4, H.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the papers presented at IWOCA 2013, the 24th Inter-
national Workshop on Combinatorial Algorithms. The 24th IWOCA was held
July 10–12, 2013, at the University of Rouen, France. The meeting was sup-
ported financially mainly by the University of Rouen and the LITIS EA 4108
Laboratory. The two co-chairs of both the Program and the Organizing Com-
mittees were Thierry Lecroq and Laurent Mouchard. IWOCA descends from
the original Australasian Workshop on Combinatorial Algorithms, first held in
1989, then renamed “International” in 2007 in response to consistent interest
and support from researchers outside the Australasian region. The workshop’s
permanent website can be accessed at http://www.iwoca.org/ where links to
previous meetings can be found.

Using different e-mail lists, the IWOCA 2013 call for papers was distributed
around the world, resulting in 91 submissions. The EasyChair system was used
to facilitate management of submissions and refereeing, with three referees from
the 47-member Program Committee assigned to each paper. A total of 34 papers
(37%) were accepted, subject to revision, for presentation at the workshop, with
an additional ten papers accepted for poster presentation. One full paper was
later withdrawn by the authors.

Five invited talks were given:

• Ewan Birney (European Bioinformatics Institute, UK)
“Annotating the Human Genome”

• Stefan Edelkamp (University of Bremen, Germany)
“Weak Heaps and Friends - Show Me Your Bits”

• Jerrold R. Griggs (University of South Carolina, USA)
“The Δ2 Conjecture for Graph Labellings with Separation Conditions”

• Ralf Klasing (LaBRI and CNRS, France)
“Efficient Exploration of Anonymous Undirected Graphs”

• Kunsoo Park (Seoul National University, Korea)
“New Graph Model for Consistent Superstring Problems”

These proceedings contain all 33 presented papers, together with shortened
versions of the ten poster papers and abstract or extended versions of the invited
talks. Theworkshop also featured a problems session, chaired by Zsuzsanna Lipták
(Università di Verona, Italy) and Hebert Pérez-Rosés (Universitat de Lleida,
Spain). Nine open problems were presented. The IWOCA problem collection can
be found on-line at http://www.iwoca.org/mainproblems.php.

The 72 first registered participants at IWOCA 2013 hold appointments at
institutions in 24 different countries on five continents (Africa, America, Asia,

VI Preface

Europe and Oceania). The nations represented were:
Australia (4), Austria (1), Bangladesh (1), Belgium (1), Canada (6), Germany
(4), Hungary (1), Finland (1), France (18), India (1), Israel (1), Italy (1), Japan
(2), Korea (4), The Netherlands (1), New Zealand (1), Poland (1), Slovenia (1),
South Africa (1), Spain (4), Sweden (2), Switzerland (1), Taiwan (3), UK (9),
USA (2).

We thank the authors for their valuable combinatorial contributions and the
referees for their thorough, constructive, and enlightening commentaries on the
manuscripts and the two secretaries of the LITIS Laboratory, Fabienne Bocquet
and Chantal Le Maistre, for their valuable help.

September 2013 Thierry Lecroq
Laurent Mouchard

Organization

Steering Committee

Costas S. Iliopoulos King’s College London, UK
Mirka Miller University of Newcastle, Australia
William F. Smyth McMaster University, Canada

Problem Session Co-chairs

Zsuzsanna Lipták Università di Verona, Italy
Hebert Pérez-Rosés Universitat de Lleida, Spain

Organizing Committee

Richard Groult Université de Picardie Jules Verne, France
Thierry Lecroq (Co-chair) Université de Rouen, France
Arnaud Lefebvre Université de Rouen, France
Martine Léonard Université de Rouen, France
Laurent Mouchard (Co-chair) Université de Rouen, France

Élise Prieur-Gaston Université de Rouen, France

Program Committee

Donald Adjeroh West Virginia University
Amihood Amir Bar-Ilan University and Johns Hopkins

University
Dan Archdeacon University of Vermont
Subramanian Arumugam Kalasalingam University
Hideo Bannai Kyushu University
Guillaume Blin Université Marne-la-Vallée Paris-Est
Ljiljana Brankovic University of Newcastle
Gerth Stølting Brodal Aarhus University
Charles Colbourn Arizona State University
Maxime Crochemore King’s College London
Diane Donovan University of Queensland
Dalibor Froncek University of Minnesota Duluth
Roberto Grossi Universita di Pisa
Michel Habib Université Paris 7
Sylvie Hamel University of Montreal
Jan Holub Czech Technical University in Prague
Seok-Hee Hong University of Sydney

VIII Organization

Costas Iliopoulos King’s College London
Ralf Klasing LaBRI - CNRS
Rao Kosaraju Johns Hopkins University
Marcin Kubica Warsaw University
Gregory Kucherov LIGM - CNRS
Thierry Lecroq Université de Rouen
Zsuzsanna Liptak Universita di Verona
Mirka Miller University of Newcastle
Laurent Mouchard Université de Rouen
Ian Munro University of Waterloo
Rolf Niedermeier TU Berlin
Pascal Ochem LIRMM - CNRS
Kunsoo Park Seoul National University
Hebert Perez-Roses University of Newcastle
Solon Pissis Heidelberg Institute for Theoretical Studies
Simon Puglisi University of Helsinki
Sohel Rahman Bangladesh University of Engineering and

Technology
Rajeev Raman University of Leicester

Vojtech Rodl Emory University
Frank Ruskey University of Victoria
William F. Smyth McMaster University
Venkatesh Srinivasan University of Victoria
Iain Stewart Durham University
German Tischler Wellcome Trust Sanger Institute
Alexander Tiskin University of Warwick
Lynette van Zijl Stellenbosch University
Ambat Vijayakumar Cochin University of Science and Technology
Koichi Wada Hosei university
Sue Whitesides University of Victoria
Christos Zaroliagis CTI and University of Patras

Additional Reviewers

Barton, Carl
Bhat, Vindya
Biedl, Therese
Blanchet-Sadri, Francine
Blondin Massé, Alexandre
Bong, Novi Herawati
Brlek, Srecko
Brodnik, Andrej
Chapelle, Mathieu
Chen, Jiehua
Christodoulakis, Manolis

Cicalese, Ferdinando
Cooper, Colin
Creignou, Nadia
Csürös, Miklós
Dondi, Riccardo
Erickson, Alejandro
Fertin, Guillaume
Fici, Gabriele
Fink, Martin
Fotakis, Dimitrios
Foucaud, Florent

Organization IX

Frati, Fabrizio
Froese, Vincent
Fuller, Jessica
Fàbrega, Josep
Gadouleau, Maximilien
Gagie, Travis
Gallopoulos, Efstratios
Gambette, Philippe
Giaquinta, Emanuele
Gil, Reynaldo
Hasan, Md. Mahbubul
Hossain, Md. Iqbal
Hsieh, Sun-Yuan
Hüffner, Falk
Islam, A.S.M. Sohidull
Izumi, Taisuke
Janodet, Jean-Christophe
Janson, Svante
Jerrum, Mark
Johanne, Cohen
Johnson, Matthew
Jørgensen, Allan Grønlund
Kamei, Sayaka
Karapetyan, Daniel
Kay, Bill
Kilic, Elgin
Kiniwa, Jun
Komusiewicz, Christian
Kravchenko, Svetlana
Kärkkäinen, Juha
Labarre, Anthony
Ladra, Susana
Langiu, Alessio
Larsen, Victor
Lefebvre, Arnaud
Long, Darell
Lui, Edward

Macgillivray, Gary
Madelaine, Florent
Manlove, David
Meister, Daniel
Milanic, Martin
Miller, Michael
Myoupo, Jean-Frederic
Mömke, Tobias
Newman, Alantha
Nicholson, Patrick K.
Nichterlein, André
Nielsen, Jesper Sindahl
Ono, Hirotaka
Ouangraoua, Aida
Pajak, Dominik
Phanalasy, Oudone
Pineda-Villavicencio, Guillermo
Proietti, Guido
R, J
Radoszewski, Jakub
Razi, Alim Al Islam
Righini, Giovanni
Rusu, Irena
Sacomoto, Gustavo
Saffidine, Abdallah
Sankar, Lalitha
Siantos, Yiannis
Sorge, Manuel
Tischler, German
Van ’T Hof, Pim
van Bevern, René
van Stee, Rob
Varbanov, Zlatko
Vialette, Stéphane
Vildhøj, Hjalte Wedel
Waleń, Tomasz
Wilkinson, Bryan T.

X Organization

Sponsors

Invited Papers

Annotating the Human Genome

Ewan Birney

The EMBL-European Bioinformatics Institute
Wellcome Trust Genome Campus

Hinxton, Cambridge
CB10 1SD, United Kingdom

birney@ebi.ac.uk

The human genome is the “hard disk” for human biology, encoding the instruc-
tions for each protein and RNA and the elements which regulate their expression.
I will provide a perspective of the discovery, annotation and utility of these dif-
ferent components over the last two decades, from the annotation of the draft
human genome through to the ENCODE project.

The forthcoming decade will see many more molecular tools being used in
clinical research and, in some cases, in practicing medicine. There is a wealth of
information and experience from existing use of genetic information in medicine
as well as new opportunities available to researchers and practitioners. I will
discuss some of the experience I have made in translating this information into
the clinic setting.

Finally molecular biology is a leading example of a data intensive science,
with both pragmatic and theoretical challenges being raised by data volumes
and dimensionality of the data. This shift in modality is creating a wealth of
new opportunities and has some accompanying challenges. In particular there is
a continued need for a robust information infrastructure for molecular biology. I
will briefly outline the challenges and the framework for the solution being the
pan-European life sciences information infrastructure, Elixir.

The Δ2 Conjecture for Graph Labellings with

Separation Conditions

Jerrold R. Griggs

Department of Mathematics
University of South Carolina
Columbia, SC 29208 USA

griggs@math.sc.edu

In 1988 Roberts described a problem posed to him by Lanfear concerning the
efficient assignment of channels to a network of transmitters in the plane. To
understand this problem, Griggs and Yeh introduced the theory of integer vertex
λ-labellings of a graph G. To prevent interference, labels for nearby vertices must
be separated by specified amounts ki depending on the distance i, 1 ≤ i ≤ p.
One seeks the minimum span of such a labelling. The p = 2 case with k1 = 2 and
k2 = 1 has attracted the most attention, particularly the tantalizing conjecture
that for such “L(2, 1)”-labellings, if G has maximum degree Δ ≥ 2, then the
minimum span is at most Δ2. It has now been proven for all sufficiently large Δ,
but remains open for small Δ, even for Δ = 3. The theory has been expanded to
accommodate real number labellings and separations ki, with a given separation
for each pair of vertices, not necessarily based on distance. Infinite graphs, such
as regular lattices, are considered.

Weak Heaps and Friends: Recent Developments

Stefan Edelkamp1, Amr Elmasry2, Jyrki Katajainen3, and Armin Weiß4

1Faculty 3—Mathematics and Computer Science, University of Bremen
P.O. Box 330 440, 28334 Bremen, Germany

2Department of Computer Engineering and Systems, Alexandria University
Alexandria 21544, Egypt

3Department of Computer Science, University of Copenhagen
Universitetsparken 5, 2100 Copenhagen East, Denmark

4Institute for Formal Methods in Computer Science, University of Stuttgart
Universitätstraße 38, 70569 Stuttgart, Germany

Abstract. A weak heap is a variant of a binary heap where, for each
node, the heap ordering is enforced only for one of its two children.
In 1993, Dutton showed that this data structure yields a simple worst-
case-efficient sorting algorithm. In this paper we review the refinements
proposed to the basic data structure that improve the efficiency even
further. Ultimately, minimum and insert operations are supported in
O(1) worst-case time and extract -min operation in O(lg n) worst-case
time involving at most lg n+O(1) element comparisons. In addition, we
look at several applications of weak heaps. This encompasses the creation
of a sorting index and the use of a weak heap as a tournament tree leading
to a sorting algorithm that is close to optimal in terms of the number of
element comparisons performed. By supporting insert operation in O(1)
amortized time, the weak-heap data structure becomes a valuable tool in
adaptive sorting leading to an algorithm that is constant-factor optimal
with respect to several measures of disorder. Also, a weak heap can be
used as an intermediate step in an efficient construction of binary heaps.
For graph search and network optimization, a weak-heap variant, which
allows some of the nodes to violate the weak-heap ordering, is known to
be provably better than a Fibonacci heap.

Efficient Exploration of Anonymous

Undirected Graphs�

Ralf Klasing

CNRS - LaBRI - Université de Bordeaux
351 cours de la Libération, 33405 Talence, France

klasing@labri.fr

Abstract. We consider the problem of exploring an anonymous undi-
rected graph using an oblivious robot. The studied exploration strategies
are designed so that the next edge in the robot’s walk is chosen using
only local information. In this paper, we present some current develop-
ments in the area. In particular, we focus on recent work on equitable
strategies and on the multi-agent rotor-router.

* The research was partially funded by the ANR project “DISPLEXITY”.

New Graph Model for Consistent Superstring

Problems

Kunsoo Park

Seoul National University, Korea

kpark@snu.ac.kr

The problems related to string inclusion and non-inclusion have been vigorously
studied in such diverse fields as data compression, molecular biology, and com-
puter security. Given a finite set P of positive strings and a finite set N of
negative strings, a string A is a consistent superstring if every positive string is
a substring of A and no negative string is a substring of A. The shortest (resp.
longest) consistent superstring problem is finding a string A that is the shortest
(resp. longest) among all the consistent superstrings of the given sets P and N .
In this talk, I will present a new graph model for consistent superstrings of P and
N . The new graph model is more intuitive than the previous one, and it leads
to simpler and more efficient algorithms for consistent superstring problems.

Table of Contents

Invited Talks

Weak Heaps and Friends: Recent Developments . 1
Stefan Edelkamp, Amr Elmasry, Jyrki Katajainen, and Armin Weiß

Efficient Exploration of Anonymous Undirected Graphs 7
Ralf Klasing

Regular Papers

On Maximum Rank Aggregation Problems . 14
Christian Bachmaier, Franz Josef Brandenburg,
Andreas Gleißner, and Andreas Hofmeier

Deciding Representability of Sets of Words of Equal Length
in Polynomial Time . 28

Francine Blanchet-Sadri and Sinziana Munteanu

Prefix Table Construction and Conversion . 41
Widmer Bland, Gregory Kucherov, and W.F. Smyth

On the Approximability of Splitting-SAT in 2-CNF Horn Formulas 54
Hans-Joachim Böckenhauer and Lucia Keller

Boundary-to-Boundary Flows in Planar Graphs . 67
Glencora Borradaile and Anna Harutyunyan

Exact Algorithms for Weak Roman Domination . 81
Mathieu Chapelle, Manfred Cochefert, Jean-François Couturier,
Dieter Kratsch, Mathieu Liedloff, and Anthony Perez

Verification Problem of Maximal Points under Uncertainty 94
George Charalambous and Michael Hoffmann

Incidence Coloring Game and Arboricity of Graphs 106
Clément Charpentier and Éric Sopena

Linear-Time Self-stabilizing Algorithms for Minimal Domination
in Graphs . 115

Well Y. Chiu and Chiuyuan Chen

Phase Transition of Random Non-uniform Hypergraphs 127
Élie de Panafieu

XX Table of Contents

Domino Tatami Covering Is NP-Complete . 140
Alejandro Erickson and Frank Ruskey

The Complexity of the Identifying Code Problem in Restricted Graph
Classes . 150

Florent Foucaud

Expanding the Expressive Power of Monadic Second-Order Logic
on Restricted Graph Classes . 164

Robert Ganian and Jan Obdržálek

Dynamising Interval Scheduling: The Monotonic Case 178
Alexander Gavruskin, Bakhadyr Khoussainov, Mikhail Kokho, and
Jiamou Liu

Graph Editing to a Fixed Target . 192
Petr A. Golovach, Daniël Paulusma, and Iain Stewart

Tight Bound on the Diameter of the Knödel Graph 206
Hayk Grigoryan and Hovhannes A. Harutyunyan

Structural Properties of Subdivided-Line Graphs . 216
Toru Hasunuma

Induced Subtrees in Interval Graphs . 230
Pinar Heggernes, Pim van ’t Hof, and Martin Milanič

Protein Folding in 2D-Triangular Lattice Revisited
(Extended Abstract) . 244

A.S.M. Shohidull Islam and M. Sohel Rahman

SAT and IP Based Algorithms for Magic Labeling with Applications . . . 258
Gerold Jäger

An Optimal Algorithm for Computing All Subtree Repeats in Trees 269
Tomáš Flouri, Kassian Kobert, Solon P. Pissis, and
Alexandros Stamatakis

Approximation Bounds on the Number of Mixedcast Rounds
in Wireless Ad-Hoc Networks . 283

Sang Hyuk Lee and Tomasz Radzik

Maximum Spectral Radius of Graphs with Connectivity at Most k
and Minimum Degree at Least δ . 297

Hongliang Lu and Yuqing Lin

Degree Sequences of PageRank Uniform Graphs and Digraphs
with Prime Outdegrees . 303

Nacho López and Francesc Sebé

Table of Contents XXI

On the Maximum Independent Set Problem in Subclasses of Subcubic
Graphs . 314

Vadim Lozin, Jérôme Monnot, and Bernard Ries

Construction Techniques for Digraphs with Minimum Diameter 327
Mirka Miller, Slamin, Joe Ryan, and Edy Tri Baskoro

Suffix Tree of Alignment: An Efficient Index for Similar Data 337
Joong Chae Na, Heejin Park, Maxime Crochemore, Jan Holub,
Costas S. Iliopoulos, Laurent Mouchard, and Kunsoo Park

Fitting Voronoi Diagrams to Planar Tesselations . 349
Greg Aloupis, Hebert Pérez-Rosés, Guillermo Pineda-Villavicencio,
Perouz Taslakian, and Dannier Trinchet-Almaguer

Partial Information Network Queries . 362
Ron Y. Pinter and Meirav Zehavi

An Application of Completely Separating Systems to Graph Labeling . . . 376
Leanne Rylands, Oudone Phanalasy, Joe Ryan, and Mirka Miller

Universal Cycles for Weight-Range Binary Strings . 388
Joe Sawada, Aaron Williams, and Dennis Wong

Circuit Complexity of Shuffle . 402
Michael Soltys

An Optimal Algorithm for the Popular Condensation Problem 412
Yen-Wei Wu, Wei-Yin Lin, Hung-Lung Wang, and Kun-Mao Chao

Posters

Maximum st-Flow in Directed Planar Graphs via Shortest Paths 423
Glencora Borradaile and Anna Harutyunyan

Hypergraph Covering Problems Motivated by Genome Assembly
Questions . 428

Cedric Chauve, Murray Patterson, and Ashok Rajaraman

Cluster Editing with Locally Bounded Modifications Revisited 433
Peter Damaschke

New Approximation Algorithms for the Vertex Cover Problem 438
François Delbot, Christian Laforest, and Raksmey Phan

Improved Approximation Algorithm for the Number of Queries
Necessary to Identify a Permutation . 443

Mourad El Ouali and Volkmar Sauerland

XXII Table of Contents

Motif Matching Using Gapped Patterns . 448
Emanuele Giaquinta, Kimmo Fredriksson, Szymon Grabowski, and
Esko Ukkonen

Domino Graphs and the Decipherability of Directed Figure Codes 453
W�lodzimierz Moczurad

A Pretty Complete Combinatorial Algorithm for the Threshold
Synthesis Problem . 458

Christian Schilling, Jan-Georg Smaus, and Fabian Wenzelmann

Conjunctive Hierarchical Secret Sharing Scheme Based on MDS
Codes . 463

Appala Naidu Tentu, Prabal Paul, and China Venkaiah Vadlamudi

An FPT Certifying Algorithm for the Vertex-Deletion Problem 468
Haiko Müller and Samuel Wilson

Author Index . 473

Weak Heaps and Friends: Recent Developments

Stefan Edelkamp1, Amr Elmasry2, Jyrki Katajainen3, and Armin Weiß4

1 Faculty 3—Mathematics and Computer Science, University of Bremen
P.O. Box 330 440, 28334 Bremen, Germany

2 Department of Computer Engineering and Systems, Alexandria University
Alexandria 21544, Egypt

3 Department of Computer Science, University of Copenhagen
Universitetsparken 5, 2100 Copenhagen East, Denmark

4 Institute for Formal Methods in Computer Science, University of Stuttgart
Universitätstraße 38, 70569 Stuttgart, Germany

Abstract. A weak heap is a variant of a binary heap where, for each
node, the heap ordering is enforced only for one of its two children.
In 1993, Dutton showed that this data structure yields a simple worst-
case-efficient sorting algorithm. In this paper we review the refinements
proposed to the basic data structure that improve the efficiency even
further. Ultimately, minimum and insert operations are supported in
O(1) worst-case time and extract -min operation in O(lg n) worst-case
time involving at most lg n+O(1) element comparisons. In addition, we
look at several applications of weak heaps. This encompasses the creation
of a sorting index and the use of a weak heap as a tournament tree leading
to a sorting algorithm that is close to optimal in terms of the number of
element comparisons performed. By supporting insert operation in O(1)
amortized time, the weak-heap data structure becomes a valuable tool in
adaptive sorting leading to an algorithm that is constant-factor optimal
with respect to several measures of disorder. Also, a weak heap can be
used as an intermediate step in an efficient construction of binary heaps.
For graph search and network optimization, a weak-heap variant, which
allows some of the nodes to violate the weak-heap ordering, is known to
be provably better than a Fibonacci heap.

1 Weak Heaps

In its elementary form, a priority queue is a data structure that stores a col-
lection of elements and supports the operations construct , minimum, insert ,
and extract-min [4]. In applications where this set of operations is sufficient,
the priority queue that the users would select is a binary heap [30] or a weak
heap [7]. Both of these data structures are known to perform well, and in typical
cases the difference in performance is marginal. Most library implementations
are based on a binary heap. However, one reason why a user might vote for a
weak heap over a binary heap is that weak heaps are known to perform less
element comparisons in the worst case: Comparing binary heaps vs. weak heaps
for construct we have 2n vs. n− 1 and for extract-min we have 2�lgn� vs. �lgn�

T. Lecroq and L. Mouchard (Eds.): IWOCA 2013, LNCS 8288, pp. 1–6, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 S. Edelkamp et al.

1

32

65

0

5

11
98

4

7

2 3
7

4

8

96

1

a)

1

3

9 8

4 5 6
56

7

1

2

4

11

8 9
7

3

0

2

b)

Fig. 1. a) An input of 10 integers and b) a weak heap constructed by the standard
algorithm (reverse bits are set for grey nodes, small numbers above the nodes are the
actual array indices) Source: [11, 12]

element comparisons, where n denotes the number of elements stored in the data
structure prior to the operation. Moreover, minimum and insert have matching
complexities 0 and �lgn� element comparisons, respectively.

More formally, a weak heap (see Fig. 1) is a binary tree that has the following
properties:

1. The root of the entire tree has no left child.
2. Except for the root, the nodes that have at most one child are at the last

two levels only. Leaves at the last level can be scattered, i.e. the last level is
not necessarily filled from left to right.

3. Each node stores an element that is smaller than or equal to every element
stored in its right subtree.

From the first two properties we can deduce that the height of a weak heap that
has n elements is �lg n� + 1. The third property is called weak-heap ordering
or half-tree ordering. In particular, this property does not enforce any relation
between an element in a node and those stored in the left subtree of that node.
If perfectly balanced, weak heaps resemble heap-ordered binomial trees [28].
Binomial-tree parents are distinguished ancestors in the weak-heap setting.

In an array-based implementation, besides the element array a, an array r of
reverse bits is used, i.e. ri ∈ {0, 1} for i ∈ {0, . . . , n − 1}. The array index of
the left child of ai is 2i + ri, the array index of the right child is 2i + 1 − ri,
and the array index of the parent is �i/2� (assuming that i 	= 0). Using the fact
that the indices of the left and right children of ai are reversed when flipping ri,
subtrees can be swapped in constant time by setting ri ← 1 − ri. In a compact
representation of a bit array on a w-bit computer �n/w� words are used.

In a pointer-based implementation, the bits are no more needed, but the
children and the parent of a node are accessed by following pointers, and the
children are reversed by swapping pointers. Pointer-based weak heaps can be
used to implement addressable priority queues, which also support delete and
decrease operations [1, 9, 10].

Weak Heaps and Friends: Recent Developments 3

2 Constant-Factor-Optimal Sorting

Dutton [7] showed that to sort n elements WeakHeapSort, a Heapsort

variant that uses a weak heap, requires at most n�lgn� − 2�lgn� + n − 1 ≤
n lgn + 0.089n element comparisons in the worst case. Algorithms, for which
the constant in the leading term in the bound expressing the number of el-
ement comparisons performed is the best possible, are called constant-factor
optimal. Since the early attempts [24], many people have tried to close the
gap to the lower bound and to derive constant-factor-optimal algorithms for
which the number of primitive operations performed is in O(n lg n). Other mem-
bers in the exclusive group of constant-factor-optimal Heapsort algorithms
include UltimateHeapsort [22] and MDRHeapsort [26] (analysed by We-
gener [29]); the former is fully in-place whereas the latter needs 2n extra bits,
but for the in-place algorithm the constant α in the bound n lgn+αn is larger.
Knuth [24] showed that MergeInsertion is a sorting algorithm which performs
at most n lgn− (3− lg 3)n+n(φ+1− 2φ)+O(lg n) element comparisons, where
3 − lg 3 ≈ 1.41 and 0 ≤ φ ≤ 1. However, when implemented with an array, a
quadratic number of element moves may be needed to accomplish the task.

Edelkamp and Wegener [15] gave the worst-case and best-case examples for
WeakHeapSort, which match the proved upper bounds. Experimentally they
showed that in the average case the number of element comparisons performed
is about n lgn+βn with β ∈ [−0.46,−0.42]. Edelkamp and Stiegeler [14] showed
that for sorting indices (as required in many database applications)WeakHeap-

Sort can be implemented so that it performs at most n lgn − 0.91n element
comparisons, which is only off by about 0.53n from the lower bound [24].

Recently, in [16], the idea of QuickHeapsort [2, 5] was generalized to the
notion of QuickXsort: Given some black-box sorting algorithm X, QuickX-

sort can be used to speed X up provided that X satisfies certain natural con-
ditions. QuickWeakHeapsort and QuickMergesort were described as two
examples of this construction. QuickMergesort performs n lgn−1.26n+o(n)
element comparisons on the average and the worst case of n lg n+O(n) element
comparisons can be achieved without affecting the average case. Furthermore,
a weak-heap tournament tree yields an efficient implementation of Merge-

Insertion for small values of n. Taking it as a base case for QuickMerge-

sort, a worst-case-efficient constant-factor-optimal sorting algorithm can be
established, which performs n lg n − 1.3999n+ o(n) element comparisons on an
average. QuickMergesort with constant-size base cases showed the best per-
formance [16]: When sorting integers it was only 15% slower than Introsort

[27] taken from a C++ standard-library implementation.
In [8], two variations of weak heaps were described: The first one uses an

array-based weak heap and the other, a weak queue, is a collection of pointer-
based perfect weak heaps. For both, insert requires O(1) amortized time and
extract-min O(lg n) worst-case time including at most lgn+O(1) element com-
parisons, n being the number of elements stored. In both, the main idea is to
temporarily store the inserted elements in a buffer and, once it becomes full,
to move the buffer elements to the main queue using an efficient bulk-insertion

4 S. Edelkamp et al.

procedure. By employing the new priority queues in AdaptiveHeapsort [25],
the resulting algorithm was shown to be constant-factor optimal with respect to
several measures of disorder. Unlike some previous constant-factor-optimal adap-
tive sorting algorithms [17–19], AdaptiveHeapsort relying on the developed
priority queues is practically workable.

3 Relaxed Weak Heaps and Relaxed Weak Queues

In [1], experimental results on the practical efficiency of three addressable priority
queues were reported. The data structures considered were a weak heap, a weak
queue, and a run-relaxed weak queue that extends a weak queue by allowing some
nodes to violate the half-heap ordering; a run-relaxed weak queue is a variant of
a run-relaxed heap [6] that uses binary trees instead of multiary trees. All the
studied data structures support delete and extract-min in logarithmic worst-case
time. A weak queue reduces the worst-case running time of insert to O(1), and a
run-relaxed weak queue the complexity of both insert and decrease to O(1). As
competitors to these structures, a binary heap, a Fibonacci heap, and a pairing
heap were considered. Generic programming techniques were heavily used in the
code development. For benchmarking purposes several component frameworks
were developed that could be instantiated with different policies.

In [9, 10], two new relaxed priority-queue structures, a run-relaxed weak heap
and a rank-relaxed weak heap, were introduced. The relaxation idea originates
from [6], but is applied in a single-tree context. In contrast to run relaxation,
rank relaxation provides good amortized performance. Since rank-relaxed weak
heaps are simpler and faster, they are better suited for network-optimization
algorithms. For a request sequence of n insert , m decrease, and n extract-min
operations, it can be shown that a rank-relaxed weak heap performs at most
2m + 1.5n�lgn� element comparisons [9, 10]. When considering the same se-
quence of operations, this bound improves over the best bounds known for dif-
ferent variants of a Fibonacci heap, which may require 2m+2.89n�lgn� element
comparisons in the worst case.

4 Heap Construction and Optimal In-Place Heaps

In [11, 12], different options for constructing a weak heap were studied. Star-
ting from a straightforward algorithm, the authors ended up with a catalogue
of algorithms that optimize the standard algorithm in different ways. As the
optimization criteria, it was considered how to reduce the number of instructions,
branch mispredictions, cache misses, and element moves. An approach relying
on a non-standard memory layout was fastest, but the outcome is a weak heap
where the element order is shuffled.

A binary heap can be built on top of a previously constructed navigation
pile [23] with at most 0.625n element comparisons. In [3], it was shown how
this transformation can be used to build binary heaps in-place by performing at
most 1.625n+ o(n) element comparisons. The construction of binary heaps via

Weak Heaps and Friends: Recent Developments 5

weak heaps is equally efficient, but this transformation requires a slightly higher
number of element moves.

In contrast to binary heaps, n repeated insert operations (starting from an
empty structure) can be shown to require at most 3.5n + O(lg2 n) element
comparisons [12] (but Θ(n lg n) time in the worst case). In addition, with con-
stant memory overhead, O(1) amortized time per insert can be improved to
O(1) worst-case time [12], while preserving O(1) worst-case time for minimum
and O(lg n) worst-case time with at most lgn + O(1) element comparisons for
extract-min. This result was previously achieved only for more complicated
structures like multipartite priority queues [19]. Still, none of the known constant-
factor-optimal worst-case solutions can be claimed to be practical.

As a culmination, in [13], an in-place priority queue was introduced that
supports insert in O(1) worst-case time and extract -min in O(lg n) worst-case
time involving at most lgn+O(1) element comparisons, n being the current size
of the data structure. These upper bounds surpass the lower bounds known for
a binary heap [21]. The designed priority queue is similar to a binary heap with
two significant exceptions:

– To bypass the lower bound for extract-min, at the bottom levels a stronger
invariant is enforced: For any node, the element at its left child should never
be larger than the element at its right child.

– To bypass the lower bound for insert , O(lg2 n) nodes are allowed to violate
the binary-heap ordering in relation to their parents.

It is necessary to execute several background processes incrementally in order to
achieve the optimal worst-case bounds on the number of element comparisons.

References

1. Bruun, A., Edelkamp, S., Katajainen, J., Rasmussen, J.: Policy-based benchmark-
ing of weak heaps and their relatives. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049,
pp. 424–435. Springer, Heidelberg (2010)

2. Cantone, D., Cinotti, G.: QuickHeapsort, an efficient mix of classical sorting algo-
rithms. Theoret. Comput. Sci. 285(1), 25–42 (2002)

3. Chen, J., Edelkamp, S., Elmasry, A., Katajainen, J.: In-place heap construction
with optimized comparisons, moves, and cache misses. In: Rovan, B., Sassone,
V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 259–270. Springer,
Heidelberg (2012)

4. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. The MIT Press (2009)

5. Diekert, V., Weiß, A.: QuickHeapsort: Modifications and improved analysis. In:
Bulatov, A.A., Shur, A.M. (eds.) CSR 2013. LNCS, vol. 7913, pp. 24–35. Springer,
Heidelberg (2013)

6. Driscoll, J.R., Gabow, H.N., Shrairman, R., Tarjan, R.E.: Relaxed heaps: An al-
ternative to Fibonacci heaps with applications to parallel computation. Commun.
ACM 31(11), 1343–1354 (1988)

7. Dutton, R.D.: Weak-heap sort. BIT 33(3), 372–381 (1993)

6 S. Edelkamp et al.

8. Edelkamp, S., Elmasry, A., Katajainen, J.: Two constant-factor-optimal realiza-
tions of adaptive heapsort. In: Iliopoulos, C.S., Smyth, W.F. (eds.) IWOCA 2011.
LNCS, vol. 7056, pp. 195–208. Springer, Heidelberg (2011)

9. Edelkamp, S., Elmasry, A., Katajainen, J.: The weak-heap family of priority queues
in theory and praxis. In: Mestre, J. (ed.) CATS 2012, Conferences in Research and
Practice in Information Technology, vol. 128, pp. 103–112. Australian Computer
Society, Inc., Adelaide (2012)

10. Edelkamp, S., Elmasry, A., Katajainen, J.: The weak-heap data structure: Variants
and applications. J. Discrete Algorithms 16, 187–205 (2012)

11. Edelkamp, S., Elmasry, A., Katajainen, J.: A catalogue of algorithms for building
weak heaps. In: Smyth, B. (ed.) IWOCA 2012. LNCS, vol. 7643, pp. 249–262.
Springer, Heidelberg (2012)

12. Edelkamp, S., Elmasry, A., Katajainen, J.: Weak heaps engineered. J. Discrete
Algorithms (to appear)

13. Edelkamp, S., Elmasry, A., Katajainen, J.: Optimal in-place heaps (submitted)
14. Edelkamp, S., Stiegeler, P.: Implementing Heapsort with n log n− 0.9n and Quick-

sort with n log n+0.2n comparisons. ACM J. Exp. Algorithmics 7, Article 5 (2002)
15. Edelkamp, S., Wegener, I.: On the performance of Weak-Heapsort. In: Reichel, H.,

Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 254–266. Springer, Heidelberg
(2000)

16. Edelkamp, S., Weiss, A.: QuickXsort: Efficient sorting with n log n − 1.399n+o(n)
comparisons on average. E-print arXiv:1307.3033, arXiv.org, Ithaca (2013)

17. Elmasry, A., Fredman, M.L.: Adaptive sorting: An information theoretic perspec-
tive. Acta Inform. 45(1), 33–42 (2008)

18. Elmasry, A., Hammad, A.: Inversion-sensitive sorting algorithms in practice. ACM
J. Exp. Algorithmics 13, Article 1.11 (2009)

19. Elmasry, A., Jensen, C., Katajainen, J.: Multipartite priority queues. ACM Trans.
Algorithms 5(1), Article 14 (2008)

20. Elmasry, A., Katajainen, J.: Towards ultimate binary heaps. CPH STL Report
2013-3, Department of Computer Science, University of Copenhagen, Copenhagen
(2013)

21. Gonnet, G.H., Munro, J.I.: Heaps on heaps. SIAM J. Comput. 15(4), 964–971
(1986)

22. Katajainen, J.: The ultimate heapsort. In: Lin, X. (ed.) CATS 2012, Australian
Computer Science Communications, vol. 20, pp. 87–96. Springer-Verlag Singapore
Pte. Ltd., Singapore (1998)

23. Katajainen, J., Vitale, F.: Navigation piles with applications to sorting, priority
queues, and priority deques. Nordic J. Comput. 10(3), 238–262 (2003)

24. Knuth, D.E.: Sorting and Searching, The Art of Computer Programming, 2nd edn.,
vol. 3. Addison Wesley Longman, Reading (1998)

25. Levcopoulos, C., Petersson, O.: Adaptive heapsort. J. Algorithms 14(3), 395–413
(1993)

26. McDiarmid, C.J.H., Reed, B.A.: Building heaps fast. J. Algorithms 10(3), 352–365
(1989)

27. Musser, D.R.: Introspective sorting and selection algorithms. Software Pract. Ex-
per. 27(8), 983–993 (1997)

28. Vuillemin, J.: A data structure for manipulating priority queues. Commun.
ACM 21(4), 309–315 (1978)

29. Wegener, I.: Bottom-up-Heapsort, a new variant of Heapsort beating, on an aver-
age, Quicksort (if n is not very small). Theoret. Comput. Sci. 118(1), 81–98 (1993)

30. Williams, J.W.J.: Algorithm 232: Heapsort. Commun. ACM 7(6), 347–348 (1964)

Efficient Exploration of Anonymous
Undirected Graphs�

Ralf Klasing

CNRS - LaBRI - Université de Bordeaux
351 cours de la Libération, 33405 Talence, France

klasing@labri.fr

Abstract. We consider the problem of exploring an anonymous undi-
rected graph using an oblivious robot. The studied exploration strategies
are designed so that the next edge in the robot’s walk is chosen using
only local information. In this paper, we present some current develop-
ments in the area. In particular, we focus on recent work on equitable
strategies and on the multi-agent rotor-router.

1 Introduction

A widely studied problem concerns the exploration of an anonymous graph G =
(V,E), with the goal of visiting all its vertices and regularly traversing its edges.
At each discrete moment of time, the robot is located at a node of the graph,
and is provided with only a local view of the adjacent edges of the graph.

The random walk is an oblivious exploration strategy in which the edge used
by the robot to exit its current location is chosen with equal probability from
among all the edges adjacent to the current node; cf. e.g. [2,21] for an extensive
introduction to the topic. A recently proposed deterministic counterpart of the
random walk is the rotor-router model [24] (a.k.a. the Propp machine or the
Edge Ant Walk [26, 27]), which requires some (small) memory at the nodes of
the graph. An alternative deterministic traversal method is the basic walk, in
which a small amount of memory is provided to an agent and a certain type
of graph preprocessing is permitted; cf. e.g. [10, 14, 20] for some recent papers
on the latter topic. An extensive survey on graph exploration using the random
walk, the rotor-router and the basic walk can be found in [15].

In this paper, we present some current developments in the area of memory
efficient exploration of anonymous graphs. In particular, we focus on recent work
on equitable strategies, in which the environment attempts to mimic the fairness
properties of the random walk with respect to the use of edges, and on the multi-
agent rotor-router, i.e., a rotor-router system in which more than one agent are
deployed in the same environment.

� The research was partially funded by the ANR project “DISPLEXITY”.

T. Lecroq and L. Mouchard (Eds.): IWOCA 2013, LNCS 8288, pp. 7–13, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

8 R. Klasing

2 Locally Fair Exploration Strategies

The exploration strategies studied in this section fall into the line of research
devoted to derandomizing random walks in graphs [7, 11, 26, 27].

Explorations achieved through random walks are on average good, in the sense
that the following properties hold in expectation:

(1) Within polynomial time, the walk visits all of the vertices of the graph.
(2) Within polynomial time, the walk stabilizes to the steady state, and hence-

forth all edges are visited with the same frequency.

We focus on the problem of designing local exploration strategies which deran-
domize a random walk in a graph in an attempt to achieve the above stated
properties in the deterministic sense of worst-case performance. The next vertex
to be visited should depend only on the values of certain parameters associated
with the edges adjacent to the current node. Such a problem naturally gives rise
to the definition of locally equitable strategies, i.e. strategies, in which at each
step the robot chooses from among the adjacent edges the edge which is in some
sense the “poorest”, in an effort to make the traversal fair. In this context, two
natural notions of equity may be defined:

– An exploration is said to follow the Oldest-First (OF) strategy if it directs
the robot to an unexplored neighboring edge, if one exists, and otherwise
to the neighboring edge for which the most time has elapsed since its last
traversal, i.e. the edge which has waited the longest.

– An exploration is said to follow the Least-Used-First (LUF) strategy if it
directs the robot to a neighboring edge which has so far been visited by the
robot the smallest number of times.

When the considered graph is symmetric and directed, and the above definitions
are applied to directed edges, then the Oldest-First notion of equity is known
to be strictly stronger than Least-Used-First, i.e. any exploration which follows
the OF strategy also follows the LUF strategy [27]. Moreover, the Oldest-First
strategy is in this context equivalent to the well-established efficient exploration
model based on the rotor-router model. In the directed case, both of the described
locally fair exploration stratagies are known to preserve properties (1) and (2)
of the random walk. More precisely, for a symmetric directed graph of diameter
D , any exploration which follows such a strategy achieves a cover time (i.e., the
time until all nodes have been visited at least once) of O(D |E|) and stabilizes
to a globally fair traversal of all the edges. When the Oldest-First and Least-
Used-First strategies are applied to the undirected edges of a graph, the results,
and the used techniques, turn out to be surprisingly different. More precisely, [8]
establishes the following properties of explorations which follow the Oldest-First
or Least-Used-First strategies in undirected graphs.

The Oldest-First (OF) strategy in undirected graphs can be regarded as a natural
analogue of the Oldest-First strategy (rotor-router model) for symmetric directed
graphs. However, whereas the rotor-router model leads to explorations which

Efficient Exploration of Anonymous Undirected Graphs 9

traverse directed edges with equal frequency, and have a cover time bounded by
O(D |E|), this is not the case for Oldest-First explorations in undirected graphs.
Indeed, [8] shows the following theorems.

– In some classes of undirected graphs, any exploration which follows the
Oldest-First strategy is unfair, with an exponentially large ratio of visits
between the most often and least often visited edges.

– There exist explorations following the Oldest-First strategy which have ex-
ponential cover time of 2Ω(|V |) in some graph classes.

The Least-Used-First (LUF) strategy in undirected graphs is fundamentally bet-
ter than the Oldest-First strategy, which is contrary to the situation in symmetric
directed graphs. In fact, [8] shows that, in undirected graphs, explorations which
follow the LUF strategy are fair, efficient, and tolerant to perturbations of initial
conditions, as expressed by the following theorems.

– Any exploration of an undirected graph which follows the Least-Used-First
strategy is fair, achieving uniform distribution of visits to all edges.

– Any exploration of an undirected graph which follows the Least-Used-First
strategy achieves a cover time of O(D |E|), where D denotes the diameter.
This bound is tight. When the exploration starts from a state with non-
zero (corrupted) initial values of traversal counts on edges, the cover time is
bounded by O((|V | + p)|E|), where p is the maximal value of a counter in
the initial state.

Strategies with local equity criteria have also been studied in the token cir-
culation literature, in the context of strategies which are locally fair to vertices
rather than edges. Two such strategies, named LF and LR, were proposed and
analyzed in [22]. In the first of these, LF, the next vertex to be visited is always
chosen as the least-often visited neighbor of the current vertex. In the second,
LR, the next vertex to be visited is the neighbor which has not been visited for
the longest time. The authors of [22] show that both of these strategies eventu-
ally visit all vertices, but in general do not satisfy any fairness criteria. Indeed,
the time between successive visits to a vertex may be exponential in the order of
the graph for LR, and unbounded for LF. In this sense, the results of [22] may
be contrasted with the results of [8] for the LUF strategy.

3 The Multi-agent Rotor-Router

The study of deterministic exploration strategies in agent-based models of com-
putation is largely inspired by considerations of random walk processes. For an
undirected graph G = (V,E), exploration with the random walk has many ad-
vantageous properties: the expected arrival time of the agent at the last unvisited
node of the graph, known as the cover time C(G), can in general be bounded
as, e.g., C(G) ∈ O(D|E| log |V |), where D is the diameter of the graph. The
random walk also has the property that in the limit it visits all of the edges
of the graph with the same frequency, on average, traversing each once every

10 R. Klasing

|E| rounds. The rotor-router model, introduced by Priezzhev et al. [24] and fur-
ther popularised by James Propp, provides a mechanism for the environment
to control the movement of the agent deterministically, whilst retaining similar
properties of exploration as the random walk.

In the rotor-router model, the agent has no operational memory and the whole
routing mechanism is provided within the environment. The edges outgoing from
each node v are arranged in a fixed cyclic order known as a port ordering, which
does not change during the exploration. Each node v maintains a pointer which
indicates the edge to be traversed by the agent during its next visit to v. If the
agent has not visited node v yet, then the pointer points to an arbitrary edge
adjacent to v. The next time when the agent enters node v, it is directed along
the edge indicated by the pointer, which is then advanced to the next edge in
the cyclic order of the edges adjacent to v.

The behavior of the rotor-router for a single agent is well understood.
Yanovski et al. [27] showed that, regardless of the initialization of the system,
the agent stabilizes to a traversal of a directed Eulerian cycle (containing all of
the edges of the graph) within 2D|E| steps. A complementary lower bound was
provided by Bampas et al. [4], who showed that for any graph there exists an
initialization of the system for which covering all the nodes of the graph and
entering the Eulerian cycle takes Θ(D|E|) steps. Robustness properties of the
rotor-router were further studied in [5], who considered the time required for
the rotor-router to stabilize to a (new) Eulerian cycle after an edge is added or
removed from the graph.

[18, 27] consider the setting in which multiple, indistinguishable agents
are deployed in parallel in the nodes of the graph, and move around the
graph in synchronous rounds, interacting with a single rotor-router system.
Yanovski et al. [27] showed that adding a new agent to the system cannot slow
down exploration, and provided some experimental evidence showing a nearly-
linear speed-up of cover time with respect to the number of agents in practical
scenarios. They also show that the multi-agent rotor-router eventually visits
all edges of the graph a similar number of times. In [18], new techniques are
proposed which allow to perform a theoretical analysis of the multi-agent rotor-
router model, and to compare it to the scenario of parallel independent random
walks in a graph [3, 12, 13, 25]. The main results concern the n-node ring, and
suggest a strong similarity between the performance characteristics of this de-
terministic model and random walks.

More precisely, it is shown that on the ring the rotor-router with k agents
admits a cover time of between Θ(n2/k2) in the best case and Θ(n2/ log k) in
the worst case, depending on the initial locations of the agents, and that both
these bounds are tight. The corresponding expected value of cover time for k
random walks, depending on the initial locations of the walkers, is proven to
belong to a similar range, namely between Θ(n2/(k2/ log2 k)) and Θ(n2/ log k).

In addition, the limit behavior of the rotor-router system is studied. It is
shown that, once the rotor-router system has stabilized, all the nodes of the
ring are always visited by some agent every Θ(n/k) steps, regardless of how the

Efficient Exploration of Anonymous Undirected Graphs 11

system was initialized. This asymptotic bound corresponds to the expected time
between successive visits to a node in the case of k random walks. All the results
hold up to a polynomially large number of agents (1 ≤ k < n1/11).

A variant of the multi-agent rotor-router mechanism has been extensively
studied in a different setting, in the context of balancing the workload in a net-
work. The single agent is replaced with a number of agents, referred to as tokens.
Cooper and Spencer [9] study d-dimensional grid graphs and show a constant
bound on the difference between the number of tokens at a given node v in the
rotor-router model and the expected number of tokens at v in the random-walk
model. Subsequently, Doerr and Friedrich [11] analyse in more detail the distri-
bution of tokens in the rotor-router mechanism on the 2-dimensional grid. Recent
work on the multi-agent rotor-router mechanism for balancing the workload in
a network comprises e.g. [1, 17].

4 Conclusion and Future Work

In Section 2, we have seen that locally fair strategies in undirected graphs can
closely imitate random walks, allowing to obtain an exploration which is fair with
respect to all edges, and efficient in terms of cover time. However, the fairness
criterion has to be chosen much more carefully than for symmetric directed
graphs: Least-Used-First works, but Oldest-First does not.

In future work it would be interesting to study modified notions of equity,
which are inspired by random walks which select the next edge to be traversed
with non-uniform probability. For example, it is possible to decrease the general-
case bound on the cover time of a random walk to O(|V |2 log |V |), by applying
a probability distribution which reflects the degrees of the nearest neighbors of
the current node [16, 19, 23]. It is an open question whether a similar bound
can be obtained in the deterministic sense using a derandomized strategy. A
somewhat different approach was adopted by Berenbrink et al. [6], who show
that a random walk with the additional capability of marking one unvisited
node in its neighborhood as visited can be used to speed up exploration. It is an
open problem whether a similar speedup can be obtained using a derandomized
strategy.

In Section 3, we have seen that the muliti-agent rotor-router and the parallel
random walk have similar speed-up characteristics w.r.t. the number of deployed
agents, at least in terms of cover time and return time on the ring. It is inter-
esting to note that the worst-case speed-up on the ring is Θ(log k) for both the
k-agent random walk and the k-agent rotor-router, even though this speed up
has a different explanation in both cases. For the random walk, it is a conse-
quence of the properties of probability distributions of independent Markovian
processes, while for the rotor-router, it results directly from the interactions
between different agents and the pointers in the graph.

This work may also be seen as a step in the direction of understanding and
characterizing the behavior of the multi-agent rotor-router in graphs different
from the ring. Some of the techniques developed in [18], in particular analysis
based on delayed deployments, are also applicable in the general case.

12 R. Klasing

References

1. Akbari, H., Berenbrink, P.: Parallel rotor walks on finite graphs and applications
in discrete load balancing. In: SPAA, pp. 186–195 (2013)

2. Aldous, D., Fill, J.: Reversible Markov Chains and Random Walks on Graphs
(2001), http://stat-www.berkeley.edu/users/aldous/RWG/book.html

3. Alon, N., Avin, C., Koucký, M., Kozma, G., Lotker, Z., Tuttle, M.R.: Many random
walks are faster than one. Combinatorics, Probability & Computing 20(4), 481–502
(2011)

4. Bampas, E., Gąsieniec, L., Hanusse, N., Ilcinkas, D., Klasing, R., Kosowski, A.:
Euler tour lock-in problem in the rotor-router model. In: Keidar, I. (ed.) DISC
2009. LNCS, vol. 5805, pp. 423–435. Springer, Heidelberg (2009)

5. Bampas, E., Gasieniec, L., Klasing, R., Kosowski, A., Radzik, T.: Robustness of
the rotor-router mechanism. In: Abdelzaher, T., Raynal, M., Santoro, N. (eds.)
OPODIS 2009. LNCS, vol. 5923, pp. 345–358. Springer, Heidelberg (2009)

6. Berenbrink, P., Cooper, C., Elsässer, R., Radzik, T., Sauerwald, T.: Speeding up
random walks with neighborhood exploration. In: SODA, pp. 1422–1435 (2010)

7. Bhatt, S.N., Even, S., Greenberg, D.S., Tayar, R.: Traversing directed eulerian
mazes. Journal of Graph Algorithms and Applications 6(2), 157–173 (2002)

8. Cooper, C., Ilcinkas, D., Klasing, R., Kosowski, A.: Derandomizing random walks
in undirected graphs using locally fair exploration strategies. Distributed Comput-
ing 24(2), 91–99 (2011)

9. Cooper, J.N., Spencer, J.: Simulating a random walk with constant error. Combi-
natorics, Probability & Computing 15(6), 815–822 (2006)

10. Czyzowicz, J., Dobrev, S., Gasieniec, L., Ilcinkas, D., Jansson, J., Klasing, R.,
Lignos, I., Martin, R., Sadakane, K., Sung, W.-K.: More efficient periodic traversal
in anonymous undirected graphs. Theoretical Computer Science 444, 60–76 (2012)

11. Doerr, B., Friedrich, T.: Deterministic random walks on the two-dimensional grid.
Combinatorics, Probability & Computing 18(1-2), 123–144 (2009)

12. Efremenko, K., Reingold, O.: How well do random walks parallelize? In: Dinur,
I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX 2009. LNCS, vol. 5687, pp.
476–489. Springer, Heidelberg (2009)

13. Elsässer, R., Sauerwald, T.: Tight bounds for the cover time of multiple random
walks. Theoretical Computer Science 412(24), 2623–2641 (2011)

14. Gasieniec, L., Klasing, R., Martin, R.A., Navarra, A., Zhang, X.: Fast periodic
graph exploration with constant memory. Journal of Computer and System Sci-
ences 74(5), 808–822 (2008)

15. Gąsieniec, L., Radzik, T.: Memory efficient anonymous graph exploration. In:
Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds.) WG 2008. LNCS,
vol. 5344, pp. 14–29. Springer, Heidelberg (2008)

16. Ikeda, S., Kubo, I., Yamashita, M.: The hitting and cover times of random walks on
finite graphs using local degree information. Theoretical Computer Science 410(1),
94–100 (2009)

17. Kijima, S., Koga, K., Makino, K.: Deterministic random walks on finite graphs. In:
ANALCO, pp. 18–27 (2012)

18. Klasing, R., Kosowski, A., Pajak, D., Sauerwald, T.: The multi-agent rotor-router
on the ring: a deterministic alternative to parallel random walks. In: PODC, pp.
365–374 (2013)

19. Kosowski, A.: A õ (n2) time-space trade-off for undirected s-t connectivity. In:
SODA, pp. 1873–1883 (2013)

http://stat-www.berkeley.edu/users/aldous/RWG/book.html

Efficient Exploration of Anonymous Undirected Graphs 13

20. Kosowski, A., Navarra, A.: Graph decomposition for memoryless periodic explo-
ration. Algorithmica 63(1-2), 26–38 (2012)

21. Lovász, L.: Random walks on graphs: A survey. Bolyai Society Mathematical Stud-
ies 2, 353–397 (1996)

22. Malpani, N., Chen, Y., Vaidya, N.H., Welch, J.L.: Distributed token circulation in
mobile ad hoc networks. IEEE Transactions on Mobile Computing 4(2), 154–165
(2005)

23. Nonaka, Y., Ono, H., Sadakane, K., Yamashita, M.: The hitting and cover times
of metropolis walks. Theoretical Computer Science 411(16-18), 1889–1894 (2010)

24. Priezzhev, V., Dhar, D., Dhar, A., Krishnamurthy, S.: Eulerian walkers as a model
of self-organized criticality. Physical Review Letters 77(25), 5079–5082 (1996)

25. Sauerwald, T.: Expansion and the cover time of parallel random walks. In: PODC,
pp. 315–324. ACM (2010)

26. Wagner, I.A., Lindenbaum, M., Bruckstein, A.M.: Distributed covering by ant-
robots using evaporating traces. IEEE Transactions on Robotics and Automa-
tion 15(5), 918–933 (1999)

27. Yanovski, V., Wagner, I.A., Bruckstein, A.M.: A distributed ant algorithm for
efficiently patrolling a network. Algorithmica 37(3), 165–186 (2003)

On Maximum Rank Aggregation Problems�

Christian Bachmaier, Franz Josef Brandenburg,
Andreas Gleißner, and Andreas Hofmeier

University of Passau
94030 Passau, Germany

{bachmaier,brandenb,gleissner,hofmeier}@fim.uni-passau.de

Abstract. The rank aggregation problem consists in finding a consen-
sus ranking on a set of alternatives, based on the preferences of individ-
ual voters. These are expressed by permutations, whose distance can be
measured in many ways.

In this work we study a collection of distances, including the Kendall
tau, Spearman footrule, Spearman rho, Cayley, Hamming, Ulam, and
Minkowski distances, and compute the consensus against the maximum,
which attempts to minimize the discrimination against any voter.

Weprovide a general schema fromwhichwe canderive theNP-hardness
of themaximum rank aggregation problems under the aforementioned dis-
tances. This reveals a dichotomy for rank aggregation problems under the
Spearman footrule and Minkowski distances: the common sum version is
solvable in polynomial time whereas the maximum version is NP-hard.
Moreover, the maximum rank aggregation problems are proved to be 2-
approximable under all pseudometrics and fixed-parameter tractable un-
der the Kendall tau, Hamming, and Minkowski distances.

1 Introduction

The task of ranking a list of alternatives is encountered in many situations. One
of the underlying goals is to find the best consensus. This task is known as the
rank aggregation problem, and was widely studied in the past decade [1, 13].
The problem has numerous applications in sports, voting systems for elections,
search engines and evaluation systems on the web.

From mathematical and computational perspectives, the rank aggregation
problem is given by a set of m permutations on a set of size n, and the goal is to
find a consensus permutation with minimum distance to the given permutations.
There are many ways to measure the distance between two permutations and to
aggregate the cost by an objective function. Kemeny [19] proposed to count the
pairwise disagreements between the orderings of two items, which is commonly
known as the Kendall tau distance. For permutations it is the ’bubble sort’ dis-
tance, i. e., the number of pairwise adjacent transpositions needed to transform
one permutation into the other, or the number of crossings in a two-layered

� Supported by the Deutsche Forschungsgemeinschaft (DFG), grant Br835/16-1.

T. Lecroq and L. Mouchard (Eds.): IWOCA 2013, LNCS 8288, pp. 14–27, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

On Maximum Rank Aggregation Problems 15

drawing [6]. Another popular measure is the Spearman footrule distance [11],
which is the L1-norm of two n-dimensional vectors.

The geometric median of the input permutations is commonly taken for the
optimal aggregation, which means the sum of the cost of the comparison of each
input permutation and the consensus. From the computational perspective this
makes a difference between the Spearman footrule and the Kendall tau distance,
since the further allows a polynomial time solution via weighted bipartite match-
ing [13], whereas the latter leads to an NP-hard rank aggregation problem [3],
even for four voters [6,13]. It has an expected 11

7 randomization [2], a PTAS [20],
and is fixed-parameter tractable [5, 18].

Here we study the maximum version, which attempts to avoid a discrimina-
tion of a single voter or permutation against the consensus. The objective is a
minimum k such that all permutations are within distance k from the consensus.
Biedl et al. [6] studied this version for the Kendall tau distance and showed that
determining whether there is a permutation τ which is within distance at most
k to all input permutations, is NP-hard, even for any m ≥ 4 permutations.

There are other distance measures on permutations than the Kendall tau and
the Spearman footrule distances. These can be derived from steps in sorting
algorithms. In their fundamental study Diaconis and Graham [11] relate the
Kendall tau and Spearman footrule distance, and the Spearman rho and Cayley
distance. Critchlow [9] added the Hamming and edit distances.

Our main contribution is a general schema for the complexity analysis, which
allows us to prove that the maximum rank aggregation problem is NP-hard and
fixed-parameter tractable under any metric d which satisfies some requirements.
These are granted by the aforementioned distances. For the NP-hardness results
we provide a simpler reduction from the Closest Binary String problem and
from the Hitting String problem. Previous reductions used the Feedback

Arc Set problem (see [6, 13]).
The paper is organized as follows. After some preliminaries in Sect. 2 we show

in Sect. 3 that Maximum Ranking (MR) is tractable under the Maximum
distance, whereas MR is intractable under many other distances as shown in
Sect. 4. In Sect. 5 we establish that MR is 2-approximable for pseudometrics.
Finally, in Sect. 6, we present fixed-parameter algorithms to solve MR under
various distances.

2 Preliminaries

For a binary relation R on a domain D and for each x, y ∈ D, we write x <R y if
(x, y) ∈ R and x ≮R y if (x, y) /∈ R. A binary relation κ is a (strict) partial order
if it is irreflexive, asymmetric and transitive, i. e., x ≮κ x, x <κ y ⇒ y ≮κ x,
and x <κ y ∧ y <κ z ⇒ x <κ z for all x, y, z ∈ D. Candidates x and y are called
unrelated by κ if x ≮κ y ∧ y ≮κ x, which we denote by x 	≷κ y. The intuition
of x <κ y is that κ ranks x before y, which means a preference for x. If x <κ y
or y <κ x, we speak of a constraint of κ on x and y. For X ,Y ⊆ D we denote
X <κ Y if ∀

x∈X
∀

y∈Y
x <κ y and define x <κ Y and X <κ y accordingly.

16 C. Bachmaier et al.

A total order is a complete partial order, i. e., x <τ y ∨ y <τ x for all
x, y ∈ D with x 	= y. Let n = |D| and n = {1, . . . , n}. For every total or-
der τ there is a unique permutation, i. e., a bijection τ ′ : D → n such that
x <τ y ⇔ τ ′(x) < τ ′(y). In the rest of the paper we identify total orders
and their corresponding permutations, taking the view whichever comes in more
handy. The set of all permutations on D is denoted by Perm(D). We denote the
permutation {x1, . . . , xn} → n : xi �→ i by [x1x2 . . . xn].

A total order τ ∈ Perm(D) is a total extension of a partial order κ if τ does
not contradict κ, i. e., x <κ y implies x <τ y for all x, y ∈ D. We denote the set
of total extensions of a partial order κ by Ext(κ).

A bucket order is a partial order κ for which unrelatedness 	≷κ is transitive.
Then 	≷κ is an equivalence relation whose equivalence classes are called buckets.
In other words, κ induces a total order order on the buckets while candidates of
the same bucket are unrelated, see [1, 2, 15].

A transposition is a permutation on n switching the positions of two candi-
dates. Hence, for positions i, j ∈ n, we define the transposition Ti,j ∈ Perm(n)
by Ti,j(i) = j, Ti,j(j) = i and Ti,j(k) = k for k 	∈ {i, j}. Transpositions can
also be considered as operations acting on permutations on D. For x, y ∈ D and
σ ∈ Perm(D) we say Tσ(x),σ(y) ◦ σ ∈ Perm(D) is the transposition of x and y in
σ. Transpositions Ti,j of adjacent candidates with |i− j| = 1 are called swaps.

A binary function d : Perm(D) × Perm(D) → R is called a pseudometric if
d(σ, τ) ≥ 0, d(σ, τ) = d(τ, σ), σ = τ ⇒ d(σ, τ) = 0, and d(σ, τ)+d(τ, ρ) ≥ d(σ, ρ)
for all σ, τ, ρ ∈ Perm(D). It is a metric if, additionally, σ = τ ⇔ d(σ, τ) = 0.

Next we introduce the main concepts of this work: The maximum version of
the rank aggregation problem under various distances [9, 10].

Definition 1 (Maximum Ranking (MR)).
Instance: A set D of n candidates, m voters σ1, . . . , σm ∈ Perm(D), k ∈ N.
Question: Does there exist a permutation τ ∈ D with maxmj=1 d(σj , τ) ≤ k?

Then permutation τ is called k-consensus. Observe that this is equivalent to say
that d(σj , τ) ≤ k for all voters σj , j ∈ m.

Let σ, τ ∈ Perm(D). Define the set of dirty pairs K(σ, τ) = {{x, y} ⊆ D : x <σ

y ∧ y <τ x} as the set of pairs of candidates x, y ∈ D where σ and τ disagree on
their order. Then the Kendall tau distance K is defined by K(σ, τ) = |K(σ, τ)|.
It coincides with the minimum number k of swaps T1, . . . , Tk such that τ =
Tk ◦ . . . ◦ T1 ◦ σ. If we also allow switching non-adjacent candidates, we obtain
the Cayley distance C(σ, τ), which is the minimum number of transpositions
T1, . . . , Tk such that τ = Tk ◦ . . . ◦ T1 ◦ σ. A permutation on n can also be
specified by its constituent cycles. A cycle C = (x1x2 . . . x|C|) of ρ ∈ Perm(n) is
a (cyclic) sequence of distinct candidates such that ρ(xi) = xi+1 for 1 ≤ i < |C|
and ρ(x|C|) = x1. The cycles form a partition of n. Denote by �C(ρ) the number of
cycles of ρ. The Cayley distance can be expressed as C(σ, τ) = n−�C(τ◦σ−1) [10].

Define the set of displaced candidates by H(σ, τ) = {x ∈ D : σ(x) 	= τ(x)} as
the set of candidates x ∈ D where σ and τ disagree on their position. The
Hamming distance H is defined by H(σ, τ) = |H(σ, τ)|, which is the num-
ber of positions i ∈ n where σ−1(i) 	= τ−1(i). This view is also taken by the

On Maximum Rank Aggregation Problems 17

Hamming distance between strings s, t ∈ {0, 1}n, which is defined as H(s, t) =
|{i ∈ n : s(i) 	= t(i)}| where s(i) denotes the i-th character of s.

Let σ, τ ∈ Perm(D). A tuple (x1, . . . , xl) with xi ∈ D is a common sub-
sequence of σ and τ if i < j ⇔ xi <σ xj ∧ xi <τ xj . Let lcs(σ, τ) =
max{ l : (x1, . . . , xl) is a common subsequence of σ and τ }. Then the Ulam dis-
tance is U(σ, τ) = n − lcs(σ, τ).

Finally, the Minkowski distance Fp is defined as Fp(σ, τ) =(∑
x∈D |σ(x) − τ(x)|p

) 1
p for p ∈ N \ {0}. F1 is also known as the Spear-

man Footrule distance or taxicab metric. F2 is the Euclidean metric
and also known as the Spearman rho distance [10]. To simplify proofs
we introduce the notion of the raised Minkowski distance F̂p defined by

F̂p(τ, σ) = (Fp(τ, σ))
p =

∑
x∈D |τ(x) − σ(x)|p.

One can also consider the limit for p → ∞ and p → −∞. The Chebyshev
or Maximum distance is F∞(σ, τ) = maxx∈D |σ(x) − τ(x)|. Define the Minimum
distance F−∞(σ, τ) = minx∈D |σ(x) − τ(x)|. Note that F−∞ is not a metric and
satisfies only non-negativity and symmetry.

3 Efficient Algorithms

Theorem 1. MR is efficiently solvable under the Maximum distance F∞.

Proof. To find a permutation τ satisfying maxmj=1 maxx∈D |σj(x)− τ(x)| ≤ k ,
we solve a maximum matching problem in the bipartite graph G = (V , E) with
vertices V = D ·∪ n and an edge (x, i) ∈ E if maxmj=1 |σj(x) − i| ≤ k. Every
matching of size n corresponds to a k-consensus τ and vice versa. As |E| <
n(2k + 1), this can be done in O(n2 · k) time. For an improvement observe that
the suitable positions for each candidate are consecutive, thus form an interval.
Assign to each candidate x ∈ D the interval Ix = {i ∈ n : maxmj=1 |σj(x) − i| ≤
k}. Then iterate over the positions i ∈ n. In step i, select the candidate to
place at position i. Choose from those candidates x with i ∈ Ix and which
have not been placed before. If there are multiple suitable candidates, prefer a
candidate whose interval has the least upper endpoint. In the case that there
are no suitable candidates, reject the instance. We use a heap to manage the
intervals of unplaced candidates, inserting the interval once we reach its lower
endpoint. Determining the endpoints of the intervals can be done in O(n · m)
and the iteration is done in O(n log n), resulting in a total running time of
O(n(log n+m)). ��

4 Intractability Results

We show that MR is NP-complete under the Hamming, Minkowski, Kendall
tau, Cayley, Ulam and the Minimum distances. As these distances can be effi-
ciently computed between total orders [4,6,9,21], membership is in NP. For the
NP-hardness proofs we develop a general schema. First we proof that the NP-
complete Closest Binary String problem [16] can be reduced to a special

18 C. Bachmaier et al.

case of MR under any metric subject to Requirements 1 and 2 defined below.
Then we show that these requirements are satisfied by all of the aforementioned
metrics except the Minimum distance, for which we provide a reduction from
the NP-complete Hitting String problem [14].

Definition 2 (Closest Binary String [16]).
Instance: k, n ∈ N, a list s1, . . . , sm ∈ {0, 1}n of m binary strings of length n.

Question: Does there exist a string t ∈ {0, 1}n with maxmj=1 H(sj , t) ≤ k?

For the rest of this section, we introduce distinct elements ai, bi and sets
Bi = {ai, bi} for i ∈ n and let D =

⋃n
i=1 Bi. Let κ be the bucket order on D

with buckets Bi ordered by B1 <κ . . . <κ Bn. We call a permutation local if it is
an extension of κ. We state the following properties to be met by a metric d in
order to be applicable in the forthcoming reduction.

Requirement 1 (Optimality of local permutations). Let σ1, . . . , σm ∈
Ext(κ) and k ∈ N. If there is a k-consensus τ ∈ Perm(D) with maxmj=1 d(σj , τ) ≤
k, then there also is a local permutation τ ′ ∈ Ext(κ) with maxmj=1 d(σj , τ

′) ≤ k.

In other words, if all voters are local and our metric meets Requirement 1,
then we can safely demand that the consensus is local, too, without impairing
its chance to satisfy the upper bound k. Note that d satisfies Requirement 1
if for every σ ∈ Ext(κ) and τ ∈ Perm(D) we can find τ ′ ∈ Ext(κ) such that
d(τ ′, σ) ≤ d(τ, σ). The second requirement puts tight constraints on the distance
of local permutations.

Requirement 2 (Distance constraints). There is a constant c > 0 such that
for all local permutations σ, τ ∈ Ext(κ) the distance is d(σ, τ) = c · |K(σ, τ)|.

Note that all local permutations agree on the order of candidates from different
buckets. Thus, a distance satisfying Requirement 2 is exactly a constant multiple
of the number of buckets Bi where one permutation ranks ai before bi and the
other ranks bi before ai.

Theorem 2. MR under a metric d is NP-hard if d satisfies Requirements 1
and 2.

Proof. Consider an instance of Closest Binary String consisting in a list
s1, . . . , sm ∈ {0, 1}n of m binary strings of length n and an upper bound k ∈ N
as in Definition 2. We choose the candidate set D as defined above. Consider
the bijective mapping f : {0, 1}n → Ext(κ), which encodes strings of length n
as a local permutation where ai <f(s) bi if s(i) = 0 and bi <f(s) ai if s(i) = 1.
More formally, f(s)(ai) = 2i − 1 + s(i) and f(s)(bi) = 2i − s(i) for all strings
s ∈ {0, 1}n. For instance, f("010") = [a1b1︸︷︷︸

B1

b2a2︸︷︷︸
B2

a3b3︸︷︷︸
B3

]. Observe that for strings

s, t ∈ {0, 1}n and i ∈ n we have s(i) 	= t(i) if and only if {ai, bi} ∈ K(f(s), f(t)).
For each string sj we introduce the voter σj = f(sj) and let k′ = c · k, where c
is the constant from Requirement 2.

On Maximum Rank Aggregation Problems 19

Suppose that a string t∗ ∈ {0, 1}n satisfies maxmj=1 H(sj , t
∗) ≤ k. Let j ∈ m.

We have

k′ = c · k ≥ c · H(sj , t
∗) = c · |{i ∈ n : sj(i) 	= t∗(i)}| = c · |K(f(sj), f(t

∗))|
= d(σj , f(t

∗))

by Requirement 2. Therefore, f(t∗) is a k′-consensus for the MR problem.
Conversely suppose that τ∗ satisfies maxmj=1 d(σj , τ

∗) ≤ k′. W. l. o. g. assume
that τ∗ is local by Requirement 1. Again, let j ∈ m. By Requirement 2 we obtain

k =
k′

c
≥ 1

c
· d(σj , τ

∗) = |K(σj , τ
∗)| =

∣∣{i ∈ n : f−1(σj) 	= f−1(τ∗)}
∣∣

= H(sj , f
−1(τ∗)) ,

i. e., the string t∗ = f−1(τ∗) ∈ {0, 1}n satisfies maxmj=1 H(sj , t
∗) ≤ k. ��

Lemma 1. Let σ, τ ∈ Perm(D) and {x, y} ∈ K(σ, τ) be a dirty pair between σ
and τ . Then the Kendall tau distance strictly decreases if we transpose x and y
in τ , i. e., K(σ, Tτ(x),τ(y) ◦ τ) < K(σ, τ).

Proof. Let τ ′ = Tτ(x),τ(y)◦τ . W. l. o. g. assume x <τ y. We compare the set K+ =
K(τ ′, σ) \K(τ, σ) with the set K− = K(τ, σ) \K(τ ′, σ). Then K(τ ′, σ) < K(τ, σ)
if |K+| < |K−|. Now, let Z<, Z| and Z> be the candidates that are ranked by
σ before, between, and after x and y, respectively. Formally, Z< = {z ∈ D :
x <τ z <τ y ∧ z <σ y <σ x}, Z| = {z ∈ D : x <τ z <τ y ∧ y <σ z <σ x},
and Z> = {z ∈ D : x <τ z <τ y ∧ y <σ x <σ z}. By a simple but cumbersome
distinction of cases we obtain

K+ =
⋃

z∈Z<

{{y, z}} ∪
⋃

z∈Z>

{{x, z}} , and

K− =
⋃

z∈Z<

{{x, z}} ∪
⋃

z∈Z>

{{y, z}} ∪
⋃
z∈Z|

{{x, z}, {y, z}}∪ {{x, y}} .

Hence, K(τ ′, σ) = K(τ, σ)−
∣∣Z|∣∣− 1. ��

Next we show that Requirements 1 and 2 hold for the Kendall tau, Cayley,
Hamming, Ulam, and Minkowski distances.

Lemma 2. Let τ∗ be an optimal consensus for the MR problem under the
Kendall tau distance K with voters σ1, . . . , σm. Let μ =

⋂m
j=1 σj be the par-

tial order with x <μ y if and only if x <σj y for all j ∈ m. Then τ∗ ∈ Ext(μ).

Proof. Assume by contradiction that there are candidates x, y ∈ D with x <μ y
and y <τ∗ x. Then x <σj y and {x, y} ∈ K(σj , τ

∗) for every j ∈ m. Thus,
maxmj=1 d(σj , Tτ∗(x),τ∗(y) ◦ τ∗) < maxmj=1 d(σj , τ

∗) by Lemma 1, which is a con-
tradiction to the optimality of τ∗. ��

Corollary 1. The Kendall tau distance K satisfies Requirements 1 and 2.

20 C. Bachmaier et al.

Proof. Let σ1, . . . , σm ∈ Ext(κ) be local permutations and μ =
⋂m

j=1 σj . Every
extension of μ is also an extension of κ since κ ⊆ μ. Hence, Requirement 1
follows immediately from Lemma 2. Let c = 1. Then Requirement 2 is just the
definition of the Kendall tau distance restricted to local permutations. ��

Lemma 3. The Cayley distance C satisfies Requirement 2.

Proof. Let σ, τ ∈ Ext(κ) be local permutations. Since σ and τ agree on the
order of candidates in different buckets, K(σ, τ) ⊆ {Bi : i ∈ n }. Consider a
bucket Bi = {ai, bi}. If Bi ∈ K(σ, τ), then ai and bi form a single cycle (aibi) of
size 2 in τ ◦ σ−1 as σ(ai) = τ(bi) and σ(bi) = τ(ai). If otherwise Bi 	∈ K(σ, τ),
ai and bi each form a cycle of size 1. Thus, C(σ, τ) = 2n − �C(τ ◦ σ−1) =
2n− |K(σ, τ)| − 2 · |{ Bi : i ∈ n } \ K(σ, τ)| = |K(σ, τ)| = K(σ, τ). ��

Lemma 4. The Cayley distance C satisfies Requirement 1, i. e., C(l(τ), σ) ≤
C(τ, σ) for every σ ∈ Ext(κ) and τ ∈ Perm(D).

Proof. For x ∈ D, denote by
∣∣Cx(τ ◦ σ−1)

∣∣ the size of the cycle in τ ◦ σ−1 con-

taining x. If σ(x) 	= τ(x), then
∣∣Cx(τ ◦ σ−1)

∣∣ ≥ 2, but
∣∣Cx(l(τ) ◦ σ−1)

∣∣ ≤ 2 as

shown in the proof of Lemma 3. If otherwise σ(x) = τ(x), then
∣∣Cx(τ ◦ σ−1)

∣∣ =∣∣Cx(l(τ) ◦ σ−1)
∣∣ = 1. Observe that

∑
x∈D

1
|Cx(τ◦σ−1)| = �C(τ ◦ σ−1). Hence,

�C(τ ◦ σ−1) ≤ �C(l(τ) ◦ σ−1). ��

Proposition 1. Let σ, τ ∈ Perm(D) and x ∈ H(σ, τ) be a displaced candidate.
Then H(σ, Tσ(x),τ(x) ◦ τ) < H(σ, τ).

Proof. Let y ∈ D such that τ(y) = σ(x). Note that y ∈ H(σ, τ) and the transpo-
sition of x and y in τ does not affect other candidates. Thus,H(σ, Tσ(x),τ(x)◦τ) =
H(σ, τ) \ {x} or even H(σ, Tσ(x),τ(x) ◦ τ) = H(σ, τ) \ {x, y} if τ(x) = σ(y). ��

Lemma 5. If p ∈ N \ {0}, then the raised Minkowski distance F̂p satisfies Re-

quirement 1, i. e., F̂p(l(τ), σ) ≤ F̂p(τ, σ) for every σ ∈ Ext(κ) and τ ∈ Perm(D).

Proof. Let x ∈ D. If τ(x) = σ(x) then l(τ)(x) = σ(x) since x 	∈ Aτ . Otherwise,
|τ(x) − σ(x)| ≥ 1 implies |τ(x) − σ(x)|p ≥ 1, but |l(τ)(x) − σ(x)| ≤ 1. In both
cases |l(τ)(x) − σ(x)|p ≤ |τ(x) − σ(x)|p. ��

Proposition 2. MR under the raised Minkowski distance F̂p for p ∈ N \ {0}
and under the Hamming distance H satisfies Requirement 2.

Proof. Let σ, τ ∈ Ext(κ) be local permutations. Recall that K(σ, τ) ⊆ {Bi : i ∈
n } as σ and τ agree on the order of candidates in different buckets. Hence,
|τ(x) − σ(x)| = |τ(y)− σ(y)| = 1 for every bucket {x, y} ∈ K(σ, τ), i. e., both x
and y contribute 1 to the distance. Members of the remaining buckets {x, y} ∈
{Bi : i ∈ n } \ K(σ, τ) contribute 0. ��

By a similar proof we obtain:

Lemma 6. The Ulam distance U satisfies Requirement 2.

On Maximum Rank Aggregation Problems 21

For the proof of the following lemma we define the refinement of a bucket by
a total order as in [7,15]. The refinement of a bucket order κ by a total order τ
is the total order τ ∗ κ such that x <τ∗κ y ⇔ x <κ y ∨ x 	≷κ y ∧ x <τ y holds for
all x, y ∈ D. Note that τ ∗ κ ∈ Ext(κ).

Lemma 7. The Ulam distance U satisfies Requirement 1, i. e., U(τ ∗ κ, σ) ≤
U(τ, σ) for every σ ∈ Ext(κ) and τ ∈ Perm(D).

Proof. Let σ ∈ Ext(κ), τ ∈ Perm(D), and (x1, . . . , xl) be a longest common
subsequence of τ and σ, i. e., l = lcs(σ, τ). As σ ∈ Ext(κ), all elements x1, . . . , xl

are ordered by both σ and τ according to κ. Hence, (x1, . . . , xl) is also a common
subsequence for τ ∗ κ and σ and thus, lcs(τ ∗ κ, σ) ≥ lcs(τ, σ). ��

Theorem 3. Requirements 1 and 2 are satisfied by the Kendall tau, Cayley,
Hamming, Ulam, and Minkowski distances Fp for p ∈ N \ {0}. Thus, MR is
NP-complete under these distances.

In consequence we have a dichotomy between the sum and the maximum
versions of the rank aggregation problem, in particular for the Spearman footrule
distance.

Corollary 2. For the Minkowski distances Fp and p ∈ N \ {0} (i) the com-
mon rank aggregation problem taking the sum is efficiently solvable, and (ii) the
maximum rank aggregation problem MR is NP-complete.

Proof. The common rank aggregation problem can be solved by weighted bipar-
tite matching, where the weights wx,i express the cost of placing x at position
i [13], and (ii) follows from Theorem 3. ��

Since the Minimum distance does not satisfy Requirement 2, we provide a
different reduction from Hitting String.

Definition 3 (Hitting String [14]).
Instance: n ∈ N, a list s1, . . . , sm ∈ {0, 1, ∗}n of m strings of length n.
Question: Does there exist a string t ∈ {0, 1}n such that every string sj is hit by
t in at least one position, i. e., ∀j ∈ m : ∃i ∈ n : sj(i) = t(i).

Theorem 4. MR under the Minimum distance F−∞ is NP-complete even for
k = 0.

Proof. There is a consensus τ ∈ Perm(D) with maxmj=1 minx∈D |σj(x)− τ(x)| =
0 if and only if for every σj there is a candidate x such that σj(x) = τ(x). Then
τ hits σj at position τ(x) and we call τ hitting consensus.

First we show how to construct an instance with 2n voters of length n which
has no hitting consensus. Let D = {u1, . . . , un} and σ1 : D → n : ui �→ i.
We obtain n primary voters σ1, . . . , σn by rotating σ1, i. e., for every j ∈ n let
σj(ui) = (i+ j − 2) mod n+1. Additionally, we introduce the secondary voters
σ′1, . . . , σ′n defined by σ′j = T1,2 ◦ σj . For instance if D = {a, b, c, d, e}, then the
list of voters is

22 C. Bachmaier et al.

σ1 = [abcde] σ′1 = [bacde]
σ2 = [eabcd] σ′2 = [aebcd]
σ3 = [deabc] σ′3 = [edabc]
σ4 = [cdeab] σ′4 = [dceab]
σ5 = [bcdea] σ′5 = [cbdea] .

Assume for contradiction that this list of voters has a hitting consensus τ . Since
there are n primary voters and no two primary voters place any candidate at
the same position, every primary voter is hit at exactly one position and τ hits
exactly one primary voter at position 1. Let σ be the primary voter hit at position
1 by a candidate x. Then τ cannot hit the secondary voter σ′ = T1,2 ◦ σ at the
positions 1 or 2 as τ(x) = σ(x) = 1 	= 2 = σ′(x). Thus, it cannot hit σ′ at all
since σ and σ′ agree in all other positions n \ {1, 2}, a contradiction. We call the
above list of voters the n-anti-pattern. With this in mind, we reduce from the
NP-complete Hitting String to MR under the Minimum distance.

As in the proof of Theorem 2, let D =
⋃n

i=1{ai, bi} be the set of candidates and
let f : {0, 1}n → Perm(D) with f(s)(ai) = 2i− 1+ s(i) and f(s)(bi) = 2i− s(i).
For every string sj , j ∈ m, we introduce a list of voters Σj in two steps. The
instance of MR is then the concatenation of all Σj , j ∈ m and k = 0. In the first
step we create a template ρj : D → n∪{∗} from which the actual list is obtained
in the second step. Let ρj(ai) = f(sj)(ai) and ρ(bi) = f(sj)(bi) if s(i) ∈ {0, 1}
and ρj(ai) = ρj(bj) = ∗, otherwise. If none of the strings sj did contain ∗, then
we could establish a one-to-one correspondence between a hitting consensus for
voters ρ1, . . . , ρm and a hitting string for s1, . . . , sm as in Theorem 2 and would
be done. Let Uj = {x ∈ D : ρj = ∗} be the set of candidates which are not
assigned a position by ρj . In Hitting String the ∗ marks a position where an
input string cannot be hit however the hitting string looks alike. We reproduce

this situation for MR by making 2 |Uj | copies σ
(1)
j , . . . , σ

(2|Uj |)
j of ρj such that

all copies agree on the candidates D \ Uj but form a |Uj|-anti-pattern if the
candidate set is restricted to Uj.

Suppose that t∗ is a hitting string for s1, . . . , sm. Then f(t∗) is a hitting
consensus since for every j ∈ m there is an i ∈ n with t∗(i) = sj(i), thus
f(t∗)(ai) = σj(ai). Conversely suppose that τ∗ is a hitting consensus. Consider
the string t∗ ∈ {0, 1}n defined by t∗(i) = 0 if τ∗(ai) = 2i − 1 ∨ τ∗(bi) = 2i
and t∗(i) = 1, otherwise. For every j ∈ m there must be a candidate x 	∈ Uj

with τ(x) = σ
(r)
j (x) for all σ

(r)
j ∈ Σj since they form a |Uj |-anti-pattern when

restricted to Uj . The position of x ∈ D \ Uj in all σ
(r)
j ∈ Σj is identical and

determined by sj . Therefore, x = ai or x = bi for a position i where sj(i) 	= ∗,
and thus, t∗(i) = sj(i). Hence, t

∗ is a hitting string. ��

5 Approximability

We shortly discuss approximations.

Lemma 8. The associated minimization problem of MR is 2-approximable for
any pseudometric d.

On Maximum Rank Aggregation Problems 23

Proof. Let τ∗ ∈ Perm(D) be the optimal consensus for the MR problem under
pseudometric d with voters σ1, . . . , σm ∈ D. Then the pick-a-perm method [1]
with τ = σj for j ∈ m yields a 2-approximation since for all i ∈ m we have

d(σi, τ) ≤ d(σi, τ
∗) + d(τ∗, τ) ≤ 2 ·max{d(σi, τ

∗), d(τ∗, τ)} ≤ 2 · m
max
j=1

d(σj , τ
∗)��

Note that this approximation ratio for pick-a-perm is tight for all metrics satis-
fying Requirements 1 and 2. For instance, consider the voters f("1000 . . ."),
f("0100 . . ."), f("0010 . . .") with f as defined in the last section. The dis-
tance between each pair of voters is 2c, while the optimal consensus would be
f("0000 . . .") with a distance of c.

6 Fixed-Parameter Tractability

The reduction in Sect. 4 demonstrates a close relationship between Closest

Binary String and MR. We strengthen this observation by extending a fixed
parameter algorithm for Closest Binary String [17, 22] such that it can be
applied to MR under several metrics. For an introduction to fixed-parameter
tractability see [12, 22].

The notion of the modification set M(τ, σ) ⊆ Perm(D) is at the heart of our
generalized algorithm. Intuitively, it captures the idea of going “one step” from
τ to σ. The structure of the modification set must be chosen individually for
each metric d. We state a sufficient condition, which we call the δ-improving of
M , such that the algorithm actually finds the optimal consensus.

Requirement 3 (δ-improving). Let δ ∈ N \ {0}. Let σ, τ, τ∗ ∈ Perm(D) and
k ∈ N such that d(τ∗, σ) ≤ k and d(τ, τ∗) ≤ k. If k < d(τ, σ) ≤ 2k, then there
exists a τ ′ ∈ M(τ, σ) such that d(τ ′, τ∗) ≤ d(τ, τ∗)− δ.

Input: Voters σ1, . . . , σm ∈ Perm(D), bound k ∈ N.
Output: k-consensus τ∗ ∈ Perm(D) or reject.

1 search(σ1, k);

2 function search(τ,Δk)
3 if ∀j ∈ m : d(τ, σj) ≤ k then return {τ};
4 if ∃j ∈ m : d(τ, σj) > k +Δk then return ∅;
5 if Δk > 0 then
6 let j ∈ m such that k < d(τ, σj) ≤ k +Δk;
7 foreach τ ′ ∈ M(τ, σj) do
8 R ← search(τ ′,Δk − δ);
9 if R �= ∅ then return R;

10 return ∅

Algorithm 1. Fixed-parameter algorithm for MR

24 C. Bachmaier et al.

Lemma 9. Suppose that there is a k-consensus τ∗, i. e., maxmj=1 d(τ∗, σj) ≤ k.
If M is δ-improving, then at recursion depth i, search in Algorithm 1 has either
already found a k-consensus, or is called at least once with a parameter τ such
that d(τ, τ∗) ≤ k − δi.

Proof. We proof by induction on the recursion depth i. Induction basis: Since
τ = σ1 in depth 0, we have d(τ, τ∗) ≤ k−0 by definition. Induction step: Suppose
the program has not found the solution yet and that at recursion depth i ≤

⌈
k
δ

⌉
search is called with τ ′ having d(τ, τ∗) ≤ k − δi. If d(τ, σj) ≤ k we have found a
k-consensus and are done. Otherwise, d(τ, σj) > k. The break condition in line
4 does not hold since d(τ, σj) ≤ d(τ, τ∗) + d(τ∗, σj) ≤ k − δi + k = Δk + k. As
τ ′ iterates over M(τ, σj), by Requirement 3 there is at least one iteration where
search is called with a τ ′ where d(τ ′, τ∗) ≤ k − δi− δ. ��

Theorem 5. If M is δ-improving, then Algorithm 1 finds a k-consensus τ∗ or

correctly reports that no such consensus exists. Its running time is O((f(k))� k
δ � ·

g(k, n)), where f(k) is the maximum size of the constructed modification sets
and g(k, n) is the time required for the construction of a modification set.

Proof. The recursion depth is bounded by
⌈
k
δ

⌉
and the branching factor is limited

by the maximum size of the modification set. The running time is worst if no k-
consensus exists, in which case search returns the empty set. Otherwise, suppose
that τ∗ is a k-consensus. Then, by Lemma 9, search finds a different k-consensus
or is eventually called with a τ such that d(τ, τ∗) = 0 which implies τ = τ∗. ��

For fixed-parameter results it remains to construct a suitable modification set
for each distance.

Lemma 10. The modification set M(τ, σ) = {Tτ(x),τ(y) ◦ τ : {x, y} ∈ K(τ, σ)}
is 1-improving under the Kendall tau distance K.

Proof. Let k ∈ N and σ, τ, τ∗ ∈ Perm(D) such that K(τ∗, σ) ≤ k < K(τ, σ) ≤
2k. We show that K(τ, σ) ∩ K(τ, τ∗) 	= ∅ since for any dirty pair {x, y} ∈
K(τ, σ) ∩ K(τ, τ∗) we have d(Tτ(x),τ(y) ◦ τ, τ∗) < d(τ, τ∗) by Lemma 1. Assume
for contradiction that K(τ, σ) and K(τ, τ∗) are disjoint. Let {x, y} ∈ K(τ, σ).
As {x, y} 	∈ K(τ, τ∗), we know that τ and τ∗ agree on the relative order of x
and y, which implies that {x, y} ∈ K(σ, τ∗). Hence, K(τ, σ) ⊆ K(σ, τ∗). Now let
{x, y} ∈ K(τ, τ∗). As {x, y} 	∈ K(τ, σ), τ and σ agree on the relative order of x
and y, implying {x, y} ∈ K(σ, τ∗). Hence, K(τ, τ∗) ⊆ K(σ, τ∗). We conclude that
K(σ, τ∗) = |K(σ, τ∗)| ≥ |K(τ, σ)| + |K(τ, τ∗)| ≥ k + 1, a contradiction. ��

Corollary 3. MR under the Kendall tau distance K can be computed in
O((2k)k · (mn logn+ k)}) time.

Proof. Consider the modification set of Lemma 10, whose size is |M(τ, σ)| =
|K(τ, σ)| = K(τ, σ) ≤ 2k. The distance of two permutations can be computed
in O(n logn) time [21]. Hence, lines 3, 4 and 6 of Algorithm 1 need O(mn log n)
time. For efficiency, we represent the modification set M(τ, σ) only implicitly by

On Maximum Rank Aggregation Problems 25

the set K(τ, σ) of at most 2k dirty pairs, which can be computed in O(n logn+k)
time [6]. We iterate τ ′ over M(τ, σ) by transposing the next dirty pair in K(τ, σ),
descent recursively, and undo the transposition after the recursive call returns.
Thus, excluding the recursion, the loop requires O(n log n+ k) time. ��
Lemma 11. The modification set M(τ, σ) = {Tτ(x),σ(x) ◦ τ : x ∈ H(τ, σ)} is
1-improving under the Hamming distance H.

Proof. Let k ∈ N and σ, τ, τ∗ ∈ Perm(D) such that H(τ∗, σ) ≤ k < H(τ, σ) ≤
2k. The size of the modification set is |M(τ, σ)| = |H(τ, σ)| = H(τ, σ) ≤ 2k. σ
and τ∗ agree in the position of at least |D|−k candidates. As H(τ, σ) > k, there is
at least one candidate x with τ(x) 	= σ(x) = τ∗(x). Hence, H(Tτ(x),σ(x)◦τ, τ∗) <
H(τ, τ∗) (see Proposition 1). ��
Corollary 4. MR under the Hamming distance H can be computed in O((2k)k ·
mn) time.

Proof. Consider the modification set of Lemma 11. The Hamming distance be-
tween two permutations can be computed in linear time. Thus, lines 3, 4 and
6 of Algorithm 1 need O(mn) time. Similarly to the proof of Corollary 3, the
iteration of τ ′ over the modification set M(τ, σ) with |M(τ, σ)| ≤ 2k is done in
place and needs only O(k) time. ��
Lemma 12. The modification set M(τ, σ) = {Tτ(x),i ◦ τ : x ∈ H(τ, σ) ∧ i ∈
{τ(x)+ j · sgn(σ(x)−τ(x)) : j ∈ �k 1

p �}∩n} is (p+1)-improving under the raised

Minkowski distance F̂p for p ∈ N \ {0}.

Proof. Let k ∈ N and σ, τ, τ∗ ∈ Perm(D) such that F̂p(τ
∗, σ) ≤ k < F̂p(τ, σ) ≤

2k. We take every displaced candidate x ∈ H(τ, σ) and try all possibilities to
transpose it with candidates placed at most k positions to its right or left,
depending on whether σ(x) > τ(x) or σ(x) < τ(x), respectively. Suppose we
have a candidate x ∈ H(τ, σ) with |σ(x) − τ∗(x)| < |σ(x) − τ(x)|. There must
be at least one such candidate since F̂p(τ

∗, σ) < F̂p(τ, σ). W. l. o. g. assume
σ(x) > τ(x). Otherwise, the following arguments apply symmetrically. Let Y =
{τ∗−1(i) : i ≤ τ(x)} be the set of candidates which are placed in τ∗ to the left of
or on the same position where x is placed in τ . As τ∗(x) > τ(x), x 	∈ Y, so by a
counting argument there must be some y ∈ Y with τ(y) > τ(x). We know that

τ ′ = Tτ(x),τ(y) ◦ τ is contained in the modification set because τ(y)− τ∗(y) ≤ k
1
p

due to F̂p(τ, τ
∗) ≤ k by Requirement 3. We distinguish two cases whether or not

τ(y) ≤ τ∗(x).

Case 1: τ∗(y) ≤ τ(x) < τ(y) ≤ τ∗(x). Then both τ∗(x)− τ ′(x) = τ∗(x)−
τ(y) < τ∗(x)− τ(x) and τ ′(y)− τ∗(y) = τ(x)− τ∗(y) < τ(y)− τ∗(y). Hence, by
the Binomial Theorem, |τ(x) − τ∗(x)|p − |τ ′(x)− τ∗(x)|p =

(|τ(x) − τ∗(x)| − |τ ′(x) − τ∗(x)|)︸ ︷︷ ︸
≥1

·
p−1∑
i=0

|τ(x) − τ∗(x)|i︸ ︷︷ ︸
≥1

· |τ ′(x) − τ∗(x)|p−i−1︸ ︷︷ ︸
≥1

26 C. Bachmaier et al.

and thus |τ ′(x) − τ∗(x)|p ≤ |τ(x) − τ∗(x)|p − p. We obtain |τ ′(y)− τ∗(y)|p ≤
|τ(y)− τ∗(y)|p − p symmetrically. In sum |τ ′(x)− τ∗(x)|p + |τ ′(y)− τ∗(y)|p ≤
|τ(x) − τ∗(x)|p + |τ(y)− τ∗(y)|p − 2p.

Case 2: τ∗(y) ≤ τ(x) < τ∗(x) < τ(y). Then τ ′(x)−τ∗(x)+τ ′(y)−τ∗(y) =
τ(y)− τ∗(x) + τ(x)− τ∗(y) < τ(y)− τ∗(y). By the Binomial Theorem we derive

(τ ′(x)− τ∗(x) + τ ′(y)− τ∗(y))p ≤ (τ(y) − τ∗(y))p − p

|τ ′(x)− τ∗(x)|p + |τ ′(y)− τ∗(y)|p ≤ |τ(y)− τ∗(y)|p − p + |τ(x) − τ∗(x)|p︸ ︷︷ ︸
≥1

−1

Recall that the positions of candidates D \ {x, y} are unaffected. Hence, in both
cases F̂p(τ

′, τ∗) ≤ F̂p(τ, τ
∗)− (p+ 1). ��

Corollary 5. MR under the Minkowski distance Fp for p ∈ N \ {0} can be

computed in O((2kp+1)� kp

p+1� ·mn) time.

Proof. Let k̂ = kp. Finding a k-consensus for Fp is equivalent to finding a

k̂-consensus for F̂p. Consider the modification set of Lemma 12. Its size is

|M(τ, σ)| ≤ 2k̂1+
1
p since there are most 2k̂ displaced candidates which are each

tested on at most k̂
1
p positions. The Minkowski distance between two permuta-

tions can be computed in linear time. Thus, lines 3, 4 and 6 of Algorithm 1 need
O(mn) time. Finding the up to 2k̂ displaced candidates to build the modification

set needs O(n) time. Each displaced candidate is tested on k̂
1
p positions. Then

the total running time is in O((2k̂1+
1
p)

⌈
k̂

p+1

⌉
·mn) = O((2kp+1)� kp

p+1� ·mn). ��

There are tractable algorithms for Closest Binary String parameterizing
the number of strings m [22]. However, parameterizing MR by the number of
voters m does not lead to efficient algorithms since MR under the Kendall tau
distance is NP-hard for m = 4 [6].

Note that the NP-hardness of MR under the Minimum distance even for
k = 0 implies that this problem is not fixed-parameter tractable by k unless
P = NP.

7 Conclusion

We explored the complexity of MR by stating sufficient conditions for metrics
under which MR is NP-complete and fixed-parameter tractable. Considering
NP-hardness, the Requirements 1 and 2 should also hold for other distances,
e. g., Damerau-Levenshtein, Block-Transpositions, or Reversals [9, 10]. Finding
a suitable modification set (Requirement 3) for Cayley and Ulam distances is
still open. Another extension of MR is to allow the voters providing partial
orders. The distance is then measured by the Nearest Neighbor distance, which
we studied for Spearman footrule and Kendall tau in [7, 8].

On Maximum Rank Aggregation Problems 27

References

1. Ailon, N.: Aggregation of partial rankings, p-ratings and top-m lists. Algorith-
mica 57(2), 284–300 (2010)

2. Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: Rank-
ing and clustering. J. ACM 55(5), 23:1–23:27 (2008)

3. Bartholdi, J.J., Tovey, C.A., Trick, M.A.: Voting schemes for which it can be dif-
ficult to tell who won the election. Soc. Choice Welfare 6(2), 157–165 (1989)

4. Bergroth, L., Harri, H., Timo, R.: A survey of longest common subsequence algo-
rithms. In: Proc. String Processing and Information Retrieval, SPIRE 2000, pp.
39–48. IEEE (2000)

5. Betzler, N., Fellows, M.R., Guo, J., Niedermeier, R., Rosamond, F.A.: Fixed-
parameter algorithms for Kemeny rankings. Theor. Comput. Sci. 410(8), 4554–4570
(2009)

6. Biedl, T., Brandenburg, F.J., Deng, X.: On the complexity of crossings in permu-
tations. Discrete Math. 309(7), 1813–1823 (2009)

7. Brandenburg, F.J., Gleiβner, A., Hofmeier, A.: The nearest neighbor Spearman
footrule distance for bucket, interval, and partial orders. J. Comb. Optim., 1–23
(March 2012)

8. Brandenburg, F.J., Gleiβner, A., Hofmeier, A.: Comparing and aggregating partial
orders with Kendall tau distances. Discrete Math. Algorithms Appl. 5(2) (2013)

9. Critchlow, D.E.: Metric Methods for Analyzing Partially Ranked Data. LNS,
vol. 34. Springer (1985)

10. Deza, M., Huang, T.: Metrics on permutations, a survey. J. Combin. Inform. System
Sci. 23, 173–185 (1998)

11. Diaconis, P., Graham, R.L.: Spearman’s footrule as a measure of disarray. J. Roy.
Statist. Soc. B 39(2), 262–268 (1977)

12. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Com-
puter Science. Springer (1999)

13. Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank aggregation methods for
the web. In: Proc. World Wide Web Conference, WWW 2010, pp. 613–622 (2001)

14. Fagin, R.: Generalized first-order spectra and polynomial-time recognizable sets.
In: Karp, R. (ed.) Complexity of Computation, SIAM-AMS Proceedings, vol. 7,
pp. 43–73. ACM (1974)

15. Fagin, R., Kumar, R., Mahdian, M., Sivakumar, D., Vee, E.: Comparing partial
rankings. SIAM J. Discrete Math. 20(3), 628–648 (2006)

16. Frances, M., Litman, A.: On covering problems of codes. Theor. Comput.
Syst. 30(2), 113–119 (1997)

17. Gramm, J., Niedermeier, R., Rossmanith, P.: Fixed-parameter algorithms for
Closest String and related problems. Algorithmica 37(1), 25–42 (2003)

18. Karpinski, M., Schudy, W.: Faster algorithms for feedback arc set tournament,
Kemeny rank aggregation and betweenness tournament. In: Cheong, O., Chwa,
K.-Y., Park, K. (eds.) ISAAC 2010, Part I. LNCS, vol. 6506, pp. 3–14. Springer,
Heidelberg (2010)

19. Kemeny, J.: Mathematics without numbers. Daedalus 88, 577–591 (1959)
20. Kenyon-Mathieu, C., Schudy, W.: How to rank with few errors. In: Proc. Sympo-

sium on Theory of Computing, STOC 2007, pp. 95–103. ACM (2007)
21. Knight, W.R.: A computer method for calculating Kendall’s tau with ungrouped

data. J. Amer. Statist. Assoc. 61(314), 436–439 (1966)
22. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University

Press (2006)

Deciding Representability of Sets

of Words of Equal Length in Polynomial Time�

Francine Blanchet-Sadri1 and Sinziana Munteanu2

1 Department of Computer Science, University of North Carolina,
P.O. Box 26170, Greensboro, NC 27402–6170, USA

blanchet@uncg.edu
2 Department of Computer Science, Carnegie Mellon University,

5000 Forbes Avenue, Pittsburgh, PA 15213–3891, USA
smuntean@cs.cmu.edu

Abstract. De Bruijn sequences of order n represent the set An of all
words of length n over a given alphabet A in the sense that they contain
occurrences of each of these words. Recently, the computational problem
of representing subsets of An by partial words, which are sequences that
may have holes that match each letter of A, was considered and shown to
be in NP . However, membership in P remained open. In this paper, we
show that deciding if a subset is representable can be done in polynomial
time. Our approach is graph theoretical.

1 Introduction

A De Bruijn sequence of order n is a word over an alphabet A where each of
the words of length n over A occurs as a subword exactly once. These sequences
can be efficiently constructed by taking an Eulerian cycle of a De Bruijn graph
where every length n− 1 word corresponds to a vertex and every length n word
corresponds to an edge (for alternative constructions see, e.g., [6,10]). De Bruijn
sequences are useful and appear in a variety of contexts, e.g., combinatorics
on words [1], modern public-key cryptographic schemes, pseudo-random number
generation [9], digital fault testing, position sensing schemes [12], non-linear shift
registers [5], coding [8], data compression, etc. A vast literature on the De Bruijn
sequences exists and generalizations have been explored (e.g., [4,7]).

Algorithmic combinatorics on partial words has been developing in the past
several years (e.g., [2]). Partial words over an alphabet A are sequences from
A� = A ∪ {�}, where � 	∈ A is the hole symbol which is compatible with every
letter in A (full words are sequences without holes). If w is a partial word over
A, then a factor of w is a block of consecutive symbols of w and a subword of w
is a full word over A compatible with a factor of w. For instance, if we consider
the partial word 01�1000 with one hole over {0, 1}, the full words 101, 111 are

� This material is based upon work supported by the National Science Foundation
under Grant No. DMS–1060775.

T. Lecroq and L. Mouchard (Eds.): IWOCA 2013, LNCS 8288, pp. 28–40, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Deciding Representability in Polynomial Time 29

the subwords compatible with the factor 1�1. For any partial word w and integer
n ≥ 0, denote by subw(n) the set of length n subwords of w.

Let S be a set of length n full words and let h ≥ 0 be an integer. A partial word
w such that subw(n) = S is a representing word for S and a partial word w with
h holes such that subw(n) = S is an h-representing word for S. The set S is rep-
resentable if there exists a representing word for S and is h-representable if there
exists an h-representing word for S. If we consider S = {000, 001, 010, 100, 101},
then S can be 0-represented by w = 00010100, 1-represented by �00101, and
2-represented by 0�0�. As we allow more holes, the representing word shrinks.

Let Rep be the problem of deciding whether S is representable and h-Rep

be the problem of deciding whether S is h-representable. Blanchet-Sadri and
Simmons [3] showed that Rep is in NP . Moreover, they showed that a certain
subproblem of Rep is in P , namely the problem of deciding whether a set S
of words of length n can be represented by a partial word w, such that every
length n − 1 subword of the words in S occurs exactly once in w or in other
words, is compatible with exactly one factor of w. However, whether or not
Rep is in P remained an open problem. They also gave a polynomial-time al-
gorithm (polynomial in the input size n|S|) for deciding h-Rep, thus showed
that h-Rep is in P , and their algorithm actually constructs an h-representing
word.

This paper continues investigating representability of sets of words of equal
length. Its contents are as follows: In Section 2, we discuss our graph theoret-
ical approach to Rep. Given a set S of words of equal length n, we describe a
decomposition of the Rauzy graph of order n − 1 associated with S into sub-
graphs, called blocks, that play a central role in our paper. In Section 3, we
describe polynomial-time algorithms for generating the factor set, Si, and its
extension, Ext(Si), related to each block i. In Section 4, using the factor sets
and their extensions, we give a polynomial-time algorithm for deciding Rep,
settling the question “Is Rep in P?”. Our algorithm constructs a represent-
ing word if S is representable. Finally in Section 5, we conclude with some
remarks.

We end this section with some basic concepts. A partial word w over a non-
empty finite alphabet A is a sequence of symbols from A ∪ {�}, where � /∈ A is
the hole symbol (a full word over A is just a sequence of letters from A). The
length of a partial word w over A, denoted by |w|, is the number of symbols in
w. The symbol at position i is denoted by w[i] and the factor w[i] · · ·w[j − 1]
by w[i..j). A position i is defined if w[i] ∈ A and it is a hole if w[i] = �. For two
partial words w and w′ of equal length, w′ is contained in w, denoted by w′ ⊂ w,
or w contains w′, denoted by w ⊃ w′, if w[i] = w′[i] for all defined positions i
in w′. Say that w and w′ are compatible, denoted by w ↑ w′, if w[i] = w′[i] for
all positions i that are defined in both w and w′. A completion ŵ is a full word
compatible with a given partial word w. Another way to define compatibility
is that w and w′ share a common completion, e.g., 01�0� and �1�01 share the
completion 01001 and are thus compatible.

30 F. Blanchet-Sadri and S. Munteanu

2 Graph Theoretical Approach to Rep

For any graph G, we denote by V (G) the set of vertices of G and by E(G) the set
of edges of G. For any V ′ ⊆ V (G), we denote by G[V ′] the subgraph of G induced
by V ′. A digraph is strongly connected if, for every pair of vertices u and v, there
exists a path from u to v. Computing the strongly connected components of G
can be done in O(|V (G)|+ |E(G)|) time by using Tarjan’s algorithm [11].

Let S = {s0, . . . , sm−1} be a set of m full words of length n. Define the

Rauzy graph G of order n− 1, associated with S, with V (G) =
⋃m−1

i=0 {si[0..n−
1), si[1..n)} and E(G) =

⋃m−1
i=0 {(si[0..n−1), si[1..n))}. For every 0 ≤ i < m, we

label edge (si[0..n − 1), si[1..n)) by si. It turns out that a 0-representing word
for S, if any exists, is a path in the Rauzy graph of order n− 1 associated with
S that includes every edge at least once. Fig. 1 depicts an example of a Rauzy
graph that will provide us with examples for the different concepts we introduce.

Define the subgraphs G0, . . . , Gp of G inductively:

– Let G0 be the union of the strongly connected components G0
0, . . . , G

0
p0

of
G such that for every 0 ≤ j ≤ p0, there exists no edge (u, v) ∈ E(G) with
u /∈ G0

j and v ∈ G0
j .

– For 0 < i ≤ p, let Gi be the union of the strongly connected components
Gi
0, . . . , G

i
pi

of G[V (G) \
⋃i−1

j=0 V (Gj)] such that for every 0 ≤ j ≤ pi, there

exists no edge (u, v) ∈ E(G[V (G) \
⋃i−1

j=0 V (Gj)]) with u /∈ Gi
j and v ∈ Gi

j .

For 0 ≤ i ≤ p, call Gi block i and G0, . . . , Gp the decomposition of G into blocks.
Since each block is a subgraph of G, specifying the vertices of each block uniquely
determines its edges.

Fig. 1. The decomposition into blocks of the Rauzy graph G of order 3 associated
with the set S = {0000, 0100, 0101, 0111, 1000, 1010, 1100, 1110}; for block 0, V (G0) =
{011, 101, 010}, p0 = 1, V (G0

0) = {010, 101}, and V (G0
1) = {011}

Lemma 1. For every 0 ≤ i ≤ p, 0 ≤ j, j′ ≤ pi, j 	= j′, u ∈ V (Gi
j) and v ∈

V (Gi
j′), there exist no paths in G from u to v. For every 0 ≤ i < i′ ≤ p, u ∈

V (Gi′), v ∈ V (Gi), there exist no paths in G from u to v. For every 0 ≤ i < p,
there exists (u, v) ∈ E(G) with u ∈ V (Gi) and v ∈ V (Gi+1).

Deciding Representability in Polynomial Time 31

Proof. Suppose the first statement is false. Then there exists an edge (u′, v′) ∈
E(G) with u′ ∈ V (Gi

j) and v′ ∈ V (Gi
j′), contradicting the definition of Gi

j′ . The
other two statements are proven with arguments similar to those in [3]. ��

However, there can exist an edge (u, v) ∈ E(G) with u ∈ V (Gi), v ∈ V (Gi′)
and 0 ≤ i < i′ ≤ p. In Fig. 1, (011, 111), (111, 110), (110, 100), (100, 000) ∈
E(G), so for every 0 ≤ i < 4, there exists (u, v) ∈ E(G) with u ∈ V (Gi) and
v ∈ V (Gi+1). Moreover, (010, 100) ∈ E(G) with 010 ∈ V (G0), 100 ∈ V (G3),
and so there exists an edge with an endpoint in V (Gi) and one in V (Gi′) with
0 ≤ i < i′ ≤ 4.

Let (u, v) ∈ E(G), labelled by the subword s ∈ S. Let 0 ≤ i ≤ p. If u ∈ V (Gi),
say edge (u, v) and subword s are right incident with Gi. If v ∈ V (Gi), edge (u, v)
and subword s are left incident with Gi. If u ∈ V (Gi) or v ∈ V (Gi), edge (u, v)
and subword s ∈ S are incident with Gi. For 0 ≤ j ≤ pi, we similarly define left
incidence, right incidence, and incidence with Gi

j . In Fig. 1 for example, edge

(010, 100) is right incident with G0 and left incident with G3. Moreover, it is
incident with G0 and G3.

For every 0 ≤ i ≤ p, define the type of block i as follows: if pi ≥ 1, then block
i is of type I; if pi = 0 and there exists (u, v) ∈ E(G), 0 ≤ j < i < k ≤ p with
u ∈ V (Gj) and v ∈ V (Gk), block i is of type II; otherwise, block i is of type III.
In Fig. 1, observe that block 0 is of type I, blocks 1 and 2 are of type II, and
blocks 3 and 4 are of type III.

Let w be a partial word with subw(n) = S. For every 0 ≤ i ≤ p, let wi be the
minimum length factor of w that contains all the occurrences of all the subwords
incident with Gi; say wi is the factor of w containing block i.

– Let wi,left be the minimum length prefix of wi that contains all the occur-
rences of all the subwords left, but not necessarily right incident with Gi;
say wi,left is the factor of w containing the left part of block i.

– Let wi,right be the minimum length suffix of wi that contains all the occur-
rences of all the subwords right, but not necessarily left incident with Gi;
say wi,right is the factor of w containing the right part of block i.

In Fig. 1, w = 01�10000 is a representing word for S; w2 = 1�100, w2,left = 1�10
and w2,right = �100.

Lemma 2. If block i is of type I or II, then |wi| ≤ 3n− 2.

Proof. We prove for block i of type I. Let i0 be the start index of wi. By the
definition of wi, there exists s0 incident with Gi occurring at i0. Suppose without
loss of generality that s0 is incident with Gi

0.
Let i1 be the largest index at which there exists an occurrence of a subword

s1 incident with Gi
j for some 0 < j ≤ pi. Suppose i0 ≤ i1 − n. Observe that

s0w[i0+n..i1)s1 ⊃ w[i0..i1+n). If s0 and s1 are left incident with Gi, then there
exists a path in G from s0[1..n) to s1[1..n) and hence there exists a path in G
from a vertex in V (Gi

0) to a vertex in V (Gi
j). If s0 or s1 are right incident with

Gi, we similarly obtain that there exists a path in G from a vertex in V (Gi
0)

32 F. Blanchet-Sadri and S. Munteanu

to a vertex in V (Gi
j) with 0 < j ≤ pi. But this contradicts Lemma 1. Hence

i0 > i1 − n.
Let i2 be the largest index at which there exists an occurrence of a subword

s2 incident with Gi
0. Suppose i2 ≥ i1+n. Since s1w[i1+n..i2)s2 ⊃ w[i1..i2+n),

there exists a path from a vertex in V (Gi
j) to a vertex in V (Gi

0), contradicting
Lemma 1. Hence i2 < i1 + n.

If i2 ≥ i1, then |wi| = i2+n−i0 = n+(i2−i1)+(i1−i0) ≤ n+(n−1)+(n−1) =
3n−2. If i1 ≥ i2, then |wi| = i1+n−i0 = n+(i1−i0) ≤ n+n−1 = 2n−1 ≤ 3n−2.
Hence, |wi| ≤ 3n− 2. ��

Lemma 3. Both the inequalities |wi,left| ≤ 2n− 1 and |wi,right| ≤ 2n− 1 hold.

Proof. Let i0 be the start index of wi. Let s0 be a subword incident with Gi,
occurring at index i0. Let i1 be the largest index at which there is an occurrence
of a subword left, but not right incident with Gi. Let s1 be this subword. By
Lemma 1, s1 is right incident with Gk for some 0 ≤ k < i ≤ p.

Suppose i1 ≥ i0 + n. Since s0w[i0 + n..i1)s1 ⊃ w[i0..i1 + n), there exists a
path from a vertex in V (Gi) to one in V (Gk), contradicting Lemma 1. Thus,
i1 < i0 + n.

Therefore, |wi,left| = i1 + n − i0 ≤ 2n − 1. We similarly obtain |wi,right| ≤
2n− 1. ��

Proposition 1. There exists an algorithm that given as input a strongly con-
nected digraph G and v, v′ ∈ V (G), outputs in O(|E(G)|2) time a path from v to
v′ that contains every edge of G at least once.

Let block i be of type III (by definition, block i is strongly connected). Let
u, u′ ∈ V (Gi) and u = u0, . . . , uk = u′ be the vertices of the path output by the
algorithm of Proposition 1 given Gi and u, u′. Define P(Gi, u, u′) = u0u1[n −
2] · · ·uk[n − 2] to be the word path in Gi from u to u′. The set of all length n
subwords of P(Gi, u, u′) is the set of all subwords left and right incident with Gi.

Let 0 ≤ i ≤ p. If block i is of type I or II, let Si = {x | |x| ≤ 3n−2, subx(n) ⊆ S
and all subwords incident with Gi are subwords of x}. If block i is of type III,
let Si = Si,0 ∪ Si,1, where Si,0, Si,1 are as follows:

– Si,0 = {x | |x| ≤ 4n− 3, subx(n) ⊆ S and all subwords incident with Gi are
subwords of x},

– Si,left = {xy | |x| = 2n − 1, |y| = n − 1, y ∈ V (Gi), subxy(n) ⊆ S and
all subwords left, but not right incident with Gi are subwords of xy}, while
Si,right = {y′x′ | |x′| = 2n − 1, |y′| = n − 1, y′ ∈ V (Gi), suby′x′(n) ⊆ S and
all subwords right, but not left incident with Gi are subwords of y′x′},

– Si,1 = {xP(Gi, y, y′)x′ | xy ∈ Si,left, y′x′ ∈ Si,right, |y| = |y′| = n− 1}.

Say Si,0 is the set of the possible small factors containing block i, Si,1 is the set
of the possible large factors containing block i, and Si is the set of the possible
factors containing block i. In Fig. 1, recall that block 3 is of type III. We have
�1000, 1�10000, 01�1000 ∈ S3,0. We can show that S3,left = ∅ and S3,right =
{1000000000} and hence S3,1 = ∅. Thus, S3 = S3,0.

Deciding Representability in Polynomial Time 33

Let 0 ≤ i ≤ p, and let Ext(Si) = {xyz | y ∈ Si, |x| < n, |z| < n, subxyz(n) ⊆
S}, the set of the extensions of the possible factors containing block i. If block i is
of type III, let Ext(Si,0) = {xyz | y ∈ Si,0, |x| < n, |z| < n, subxyz(n) ⊆ S} and
Ext(Si,1) = {xyz | y ∈ Si,1, |x| < n, |z| < n, subxyz(n) ⊆ S}. Say that Ext(Si,0)
is the set of the extensions of the possible small factors containing block i and
Ext(Si,1) is the set of the extensions of the possible large factors containing block
i. Observe that Ext(Si) = Ext(Si,0) ∪ Ext(Si,1).

Returning to our example, we have �1000 ∈ S3. All words in Ext(S3) of the
form xyz with y = �1000, |x| < 4, |z| < 4 are

�1000, �10000, �100000, �1000000, 1�1000, 1�10000, 1�100000,
1�1000000, 01�1000, 01�10000, 01�100000, 01�1000000.

3 Generating the Factor Sets and Their Extensions

Given a set S of m words of length n, we give polynomial-time algorithms for
generating Si and Ext(Si). We recall from [3] the set Comp(S) of partial words
that have all their completions in S (referring to the set S from Fig. 1, �100,
1000, 01�1, 0000, and ��00 are some elements of Comp(S)).

Algorithm 1. Generating X

1: generate Comp(S) using [3, Proposition 6]
2: X ← ∅
3: for all x0 ∈ Comp(S) do
4: for all x1 ∈ Comp(S) do
5: for i = 1 to n do
6: X ← X ∪ {x0x1[i..n)}
7: for all x2 ∈ Comp(S) do
8: for i = 1 to n do
9: X ← X ∪ {x0x1x2[i..n)}
10: for all x3 ∈ Comp(S) do
11: for i = 3 to n do
12: X ← X ∪ {x0x1x2x3[i..n)}

Algorithm 2. Generating subx(n)

1: subx(n) ← ∅
2: for i = 0 to |x| − n do
3: y = x[i..i+ n)
4: for all completions ŷ of y do
5: subx(n) ← subx(n) ∪ {ŷ}

34 F. Blanchet-Sadri and S. Munteanu

Algorithm 3. Generating Si when block i is of type I or II

1: generate X using Algorithm 1
2: generate G0, . . . , Gp

3: Si ← ∅
4: for all x ∈ X do
5: if |x| ≤ 3n− 2 then
6: generate subx(n) using Algorithm 2
7: valid ← true
8: for all s ∈ subx(n) do
9: if s /∈ S then
10: valid ← false
11: for all s ∈ S, s incident with Gi, do
12: if s /∈ subx(n) then
13: valid ← false
14: if valid then
15: Si ← Si ∪ {x}

Lemma 4. For any 0 ≤ i ≤ p, Algorithm 6 generates Si in polynomial time
and Algorithm 7 generates Ext(Si) in polynomial time.

Proof. Suppose block i is of type I or II. We show that the output of Algorithm 3
is correct. We see that if x is added to Si, then x satisfies all the defining
properties of the words in Si. Now we need to show that if x is a partial word
that satisfies all the defining properties of the words in Si, then x is added to Si.
If n ≤ |x| < 2n, let x0 = x[0..n), x1 = x[|x| −n..|x|). Then at some point, Line 6
of Algorithm 1 adds x to X and so there is an iteration in the loop at Line 4 of
Algorithm 3 that corresponds to x. Since x satisfies all the defining properties
of the elements in Si, x is added to Si in that iteration. So if n ≤ |x| < 2n, the
output of the algorithm is correct. Proceed similarly if 2n ≤ |x| ≤ 3n− 2. In all
cases, the output is correct.

Suppose block i is of type III. We show that the output of Algorithm 4 is
correct. As in the case when block i is of type I or II, we see that the generated
sets Si,0, Si,left and Si,right have the desired properties. Moreover, Lines 27–30
generate the set Si,1 with the desired properties. So the value of Si at the end
of the iteration is as desired.

From the definition of the type of a block, we see that Algorithm 5 correctly
determines the type of block i. Since the outputs of Algorithms 3 and 4 are
correct, the output of Algorithm 6 is correct. Similarly, Algorithm 7 correctly
generates Ext(Si). ��

Returning to our example, recall �100, 1000 ∈ Comp(S) and hence �1000 ∈ X .
Algorithm 6 checks the properties of the set S3 and concludes that �1000 ∈
S3. Since moreover, 01�1, 0000 ∈ Comp(S), we have 01�10000 ∈ X ′ (refer to
Algorithm 7’s pseudocode). Algorithm 7 checks the properties of the set Ext(S3)
and concludes that 01�10000 ∈ Ext(S3).

Deciding Representability in Polynomial Time 35

Algorithm 4. Generating Si when block i is of type III

1: generate X using Algorithm 1
2: generate G0, . . . , Gp

3: Si ← ∅, Si,0 ← ∅, Si,1 ← ∅
4: for all x ∈ X do
5: generate subx(n) using Algorithm 2
6: valid ← true
7: for all s ∈ subx(n) do
8: if s /∈ S then
9: valid ← false
10: for all s ∈ S, s incident with Gi, do
11: if s /∈ subx(n) then
12: valid ← false
13: if valid then
14: Si,0 ← Si,0 ∪ {x}
15: Xleft ← ∅, Xright ← ∅
16: for all x ∈ X do
17: if |x| = 2n− 1 then
18: for all y ∈ V (Gi) do
19: Xleft ← Xleft ∪ {xy} and Xright ← Xright ∪ {yx}
20: for all x ∈ Xleft (Xright) do
21: repeat Lines 6–10 of Algorithm 3
22: for all s ∈ S left (right), but not right (left) incident with Gi, do
23: if s /∈ subx(n) then
24: valid ← false
25: if valid then
26: Si,left ← Si,left ∪ {x} (Si,right ← Si,right ∪ {x})
27: for all xy ∈ Si,left, with |y| = n− 1, do
28: for all y′x′ ∈ Si,right with |y′| = n− 1, do
29: determine P(Gi, y, y′)
30: Si,1 ← Si,1 ∪ {xP(Gi, y, y′)x′}
31: Si ← Si,0 ∪ Si,1

Algorithm 5. Determining the type of block i

1: generate G0, . . . , Gp

2: generate Gi
0, . . . , G

i
pi

3: if pi ≥ 1 then
4: return block i is of type I
5: else
6: for all (u, v) ∈ E(G) with u ∈ V (Gj), v ∈ V (Gk) do
7: if j < i < k then
8: return block i is of type II
9: return block i is of type III

Algorithm 6. Generating Si

1: determine the type of block i using Algorithm 5
2: if block i is of type I or II (type III) then
3: generate Si using Algorithm 3 (Algorithm 4)

36 F. Blanchet-Sadri and S. Munteanu

Algorithm 7. Generating Ext(Si)

1: generate Si using Algorithm 6
2: X ′ ← ∅
3: for all y ∈ Si do
4: for all x ∈ Comp(S) do
5: for all i = 0 to n− 1 do
6: for all z ∈ Comp(S) do
7: for all j = 1 to n do
8: X ′ ← X ′ ∪ {x[0..i)yz[j..n)}
9: Ext(Si) ← ∅
10: for all x ∈ X ′ do
11: valid ← true
12: generate subx(n) using Algorithm 2
13: for all s ∈ subx(n) do
14: if s /∈ S then
15: valid ← false
16: if valid then
17: Ext(Si) ← Ext(Si) ∪ {x}
18: return Ext(Si)

Algorithm 8. Deciding Rep in polynomial time

1: generate G0, . . . , Gp

2: V (G′) ← ∅ and E(G′) ← ∅
3: for i = 0 to p do
4: generate Ext(Si) using Algorithm 7
5: V (G′) ← V (G′) ∪ Ext(Si)
6: for i = 0 to p− 1 do
7: for all u ∈ Ext(Si) do
8: for all v ∈ Ext(Si+1) do
9: for r = n to min(|u|, |v|) do
10: if u[|u| − r..|u|) = v[0..r) then
11: E(G′) ← E(G′) ∪ {(u, v)}
12: for all u0 ∈ Ext(S0) do
13: perform a DFS or BFS traversal in G′ starting at u0

14: if there exists up ∈ Ext(Sp) visited by this traversal then
15: let u0, . . . , up be in order the vertices in the path from u0 to up

16: for i = 1 to p do
17: for r = n to min(|ui−1|, |ui|) do
18: if ui−1[|ui−1| − r..|ui−1|) = ui[0..r) then
19: u0,...,i ← u0,...,i−1ui[r..|ui|)
20: return S is representable and u = u0,...,p is a representing word
21: return S is not representable

Deciding Representability in Polynomial Time 37

4 Deciding Rep in Polynomial Time

Algorithm 8 decides Rep in polynomial time. Fig. 2 illustrates our algorithm.

Fig. 2. The graph G′ from Algorithm 8 for S in Fig. 1 and construction of the repre-
senting word 01�10000 for S from the path 01�10 ∈ Ext(S0), 01�10 ∈ Ext(S1), 1�100 ∈
Ext(S2), �1000 ∈ Ext(S3), 10000 ∈ Ext(S4) in G′

Theorem 1. Algorithm 8 decides if a given set of m words of equal length n is
representable and if so, outputs a representing word in polynomial time in the
size mn of the input. Therefore, Rep is in P.

Proof. Suppose the algorithm returns a word u. We show that subu(n) = S.
Let s ∈ S and let 0 ≤ i ≤ p be such that s is incident with Gi. If block i

is of type I or II, then from the definition of Si, s is a subword of every word
in Si. If block i is of type III, then s is a subword of every word in Si,0. If s
is left, but not right incident with Gi, it is a subword of every word in Si,left.
If it is right, but not left incident with Gi, it is a subword of every word in
Si,right. If it is both right and left incident with Gi, it is a subword of any
P(Gi, y, y′), for any y, y′ ∈ V (Gi). So s is a subword of every word in Si,1. Thus,
in all cases, s is a subword of every word in Si. Since every word in Ext(Si)
has a factor in Si, s is also a subword of all the words in Ext(Si). In particular,
s ∈ subui(n).

We now prove by induction on i that ui is a suffix of u0,...,i. This clearly holds
for i = 0. Suppose it holds for i− 1 and let ri be the maximum integer such that
ui−1[|ui−1| − ri..|ui−1|) = ui[0..ri). Then,

38 F. Blanchet-Sadri and S. Munteanu

u0,...,i = u0,...,i−1ui[ri..|ui|)
= u0,...,i−1[0..|u0,...,i−1| − |ui−1|)ui−1ui[ri..|ui|)
= u0,...,i−1[0..|u0,...,i−1| − |ui−1|)ui−1[0..|ui−1| − ri)

ui−1[|ui−1| − ri..|ui−1|)ui[ri..|ui|)
= u0,...,i−1[0..|u0,...,i−1| − |ui−1|)ui−1[0..|ui−1| − ri)u

i[0..ri)u
i[ri..|ui|)

= u0,...,i−1[0..|u0,...,i−1| − |ui−1|)ui−1[0..|ui−1| − ri)u
i.

Hence, ui is a suffix of u0,...,i. Since u0,...,i is a factor of u, ui is also a factor of u
and since s ∈ subui(n), we have that s ∈ subu(n). Therefore, S ⊆ subu(n).

Now let s ∈ subu(n) and let i be minimal such that s ∈ subu0,...,i(n). Since
u0,...,i = u0,...,i−1ui[ri..|ui|), we have that s is subword of

u0,...,i−1[|u0,...,i−1| − n..|u0,...,i−1|)ui[ri..|ui|).

By the previous claim, ui−1 is a suffix of u0,...,i−1 and since |ui−1| ≥ n, the length n
suffix of u0,...,i−1 is the same as the length n suffix of ui−1, i.e., u0,...,i−1[|u0,...,i−1|−
n..|u0,...,i−1|) = ui−1[|ui−1| − n..|ui−1|). Since ui−1[|ui−1| − ri..|ui−1|) = ui[0..ri)
and ri ≥ n, the length n suffix of ui−1 is the same as the length n suffix ui[0..ri),
i.e., ui−1[|ui−1| − n..|ui−1|) = ui[ri − n..ri). So

u0,...,i−1[|u0,...,i−1| − n..|u0,...,i−1|) = ui−1[|ui−1| − n..|ui−1|)
= ui[ri − n..ri)

and hence

u0,...,i−1[|u0,...,i−1| − n..|u0,...,i−1|)ui[ri..|ui|) = ui[ri − n..ri)u
i[ri..|ui|)

= ui[ri − n..|ui|).

So s is a subword of ui[ri − n..|ui|) and hence also of ui. Since ui ∈ Ext(Si),
all the length n subwords of ui are in S. So s ∈ S and subu(n) ⊆ S. Therefore,
S = subu(n).

Now suppose that there exists w with subw(n) = S. We show that the algo-
rithm decides that S is representable.

For 0 ≤ i ≤ p, let wi be the factor of w containing block i. For all 0 ≤ i ≤ p
such that block i is of type III and |wi| > 4n − 3, let wleft be a completion of
wi[2n− 1..3n− 2) and wright be a completion of wi[|wi| − 3n+2..|wi| − 2n+1).
Replace in w the factor wi[2n− 1..|wi|− 2n+1) by P(Gi, wleft, wright). Observe
that since |wi| ≥ 4n− 2, |wi[2n− 1..|wi| − 2n+ 1)| ≥ 0.

Suppose there exists j such that 0 ≤ j ≤ p, j > i, block j is of type III,
|wj | > 4n−3 and the factorswi[2n−1..|wi|−2n+1) and wj [2n−1..|wj|−2n+1)
overlap. By the definition of wi and wj , there exist a completion sj of w

j [0..n) in-
cident with Gj and a completion si of w

i[|wi| − n..|wi|) incident with Gi. Since
wi[2n− 1..|wi| − 2n+1) and wj [2n− 1..|wj | − 2n+1) overlap, the start index of

Deciding Representability in Polynomial Time 39

wj [2n−1..|wj|−2n+1) is smaller than the last index of wi[2n−1..|wi|−2n+1).
Thus, there exists a path in G from the vertex adjacent to sj that is in V (Gj) to
the vertex adjacent to si that is in V (Gi). Since j > i, by Lemma 1, we obtain a
contradiction. Thus, there exists no such j. Hence, there are no two such transfor-
mations that interfere with each other. Let v be the word that results after making
these transformations for all 0 ≤ i ≤ p.

We show that subv(n) = S. It is enough to show that if u is the word ob-
tained after a single transformation, then subu(n) = S. Let i0 be the start index
of wi[2n − 1..|wi| − 2n + 1) in w and the start index of P(Gi, wleft, wright) in
u. Let i1 be the last index of wi[2n − 1..|wi| − 2n + 1) in w and i2 be the last
index of P(Gi, wleft, wright) in u. Any length n subword of w is a subword of
w[0..i0), w

i[n..|wi| − n) or w[i1..|w|). Any length n subword of u is a subword
of u[0..i0), u[i0 − n + 1..i2 + n − 1) or u[i2..|u|). Since w[0..i0) = u[0..i0) and
w[i1..|w|) = u[i2..|u|), it is sufficient to show that if s ∈ subwi[n..|wi|−n)(n), then
s ∈ subu(n) and if s ∈ subu[i0−n+1..i2+n−1)(n), then s ∈ subw(n).

Let s ∈ subwi[n..|wi|−n)(n). By the definition of wi, there exists a comple-
tion s0 of wi[0..n) and a completion s1 of wi[|wi| − n..|wi|) that are incident
with Gi. Since s0w

i[n..|wi| − n)s1 ⊃ wi, there exists a path from a vertex in
V (Gi) to both vertices adjacent to s and from both vertices adjacent to s to a
vertex in V (Gi). By Lemma 1, s ∈ E(Gi) and hence s is a length n subword
of P(Gi, wleft, wright). So s ∈ subu(n). Now let s ∈ subu[i0−n+1..i2+n−1)(n).
Then s is a subword of u[i0 − n + 1..i0 + n − 1), u[i2 − n + 1..i2 + n − 1) or
P(Gi, wleft, wright). If s is a subword of P(Gi, wleft, wright), then by construc-
tion s ∈ E(Gi) and hence s ∈ subw(n).

Suppose s ∈ subu[i0−n+1..i0+n−1)(n). Since u[i0..i0+n−1) = wleft ⊃ w[i0..i0+
n − 1), we have u[i0 − n + 1..i0 + n − 1) ⊃ w[i0 − n + 1..i0 + n − 1) and hence
s is also a subword of w[i0 − n + 1..i0 + n − 1). Thus, s ∈ subw(n). Similarly if
s ∈ subu[i2−n+1..i2+n−1)(n).

Therefore, subv(n) = S. For 0 ≤ i ≤ p, let vi be the factor of v contain-
ing block i and let sti and fi be the start and last indices of vi in v, respec-
tively. Let stexti = min(sti, . . . , stp) and fext

i = max(f1, . . . , fi). Let Ext(vi) =
v[stexti ..fext

i).
Suppose sti ≥ stj + n for some 0 ≤ i < j ≤ p. Then there is a length n − 1

subword of v[stj ..stj + n) that is in V (Gj) and there is a length n− 1 subword of
v[sti..sti + n) that is in V (Gi). Hence there is a path from a vertex in V (Gj) to a
vertex in V (Gi), a contradiction. Hence, sti < stj + n, for all 0 ≤ i < j ≤ p and
thus stexti > sti − n. Similarly, fext

i < fi + n.
By the definition of vi and Si, we have vi ∈ Si. Moreover, since stexti > sti−n

and fext
i < fi + n, we have Ext(vi) ∈ Ext(Si) and hence Ext(vi) ∈ V (G′).

By definition, stexti ≤ stexti+1 and fext
i ≤ fext

i+1 and hence there exists ri with
Ext(vi)[|Ext(vi)| − ri..|Ext(vi)|) = Ext(vi+1)[0..ri). By Lemma 1, there exists
a subword s incident with Gi and Gi+1. Hence, all occurrences of s are in vi

and in vi+1. Since vi is a factor of Ext(vi) and vi+1 is a factor of Ext(vi+1),
all occurrences of s are also in Ext(vi) and in Ext(vi+1) and hence in their
intersection Ext(vi)[|Ext(vi)| − ri..|Ext(vi)|) = Ext(vi+1)[0..ri). Thus ri ≥ n

40 F. Blanchet-Sadri and S. Munteanu

and (Ext(vi),Ext(vi+1)) ∈ E(G′). Therefore, Ext(v0), . . . ,Ext(vp) is a path in
G′. This path is found using the BFS traversal starting at Ext(v0). Hence the
algorithm decides that S is representable.

��

5 Conclusion

In this paper, we showed that deciding representability of a subset S of An,
where A denotes an alphabet, can be done in polynomial time in the size of
S, answering a problem left open in [3]. Motivation behind this computational
problem is to represent such subsets by generalized De Bruijn sequences, i.e.,
sequences over A that only contain the words in S. By allowing sequences to
have holes, we can actually find shorter representing words. A suggested topic
for future research would be to investigate the problem of computing a shortest
representing word, i.e., a minimal generating sequence or a sequence of minimal
length that produces all words in S.

References

1. Berstel, J., Perrin, D.: The origins of combinatorics on words. European Journal
of Combinatorics 28(3), 996–1022 (2007)

2. Blanchet-Sadri, F.: Algorithmic Combinatorics on Partial Words. Chapman &
Hall/CRC Press, Boca Raton (2008)

3. Blanchet-Sadri, F., Simmons, S.: Deciding representability of sets of words of equal
length. Theoretical Computer Science 475, 34–46 (2013)

4. Chung, F., Diaconis, P., Graham, R.: Universal cycles for combinatorial structures.
Discrete Mathematics 110, 43–59 (1992)

5. Fredericksen, H.: A survey of full length nonlinear shift register cycle algorithms.
SIAM Review 24, 195–221 (1982)

6. Fredricksen, H., Maiorana, J.: Necklaces of beads in k colors and k-ary de Bruijn
sequences. Discrete Mathematics 23(3), 207–210 (1978)

7. Hurlbert, G., Isaak, G.: On the de Bruijn torus problem. Journal of Combinatorial
Theory, Series A 64(1), 50–62 (1993)

8. Lind, D., Marcus, B.: Symbolic Dynamics and Codings. Cambridge University
Press (1995)

9. van Lint, J.H., MacWilliams, F.J., Sloane, N.J.A.: On pseudo-random arrays. SIAM
Journal on Applied Mathematics 36, 62–72 (1979)

10. Martin, M.H.: A problem in arrangements. Bulletin of the American Mathematical
Society 40(12), 859–864 (1934)

11. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM Journal on Com-
puting 1(2), 146–160 (1972)

12. Tuliani, J.: De Bruijn sequences with efficient decoding algorithms. Discrete Math-
ematics 226(1-3), 313–336 (2001)

Prefix Table Construction and Conversion�

Widmer Bland1, Gregory Kucherov2, and W.F. Smyth1,3

1 Algorithms Research Group, Department of Computing & Software
McMaster University, Hamilton, Ontario, Canada L8S 4K1

{blandwa,smyth}@mcmaster.ca
2 Laboratoire d’Informatique Gaspard-Monge

Champs sur Marne 77454, Marne-la-Vallée, Cedex 2, France
Gregory.Kucherov@univ-mlv.fr

3 School of Mathematics & Statistics
University of Western Australia, Crawley WA 6009, Australia

Abstract. The prefix table of a string x = x[1..n] is an array π = π[1..n]
such that π[i] is the length of the longest substring beginning at i that
equals a prefix of x. In this paper we describe and evaluate algorithms for
prefix table construction, some previously proposed, others designed by
us. We also describe and evaluate new linear-time algorithms for trans-
formations between π and the border array.

1 Introduction

This paper deals with two important data structures used in many algorithms
on strings: the border array and the prefix table1. The border array β[1..n]
of a given string x is an array (string) of nonnegative integers such that, for
every i ∈ 1..n, β[i] is the length of the longest border of x[1..i], i.e. the longest
proper suffix of x[1..i] that is also its prefix. β can be computed in Θ(n) time
by a famous algorithm [1], and has the attractive property that if x[1..i] has
a nonempty border x

[
1..β[i]

]
, then x[1..i] also has a border of length β

[
β[i]

]
.

Thus, for every i ∈ 1..n, the lengths of all the borders of x[1..i] are given by
β[i], β2[i], . . . , βki [i] = 0, for some integer ki ≥ 1.

An array π[1..n] is the prefix table of x if for every i ∈ 1..n, x[i..i+π[i]−1] is
the longest substring of x beginning at i that matches a prefix of x. Though the
prefix table is perhaps less commonly used than the border array, nevertheless its
construction has been described as “the fundamental preprocessing” of a string
[9]. It seems to have first been used some 30 years ago in the Main & Lorentz
all-repetitions algorithm [11], where a Θ(n)-time construction algorithm was
described. The same algorithm is given in [6, Section 1.6], but then a modified

� The work of the first and third authors was supported in part by the Natural Sciences
& Engineering Research Council of Canada. The second author was supported by a
Marie Curie Intra-European Fellowship for Career Development.

1 The prefix table is also known as the prefix array. Here we use the former term to
avoid possible confusion with the suffix array, a nonanalogous data structure.

T. Lecroq and L. Mouchard (Eds.): IWOCA 2013, LNCS 8288, pp. 41–53, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

42 W. Bland, G. Kucherov, and W.F. Smyth

construction algorithm was proposed in [10, Section 8.3.1], later also in [7, Section
1.6]. Two other distinct algorithms on a “compressed” prefix table are described
in [13]. Among its other virtues, the prefix table gives rise to an easy and efficient
pattern-matching algorithm: given pattern u and text v, form x = uv and
compute πx; then for i ∈ |u|+1..|x|, x[i..i+|u|−1] = v[i−|u|..i−1] is an occurrence
of u in v if and only if πx[i] ≥ |u|. The prefix table is also closely related to the
witness table ω[1..n], which was conceived for parallel pattern matching [14] and
later used for the two-dimensional versions of several problems: pattern matching
[8], scaled dictionary matching [2], and compressed pattern matching [3]. For a
string x[1..n], ω[i] = 0 if x has period i − 1; otherwise, ω[i] = k such that x[k]
is a witness that x does not have period i − 1 (i.e. x[k] 	= x[k − i + 1]). Given
π, the linear-time construction of an ω is direct: ω[i] = i + π[i] if i + π[i] ≤ n;
otherwise, ω[i] = 0. A given ω does not necessarily correspond to a unique π
unless ω contains only leftmost witnesses, in which case π and ω are equivalent.

Conversion of π into border array β and vice versa was also discussed in [7],
but to our knowledge no linear-time conversion algorithms have been published,
an oversight we remedy below. It is tempting to conclude therefore that the π
and β data structures are in some sense equivalent, and in fact this is true for reg-
ular strings as defined above: both provide the same information with the same
asymptotic complexity, both of time and space. However, as shown in [13], for
indeterminate strings, defined not on elements but rather on nonempty subsets
of Σ, the prefix table retains its utility, while the border array no longer exists in
the form defined above. Similarly, a prefix table adapts easily to substrings com-
pared under a given Hamming distance [4], while again the border array cannot
be used. It is shown further in [5] that corresponding to every possible prefix
table (such that π[1] = n and 0 ≤ π[i] ≤ n−i+1 for every i ∈ 2..n), there exists
an indeterminate string. Since for every indeterminate string there also exists a
prefix table, there is a many-to-many correspondence between prefix tables and
indeterminate strings. As a data structure, the prefix table is more robust, thus
worthy of closer study. Here is a simple example of β and π:

1 2 3 4 5 6 7 8

x = a b a a b a b a
β = 0 0 1 1 2 3 2 3
π = 8 0 1 3 0 3 0 1

Section 2 of this paper describes and compares prefix table construction algo-
rithms, while Section 3 presents new algorithms for conversions between π and
β. Section 4 summarizes test results for these algorithms on several classes of
strings; Section 5 briefly discusses open problems.

2 Construction of the Prefix Table

When discussing prefix table algorithms, it is helpful to use the term π-range of
� to denote the interval �..�+ π[�]− 1. We also use Π [�] to denote the substring
of x beginning at � whose length is π[�].

Prefix Table Construction and Conversion 43

Algorithm ML
We begin with a brief review of the original prefix table construction algorithm,
which we call ML, based on the write-up given in [12, pp. 340–347]. Algorithm
ML computes π[i] in order of increasing i without backtracking. Thus at each
position i two cases arise: in Case 1, i lies outside all previous ranges 2..i−1
already computed, and so π[i] can be determined by a simple position-by-position
scan; in Case 2, i falls within the π-range of at least one � ∈ 2..i−1, and so
π[i−�+1] provides useful information about π[i]. In Case 2 it suffices to consider
only the position � < i and the corresponding substring Π [�] for which �+π[�]
is a maximum. Then in Case 2, for such an �, setting w = x[i..�+π[�]−1], two
subcases arise: (a) π[i− �+1] < |w|, (b) π[i− �+1] ≥ |w|. The behaviour of
Algorithm ML can then be outlined as follows:

1. i 	∈ �..�+ π[�]− 1

– Determine π[i] by letter comparisons starting at position i.
– Set � ..= i.

2. i ∈ �..�+ π[�]− 1 and:

(a) π[i − �+ 1] < |w|
– Set π[i] = π[i− �+ 1].
– (No letter comparisons needed. No change to � needed.)

(b) π[i − �+ 1] ≥ |w|
– π[i] ≥ |w|, so determine π[i] by letter comparisons starting at posi-

tion i+ |w|.
– Set � ..= i.

The pseudocode for the Θ(n)-time algorithm ML is given in Figure 1.

Algorithm RML — Refined ML
As noted in the introduction, [10] proposes a refinement of Algorithm ML (also
described in [7]2), in which Case 2(b) is modified, now split into two subcases:
(b′) π[i − � + 1] > |w|, (c′) π[i− �+ 1] = |w|. For (b′), there is no change from
ML; for (c′), x

[
�+π[�]

]
cannot be equal to x

[
π[�]+1], since if it were, Π [�] would

be longer. Hence π[i] = |w| and no letter comparisons are needed. The result is
code for Algorithm RML that differs in just two lines (10 & 11) from ML, shown
in Figure 2.

Algorithm PL1
Because π[i] = 0 for all i such that x[i] 	= x[1], π is likely to be sparse. Even
for strings over a binary alphabet, the expected number of nonzero elements is
only half of the elements in π. A compressed representation of π consists of two
arrays, pos [1..m] and len[1..m], where m is the number of nonzero elements in
π (excluding π[1]). For all j ∈ 1..m, pos [j] = i and len [j] = π[i], where i is the
position of the jth nonzero element in π.

2 The earlier, French version [6] presented unrefined ML.

44 W. Bland, G. Kucherov, and W.F. Smyth

ML(x)

1 n ..= |x|
2 x[n+ 1] ..= $
3 π[1] ..= n
4 π[2] ..= 0
5 while x[π[2] + 1] == x[π[2] + 2]
6 π[2] ..= π[2] + 1
7 � ..= 2
8 for i ..= 3 to n
9 w ..= �+ π[�]− i // w can be negative

10 if π[i− �+ 1] < w // Case 2(a)
11 π[i] ..= π[i− �+ 1]
12 else // Cases 1 and 2(b)
13 π[i] ..= max(0, w)
14 while x[π[i] + 1] == x[π[i] + i]
15 π[i] ..= π[i] + 1
16 � ..= i
17 return π

Fig. 1. Algorithm ML pseudocode

RML(x)

... Algorithm MLfigure.caption.2
10 if π[i− �+ 1] �= w and w > 0 // changed from: π[i− �+ 1] ≤ w
11 π[i] ..= min(π[i− �+ 1], w) // changed from: π[i] ..= π[i− �+ 1]

...

Fig. 2. Difference between RML and ML

Algorithm PL1 constructs π in pos/len form in Θ(n) time and Θ(m) space
beyond that required for x [13]. The pseudocode is given in Figures 3 and 4.
To make the similarities with Algorithm ML clear, we use π̄i as the name of
a variable that stores the value π[i]. Unlike ML, the values of len[j] are not
determined strictly left to right.

First, PL1 initializes pos and len by scanning over x, locating all m positions
i such that x[i] = x[1]. When the jth such i is found, pos [j] is assigned i and
len[j] is initialized to 1, the minimum possible length of the matching prefix.

PL1 uses an auxiliary function Copy which takes as arguments pos/len and
integers j and rmax such that pos [j]..rmax is a π-range. For every i ∈ pos [j]..rmax,
Copy applies the case analysis of Algorithm ML. Only cases 2(a) and 2(b) are
possible. In Case 2(b), π[i] ≥ w and letter comparisons are needed to determine
π[i]. Copy updates the value of len[j] to w, but it does not perform the letter
comparisons.

In the variable rmax, PL1 maintains the position of the rightmost endpoint
of any previously-computed π-range. For each j ∈ 1..m, the right endpoint r

Prefix Table Construction and Conversion 45

PL1(x)

1 n ..= |x|
2 x[n+ 1] ..= $

// Initialize pos/len for m positions x[i] = x[1], i ∈ 2..n.
3 m ..= 0
4 λ ..= x[1]
5 for i ..= 2 to n
6 if x[i] == λ
7 m ..= m+ 1; pos [m] ..= i; len[m] ..= 1
8 pos [m+ 1] ..= n+ 1 // avoid having to do end-of-array tests
9 len[m+ 1] ..= 0

// For each j ∈ 1..m, determine longest match with a prefix of x.
10 rmax

..= 1
11 j ..= 1
12 while j ≤ m
13 i ..= pos [j]; π̄i

..= len[j]
14 r ..= i+ π̄i − 1
15 if r ≥ rmax

16 while x[1 + π̄i] == x[i+ π̄i]
17 π̄i

..= π̄i + 1
18 len[j] ..= π̄i

19 r ..= i+ π̄i − 1
20 if r > rmax

21 rmax
..= r

22 pos , len ..= copy(j + 1, rmax)
23 j ..= j + 1
24 return pos , len, m

Fig. 3. Algorithm PL1 pseudocode

copy(j, rmax, pos , len)

1 j′ ..= 1; i ..= pos [j]
2 while i < rmax

3 π̄i−�+1
..= len[j′]

4 w ..= rmax − i+ 1
5 π̄i

..= min(π̄i−�+1, w)
6 len[j] ..= π̄i

7 j ..= j + 1; j′ ..= j′ + 1; i ..= pos [j]
8 return pos , len

Fig. 4. Pseudocode for the Copy function used in Algorithm PL1

of the π-range at pos [j] is calculated based on the current value of len [j]. If
r < rmax, then i lies within a previously-computed π-range ending at rmax, and
len[j] has already been precisely determined according to Case 2(a). If r ≥ rmax,
then either Case 1 or Case 2(b) applies, and letter comparisons are needed to
determine len[j]. After completing the letter comparisons, r is updated, then

46 W. Bland, G. Kucherov, and W.F. Smyth

compared to rmax. If r > rmax, then i is the left end of a new rightmost π-range,
and Copy is called, updating len[j] for j such that pos [j] ∈ i+ 1..rmax.

Algorithm PL2
Algorithm PL2 also constructs π in pos/len form in Θ(n) time and Θ(m) ad-
ditional space [13]. See Figures 5 and 6 for pseudocode. The main differences
between PL1 and PL2 are that PL2 does not perform an initial scan of x to
initialize pos/len, and that PL2’s version of Copy terminates when it encoun-
ters an instance of Case 2(b). In the pseudocode below, the variable pi−�+1 stores
the value i− �+ 1.

PL2(x)

1 n ..= |x|; m ..= 0
2 � ..= 1; π̄l

..= 0
3 while � < n
4 if π̄l == 0
5 � ..= �+ 1
6 while s[1 + π̄�] == s[� + π̄�]
7 π̄�

..= π̄� + 1
8 if π̄� �= 0
9 m ..= m+ 1; pos[m] ..= �; len[m] ..= π̄�

10 �, π̄�, pos, len, m ..= copy(�, π̄�, pos , len,m)
11 return pos , len, m

Fig. 5. Algorithm PL2 pseudocode

copy(�, π̄�, pos , len,m)

1 j ..= 1; pi−�+1
..= pos [j]; i ..= pi−�+1 + �− 1

2 i ..= pi−�+1 + �− 1
3 while pi−�+1 ≤ π̄�

4 w ..= π̄� − pi−�+1 + 1
5 if π̄i−�+1 < w
6 m ..= m+ 1; pos [m] ..= i; len[m] ..= π̄i−�+1

7 elseif �+ π̄� ≥ n
8 m ..= m+ 1; pos [m] ..= i; len[m] ..= w
9 else

10 π̄�
..= −1

11 j ..= j − 1
12 j ..= j + 1; pi−�+1

..= pos[j]; π̄i−�+1
..= len[j]

13 i ..= pi−�+1 + �− 1
14 if π̄� == −1
15 � ..= i; π̄�

..= w
16 else
17 � ..= �+ π̄� − 1; π̄�

..= 0
18 return �, π̄�, pos , len, m

Fig. 6. Pseudocode for the Copy function used in Algorithm PL2

Prefix Table Construction and Conversion 47

We have also designed and implemented compressed versions of algorithms
ML and RML, but space restrictions prevent their description; in general, they
are not competitive with the fastest π construction algorithms. The situation is
different however with a “brute force” algorithm BF, which simply constructs π
by computing π[i] using letter comparisons independently for each i (Section 4).

3 Conversion between Prefix Table and Border Array

Prefix Table to Border Array
[7, Section 1.6] presents the following property that allows the conversion of a
prefix table π into a border array β. For a given position j, for all � such that j is
a member of the π-range at �, x[�..j] = x[1..j − �+1] is a border of x[1..j]. The
longest border of x[1..j] corresponds to the minimum � such that j ∈ �..�+π[�]−1.
Formally,

β[j] =

{
0 if L = ∅
j −min(L) + 1 otherwise

(1)

where L = {� | � ≤ j ≤ �+π[�]− 1}. However, [7] does not specify the algorithm
itself which we provide in Figure 7.

Prefix-to-Border(π)

1 n = |π|
2 β ..= 0n

3 end ..= 2
4 for � ..= 2 to n
5 if end ≤ �+ π[�]− 1
6 for j ..= max(end, �) to �+ π[�]− 1
7 β[j] ..= j − �+ 1
8 end ..= �+ π[�]
9 return β

Fig. 7. Prefix-to-Border pseudocode

β is first initialized with zeros. The variable end stores the leftmost position
in β that has not yet been determined; initially, end = 2 since by definition
β[1] = 0. For each position � from 2 to n, end is compared with � + π[�] − 1. If
end > � + π[�]− 1, then the π-range at � cannot help determine β[end] (or any
subsequent element of β). However, if end ≤ �+ π[�]− 1, then either end < � or
end ∈ �..�+π[�]−1. If end < �, then for all j ∈ end ..� − 1, j is not part of any
π-range, so β[j] = 0. If end ∈ �..�+ π[�]− 1, then � begins the leftmost π-range
that contains positions end ..� + π[�]− 1.

Note that since values are assigned to β[j] in strictly increasing order of j,
the time requirement of Prefix-to-Border is Θ(n).

48 W. Bland, G. Kucherov, and W.F. Smyth

Border Array to Prefix Table
More complex is the border to prefix conversion. We first summarize the main
properties of π and β that will be used by our algorithms. Similar to π-ranges,
we define a β-range to be an interval j − β[j] + 1..j for some position j.

Lemma 1.

(i) β[j + 1] ≤ β[j] + 1,
(ii) if β[j + 1] ≤ β[j], then π[j − β[j] + 1] = β[j],

(iii) if π[�] > 1, then for i ∈ �+ 1..�+ π[�]− 1
(a) π[i − �+ 1] < π[�]− (i − �) =⇒ π[i] = π[i − �+ 1],
(b) π[i − �+ 1] ≥ π[�]− (i − �) =⇒ π[i] ≥ π[�]− (i− �).

Proof. (i) simply states that if x[1..i] has a border of length k, then x[1..i − 1]
has a border of length k− 1. (ii) holds because if the longest border of x[1, j+1]
is no longer than the longest border of x[1, j], then x[j + 1] 	= x[β[j] + 1]. (iii)
restates Case 2 of Algorithm ML (see Section 2). �

Properties (i)-(iii) are used to compute the prefix table π from a border array β as
follows. Consider a right-maximal β-range, i.e. r−β[r]+1..r where β[r+1] ≤ β[r].
For each such r, we set π[r − β[r] + 1] = β[r] according to property (ii).

Observe now that we only have to compute values of π inside right-maximal
β-ranges. This is because if β[j] = 0, i.e. j is outside all β-ranges, then π[j] = 0
(except for the special case j = 1).

Consider a right-maximal β-range �..r = r − β[r] + 1..r. To compute values
π[i] for i ∈ � + 1..r, we use Lemma 1(iii). If π[i − � + 1] < π[�] − (i − �), then
we set π[i] = π[i − � + 1] (Case (iii)(a)). If π[i] ≥ π[�] − (i − �) (Case (iii)(b)),
we cannot immediately determine π[i] (unless we reached the end of the string)
and need to look at the next right-maximal β-range, which may (or may not)
overlap the current one. This leads to a complication: it might be that we will
have to look at a “cascade” of several (a non-constant number) of overlapping
β-ranges. We need to take more care to avoid this look-ahead.

The key to deal with the case of Lemma 1(iii)(b) is to maintain the rightmost
right-maximal β-range to which position i belongs. Formally, we maintain the
following invariant: if we are about to compute π[i] for a position i belonging to
a right-maximal β-range, then i ≤ (r + 1) − β[r + 1]. That is, the start of the
next run of β-ranges is to the right of i. We show that in this case, π[i] can be
computed immediately.

The following lemma is straightforward.

Lemma 2. A π-range cannot properly include a β-range other than as a prefix.
That is, if π[i] > 0, then for every j ∈ i..i+ π[i]− 1, β[j] ≥ j − i+ 1.

Using Lemma 2, we can compute π[i] immediately.

Lemma 3. Assume a position i belongs to a right-maximal β-range r − β[r] +
1..r, and assume that i ≤ (r + 1)− β[r + 1]. If π[i − r + β[r]] ≥ r − i + 1, then
π[i] = r − i+ 1.

Prefix Table Construction and Conversion 49

Proof. Lemma 3 refines condition (iii)(b) of Lemma 1, which states that if π[i−
r + β[r]] ≥ r − i+ 1, then π[i] ≥ r − i+ 1. Lemma 3 states that if the condition
i ≤ (r + 1) − β[r + 1] is verified in addition, the last inequality is actually an
equality.

If β[r + 1] = 0, then π[i] > r − i + 1 is impossible as this would imply
β[r+ 1] ≥ r− i+1 > 0. If β[r+ 1] > 0, then the π-range i..i+ π[i]− 1 properly
includes the β-range (r + 1) − β[r + 1] + 1..(r + 1) since, by our assumption,
i ≤ (r + 1)− β[r + 1]. By Lemma 2, this is impossible. �

The pseudocode in Figure 8 specifies the algorithm. The running time of the
algorithm is Θ(n), as the internal while loop increases r and therefore cannot
iterate more than n times altogether.

Border-to-Prefix-A(β)

1 n ..= |β|
2 π[1] ..= n
3 � ..= 1
4 r ..= 1
5 for i ..= 2 to n
6 if β[i] == 0
7 π[i] ..= 0
8 r ..= r + 1
9 elseif r + 1 ≤ n and i == (r + 1)− β[r + 1] + 1

10 � ..= i // entered the next run of β-ranges
11 r ..= r + 1
12 while r + 1 ≤ n and � == (r + 1)− β[r + 1] + 1
13 r ..= r + 1 // looking for the next right-maximal β-range
14 π[i] ..= r − i+ 1 // Lemma 1(ii)
15 else
16 π[i] ..= min(π[i− �+ 1], r − i+ 1) // Lemma 1(iii)(a), Lemma 3
17 return π

Fig. 8. Border-to-Prefix-A pseudocode

Our second algorithm for transforming β into π deals with the case of Lemma
1(iii)(b) in a conceptually simpler manner. After computing the right-maximal
β-range, it assigns the π value to all positions in this range to be the minimum
between π[i− �+1] and π[�]− (i− �) (see Lemma 1(iii)). At this point, some of
those values may be incorrect but they are later revisited when the next right-
maximal β-range is processed, until eventually the correct values are assigned.

This algorithm runs in worst-case O(n2) time, which can be seen by consider-
ing strings of the form akba2k. Positions 1 to k+1 in π will each be set once. The
next k positions will be set 1, 2, . . . , k times, respectively. The final k positions
will be set k, k − 1, . . . , 1 times, respectively. The total number of assignment
operations will be (k+1)+k(k+1) = 1

9n
2+ 4

9n+ 4
9 = O(n2). Despite quadratic

complexity, we find this algorithm is faster than our linear algorithm in practice

50 W. Bland, G. Kucherov, and W.F. Smyth

Border-to-Prefix-B(β)

1 n ..= |β|
2 π[1] ..= n
3 � ..= 2
4 while � ≤ n
5 if β[�] == 0
6 π[�] ..= 0
7 � ..= �+ 1
8 else
9 r ..= �

10 while r + 1 ≤ n and β[r + 1] == β[r] + 1
11 r ..= r + 1
12 � ..= r − β[r] + 1
13 π[�] ..= β[r]
14 for i ..= �+ 1 to r
15 π[i] ..= min(π[i− �+ 1], r − i+ 1)
16 � ..= r + 1
17 return π

Fig. 9. Algorithm Border-to-Prefix-B pseudocode

(see Section 4). Code profiling shows that this is because the linear algorithm
spends more time executing its conditional statements.

4 Test Results

We implemented the algorithms in C++ and compiled the code using GCC 4.7.2
with the -O3 optimization option. We ran the tests on a MacBook Pro with a
2.3 GHz Intel Core i5 processor and 8 GB of memory running OS X 10.7.5. To
measure execution time, we used the clock() function from time.h to obtain the
CPU time taken to run ten identical trials, excluding input/output and memory
allocation. The reported time is the average time for the ten trials.

Our test strings were prefixes of the Fibonacci string, a random binary string,
and an English string. The English string was the text english from the Pizza &
Chili corpus3 (a concatenation of texts from Project Gutenberg). We generated
the random binary string, choosing each letter independently with p = 0.5. From
each of these three strings, we extracted ten prefixes ranging in length from 50
million to 500 million letters.

π Construction
Results for Fibonacci, random binary, and English strings are shown in Figures
10a, 10b and 10c, respectively. PL2 was the fastest of the four algorithms on
Fibonacci and random binary strings (about 20% faster than ML), but PL1

3 http://pizzachili.dcc.uchile.cl

http://pizzachili.dcc.uchile.cl

Prefix Table Construction and Conversion 51

100 200 300 400 500

0

1

2

3

String length (millions of letters)

E
x
ec
u
ti
o
n
ti
m
e
(s
ec
o
n
d
s)

(a) Fibonacci strings

100 200 300 400 500
0

2

4

6

String length (millions of letters)

E
x
ec
u
ti
o
n
ti
m
e
(s
ec
o
n
d
s)

(b) Random binary strings

100 200 300 400 500

0

0.5

1

1.5

2

2.5

String length (millions of letters)

E
x
ec
u
ti
o
n
ti
m
e
(s
ec
o
n
d
s)

ML

RML

PL1

PL2

BF

(c) English strings

Fig. 10. π construction time

was about 30% faster on English strings. Though PL1 was the fastest of the
four algorithms on English strings, it was the slowest on Fibonacci and random
binary strings. ML and RML performed comparably, though ML was faster on
Fibonacci and English strings, and RML was faster on random binary strings.

On Fibonacci strings, even the slowest algorithm was eight to ten times faster
than BF. However, on English and random binary strings there is less periodicity
to take advantage of, and BF was actually slightly faster than the fastest of the
other algorithms.

π ↔ β
We implemented a PL version of π → β, using a strategy similar to that of
PL1, which in some cases (English strings) seems to slightly reduce execution
time. (We omit these plots for space.) For β → π we found that, despite the

52 W. Bland, G. Kucherov, and W.F. Smyth

100 200 300 400 500

0

0.5

1

1.5

2

String length (millions of characters)

E
x
ec
u
ti
o
n
ti
m
e
(s
ec
o
n
d
s)

(a) Fibonacci strings

100 200 300 400 500
0

1

2

3

String length (millions of characters)

E
x
ec
u
ti
o
n
ti
m
e
(s
ec
o
n
d
s)

(b) Random binary strings

100 200 300 400 500
0

0.2

0.4

0.6

0.8

String length (millions of characters)

E
x
ec
u
ti
o
n
ti
m
e
(s
ec
o
n
d
s)

Border-to-Prefix-A

Border-to-Prefix-B

Border-to-Prefix-C

Border-to-Prefix-C-PL

(c) English strings

Fig. 11. β → π conversion time

backtracking, Border-to-Prefix-B was consistently faster than Border-to-

Prefix-A on all strings tested (Figures 11a–11c); another approach, together
with its PL variant, provided no clear advantage.

5 Future Directions

In this paper we have adopted a unified perspective on algorithms related to
prefix tables, both those for prefix table construction and for conversion to border
arrays. Some of these algorithms are available in the literature, others have been

Prefix Table Construction and Conversion 53

designed by us. All of the algorithms are linear in their time requirement, and so
our purpose has been to provide guidelines for determining comparative efficiency
in terms of the nature of the input files. The prefix table is a robust, perhaps
somewhat neglected, data structure; we believe that study of its properties in
the context of approximate string matching will yield useful results.

References

1. Aho, V.A., Hopcroft, J.E., Ullman, J.D.: The Design & Analysis of Computer
Algorithms, p. 470. Addison-Wesley (1974)

2. Amir, A., Calinescu, G.: Alphabet-independent and scaled dictionary matching. J.
Algorithms, Elsevier 34–62 (2000)

3. Amir, A., Landau, G.M., Sokol, D.: Inplace run-length 2d compressed search. In:
Proc. 11th ACM-SIAM Symp. Discrete Algs., pp. 817–818. SIAM (2000)

4. Barton, C., Iliopoulos, C.S., Pissis, S., Smyth, W.F.: Prefix tables and border arrays
with k-mismatches & applications (submitted for publication, 2013)

5. Christodoulakis, M., Ryan, P.J., Smyth, W.F., Wang, S.: Indeterminate strings,
prefix arrays & undirected graphs (submitted for publication, 2013)

6. Crochemore, M., Hancart, C., Lecroq, T.: Algorithmique du Texte, p. 347, Vuibert
(2001)

7. Crochemore, M., Hancart, C., Lecroq, T.: Algorithms on Strings, p. 383. Cambridge
University Press (2007)

8. Galil, Z., Park, K.: Truly alphabet-independent two-dimensional pattern matching.
In: Proc. 33rd IEEE Symp. Found. Computer Science, pp. 247–256. IEEE (1992)

9. Gusfield, D.: Algorithms on Strings, Trees & Sequences, p. 534. Cambridge Uni-
versity Press (1997)

10. Lothaire, M.: Applied Combinatorics on Words, p. 610. Cambridge University Press
(2005)

11. Main, M.G., Lorentz, R.J.: An O(n log n) algorithm for finding all repetitions in a
string. J. Algorithms 5, 422–432 (1984)

12. Smyth, B.: Computing Patterns in Strings, p. 423. Pearson Addison-Wesley (2003)
13. Smyth, W.F., Wang, S.: New perspectives on the prefix array. In: Amir, A., Turpin,

A., Moffat, A. (eds.) SPIRE 2008. LNCS, vol. 5280, pp. 133–143. Springer, Heidel-
berg (2008)

14. Vishkin, U.: Optimal parallel pattern matching in strings. Information and Control,
Elsevier, 91–113 (1985)

On the Approximability of Splitting-SAT

in 2-CNF Horn Formulas�

Hans-Joachim Böckenhauer and Lucia Keller

Department of Computer Science, ETH Zurich, Switzerland
{hjb,lucia.keller}@inf.ethz.ch

Abstract. Splitting a variable in a Boolean formula means to replace
an arbitrary set of its occurrences by a new variable. In the minimum
splitting SAT problem, we ask for a minimum-size set of variables to be
split in order to make the formula satisfiable. This problem is known
to be APX-hard, even for 2-CNF formulas. We consider the case of 2-
CNF Horn formulas, i. e., 2-CNF formulas without positive 2-clauses, and
prove that this problem is APX-hard as well. We also analyze subcases
of 2-CNF Horn formulas, where additional clause types are forbidden.
While excluding negative 2-clauses admits a polynomial-time algorithm
based on network flows, the splitting problem stays APX-hard for for-
mulas consisting of positive 1-clauses and negative 2-clauses only.

Instead of splitting as many variables as possible to make a formula
satisfiable, one can also look at the dual problem of finding the maximum
number of variables that can be assigned without violating a clause. We
also study the approximability of this maximum assignment problem on
2-CNF Horn formulas. While the polynomially solvable subproblems are
the same as for the splitting problem, the maximum assignment problem
in general Horn formulas is as hard to approximate as the maximum
independent set problem.

1 Introduction

Many problems arising from practical applications can be formulated using
Boolean formulas in conjunctive normal form (CNF). Usually, the variables of
the formula model some parameters of the problem, and the constraints of the
problem are modeled by the clauses of the formula. The goal is to find out a
valid parameter setting by computing a satisfiable assignment for the correspond-
ing formula. But often the modeling of the practical situation is very complex,
leading to some contradictory constraints in the model, and the correspond-
ing formula turns out to be unsatisfiable. In this case, one often tries to find a
maximum set of constraints that can be simultaneously satisfied. This leads to
the well-known Max-SAT problem (see, e. g., [1] for an overview of the known
results for Max-SAT). Another source of mistakes that might arise when model-
ing a real-world problem as a Boolean formula is a too coarse-grained choice of
parameters, i. e., variables. If two different parameters are erroneously modeled

� This work was partially supported by SNF grant 200021/132510.

T. Lecroq and L. Mouchard (Eds.): IWOCA 2013, LNCS 8288, pp. 54–66, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

On the Approximability of Splitting-SAT in 2-CNF Horn Formulas 55

by the same variable, this might also lead to an unsatisfiable formula. In other
words, an unsatisfiable variable might contain one or more variables that should
be split into two variables in order to make the formula satisfiable. The minimum
splitting SAT problem formalizes this approach, the input is an (unsatisfiable)
CNF formula and the goal is to find a minimum number of variables that have
to be split into two to make the resulting formula satisfiable.

The splitting operation has not only been considered on formulas. For ex-
ample, it arises in the context of vertex splitting in phylogenetic tree construc-
tion [9]. Splitting vertices in a graph was also considered for making a graph
Hamiltonian [11]. To the best of our knowledge, splitting variables in a Boolean
formula was introduced by Steinová [11], who showed that the minimum split-
ting SAT problem is APX-hard even for formulas in 2-CNF, i. e., when restricted
to formulas in which each clause contains at most two literals.

In a 2-CNF formula, we can have the following five types of clauses:

P1: Positive 1-clauses (x) consisting of one positive literal,

N1: negative 1-clauses (x) consisting of one negative literal,

M2: mixed 2-clauses (x ∨ y) consisting of one positive and one negative literal,

N2: negative 2-clauses (x ∨ y) consisting of two negative literals, and

P2: positive 2-clauses (x ∨ y) consisting of two positive literals.

A 2-CNF formula without positive 2-clauses is called a 2-CNF Horn formula. We
will restrict our attention to 2-CNF Horn formulas in the first part of the paper.
We analyze which combinations of clause types make the minimum splitting SAT
problem hard to approximate. An overview of the results is given in Figure 1.
Observe that lower bounds carry over upwards and upper bounds downwards in
the lattice of subsets. In particular, we show that the minimum splitting SAT
problem remains exactly as hard to approximate as the vertex cover problem,
when restricted to the special case of Horn formulas consisting of clauses of type
P1 and N2 only. On the other hand, even when allowing additional clauses of
type N1, the problem can be approximated exactly as good as the vertex cover
problem, it becomes polynomially solvable when restricted to Horn formulas
consisting of clauses of type P1, N1, and M2.

Another way to look at the splitting SAT problem is to ask for the maximum
number of variables that can be assigned a truth value without evaluating any
clause to 0, i. e., for the maximum number of variables that can be left unsplit.
This is called the maximum assignment SAT problem. Obviously, the optimal
solutions for minimum splitting SAT and maximum assignment SAT coincide,
but we show that the approximability of the two problems essentially differs.
The maximum assignment SAT problem on 2-CNF Horn formulas with clauses
of type P1 and N2 turns out to be as hard to approximate as the maximum
independent set problem, and, on arbitrary 2-CNF Horn formulas, it can be
approximated as good as the maximum independent set problem. An overview
of the results on the maximum assignment SAT problem is shown in Figure 2.

We complement our results with an approximation algorithm for the maxi-
mum assignment SAT problem on E2-CNF formulas, i. e., formulas containing

56 H.-J. Böckenhauer and L. Keller

P1/N1/M2/N2
U: open
L: MinVC

P1/N1/M2
U: MaxFlow

L: –

P1/N1/N2
U: MinVC

L: MinVC

P1/M2/N2
U: open
L: MinVC

N1/M2/N2
U: no split
L: –

P1/N1
U: linear time
L: –

P1/M2
U: no split
L: –

P1/N2
U: MinVC

L: MinVC

N1/M2
U: no split
L: –

N1/N2
U: no split
L: –

M2/N2
U: no split
L: –

P1
U: no split
L: –

N1
U: no split
L: –

M2
U: no split
L: –

N2
U: no split
L: –

∅
U: trivial
L: –

Fig. 1. Upper and lower bounds on the approximability of the minimum splitting SAT
problem on 2-CNF Horn formulas for each set of allowed clause types

only clauses of the types M2, P2, and N2. The approximation hardness of this
problem was shown by Steinová [11].

The paper is organized as follows: In Section 2, we fix our notation. Sections
3 and 4 are devoted to the analysis of minimum splitting SAT and maximum
assignment SAT in Horn formulas, respectively. In Section 5, we discuss the case
of E2-CNF formulas, and we conclude the paper in Section 6.

2 Basic Definitions

We start with formally defining the minimum splitting SAT problem and the
maximum assignment SAT problem. We follow the definitions from [11].

Definition 1. Let Φ be a Boolean formula over the variable set X and let y, z /∈
X be two new variables. We say that a variable x ∈ X is split if each occurrence
of x in Φ is replaced by either y or z and each occurrence of x is replaced by
either y or z. This operation is called a splitting of x. We call a set X ′ ⊆ X
such that splittting all variables from X ′ yields a satisfiable formula a feasible
splitting set (or splitting set for short).

Note that, when splitting a variable x into the two new variables y and z, we
can replace all occurrences of the literal x by y and all occurrences of the literal

On the Approximability of Splitting-SAT in 2-CNF Horn Formulas 57

P1/N1/M2/N2
U: MaxIS

L: MaxIS

P1/N1/M2
U: MaxFlow

L: –

P1/N1/N2
U: MaxIS

L: MaxIS

P1/M2/N2
U: MaxIS

L: MaxIS

N1/M2/N2
U: α ≡ 0
L: –

P1/N1
U: linear time
L: –

P1/M2
U: α ≡ 1
L: –

P1/N2
U: MaxIS

L: MaxIS

N1/M2
U: α ≡ 0
L: –

N1/N2
U: α ≡ 0
L: –

M2/N2
U: α ≡ 0
L: –

P1
U: α ≡ 1
L: –

N1
U: α ≡ 0
L: –

M2
U: α ≡ 0
L: –

N2
U: α ≡ 0
L: –

∅
U: trivial
L: –

Fig. 2. Upper and lower bounds on the approximability of the maximum assignment
SAT problem on 2-CNF Horn formulas for each set of allowed clause types

x by z. Thus, the resulting formula is satisfiable if and only if the formula
resulting from removing all clauses containing the variable x is satisfiable. Hence,
we can think of a splitting operation as the removal of the split variable (together
with all clauses it appears in) from the formula. Furthermore, note that the
result of splitting multiple variables is independent from the order of applying
the splitting operations.

Definition 2. Let Φ be a Boolean formula over the variable set X = {x1, . . . , xn}.
We say that Φ is in conjunctive normal form (CNF), if it is a conjunction of so-
called clauses, which are disjunctions of literals, i. e., variables or negated vari-
ables. If the number of literals in a clause is bounded by some constant k, we say
that Φ is in k-CNF.

For a formula in 2-CNF and a set S of clause types from {P1,N1,M2,N2,P2}
as defined above, we say that Φ is in S-2-CNF, if it contains only clauses of types
from S. The {P1,N1,M2,N2}-2-CNF formulas are called Horn formulas.

Definition 3. The minimum splitting SAT problem, MinSplit-SAT for short,
is the following minimization problem: Given a Boolean formula in CNF over
the variable set X = {x1, . . . , xn}, find a minimum-size splitting set X ′ ⊆ X.

If the input is restricted to k-CNF formulas, we call the resulting subproblem
MinSplit-k-SAT. When restricting the input to S-2-CNF formulas, for some

58 H.-J. Böckenhauer and L. Keller

S ⊆ {P1,N1,M2,N2,P2}, the resulting subproblem is denoted as MinSplit-S-2-
SAT. The problem MinSplit-{P1,N1,M2,N2}-2-SAT is called MinSplit-

Horn-2-SAT and MinSplit-{P2,M2,N2}-2-SAT is called MinSplit-E2-SAT.

In the following, we will only deal with MinSplit-2-SAT and its subproblems
and we will assume without loss of generality that the input always is an unsatis-
fiable formula. Since 2-SAT, i. e., checking the satisfiability of a 2-CNF formula,
is solvable in polynomial time, this is no severe restriction. This implies that the
cost of any feasible solution is always strictly greater than zero, which allows us
to consider the approximation ratio of an algorithm for MinSplit-2-SAT as the
quotient of the cost of the computed solution and the optimal cost.

Definition 4. The maximum assignment SAT problem, MaxAssign-SAT for
short, is the following maximization problem: Given a Boolean formula in CNF
over the variable set X = {x1, . . . , xn}, find a maximum-size subset X ′ ⊆ X
such that there exists a partial assignment α : X ′ → {0, 1} such that no clause
is evaluated to 0 under this partial assignment.

For the restrictions to special types of clauses, we use analogous notations as
for the respective MinSplit-SAT variants.

Observation 1. Let Φ be a formula in CNF over the set X = {x1, . . . , xn} of
variables. A set X ′ ⊆ X is an optimal MinSplit-SAT solution for Φ if and
only if X −X ′ is an optimal MaxAssign-SAT solution for Φ.

Proof. Let X ′ be a feasible solution for MinSplit-SAT on Φ. Then all clauses
are either satisfied by splitting one of the variables from X ′ or can be satisfied
by some partial assignment α for the variables from X −X ′ (otherwise another
variable would need to be split). Thus, X − X ′ is a feasible MaxAssign-SAT

solution for Φ since all clauses not satisfied by α contain an unassigned variable
from X ′ and thus are not evaluated to 0.

On the other hand, let X − X ′ be a feasible MaxAssign-SAT solution for
Φ. Then there exists a partial assignment α to the variables from X −X ′, such
that no clause evaluates to 0 under α. Thus, each clause is either satisfied by
α or contains an unassigned variable from X ′. Thus, splitting all variables from
X ′ makes the formula satisfiable. ��

Several of our results are based on reductions from the minimum vertex cover
problem and the maximum independent set problem. The minimum vertex cover
problem, MinVC for short, is the following minimization problem: Given an
undirected graph G = (V,E), find a minimum-size vertex cover of G, i. e., a
minimum-size subset C ⊆ V such that e ∩ C 	= ∅ for all e ∈ E. The maximum
independent set problem, MaxIS for short, is the following maximization prob-
lem: Given an undirected graph G = (V,E), find a maximum-size independent
set of G, i. e., a maximum-size subset I ⊆ V such that {x, y} /∈ E for all x, y ∈ I
with x 	= y.

MinVC is known to be approximablewithin a factor of 2−(log log |V |/2 log |V |)
[8], but it is APX-hard [10] and not approximable within a factor of 2 − ε,

On the Approximability of Splitting-SAT in 2-CNF Horn Formulas 59

vt

v1 v2 v3

vf

v4 v5

Fig. 3. The graph representation of the {P1,N1,M2}-2-CNF Horn formula Φ = (x1)∧
(x2) ∧ (x3) ∧ (x3) ∧ (v4) ∧ (v5) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x1 ∨ x3) ∧ (v4 ∨ v5)

for any constant ε > 0, if the Unique Games Conjecture holds [7]. The MaxIS is
approximable within O(|V |/(log |V |)2) [2], but not approximable within |V |1−ε,
for any ε > 0, unless P=NP [5].

3 Splitting in 2-CNF Horn Formulas

In this section, we deal with the approximability of MinSplit-S-2-SAT, for all
possible subsets S ⊆ {P1,N1,M2,N2}.

If all allowed clause types contain a positive literal or all contain a negative
literal, setting all variables to 1 or 0, respectively, satisfies the formula and no
splitting is needed.

Observation 2. For S = {P1,M2} or S = {N1,M2,N2} or any subset thereof,
MinSplit-S-2-SAT is solvable in constant time. ��

Similarly, as already observed in [11], for any formula consisting of 1-clauses
only, MinSplit-S-2-SAT is easily solvable. This immediately leads to the fol-
lowing observation.

Observation 3. For S = {P1,N1}, MinSplit-S-2-SAT is solvable in linear
time. ��

Next, we prove that MinSplit-{P1,N1,M2}-2-SAT can be solved by com-
puting the maximum flow in a given network. For this, we first define a repre-
sentation of formulas of this type by directed graphs. This graph representation
is a special case of the representation in [4].

Definition 5. Given a {P1,N1,M2}-2-CNF Horn formula Φ = C1 ∧C2 ∧ . . .∧
Cm over the variable set X = {x1, x2, . . . , xn}, GΦ = (VΦ, EΦ) is a digraph with
vertex set VΦ = {vi | xi ∈ X} ∪ {vt} ∪ {vf} and arc set

EΦ = {(vt, vj) | (xj) in Φ} ∪ {(vj , vf) | (xj) in Φ} ∪ {(vi, vj) | (xi ∨ xj) in Φ} .

The arcs from vt to vertices vi ∈ {v1, v2, . . . , vn} represent a satisfying assign-
ment α(xi) = 1 for all clauses of type (xi). The connecting arcs in the vertex
set {v1, v2, . . . , vn} indicate that, for an arc (vi, vj), α(xi) = 0 or α(xj) = 1 has
to hold in order to satisfy the clauses of type (xi ∨ xj). An arc from a vertex

60 H.-J. Böckenhauer and L. Keller

vi ∈ {v1, v2, . . . , vn} to vf represents a satisfying assignment α(xi) = 0 for the
corresponding clause (xi). We see in Figure 3 that only the shaded vertices can
be reached by a path from vt. We call such a vertex a vt-pebbled vertex or pebbled
vertex for short.

This graph construction and the idea of a pebbling were used in a more general
way by Dowling and Gallier [4]. They proved the following theorem.

Theorem 1 (Downing and Gallier [4]). A Horn formula is satisfiable if and
only if there is no directed path from vt to vf . ��

Furthermore, they made a statement about the assignment in the case of a
satisfiable formula.

Theorem 2 (Downing and Gallier [4]). Let Φ be a satisfiable Horn formula
with variable set X = {x1, x2, . . . , xn}. The assignment α(xi) = 1 if and only if
vi is pebbled and α(xi) = 0 otherwise, is a satisfying assignment. ��

This means that we get a satisfying assignment if we set all variables corre-
sponding to pebbled vertices to 1 and all other vertices to 0 in the case with no
directed path from vt to vf .

Corollary 1. Only pebbled vertices are candidates to split.

Proof. There is no directed path from vt to a non-pebbled vertex vi and therefore
no 1-clause (xi). Furthermore, for all variables xi1 , xi2 , . . . , xik that correspond
to vertices vi1 , vi2 , . . . , vik for which a directed path from vi1 , vi2 , . . . , vik to vi
exists, there are no 1-clauses (xi1), (xi2), . . . , (xik). Therefore, all variables that
correspond to non-pebbled vertices can be set to 0 so that all clauses containing
those vertices are satisfied by this assignment. ��

If we remove all non-pebbled vertices from the graph, it remains connected
with a directed path from vt to vf . To make the corresponding formula satisfiable,
we have to delete some of the remaining vertices in order to disconnect vt from
vf .

Lemma 1. A splitting set of size k in a {P1,N1,M2}-2-CNF Horn formula
corresponds to a vt − vf vertex cut of size k in the corresponding graph.

Proof. After removing the split vertices from the formula Φ, the corresponding
graph GΦ has no directed path from vt to vf due to Theorem 1. Hence, the
removed vertices form a vt − vf vertex cut.

Conversely, removing the variables corresponding to a vt − vf vertex cut in
GΦ from the formula Φ makes it satisfiable due to Theorem 1. ��

The problem of finding a minimum s − t vertex cut in a graph G equals the
problem finding a minimum s − t arc cut in a graph G′ where we replace every
vertex v of G, except the source s and the sink t, by two vertices v1 and v2
and an arc (v1, v2) in G′. The ingoing arcs of v are connected to v1 in G′ and
the outgoing arcs of v are outgoing arcs of v2 (see Figure 4). Additionally, the

On the Approximability of Splitting-SAT in 2-CNF Horn Formulas 61

v =⇒ v1 v2

Fig. 4. In the transformation of an instance G for finding a minimum s− t vertex cut
into an instance G′ for finding a minimum s− t arc cut, every vertex v is replaced by
two vertices v1 and v2 and the arcs are adjusted as shown above.

new arcs in G′ get capacity 1 and the old ones capacity 2n + 1 such that in a
minimum arc cut the new arcs will be chosen.

According to the well-known maxflow-mincut theorem [3], the problem of
finding a minimum s − t arc cut in a graph G equals the problem of finding a
maximum value of a s− t flow in G.

Corollary 2. The problem of finding a splitting in a {P1,N1,M2}-2-CNF Horn
formula equals the problem of finding a maximum flow in a graph G′

Φ.

Since the graph G′
Φ and its capacities are of polynomial size with respect to

the formula size, the discussion above immediately yields the following theorem.

Theorem 3. MinSplit-{P1,N1,M2}-2-SAT is polynomial-time solvable. ��

Next, we show that MinSplit-{P1,N2}-2-SAT is as hard to approximate as
MinVC. This result immediately implies that all remaining subcases of Horn for-
mulas are also as hard to approximate as MinVC since they are generalizations
of MinSplit-{P1,N2}-2-SAT.

Theorem 4. MinVC ≤AP MinSplit-{P1,N2}-2-SAT.

Proof. We present an AP-reduction from MinVC to MinSplit-{P1,N2}-2-
SAT. For this, we give a polynomial-time function transforming any MinVC

instance G into a MinSplit-{P1,N2}-2-SAT instance ΦG such that any α-
approximate feasible solution for ΦG can be transformed in polynomial time
into a feasible solution for G achieving the same approximation ratio. For more
details on the general concept of AP-reductions, see [1, 6].

Let G be a MinVC instance, where G = (V,E) is an undirected graph. Let
V = {v1, . . . , vn}. We construct a formula ΦG from G as follows: ΦG contains a
positive 1-clause (xi) for each non-isolated vertex vi ∈ V and a negative 2-clause
(xi ∨xj) for each edge {vi, vj} ∈ E. An example of this construction is shown in
Figure 5.

We now show that every vertex cover in G corresponds to a feasible set of
split variables of the same size in ΦG and vice versa.

Let C = {vi1 , . . . , vik} be a vertex cover of G of size k. We consider the cor-
responding variable set XC = {xi1 , . . . , xik} in ΦG. Following the construction,
since C is a vertex cover, every 2-clause in ΦG contains at least one variable from

62 H.-J. Böckenhauer and L. Keller

v1 v2 v3

v4 v5 v6

=⇒ ΦG = (x1) ∧ (x2) ∧ (x3) ∧ (x4) ∧ (x5) ∧ (x6)

∧(x1 ∨ x2) ∧ (x1 ∨ x4) ∧ (x2 ∨ x3)

∧(x2 ∨ x4) ∧ (x5 ∨ x6)

Fig. 5. An example of the construction used in the proof of Theorem 4

XC . Thus, splitting the variables from XC removes all 2-clauses and the remain-
ing formula consists of positive 1-clauses only and hence is obviously satisfiable.

Let, on the other hand, X = {xi1 , . . . , xik} be a set of variables whose splitting
makes ΦG satisfiable. Since there exists a positive 1-clause for each variable in
ΦG, every partial assignment setting any variable to 0 violates at least one of
these 1-clauses. Thus, every variable that remains unsplit has to be assigned the
value 1. This means that every 2-clause in ΦG has to contain at least one variable
from X . We consider the corresponding set CX = {vi1 , . . . , vik} of vertices in G.
Due to the construction, CX is a vertex cover of G of size k.

Summing up, there is a one-to-one correspondence between vertex covers for
G and feasible solutions for ΦG of the same size proving our claim. ��

We conclude this section with showing that MinSplit-{P1,N1,N2}-2-SAT
can be approximated as good as MinVC. The upper bound on the approxima-
bility of MinSplit-{P1,M2,N2}-2-SAT and MinSplit-Horn-2-SAT remains
open. For these cases, we only know about an O(n/ logn)-approximative algo-
rithm due to Mömke that was mentioned in [11].

Theorem 5. Any polynomial-time α-approximation algorithm for MinVC can
be used to approximate MinSplit-{P1,N1,N2}-2-SAT within a factor of α in
polynomial time.

Proof. We first preprocess a {P1,N1,N2}-CNF formula Φ in order to get a
{P1,N2}-CNF formula Φ′. We first remove all clauses containing variables xi

with (xi) and (xi) in Φ and add those variables to the splitting set. All remain-
ing variables xi with (xi) in Φ can be set to 0 such that no clause is violated and
all clauses containing the variable xi are satisfied. Thus, we remove all clauses
containing those variables xi. After that, we set all variables xi occurring only
positively or only negatively in Φ to the value 1 or 0, respectively. The remaining
formula Φ′ contains only clauses of type P1 and N2 because of the construction,
and every variable occurs in a positive 1-clause.

Now, we present a reduction fromMinSplit-{P1,N2}-2-SAT toMinVC. Let
Φ′ be a {P1,N2}-CNF formula with variable set X = {x1, . . . , xn}. Then, GΦ′

is a graph with vertex set VΦ′ = {vi | (xi) in Φ′} and edge set EΦ′ = {{vi, vj} |
(xi∨xj) in Φ′}. Note that, since every possible positive 1-clause is present in Φ′,
this is exactly the reverse of the construction used in the proof of Theorem 4,
where we have already proven the one-to-one correspondence between feasible
splitting sets for Φ′ and vertex covers for GΦ′ . This proves our claim. ��

On the Approximability of Splitting-SAT in 2-CNF Horn Formulas 63

4 Maximum Assignment in 2-CNF Horn Formulas

In this section, we deal with the approximability of MaxAssign-Horn-2-SAT
and its subproblems. According to Observation 1, every poynomial-time algo-
rithm for minimum splitting immediately yields a polynomial-time algorithm
for maximum assignment. Hence, the results of Observation 3 and Theorem 3
directly carry over to MaxAssign-Horn-2-SAT.

Observation 4. For S = {P1,M2} or S = {P1,N1} or S = {N1,M2,N2} or
any subset thereof, MaxAssign-S-2-SAT is solvable in linear time. ��

Theorem 6. MaxAssign-{P1,N1,M2}-2-SAT is polynomial-time solvable.
��

It is well known that, if C is a vertex cover of size k in a graph G = (V,E)
with |V | = n, then V − C is an independent set of size n − k in G. This strong
correspondence between MinVC and MaxIS resembles the correspondence be-
tween minimum splitting and maximum assignment. Thus, we can use similar
ideas as in the previous section to prove that MaxAssign-{P1,N2}-2-SAT is
as hard to approximate as MaxIS and that MaxAssign-Horn-2-SAT can be
approximated using MaxIS algorithms.

Theorem 7. Unless P=NP, MaxAssign-{P1,N2}-2-SAT cannot be better ap-
proximated than MaxIS.

Proof sketch. We use the same reduction as in the proof of Theorem 4 to trans-
form a given MaxIS instance G into a MaxAssign-{P1,N2}-2-SAT instance
ΦG. Following the discussion about the relation of MinVC and MaxIS above, it
is easy to see that every independent set in G corresponds to a set of variables in
ΦG of the same size which can be assigned the truth value 1 without generating
an unsatisfied clause. ��

Theorem 8. Any polynomial-time f(n)-approximation algorithm for MaxIS

can be used to approximate MaxAssign-Horn-2-SAT within f(2 · n) in poly-
nomial time, where n denotes the number of vertices or variables, respectively.

Proof. Let Φ be an input instance for MaxAssign-Horn-2-SAT. We start with
a preprocessing of Φ. If there exists a variable x that occurs both in a positive
and a negative 1-clause, then x obviously cannot be assigned any truth value,
thus, we delete all clauses containing x from the formula. If, for some variable
x and some literal l, there exist two clauses (x) and (x ∨ l), we can remove the
clause (x ∨ l). This is due to the fact that any partial assignment that does not
contradict (x) also does not contradict (x ∨ l). Analogously, for any two clauses
(x) and (x∨y), we can remove the clause (x∨y). Finally, if some variable appears
only positively or only negatively in the formula, we can assign the respective
value to it and shrink the formula accordingly.

For the remainder of the proof, let Φ = C1 ∧ . . . ∧ Cm denote a 2-CNF Horn
formula on the variable set X = {x1, . . . , xn} that cannot be further shrunk

64 H.-J. Böckenhauer and L. Keller

Φ = (x1) ∧ (x2) ∧ (x1 ∨ x2)

∧(x1 ∨ x3) ∧ (x1 ∨ x3)

∧(x2 ∨ x3)

=⇒ GΦ :

v1 v2

v3 v3

Fig. 6. An example of the construction in the proof of Theorem 8

by the preprocessing as described above. We construct a graph GΦ from Φ as
follows. For each variable xi that appears in a positive 1-clause, we add a vertex
vi, for each variable xi that appears in a negative 1-clause, we add a vertex vi,
and for each variable xk only appearing in 2-clauses of Φ, we add two vertices
vk and vk and an edge between them. Additionally, we add an edge {vi, vj} for
each clause (xi ∨ xj) and an edge {vi, vj} for each clause (xi ∨ xj). Note that,
due to the preprocessing, this construction is well-defined. An example of the
construction is shown in Figure 6.

We now show that any independent set in GΦ directly translates into a set of
variables in Φ that can be assigned without raising a contradiction. Let V ′ ⊆ VΦ

be an independent set in GΦ. By the construction, at most one of the vertices vi
and vi can be part of V ′, for every 1 ≤ i ≤ n. Every variable xi corresponding to
a vertex vi ∈ V ′ can be set to the value 1 and every variable xi corresponding to a
vertex vi ∈ V ′ can be set to the value 0. Since V ′ is an independent set, this leaves
at least one endpoint of each edge in GΦ unassigned, thus the corresponding 2-
clause does not cause a contradiction. On the other hand, any partial assignment
not causing any conflict in Φ directly translates into an independent set in GΦ

of the same size. Since the graph GΦ has at most 2n vertices, we lose at most a
factor of 2 on the approximation ratio. ��

Corollary 3. Since MaxIS can be approximated with at least a linear function,
any polynomial-time f(n)-approximation algorithm for MaxIS can be used to
approximate MaxAssign-Horn-2-SAT within 2 · f(n) in polynomial time.

5 Maximum Assignment in Exact-2-CNF Formulas

In this section, we deal with the case of E2-CNF formulas, i. e., formulas contain-
ing only clauses of types M2, P2, and N2. The approximation hardness of this
problem was implicitly shown by Steinová [11], in her proof of the approximation
hardness of the general MaxAssign-2-SAT, she constructs formulas consisting
of 2-clauses only.

Theorem 9 (Steinová, 2012). There exists an AP-reduction from MaxIS on
undirected hypergraphs to MaxAssign-E2-SAT. ��

We complement this result by the following upper bound.

Theorem 10. MaxAssign-E2-SAT ≤AP MaxIS.

On the Approximability of Splitting-SAT in 2-CNF Horn Formulas 65

Φ = (x1 ∨ x3) ∧ (x1 ∨ x3)

∧(x1 ∨ x2) ∧ (x2 ∨ x3)

∧(x2 ∨ x3) ∧ (x2 ∨ x3)

=⇒ GΦ : v02

v12

v01 v11

v13

v03

Fig. 7. An example of the construction in the proof of Theorem 10

Proof. To prove AP-reducability of MaxAssign-E2-SAT to MaxIS, we need
the following polynomial-time function that transforms an E2-CNF formula Φ
with variable set X = {x1, x2, . . . , xn} into a graph instance GΦ for MaxIS with
vertex set VΦ = {v0i , v1i | xi ∈ X} and ege set EΦ = {{v0i , v0j } | (xi ∨ xj) in Φ} ∪
{{v0i , v1j } | (xi ∨ xj) in Φ} ∪ {{v1i , v1j } | (xi ∨ xj) in Φ} ∪ {{v0i , v1i } | 1 ≤ i ≤ n}.
In other words, every variable xi gives rise to two vertices v0i an v1i representing
the assignment 0 or 1. Those two vertices are connected by an edge and there is
also an edge for every assignment restriction given by the clauses (see Figure 7).
Obviously, this transformation can be implemented in polynomial time.

We show that every feasible set of variables in Φ with a partial assignment not
violating any clause corresponds to an independent set in GΦ of the same size.

LetX ′ = {xi1 , xi2 , . . . , xik} ⊆ X be a subset of variables and letα : X ′ → {0, 1}
be a partial assignment such that no clause is evaluated to 0. We show that, for a
variable xi ∈ X ′ and an assignment α(xi) = b for some b ∈ {0, 1}, the correspond-
ing vertex vbi is part of an independent set IX′ ⊆ VΦ in GΦ. No two endpoints of
edges of type {v0i , v1i } will be part of IX′ since a variable can be set either to 1 or
to 0, but not to both values. Moreover, no two endpoints of the remaining edges
will be both part of IX′ since then the corresponding assignment would cause an
empty clause. Therefore, IX′ is an independent set in GΦ.

Conversely, let I ⊆ VΦ be an independent set in GΦ. For every vbi ∈ I, let
α(xi) = b define the partial assignment for the vertex set SI ⊆ X in Φ. This
assignment does not violate any clause since never both endpoints of an edge
will be part of I and therefore, never both literals of a clause will be set to 0.

Hence, we have a one-to-one correspondence between a partial assignment in
Φ not causing empty clauses and an independent set in GΦ of the same size. ��

6 Conclusion

We have explored the approximability of the minimum splitting problem and
the maximum assignment problem in various special cases of 2-CNF formulas,
including Horn formulas and E2-CNF formulas. The main open problem is to
close the gap between the trivial upper bound and the lower bound for general
2-CNF Horn formulas and for those excluding negative 1-clauses in the splitting
case. It would also be interesting to extend the results to other classes of non-
Horn 2-CNF formulas besides the E2-CNF formulas.

66 H.-J. Böckenhauer and L. Keller

References

1. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A.,
Protasi, M.: Complexity and Approximation. Springer (1999)

2. Boppana, R., Halldórsson, M.: Approximating maximum independent sets by ex-
cluding subgraphs. BIT Numerical Mathematics 32, 180–196 (1992)

3. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. MIT Press (2009)

4. Dowling, W.F., Gallier, J.H.: Linear-time algorithms for testing the satisfiability of
propositional Horn formulae. Journal of Logic Programming 1(3), 267–284 (1984)

5. H̊astad, J.: Clique is hard to approximate within n1−ε. In: FOCS 1996: Proceedings
of the 37th Annual Symposium on Foundations of Computer Science, p. 627. IEEE
Computer Society (1996)

6. Hromkovič, J.: Algorithmics for Hard Problems. Introduction to Combinatorial Op-
timization, Randomization, Approximation, and Heuristics. Texts in Theoretical
Computer Science. An EATCS Series. Springer (2003)

7. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2-epsilon.
Journal of Computer and System Sciences 74(3), 335–349 (2008)

8. Monien, B., Speckenmeyer, E.: Ramsey numbers and an approximation algorithm
for the vertex cover problem. Acta Informatica 22, 115–123 (1985)

9. Ono, H.: Personal communication
10. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complex-

ity classes. Journal of Computer and System Sciences 43(3), 425–440 (1991)
11. Steinová, M.: Measuring Hardness of Complex Problems: Approximability and

Exact Algorithms. PhD thesis, ETH Zurich (2012)

Boundary-to-Boundary Flows in Planar Graphs

Glencora Borradaile1 and Anna Harutyunyan2,�

1 Oregon State University
2 Vrije Universiteit Brussel

Abstract. We give an iterative algorithm for finding the maximum flow
between a set of sources and sinks that lie on the boundary of a planar
graph. Our algorithm uses only O(n) queries to simple data structures,
achieving an O(n log n) running time that we expect to be practical given
the use of simple primitives. The only existing algorithm for this problem
uses divide and conquer and, in order to achieve an O(n log n) running
time, requires the use of the (complicated) linear-time shortest-paths
algorithm for planar graphs.

Keywords: maximum flow, multiple terminal, planar graphs.

1 Introduction

The problem of finding maximum flow in planar graphs has a long history, start-
ing with the work of Ford and Fulkerson [7] in which the Max-flow, Min-cut
Theorem was proved and the augmenting-paths algorithm was introduced. Since
then, algorithms for maximum flow in planar graphs have fallen into one of three
paradigms: augmenting paths, divide and conquer using small balanced planar
separators, or via shortest paths in the dual. We note a subset of these results
that are relevant to this paper. Borradaile and Klein gave an augmenting-paths
algorithm for maximum st-flow in directed planar graphs that uses dynamic
trees to achieve an O(n log n) running time [3]. For the special case when s and
t are on the same face, an augmenting-paths algorithm can be simulated via Di-
jkstra’s algorithm or, equivalently, determined from shortest-path distances in
the dual graph [9] (details in Section 2). Borradaile et al. gave a rather compli-
cated O(n log3 n)-time divide-and-conquer algorithm for when there are multiple
sources and sinks (not necessarily on a common face) [4]. For the special case
when these sources and sinks are all on a common face1 (such as the bound-
ary of the embedded graph), Miller and Naor gave a simpler divide-and-conquer
algorithm [12].

In this work we give an iterative algorithm for this last boundary-to-boundary
case. While our algorithm does not improve on the asymptotic running time of
Miller and Naor’s work, in order for Miller and Naor’s algorithm to be imple-
mented in O(n log n) time, one requires repeated applications of the linear-time

� Work done while at Oregon State University.
1 Note that there is no planarity-maintaining reduction from this case to the single-
source, single-sink case.

T. Lecroq and L. Mouchard (Eds.): IWOCA 2013, LNCS 8288, pp. 67–80, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

68 G. Borradaile and A. Harutyunyan

shortest-paths algorithm of Henzinger et al. [10]. This shortest-paths algorithm
is arguably impractical: it is also a divide-and-conquer algorithm using small
planar separators, involves ‘large constants’ and, to our knowledge, has not been
implemented. Our algorithm, on the other hand, requires just O(n) (with a small
constant) queries to simple data structures: namely a priority queue and a linked
list [6].

Our algorithm is an augmenting-paths algorithm that iterates over the source-
sink pairs. We simulate finding the flow between a given source and sink using
Hassin’s method – via Dijkstra’s algorithm in the dual graph. In order to prevent
searching the same region of the graph multiple times, we search the graph in a
biased way [8], such that we need only reuse the boundary of the searched region
for augmenting further source-sink pairs. In order to reuse these boundaries
efficiently, we use a simple generalization of priority queues in which queues are
merged whose relative priorities differ by a constant or offset. These offset queues
are implemented using edge weights to encode the offset in a tree implementation
of the heap; doing so does not affect the asymptotic running time of the basic
priority queue operations. Details are given in Appendix A.

We believe that the methods used in this paper may be applicable to other
planar flow problems. For example, in a companion paper [2], we argue that the
augmenting-paths algorithm of Borradaile and Klein for maximum st-flow in
directed planar graphs can also be simulated by Dijkstra in the dual graph; the
details of the implementation in this paper may lead to an O(n log n) algorithm
for maximum st-flow in directed planar graphs that does not require the more
cumbersome dynamic-trees data structure.

1.1 Definitions

We give a brief outline of definitions where we may stray from convention. For
more complete and formal definitions, please refer to Borradaile’s dissertation [5].
We extend any function or property on elements to sets of elements in the natural
way.

Our algorithms are for directed graphs, but we consider the underlying undi-
rected graph where each edge has two oppositely directed darts. Darts are ori-
ented from tail to head. Capacities, c, on the darts are positive and asymmetric,
reflecting the original directed problem. Paths and cycles are sequences of darts
and so are naturally directed; a path or a cycle may visit the same vertex mul-
tiple times; those that do not are simple; a path may be trivial, in which case it
is a vertex. X [a, b] denotes the a-to-b subpath of X where X is a path, cycle or
tree; ◦ denotes the concatenation of paths (which may result in a cycle).

A flow f is an assignment of real numbers to darts that is antisymmetric (for
a dart and its reverse), respects capacities and is balanced at all non-terminal
(non-source, sink) vertices. The value |f | of a flow is the net flow entering the
sinks. A flow is a circulation if there are no terminals. The residual capacities cf
of capacities c w.r.t. flow f are given by:

cf [d] = c[d]− f [d], ∀darts d (1)

Boundary-to-Boundary Flows in Planar Graphs 69

A path or cycle X is residual if the residual capacity of every dart in X is strictly
positive. A dart is saturated if its residual capacity is zero. Residuality is w.r.t.
capacities (such as c or cf).

An xy-cut in G is a set of darts C, the removal of which leaves no x-to-y paths.
The value of a cut is the total capacity of its darts. The value of the minimum
xy-cut equals to that of the maximum xy-flow [7].

We use the usual definitions for planar graphs and their duals. We denote any
path, cycle, vertex, face, dart in the dual graph with a ∗-superscript. If d is a dart
in G, then d∗ is the corresponding dual dart; if v is a vertex and f is a face in G,
v∗ is a face and f∗ is a vertex in G∗. The boundary of the graph is denoted ∂G
and is taken to be clockwise. We refer to simple cycles as being clockwise (c.w.)
or counterclockwise (c.c.w.); c.w. and c.c.w. depend on the choice of infinite face,
f∞, which, throughout this paper, we will take to be the face common to all the
sources and sinks.

For two non-crossing x-to-y paths P and Q, we say P is left of Q if P ◦rev (Q)
is c.w. A path is leftmost if there are no paths left of it. For an x-to-y path P
that starts and ends on ∂G, we say a face, edge, path, etc. X is (strictly) left of
P if X is (strictly) contained by the c.w. cycle ∂G[x, y] ◦ rev (P). We say that a
planar flow f is leftmost if every c.w. cycle is non-residual w.r.t. cf . We say that
capacities are c.w. acyclic if every c.w. cycle is non-residual w.r.t. the capacities.

2 Leftmost Maximum Flows and Shortest Paths

Khuller, Naor and Klein [11] showed that a flow that is derived from shortest-
path distances in the dual is c.w. acyclic. Formally:

Theorem 1 (Clockwise acyclic flows). Let d be the shortest-path distances
in G∗ from f∗∞ interpreting capacities as lengths. Then every c.w. cycle is non-
residual w.r.t. the flow

f [d] = d[head(d∗)]− d[tail(d∗)] ∀ darts d (2)

where head(d∗) and tail(d∗) are the head and tail vertices of d∗ in G∗.

Earlier, Hassin had used this idea to find a maximum st-flow in an st-planar
graph [9]. We can view his algorithm by turning it into a circulation problem:
introduce a new infinite-capacity arc ts embedded so that every s-to-t residual
path forms a c.w. cycle with ts and then saturate the c.w. cycles. We describe an
equivalent formulation which we use in this paper. Split the dual vertex f∗∞ into
two vertices a∗∞ and b∗∞ such that all the darts in ∂G[s, t]∗ are incident to a∗∞
and all the darts in ∂G[t, s]∗ are incident to b∗∞; denote the resulting graph G∗

st.
Let d[x∗] be the shortest-path distance from a∗∞ to x∗ in G∗

st, viewing capacities
as lengths. Then the flow assignment fst for G given as in Equation (2) is a
maximum st-flow. It follows directly from Theorem 1 that fst is the leftmost
maximum st-flow.

Since simple cuts in the primal map to simple cycles in the dual (and vice
versa) [13], the darts of an st-cut C form an a∗∞-to-b∗∞ path C∗ in G∗

st. If C is
a minimum cut, C∗ is a shortest path.

70 G. Borradaile and A. Harutyunyan

Observation 1. A leftmost flow w.r.t. c.w. acyclic residual capacities is acyclic. [3]

Because of this acyclicity, one can easily show:

Observation 2. Let c be c.w. acyclic capacities and let f the leftmost, max
st-flow for s and t on f∞. Then there is a decomposition of f into unique, non-
crossing s-to-t paths P1, P2, . . . , P� where Pi carries fi > 0 units of flow and Pi is
left of Pj ∀i < j. Further, an augmenting-paths algorithm that always saturates
the leftmost path first saturates the paths P1, . . . , P� in order.

Our algorithm requires c.w. acyclic capacities; the analysis will use this fact
indirectly by invoking Observation 2. We will achieve this property in a pre-
processing step and maintain this as an invariant throughout the algorithm. It
follows from Equation (2) and Observation 2 that, for every primal face x (dual
vertex x∗):

d[x∗] =

{∑i
j=1 fj if x is right of Pi and left of Pi+1∑�
j=1 fj = |f | if x is right of P�

(3)

2.1 st-Planar Flow via Biased Search

We describe how to find an st-planar flow via biased search (in the dual) that
does not necessarily search the entire graph, assuming that the initial capacities
are c.w. acyclic. We assume that there are no degree-2 vertices in the primal; any
such vertex could be removed by merging the adjacent darts (in each direction)
and keeping the minimum of the capacities. Parallel darts (not antiparallel) can
be merged by taking the sum of their capacities. We additionally assume that
the finite faces of the primal are triangulated (which can be achieved by the
addition of 0-capacity edges).

b*∞

s

t

a*∞ C*
Pl

Fig. 1. ∂G is the dashed circle and the
dashed s-to-t path is P�. In G∗

st, a
∗
∞ is in-

cident to the duals of all the arcs on the
path of the circle c.w. from s to t and b∗∞ is
incident to the duals of all the arcs on the
path of the circle c.w. from t to s. The solid
tree is the search tree used in the biased
search algorithm with the a∗

∞-to-b∗∞ path
representing the leftmost cut C∗.

We implicitly and iteratively build
a decomposition as given in Observa-
tion 2 using Dijkstra’s algorithm in
the dual. Initially P1 = ∂G[s, t]. In
phase i, we have already found path
Pi; we maintain that, at the start
of phase i, the faces adjacent to and
right of Pi are in the queue Qi. (Keep
in mind that faces are vertices in the
dual, and we are really just finding
shortest paths in the dual graph, ap-
plying the standard rules for Dijk-
stra’s algorithm.) The priority of face
x is the capacity of the minimum-
capacity dart bounding x in Pi. Say
the minimum priority in the queue is
q; to find Pi+1 we pop faces off the

Boundary-to-Boundary Flows in Planar Graphs 71

queue with priority q until the minimum priority in the queue is > q. Now we
have popped off all the faces between Pi and Pi+1 (by Equation (3)) and Qi+1

contains all the faces to the right of and adjacent to Pi+1.
So far, we have just described Hassin’s algorithm, but have made explicit the

augmenting paths that are implicit in his algorithm. We have also identified
phases. In each phase, all the faces of a given distance label are explored via
0-length darts (in the dual).

We modify the algorithm so that we do not explore the entire graph. Note that
all the faces to the right of P� (the last augmenting path), by Equation (3) have
distance label |f |. Rather than label all these faces, after getting to the start of
phase �, we wish to find the leftmost cut. Let C∗ be the leftmost, shortest a∗∞-
to-b∗∞ path in G∗

st; C is the leftmost cut. The part of C∗ that is strictly to the
right of P� consists of 0-length darts, since the sum of the capacities of the darts
in C∗ that are in P1, . . . , P� is |f | by Equation (3). In addition to identifying the
leftmost cut, we wish to not explore any part of the graph strictly right of P�

and C∗. (See Figure 1.)
We find the leftmost cut by at each phase additionally maintaining an ordering

Ai of the faces in Qi that reflects their order along Pi from t to s. We maintain
and query the ordering using the order maintenance data structure DSOrder

due to Dietz and Sleator [6] which is a circularly linked list with order information
determined using 2’s complement arithmetic. (See Appendix B for details. Each
of the operations takes either O(1) or O(log n) time per visited face.) During a
phase, we:

(1) Start with faces that are closest to t in the ordering.
(2) Explore along 0-length darts in the dual in a depth-first leftmost fashion;

this can be done by following the combinatorial embedding of the darts around
a vertex in a c.w. order, using the parent dart in the search tree implicit to
Dijkstra’s algorithm [3].

(3) If we reach b∗∞ during this search, we immediately stop the algorithm.
(More details of this are given below.)

(4) At the end of this 0-length exploration, we remove from the queue and
order any faces that we have reached in this exploration. Suppose T ∗ is the
dual search tree we have explored that contains the shortest paths found by
Dijkstra’s algorithm, rooted at a face adjacent to Pi. We add the never-visited
faces adjacent to T ∗ in their c.w. order around T ∗ (according to their shortest
adjacency to T ∗). This ordering is easily visualized by contracting the edges of
T ∗ and considering the c.w. ordering of the darts around the new (dual) vertex.

At the start of each phase, the queue and the order contain the same set of
elements. The leftmost-bias to the search additionally guarantees that the final
dual search tree T ∗ contains leftmost shortest paths. This can be easily shown
via induction. Since we stop as soon as we reach b∗∞ and we search in a leftmost
fashion, T ∗ does not contain any darts strictly right of both the last flow path
P� found and T ∗[a∗∞, b∗∞]. In this way, we also guarantee:

Observation 3. At the end of this biased search, the queue and order contain
the faces adjacent to and right of P�.

72 G. Borradaile and A. Harutyunyan

In our multi-source, multi-sink algorithm, we will reuse this queue and order.
To do so, we need to know the residual capacities of the darts in P�. If a face f
in the queue has exactly one bounding arc in P�, then the priority of f reflects
exactly the residual capacity of that dart. If f has two bounding darts d1 and
d2 in P� (i.e., the head of d∗1 and d∗2 in G∗ is f∗), then, to the right of P�, we can
only push the minimum of these darts’ residual capacities along this section of
P�. (Put another way, if we remove everything strictly to the left of P�, d1 and
d2 would be incident to a degree 2 vertex, which we would remove according to
the rule at the start of this section.) We get:

Observation 4. The priority of a face f in the queue reflects the residual ca-
pacity of the dart(s) bounding the face in P�; the residual capacity is the priority
less |f |.

Subtracting |f | from the priorities in the ending queue can be done in O(1) time
using offset queues (Appendix A). Finally, the DSOrder data structure does
not allow us to pull the first element of the order (having minimum priority in
the queue) but does allow us to sort a subset of items. In doing so, we spend
O(log n)-amortized time per element. We do not wish to repeat this work. If we
reach b∗∞ in the middle of a phase and have a subset of items X that we have
sorted using DSOrder, we break the ties in the priorities of these items in the
priority queue. When we return to use this queue/order, we will not need to
resort these items.

3 Algorithm

For simplicity of presentation we will assume that the terminals are alternating
sources and sinks along ∂G. This can be attained by taking a consecutive group
of sources S, introducing a new source and connecting the new source to every
source in S with an infinite capacity arc. We number the sources and sinks
according to their c.w. ordering on ∂G, s1, t1, s2, t2, . . . , sm, tm, starting with an
arbitrary source. We return the difference between the original capacities and
final residual capacities, which, by Equation (1), is the corresponding flow.

AbstractFlow (G, {s1, t1, s2, t2, . . . , sm, tm}, c)
Saturate all sj-to-ti residual paths ∀i < j and all c.w. cycles.
Let c0 be the resulting residual capacities.
For j = 1, 2, . . . ,m:

for i = j, j − 1, . . . , 1:
let c′ij be the current residual capacities.
Find the leftmost si-to-tj flow fij w.r.t. c′ij .
Let cij be the residual capacities of c′ij w.r.t. fij .

Return c[d]− cmm[d] for all darts d.

The first step can be done with one shortest-path computation in the dual
as follows (in O(n logn) time using Dijkstra’s algorithm, for example); refer to

Boundary-to-Boundary Flows in Planar Graphs 73

(a)

x

s1 tm

sj

ti

P

C

(b)

x

s1

t1 s2

t2

Fig. 2. (a) Illustrating the first step of the AbstractFlow. (b) A simple example
illustrating why this first step cannot be repeated to find the overall maximum flow.
The equivalent step would saturate all c.c.w. cycles. If the solid edges have equal
capacity, this would saturate the s1-to-t2 path, since the method for saturating all
c.c.w. cycles (like for c.w. cycles) saturates all largest such cycles. However, doing so
would create a residual path from s2 to t1.

Figure 2(a). Embed a vertex x in f∞. Connect x to every source and every sink
with infinite-capacity arcs. Embed these arcs so that s1, tm and x are on the
infinite face. Let f be the circulation that saturates all the c.w. residual cycles
in this graph (Theorem 1). Let c0 be the residual capacities of the darts in G
w.r.t. f . Consider any simple path P from sj to ti in G. For j > i, P ◦ tix ◦ xsj
is a c.w. cycle C. Therefore C must be non-residual w.r.t. c0 and, since the arcs
tix and xsj have infinite capacity, P must be non-residual w.r.t. c0.

Note that while the iterative part of the algorithm saturates all si-to-tj paths
∀i < j, we cannot achieve this with a symmetric application of the first step.
The simple example in Figure 2(b) illustrates why.

In the remainder of the paper we will give an efficient implementation of
the double loop of AbstractFlow. We first show that the abstract algorithm
guarantees several useful invariants that limit the region of the graph that is
involved in each iteration. These invariants allow us to explore the graph in such
a way that no region is explored multiple times. Correctness of AbstractFlow

will also follow from these invariants. By iteration i, j, we will mean iteration i
of the inner loop and iteration j of the outer loop.

3.1 Invariants

Since only leftmost flows are augmented we get (by definition and induction):

Invariant 1. There are no clockwise residual cycles in G w.r.t. cij , ∀i ≤ j.

Since the sink is in common to all the iterations of the inner loop, for a given
iteration of the outer loop, we get:

74 G. Borradaile and A. Harutyunyan

Invariant 2. There are no residual sj-to-tk paths w.r.t. ci,k for j > i.

More formally, this follows from the Sinks Lemma [4]. The following invariant
shows that we do not undo the progress made by the first step of Abstract-

Flow.

Invariant 3. There are no si-to-tj residual paths s.t. i > j w.r.t. c0 or ck�,
∀k < �.

Proof. We prove this invariant by induction. It holds w.r.t. c0 as argued in Sec-
tion 2. For a contradiction, let ck� be the first residual capacities that introduce
an si-to-tj residual path R (i < j). Then there must be an sk-to-t� path A that
is augmented in iteration k, � and that uses a dart d in rev (R).

Let x and y be the last and first, resp., vertices of R that are in A. A, R[si, y]
and R[x, tj] are residual w.r.t. c

′
k� (the residual capacities at the start of iteration

k, �). It follows that k ≤ j and � > i, for otherwise we contradict the inductive
hypothesis. However, iteration k, � comes after i, � in AbstractFlow. Invari-
ant 2 tells us that there cannot be an si-to-t� path that is residual w.r.t. c′k�,
contradicting the existence of R[si, y] ◦A[y, t�]. ��

The optimality of the flow found by AbstractFlow follows from the last
invariant (along with Invariants 2 and 3):

Invariant 4. There are no si-to-tj residual paths w.r.t. c�k for any � and any
k > j.

Proof. We prove this invariant by induction. It holds w.r.t. c′1,j+1 by Invariant 2.
For a contradiction, let c�k be the first residual capacities that introduce an si-
to-tj residual path R. W.l.o.g. assume that i ≤ j as the case i > j is handled
by Invariant 3. Then there must be an s�-to-tk path A that is augmented in
iteration �, k and that uses a dart d in rev (R).

Let x and y be the first and last, resp., vertices of R that A shares. Since A
and R[y, tj] are residual, � ≤ j by Invariant 3. However, by Invariant 2, there
are no s�-to-tj paths that are residual w.r.t. c1j, so � > j, a contradiction. ��

3.2 Unusability Structures

We will illustrate our implementation of AbstractFlow with a recursive al-
gorithm. To that end, we show that the cut and the flow found in iteration i, j
separates the graph into two pieces that act independently for the remainder of
the algorithm. Let P be the rightmost path in the path decomposition of fij

given in Observation 2 (that has non-zero flow). The following lemma allows us
to delete everything strictly to the left of P at the end of iteration i, j for future
iterations without affecting optimality.

Lemma 1. There are no paths from sk to P that are residual w.r.t. cij for
k > i.

Boundary-to-Boundary Flows in Planar Graphs 75

Proof. First we make an observation. Inner iterations j, j−1, . . . , i are equivalent
to adding a new source s, connecting s to sj , sj−1, . . . , si by high-capacity arcs
and saturating the leftmost max stk-flow

2. By Observation 2, this is done by
saturating a set of non-crossing s-to-tk paths P = P1, P2, . . . ordered from left
to right. In AbstractFlow, iteration �, k will saturate a contiguous subset P�

of P for i ≤ � ≤ j. By saturating these paths in order, we first cut sj from tk by
saturating Pj , then cut sj+1 from tk and so on.

For i < k ≤ j, the lemma follows from the fact that iteration k, j precedes
i, j: a path Q, from sk-to-P concatenated with the suffix of P , would be satu-
rated before P . For k > j, Q would be residual w.r.t. capacities c′ij since fij

does not change the capacities of darts strictly to the right of P ; Q violates
Invariant 3. ��

Let C be the leftmost minimum sitj-cut. The next lemma shows that we can
delete the darts in C (among others on the tj side of the cut) without affecting
optimality. In the biased-search algorithm (Section 2.1), the darts satisfying
Lemma 2 are exactly those that are searched to the right of the last flow path
(T ∗) in finding the leftmost cut (C).

Lemma 2. Let W ∗ be any from-a∗∞ |fij |-length path in G∗
sitj that is left of C∗.

Then no s-to-t path that is residual w.r.t. cij uses a dart in W .

Proof. For a contradiction, suppose there is a sk-to-t� path R that is residual
w.r.t. cij that uses a dart of W . Since, by Invariant 3, � ≥ k, sk must be on the
tj side of C for otherwise, R would have to cross back and forth across C, but
the darts of C are only residual w.r.t. cij from the tj side to the si side.

We have just finished iteration i, j, k > j, and so, by Invariant 3, there is
an sktj-cut K. Take K to be the rightmost of these cuts (defined analogously
to leftmost). In G∗

sitj , K∗ is a c.c.w. cycle through b∗∞; K∗ is 0-length (or,
equivalently, composed entirely of darts that are non-residual w.r.t. cij).

K∗ must be left ofC∗, for otherwise, the leftmost-ness ofC∗ and the rightmost-
ness of K∗ would be violated. If R uses a dart d of W , then d must be on the
sk side of K. Then, in the dual, W ∗ must intersect K∗ at a dual vertex x∗. But
then W ∗[a∗∞, x∗] ◦K∗[x∗, b∗∞] is a a∗∞-to-b∗∞ path of length at most that of W ∗;
W ∗[a∗∞, x∗] ◦K∗[x∗, b∗∞] is left of C∗, contradicting that C is a leftmost cut. ��

Lemmas 1 and 2 allow us to implement AbstractFlow recursively. That is,
AbstractRecursiveFlow, below, finds the same (non-zero) flows fij in the
same order as AbstractFlow. The recursive algorithm has a slightly differ-
ent input, as there may be several consecutive sources for the recursive calls.
We illustrate the algorithm without explicitly returning the flow. It is triv-
ial to determine the flow from the residual capacities found throughout the
algorithm.

2 Note that in the implementation, we do not merge the sources in this way as doing
so does not allow us to reuse the work done in previous iterations.

76 G. Borradaile and A. Harutyunyan

AbstractRecursiveFlow(G, {s1, t1, . . . , sm, tm}, c)
Saturate all sj-to-ti residual paths ∀i < j and all c.w. cycles.
Let c0 be the resulting residual capacities.
AbstractRecursiveFlowHelper (G, {}, {s1, t1, . . . , sm, tm}, c0)

AbstractRecursiveFlowHelper(G, {s1, s2, . . . , s�−1}, {s�, t�, s�+1, t�+1, . . . , sm, tm}, c)
Find the leftmost s�-to-t� flow f w.r.t. c.
Let c′ be the residual capacities of c w.r.t. f .
Let P be the rightmost path in the path-decomposition of f and let C be the leftmost cut.
Let G1 and G2 be the components resulting from deleting all the darts

strictly to the left of P and the darts of C from G.
If t� ∈ G2:

Let k be the greatest index s.t. tk ∈ G2.
AbstractRecursiveFlowHelper(G2, {}, {s�+1, t�+1, . . . , sk, tk}, c′)
Let h be the smallest index > � s.t. th ∈ G1.
Extend Q and A to contain all the faces in G∗

1,s�th
that are incident to a∗

∞
AbstractRecursiveFlowHelper(G1, {s1, s2, . . . , s�}, {sh, th, . . . , sm, tm}, c′)

Else:
Let j be the greatest index < � s.t. sj ∈ G1.
AbstractRecursiveFlowHelper(G1, {s1, s2, . . . , sj}, {s�+1, t�+1, . . . , sm, tm}, c′)

Lemma 3. AbstractRecursiveFlow implements AbstractFlow.

Proof. Refer to Figure 3. By Lemmas 1 and 2, the deleted edges are safe to
remove: solving the problem in the two subproblems will indeed find an op-
timal solution. The s�t� augmentation performed by AbstractRecursive-

FlowHelper corresponds to an iteration of AbstractFlow. If there are
residual source-to-t� paths remaining after this augmentation, then there would
necessarily be one such path from s1, and t� /∈ G2. AbstractRecursive-

FlowHelper would continue to push flow from earlier sources to t�, just as Ab-

stractFlow. Otherwise, both Abstract- and AbstractRecursive-Flow

would move onto the next sink, in which case t� ∈ G2. ��

3.3 Reusing Queues for an Efficient Implementation

s1

P

G1

G2

C

sl

tl

tk

th s1

P
G1G2

C
sj

sl

tl

Fig. 3. The two cases for subproblems for (Ab-

stract)RecursiveFlow. If t� ∈ G2 (left),
there are 2 non-trivial subproblems.

We show how to implement
AbstractRecursiveFlow us-
ing O(n) queries to simple data
structures: the priority queue and
DSOrder data structure (which
is at heart a linked list). The chal-
lenge in doing so can be illus-
trated by a simple example. Sup-
pose s1 has a high-capacity path
P with many edges ending with a
low-capacity star that connects to
each of the sinks. In each iteration
of the outer loop, we could require
augmenting the flow along this long path. We overcome this barrier by reusing
the work from earlier iterations in later iterations.

We give an implementation (RecursiveFlow) ofAbstractRecursiveFlo-

wHelper. To implement the first step of AbstractRecursiveFlowHelper,

Boundary-to-Boundary Flows in Planar Graphs 77

weuse the biased-searchalgorithmdescribed in Section 2.1. Note that the subprob-
lemcorresponding to terminal sets {s1, s2, . . . , s�−1},{s�, t�, s�+1, t�+1, . . . , sm, tm}
results from having found maximum flows from s1, s2, . . . , s�−1 to t�. We keep the
queue and order at the end of the biased-search algorithm used to find these flows.

Formally, we will pass to RecursiveFlow a queue and order for each source
si, i ≤ �. The queue Qi and order Ai contains all the faces adjacent to and right
of ∂G[si, si+1] for i < � and ∂G[si, ti] for i = �. The order reflects the c.c.w.
ordering of the faces along ∂G. The priority of a face f in Qi is the current
residual capacity of the primal copy of the dart f∗∞f∗. Recall from Section 2.1
that the biased-search algorithm guarantees this at the end of the search.

RecursiveFlow(G, {s1, s2, . . . , s�−1}, {s�, t�, s�+1, t�+1, . . . , sm, tm}, {(Q1, A1), . . . , (Q�,A�)})
1 Find the leftmost s�t�-flow f via biased-search using Q�, A� as the starting queue, order.
2 Let P be the rightmost path in f and let T∗ be the search tree.
3 Let Q,A be the queue and order at the end of this search.
4 Subtract |f| from the priorities in Q.
5 Delete everything to the left of P in G.
6 Delete from G the darts in T∗ that are left of P creating components

G1 (that contains s1) and G2.
7 If t� ∈ G2:
8 Initialize the queue Q�+1 and ordering A�+1 of the dual vertices

adjacent to a∗∞ in G∗
s�+1t�+1

9 Let k be the greatest index s.t. tk ∈ G2.
10 RecursiveFlow(G2 , {},{s�+1, t�+1, . . . , sk, tk}, {(Q�+1, A�+1)})
11 Let h be the smallest index > � s.t. th ∈ G1.
12 Extend Q and A to contain all the faces in G∗

1,s�th
that are incident to a∗∞

not currently in Q/A with the appropriate priority/order.
13 RecursiveFlow(G1 , {s1, s2, . . . , s�}, {sh, th, . . . , sm, tm},{(Q1, A1), . . . , (Q�,A�), (Q, A)})
14 Else:
15 Let j be the greatest index < � s.t. sj ∈ G1.

16 Extend Qj to Q and Aj to A, adding the missing faces in G∗
1,sjt�+1

that are incident to a∗∞.

17 RecursiveFlow(G1 , {s1, s2, . . . , sj}, {s�+1, t�+1, . . . , sm, tm}, {(Q1, A1), . . . , (Qj−1, Aj−1), (Q, A)})

Running time and correctness of RecursiveFlow. By Observation 4, Step 4
results in the priorities reflecting exactly the residual capacities of the darts
in P after saturating f . G1 and G2 are the same as the subgraphs created in
AbstractRecursiveFlow, as are the subproblems considered. The removed
darts create a new boundary and so maintain triangulation of the finite faces.
Step 12 can be done in O(log n) per new face added (Appendices A and B).
Adding the faces can be achieved by a left-first search from Q (or from Qj

to Q); this creates the queue and order along the boundary of the graph. In
order to combine the orders Aj and A in line 16, we observe that the order
Aj is guaranteed to be right of the order A when they are joined together.
The DSOrder data structure allows us to concatenate these orders efficiently
(details in Appendix B).

Finally, we argue that the entire algorithm requires only O(n) queries to
priority queue and DSOrder data structure. The biased-search algorithm uses
O(k) priority-queue and DSOrder queries where k is the size of the search tree
discovered (Section 2.1). This is in part due to the triangulation of the finite
faces; the degree of the vertices from which we search during the biased-search
algorithm have degree 3, so the 0-length darts leaving a vertex can be determined
in constant time.

For the subproblem G1, we start with queues that have already been initial-
ized, so, as argued at the end of Section 2.1, we essentially pick up the search
where we left off, not repeating any computation at the boundary where we left

78 G. Borradaile and A. Harutyunyan

off (the rightmost path in a previous flow). For the subproblem G2, P forms
part of the boundary and so part of the queue/order ending at t� appear in
this subgraph. However, by Lemma 1, no residual path intersects P . Since the
finite faces are triangulated, no path can intersect a face adjacent to P without
intersecting P . Therefore, none of the faces in the queue/order along P will be
used in the subproblem corresponding to G2. It follows that there are a constant
number of data-structure queries per finite face of the original graph.

Acknowledgements. This material is based upon work supported by the Na-
tional Science Foundation under Grant No. CCF-0963921.

References

1. Bender, M.A., Cole, R., Demaine, E.D., Farach-Colton, M., Zito, J.: Two Simplified
Algorithms for Maintaining Order in a List. In: Möhring, R.H., Raman, R. (eds.)
ESA 2002. LNCS, vol. 2461, pp. 152–164. Springer, Heidelberg (2002)

2. Borradaile, G., Harutyunyan, A.: Maximum st-flow in directed planar graphs via
shortest paths. In: Lecroq, T., Mouchard, L. (eds.) IWOCA 2013. LNCS, vol. 8288,
pp. 423–427. Springer, Heidelberg (2013)

3. Borradaile, G., Klein, P.: An O(n log n) algorithm for maximum st-flow in a di-
rected planar graph. J. of the ACM 56(2), 1–30 (2009)

4. Borradaile, G., Klein, P., Mozes, S., Nussbaum, Y., Wulff-Nilsen, C.: Multiple-
Source Multiple-Sink Maximum Flow in Directed Planar Graphs in Near-Linear
Time. In: Proc. FOCS, pp. 170–179 (2011)

5. Borradaile, G.: Exploiting Planarity for Network Flow and Connectivity Problems.
PhD thesis, Brown University (2008)

6. Dietz, P., Sleator, D.: Two algorithms for maintaining order in a list. In: Proc.
STOC, pp. 365–372 (1987)

7. Ford, C., Fulkerson, D.: Maximal flow through a network. Canadian J. Math. 8,
399–404 (1956)

8. Goldberg, A., Harrelson, C.: Computing the shortest path: A search meets graph
theory. In: Proc. SODA, pp. 156–165 (2005)

9. Hassin, R.: Maximum flow in (s, t) planar networks. IPL 13, 107 (1981)
10. Henzinger, M., Klein, P., Rao, S., Subramanian, S.: Faster shortest-path algorithms

for planar graphs. JCSS 55(1), 3–23 (1997)
11. Khuller, S., Naor, J., Klein, P.: The lattice structure of flow in planar graphs. SIAM

J. on Disc. Math. 6(3), 477–490 (1993)
12. Miller, G., Naor, J.: Flow in planar graphs with multiple sources and sinks. SIAM

J. on Comp. 24(5), 1002–1017 (1995)
13. Whitney, H.: Planar Graphs. Fundamenta Mathematicae 21, 73–84 (1933)

A Priority Queues with Offsets

We show how to efficiently change all the priorities in a queue by a fixed amount.
This will be used when we wish to merge two priority queues whose relative
priorities differ by a constant. That is, we have two priority queues P and Q

Boundary-to-Boundary Flows in Planar Graphs 79

that we want to merge, but the priorities of the items in P are offset from those
in Q by some amount o. We illustrate this for a binomial-heap implementation
of priority queues, but this technique is not limited to a specific implementation
(although the details of handling the offsets will depend on the implementation).

For the purposes of this discussion the details of a binomial heap, beyond the
fact that it is a set of rooted trees, are irrelevant. We refer the reader to any
data structures textbook for details. We will argue that the standard operations
(insert, find minimum, delete minimum, decrease key and merge) will have the
same asymptotic running time with offsets as without. To do so, we annotate
the edges of the trees in the heap with weights, initially zero. We give the roots
of the trees a dummy parent edge so that every item in the queue (node in a
tree) x has a unique parental edge weight w(x). We say that node x has a local
priority p�(x) and a global priority p(x) where p(x) is the sum of p�(x) plus the
parental edge weights on the path to the root of the binomial tree containing x
(including the weight of the dummy root edge). Initially the global priorities are
the same as the local priorities. We will maintain that the heap property holds
for the global priorities (ie. my children’s global priorities are lower than mine).

We describe the modifications we make to the binomial-heap-based priority
queue operations:

insert. Unchanged as insert reduces to merge.
find min. The minimum priority element is guaranteed to be a root of one of

the trees. When comparing the roots of the trees, first sum the local priority
and dummy root edge weight.

delete min. The standard operation is to delete the root that is the minimum
priority element and then merge the resulting child trees with the remaining
trees. We first add the weight of the dummy root edge to the weights of
the child edges; these child edges become dummy parent edges of the trees
before they are merged.

decrease key. The standard operation traverses the path from the node in
question, x to the root and swaps nodes that violate the heap property.
First compute the global priorities of the nodes on the x to root path. Then
traverse to the to-root path: say x is a child of y such that p(x) < p(y); let
w be the weight of the edge xy. Swap x and y, add w to p�(x) and subtract
w from p�(y).

merge. If we want to merge heap P with heap Q in such a way that the priorities
in P are by an offset o higher than those in Q, o is added to the weight of
the dummy root edges of P and in comparing the priorities of the roots of
trees in P to those in Q, the global priorities are used. Merging binomial
heaps is otherwise trivial.

We note that our modifications to not increase the asymptotic complexity of
the operations. Although we do not need to maintain local priorities for our
algorithm, we point out that local priorities can be retained. However, in the
decrease-key operation, the weight of sibling edges would need to be modified as
well, and, for binomial heaps, would require O(log2 n) time.

80 G. Borradaile and A. Harutyunyan

B Maintaining Order

In order to maintain the left-to-right order of faces in the priority queue we refer
to an order maintenance data structure DSOrder due to Dietz and Sleator [6].
DSOrder supports the following operations:

1. Insert(X ;Y): Insert a new element Y immediately after element X in the
total order.

2. Delete(X): Remove an element X from the total order.
3. Order(X ;Y): Determine whether X precedes Y in the total order

While there are other data structures that are more efficient asymptotically [1],
DSOrder is attractive for its simplicity, as it only relies on basic data structures.
DSOrder is implemented as a circularly linked list that implicitly encodes the
label bits to represent paths in a hypothetical 2−4 tree and uses 2’s complement
arithmetic and a wrapping modulo to efficiently perform renumbering, giving:

Theorem 2. [6] The amortized time to do Insert on a list containing n records
is O(log n), and the amortized (and worst-case) time to do Delete or Order is
O(1).

DSOrder generally draws its labels from integers in {0, . . . ,M − 1}, where
M is sufficiently large3. Since in our algorithm every face in a newly created
order is right of the faces in the previous order, we modify this range as we move
left-to-right to make simple concatenation possible. I.e. if ni is the largest label
in the order Ai, the labels for Ai+1 are drawn from {ni +1, . . . , ni +M}, where
M is large w.r.t. the size of the graph. Then, an order B created after an order
A, can be appended to A in constant time via standard linked list operations.

3 M > n2, where n is the size of the order.

Exact Algorithms for Weak Roman Domination�

Mathieu Chapelle1, Manfred Cochefert2, Jean-François Couturier2,
Dieter Kratsch2, Mathieu Liedloff3, and Anthony Perez3

1 LIGM, Université Paris-Est Marne-La-Vallée
77454 Marne-La-Vallée Cedex 2, France

mathieu.chapelle@univ-mlv.fr
2 LITA, Université de Lorraine
57045 Metz Cedex 01, France

{couturier,cochefert,kratsch}@univ-metz.fr
3 LIFO, Université d’Orléans
45067 Orléans Cedex 2, France

{mathieu.liedloff,anthony.perez}@univ-orleans.fr

Abstract. We consider the Weak Roman Domination problem.
Given an undirected graph G = (V,E), the aim is to find a weak ro-
man domination function (wrd-function for short) of minimum cost, i.e.
a function f : V → {0, 1, 2} such that every vertex v ∈ V is defended
(i.e. there exists a neighbor u of v, possibly u = v, such that f(u) � 1)
and for every vertex v ∈ V with f(v) = 0 there exists a neighbor u of v
such that f(u) � 1 and the function fu→v defined by:

fu→v(x) =

⎧⎨
⎩

1 if x = v
f(u)− 1 if x = u
f(x) if x /∈ {u, v}

does not contain any undefended vertex. The cost of a wrd-function f
is defined by cost(f) =

∑
v∈V f(v). The trivial enumeration algorithm

runs in time O∗(3n) and polynomial space and is the best one known
for the problem so far. We are breaking the trivial enumeration barrier
by providing two faster algorithms: we first prove that the problem can
be solved in O∗(2n) time needing exponential space, and then describe
an O∗(2.2279n) algorithm using polynomial space. Our results rely on
structural properties of a wrd-function, as well as on the best polynomial
space algorithm for the Red-Blue Dominating Set problem.

Keywords: exact algorithm, graph algorithm, roman domination.

1 Introduction

In this paper we investigate a domination-like problem from the exact expo-
nential algorithms viewpoint. In the classical Dominating Set problem, one is
given an undirected graph G = (V,E), and asked to find a dominating set S,
i.e. every vertex v ∈ V either belongs to S or has a neighbor in S, of minimum
� This work was supported by the French AGAPE project (ANR-09-BLAN-0159).

T. Lecroq and L. Mouchard (Eds.): IWOCA 2013, LNCS 8288, pp. 81–93, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

82 M. Chapelle et al.

size. The Dominating Set problem ranges among one of the most famous NP -
complete covering problems [8], and has received a lot of attention during the
last decades. In particular, the trivial enumeration algorithm of runtime O∗(2n) 1

has been improved by a sequence of papers [7,14,23]. The currently best known
algorithms for the problem run in time O∗(1.4864n) using polynomial space, and
in time O∗(1.4689n) needing exponential space [14].

Many variants of the Dominating Set problem have been introduced and
studied extensively both from structural and algorithmic viewpoints. The num-
ber of papers on domination in graphs and its variants is in the thousands, and
several well-known surveys and books are dedicated to the topic (see, e.g., [12]).
One of those variants called Roman Domination was introduced in [5] and
motivated by the articles “Defend the Roman Empire!" of I. Stewart [21] and
“Defendens Imperium Romanum: a classical problem in military strategy” of
C.S. ReVelle and K.E. Rosing [20]. In general, the aim is to protect a set of
locations (vertices of a graph) by using a smallest possible amount of legions (to
be placed on those vertices). Motivated by a decree of the Emperor Constantine
the Great in the fourth century A.D., Roman Domination uses the following
rules for protecting a graph: a vertex can protect itself if it has one legion, and
protect all its neighbors if it owns two legions, since Constantine decreed that
two legions must be placed at a location before one may move to a nearby loca-
tion (adjacent vertex) to defend it. The Roman Domination problem asks to
minimize the number of legions used to defend all vertices.

Since then, numerous articles have been published around this problem, which
has been studied from different viewpoints (see, e.g., [1,2,4,6,17,18,24]). In par-
ticular, this NP -complete problem has been tackled using exact exponential
algorithms. The first non-trivial one achieved had running time O∗(1.6183n)
and used polynomial space [15]. This result has recently been improved to
O∗(1.5673n) [22], which can be lowered to O∗(1.5014n) at the cost of expo-
nential space [22]. Moreover, the Roman Domination problem can be related
to several other variants of defense-like domination, such as secure domination
(see, e.g., [3,4,11]), or eternal domination (see, e.g., [9,10]).

We focus our attention on yet another variant of the Roman Domination
problem. In 2003, Henning et al. [13] considered the following idea: location t can
also be protected if one of its neighbors possesses one legion that can be moved
to t in such a way that the whole collection of locations (set of vertices) remains
protected. This variation adds some kind of dynamics to the problem and gives rise
to theWeakRomanDominationproblem.Formally, it canbe defined as follows:

Weak Roman Domination:
Input: An undirected graph G = (V,E).
Output: A weak roman domination function f of G of minimum cost.

A weak roman domination (wrd-function) is a function f : V → {0, 1, 2} such
that every vertex v ∈ V is defended (i.e. there exists a neighbor u of v, possibly

1 The notation O∗(f(n)) suppresses polynomial factors.

Exact Algorithms for Weak Roman Domination 83

u = v, such that f(u) � 1) and for every vertex v ∈ V with f(v) = 0 there
exists a neighbor u of v such that f(u) � 1 and the function fu→v defined by
fu→v(x) = 1 if x = v, fu→v(x) = f(x)−1 if x = u and fu→v(x) = f(x) otherwise
does not contain any undefended vertex. The cost of a wrd-function f is defined
by cost(f) =

∑
v∈V f(v).

Our Contribution. While several structural results on Weak Roman Dom-
ination are known, see, e.g., [3,4,13,19], its algorithmic aspects have not been
considered so far. In this paper, we give the first algorithms tackling this prob-
lem faster than by the O∗(3n) bruteforce algorithm obtained by enumerating
all legion functions. Both our algorithms rely on structural properties for weak
roman domination functions, described in Section 3. In Section 4, we first give an
O∗(2n) time and exponential space algorithm. We then show how the exponen-
tial space can be avoided by using an exponential algorithm for the Red-Blue
Dominating Set problem [22], which leads to an O∗(2.2279n) algorithm.

2 Preliminaries and Notations

We consider simple undirected graphs G = (V,E) and assume that n = |V |.
Given a vertex v ∈ V , we denote by N(v) its open neighborhood, by N [v] its
closed neighborhood (i.e. N [v] = N(v)∪{v}). For X ⊆ V , let N [X] = ∪v∈XN [v]
and N(X) = N [X] \ X . Similarly, given S ⊆ V , we use NS(v) to denote the
set N(v) ∩ S. A subset of vertices S ⊆ V is a dominating set of G if for every
vertex v ∈ V either v ∈ S or NS(v) 	= ∅. Furthermore, Y ⊆ V dominates X ⊆ V
in G = (V,E) if X ⊆ N [Y]. A subset of vertices S′ ⊆ V is an independent
set in G if there is no edge in G between any pair of vertices in S′. Finally, a
graph G = (V,E) is bipartite whenever its vertex set can be partitioned into two
independent sets V1 and V2.

Legion and wrd-Functions. A function f : V → {0, 1, 2} is called a legion
function. With respect to f , a vertex v ∈ V is said to be secured if f(v) � 1,
and unsecured otherwise. Similarly, a vertex v ∈ V is said to be defended if
there exists u ∈ N [v] such that f(u) � 1. Otherwise, v is said to be undefended.
The function f is a weak roman domination function (wrd-function for short)
if there is no undefended vertex with respect to f , and for every vertex v ∈ V
with f(v) = 0 there exists a secured vertex u ∈ N(v) such that the function
f ′ : V → {0, 1, 2} defined by:

f ′(x) =

⎧⎨
⎩

1 if x = v
f(u)− 1 if x = u
f(x) if x /∈ {u, v}

has no undefended vertex (see Figure 1 (a)). In the following, given any legion
function f and two vertices v and u ∈ N(v) such that f(v) = 0 and f(u) � 1,

84 M. Chapelle et al.

we use fu→v to denote the function f ′ as defined above. In other words, fu→v

denotes the legion function obtained by moving one legion from u to v.
Given a legion function f , we let V 1

f , V 2
f denote the sets {v ∈ V : f(v) = 1}

and {v ∈ V : f(v) = 2}, respectively, and define its underlying set as Vf =
V 1
f ∪ V 2

f . The cost of f is then defined by cost(f) =
∑

v∈V f(v) = |V 1
f |+ 2|V 2

f |.
Notice that when f is a wrd-function, the set Vf is a (not necessarily minimal)
dominating set of G.

Safely-Defended Vertices. We now distinguish two types of defended vertices.
Let v ∈ V be any vertex and f be a legion function. We say that v is safely
defended by f if one of the following holds:

– v is secured (i.e. f(v) � 1).
– there exists a neighbor u of v such that f(u) = 2.
– there exists a neighbor u of v such that f(u) = 1 and the vertices undefended

by fu→v are the same as the ones undefended by f , i.e., fu→v creates no
new undefended vertex.

Otherwise, we say that v is non-safely defended. Notice that a legion function
f is a wrd-function if and only if every vertex v ∈ V is safely-defended by f .

Observe that for any non-safely defended vertex v, we have f(v) = 0, f(u) = 1
for every secured neighbor u of v and the legion function fu→v previously defined
contains (among possibly others) an undefended vertex w ∈ N(u) for any such
neighbor u. In the following, we will refer to w as weakly defended by u, weakly
defended due to v, or simply weakly defended when the context is clear. Observe
that a weakly defended vertex has exactly one secured neighbor. These notions
are illustrated in Figure 1 (b).

3 Structure of a Weak Roman Domination Function

In this section, we prove several key structural properties of a wrd-function that
will be used in our algorithms.

Given a graph G = (V,E) and a subset of vertices V ′ ⊆ V , we define the
legion function χV ′

as the indicator function of the subset V ′:

χV ′
(x) =

{
1 if x ∈ V ′

0 otherwise.

Lemma 1. Let G = (V,E) be a graph, f be a wrd-function of G of minimum
cost, and Vf its underlying set. Then V 2

f is a minimum dominating set of the
vertices non-safely defended by χVf .

Proof. Let u ∈ V \ Vf be a vertex non-safely defended by χVf . Recall that u is
non-safely defended by χVf if for every u′ ∈ NVf

(u) the legion function χ
Vf

u′→u

contains an undefended vertex. Hence, for every vertex u′ ∈ NVf
(u), there exists

a vertex u′′ weakly defended due to u. In particular, this means that u′u′′ ∈ E
and uu′′ /∈ E. We prove Lemma 1 through the following claims.

Exact Algorithms for Weak Roman Domination 85

(a) (b)

Fig. 1. (a) A graph G = (V,E), and a wrd-function where each legion is represented by
a cross. Any vertex is safely defended. (b) The black vertex is safely defended (one can
safely move a legion on it without creating any undefended vertex), the gray vertices are
non-safely defended (any move creates an undefended vertex) and the disked vertices
are weakly defended.

Claim 1. V 2
f is a dominating set of the vertices non-safely defended by χVf .

Proof. Assume for a contradiction that there exists a vertex u ∈ V \ Vf

non-safely defended by χVf such that NV 2
f
(u) = ∅. Let u′′ be any vertex

weakly defended due to u, and let u′ be the common neighbor of u and u′′ in
Vf . Recall that N(u′′) ∩ Vf = {u′}, since otherwise u′′ would be defended by
χ
Vf

u′→u. Moreover, we know by assumption that f(u′) = 1. Hence, the vertex
u′′ is undefended by χ

Vf

u′→u, which contradicts the fact that f is a wrd-function. �

Claim 2. V 2
f is a minimal dominating set of the vertices non-safely defended

by χVf .

Proof. Assume for a contradiction that there exists u ∈ V 2
f such that V 2

f \ {u}
is a dominating set of the vertices non-safely defended by χVf . We claim that
the legion function fu defined as:

fu(x) =

{
1 if x = u
f(v) otherwise

is a wrd-function. To see this, observe that since V 2
f \ {u} is a dominating set

of the vertices non-safely defended by χVf , any vertex of NV \Vf
(u) is safely

defended by fu. It follows that fu is a wrd-function with cost(fu) < cost(f), a
contradiction. �

Now, since f is a wrd-function of minimum cost, it follows from Claims 1
and 2 that V 2

f is a minimum dominating set of the vertices non-safely defended
by χVf . This completes the proof of Lemma 1. ��

86 M. Chapelle et al.

We conclude this section by showing that, given a dominating set V ′ of a
graph G = (V,E), a wrd-function can be obtained by computing a dominating
set of the set D of all vertices non-safely defended by χV ′

.

Lemma 2. Let V ′ ⊆ V be a dominating set of a graph G = (V,E), and let S be
a dominating set of all vertices D non-safely defended by χV ′

. Then the function
f : V → {0, 1, 2} defined by

f(x) =

⎧⎨
⎩

2 if x ∈ (V ′ ∩ S)
1 if x ∈ (V ′ ∪ S) \ (V ′ ∩ S)
0 otherwise

is a wrd-function.

Proof. Let S be a dominating set of D in G. Observe first that since Vf = V ′∪S,
and since V ′ is a dominating set, then so is Vf . We now show that the set D

′

of vertices non-safely defended by f is empty. Observe that since V ′ ⊆ Vf , we
have D

′ ⊆ D\S. Assume for a contradiction that D
′ 	= ∅, and let x ∈ D

′
. We

distinguish two cases:

(i) If N(x) ∩ (V ′ ∩ S) 	= ∅ then x has a neighbor of f -value 2, and thus x is
safely-defended, contradicting the choice of x.

(ii) Otherwise, by definition of V ′ and S, x has a neighbor y in S which does
not belong to V ′. We claim that the legion function fy→x cannot contain
any undefended vertex. Indeed, since y does not belong to the original
dominating set V ′, all vertices are defended by V ′ in fy→x (recall that any
vertex v of V ′ satisfies f(v) � 1).

These two cases imply that D
′
is empty, and thus f is a wrd-function. ��

4 Exact Algorithms for Weak Roman Domination

We now describe our exact algorithms solving the Weak Roman Domination
problem. Observe that this problem can trivially be solved in O∗(3n) time by
enumerating all three-partitions of the set of vertices, which constitutes the best
known bound for the problem so far. We first present an O∗(2n) time and space
algorithm, then an O∗(2.2279n) time algorithm that only uses polynomial space.

4.1 Using Exponential Space

We first show that a wrd-function of minimum cost can be computed in O∗(2n)
time and space. Thanks to Lemma 1, a wrd-function f of minimum cost can be
obtained by first guessing its underlying set Vf and then computing a minimum
dominating set V 2

f ⊆ Vf of the vertices non-safely defended by χVf . Finding such
a set V 2

f is done by a preprocessing step which involves a dynamic programming

Exact Algorithms for Weak Roman Domination 87

Algorithm 1. The preprocessing step algorithm.

for k = 0 to n do
DS[∅, k] = ∅;

foreach X ⊆ V s.t. |X| ≥ 1 do
DS[X, 0] = {∞};
// The set {∞} is a sentinel used to denote the non existence of

a set Yk which dominates a nonempty set X; its cardinality is
set to ∞.

foreach X ⊆ V by increasing order of cardinality do
for k = 1 to n do

DS[X, k] =

{
a set of minimum cardinality chosen amongst
DS[X, k − 1] and {vk} ∪ DS[X \N [vk], k − 1].

}

inspired by the one given in [16]. This preprocessing step results in an exponential
space complexity, which will be reduced to polynomial space in Section 4.2.
However, instead of guaranteeing that indeed V 2

f ⊆ Vf , the preprocessing step
computes a minimum dominating set V 2

f of the vertices non-safely defended
by χVf without constraint, i.e. V 2

f ⊆ V is allowed. We show in Lemma 3 the
correctness of this approach. Let us first describe the preprocessing step; its
correctness is shown after the description of the main algorithm.

Let G = (V,E) be a graph of the Weak Roman Domination problem,
and let V = {v1, v2, . . . , vn}. For each subset X ⊆ V we start by computing a
minimum dominating set Y of X in G, i.e. a subset Y ⊆ V such that X ⊆ N [Y].
This is done by dynamic programming: for each subset X and each integer k
(1 � k � n), DS[X, k] denotes a minimum dominating set Yk of X such that
Yk ⊆ {v1, v2, . . . , vk}, if one exists. Algorithm 1 computes a corresponding table
DS by dynamic programming.

Main Algorithm. The main steps of our exact algorithm are depicted in Al-
gorithm 2. For each subset V ′ ⊆ V , we first verify whether χV ′

is (already) a
wrd-function, i.e., whether the set D of vertices non-safely defended by χV ′

is
empty. Otherwise, we need to compute the set V 2

f . The preprocessing step then
ensures that S = DS[D,n] is a minimum dominating set of D. If S is a subset
of V ′, then a wrd-function f can be computed by Lemma 2; otherwise Lemma 3
ensures that there exists some other underlying set V ′′, being better than V ′.

Lemma 3. Let V ′
1 ⊆ V be a dominating set of a graph G = (V,E) and let S1

be a minimum dominating set of the set D1 of all vertices non-safely defended
by χV ′

1 . Suppose that S1 � V ′
1 . Then there exists a superset V ′

2 ⊃ V ′
1 such that

for any minimum dominating set S2 of the set D2 of all vertices non-safely

88 M. Chapelle et al.

Algorithm 2. An O∗(2n) exponential space algorithm for Weak Roman
Domination.

foreach dominating set V ′ ⊆ V do
foreach v ∈ V do

Let f(v) = 1 if v ∈ V ′, and f(v) = 0 otherwise;

Compute the set D of vertices non-safely defended by χV ′
;

if D �= ∅ then
S = DS[D,n];
if S ⊆ V ′ then

foreach v ∈ S do
Let f(v) = f(v) + 1;

return the computed wrd-function f of minimum cost;

defended by χV ′
2 , it holds that cost(f2) ≤ cost(f1), where fi (i ∈ {1, 2}) is the

legion function defined as:

fi(x) =

⎧⎨
⎩

2 if x ∈ (V ′
i ∩ Si)

1 if x ∈ (V ′
i ∪ Si) \ (V ′

i ∩ Si)
0 otherwise

Proof. Assume that there exist three sets V ′
1 , S1 and D1 as stated in the lemma

and assume that S1 � V ′
1 . Let V ′

2 = V ′
1 ∪ S1. Since S1 � V ′

1 , it follows that
V ′
2 ⊃ V ′

1 . Let D2 be the set of vertices non-safely defended by χV ′
2 . Observe that

D2 ⊆ D1, since V ′
1 ⊂ V ′

2 . By Lemma 2, we know that the legion function f1
is in fact a wrd-function. Hence, by Lemma 1, we also have that (V ′

1 ∩ S1) is a
dominating set of D1, and thus of D2.

Denote by S2 a minimum dominating set of D2. Then |S2| � |V ′
1 ∩ S1|. We

now consider the legion function f2 as defined in the lemma. By Lemma 2,
we know that f2 is a wrd-function. Finally, since |V ′

2 | = |V ′
1 | + |S1 \ V ′

1 | and
|S2| ≤ |V ′

1 ∩ S1|, we conclude the proof by the relation cost(f1) = |V ′
1 | + |S1| =

|V ′
1 |+ |S1 \ V ′

1 |+ |S1 ∩ V ′
1 | ≥ |V ′

2 |+ |S2| = cost(f2). ��

Correctness. The correctness of the preprocessing step is based on arguments
of [16]. If the set X is empty then the initialization DS[∅, k] = ∅, for any 0 ≤
k ≤ n, is clearly correct. If the set X is non empty but no vertex can be used
to dominate X (i.e. k = 0), then DS[X, 0] is set to {∞} as a sentinel, meaning
that there is no set Y (with Y = ∅) that can dominate X . The cardinality of
{∞} is set to ∞. Finally the computation of DS[X, k] is done via an induction
formula: either vk /∈ DS[X, k] or vk ∈ DS[X, k] and in that latter case, N(vk) is
dominated by vk. As the sets X are considered by increasing order as well as the
values of k, we note that the values DS[X, k − 1] and DS[X \N [vk], k − 1] have
already been computed when the computation of DS[X, k] is done.

Exact Algorithms for Weak Roman Domination 89

Now we show the correctness of Algorithm 2. It enumerates all possible sets V ′

as being possible candidates for the underlying set Vf . In particular, we discard
any subset V ′ that does not induce a dominating set. By Lemma 1, it is sufficient
to compute a dominating set S ⊆ V ′ of the set of vertices D being non-safely
defended by χV ′

. Lemma 3 shows that if S is not included in V ′, then there
exists a proper superset of V ′ which gives a wrd-function of cost being no more
than the one obtained from V ′ and S, by Lemma 2. Let V ′

0 = V ′ and S0 = S.
As the graph is finite and the superset given by Lemma 3 is proper, there exists
a finite � ≤ n and a sequence V ′

0 ⊂ V ′
1 ⊂ ... ⊂ V ′

� ⊆ V such that Si � V ′
i , for all

0 ≤ i < �, and S� ⊆ V ′
� . Since the algorithm enumerates all supersets of V ′, it

follows that the set V ′
� will be considered at some iteration of the for-loop. This

shows the correctness of Algorithm 2.

Complexity. The preprocessing step needs to consider each subset X of V and
each value of k, 1 ≤ k ≤ n. For each such couple (X, k), it retrieves the values
of DS[X, k − 1] and DS[X \ N [vk], k − 1] previously computed, and stores the
new value in DS. Thus the preprocessing step requires O∗(2n) time and space.
The main part of the algorithm considers each (dominating set) V ′ ⊆ V , and
computes in polynomial-time the set D of vertices non-safely defended by χV ′

.
A dominating set S of D is then retrieved in the already computed table DS in
polynomial-time.

Theorem 3. Weak Roman Domination can be solved in O∗(2n) time and
space.

4.2 Using Polynomial Space

In order to obtain an exact exponential algorithm using only polynomial space,
we need to avoid any exponential space consuming preprocessing step such as the
one in the previous section. For this purpose, we use instead an exact exponential
algorithm for Red-Blue Dominating Set using polynomial space to decide
which vertices will be valued 2 to dominate the non-safely defended vertices.

Red-Blue Dominating Set:
Input: A bipartite graph G = (R ∪B,E).
Output: A subset S ⊆ R of minimum size dominating B.

Theorem 4 ([22]). The Red-Blue Dominating Set problem can be solved
in O∗(1.2279|R|+|B|) time and polynomial space.

Algorithm. We consider the algorithm depicted in Algorithm 3, which might
be seen as some modification of the previous Algorithm 2.

Observe that before computing a minimum red-blue dominating set on the
bipartite graph (C∪D,E), we may modify the sets C and D as follows: for every
vertex v ∈ C, if v has at least two weakly non-safely defended neighbors, then
we set f(v) = 2, and remove v from C and ND(v) from D.

90 M. Chapelle et al.

Algorithm 3. An O∗(2.2279n) poly-space algorithm for the Weak Ro-
man Domination problem.

foreach dominating set V ′ ⊆ V do
foreach v ∈ V do

Let f(v) = 1 if v ∈ V ′, and f(v) = 0 otherwise;

Compute the set D of vertices non-safely defended by χV ′
;

if D �= ∅ then
Compute the set C ⊆ V ′ of secured vertices which have at least one
neighbor in D;
/* Cleaning step */
foreach v ∈ C with at least two weakly non-safely defended neighbors in
D do

Set f(v) = 2;
Remove ND(v) from D;
Remove v from C;

Let I = (C ∪D,E) be an instance of Red-Blue Dominating Set;
if I admits a minimum red-blue dominating set S ⊆ C then

Set f(v) = 2 for every v ∈ S;

else
The current function f cannot yield a wrd-function;

return the computed wrd-function f of minimum cost;

Proposition 1. The cleaning step on C and D does not modify a solution for
Red-Blue Dominating Set on instance I = (C ∪D,E).

Proof. Let v ∈ C be a secured vertex with at least two weakly non-safely de-
fended neighbors, say w1 and w2. Since w1 and w2 are weakly defended, their
only secured neighbor is v ∈ V ′; since they are non-safely defended, they need
to be dominated by V 2

f in order for f to be a wrd-function (Lemma 1). Thus
we must set f(v) = 2. It follows that any minimum red-blue dominating set on
instance I = (C ∪ D,E) must put v ∈ C into the red-blue dominating set in
order to dominate all weakly non-safely defended neighbors of v in D.

Now, observe that since all the neighbors of v are safely defended (because
dominated by V 2

f), they can safely be removed from D. Since v has no non-safely
defended neighbor left, it can be removed from C. ��

Correctness. The correctness of the algorithm follows from Lemma 1 and the
proof of correctness of Algorithm 2. The main difference lies in the computation
of the dominating set of the vertices non-safely defended by χV ′

. Indeed, in that

Exact Algorithms for Weak Roman Domination 91

case, we use Theorem 4 to find the vertices of V ′ that must have value 2 in order
to dominate the vertices non-safely defended by χV ′

. The correctness of this step
follows from Lemma 1 and Proposition 1.

Complexity. Let us now give the time and space complexities of Algorithm 3.
It is easy to see that for every subset V ′ ⊆ V , the initialisation of f(x) for every
x ∈ V as well as the computation of the set D can be done in polynomial time
and space, and that the cleaning step is also polynomial.

Regarding the legion function f being constructed, for any V ′ ⊆ V , our algo-
rithm computes and reduces the set D of vertices non-safely defended by χV ′

,
and the set C of secured vertices which have at least one neighbor in D. Those
two sets are considered as an instance of Red-Blue Dominating Set to be
solved in O∗(1.2279|D|+|C|) time and polynomial space using an algorithm from
van Rooij [22]. To conclude our analysis, we need the following result.

Proposition 2. For any V ′ ⊆ V , |D|+ |C| ≤ |V | − |V ′|.

Proof. For every vertex v ∈ V ′, one of the following statements holds:

(i) v has no neighbor in D, that is no neighbor non-safely defended by χV ′
;

(ii) there exists at least one vertex w ∈ V \ V ′ which is weakly defended by v.

First notice that (i) and (ii) are the only two possible cases. Indeed, if there
exists v ∈ V ′ such that ND(v) 	= ∅ but no vertex in V \ V ′ is weakly defended
by v, then the vertices in ND(v) are safely defended, which is a contradiction.

If the first statement holds, then v is not included in C. If the second
statement holds, then either w is safely defended, or w is non-safely defended.
If w is safely defended (that is no other neighbor of v is weakly defended by v),
then w is not included in D. If w is non-safely defended, then v has at least two
weakly non-safely defended neighbors. Indeed, since w is weakly defended by v
(as the second statement holds), v is the only neighbor of w in V ′. Hence, there
exists a nonempty set Dv,w = ND(v) \ N(w) such that w is weakly defended
due to each vertex in Dv,w. Now, since w is non-safely defended by v, there
must exist a vertex w′ ∈ Dv,w which is also weakly defended due to w. Then
the cleaning step on D and C applies, which implies that v is removed from C
and all neighbors of v (including w) are removed from D. Altogether, for every
vertex v ∈ V ′, at least one vertex from V is not included in C ∪ D, and hence
at least |V ′| vertices from V are not included in D ∪ C. �

The overall algorithm iteratively runs all the previously described computa-
tions for every subset V ′ ⊆ V , and stores the minimum wrd-function considered
so far using polynomial space. We claim that its worst-case time complexity
corresponds to the following:

O∗
(n∑

i=1

(
n

i

)
· T (n− i)

)
= O∗(n∑

i=1

(
n

i

)
· 1.2279n−i

)
= O∗(2.2279n)

92 M. Chapelle et al.

where T (p) stands for the time complexity needed to compute a minimum
red-blue dominating set in a graph with p vertices (here we use the one of [22]).
Indeed, for any subset V ′ ⊆ V containing i vertices, we apply Theorem 4 on the
bipartite graph induced by C and D, which contain less than |V | − |V ′| = n− i
vertices (Proposition 2).

Theorem 5. Weak Roman Domination can be solved in O∗(2.2279n) time
and polynomial space.

References

1. Chambers, E.W., Kinnersley, B., Prince, N., West, D.B.: Extremal problems for
roman domination. SIAM J. Discret. Math. 23(3), 1575–1586 (2009)

2. Chellali, M., Rad, N.J., Volkmann, L.: Some results on roman domination edge
critical graphs. AKCE Int. J. Graphs Comb. 9(2), 195–203 (2012)

3. Cockayne, E.J., Favaron, O., Mynhardt, C.M.: Secure domination, weak roman
domination and forbidden subgraphs. Bull. Inst. Combin. Appl. 39, 87–100 (2003)

4. Cockayne, E.J., Grobler, P.J.P., Gründlingh, W.R., Munganga, J., van Vuuren,
J.H.: Protection of a graph. Util. Math. 67, 19–32 (2005)

5. Cockayne, E.J., Dreyer Jr., P.A., Hedetniemi, S.M., Hedetniemi, S.T.: Roman dom-
ination in graphs. Discret. Math. 278(1-3), 11–22 (2004)

6. Favaron, O., Karami, K., Khoeilar, R., Sheikholeslami, S.M.: On the roman domi-
nation number of a graph. Discret. Math. 309, 3447–3451 (2009)

7. Fomin, F.V., Grandoni, F., Kratsch, D.: A measure & conquer approach for the
analysis of exact algorithms. J. ACM 56(5) (2009)

8. Garey, M.R., Johnson, D.S.: Computers and intractability. Freeman (1979)
9. Goddard, W., Hedetniemi, S.M., Hedetniemi, S.T.: Eternal security in graphs. J.

Combin. Math. Combin. Comput. 52, 160–180 (2005)
10. Goldwasser, J.L., Klostermeyer, W.F.: Tight bounds for eternal dominating sets in

graphs. Discret. Math. 308, 2589–2593 (2008)
11. Grobler, P.J.P., Mynhardt, C.M.: Secure domination critical graphs. Discret.

Math. 309, 5820–5827 (2009)
12. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Domination in graphs: advanced

topics. Pure and Applied Mathematics, vol. 209. Marcel Dekker Inc. (1998)
13. Henning, M.A., Hedetniemi, S.T.: Defending the Roman Empire: a new strategy.

Discret. Math. 266(1-3), 239–251 (2003)
14. Iwata, Y.: A faster algorithm for dominating set analyzed by the potential method.

In: Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp. 41–54.
Springer, Heidelberg (2012)

15. Liedloff, M.: Algorithmes exacts et exponentiels pour les problèmes NP-difficiles:
domination, variantes et généralisations. Phd thesis, Laboratoire d’Informatique
Théorique et Appliquée, Université Paul Verlaine, Metz (2007)

16. Liedloff, M.: Finding a dominating set on bipartite graphs. Inf. Proc. Lett. 107(5),
154–157 (2008)

17. Liedloff, M., Kloks, T., Liu, J., Peng, S.-L.: Efficient algorithms for roman domi-
nation on some classes of graphs. Discret. App. Math. 156, 3400–3415 (2008)

18. Liu, C.-H., Chang, G.J.: Roman domination on 2-connected graphs. SIAM J. Dis-
cret. Math. 26(1), 193–205 (2012)

Exact Algorithms for Weak Roman Domination 93

19. Malini Mai, T.N.M., Roushini Leely Pushpam, P.: Weak roman domination in
graphs. Discussiones Mathematicae Graph Theory 31(1), 161–170 (2011)

20. ReVelle, C.S., Rosing, K.E.: Defendens Imperium Romanum: a classical problem
in military strategy. Math. Assoc. of America 107(7), 585–594 (2000)

21. Stewart, I.: Defend the Roman Empire!. Scientific American 281(6), 136–139 (1999)
22. van Rooij, J.M.M.: Exact exponential-time algorithms for domination problems in

graphs. Phd thesis, Utrecht University, Netherlands (2011)
23. van Rooij, J.M.M., Bodlaender, H.L.: Exact algorithms for dominating set. Discret.

App. Math. 159(17), 2147–2164 (2011)
24. Xing, H.-M., Chen, X., Chen, X.-G.: A note on roman domination in graphs. Dis-

cret. Math. 306, 3338–3340 (2006)

Verification Problem of Maximal Points

under Uncertainty

George Charalambous and Michael Hoffmann

Department of Computer Science, University of Leicester
{gc100,mh55}@mcs.le.ac.uk

Abstract. The study of algorithms that handle imprecise input data
for which precise data can be requested is an interesting area. In the
verification under uncertainty setting, which is the focus of this paper,
an algorithm is also given an assumed set of precise input data. The aim
of the algorithm is to update the smallest set of input data such that if
the updated input data is the same as the corresponding assumed input
data, a solution can be calculated. We study this setting for the maximal
point problem in two dimensions. Here there are three types of data, a set
of points P = {p1, . . . , pn}, the uncertainty areas information consisting
of areas of uncertainty Ai for each 1 ≤ i ≤ n, with pi ∈ Ai, and the
set of P ′ = {p′1, ..., p′k} containing the assumed points, with p′i ∈ Ai. An
update of an area Ai reveals the actual location of pi and verifies the
assumed location if p′i = pi. The objective of an algorithm is to compute
the smallest set of points with the property that, if the updates of these
points verify the assumed data, the set of maximal points among P can
be computed. We show that the maximal point verification problem is
NP-hard, by a reduction from the minimum set cover problem.

1 Introduction

Nowadays more and more information is available. With a flood of sensors con-
nected to a network, such as GPS-enabled mobile phones, up-to-date readings
of these sensors are generally available. Algorithms that perform based on such
information might not have the precise data available to them, as for example
in some situations the traffic of collecting all such information would cause a
problem on its own. In other situations, obtaining the up-date information of
all sensors is costly in time and battery power or even other charges may occur.
A practical solution is to work with slightly out of date data where possible
and only request up to date information where needed. For example a sensor
may automatically send its current measurement if this exceeds some predefined
bounds of the latest send one. Hence based on the last send information a pos-
sible band or area is known where the current measurement of the sensor is
within. If this rough information is not enough then the precise measurement
can be obtained. Therefore an algorithm may have some precise data while at
the same time some uncertain data, for which if needed an update request can
be made and the precise measurement can be obtained. Problems under uncer-
tainty capture this setting. The aim is to make the fewest update requests that

T. Lecroq and L. Mouchard (Eds.): IWOCA 2013, LNCS 8288, pp. 94–105, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Verification Problem of Maximal Points under Uncertainty 95

allows the calculation to succeed. In the verification under uncertainty setting,
which is the focus of this paper, an algorithm is also given an assumed set of
precise input data. The aim of the algo‘rithm is to update the smallest set of
input data such that if the updated input data is the same as the corresponding
assumed input data, a solution can be calculated.

While mobile devices moving in the plane is a classical example to motivate
the study of geometric problems in the uncertainty setting, its applications are
found in many different areas. For example data is collected in a large number
of databases and distributed systems, such as prices and customer ratings of
products. As the price and rating of a product may vary over time, an algorithm
that has to identify all top items from a collection may work with uncertain data
and only request more accurate prices and ratings if needed. With the idea of
maximal points in mind, top items would be such that there is no other better
in price and rating.

Work in computing under uncertainty falls in three main categories: In the
adaptive online setting an algorithm initially knows only the uncertainty areas
and performs updates one by one (determining the next update based on the
information from previous updates) until it has obtained sufficient information
to determine a solution. Algorithms are typically evaluated by competitive anal-
ysis, comparing the number of updates they make with the minimum number
of updates that, in hindsight, would have been sufficient to determine a solution
(referred to as the offline optimum). In the non-adaptive online setting an algo-
rithm is also given only the uncertainty areas initially, but it must determine a
set U of updates such that after performing all updates in U it is guaranteed
to have sufficient information to determine a solution. Finally, there is the ver-
ification setting that was already described above. It is worth noting that the
optimal update set of the verification setting is also the offline optimum of the
adaptive online setting. Therefore, algorithms solving the verification problem
are also useful for the experimental evaluation of algorithms for the adaptive
online setting.

In this paper, we consider the Maximal Point Verification problem. The max-
imal point problem is a classical problem. Many aspects of the problem have
sparked interesting research. It can be stated as follows: Given a set P of points
and a partial order of the points, return all points where no point in P is higher.
Typically the partial order is based on the coordinates of the points in the fol-
lowing way: a point p is higher than a point q if px ≥ qx and py ≥ qy

and p 	= q. Such a partial order naturally extends to higher dimensions, but
in this paper we only consider 2-dimensional points.

A formal definition of the Maximal Point Verification problem (MPV) is given
in Definition 2.

Our main result is, as stated in Theorem 1, that by a reduction from the min-
imum set cover problem the MPV problem is also NP-hard. In our construction
of the reduction each uncertain area contains either a single point (e.g the data
is known precisely) or contains just two points. Hence, an MPV problem remains
NP-hard even when restricted to areas of uncertainty that contain at most two

96 G. Charalambous and M. Hoffmann

points. It remains, however, open if the same holds when each uncertain area is
connected.

The effect of our result is significant for experimental evaluation of algorithms
in the online and verification setting of the maximal point problem under uncer-
tainty. It strengthens the role of constant competitive online algorithms, as they
also represent a constant approximation algorithm for the verification setting.
Finally it gives rise to find new restrictions on the uncertainty areas, such that
the verification problem becomes solvable in polynomial time, and captures a
large variety of applications for maximal points under uncertainty.

Related Work
Kahan [6] presented a model for handling imprecise but updateable input data.
He demonstrated his model on a set of real numbers where instead of the precise
value of each number an interval was given. That interval when updated reveals
that number. The aim is to determine the maximum, the median, or the minimal
gap between any two numbers in the set, using as few updates as possible. His
work included a competitive analysis for this type of online algorithm, where the
number of updates is measured against the optimal number of updates. For the
problems considered, he presented online algorithms with optimal competitive
ratio. Feder et al. [4] studied the problem of computing the value of the median of
an uncertain set of numbers up to a certain tolerance. Applications of uncertainty
settings can be found in many different areas including structured data such
as graphs, databases, and geometry. The work presented in this paper mainly
concerns the latter two areas.

Bruce et al. [1] studied the geometric uncertainty problem in the plane. Here,
the input consists of points in the plane and the uncertainty information is for
each point of the input an area that contains that point. They gave a defini-
tion of the Maximal Point under Uncertainty as well as the Convex Hull under
Uncertainty. They presented algorithms with optimal competitive ratio for both
problems. The algorithms used are based on a more general technique called
witness set algorithm that was introduced in their paper.

In [2], Erlebach et al. studied the adaptive online setting for minimum span-
ning tree (MST) under two types of uncertainty: the edge uncertainty setting,
which is the same as the one considered by Feder et al. [3], and the vertex un-
certainty setting. In the latter setting, all vertices are points in the plane and
the graph is a complete graph with the weight of an edge being the distance
between the vertices it connects. The uncertainty is given by areas for the lo-
cation of each vertex. For both settings, Erlebach et al. presented algorithms
with optimal competitive ratio for the MST under uncertainty. The competitive
ratios are 2 for edge uncertainty and 4 for vertex uncertainty, and the uncer-
tainty areas must satisfy certain restrictions (which are satisfied by, e.g., open
and trivial areas in the edge uncertainty case). A variant of computing under
uncertainty where updates yield more refined estimates instead of exact values
was studied by Gupta et al. [5].

A different setting of the MST under vertex uncertainty was studied by Ka-
mousi et al. [7]. They assume that point locations are known exactly, but each

Verification Problem of Maximal Points under Uncertainty 97

point i is present only with a certain probability pi. They show that it is #P-
hard to compute the expected length of an MST even in 2-dimensional Euclidean
space, and provide a fully polynomial randomized approximation scheme for met-
ric spaces.

Structure of the Paper. In Section 2 we give formal definitions and prelim-
inaries. In Section 3 we present our construction of an MPV problem out of a
minimum set cover problem. In Section 4 we demonstrate relation between the
solutions of these two problems. In Section 5 we complete the proof of Theorem 1.

2 Preliminaries

The general setting of problems with areas of uncertainty can be described in
the following way: Each problem instance P = (C,A, φ) consists of following
three components. The ordered set of data C = {c1, . . . , cn} is also called a
configuration. A is an ordered set of areas A = {A1, . . . , An}, such that ci ∈ C
is an element of Ai for 1 ≤ i ≤ n. The sets Ai are called areas of uncertainty
or uncertainty areas for C. We say that an uncertainty area Ai that consists of
a single element is trivial. φ is a function such that φ(C) is the set of solutions
for P . (The function φ is the same for all instances of a problem and can thus
be taken to represent the problem.) The aim is to calculate a solution in φ(C)
based on the information of A. If that is not possible, updates to elements of A
can be made. These updates alter the set A: After updating Ai, the new ordered
set of areas of uncertainty for C is {A1, . . . , Ai−1, {ci}, Ai+1, . . . , An}. Hence the
exact value of ci is now revealed.

In the online setting, the set C is not known to the algorithm; the algorithm
has to request updates until the set A is precise enough to allow the calculation
of a solution in φ(C) based on A. The verification setting is similar. The set C,
however, is now also given to the algorithm. This additional information is not
used to calculate φ(C) directly, but is used to determine which update requests
should be made so that φ(C) can be calculated based on A. Updating all non-
trivial areas would reveal/verify the configuration C and would obviously allow
us to calculate an element of φ(C) (under the natural assumption that φ is com-
putable). A set of updates that reveal enough information of the configuration
C such that an element of φ(C) can be calculated is an update solution. The aim
of the algorithm is to use the smallest possible number of updates. For a given
instance of a problem, we denote an update solution of minimal size also as an
optimal update solution.

We use the uncertainty setting in the context of the Maximal Point problem.
For this all points discussed in the paper are points in the 2D plane. So a point
p may be written in coordinate form (px, py). We say a point p = (px, py) is
higher than a point q = (qx, qy) if px ≥ qx and py ≥ qy and p 	= q. Note that this
induces a partial order and leads to the following definition of a maximal point
among a set of points.

98 G. Charalambous and M. Hoffmann

Definition 1. Let P be a set of points and p be a point in P . The point p is
said to be maximal among P if there does not exist a point in P that is higher
than p. Otherwise p is non-maximal among P .

In the ’under Uncertainty’ setting for the Maximal Point problem the set of
points P = {p1, . . . , pn} is the configuration of the problem. The set of uncer-
tainty areas consists of an area for each point in P . The solution φ(P) is the
index set I such that pi is maximal among P if and only if i ∈ I. Formally,

Definition 2. A Maximal Point Verification problem, MPV for short, is a pair
(A, P), where P is a set of points and A is a set of areas for P . The aim is to
identify the smallest set of areas in A, that when updated verifies the maximal
points among P as maximal based on the information of A and the results of the
updates.

A1

A3

p2

A2={p2}

p3

p1

Fig. 1. Example of an MPV problem

In the example shown in figure 1, the problem consists of three points (p1, p2
and p3) and three areas A1, A2 and A3. The area A2 consist only of the point
p2 and hence A2 is a trivial area and the location of p2 is already verified. For
every point in the area A1 there does not exist a point in A2 or A3 that is
higher. Therefore, regardless of where p1 lies in A1 and where p3 is located in
A3, the point p1 will be maximal in P . Based only on the areas of uncertainty
the point p3 may or may not be maximal in P . So updates have to be requested
to verify some points, and therefore to make the problem solvable based on the
initial areas of uncertainty and the information retrieved by the updates. The
set {A1, A3} is clearly an update solution as after updating these two sets the
location of p1 and p3 are verified and both are maximal points in P . However
the set {A1} is also an update solution as after verifying the location of p1,
neither p1 nor p2 are higher than any point in A3. Hence even without verifying
the location of p3 within the area A3 both p1 and p3 must be both maximal in
P . In this example the set {A1} is also an optimal update solution as without
any update the maximal points cannot be calculated. We finish this example by
noting that updating just A3 is not an update solution. While this verifies the
exact location of p3, the area A1 still contains some points that are higher than
p3 and some that are not. So without also verifying the location of p1 it is not
clear whether p3 is a maximal point among P or not.

Verification Problem of Maximal Points under Uncertainty 99

We will use the following notation:
An area A is said to be maximal among a set of areas A if there does not exist

a point in area of A−A that is higher than a point in A.
Similarly, an area A is said to be dominated among a set of areas A if for

every point p ∈ A there is an area in A−A with every point higher than p.
We also note that an area might be neither maximal nor dominated among a

set of areas, whereas a point is either maximal or non-maximal among a set of
points as defined earlier. If this is the case then the set of maximal points cannot
be calculated. In other words a problem is solved if and only if all areas in A are
either maximal or dominated among A.

For further convenience we say an area A is potentially higher than an area B
if there exists a point in A higher than a point in B.

In the last part of this section we recall the Minimum Set Cover problem. The
Minimum Set Cover (MSC) problem consists of a universe U and a family S of
subsets of U . The aim is to find a family of sets in S of minimal size that covers
U . It was shown by [8] that the problem is NP-Hard. Without loss of generality
we assume that every element in U is found in at least one set of S and that all
sets in S have size of at least 2.

A reduction fo the MSC problem will lead to the following main result.

Theorem 1. Solving the Maximal Point Verification problem is NP-hard.

3 MP-Construction

In this section we give the construction of an MPV problem out of an MSC
problem. We call the instance of the MSC problem MC = (U,S) with U =
{1, . . . , n} and S = {S1, . . . , Sk}. The instance of the MPV will be denoted by
MP.

The idea behind the construction is to have different types of areas in MP
representing different aspects of MC. A set of areas (B’s) will correspond to
elements of U and another set of areas (A’s) will correspond to elements of each
Sj ∈ S. The areas are positioned such that for each area corresponding to an
element of U , at least one area corresponding to the occurrence of i in the set Sj

must be included in any update solution. With the help of another set of areas
(D’s), the areas corresponding to elements of a set Sj are linked together. So, if
an update solution contains one area corresponding to an element of a set Sj the
update solution can be modified to include all areas that correspond to elements
of Sj without increasing the size of the update solution.

The construction is done by using three different types of gadgets, and each
gadjet is placed in its own rectangular region. These regions are located in the
plane in such a way that no point in one gadget is higher than any point in
another gadget. This can be achieved by placing all regions for the gadgets
diagonally top-left to bottom-right in the plane, see figure 2.

Type 1 Gadget. For each i ∈ U there exists one gadget of type 1. This contains
the point bi, which is the lower left corner of the gadget, and multiple distinct

100 G. Charalambous and M. Hoffmann

Fig. 2. Placement of gadgets

b i

a

a

a

a

a

j1
i

j2
i

j3
i

i
j4

i
j5

Fig. 3. Type 1 gadget

points along the diagonal of the gadget. For each set Sj ∈ S that contains i, a
point aij is placed on the diagonal. See figure 3.

Type 2 Gadget. For each set Sj ∈ S there exists one gadget of type 2. This
contains for every i ∈ Sj a point cij along the diagonal of the gadget such that

all points are pairwise distinct. In addition points d1j , . . . , d
t
j with t = |Sj | − 1

are placed in such a way that for each drj with 1 ≤ r ≤ t there exist exactly two

points cij and ci
′
j that are higher. Furthermore any two neighbouring points cij

and ci
′
j are higher than exactly one point drj . This can be done easily by placing

the points d1j , . . . , d
t
j along a line that is parallel to the diagonal, and closer to

the bottom-left corner of the gadget than the diagonal. See figure 4.

c

c

c

c

j
i1

j
i2

j
i3

i4
j

c |S |
j

d
j
1

d
j
2

d
j
t

d
j
3

j

Fig. 4. Type 2 gadget

e

e

e

e

j
1

j
2

j
3

t
j

Fig. 5. Type 3 gadget

Type 3 Gadget. For each set Sj ∈ S there exists one gadget of type 3. This
gadget just consists of |Sj |−1 distinct points e1j , . . . , e

t
j placed along the diagonal.

See figure 5.
The various points placed in the three gadgets, are now used to define the

areas of uncertainty A, and the set of precise points P for MP.

Verification Problem of Maximal Points under Uncertainty 101

Out of the points from the different gadgets we build the following sets where
each set corresponds to an area for MP. For all i ∈ U let Bi be the set containing
only bi. For all i ∈ U and Sj ∈ S with i ∈ Sj let Ai

j be the set containing the

two points aij and cij . For all Sj ∈ S and 1 ≤ r ≤ |Sj | − 1 let Dr
j be the set

containing the two points drj and erj .
To handle these sets better in the remaining part of the paper we group some

of these areas together. We say Aj = {Ai
j | i ∈ Sj} and Dj = {D1

j , . . . , D
t
j} with

t = |Sj| − 1. We also note that |Aj | = |Dj |+ 1 = |Sj |.
Further we say B is the set of all areas that correspond to an element of U

(or formally B = {B1, . . . , Bn}), A is the set of all areas that correspond to an
element of any set Sj ∈ S (or formally A = ∪Sj∈SAj) and D is the set of all
areas in any Dj (or formally D = ∪Sj∈SDj).

This allows us to define our instance of the MPV in the following way: MP
= (A, P) with A = B ∪ A ∪D and P = {b1, . . . , bn} ∪ {aij | i ∈ Sj} ∪ {erj | 1 ≤
r ≤ |Sj | − 1}.

We are now analysing the constructed problem MP and highlight properties
that are needed in the further section.

Size of MP. There exist exactly n type 1 gadgets where each contains one
point bi with some i ∈ U . Each type 1 gadget contains at most further k points
{aij | i ∈ Sj}. There exist exactly k type 2 gadgets. Each contains at most 2n−1

points c1j , . . . , c
|Sj |
j and d1j , . . . , d

|Sj |−1
j , since |Sj | ≤ n. There exist exactly k type

3 gadgets. Each contains at most n − 1 points e1j , . . . , e
|Sj|−1
j since |Sj | ≤ n.

Hence for the MP constructed we have n + 2k gadgets and at most n ∗ (1 +
k) + k ∗ (2n− 1) + k ∗ (n− 1) = n+ 4nk − 2k points. As each point only lies in
one area of uncertainty also |A| is at most n+4nk− 2k and so the input size of
MP is polynomial in the size of MC.

Maximal Points among P . A point aij for some j and i is part of a type 1
gadget and is clearly maximal among all points placed in the gadget. As two
different gadgets are located so that no point of one is higher than a point of
another, all points aij are maximal in P . The same follows for the all points erj
in type 3 gadgets and therefore all such points are also maximal among P .

As for every i ∈ U there must exists at least one Sj ∈ S with i ∈ Sj, by the
construction of the type 1 gadget for i, also the point aij was added to that gadget.
As all such points are higher than bi the point bi is non-maximal among P .

Maximal Areas among A. Each area in A consists of two points aij and cij .
One is located inside a type 1 gadget and the other inside a type 2 gadget. For
both points there is no area in A with a higher point, and therefore even without
any updates all areas in A are maximal.

For each area Bi ∈ B there exist some areas in A with a point above Bi

and one point not above Bi. So among A the area Bi is neither maximal nor
dominated and further updates are needed.

Each area in D has two points. One is located in a type 3 gadget which is
clearly maximal; and one located in a type 2 gadget where there are two areas

102 G. Charalambous and M. Hoffmann

in A that contain points that are higher. So among A it is neither maximal nor
dominated and further updates are needed.

Update Solutions for MP. Following from the above analysis of maximal
areas among A we have the following remark:

Remark 1. A set of areas is an update solution if and only if it contains for each
i an area Ai

j ∈ A for some j, and also for each area in D either this area or the
two areas in A that are potentially higher.

Following from this only updates of areas in Aj and Dj will help to identify
areas of Dj as maximal. Based on the construction of type 2 gadgets, updating
k areas of Aj can at most identify k − 1 areas of Dj as maximal. Hence the
smallest update set that identifies all areas of Dj as maximal is Dj itself. Any
other set of updates must be bigger. Formally:

Remark 2. Let R be an update solution. Then for j the set R must contain
either Dj or it must contain at least |Dj|+ 1 areas of Dj ∪ Aj .

This leads to the following Lemma:

Lemma 1. Let R be an update solution for MP and let Aj
i ∈ R for some j and

i be an area. Then R′ = R−Dj +Aj is also an update solution and |R′| ≤ |R|.

Proof. Since R is an update solution, by Remark 1 for every i ∈ U the set R must
contain an area Ai

j′ for some j′. As R′ in constructed by potentially removing

areas of D and adding areas of A the set R′ must also contain the area Ai
j′ .

Let Dr
j′′ ∈ D. Again by Remark 1 either Dr

j′′ ∈ R or the two areas in A that
are potentially higher than Dr

j′′ are in R. If R contains the two areas in A that
are potentially higher than Dr

j′′ then also R′ must contain these areas as no area
in A was removed when creating R′. If Dr

j′′ ∈ R also R′ must contain Dr
j′′ unless

j′′ = j. In that case as all areas in Aj were added to R′, it must also contain the
two areas in Aj that are potentially higher than Dr

j′′ . Hence by Remark 1 also
R′ is an update solution.

We now show that |R′| ≤ |R|. As Ar
j ∈ R, by Remark 2 R must contain at

least |Dj| + 1 areas out of Dj ∪ Aj . We noted in the construction of MP that
|Aj | = |Dj |+ 1 = |Sj |. So R′ includes exactly |Dj |+ 1 areas out of Dj ∪Aj . As
R and R′ only differ in selection of areas of Dj and Aj we have that |R′| ≤ |R|.

4 Relating Update Solutions to Covers

In this section we show how to construct a cover of MC out of an update solution
of MP and vice versa. We will also note how the size of the update solutions and
covers relate to each other.

From Update Solution to Cover. Let R be an update solution for MP.
Before creating the cover we create a different update solution R′. The set R′

is based on R but for all j such that there exists an i with Ai
j ∈ R all potential

Verification Problem of Maximal Points under Uncertainty 103

areas of Dj are removed from R and all areas of Aj are added. By Lemma 1, we
have that R′ is also an update solution with no greater size than R. Furthermore
by doing so, the update solution R′ contains for every index j either the set Aj

or Dj but never a mixture.
The cover C is constructed based on R′ in the following way. For each index

j such that Aj ⊆ R′ we choose the set Sj ∈ S to be included in C and otherwise
not.

This is denoted as:

C = {Sj ∈ S | Aj ⊆ R′}
We now show that C is a cover, in other words that every element of U is

found in at least one set of C.
Let some i ∈ U for the MC. Then in MP there exists the area Bi. By remark

1 there exists an index j with Ai
j ∈ R′. Since this area Ai

j was constructed in

the creation of MP we have that i ∈ Sj . As Ai
j is also in R′ the set Aj must be

a subset of R and Sj ∈ C.
We note that the construction of C is done in polynomial time and the sizes

of R,R′ and C relate to each other in the following way.
By the construction of R′ we have:

|R′| =
∑

Aj⊆R′
|Aj | +

∑
Aj �⊆R′

|Dj |

As |Aj | = |Dj |+ 1 = |Sj | for all j we get by the construction of C that:

|R′| =
∑
Sj∈C

|Sj | +
∑

Sj∈S−C
(|Sj | − 1)

= |C|+
∑
Sj∈C

(|Sj | − 1) +
∑

Sj∈S−C
(|Sj | − 1)

= |C|+
∑
Sj∈S

(|Sj | − 1)

Since by Lemma 1 we get |R| ≥ |R′| we have:

|R| ≥ |C| +
∑
Sj∈S

(|Sj | − 1)

We summarise our results on the construction of C in the following Lemma:

Lemma 2. Let R be an update solution for MP. Then a cover of MC can be

constructed in polynomial time with |R| ≥ |C|+
∑
Sj∈S

(|Sj | − 1).

From Cover to Update Solution. Similarly to the construction of a cover
for MC out of a given update solution of MP, we now show how to construct an
update solution for MP out of a given cover for MC.

104 G. Charalambous and M. Hoffmann

Let C be a cover for MC.
The set R of areas in MP is based on C as follows: For each index j such that

Sj ∈ C we choose the set Aj to be included in R. For each index j such that
Sj ∈ (S − C) we choose the set Dj to be included in R.

This is denoted as:

R = (
⋃

Sj∈C
Aj)

⋃
(

⋃
Sj∈(S−C)

Dj)

We note that the following: Firstly, let i ∈ U . Since C is a cover there exists
an index j such that Sj ∈ C and i ∈ Sj . Hence, by the construction of MP the
area Ai

j exists in MP. As Sj ∈ C we have that Aj ⊆ R and in particular Ai
j ∈ R.

Secondly, let Dr
j ∈ D. If Sj /∈ C the set R contains Dj and therefore also

Dr
j . Otherwise R contains Aj and therefore also the two areas in Aj that are

potentially higher than Dr
j .

So R satisfies both condition of remark 1 and is hence an update solution for
MP.

We recall from the MP-construction that for every set Sj there is a set Aj

and a set Dj such that |Aj | = |Dj|+ 1 = |Sj |. So,

|R| =
∑
Sj∈C

|Sj | +
∑

Sj∈S−C
(|Sj | − 1)

= |C|+
∑
Sj∈C

(|Sj | − 1) +
∑

Sj∈S−C
(|Sj | − 1)

= |C|+
∑
Sj∈S

(|Sj | − 1)

This leads to the following lemma:

Lemma 3. Let C be a cover of MC. Then there exists an update solution R for

MP with |C| ≤ |R|+
∑
Sj∈S

(|Sj | − 1).

5 NP-Hardness Proof

We have shown so far how an instance MP of the Maximal Point Verification
problem can be constructed out of an instance MC of the Minimum Set Cover
problem, how one can build a solution for one of these two problem instances
based on the solution of the other, and how the sizes of the solutions are related.
We now argue that an optimal update solution corresponds to a minimal cover.

Lemma 4. Let R be an optimal update solution for MP. Then the cover C con-
structed out of R is a minimal cover for MC.

Verification Problem of Maximal Points under Uncertainty 105

Proof. Let’s assume there exists a cover C for MC such that |C| < |C|.
Let R be the update solution for MP constructed from C as shown in Section 4.

Then by Lemmas 2 and 3 we have that

|C| ≤ |R| −
∑
Sj∈S

(|Sj | − 1)

and
|C| = |R| −

∑
Sj∈S

(|Sj | − 1).

Since |C| < C so must |R| < |R|. This is a contradiction as R was a minimal
update solution. So, C must be a minimal cover of MC.

We are using the established results to prove theorem 1.

Proof. In Section 3 we have presented the construction of a MPV problem for
a given MSC problem. As noted in Section 3 the size of the MPV problem is
polynomial in the size of the MSC problem and the construction can be done in
polynomial time.

By Lemma 4 a solution of the MPV can be used to construct a solution of
the MSC problem. As remarked in Section 4 that construction is polynomial in
the size of the MPV problem.

Hence, if the MPV problem is solvable in polynomial time, then this must
also be the case for the MSC problem. By [8], the MSC problem is shown to be
NP-hard. So, also the MPV problem is NP-hard.

References

1. Bruce, R., Hoffmann, M., Krizanc, D., Raman, R.: Efficient update strategies for
geometric computing with uncertainty. Theory of Computing Systems 38(4), 411–
423 (2005)

2. Erlebach, T., Hoffmann, M., Krizanc, D., Mihalák, M., Raman, R.: Computing
minimum spanning trees with uncertainty. In: Albers, S., Weil, P. (eds.) STACS.
LIPIcs, vol. 1, pp. 277–288. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
Germany (2008)

3. Feder, T., Motwani, R., O’Callaghan, L., Olston, C., Panigrahy, R.: Computing
shortest paths with uncertainty. Journal of Algorithms 62(1), 1–18 (2007)

4. Feder, T., Motwani, R., Panigrahy, R., Olston, C., Widom, J.: Computing the me-
dian with uncertainty. SIAM Journal on Computing 32(2), 538–547 (2003)

5. Gupta, M., Sabharwal, Y., Sen, S.: The update complexity of selection and related
problems. In: IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS 2011). LIPIcs, vol. 13, pp. 325–338.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2011)

6. Kahan, S.: A model for data in motion. In: Proceedings of the 23rd Annual ACM
Symposium on Theory of Computing (STOC 1991), pp. 267–277 (1991)

7. Kamousi, P., Chan, T.M., Suri, S.: Stochastic minimum spanning trees in Euclidean
spaces. In: Proceedings of the 27th Annual ACM Symposium on Computational
Geometry (SoCG 2011), pp. 65–74. ACM (2011)

8. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Com-
puter Computations, pp. 85–103 (1972)

Incidence Coloring Game and Arboricity

of Graphs

Clément Charpentier1,2 and Éric Sopena1,2

1 Univ. Bordeaux, LaBRI, UMR5800, F-33400 Talence
2 CNRS, LaBRI, UMR5800, F-33400 Talence

Abstract. An incidence of a graph G is a pair (v, e) where v is a ver-
tex of G and e an edge incident to v. Two incidences (v, e) and (w, f)
are adjacent whenever v = w, or e = f , or vw = e or f . The incidence
coloring game [S.D. Andres, The incidence game chromatic number, Dis-
crete Appl. Math. 157 (2009), 1980–1987] is a variation of the ordinary
coloring game where the two players, Alice and Bob, alternately color
the incidences of a graph, using a given number of colors, in such a way
that adjacent incidences get distinct colors. If the whole graph is colored
then Alice wins the game otherwise Bob wins the game. The incidence
game chromatic number ig(G) of a graph G is the minimum number of
colors for which Alice has a winning strategy when playing the incidence
coloring game on G.

Andres proved that ig(G) ≤ 2Δ(G) + 4k − 2 for every k-degenerate

graph G. We show in this paper that ig(G) ≤ � 3Δ(G)−a(G)
2

�+8a(G)−2 for
every graph G, where a(G) stands for the arboricity of G, thus improving
the bound given by Andres since a(G) ≤ k for every k-degenerate graph

G. Since there exists graphs with ig(G) ≥ � 3Δ(G)
2

�, the multiplicative
constant of our bound is best possible.

Keywords: Arboricity, Incidence coloring, Incidence coloring game, In-
cidence game chromatic number.

1 Introduction

All the graphs we consider are finite and undirected. For a graph G, we denote by
V (G), E(G) and Δ(G) its vertex set, edge set and maximum degree, respectively.
Recall that a graph is k-denegerate if all of its subgraphs have minimum degree
at most k.

The graph coloring game on a graph G is a two-player game introduced by
Brams [7] and rediscovered ten years after by Bodlaender [3]. Given a set of k
colors, Alice and Bob take turns coloring properly an uncolored vertex of G, Alice
having the first move. Alice wins the game if all the vertices of G are eventually
colored, while Bob wins the game whenever, at some step of the game, all the
colors appear in the neighborhood of some uncolored vertex. The game chromatic
number χg(G) of G is then the smallest k for which Alice has a winning strategy
when playing the graph coloring game on G with k colors.

T. Lecroq and L. Mouchard (Eds.): IWOCA 2013, LNCS 8288, pp. 106–114, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Incidence Coloring Game and Arboricity of Graphs 107

The problem of determining the game chromatic number of planar graphs
has attracted great interest in recent years. Kierstead and Trotter proved in
1994 that every planar graph has game chromatic number at most 33 [11]. This
bound was decreased to 30 by Dinski and Zhu [6], then to 19 by Zhu [16], to 18
by Kierstead [10] and to 17, again by Zhu [17], in 2008. Some other classes of
graphs have also been considered (see [2] for a comprehensive survey).

An incidence of a graph G is a pair (v, e) where v is a vertex of G and e an
edge incident to v. We denote by I(G) the set of incidences of G. Two incidences
(v, e) and (w, f) are adjacent if either (1) v = w, (2) e = f or (3) vw = e or
f . An incidence coloring of G is a coloring of its incidences in such a way that
adjacent incidences get distinct colors. The smallest number of colors required
for an incidence coloring of G is the incidence chromatic number of G, denoted
by χi(G). Let G be a graph and S(G) be the full subdivision of G, obtained from
G by subdividing every edge of G (that is, by replacing each edge uv by a path
uxuvv, where xuv is a new vertex of degree 2). It is then easy to observe that
every incidence coloring of G corresponds to a strong edge coloring of S(G), that
is a proper edge coloring of S(G) such that every two edges with the same color
are at distance at least 3 from each other [4,14].

Incidence colorings have been introduced by Brualdi and Massey [4] in 1993,
motivated by the study of the strong chromatic index of bipartite graphs. Upper
bounds on the incidence chromatic number have been proven for various classes
of graphs such as k-degenerate graphs and planar graphs [8,9], graphs with max-
imum degree three [13], and exact values are known for instance for forests [4],
K4-minor-free graphs [9], or Halin graphs with maximum degree at least 5 [15]
(see [14] for an on-line survey).

In [1], Andres introduced the incidence coloring game, as the incidence version
of the graph coloring game, each player, on his turn, coloring an uncolored
incidence of G in a proper way. The incidence game chromatic number ig(G) of a
graph G is then defined as the smallest k for which Alice has a winning strategy
when playing the incidence coloring game on G with k colors. Upper bounds
on the incidence game chromatic number have been proven for k-degenerate
graphs [1] and exact values are known for cycles, stars [1], paths and wheels [12].

Andres observed that the inequalities � 32Δ(G)� ≤ ig(F) ≤ 3Δ(G)− 1 hold for
every graph G [1]. For k-degenerate graphs, he proved the following:

Theorem 1 (Andres, [1]). Let G be a k-degenerated graph. Then we have:

(i) ig(G) ≤ 2Δ(G) + 4k − 2,
(ii) ig(G) ≤ 2Δ(G) + 3k − 1 if Δ(G) ≥ 5k − 1,
(iii) ig(G) ≤ Δ(G) + 8k − 2 if Δ(G) ≤ 5k − 1.

Since forests, outerplanar graphs and planar graphs are respectively 1-, 2-
and 5-degenerate, we get that ig(G) ≤ 2Δ(G) + 2, ig(G) ≤ 2Δ(G) + 6 and
ig(G) ≤ 2Δ(G) + 18 whenever G is a forest, an outerplanar graph or a planar
graph, respectively.

Recall that the arboricity a(G) of a graph G is the minimum number of forests
into which its set of edges can be partitioned. In this paper, we will prove the
following:

108 C. Charpentier and É. Sopena

Theorem 2. For every graph G, ig(G) ≤ � 3Δ(G)−a(G)
2 �+ 8a(G)− 1.

Recall that ig(G) ≥ 3Δ(G)/2 for every graph G so that the difference between
the upper and the lower bound on ic(G) only depends on the arboricity of G.

It is not difficult to observe that a(G) ≤ k whenever G is a k-degenerate
graph. Hence we get the following corollary, which improves Andres’ Theorem
and answers in the negative a question posed in [1]:

Corollary 3. If G is a k-degenerate graph, then ig(G) ≤ � 3Δ(G)−k
2 �+ 8k − 1.

Since outerplanar graphs and planar graphs have arboricity at most 2 and 3,
respectively, we get as a corollary of Theorem 2 the following:

Corollary 4.

(i) ig(G) ≤ � 3Δ(G)
2 �+ 6 for every forest G,

(ii) ig(G) ≤ � 3Δ(G)
2 �+ 14 for every outerplanar graph G,

(iii) ig(G) ≤ � 3Δ(G)
2 �+ 21 for every planar graph G.

In a companion paper [5], we prove that ig(G) ≤ � 3Δ(G)
2 �+ 4 for every forest

G, using a refinement of the strategy introduced in this paper.
This paper is organised as follows: we detail Alice’s strategy in Section 2 and

prove Theorem 2 in Section 3.

2 Alice’s Strategy

We will give a strategy for Alice which allows her to win the incidence coloring
game on a graph G with arboricity a(G) whenever the number of available colors
is at least � 32Δ(G)�+8a(G)− 1. This strategy will use the concept of activation
strategy [2], often used in the context of the ordinary graph coloring game.

Let G be a graph with arboricity a(G) = a. We partition the edges of G into
a forests F1, ..., Fa, each forest containing a certain number of trees. For each
tree T , we choose an arbitrary vertex of T , say rT , to be the root of T .

Notation. Each edge with endvertices u and v in a tree T will be denoted by
uv if distT (u, rT) < distT (v, rT), and by vu if distT (v, rT) < distT (u, rT), where
distT stands for the distance within the tree T (in other words, we define an
orientation of the graph G in such a way that all the edges of a tree T are
oriented from the root towards the leaves).

We now give some notation and definitions we will use in the sequel (these
definitions are illustrated in Fig. 1).

– For every edge uv belonging to some tree T , we say the incidence (u, uv) is
a top incidence whereas the incidence (v, uv) is a down incidence. We then
let t(uv) = t(v, vu) = (u, uv) and d(uv) = d(u, uv) = (v, uv).
Note that each vertex in a forest Fi is incident to at most one down incidence
belonging to Fi, so that each vertex in G is incident to at most a down
incidences.

Incidence Coloring Game and Arboricity of Graphs 109

– For every incidence i belonging to some edge uv ∈ E(G), let tF (i) =
{t(wu), wu ∈ E(G)} be the set of top-fathers of i, dF (i) = {d(wu), wu ∈
E(G)} be the set of down-fathers of i and F (i) = tF (i) ∪ dF (i) be the set
of fathers of i.

Note that each incidence has at most a top-fathers and at most a down-
fathers.

– For every incidence i belonging to some edge uv ∈ E(G), let tS(i) =
{t(vw), vw ∈ E(G)} be the set of top-sons of i, dS(i) = {d(vw), vw ∈ E(G)}
be the set of down-sons of i and S(i) = tS(i)∪ dS(i) be the set of sons of i.

Note that each incidence has at most Δ(G) − 1 top-sons and at most
Δ(G)− 1 down-sons.

– For every incidence i belonging to some edge uv ∈ E(G), let tB(i) =
{t(uw), uw ∈ E(G)} − {i} be the set of top-brothers of i, dB(i) = {d(uw),
uw ∈ E(G)}− {i} be the set of down-brothers of i and B(i) = tB(i)∪ dB(i)
be the set of brothers of i.

Note that each top incidence i has at most Δ(G)−|tF (i)|−1 top-brothers
and Δ(G)− |tF (i)| down-brothers while each down incidence j has at most
Δ(G)− |tF (j)| top-brothers and Δ(G) − |tF (j)| − 1 down-brothers.

Note also that any two brother incidences have exactly the same set of
fathers.

– Finally, for every incidence i belonging to some edge uv ∈ E(G), let tU(i) =
{t(wv), wv ∈ E(G)} be the set of top-uncles of i, dU(i) = {d(wv), wv ∈
E(G)} be the set of down-uncles of i and U(i) = tU(i)∪ dU(i) be the set of
uncles of i (the term ”uncle” is not metaphorically correct since the uncle
of an incidence i is another father of the sons of i rather than a brother of a
father of i).

Note that each incidence has at most a − 1 top-uncles and at most a −
1 down-uncles. Moreover, we have |dU(i)| + |tS(i)| ≤ Δ(G) − 1 for every
incidence i ∈ I(G).

Fig. 1 illustrates the above defined sets of incidences. Each edge is drawn in
such a way that its top incidence is located above its down incidence. Incidence
i is drawn as a white box, top incidences are drawn as grey boxes and down
incidences (except i) are drawn as black boxes.

We now turn to the description of Alice’s strategy. For each set I of incidences,
we will denote by Ic the set of colored incidences of I. We will use an activation
strategy. During the game, each uncolored incidence may be either active (if Alice
activated it) or inactive. When the game starts, every incidence is inactive. When
an active incidence is colored, it is no longer considered as active. For each set
I of incidences, we will denote by Ia the set of active incidences of I (Ia and Ic
are therefore disjoint for every set of incidences I).

We denote by Φ the set of colors used for the game, by φ(i) the color of an
incidence i and, for each set I of incidences, we let φ(I) =

⋃
i∈I φ(i). As shown

by Fig. 1, the set of forbidden colors for an uncolored incidence i is given by:

– φ(F (i) ∪B(i) ∪ tS(i) ∪ dU(i)) if i is a top incidence,
– φ(dF (i) ∪ tB(i) ∪ S(i) ∪ U(i)) if i is a down incidence.

110 C. Charpentier and É. Sopena

i

tU(i)

dU(i) dB(i)

tB(i)

dS(i)

tF (i)

dF (i)

tS(i)

Fig. 1. Incidences surrounding the incidence i

Our objective is therefore to bound the cardinality of these sets. We now define
the subset In of neutral incidences of I(G), which contains all the incidences j
such that:

(i) j is not colored, and
(ii) all the incidences of F (j) are colored.

We also describe what we call a neutral move for Alice, that is a move Alice
makes only if there is no neutral incidence and no activated incidence in the game.
Let i0 be any uncolored incidence of I(G). Since there is no neutral incidence,
either there is an uncolored incidence i1 in dF (i0), or all the incidences of dF (i0)
are colored and there is an uncolored incidence i1 in tF (i0). We define in the
same way incidences i2 from i1, i3 from i2, and so on, until we reach an incidence
that has been already encountered. We then have ik = i� for some integers k
and �, with k ≤ �. The neutral move of Alice then consists in activating all the
incidences within the loop and coloring any one of them.

Alice’s strategy uses four rules. The first three rules, (R1), (R2) and (R3)
below, determine which incidence Alice colors at each move. The fourth rule
explains which color will be used by Alice when she colors an incidence.

(R1) On her first move,

– If there is a neutral incidence (i.e., in this case, an incidence without
fathers), then Alice colors it.

– Otherwise, Alice makes a neutral move.

(R2) If Bob, in his turn, colors a down incidence i with no uncolored incidence
in dF (i), then

(R2.2.1) If there are uncolored incidences in dB(i), then Alice colors one
of them,

(R2.2.2) Otherwise,

Incidence Coloring Game and Arboricity of Graphs 111

– If there is a neutral incidence or an activated incidence in
I(G), then Alice colors it,

– If not, Otherwise, Alice makes a neutral move.
(R3) If Bob colors another incidence, then Alice climbs it. Climbing an incidence

i is a recursive procedure, described as follows:
(R3.1) If i is active, then Alice colors i.
(R3.2) Otherwise, if i is not colored then Alice activates i, and:

– If there are uncolored incidences in dF (i), then Alice climbs
one of them.

– If all the incidences of dF (i) are colored, and if there are un-
colored incidences in tF (i), then Alice climbs one of them.

– If all the incidences of F (i) are colored, then:
• if there is a neutral incidence or an activated incidence in

I(G), then Alice colors it,
• otherwise, Alice makes a neutral move.

(R4) When Alice has to color an incidence i, she proceeds as follows: if i is a
down incidence with |φ(dB(i))| ≥ 4a − 1, she uses any available color in
φ(dB(i)); in all other cases, she chooses any available color.

Observe that, in a neutral move, all the incidences ik, ik+1, . . . , i� form a loop
where each incidence can be reached by climbing the previous one. We consider
that, when Alice does a neutral move, all the incidences are climbed at least one.

Then we have:

Observation 5. When an inactive incidence is climbed, it is activated. When
an active incidence is climbed, it is colored. Therefore, every incidence is climbed
at most twice.

Observation 6. Alice only colors neutral incidences or active incidences (typ-
ically, incidences colored by Rule (R2.2.1) are neutral incidences), except when
she makes a neutral move.

3 Proof of Theorem 2

We now prove a series of lemmas from which the proof of Theorem 2 will follow.

Lemma 7. When Alice or Bob colors a down incidence i, we have

|Sc(i)|+ |Uc(i)| ≤ 4a− 2.

When Alice or Bob colors a top incidence i, we have

|tSc(i)|+ |dUc(i)| ≤ 5a− 1.

Proof. Let first i be a down incidence that has just been colored by Bob or Alice.
If |Sc(i)| = 0, then |Sc(i)|+ |Uc(i)| = |Uc(i)| ≤ |U(i)| ≤ 2a− 2. Otherwise, let j
be an incidence from S(i) which was colored before i.

112 C. Charpentier and É. Sopena

– If j was colored by Bob, then Alice has climbed i or some other incidence
from dU(i) in her next move by Rule (R2.1).

– If j was colored by Alice, then
• either j was an active incidence and, when j has been activated, Alice
has climbed either d(i), or i, or some other incidence from U(i),

• or Alice has made a neutral move and, in the same move, has activated
either d(i), or i, or some other incidence from U(i).

By Observation 5 every incidence is climbed at most twice, and thus |Sc(i)| ≤
2 × (|dU(i)| + 1). Since |dU(i)| ≤ a − 1, we have |Sc(i)| ≤ 2a. Moreover, since
|Uc(i)| ≤ |U(i)| ≤ 2a− 2, we get |Sc(i)|+ |Uc(i)| ≤ 4a− 2 as required.

Let now i be a top incidence that has just been colored by Bob or Alice. If
|tSc(i)| = 0, then |tSc(i)|+ |dUc(i)| = |dUc(i)| ≤ |dU(i)| ≤ a− 1. Otherwise, let
j be an incidence from tS(i) which was colored before i.

– If j was colored by Bob then, in her next move, Alice either has climbed
d(i) or some other incidence from dU(i) by Rule (R2.1), or i or some other
incidence from tU(i) by Rule (R2.3).

– If j was colored by Alice, then
• either j was an active incidence and, when j has been activated, Alice
has climbed either d(i), or i, or some other incidence from U(i),

• or Alice has made a neutral move and, in the same move, has activated
either d(i), or i, or some other incidence from U(i).

By Observation 5 every incidence is climbed at most twice, and thus |tSc(i)| ≤
2 × (|U(i)| + 2). Since |U(i)| ≤ 2a − 2, we have |tSc(i)| ≤ 4a. Moreover, since
|dUc(i)| ≤ |dU(i)| ≤ a− 1, we get |tSc(i)|+ |dUc(i)| ≤ 5a− 1 as required. ��

Lemma 8. Whenever Alice or Bob colors a down incidence i, there is always
an available color for i if |Φ| ≥ Δ(G)+ 5a− 2. Moreover, if |φ(dB(i))| ≥ 4a− 1,
then there is always an available color in φ(dB(i)) for coloring i.

Proof. When Alice or Bob colors a down incidence i, the forbidden colors for i
are the colors of tB(i), dF (i), S(i) and U(i).

Observe that |dF (i)| + |tB(i)| ≤ Δ(G) − 1 for each down incidence i, so
|φ(dF (i))| + |φ(tB(i))| ≤ Δ(G)− 1.

Now, since |φ(S(i))| + |φ(U(i))| ≤ |Sc(i)| + |Uc(i)| ≤ 4a − 2 by Lemma 7,
we get that there are at most Δ(G) + 5a− 3 forbidden colors, and therefore an
available color for i whenever |Φ| ≥ Δ(G) + 5a− 2.

Moreover, since the colors of φ(dF (i)) and φ(tB(i)) are all distinct from those
of φ(dB(i)), there are at most |Sc(i)| + |Uc(i)| ≤ 4a − 2 colors of φ(dB(i)) that
are forbidden for i, and therefore an available color for i whenever |φ(dB(i))| ≥
4a− 1. ��

Lemma 9. For every incidence i, |φ(dB(i))| ≤ � |dB(i)|
2 �+ 2a.

Incidence Coloring Game and Arboricity of Graphs 113

Proof. For every incidence i, as soon as |φ(dB(i))| = 4a − 1, there are at least
4a − 1 colored incidences in dB(i). If dF (i) is not empty, then every incidence
in dF (i) has thus at least 4a − 1 colored sons so that, by Lemma 7, every such
incidence is already colored. During the rest of the game, each time Bob will
color an incidence of dB(i), if there are still some uncolored incidences in dB(i),
then Alice will answer by coloring one of them by Rule (R2.2.1). Hence, Bob

will color at most � |dB(i)−(4a−1)|
2 � of these incidences. Since, by Rule (R3), Alice

uses colors already in φ(dB(i)) for the incidences she colors, we get |φ(dB(i))| ≤
4a− 1 + � |dB(i)−(4a−1)|

2 � ≤ � |dB(i)|
2 �+ 2a as required. ��

Lemma 10. When Alice or Bob colors a top incidence i, there is always an

available color for i whenever |Φ| ≥ � 3Δ(G)−a
2 �+ 8a− 1.

Proof. Let i be any uncolored top incidence. The forbidden colors for i are the
colors of tF (i), dF (i), tB(i), dB(i), dU(i) and tS(i). We have:

– |φ(tF (i))| + |φ(tB(i))| ≤ |tF (i)|+ |tB(i)| ≤ Δ(G)− 1,

– |φ(dF (i))| ≤ |dF (i)| ≤ a and, by Lemma 9, |φ(dB(i))| ≤ � |dB(i)|
2 �+2a; since

|dF (i)|+ |dB(i)| ≤ Δ(G), we get

|φ(dF (i))| + |φ(dB(i))| ≤ |dF (i)|+ �Δ(G)−|dF (i)|
2 �+ 2a

= � 3|dF (i)|
2 �+ �Δ(G)

2 �+ 2a

≤ � 3a2 �+ �Δ(G)
2 �+ 2a

= �Δ(G)−a
2 �+ 3a,

– |φ(tS(i))|+ |φ(dU(i))| ≤ 5a− 1 by Lemma 7.

So there are at most � 3Δ(G)−a
2 � + 8a − 2 forbidden colors for i and the result

follows. ��

We are now able to prove our main result:

Proof (of Theorem 2). When Alice applies the above described strategy, we
know by Lemma 10 that every top incidence can be colored, provided |Φ| ≥
� 3Δ(G)−a(G)

2 � + 8a(G)− 1, and by Lemma 8 that this is also the case for every
down incidence.

References

1. Andres, S.: The incidence game chromatic number. Discrete Appl. Math. 157,
1980–1987 (2009)

2. Bartnicki, T., Grytczuk, J., Kierstead, H.A., Zhu, X.: The map coloring game.
Amer. Math. Monthly (November 2007)

3. Bodlaender, H.: On the complexity of some coloring games. Int. J. Found. Comput.
Sci. 2, 133–147 (1991)

4. Brualdi, R., Massey, J.: Incidence and strong edge colorings of graphs. Discrete
Math. 122, 51–58 (1993)

114 C. Charpentier and É. Sopena

5. Charpentier, C., Sopena, E.: The incidence game chromatic number of forests
(preprint, 2013)

6. Dinski, T., Zhu, X.: Game chromatic number of graphs. Discrete Math. 196, 109–
115 (1999)

7. Gardner, M.: Mathematical game. Scientific American 23 (1981)
8. Hosseini Dolama, M., Sopena, E.: On the maximum average degree and the in-

cidence chromatic number of a graph. Discrete Math. and Theoret. Comput.
Sci. 7(1), 203–216 (2005)

9. Hosseini Dolama, M., Sopena, E., Zhu, X.: Incidence coloring of k-degenerated
graphs. Discrete Math. 283, 121–128 (2004)

10. Kierstead, H.: A simple competitive graph coloring algorithm. J. Combin. Theory
Ser. B 78(1), 57–68 (2000)

11. Kierstead, H., Trotter, W.: Planar graph coloring with an uncooperative partner.
J. Graph Theory 18, 569–584 (1994)

12. Kim, J.: The incidence game chromatic number of paths and subgraphs of wheels.
Discrete Appl. Math. 159, 683–694 (2011)

13. Maydansky, M.: The incidence coloring conjecture for graphs of maximum degree
three. Discrete Math. 292, 131–141 (2005)

14. Sopena, E.: http://www.labri.fr/perso/sopena/TheIncidenceColoringPage
15. Wang, S., Chen, D., Pang, S.: The incidence coloring number of Halin graphs and

outerplanar graphs. Discrete Math. 256, 397–405 (2002)
16. Zhu, X.: The game coloring number of planar graphs. J. Combin. Theory Ser.

B 75(2), 245–258 (1999)
17. Zhu, X.: Refined activation strategy for the marking game. J. Combin. Theory Ser.

B 98(1), 1–18 (2008)

http://www.labri.fr/perso/sopena/TheIncidenceColoringPage

Linear-Time Self-stabilizing Algorithms

for Minimal Domination in Graphs�

Well Y. Chiu and Chiuyuan Chen��

Department of Applied Mathematics, National Chiao Tung University,
Hsinchu 30010, Taiwan

weeeeeeeeell@gmail.com, cychen@mail.nctu.edu.tw

Abstract. A distributed system is self-stabilizing if, regardless of the
initial state, the system is guaranteed to reach a legitimate (correct)
state in finite time. In 2007, Turau proposed the first linear-time self-
stabilizing algorithm for the minimal dominating set (MDS) problem
under an unfair distributed daemon [6]; this algorithm stabilizes in at
most 9n moves, where n is the number of nodes. In 2008, Goddard et al.
[2] proposed a 5n-move algorithm. In this paper, we present a 4n-move
algorithm. We also prove that if an MDS-silent algorithm is preferred,
then distance-1 knowledge is insufficient, where a self-stabilizing MDS
algorithm is MDS-silent if it will not make any move when the starting
configuration of the system is already an MDS.

1 Introduction

Self-stabilization is a concept of designing a distributed system for transient
fault toleration and was introduced by Dijkstra in 1974 [1]. Such a system has
to be able to reach a legal configuration in finite time, given an illegal starting
configuration; and once in a legal configuration, the system may only move to
other legal configurations (in the absence of external interference). The concept
of self-stabilization has been developed for different inter-node communication
styles. In the message-passing model of communication networks, nodes com-
municate by exchanging messages with their neighbors. Each node performs a
sequence of steps. There are different ways to define a step. An algorithm uses
composite atomicity, which allows every atomic step to contain a read operation
and a write operation. It is assumed that our algorithms use composite atomicity
and the message-passing model of communication.

A self-stabilizing algorithm executed in every node comprises a collection of
rules of the form:

〈precondition〉 → 〈statement〉.
The precondition is a Boolean expression involving the states of the node and its
neighbors. The statement updates the state of the node. A rule is enabled if its

� This research was partially supported by the National Science Council of the Re-
public of China under the grants grant NSC100-2115-M-009-004-MY2.

�� Corresponding author.

T. Lecroq and L. Mouchard (Eds.): IWOCA 2013, LNCS 8288, pp. 115–126, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

116 W.Y. Chiu and C. Chen

precondition evaluates to be true. A node is privileged if at least one of its rules
is enabled. The execution of a statement is called a move. It is assumed that the
computation of a precondition and the move are performed in one atomic step,
i.e., rules are atomically executed.

A self-stabilizing algorithm operates in rounds. In every round, every node
checks the preconditions of its rules. Various execution models have been used
and these models are encapsulated within the notion of a scheduler (or daemon).
There are three types of daemons: in every round, the central daemon selects only
one privileged node to make a move; under the synchronous daemon, all privi-
leged nodes move simultaneously; and the distributed daemon selects a nonempty
subset of all privileged nodes to move. A scheduler may be fair or unfair; the for-
mer guarantees that every node is eventually selected for making a move and the
latter only guarantees global system progress, i.e. there is at least one move in
each round. As a matter of fact, an unfair distributed scheduler is more practical
for implementations than the other types of schedulers.

In this paper, we consider a distributed system whose topology is represented
by an undirected, simple graph G = (V,E), whose V represents the set of pro-
cesses and E represents the set of edges (i.e., interconnections between pro-
cesses). Let n = |V |. If two vertices are connected by an edge, they are called
neighbors. A subset S of the vertex set V of a graph G is a dominating set (DS) if
each vertex v is either a member of S or adjacent to a vertex in S. A dominating
set of G is a minimal dominating set (MDS) if none of its proper subsets is a
dominating set of G. A minimal dominating set has an application of clustering
in wireless networks and is maintained for minimizing the number of required
resource centers; see [4]. The MDS problem is that of finding a minimal domi-
nating set in any given graph G. A survey for the self-stabilizing algorithms of
DS, MDS, and other related problems can be found in [3].

The time complexity of proposed algorithms of this paper is measured by
the numbers of moves they perform. The number of moves is well-concerned in
wireless networks with bounded resources. After taking a move, the state of a
node is changed, and then the node informs every adjacent nodes of its new
state. Since communication is the chief action to consume energy, a reduction
of the number of moves prolongs the lifetime of a network. For convenience, if
a distributed algorithm takes at most t moves to stabilize, then we say it is a
t-move algorithm, where t can be a function of n and other parameters of the
graph.

It is challenging to develop an algorithm that takes fewer moves than the best
known result: 5n moves under an unfair distributed daemon. The main contri-
bution of this paper is to propose a 4n-move, self-stabilizing algorithm for the
MDS problem under the unfair distributed daemon. Our algorithm requires the
local distinct identification property, that is, two adjacent nodes must have dis-
tinct identifiers. In particular, it is desired that an MDS algorithm is MDS-silent
(meaning that if the original configuration is already an MDS, then the algorithm

Linear-Time Self-stabilizing Algorithms for Minimal Domination in Graphs 117

should not take any move). Unfortunately, it is impossible for an algorithm to
be MDS-silent if only distance-1 knowledge is accessible. Hence, in this paper,
we propose a 2n-move algorithm by using distance-2 knowledge. We summarize
all the known results in Table 1.

Table 1. Self-Stabilizing algorithms for the minimal dominating set
problem

stabilization time scheduler type

Hedetniemi et al. [5] (2n+ 1)n moves central

Xu et al. [7] 4n rounds synchronous

Turau [6] 9n moves distributed
Goddard et al. [2] 5n moves distributed

this paper (in Sec. 3) 4n moves distributed
this paper (in Sec. 4) 2n moves distributed

This paper is organized as follow. In Section 2, we formally give definitions
of the graph model and self-stabilization, and describe the previous results. In
Section 3, we propose a self-stabilizing algorithm for the MDS problem. In Sec-
tion 4, we discuss the design of a self-stabilizing MDS-silent algorithm by using
distance-2 knowledge. Concluding remarks are given in Section 5.

2 Preliminary

Let V = {i | 1 ≤ i ≤ n} be a set of processes and graph G = (V,E) be
represented as the topology of the distributed system. Let v be a node. A node u
is a neighbor of v if they are adjacent. We assume that the graph G is undirected
and simple. Note that we use the terms nodes and processes interchangeably.

2.1 Self-stabilizing

Let Ωi be the set of all possible combinations of local variables of the processer
i ∈ V . Each element Qi in Ωi denotes a state of process i. A tuple of states of
processes (Q1, Q2, . . . , Qn) forms a configuration of a distributed system. Let Γ
be the set of configurations of G. For any configuration γt at time t, let γt+1 be
a configuration that follows γt. Denote the transition relation by γt → γt+1. A
computation sequence starting from γ0 is an infinite sequence of configurations
γ0, γ1, . . . such that γt → γt+1 for each t ≥ 0.

Let Γ be the set of configurations in a distributed system S. The system
S is self-stabilizing with respect to Λ ⊆ Γ if the following conditions hold:
(Convergence) starting from an arbitrary configuration γ0 ∈ Γ , there exists an
integer t such that γt ∈ Λ in any computation sequence; (Closure) for every

118 W.Y. Chiu and C. Chen

configuration λ ∈ Λ, any configuration that follows λ is also in Λ. Each λ ∈ Λ is
called a legitimate configuration.

In a graph algorithm such as the MDS problem, the states of processes are
categorized into two cases. The first case is state in, with which the process is
considered in the MDS set S with the desired property. On the other hand, if
the process is considered not in S, therefore we say it has state out. The nodes
are referred to as in nodes and out nodes according to their states.

2.2 Previous Results

In [5], Hedetniemi et al. proposed the first MDS self-stabilizing algorithms. Under
a central daemon, the configuration of a graph stables in O(n2) moves. In their
MDS algorithm, every node has two variables: a Boolean indicating its state
is in or out, and a pointer pointing one of its neighbors. For convenience, the
neighbors of state in are called in neighbors. A node will point to the unique
in neighbor, otherwise it will point to null. A node is allowed to enter the MDS
if it has no in neighbor. In contrast, a node will leave the MDS if it has at least
one in neighbor and there is no neighbor pointing to it.

In [7], Xu et al. presented a self-stabilizing algorithm for the MDS problem
using unique identifiers under the synchronous daemon. The stabilization time
is O(n). Like Hedetniemi’s algorithm, every node has two variables: a Boolean
variable and a pointer. A node will point (i) to the unique in neighbor, (ii) to
itself if it has no in neighbor, or (iii) to null if it has more than one in neighbor.
A node will enter the MDS if it has no in neighbor and it has the smallest
identifier within its closed neighborhood. A node will leave the MDS under the
same condition as in Hedetniemi’s algorithm.

In [6], Turau proposed a linear-time self-stabilizing algorithm (called Turau3n)
for MIS problem with the unique identifier assumption. Every node has a variable
that may have one of three different values: in (in the set), out (out of the set),
or wait (an out node with no in neighbor, waiting to join the set). So, Turau3n
goes as follows: an out node that has no neighbor in the MIS will first change
its variable to wait. After doing so, the node may change its variable to in if it
has no neighbor with a lower identifier in the wait variable. Also, an in node
may leave the MIS and change its variable to out if it has an in neighbor.

Based on Turau3n, Turau extended the rules to design the first self-stabilizing
MDS algorithm Turau9n. Each node has two variables. The first three-valued
variable s is defined as the one in Turau3n. The second is a pointer variable p.
An in node changes p to null. An out node changes p to null if there is more than
one in neighbor, or to the only one in neighbor. The entering rule is the same as
in Turau3n. Besides, the rule for leaving is modified by adding the precondition
“there is no in neighbor pointing to it”. Turau’s MDS algorithm Turau9n is a
9n-move algorithm.

In [2], Goddard et al. proposed a 5n-move algorithm Goddard5n for the MDS
problem with nodes having locally distinct identifiers under a distributed dae-
mon. In detail, each node has a Boolean variable s and a three-valued variable c
indicating whether it belongs to MDS and counting the number of in neighbors.

Linear-Time Self-stabilizing Algorithms for Minimal Domination in Graphs 119

A node is allowed to join the MDS if it has no in neighbor, its counter c equals
to 0, and it has no lower identifier neighbor having c = 0. On the other hand,
a node is allowed to leave the MDS if there is an in neighbor and every out

neighbor has c = 2, which means they all have more than one in neighbor.

3 Main Result

The purpose of this section is to present our main result: Well4n, a 4n-move self-
stabilizing algorithm for the MDS problem under an unfair distributed daemon.
We assume that each node has a locally distinct identifier. Well4n uses four
states, which is defined by the four-valued variable state. The range of values of
state is: IN, OUT1, OUT2, and OUT0. A node with state = IN will be referred to
as an in node. Let S = {v : v.state = IN}; i.e., S is the set of in nodes. A node
with state = OUT1 or state = OUT2 or state = OUT0 will be referred to as an out

node. A neighbor is an in (resp., out) neighbor if it is an in (resp., out) node.
The values of state have the following meanings. The value IN indicates that

the node is in the MDS. The value OUT1 means that the node is not in the MDS
and it has a unique in neighbor. The value OUT2 indicates that the node is not
in the MDS and it has at least two in neighbors. The value OUT0 means that
the node is not in the MDS and it does not have any in neighbor.

3.1 The First Algorithm Well4n

Let N(v) denote the set of neighbors of node v, N [v] denote N(v)∪{v}, and v.id
denote the identifier of v. To formally define the rules of Well4n, the following
predicates defined for each node v are needed:

• noInNbr ≡	 ∃w∈N(v) : w.state = IN.
• oneInNbr ≡ ∃unique w∈N(v) : w.state = IN.
• twoInNbr ≡ ∃ at least two w∈N(v) : w.state=IN.
• noBtNbr ≡	 ∃w∈N(v) : w.state=OUT0 ∧ w.id<v.id.
• noDpNbr ≡	 ∃w∈N(v) : w.state = OUT1.

The meaning of the predicates noInNbr and oneInNbr is straightforward;
twoInNbr indicates whether v has two ormore in neighbors. Tomake Well4n eas-
ier to understand, we will not replace oneInNbr with ¬noInNbr ∧ ¬twoInNbr.
We now explain themeaning of noBtNbr andnoDpNbr.When two ormore neigh-
boring nodes want to enter the MDS simultaneously, our algorithm chooses the
one with the smaller (smallest) id. According to this, if v is an out node and has
a neighbor w such that w.state = OUT0 and w.id < v.id, then w is called a better
neighbor. The predicate noBtNbr indicates that v has no better neighbor. Also, if
v is an in node and has a neighbor w with w.state = OUT1, then w is called a de-
pendent neighbor sincew depends on its unique neighbor in theMDS (the neighbor
is v). The predicate noDpNbr indicates that v has no dependent neighbor.

120 W.Y. Chiu and C. Chen

Well4n uses the following six rules and its state diagram is given in Figure 1.

R1. state = OUT0 ∧ noInNbr ∧ noBtNbr → state := IN.
R2. state = IN ∧ oneInNbr ∧ noDpNbr → state := OUT1.
R3. state = IN ∧ twoInNbr ∧ noDpNbr → state := OUT2.
R4. state = OUT0 ∧ oneInNbr → state := OUT1.
R5. (state = OUT1 ∨ state = OUT0) ∧ twoInNbr → state := OUT2.
R6. (state = OUT1 ∨ state = OUT2) ∧ noInNbr → state := OUT0.

IN

OUT1

R2R1

R3
R4

R5

R6 R5

R6

OUT2

OUT0

Fig. 1. The state diagram of Well4n

3.2 Correctness and Convergence

We now prove the correctness of Well4n.

Lemma 1. In any configuration in which no node is privileged, the set S is a
minimal dominating set for G.

Proof. Suppose to the contrary that S is not a minimal dominating set for G.
Then either (i) S is not a dominating set or (ii) S is a dominating set but not
minimal. First consider (i). Since S is not a dominating set, there exists at least
one node u /∈ S which has no in neighbor; let S′ be the set of all such nodes. Since
rule 6 is not enabled, every node in S′ has state = OUT0. Let u0 be the node in
S′ with minimum id. Then u0 satisfies all the constraints of rule 1. Hence, rule 1
is enabled and this contradicts to the assumption that no node is privileged.
Now consider (ii). Since S is a dominating set but not minimal, there must exist
at least one node u ∈ S such that S\{u} is also a dominating set for G. Then
|N(u) ∩ S| ≥ 1 and for all u′ in N(u)\S, we have |N(u′) ∩ S| ≥ 2. Thus, every
node u′ in N(u)\S has twoInNbr = true. Hence, every node u′ in N(u)\S must
have u′.state = OUT2; otherwise rule 5 is enabled on u′. Consequently, node
u has noDpNbr = true and either oneInNbr = true (if |N(u) ∩ S| = 1) or
twoInNbr = true (if |N(u) ∩ S| > 1). Hence, either rule 2 or rule 3 is enabled
on node u, which is a contradiction. ��

For convenience, use Goddard5n to denote the 5n-move algorithm given in
[2]. We now show that Well4n converges faster than Goddard5n. In particular,
we will show that the number of moves of Well4n is at most 4n. Let k be

Linear-Time Self-stabilizing Algorithms for Minimal Domination in Graphs 121

a nonnegative integer and 〈r1, r2, . . . , rk〉 be a sequence of rules (ri’s are not
necessarily distinct). The sequence 〈r1, r2, . . . , rk〉 is called a move sequence if
a node can execute rule r1, then rule r2, . . ., then rule rk. The following two
lemmas show that in any possible move sequence of a specific node, rule 1 and
rule 6 will appear at most once.

Lemma 2. If a node executes rule 1, then it will not execute any other rule.
Consequently, if a node enters the set S, then it will never leave S.

Proof. Let v be a node which executes rule 1. Then v.state is set to IN and
v enters S. By the precondition of rule 1, v has no in neighbor and no better
neighbor; therefore no neighbor of v enters S at the same time. Thus, v is the
only node in N [v] that enters S and therefore both oneInNbr and twoInNbr
are false. After executing rule 1, v.state is IN and the possible rule that v
can execute is either rule 2 or rule 3. Rule 2 is impossible since it requires
oneInNbr = true; rule 3 is also impossible since it requires twoInNbr = true.
Therefore, v will not execute any other rule. The second statement of this lemma
now follows. ��

Lemma 3. A node can execute rule 6 at most once, or equivalently, a node can
set its state to OUT0 at most once.

Proof. Let v be a node which executes rule 6. By the precondition of rule 6, v
has no in neighbor. After executing rule 6, v.state is set to OUT0 and the possible
rule that v can execute is rule 1 or rule 4 or rule 5. If v executes rule 1, then by
Lemma 2, v will not execute any other rule and we have this lemma. If v executes
rule 4, then oneInNbr must be true before rule 4 is enabled, meaning that v has
a neighbor (say, u) which has executed rule 1; by Lemma 2, u will never leave
S and therefore it is impossible to have noInNbr = true, which means that v
could not execute rule 6 again. Similarly, if v executes rule 5, then twoInNbr
must be true before rule 5 is enabled, meaning that v has two neighbors (say, u
and w) which have executed rule 1; by Lemma 2, both u and w will never leave
S and therefore it is impossible to have noInNbr = true, which means that v
could not execute rule 6 again. ��

Theorem 1. The proposed algorithm Well4n is self-stabilizing under an unfair
distributed daemon and it stabilizes after at most 4n− 2 moves with a minimal
dominating set, where n is the number of nodes. Moreover, the bound 4n − 2 is
tight.

Proof. By Lemma 1, Well4n is correct. It suffices to show that any move sequence
of a node is of length at most 4 under an unfair distributed daemon. Let v be
an arbitrary node in G. By Lemma 3, v can execute rule 6 at most once. Thus,
there are two cases: v never executes rule 6 and v executes rule 6 once.

First consider the case that v never executes rule 6. Then v.state never changes
to OUT0. Thus, the move sequence of v is either 〈1〉 or 〈2, 5〉 or 〈4, 5〉. It follows
that any move sequence of v is of length at most 2.

122 W.Y. Chiu and C. Chen

Now consider the case that v executes rule 6 once. In this case, regard a move
sequence of v as the concatenation of a prefix and a suffix. By Lemma 2, the
prefix of any move sequence of v cannot contain 1 since if v executes rule 1 then
v will not execute any other rule, including rule 6. Hence, the possible prefix of
any move sequence of v is either 〈2, 6〉 or 〈3, 6〉 or 〈4, 6〉 or 〈5, 6〉. After v executes
rule 6, v.state changes to OUT0. Thus, the possible suffix of any move sequence
of v is either 〈6, 1〉 or 〈6, 4, 5〉 or 〈6, 5〉. Concatenating the prefix and suffix, we
conclude that any move sequence of v is of length at most 4.

Thus algorithm Well4n stabilizes after at most 4n moves with a minimal dom-
inating set. We now prove that the bound can be strengthen to 4n−2. The cases
of n = 1 and n = 2 are trivial. Suppose n ≥ 3 and one of the processes makes
four moves. By the above argument, this process has two neighbors executing
rule 1. Thus, at least two processes in G make less than 4 moves. Hence, the
upper bound of the number of moves is 4n− 2.

We now prove that the upper bound 4n − 2 is tight. Consider the complete
bipartite graph K2,n−2, n ≥ 3. Let the two nodes in the partite of cardinality
two have the maximum and the minimum identifiers among the n nodes. If
initially all nodes are in state IN, then there is a way that all the rest of the
nodes executes < 3, 6, 4, 5 > but nodes with maximum and minimum identifiers
execute < 3, 6, 1 >. All together 4n− 2 moves are made. ��

4 An MDS-Silent Algorithm

The purpose of this section is to discuss the development of a self-stabilizing
MDS-silent algorithm. We begin with several definitions. A subset S ⊆ V of
nodes in a graph G is called independent if no two nodes in S are adjacent.
An independent set S is a maximal independent set (MIS) if it is not a proper
subset of any independent set. Let k be a positive integer. A distributed sys-
tem is called distance-k information system if every process can access its k-
neighborhood knowledge, i.e., the state information of its distance-1 neighbors,
distance-2 neighbors, . . ., distance-k neighbors [9]. Clearly, a distance-(k + 1)
system is also a distance-k system.

4.1 MDS-Silent Algorithms in Distance-1 Information Systems

It is well known that a maximal independent set is also a minimal dominating
set. Moreover, the stabilizing time of a self-stabilizing MIS algorithm is usually
less than that of a self-stabilizing MDS algorithm. Thus, why bother to develop
a self-stabilizing MDS algorithm? In [6], Turau mentioned:

Since it is desirable that a self-stabilizing algorithm initialized with a
minimal dominating set does not make any moves, MIS-algorithms are
not suitable solutions for the MDS problem.

This characterizes an important feature of a self-stabilizing MDS algorithm: not
to make any move if the system is initialized with a minimal dominating set.

Linear-Time Self-stabilizing Algorithms for Minimal Domination in Graphs 123

We call this important feature MDS-silent. The notion of MIS-silent can be
defined similarly. We have a lemma.

Lemma 4. Any self-stabilizing MIS algorithm is a self-stabilizing MDS algo-
rithm, but not necessarily MDS-silent.

Proof. It is clear that any self-stabilizing MIS algorithm is a self-stabilizing MDS
algorithm. Let G be a path of four nodes v1, v2, v3, v4 and edges (v1, v2), (v2, v3),
(v3, v4). Suppose initially v2, v3 are in nodes and v1, v4 are out nodes. Since
{v2, v3} is not an MIS, any self-stabilizing MIS algorithm will make a move.
However, {v2, v3} is an MDS; thus if the algorithm is MDS-silent, then it should
not make any move. Therefore, a self-stabilizing MIS algorithm may not be
MDS-silent. ��

Unfortunately, unlike self-stabilizing MIS algorithms in [2], which is MIS-
silent, none of the self-stabilizing MDS algorithms Turau9n, Goddard5n, and
Well4n is MDS-silent. All of Turau9n, Goddard5n, and Well4n assume distance-
1 knowledge. We now show that a distance-1 information system could not have
a self-stabilizing MDS-silent algorithm.

Lemma 5. If a distributed system is not a distance-2 information system, then
there exists no self-stabilizing MDS-silent algorithm even if every node has a
unique identifier.

Proof. Suppose this lemma is not true and there exists a self-stabilizing MDS-
silent algorithmA for a distance-1 information system. For convenience, let I and
O denote the state in and out, respectively. Run algorithm A on the following
three graphs:
G1: a path of 4 nodes with initial configuration OIIO,
G2: a path of 4 nodes with initial configuration OIOI,
G3: a path of 5 nodes with initial configuration OIIOI.

Since the initial configuration of G1 is legitimate, A will not make any move
on G1. Since the initial configuration of G2 is also legitimate, A will not make
any move on G2. Now consider G3. Since nodes in the system have distance-1
knowledge only, A cannot distinguish between the first three nodes of G3 and
the first three nodes of G1, and A cannot distinguish between the last two nodes
of G3 and the last two nodes of G2. Hence, for G3, algorithm A stabilizes with
the initial configuration OIIOI, which is not an MDS, a contradiction. ��

4.2 Message Passing Model of Distance-2 Information Systems

A distance-2 information system can be implemented on an ad hoc network
by using the beacon messages and the neighbor list messages of a node to in-
form neighbors of its continued presence and the change of the local state of its
neighborhood.

A distance-2 information system assumes the following about the system.
A link-layer protocol at each node v maintains the identifiers and states of its

124 W.Y. Chiu and C. Chen

neighbors in the neighbor list nbl(v). Furthermore, after exchange the neigh-
bor lists, each node v constructs the 2-neighbor list 2-nbl(v) which contains the
identifies and states of 2-neighbors of v. In detail, each node periodically broad-
casts a beacon message. When a neighboring node u sends a beacon message,
it includes the state of the node u as used in the algorithm. A beacon message
provides information about its neighbor nodes synchronously, and a node takes
action after receiving beacon messages from all neighboring nodes. When node v
receives the beacon signal from a neighbor u which is not in nbl(v), it adds u to
its neighbor list to establishing link (u, v). After nodes v updating its neighbor
list, node v broadcasts nbl(v). All nodes in the neighborhood N(v) know the ex-
istence of link (u, v) according the nbl(v) message and update their 2-neighbor
lists. In the meantime, node v updates 2-nbl(v) according the nbl(u) message.

If node v does not receive the beacon signal from u within a fixed period, it
assumes the link (u, v) is no longer available and removes u from both nbl(v) and
2-nbl(v). A node takes action only after receiving beacon messages or neighbor
list messages from its neighboring nodes.

4.3 An MDS-Silent Algorithm in Distance-2 Information Systems

Now we propose a self-stabilizing MDS-silent algorithm Well2n under an unfair
distributed daemon in a distance-2 information system. We assume that each
node has a unique identifier. Well2n uses a two-valued variable state, which
has values in and out. We use the same terminology as in Section 3 except as
indicated.

To formally define the rules of Well2n, three predicates defined for each node
v are needed:

• noInNbr ≡	 ∃w∈N(v) : w.state = in.

• noBtNbr2 ≡	 ∃w∈N(v) : w.state=out∧ w.id < v.id ∧ w has no in neighbor.

• noDpNbr2 ≡	 ∃w∈N(v) : w.state = out ∧ w has exactly one in neighbor.

Notice that noBtNbr2 and noDpNbr2 require distance-2 knowledge since v has
to check its neighbor’s neighbors’ state. Well2n uses only two rules:

R1. state = out ∧ noInNbr ∧ noBtNbr2 → state := in.
R2. state = in ∧ ¬noInNbr ∧ noDpNbr2 → state := out.

Rule 1 is regarded as the entering rule and rule 2, the leaving rule. An MIS
algorithm usually applies the following entering rule and leaving rule: “A node
having no neighbor in S joins S and a node having a neighbor in S leaves S.”
Well2n follows the entering rule but modifies the leaving rule to be: “A node
leaves S if (i) it has a neighbor in S and (ii) every neighbor is either in S or has
at least two neighbors in S.” We now prove the correctness of Well2n.

Lemma 6. In any configuration in which no node is privileged, the set S is a
minimal dominating set of G.

Linear-Time Self-stabilizing Algorithms for Minimal Domination in Graphs 125

Proof. Suppose to the contrary that S is not a minimal dominating set for G.
Then either (i) S is not a dominating set or (ii) S is a dominating set but not
minimal. Consider (i). Since S is not a dominating set, there exists an out node
having no in neighbor. Let u be such a node with the minimum id. Since u has no
in neighbor and no better neighbor, rule 1 is enabled, which is a contradiction.
Now consider (ii). Since S is a dominating set but not minimal, there must
exist at least one node u ∈ S such that S\{u} is also a dominating set for G.
Then |N(u) ∩ S| ≥ 1 and for all u′ in N(u)\S, |N(u′) ∩ S| ≥ 2. Since both
¬noInNbr and noDpNbr are true for u, rule 2 is enabled on node u, which is a
contradiction. ��

The lemma below shows that Well2n is MDS-silent.

Lemma 7. Well2n will not make any move if the initial configuration is an
MDS.

Proof. Suppose the initial configuration is an MDS. Let S be the set of nodes
with state = in. First consider an arbitrary node u in S. The only rule can be
enabled on u is rule 2. Since S is an MDS, it is impossible that u has an in

neighbor but has no dependent neighbor; otherwise S\{u} is also a dominating
set for G. Thus, at least one of ¬noInNbr and noDpNbr is false and rule 2
cannot be enabled on node u. Next consider an arbitrary node u′ not in S. The
only rule that can be enabled on u′ is rule 1. Since S is an MDS, it is impossible
that u′ has no in neighbor. Thus, noInNbr is false and rule 1 cannot be enabled
on node u′. We have this lemma. ��

Lemma 8. If a node executes rule 1, then it enters S and will never leave S
afterward. Furthermore, neighbors of this node will not enter S.

Proof. Let i be a node that executes rule 1. At this moment all neighbors of i
have state = out and are with a higher id than i. After i enters S, its neighbors
have at least one in neighbor and therefore cannot execute rule 1. The neighbors
of i also cannot execute rule 2 since they have state = out. The only rule that
i can execute next is rule 2, but in order to do so, one of i’s neighbors must
have state = in. As long as i has state = in, this is impossible. We have this
lemma. ��

Theorem 2. The algorithm Well2n is self-stabilizing and MDS-silent under an
unfair distributed daemon. It stabilizes after at most 2n−1 moves with a minimal
dominating set, where n is the number of nodes.

Proof. The theorem follows from Lemmas 6, 7, and 8. The “minus one” part
comes from the fact that in a connected graph of order larger than 1, the size of
any MDS is at most n − 1. ��

To see 2n − 1 in Theorem 2 is tight, consider the star graph of order n with
initial state of each node to be in.

126 W.Y. Chiu and C. Chen

5 Concluding Remarks

It is challenging to design a self-stabilizing MDS using a distributed daemon
that makes fewer than 5n moves. The previous best known algorithm under an
unfair distributed daemon is 5n-move [2]. In this paper we present an 4n-move
algorithm; there exists an example such that Well4n takes 4n− 2 moves. In [9]
and [8], the authors considered distance-2 information systems. In particular, [9]
proposed a n(k+1)-move self-stabilizing minimal {k}-dominating set algorithm;
when k = 1, the algorithm finds an MDS using at most 2n moves. The paper [8]
presented a 2n-move self-stabilizing minimal k-dominating set algorithm; when
k = 1, this algorithm finds an MDS. The algorithms in both [9] and [8] operate
with a central daemon. In this paper, we present an algorithm, which is also
2n-move but under an unfair distributed daemon and hence is more practical.
It is open to design self-stabilizing minimal {k}-dominating or k-dominating set
algorithms under an unfair distributed daemon for k > 2. We also conjecture
that if we relax the MDS-silent property to allow the execution of non-critical
moves, then there will exist an MDS algorithm having the relaxed MDS-silent
property.

References

1. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Communica-
tion of the ACM 17(11), 643–644 (1974)

2. Goddard, W., Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K., Xu, Z.: Self-stabilizing
graph protocols. Parallel Processing Letters 18(1), 189–199 (2008)

3. Guellati, N., Kheddouci, H.: A survey on self-stabilizing algorithms for independent,
domination, coloring, and matching in graphs. Journal Parallel and Distributed
Computing 70(4), 406–415 (2010)

4. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of Domination in
Graphs. Marcel Dekker (1998)

5. Hedetniemi, S.M., Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: Self-stabilizing
algorithms for minimal dominating sets and maximal independent sets. Computer
Mathematics and Applications 46(5–6), 805–811 (2003)

6. Turau, V.: Linear self-stabilizing algorithms for the independent and dominating
set problems using an unfair distributed scheduler. Information Processing Let-
ters 103(3), 88–93 (2007)

7. Xu, Z., Hedetniemi, S.T., Goddard, W., Srimani, P.K.: A synchronous self-stabilizing
minimal domination protocol in an arbitrary network graph. In: Das, S.R., Das, S.K.
(eds.) IWDC 2003. LNCS, vol. 2918, pp. 26–32. Springer, Heidelberg (2003)

8. Turau, V.: Efficient transformation of distance-2 self-stabilizing algorithms. Journal
of Parallel and Distributed Computing 72, 603–612 (2012)

9. Gairing, M., Goddard, W., Hedetniemi, S.T., Kristiansen, P., McRae, A.A.:
Distance-two information in self-stabilizing algorithms. Parallel Processing Let-
ters 14(3–4), 387–398 (2004)

Phase Transition of Random Non-uniform

Hypergraphs

Élie de Panafieu�

Univ Paris Diderot, Sorbonne Paris Cité,
LIAFA, UMR 7089,
75013, Paris, France

Abstract. Non-uniform hypergraphs appear in several domains of com-
puter science as in the satisfiability problems and in data analysis. We
analyze their typical structure before and near the birth of the complex
component, that is the first connected component with more than one
cycle. The model of non-uniform hypergraph studied is a natural gen-
eralization of the multigraph process defined in the “giant paper” [1].
This paper follows the same general approach based on analytic com-
binatorics. We study the evolution of hypergraphs as their complexity,
defined as the excess, increases. Although less natural than the num-
ber of edges, this parameter allows a precise description of the structure
of hypergraphs. Finally, we compute some statistics of the hypergraphs
with a given excess, including the expected number of edges.

Keywords: Hypergraph, phase transition, analytic combinatorics.

1 Introduction

In the seminal article [2], Erdös and Rényi discovered an abrupt change of the
structure of a random graph when the number of edges reaches half the number of
vertices. It corresponds to the emergence of the first connected component with
more than one cycle, immediately followed by components with even more cycles.
The combinatorial analysis of those components improves the understanding
of the objects modeled by graphs and has application in the analysis and the
conception of graph algorithm. The same motivation holds for hypergraphs which
appear for example for the modelisation of databases and xor-formulas.

Much of the literature on hypergraphs is restricted to the uniform case, where
all the edges contain the same number of vertices. In particular, the analysis of
the birth of the complex component can be found in [3] and [4].

There is no canonical choice for the size of a random edge in a hypergraph;
thus several models have been proposed. One is developed in [5], where the size of
the largest connected component is obtained using probabilistic methods. In [6],
Darling and Norris define the important Poisson random hypergraphs model and
analyze its structure via fluid limits of pure jump-type Markov processes.

� This work was partially founded by the ANR Boole and the ANR Magnum.

T. Lecroq and L. Mouchard (Eds.): IWOCA 2013, LNCS 8288, pp. 127–139, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

128 É. de Panafieu

We have not found in the literature much use of the generating function of
non-uniform hypergraphs to investigate their structure, and we intend to fill this
gap. However, similar generating functions have been derived in [7] for a different
purpose: Gessel and Kalikow use it to give a combinatorial interpretation for a
functional equation of Bouwkamp and de Bruijn. The underlying hypergraph
model is a natural generalization of the multigraph process defined in [1].

In section 2 we introduce the hypergraph models, the probability distribution
and the corresponding generating functions. The important notion of excess is
also defined. Section 3 is dedicated to the asymptotic number of hypergraphs
with n vertices and excess k. Some statistics on the random hypergraphs are
derived, including the expected number of edges. The critical excess at which the
first complex component appears is obtained in section 4. For a range of excess
near and before this critical value, we compute the probability that a random
hypergraph contains no complex component. The classical notion of kernel is
introduced for hypergraphs in section 5. It is then used to derive the asymptotic
of connected hypergraphs with n vertices and excess k up to a multiplicative
factor independent of n. Finally, we present in section 6 a surprising result:
although the critical excess is generally different for graphs and hypergraphs,
both models share the same structure at their respective critical excess.

2 Definitions

In this paper, a hypergraph G is a multiset E(G) of m(G) edges. Each edge e is
a multiset of |e| vertices in V (G), where |e| ≥ 2. The vertices of the hypergraph
are labelled from 1 to n(G). We also set l(G) for the size of G, defined by

l(G) =
∑

e∈E(G)

|e| =
∑

v∈V (G)

deg(v).

The notion of excess was first used for graphs in [8], then named in [1], and
finally extended to hypergraphs in [9]. The excess of a connected component C
expresses how far from a tree it is: C is a tree if and only if its excess is −1
and is said to be complex if its excess is strictly positive. Intuitively, a connected
component with high excess is “hard” to treat for a backtracking algorithm. The
excess k(G) of a hypergraph G is defined by

k(G) = l(G)− n(G) −m(G).

A hypergraph may contain several copies of the same edge and a vertex may
appear more than once in an edge; thus we are considering multihypergraphs.
A hypergraph with no loop nor multiple edge is said to be simple. Let us recall
that a sequence is by definition an ordered multiset. We define NumbSeq(G)
as the number of sequences of nonempty sequences of vertices that lead to G.
For example, the sequences (1, 2), (2, 3) and (3, 2), (1, 2) represent the same
hypergraph, but not (2, 1), (1, 3). If G is simple, then NumbSeq(G) is equal

Phase Transition of Random Non-uniform Hypergraphs 129

to m(G)!
∏

e∈E(G) |e|!, otherwise it is smaller. We associate to any family F of
hypergraphs the generating function

F (z, w, x) =
∑
G∈F

NumbSeq(G)

m(G)!

(∏
e∈E(G)

ω|e|
|e|!

)
wm(G)xl(G) z

n(G)

n(G)!
(1)

where ωt marks the edges of size t, w the edges, x the size of the graph and z
the vertices. Therefore, we count hypergraphs with a weight κ

κ(G) =
NumbSeq(G)

m(G)!

∏
e∈E(G)

ω|e|
|e|! (2)

that is the extension to hypergraphs of the compensation factor defined in sec-
tion 1 of [1]. If F is a family of simple hypergraphs, then we obtain the simpler
and natural expression

F (z, w, x) =
∑
G∈F

(∏
e∈E(G)

ω|e|
)
wm(G)xl(G) z

n(G)

n(G)!
. (3)

Remark that the generating function of the subfamily of hypergraphs of excess k
is [yk]F (z/y, w/y, xy), where [xn]

∑
k akx

k denotes the coefficient an.
We define the exponential generating function of the edges as

Ω(z) :=
∑
t≥1

ωt
zt

t!
.

For now on, the (ωt) are considered as a bounded sequence of nonnegative real
numbers with ω0 = ω1 = 0. The value ωt represents how likely an edge of
size t is to appear. Thus, for graphs we get Ω(z) = z2/2, for d-uniform hy-
pergraphs Ω(z) = zd/d!, and for hypergraphs with weight 1 for all size of
edge Ω(z) = ez. To simplify the saddle point proofs, we also suppose that Ω(z)/z
cannot be written as f(zd) for an integer d > 1 and a power serie f with a non-
zero radius of convergence. This implies that eΩ(z)/z is aperiodic. Therefore, we
do not treat the important, but already studied case of uniform hypergraphs.

The generating function of all hypergraphs is

hg(z, w, x) =
∑
n

ewΩ(nx) z
n

n!
. (4)

This expression can be derived from (1) or using the symbolic method presented
in [10]. Indeed, Ω(nx) represents an edge of size marked by x and n possible types
of vertices, and ewΩ(nx) a set of edges. For the family of simple hypergraphs,

shg(z, w, x) =
∑
n

(∏
t

(1 + ωtx
tw)(

n
t)

)
zn

n!
. (5)

130 É. de Panafieu

Similar expressions have been derived in [7]. The authors use them to give a com-
binatorial interpretation of a functional equation of Bouwkamp and de Bruijn.

Comparing (1) with (3), simple hypergraphs may appear more natural than
hypergraphs. But their generating function is more intricated and the asymp-
totics results on hypergraphs can often be extended to simple hypergraphs. This
is another reason not to confine our study to simple hypergraphs.

So far, we have adopted an enumerative approach of the model, but there is
a corresponding probabilistic description. We define HGn,k (resp. SHGn,k) as
the set of hypergraphs (resp. simple hypergraphs) with n vertices and excess k,
and equippe it with the probability distribution induced by the weights (2).
Therefore, the hypergraph G occurs with probability κ(G)/

∑
H∈HGn,k

κ(H).

3 Hypergraphs with n Vertices and Excess k

In this section, we derive the asymptotic of hypergraphs and simple hypergraphs
with n vertices and global excess k. This result is interesting by itself and is a
first step to find the excess k at which the first component with strictly positive
excess is likely to appear.

Theorem 1. Let λ be a strictly positive real value and k = (λ − 1)n, then the
sum of the weights of the hypergraphs in HGn,k is

hgn,k ∼ nn+k

√
2πn

e
Ω(ζ)

ζ n

ζn+k

1√
ζ Ω′′(ζ) − λ

where Ψ(z) denotes the function Ω′(z) − Ω(z)
z and ζ is defined by Ψ(ζ) = λ. A

similar result holds for simple hypergraphs:

shgn,k ∼ nn+k

√
2πn

e
Ω(ζ)

ζ n

ζn+k

exp
(
−ω2

2ζ
2

4 − ζ Ω′′(ζ)
2

)
√

ζ Ω′′(ζ) − λ
.

More precisely, if k = (λ−1)n+xn2/3 where x is bounded, then the two previous

asymptotics are multiplied by a factor exp
(

−x2

2(τ Ω′′(τ)−λ)n
1/3

)
.

Proof. With the convention (1), the sum of the weights of the hypergraphs with n
vertices and excess k is

n![znyk] hg(z/y, 1/y, y) = n![znyk]
∑
n

e
Ω(ny)

y
(z/y)n

n!
= nn+k[yn+k]e

Ω(y)
y n.

The asymptotic is then extracted using the large power scheme presented in [10].

Remark that Ψ(z) =
∑

t ωt(t − 1) z
t−1

t! has nonnegative coefficients, so there is
a unique solution of Ψ(ζ) = λ, and that Ψ(ζ) = λ implies ζ Ω′′(ζ) − λ > 0. For
simple hypergraphs, the coefficient we want to extract from (5) is now

[yn+k]
∏
t

(1 + ωty
t−1)(

n
t) =

nn+k

2iπ

∮
exp

(∑
t

(
n
t

)
log

(
1 + ωt

(
y
n

)t−1)) dy

yn+k+1
.

Phase Transition of Random Non-uniform Hypergraphs 131

The sum in the exponential can be rewritten

Ω(y)

y
n+

∑
t

(
n

t

)(
log(1 + ωt

(y

n

)t−1
)− ωt

(y

n

)t−1)
−
(

nt

t!
−
(
n

t

))
ωt

(y

n

)t−1

which is Ω(y)
y n − ω2

2y
2

4 − yΩ′′(y)
2 + O(1/n) when y is bounded (we use here the

hypothesis that ω0 = ω1 = 0). In the saddle point method, y is close to ζ, which
in our case is fixed with respect to n. Therefore,

n![znyk] shg

(
z

y
,
1

y
, y

)
∼ exp

(
−ω2

2ζ
2

4
− ζ Ω′′(ζ)

2

)
hgn,k .

The factor exp
(
−ω2

2ζ
2

4 − ζ Ω′′(ζ)
2

)
is the asymptotic probability for a hyper-

graph in HGn,k to be simple. For graphs, with Ω(z) = z2/2 and λ = 1/2, we
obtain the same factor e−3/4 as in [1].

We study the evolution of hypergraphs as their excess increases. This choice of
parameter is less natural than the number of edges, but it significantly simplifies
the equations. On the other hand, we can compute statistics on the number of
edges of hypergraphs with n edges and excess k.

Corollary 1. Let λ be a positive value and G a random hypergraph in HGn,k

or in SHGn,k with k = (λ − 1)n, then the asymptotic expectations and factorial
moments of the number m of edges and size l of G are

En,k(m) ∼ Ω(ζ)
ζ n,

∀t ≥ 0, En,k

(
m(m− 1) . . . (m− t)

)
∼
(
Ω(ζ)
ζ n

)t+1

,

En,k(l) ∼ Ω′(ζ)n.

where Ψ(z) denotes the function Ω′(z)− Ω(z)
z and ζ is the solution of Ψ(ζ) = λ.

Reversely, the expectation and variance of the excess k of a random hypergraph
with n vertices and m edges are

En,m(k) = nm
Ω′(n)
Ω(n)

− n−m,

Vn,m(k) =
nm

Ω(n)

(
nΩ′′(n)− n

Ω′(n)2

Ω(n)
+ Ω′(n)

)
.

Proof. Let us recall that if pt denotes the probability that a discret random
variable X takes the value t and f(z) =

∑
n pnz

n, then the expectation of X
is f ′(1) and its kth factorial moment is E(X(X − 1) . . . (X − k)) = ∂t+1f(1). By
extraction from (4), the generating functions of the hypergraphs with n vertices
and excess k (resp. m edges) and of the simple hypergraphs in SHGn,k are

hgn,k(w) = nn+k[yn+k]ew
Ω(y)

y n,

hgn,m(y) =
Ω(ny)m

yn+mm!
,

shgn,k(w) = nn+k[yn+k]ew
Ω(y)

y ne−
y Ω′′(y)

2 w−ω2
2y2

4 w2+O(1/n)

132 É. de Panafieu

where w and y mark respectively the number of edges and the excess. There-
fore, the probability generating function corresponding to the distribution of m
is hgn,k(w)/ hgn,k(1), and similarly for k. The asymptotics are then derived as
in the proof of theorem 1.

The variance of m(G) for G in HGn,k cannot be straightforward derived from
this corollary, because the asymptotic approximations of the factorial moments
cannot be summed. If more terms of the asymptotic expansion of the factorial
moments are derived, this variance can be bounded. However, it varies greatly
with the parameters (ωt). For example, the variance for graphs is 0, since all the
graphs with n vertices and excess k have exactly k + n edges.

4 Birth of the Complex Component

Let us recall that a connected hypergraph is complex if its excess is strictly posi-
tive. In order to locate the global excess k at which the first complex component
appears, we compare the asymptotic numbers of hypergraphs and hypergraphs
with no complex component.

We follow the conventions established in [11]: a walk of a hypergraph G
is a sequence v0, e1, v1, . . . , vt−1, et, vt where for all i, vi ∈ V (G), ei ∈ E(G)
and {vi−1, vi} ⊂ ei. A path is a walk in which all vi and ei are distinct. A walk
is a cycle if all vi and ei are distinct, except v0 = vt. Connectivity, trees and
rooted trees are then defined in the usual way.

A unicycle component is a connected hypergraph that contains exactly one
cycle. We also define a path of trees as a path that contains no cycle, plus a
rooted tree hooked to each vertex, except to the two ends of the path. It can
equivalently be defined as an unrooted tree with two distinct marked leaves.

Lemma 1. Let T , U , V and P denote the generating functions of rooted trees,
unrooted trees, unicycle components and paths of trees, using the variable z to
mark the number of vertices, then

T (z) = zeΩ
′(T (z)), (6)

U(z) = T (z) + Ω(T (z))− T (z)Ω′(T (z)), (7)

V (z) =
1

2
log

1

1− T (z)Ω′′(T (z))
, (8)

P (z) =
Ω′′(T (z))

1− T (z)Ω′′(T (z))
. (9)

Proof. Those expressions can be derived from the tools presented in [10]. Equa-
tion (6) means that a rooted tree is a vertex (the root) and a set of edges from
which a vertex has been removed and the other vertices replaced by rooted trees.
Equation (7) is a classical consequence of the dissymmetry theorem described
in [12] and studied in [13]. It can be checked that z∂zU = T . Unicycle compo-
nents are cycles of rooted trees, which implies (8).

Phase Transition of Random Non-uniform Hypergraphs 133

Theorem 3 counts the hypergraphs with no complex component. A phase
transition occurs when k

n reaches the critical value Λ − 1, defined in the next
theorem, which corresponds to the coalescence of two saddle points. To extract
the asymptotics, we need the following general theorem, borrowed from [14] and
adapted for our purpose (in the original theorem, μ = 0). It is also close to the
lemma 3 of [1].

Theorem 2. We consider a generating function H(z) with nonnegative coeffi-
cients and a unique isolated singularity at its radius of convergence ρ. We also
assume that it is continuable in Δ := {z | |z| < R, z /∈ [ρ,R]} and there is
a λ ∈]1; 2[such that H(z) = σ − h1(1 − z/ρ) + hλ(1 − z/ρ)λ + O((1 − z/ρ)2)
as z → ρ in Δ. Let k = σ

h1
n+xn1/λ with x bounded, then for any real constant μ

[zn]
Hk(z)

(1− z/ρ)μ
∼ σkρ−n 1

n(1−μ)/λ
(h1/hλ)

(1−μ)/λG

(
λ, μ;

h
1+1/λ
1

σh
1/λ
λ

x

)
(10)

where G(λ, μ;x) = 1
λπ

∑
k≥0

(−x)k

k! sin
(
π 1−μ+k

λ

)
Γ
(
1−μ+k

λ

)
.

Proof. In the Cauchy integral that represents [zn] Hk(z)
(1−z/ρ)μ we choose for the con-

tour of integration a positively oriented loop, made of two rays of angle ±π/(2λ)
that intersect on the real axis at ρ− n−1/λ, we set z = ρ(1 − tn−1/λ)

[zn]
Hk(z)

(1− z/ρ)μ
∼ −σkρ−n

2iπn(1−μ)/λ

∫
t−μe

hλ
h1

tλ
e−x

h1
σ tdt

The contour of integration comprises now two rays of angle ±π/λ intersecting
at −1. Setting u = tλhλ/h1, the contour transforms into a classical Hankel
contour, starting from −∞ over the real axis, winding about the origin and
returning to −∞.

−σkρ−n

2iπn(1−μ)/λ

1

λ
(h1/hλ)

(1−μ)/λ

∫ (0)

−∞
eue−xu1/λh

1+1/λ
1 /(σh

1/λ
λ)u

1−μ
λ −1du

Expanding the exponential, integrating termwise, and appealing to the comple-
ment formula for the Gamma function finally reduces this last form to (10).

Theorem 3. Let thgn,k denote the sum of the weights of the hypergraphs with
no complex component, n vertices and global excess k. Let Ψ(z) denote the func-

tion Ω′(z)− Ω(z)
z , τ be implicitely defined by τ Ω′′(τ) = 1 and Λ = Ψ(τ).

If k = (λ− 1)n+O(n1/3) with 0 < λ < Λ, and Ψ(ζ) = λ, then

thgn,k ∼ nn+k

√
2πn

e
Ω(ζ)

ζ n

ζn+k

1√
ζ Ω′′(ζ)− λ

. (11)

If k = (Λ− 1)n + xn2/3 where x is bounded, then thgn,k is equivalent to

nn+k

√
2πn

e
Ω(τ)

τ n

τn+k

1√
1− Λ

√
3π

2
e
− x2

2(1−Λ)n
1/3− x3

3(1−Λ)2 G

(
3

2
,
1

4
;−32/3γ1/3x

2(1− Λ)

)
(12)

134 É. de Panafieu

where G(λ, μ;x) is defined in theorem 2 and γ = 1 + τ2 Ω′′′(τ). For simple

hypergraphs, there is an additional factor exp
(
− ζΩ′′(ζ)

2 − ω2
2ζ

2

4

)
for the first

asymptotic, and exp
(
− 1

2 − ω2
2τ

2

4

)
for the second one.

Proof. A hypergraph G with no complex component is a forest of trees and uni-
cycle components. The excess of a tree is −1, the excess of a unicycle component
is 0. Since the excess of a hypergraph is the sum of the excesses of its compo-
nents, the excess of G is the opposite of the number of trees. The sum of the
weights of the hypergraphs with no complex component, n vertices and excess k
(which is negative) is

n![zn]
U−k

(−k)!
eV =

n!

(−k)!
[zn]

U−k√
1− T Ω′′(T)

=
n!

(−k)!

1

2iπ

∮
U−k√

1− T Ω′′(T)

dz

zn+1
.

For k = (λ−1)n, there are two saddle points: one implicitly defined by Ψ(ζ) = λ
and the other at τ . Those two saddle points coalesce when λ = Ψ(τ). For smaller
values of λ, the first saddle point dominates and an application of the large power
theorem of [10] leads to (11). When k is around its critical value (Λ − 1)n, we
apply theorem 2. The Newton-Puiseux expansions of T , eV and U can be derived
from lemma 1

T (z) ∼ τ − τ

√
2

γ

√
1− z/ρ,

eV (z) ∼ (2γ)−1/4(1− z/ρ)−1/4,

U(z) = τ(1 − Ψ(τ)) − τ(1 − z/ρ) + τ
2

3

√
2

γ
(1− z/ρ)3/2 +O(1 − z/ρ)2,

where Ψ(z) = Ω′(z)− Ω(z)
z and γ = 1 + τ2 Ω′′′(τ). Using Theorem 2, we obtain

thgn,k ∼ n!
(−k)!

√
3
2

(τ(1−Λ))−k

ρn
√
n

G
(
3
2 ,

1
4 ;−

32/3γ1/3x
2(1−Λ)

)
which reduces to (12).

In the analysis of simple hypergraphs, the generating function V (z) is re-

placed by V (z)− T Ω′′(T)
2 − ω2

2T
2

4 to avoid loops and multiple edges (in unicycle
components, those can only be two edges of size 2).

Combining theorems 1 and 3, we deduce that when k = (λ − 1)n + O(n1/3)
with λ < Λ, the probability that a random hypergraph in HGn,k has no complex
component approaches 1 as n tends towards infinity. When k = (Λ − 1)n +
O(n1/3), this limit becomes

√
2/3 because G(2/3, 1/4; 0) is equal to 2/(3

√
π).

It is remarkable that this value does not depend on Ω, therefore it is the same
as in [15] for graphs. However, the evolution of this probability between the
subcritical and the critical ranges of excess depends on the (ωt).

Corollary 2. For k = (Λ − 1)n + xn2/3 with x bounded, the probability that a
hypergraph in HGn,k or in SHGn,k has no complex component is√

3π

2
exp

(
−x3

3(1− Λ)2

)
G

(
3

2
,
1

4
;−32/3γ1/3x

2(1− Λ)

)
.

Phase Transition of Random Non-uniform Hypergraphs 135

Theorem 2 does not apply whenH(z) is periodic. This is why we restricted ω(y)/y
not to be of the form f(zd) where d > 1 and f(z) is a power serie with a
strictly positive radius of convergence. An unfortunate consequence is that the-
orems 1 and 3 do not apply to d-uniform hypergraphs. However, the expression

of the critical excess is still valid. For the d-uniform hypergraphs, Ω(z) = zd

d! ,

Ψ(z) = (d−1)
d! zd−1 and τd−1 = (d − 2)!, so we obtain k = 1−d

d n for the critical
excess, which corresponds to a number of edges m = n

d(d−1) , a result already

derived in [5].

5 Kernels

In the seminal articles [8] and [16], Wright establishes the connection between the
asymptotic of connected graphs with n vertices and excess k and the enumeration
of the connected kernels, which are multigraphs with no vertex of degree less
than 3. This relation was then extensively studied in [1] and the notions of
excess and kernels were extended to hypergraphs in [9].

A kernel is a hypergraph with additional constraints that ensure that:

– each hypergraph can be reduced to a unique kernel,
– the excesses of a hypergraph and its kernel are equal,
– for any integer k, there is a finite number of kernels of excess k,
– the generating function of hypergraphs of excess k can be derived from the

generating function of kernels of excess k.

Following [9], we define the kernel of a hypergraph G as the result of the
repeated execution of the following operations:

1. delete all the vertices of degree ≤ 1,
2. delete all the edges of size ≤ 1,
3. if two edges (a, v) and (v, b) of size 2 have one common vertex v of degree 2,

delete v and replace those edges by (a, b),
4. delete the connected components that consist of one vertex v of degree 2 and

one edge (v, v) of size 2.

The following theorem has already been derived for uniform hypergraphs
in [9]. We give a new proof and an expression for the generating function of
the clean kernels.

Theorem 4. The number of kernels of excess k is finite and each of them con-
tains at most 3k edges of size 2. We say that a kernel is clean if this bound is
reached. The generating functions of connected clean kernels of excess k is

ck(1 + ω3z
2)2kω3k

2 z2k (13)

where ck = [z2k] log
∑

k
(6k)!

(3!)2k23k(3k)!
z2k

(2k)! and the variables w and x have been

omitted.

136 É. de Panafieu

Proof. By definition, k + n + m =
∑

e∈E |e| =
∑

v∈V deg(v). By construction,
the vertices (resp. edges) of a kernel have degree (resp. size) at least 2, so

k + n +m ≥ 3m−m2, (14)

k + n +m ≥ 3n− n2, (15)

where n2 (resp. m2) is the number of vertices of degree 2 (resp. edges of size 2).
Furthermore, each vertex of degree 2 belongs to an edge of size at least 3, so

k + n +m ≥ 2m2 + n2. (16)

Summing those three inequalities, we obtain 3k ≥ m2.
This bound is reached if and only if (14), (15) and (16) are in fact equal-

ities. Therefore, the vertices (resp. edges) of a clean kernel have degree (resp.
size) 2 or 3, each vertex of degree 2 belongs to exactly one edge of size 3 and all
the vertices of degree 3 belongs to edges of size 2. Consequently, any connected
clean kernel can be obtained from a connected cubic multigraph with 2k vertices
through substitutions of vertices of degree 3 by groups of three vertices of de-
gree 2 that belong to a common edge of size 3. This means that if f(z) represent
the cubic multigraphs where z marks the vertices, then the generating function
of clean kernels is f(z + ω3z

3). The generating function of cubic multigraphs of

excess k is (6k)!
(3!)2k23k(3k)!

z2k

(2k!) , and a cubic multigraph is a set of connected cubic

multigraphs, so the value (2k)!ck defined in the theorem is the sum of the weights
of the connected cubic multigraphs.

To prove that the total number of kernels of excess k is bounded, we introduce
the dualized kernels, which are kernels where each edge of size 2 contains a vertex
of degree at least 3. This implies the dual inequality of (16) k+n+m ≥ 2n2+m2

that leads to 7k ≥ n+m. Finally, each dualized kernel matches a finite number
of normal kernels by substitution of an arbitrary set of vertices of degree 2 by
edges of size 2.

The previous theorem implies that the generating function of the connected
kernels of excess k is a multivariate polynomial of degree 3k in ω2. One can de-
velop a kernel into a hypergraph by adding rooted trees to its vertices, replacing
its edges of size 2 by paths of trees and adding rooted trees into the edges of
size greater than 2. This matches the following substitutions in the generating

functions: z ← T (z), w2 ← Ω′′(T)
1−T Ω′′(T) and wt ← Ω(t)(T) for all t > 2. There-

fore, there exists a polynomial Pk(X) in Q[X,Ω(X),Ω′(X), . . .] such that the
generating function of connected hypergraphs of excess k is expressed as

chgk(z) =
Pk(T)

(1− T Ω′′(T))3k
. (17)

From there, a singularity analysis gives the asymptotics of connected hyper-
graphs in HGn,k

n![zn] chgk(z) ∼
√
2π

Pk(τ)(2 + 2τ2Ω′′′(τ))−
3k
2

Γ
(
3k
2

) e(Ω
′(τ)−1)n

τn
nn+ 3k−1

2

Phase Transition of Random Non-uniform Hypergraphs 137

where τ , value of T at its dominant singularity, is characterized by τ Ω′′(τ) = 1.
This formula gives the asymptotic number of connected hypergraphs with

respect to n, up to a constant factor Pk(τ), which is computable through the
enumeration of the connected kernels of excess k. This is however unsatisfactory,
because the complexity of this computation is too high. We believe that the ap-
proach developed in [17] for graphs may be the solution. It starts by considering
hypergraphs as sets of trees, unicycle components and connected components of
higher order

hg(z, y) =
∑
n

e
Ω(yn)

y
(z/y)n

n!
= exp

(
y−1U + V +

∑
k

Pk(T)

(1− T Ω′′(T))3k

)
,

from which it may be possible to extract informations on the values Pk(τ).

6 Hypergraphs with Complex Components of Fixed
Excess

The next theorem describes the structure of critical hypergraphs. It general-
izes theorem 5 of [1] about graphs. Interestingly, the result does not depend on
the (ωt).

Theorem 5. Let r1, . . . rq denote a finite sequence of integers and r =
∑q

t=1 trt,
then the limit of the probability for a hypergraph or simple hypergraph with n
vertices and global excess k = (Λ− 1)n+O(n1/3) to have exactly rt components
of excess t for t from 1 to q is

(
4

3

)r
r!

(2r)!

√
2

3

cr11
r1!

cr22
r2!

. . .
c
rq
q

rq!
. (18)

where the (ci) are defined as in Theorem 4. For k = (Λ − 1)n + xn2/3 and x
bounded, the limit of this probability is

3−r c
r1
1

r1!

cr22
r2!

. . .
c
rq
q

rq !

√
3π

2
exp

(
−x3

3(1− Λ)2

)
G

(
3

2
,
1

4
+

3r

2
;−32/3γ1/3x

2(1− Λ)

)
.

Proof. Let Ck(z) denote the generating function of connected hypergraphs of
excess k. Those can be obtained by expansion of the connected kernels of ex-

cess k, so Ck(z) = ck(1 + T 2Ω′′′(T))2k Ω′′(T)3k

(1−T Ω′′(T))3k T
2k + . . . plus terms with a

denominator (1 − T Ω′′(T)) of smaller order. Therefore, when z tends towards

the dominant singularity ρ of T (z), Ck(z) ∼ ck

(√
γ

23/2τ

)k

(1−z/ρ)−3k/2. The sum
of the weights of hypergraphs with global excess k and rt components of excess t

is n![zn] UK−k

(K−k)!e
V C1(z)

r1

r1!
C2(z)

r2

r2!
. . .

Cq(z)
rq

rq !
and an application of Theorem 2 ends

the proof, with G(3/2, 1/4 + 3r/2; 0) = 2
3
√
π

4rr!
(2r)! . Those computations are the

same as in Theorem 3.

138 É. de Panafieu

Remark. We have seen in the proof that around the critical value of the ex-
cess k = (Λ − 1)n, the kernel of a hypergraph is clean with high probability.
In [1], the authors remark that the theorem holds true when q is unbounded,
because the sum of the probabilities (18) over all finite sequences (rt) is 1.

7 Future Directions

Much more information can be extracted from the generating functions (4)
and (5), as the number of edges at which the first cycle appears [15], more statis-
tics on the parameters n, m, k and l for random hypergraphs and more error
terms on the asymptotics presented. In particular, connected non-uniform hy-
pergraphs deserve a dedicated paper, with an expression for the constants Pk(τ)
defined in (17).

In the present paper, for the sake of the simplicity of the proofs, we restrained
our work to the case where eΩ(z)/z is aperiodic. This technical condition can
be waived in the same way Theorem VIII.8 of [10] can be extended to periodic
functions.

In the model we presented, the weight ωt of an edge only depends on its size t.
For some applications, one may need weights that also vary with the number of
vertices n. It would be interesting to measure the impact of this modification on
the phase transition properties described in this paper.

More generally, the study of the relation to other models, as the one presented
in [6] and [18], could lead to new developments and applications.

References

1. Janson, S., Knuth, D.E., Luczak, T., Pittel, B.: The birth of the giant component.
Random Struct. Algorithms 4(3), 233–359 (1993)

2. Erdös, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung.
Acad. Sci. 5, 17 (1960)

3. Karoǹski, M., �Luczak, T.: The phase transition in a random hypergraph. Journal
of Computational and Applied Mathematics 42(1), 125–135 (2002); Probabilistic
Methods in Combinatorics and Combinatorial Optimization

4. Ravelomanana, V.: Birth and growth of multicyclic components in random hyper-
graphs. Theor. Comput. Sci. 411(43), 3801–3813 (2010)

5. Schmidt-Pruzan, J., Shamir, E.: Component structure in the evolution of random
hypergraphs. Combinatorica 5(1), 81–94 (1985)

6. Darling, R.W.R., Norris, J.R.: Structure of large random hypergraphs. Ann. Appl.
Probab., 125–152 (2004)

7. Gessel, I.M., Kalikow, L.H.: Hypergraphs and a functional equation of Bouwkamp
and de Bruijn. J. Comb. Theory, Ser. A 110(2), 275–289 (2005)

8. Wright, E.M.: The number of connected sparsely edged graphs. Journal of Graph
Theory 1, 317–330 (1977)

9. Karoǹski, M., �Luczak, T.: The number of connected sparsely edged uniform hy-
pergraphs. Discrete Mathematics 171(1-3), 153–167 (1997)

10. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press
(2009)

Phase Transition of Random Non-uniform Hypergraphs 139

11. Berge, C.: Graphs and Hypergraphs. Elsevier Science Ltd. (1985)
12. Bergeron, F., Labelle, G., Leroux, P.: Combinatorial Species and Tree-like Struc-

tures. Cambridge University Press (1997)
13. Oger, B.: Decorated hypertrees. CoRR abs/1209.0941 (2012)
14. Banderier, C., Flajolet, P., Schaeffer, G., Soria, M.: Random maps, coalescing sad-

dles, singularity analysis, and airy phenomena. Random Struct. Algorithms 19(3-4),
194–246 (2001)

15. Flajolet, P., Knuth, D.E., Pittel, B.: The first cycles in an evolving graph. Discrete
Mathematics 75(1-3), 167–215 (1989)

16. Wright, E.M.: The number of connected sparsely edged graphs III: Asymptotic
results. Journal of Graph Theory 4(4), 393–407 (1980)

17. Flajolet, P., Salvy, B., Schaeffer, G.: Airy phenomena and analytic combinatorics
of connected graphs. The Electronic Journal of Combinatorics 11, 34 (2004)

18. Bollobás, B., Janson, S., Riordan, O.: Sparse random graphs with clustering, cite
arxiv:0807 (2008)

Domino Tatami Covering Is NP-Complete

Alejandro Erickson and Frank Ruskey�

Department of Computer Science, University of Victoria, V8W 3P6, Canada

Abstract. A covering with dominoes of a rectilinear region is called
tatami if no four dominoes meet at any point. We describe a reduction
from planar 3SAT to Domino Tatami Covering. As a consequence it is
therefore NP-complete to decide whether there is a perfect matching of
a graph that meets every 4-cycle, even if the graph is restricted to be an
induced subgraph of the grid-graph. The gadgets used in the reduction
were discovered with the help of a SAT-solver.

1 Introduction

Imagine that you want to “pave” a rectilinear driveway on the integer lattice
using 1 by 2 bricks. Sometimes this will be possible, but sometimes not, de-
pending on the shape of the driveway. Abstractly, a rectilinear driveway D is a
connected finite induced subgraph of the infinite planar grid-graph, and a paving
with bricks corresponds to a perfect matching. Since D is bipartite, various net-
work flow algorithms can be used to determine whether there is a paving in
low-order polynomial time.

However, an examination of typical paving patterns reveals that another con-
straint is often enforced/desired, probably for both aesthetic reasons and engi-
neering reasons. The constraint is that no four bricks meet at a point. In some
recent papers, this restriction has come to be known as the tatami constraint,
because Japanese tatami mat layouts often adhere to it. The question that we
wish to address in this paper is: What is the complexity of determining whether
D has a paving also satisfying the tatami constraint? We will show that the
problem is NP-complete.

A rectilinear region, R, is a finite subset of the integer grid. We say R is covered
by dominoes if it is covered exactly by non-overlapping dominoes. We describe
a polynomial reduction from the NP-complete problem planar 3SAT to Domino
Tatami Covering (DTC). The gadgets used in the reduction were discovered with
the help of a SAT-solver.

Definition 1 (Domino Tatami Covering (DTC)).

INSTANCE: A rectilinear region, R, represented as n grid squares.
QUESTION: Can R be covered exactly by non-overlapping dominoes such that

no four of them meet at any one point?

� This research was supported in part by an NSERC Discovery Grant

T. Lecroq and L. Mouchard (Eds.): IWOCA 2013, LNCS 8288, pp. 140–149, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Domino Tatami Covering Is NP-Complete 141

Domino tatami coverings have an interesting combinatorial structure, eluci-
dated for rectangles in [12] and further in [5]. The results in these papers, as
well as [6, 4] are enumerative, whereas in this paper we explore tatami coverings
from a computational perspective. There is no comprehensive structure theorem
for tatami coverings of rectilinear grids, but evidently much of the structure is
still there, as is illustrated in Fig. 1. In contrast with other tatami-related re-
sults, however, we make no attempt to characterise this structure. Instead, our
reduction relies on the interactions between coverings of a few specific regions
that are discovered using a SAT-solver.

Fig. 1. A domino tatami covering of a rectilinear region, produced by a SAT-solver

There are some previous complexity results about tilings and domino cover-
ings. Historically, perhaps the first concerned colour-constrained coverings, such
as those of Wang tiles. It is well known, for example, that covering the k×k grid
with Wang tiles is NP-complete ([8]). On the other hand tatami does not appear
to be a special case of these, nor of similar colour restrictions on dominoes (e.g.
[1, 13]).

A more closely related mathematical context is found, instead, among the
graph matching problems discussed by Churchley, Huang, and Zhu, in [2]. In
their paper, an H-transverse matching of a graph G, is a matching M , such that
G − M has no subgraph H . In a tatami covering of the rectilinear grid, G is a
finite induced subgraph of the infinite grid-graph, H is a 4-cycle, and we require
a perfect matching of the edges. In fact, if the matching is not required to be
perfect, the problem is polynomial.

SAT-solvers have been applied to a broad range of industrial and mathematical
problems in the last decade. Our reduction from planar 3SAT uses Minisat ([3]) to
help automate gadget generation, as was also done by Ruepp and Holzer ([11]). It
is easy to see that instances of other locally restricted covering problems can be
expressed as satisfiability formulae, which suggests that SAT-solvers may provide
a methodological applicability in hardness reductions involving those problems.

2 Preliminaries

Let φ be a CNF formula, with variables U , and clauses C. The formula is
planar if there exists a planar graph G(φ) with vertex set U ∪ C and edges

142 A. Erickson and F. Ruskey

{u, c} ∈ E, where one of the literals u or ū is in the clause c. When the clauses
contain at most three literals, φ is an instance of planar 3SAT (P3SAT), which is
NP-complete ([9]).

We construct an instance of DTC which emulates a given instance, φ, of
P3SAT, by replacing the vertices and edges of G(φ) with a rectilinear region,
R(φ), that can be tatami-covered with dominoes if and only if φ is satisfi-
able. Let n = |U ∪ C|. In Sec. 4 we show that R(φ) can be created in O(n)
time, and that it fits in an O(n)×O(n) grid, by using Rosenstiehl and Tarjan’s
algorithm ([10]).

3 Gadgets

In this section we describe wire, NOT gates, and AND gates, which form the re-
quired gadgets. The functionality of our gadgets depends on the coverings of a
certain 8× 8 subgrid.

Lemma 1. Let R be a rectilinear grid, with an 8 × 8 subgrid, S. If a domino
crosses the boundary of S in a domino tatami covering of R, then at least one
corner of S is also covered by a domino that crosses its boundary.

Proof. Suppose R is covered by dominoes, and consider those dominoes which
cover S. Such a cover may not be exact, in the sense that a domino may cross
the boundary of S. If we consider all such dominoes to be monominoes within S,
we obtain a monomino-domino covering of S. This covering inherits the tatami
restriction from the covering of R, so it is one of the 8 × 8 monomino-domino
coverings enumerated in [6] (and/or [5]).

The proof of Lemma 4 in [6] (third paragraph) states that there is a monomino
in at least one corner of S if 0 < m < n; Corollary 2 of [5] states that there is
a monomino in at least one corner of S if m = n (see examples in Fig. 2). This
monomino corresponds to a domino which crosses the boundary in a corner of
S, as required. �

The rectilinear region R(φ) incorporates a network of 8 × 8 squares, whose
centres reside on a 16Z × 16Z grid, and whose corners form part of the boundary
of R(φ). Lemma 1 implies that no domino may cross their boundaries, and thus
each one must be covered in one of the two ways shown in Fig. 3(a). (For proofs
see [12] and Exercise 215, Sec. 7.1.4 in [7]).

The coverings of these squares are related to each other by connecting regions.
The part of an 8× 8 square which borders on a connector may be covered either
by two tiles, denoted by F to signify “false”, or three tiles, denoted by T to
signify “true” (see Fig. 3(a)). Note that the covering of a square is not T or F by
itself, because connectors below and beside it would meet the square at differing
interfaces.

A connector, which imposes a relationship between the coverings of a set of
8 × 8 squares, is verified by showing that it can be covered if and only if the

Domino Tatami Covering Is NP-Complete 143

Fig. 2. All monomino-domino tatami coverings of the square have at least one
monomino in their corners (see [5, 6]). The squares in R(φ) have isolate corners, so
these must be covered in exactly one of the two ways given by Exercise 7.1.4.215 in [7],
shown in the left and right-hand cross-hatched squares in Fig. 3(a).

relationship is satisfied. The connectors we describe were generated with SAT-
solvers, but they are simple enough that we can verify them by hand, as is done
below.

NOT gate. The NOT gate interfaces with two 8×8 squares (see Fig. 3(a)), and can
be covered if and only if these squares are covered with differing configurations.

TF

(a) NOT gate with F and T interfaces. This
also shows the two possible domino cover-
ings of the 8× 8 square.

(b) F−→T. (c) T−→F.

1

(d) F−→F.

1

2

3

5
4

6
7

8

9

(e) T−→T.

Fig. 3. NOT gate can be covered if and only if the input differs from the output. Num-
bered tiles indicate the (non-unique) ordering in which their placement is forced. Red
dotted lines indicate how domino coverings are impeded in (d) and (e).

Wire gadget. Wire transmits T or F through a sequence of squares (see Fig. 4(a)).
A turn may incorporate a NOT gate in order to maintain the same configuration
(see Fig. 4(b)).

144 A. Erickson and F. Ruskey

(a) Unit of wire, carrying T.

Input F

(b) Wire branch and turn, carrying F.

Fig. 4. Wire gadget

AND gate. The AND gate interfaces with two 8×8 input squares, and one output
square (see Fig. 5). It can be covered with dominoes if and only if the output
value is the AND of the inputs (see Figs. 6 and 7).

T

T T

Inputs Output

Fig. 5. AND gate with input (T,T)

Variable gadget. We use a vertical segment of wire. The variable gadget is set to
T or F by choosing the appropriate covering of one of its 8× 8 squares. Its value
(or its negation) is propagated to clause gadgets via horizontal wire gadgets,
representing edges.

Domino Tatami Covering Is NP-Complete 145

T

T T

In Out

(a) TT−→T.

T

F F

In Out

(b) TF−→F.

F

T F

In Out

(c) FT−→F.

F

F F

In Out

(d) FF−→F.

Fig. 6. AND gate coverings

*

F T

In Out

(a) *F−→T.

F

* T

In Out

(b) F*−→T.

T

T F

In Out

(c) TT−→F.

Fig. 7. Impossible AND gate coverings, where * denotes F or T

Clause gadget. The clause gadget is a circuit for ¬(ā∧ (b̄∧ c̄)), or the equivalent
with fewer inputs, ending in a configuration that can be covered if and only if the
output signal of the circuit is T. To satisfy the layout requirements, the inputs
to the clause are vertically translated by wire (see Fig. 8).

4 Layout

Let G(φ) be a planar embedding of the Boolean 3CNF formula φ, using Rosen-
stiehl and Tarjan’s ([10]) algorithm, so that each vertex is represented by a
vertical line segment, and each edge is represented by a horizontal line segment.
All parts lie on integer grid lines, inside of a O(n)×O(n) grid, where n = |U∪C|,
and the embedding is found in O(n) time.

There exists a constant K, which is the same for any planar 3CNF formula,
such that G(φ) can be scaled to fit on the nK × nK grid, and its parts replaced
by the gadgets described above. Each gadget has a constant number of grid
squares, which ensures that R(φ) has O(n2) grid squares altogether.

146 A. Erickson and F. Ruskey

(a)

T

F

(b) End of clause.

Fig. 8. A three input clause gadget from the circuit ¬(ā∧(b̄∧c̄)). Vertical wire translates
horizontal inputs without changing the signal. The end of the clause is coverable if and
only if its signal is T.

The variable gadget is connected to edges by branches. The layout of G(φ)
prevents conflicts between edges meeting the variable gadget on the same side,
while two edges can meet the left and right sides of the variable gadget without
interfering with each other. The inputs of the clause gadget are symmetric, so
there are no conflicts when connecting these to horizontal edges (see Fig. 8(a)).

Example. The planar Boolean formula from Fig. 1 in [9] gives the DTC instance
in Fig. 9.

b

a

d b ∨ d̄

a ∨ b̄ ∨ c

c

Fig. 9. An instance of DTC for the formula (a ∨ b̄ ∨ c) ∧ (b ∨ d̄)

Domino Tatami Covering Is NP-Complete 147

5 SAT-Solver

The search for logical gates required fast testing of small DTC instances. We
reduced DTC to SAT in order to use the SAT-solver, Minisat ([3]), and efficiently
test candidate regions connecting 8×8 squares while satisfying the conditions of
the desired gate. The DTC solver was also allowed to make certain decisions about
the region, rather than simply testing regions generated by another program.

Our search algorithm requires the following inputs:

– an r × c rectangle of grid squares, partitioned into pairwise disjoint sets
K,X,A,C; and,

– a set of partial (good) coverings, G, and partial (bad) coverings, B, of C.

The output, R, is the regionA′∪K, whereA′ ⊆ A, which satisfies the following
constraints.

(g) There exist coverings of R which form partial tatami domino coverings with
each element of G.

(b) There exists no covering of R which forms a partial tatami domino covering
with an element of B.

The outer loop of the search algorithm calls the SAT-solver to find a region
that satisfies all elements of G, and avoids a list of forbidden regions, which is
initially empty. Upon finding such a region, the inner loop checks whether the
region satisfies any element of B. The search succeeds when (g) and (b) are both
satisfied, and fails if the outer loop’s SAT instance has no satisfying assignment.

The search space grows very quickly for several reasons, not least of which is
the fact that 2160 regions are possible within the 20 × 8 rectangle occupied by
our AND gate (if corners are allowed to meet one another). In addition, the list of
forbidden regions, L, becomes too large for the SAT-solver to handle efficiently.

We used two heuristics on the inputs to obtain a feasible search. The first
was searching for a smaller AND gate, which we modified to fit the placement of
the 8× 8 squares. The second was choosing forbidden squares, X , and required
squares, K, to reduce the number of trivially useless regions that are tested.

5.1 DTC as a Boolean Formula

The SAT instances used above are modifications of a formula which is satisfiable
if and only if a given region has a domino tatami covering.

Let R be the region we want to cover, and consider the graph whose vertices
are the grid squares of R, and whose edges connect vertices of adjacent grid
squares. Let H be the set of horizontal edges and let V be the set of vertical
edges. The variables of the SAT instance are H ∪ V , and those variables set to
true in a satisfying assignment are the dominoes in the covering. The clauses are
as follows, where h, h′ ∈ H and v, v′ ∈ V .

1. Ensure a matching: For each pair of incident horizontal edges (h, h′), require
the clause h̄ ∨ h̄′, and similarly for (v, v′), (h, v).

148 A. Erickson and F. Ruskey

2. Ensure the matching is perfect: For each set of edges {h, h′, v, v′}, which are
incident to a vertex, require the clause h ∨ h′ ∨ v ∨ v′.

3. Enforce the tatami restriction: For each 4-cycle, hvh′v′, require the clause
h ∨ h′ ∨ v ∨ v′.

6 Variations and Future Work

There are other locally constrained covering problems that are easily represented
as Boolean formulae. Some of these are obviously polynomial, such as monomino-
domino tatami covering, but others may be NP-complete. SAT-solvers can some-
times be used in such problems to create elaborate gadgets, which may help find
a hardness reduction.

An example problem, whose computational complexity is open, is Lozenge-
only Tatami Covering. This problem is the decision about whether or not a finite
sub-grid of the triangular lattice can be covered with lozenges, such that no 5
lozenges meet at any point. A structure similar to that of tatami coverings occurs
for this constraint (see Fig. 10).

Fig. 10. A triangle-lozenge tatami covering

Our main question about DTC is the complexity of the case where the region
is simply connected (no holes). It seems likely that the problem is still NP-
complete, but a completely new approach will be required.

Secondarily, we are interested in H-transverse perfect matchings for H and G
other than C4 and grid-graphs. Are there other H-transverse perfect matchings
of interest which induce a tatami-like global structure in the containing graph?

Another variant, mildly advocated by Don Knuth (personal communication),
concerns inner corners of the coverings, such as occurs at the upper left in the
letter T in Figure 1. If corners such as these, where a + occurs, are forbidden
but corners such as the upper right one in the I are allowed (a ⊥ shape or one
of its rotations), then the nature of tatami coverings changes. The complexity
of such coverings is unknown.

Domino Tatami Covering Is NP-Complete 149

Acknowledgement. We thank Bruce Kapron for useful conversations about
this problem, and Don Knuth for his comments on an earlier draft. Part of this
research was conducted at the 9th McGill–INRIA Workshop on Computational
Geometry.

References

[1] Biedl, T.: The complexity of domino tiling. In: Proceedings of the 17th Canadian
Conference on Computational Geometry (CCCG), pp. 187–190 (2005)

[2] Churchley, R., Huang, J., Zhu, X.: Complexity of cycle transverse matching prob-
lems. In: Iliopoulos, C.S., Smyth, W.F. (eds.) IWOCA 2011. LNCS, vol. 7056, pp.
135–143. Springer, Heidelberg (2011)

[3] Eén, N., Sörensson, N.: An extensible sat-solver. In: Giunchiglia, E., Tacchella, A.
(eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

[4] Erickson, A., Ruskey, F.: Enumerating maximal tatami mat coverings of square
grids with v vertical dominoes. Submitted to a Journal (2013),
http://arxiv.org/abs/1304.0070

[5] Erickson, A., Ruskey, F., Schurch, M., Woodcock, J.: Monomer-dimer tatami
tilings of rectangular regions. The Electronic Journal of Combinatorics 18(1)
#P109, 24 pages (2011)

[6] Erickson, A., Schurch, M.: Monomer-dimer tatami tilings of square regions. Jour-
nal of Discrete Algorithms 16, 258–269 (2012)

[7] Knuth, D.E.: The Art of Computer Programming: Combinatorial Algorithms, Part
1, 1st edn., vol. 4A. Addison-Wesley Professional (January 2011)

[8] Lewis, H.R.: Complexity of solvable cases of the decision problem for the predicate
calculus. In: 19th Annual Symposium on Foundations of Computer Science, pp.
35–47 (October 1978)

[9] Lichtenstein, D.: Planar formulae and their uses. SIAM Journal on Comput-
ing 11(2), 329–343 (1982)

[10] Rosenstiehl, P., Tarjan, R.E.: Rectilinear planar layouts and bipolar orientations
of planar graphs. Discrete & Computational Geometry 1(1), 343–353 (1986)

[11] Ruepp, O., Holzer, M.: The computational complexity of the Kakuro puzzle, re-
visited. In: Boldi, P. (ed.) FUN 2010. LNCS, vol. 6099, pp. 319–330. Springer,
Heidelberg (2010)

[12] Ruskey, F., Woodcock, J.: Counting fixed-height tatami tilings. The Electronic
Journal of Combinatorics 16(1) #R126, 20 pages (2009)

[13] Worman, C., Watson, M.D.: Tiling layouts with dominoes. In: Proceedings of
the 16th Canadian Conference on Computational Geometry (CCCG), pp. 86–90
(2004)

http://arxiv.org/abs/1304.0070

The Complexity of the Identifying Code

Problem in Restricted Graph Classes�

Florent Foucaud

Universitat Politècnica de Catalunya, Building C3, C/ Jordi Girona 1-3, 08034
Barcelona, Spain

florent.foucaud@gmail.com

Abstract. An identifying code is a subset of vertices of a graph such
that each vertex is uniquely determined by its nonempty neighbourhood
within the identifying code. We study the associated computational prob-
lem Minimum Identifying Code, which is known to be NP-hard, even
when the input graph belongs to a number of specific graph classes such
as planar bipartite graphs. Though the problem is approximable within
a logarithmic factor, it is known to be hard to approximate within any
sub-logarithmic factor. We extend the latter result to the case where
the input graph is bipartite, split or co-bipartite. Among other results,
we also show that for bipartite graphs of bounded maximum degree (at
least 3), it is hard to approximate within some constant factor. We sum-
marize known results in the area, and we compare them to the ones for
the related problem Minimum Dominating Set. In particular, our work
exhibits important graph classes for which Minimum Dominating Set

is efficiently solvable, but Minimum Identifying Code is hard (whereas
in all previously studied classes, their complexity is the same). We also
introduce a graph class for which the converse holds.

1 Introduction

We study the computational complexity of the identifying code problem, where
we want to find a set of vertices in a graph that uniquely identifies each vertex
using its neighbourhood within the set. In particular, we study this complex-
ity according to the graph class of the input. Identifying codes, introduced in
1998 [25], are a special case of the notion of a test cover in hypergraphs, first
mentioned in Garey and Johnson’s book [20]. Test covers have found applications
in the areas of testing individuals (such as patients or computers) for diseases or
faults, see [7,12]. In particular, as graphs model computer networks or buildings,
identifying codes have been applied to the location of threats in facilities [34]
and error detection in computer networks [25].

To avoid confusion, we will usually call hypergraphs and their vertex and edge
sets H = (I, A) and graphs G = (V,E). Given a hypergraph H , a set cover of

� An extended version of this paper, containing the full proofs and further results, is
available on the author’s website [16].

T. Lecroq and L. Mouchard (Eds.): IWOCA 2013, LNCS 8288, pp. 150–163, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

The Complexity of the Identifying Code Problem 151

H is a subset S of its edges such that each vertex v belongs to at least one set S
of S. We say that S dominates v. A test cover of H is a subset T of edges such
that for each pair u, v of distinct vertices of H , there is at least one set T of T
that contains exactly one of u and v [20]. We say that T (and also T) separates
u from v. A set of edges that is both a set cover and a test cover is called a
discriminating code of H [7]. It has to be mentioned that some hypergraphs
may not admit any set cover (if some vertex is not part of any edge) or test
cover (if two vertices belong to the same set of edges).

Given a graph G and a vertex v of G, we denote by N [v] the closed neigh-
bourhood of v. An identifying code of G is a subset C ⊆ V (G) such that C is a
dominating set, i.e. for each v ∈ V (G), N [v] ∩ C 	= ∅ and C is a separating code,
i.e. for each pair u, v ∈ V (G), if u 	= v, then N [u]∩ C 	= N [v]∩ C. The minimum
size of an identifying code of a given graph G will be denoted γID(G). Identifying
codes were introduced in [25]. Note that a graph may not admit a separating
code if it contains twin vertices, i.e. vertices having the same closed neighbour-
hood. In a graph containing no twins, the whole vertex set is an identifying code;
we call such graphs twin-free.

Identifying codes and further related notions have been studied extensively in
the literature. We refer to Lobstein’s on-line bibliography [27] on these topics. In
particular, see [1,2,5,9,15,17,18,21,26,29,31,32] for studies of the computational
complexity of these problems.

For definitions of computational complexity, we refer to the books of Ausiello
et al. and of Garey and Johnson [3,20]. Let us formally define the minimization
problem associated with identifying codes (other problems used herein are de-
fined analogously; we skip their definitions).

Min Id Code

INSTANCE: A graph G.
TASK: Find a minimum-size identifying code of G.

We will study Min Id Code from an approximation point of view, but also from
a decision point of view; in that case Min Id Code is said to be NP-hard if the
associated decision problem (consisting in deciding whether a given graph has
an identifying code of a given size) is NP-hard.

We recall that the class APX is the class of all optimization problems that are
c-approximable for some constant c. We also refer to the class log-APX as the
class of all optimization problems that are f(n)-approximable, where n is the
size of the instance and f is a poly-logarithmic function.

In this paper, we will study specific graph classes, of which many are standard,
such as bipartite graphs, planar graphs or graphs of given maximum degree.
Bipartite graphs which do not have any induced cycle of length more than 4 are
called chordal bipartite (note that they are in general not chordal). Complements
of bipartite graphs are called co-bipartite graphs. Split graphs are those whose
vertex set can be partitioned into a clique and an independent set.

152 F. Foucaud

1.1 Related Work

It is well-known that Min Dominating Set is log-APX-hard (whereas a loga-
rithmic factor approximation exists) [11, 22]. The same properties hold for Min

Test Cover [12] (a result that is easily seen to be transferrable to Min Dis-

criminating Code
1) and Min Id Code (see [5, 26, 32], for different proofs).

Regarding restrictions of the instances to specific graph classes, much is known
for Min Dominating Set: NP-hardness of Min Dominating Set holds for
many classes such as (chordal) bipartite graphs, split graphs, line graphs or
planar graphs, but not for strongly chordal graphs, directed path graphs (which
include the well-known interval graphs), or graphs having a dominating shortest
path (see e.g. [13] for an on-line database, and [22] for a survey). The log-APX-
completeness of Min Dominating Set is known to hold even for bipartite
graphs and split graphs [11], however it does not hold for planar graphs or unit
disk graphs (in which Min Dominating Set admits PTAS algorithms [4, 23])
or in (bipartite) graphs of bounded maximum degree (at least 3), where it is
APX-complete [11].

In comparison, much less is known aboutMin Id Code; extending this knowl-
edge is the main goal of this paper. It was known that, in general,Min Id Code is
NP-hard, even for bipartite graphs [9], planar graphs of maximum degree 3 [1,2],
planar bipartite unit disk graphs [29], line graphs [17], split graphs [15,18], and,
interestingly, interval graphs [15,18]. Regarding the approximation hardness, log-
APX-completeness of Min Id Code is known only for general graphs [5,26,32],
and APX-completeness, for graphs of bounded maximum degree at least 8 [21].

1.2 Our Contribution and Structure of the Paper

We extend the knowledge about the computational complexity of Min Id Code

when restricted to specific classes of graphs. We compare these results to the
corresponding ones for Min Dominating Set; see Table 1 for a summary of
many known complexity results for these problems for selected graph classes.

We show in Section 2 that Min Id Code is log-APX-complete for bipartite,
split and co-bipartite graphs. Prior, three different papers [5,26,32] showed that
Min Id Code is log-APX-complete, but only in general graphs; intuitively speak-
ing, the proximity between Min Discriminating Code and Min Id Code is
used to design simpler reductions. Note that on co-bipartite graphs, Min Domi-

nating Set is trivially solvable in polynomial time; in contrast, our result shows
that Min Id Code is computationally very hard on this class.

In Section 3, we show that Min Id Code is APX-complete for bipartite graphs
of maximum degree 3, improving on a result from Gravier et al. [21]. We also
show that it is NP-hard for the same class with the additional restriction of
planarity, as well as for chordal bipartite graphs.

1 We can reduceMin Test Cover toMin Discriminating Code: given a hypergraph
H , construct H ′ by adding to H a single vertex x and the set V (H) ∪ {x}. Now H
has a test cover of size k if and only if H ′ has a discriminating code of size k + 1.

The Complexity of the Identifying Code Problem 153

Finally, in Section 4, we exhibit a class of graphs, which we call SC-graphs,
where Min Dominating Set is NP-hard, but Min Id Code is solvable in poly-
nomial time. Until now, all known results for given graph classes were showing
that Min Id Code was at least as hard as Min Dominating Set.

Table 1. Comparison of complexity lower bounds,“LB”, and upper bounds, “UB”,
on approximation ratios (as functions of the order n of the input graph) of Min Id

Code and Min Dominating Set for selected graph classes. Underlined entries are new
results proved in this paper. Graph classes for which the precise complexity class of
Min Id Code is not fully determined are marked with (∗). SC-graphs will be defined
in Section 4. Definitions for classes that are not defined here can be found in [13].

Min Id Code Min Dominating Set

graph class LB UB LB UB

in general log-APX-h [5,26,32] O(lnn) [12] log-APX-h [11] O(lnn) [24]

bipartite log-APX-h (Co. 4) O(lnn) [12] log-APX-h [11] O(lnn) [24]

chordal bipartite (∗) NP-h (Th. 15) O(lnn) [12] NP-h [28] O(lnn) [24]

split, chordal log-APX-h (Th. 7) O(lnn) [12] log-APX-h [11] O(lnn) [24]

planar (+ bipartite
NP-h (Th. 11) 7 [31] NP-h [33] PTAS [4]max. degree 3) (∗)

line (∗) APX-h [15] 4 [17] APX-h [10] 2 [10]

K1,�-free (� ≥ 3) log-APX-h (Th. 7) O(lnn) [12] APX-h [10] �− 1 [11]

max. degree Δ
APX-h O(lnΔ) APX-h O(lnΔ)

Δ ≥ 8: [21] [12] Δ ≥ 3: [30] [24]

max. degree Δ ≥ 3
APX-h (Th. 11)

O(lnΔ) [12] APX-h [11] O(lnΔ) [24]
and bipartite

unit disk (∗) NP-h [29] O(lnn) [12] NP-h [8] PTAS [23]

co-bipartite log-APX-h (Th. 7) O(lnn) [12] P (trivial)

interval, (∗) NP-h [18] O(lnn) [12] P [6]

permutation (∗) OPEN O(lnn) [12] P [14]

(planar) SC-graphs (∗) P (Th. 18) NP-h (Th. 19) O(lnn) [24]

2 Bipartite, Co-bipartite and Split Graphs

In this section, we provide three reductions from Min Discriminating Code

to Min Id Code for bipartite, split and co-bipartite graphs. We begin with
preliminary considerations.

154 F. Foucaud

2.1 Useful Bounds and Constructions

Theorem 1 ([7]). Let H = (I, A) be a hypergraph admitting a discriminating
code C. Then |C| ≥ log2(|I|+ 1). If C is inclusion-wise minimal, then |C| ≤ |I|.

We now describe two constructions that ensure that the vertices of some vertex
set A are correctly identified using the vertices of another set L.

Construction 2 (bipartite logarithmic identification of A over (A,L)).
Given two sets of vertices A and L with |A| ≤ 2|L|− 1, the bipartite logarithmic
identification of A over (A,L), denoted LOG(A,L), is the graph of vertex set
A ∪ L and where each vertex of A has a distinct nonempty subset of L as its
neighbourhood.

The next construction is similar, but makes sure that each vertex of A has at
least two neighbours in L.

Construction 3 (non-singleton bipartite logarithmic identification of
A over (A,L)). Given two sets of vertices A and L with |A| ≤ 2|L| − |L| −
1,2 the non-single bipartite logarithmic identification of A over (A,L), denoted
LOG∗(A,L), is the graph of vertex set A ∪ L and where each vertex of A has a
distinct subset of L of size at least 2 as its neighbourhood.

2.2 Bipartite Graphs

Theorem 4. Min Id Code is log-APX-complete, even for bipartite graphs.

Theorem 4 is proved using the following reduction.

Reduction 5. Given a hypergraph (I, A), we construct in polynomial time the
bipartite graph G(I, A) on |I|+ |A|+ 9�log2(|A|+ 1)�+ 3 vertices, with vertex
set V (G(I, A)) = I ∪ A ∪ {x, y, z} ∪ {aj, bj, cj , dj , ej , fj, gj , hj , ij | 1 ≤ j ≤
�log2(|A|+ 1)�}, and edge set:

E (G(I, A)) = {x, y} ∪ {y, z} ∪ {{z, i} | i ∈ I} ∪ E (B(I, A))

∪ E (LOG(A, {aj | 1 ≤ j ≤ �log2(|A|+ 1)�}))
∪ {{aj, bj}, {bj, cj}, {aj, dj}, {dj, gj} | 1 ≤ j ≤ �log2(|A|+ 1)�}
∪ {{dj , ej}, {ej, fj}, {gj, hj}, {hj, ij} | 1 ≤ j ≤ �log2(|A|+ 1)�} .

where B(I, A) denotes the bipartite incidence graph of (I, A) and E (LOG(A,L))
denotes the bipartite logarithmic identification of A over (A,L) (see Construc-
tion 2). The construction is illustrated in Figure 1.

Theorem 6. A hypergraph (I, A) has a discriminating code of size at most k if
and only if graph G(I, A) has an identifying code of size at most k+6�log2(|A|+
1)�+ 2, and one can construct one using the other in polynomial time.

2 There are exactly 2|L| − |L| − 1 distinct subsets of L with size at least 2.

The Complexity of the Identifying Code Problem 155

a�

a1

..
.

b�

c�

d�

g�
h�

i�
e�

f�

b1

c1

d1

g1
h1

i1
e1

f1
x y z

I A

Fig. 1. Reduction from Min Discriminating Code to Min Id Code

Proof. Let D ⊆ A be a discriminating code of (I, A), |D| = k. We define C(D) as
follows: C(D) = D ∪ {x, z} ∪ {aj , cj , dj , fj, gj , ij | 1 ≤ j ≤ �log2(|A| + 1)�}. One
can easily check that C(D) has size k +6�log2(|A|+1)�+ 2. Code C(D) has size
k+6�log2(|A|+1)�+2 is clearly a dominating set. To see that it is an identifying
code of G(I, A), observe that vertex z separates all vertices of I from all vertices
which are not in I ∪ {z}. Vertex z itself is the only vertex dominated only by z
(each vertex of I being dominating by some vertex of D); y is dominated by both
x, y and x, only by itself. Since D a discriminating code of (I, A), all vertices
of I are dominated by a distinct subset of D. Furthermore, due to the bipartite
logarithmic identification of A over (A, {aj | 1 ≤ j ≤ �log2(|A|+1)�}) (and since
each vertex aj belongs to the code), all vertices of A are dominated by a unique
subset of {aj | 1 ≤ j ≤ �log2(|A| + 1)�}. Finally, it is easy to check that all
vertices of type aj , bj, cj , dj , ej , fj, gj , hh, ij are correctly separated.

For the other direction, Let C be an identifying code of G(I, A), |C| = k +
6�log2(|A|+ 1)�+2. We first “normalize” C by constructing an identifying code
C∗ of G(I, A), |C∗| ≤ |C|, such that the two following properties hold:

|C∗ ∩ {V (G(I, A)) \ {I ∪ A}}| = 6�log2(|A|+ 1)�+ 2 (1)

|C∗ ∩ I| = ∅. (2)

To get Condition (1), we replace |C ∩ {V (G(I, A)) \ {I ∪ A}}| by {x, z} ∪
{aj, cj , dj , fj, gj , ij | 1 ≤ j ≤ �log2(|A| + 1)�} to get code C′ (whose structure
is similar to the one of the code constructed in the first part of the proof).
We claim that |C′| ≤ |C|. First of all, observe that we had |C ∩ {V (G(I, A)) \
{I ∪ A}}| ≥ 6�log2(|A|+ 1)�+ 2. To see this, note that vertex z is the only one
separating {x, y}, and |C∩{x, y}| ≥ 1 since C must dominate x. Similarly, for any
j ∈ {1, . . . , log2(|A|+1)}, vertices aj , dj , gj are the only ones separating {bj, cj},
{ej, fj} and {hj, ij}, respectively, and |C ∩ {bj, cj}| ≥ 1, |C ∩ {ej, fj}| ≥ 1 and
|C ∩ {hj, ij}| ≥ 1, since C must dominate cj , fj and ij , respectively.

To fulfill Condition (2), we replace each vertex i ∈ I ∩ C′ by some vertex
in A. If C′ \ {i} is an identifying code, we may just remove i from the code.
Otherwise, note that i is not needed for domination since all vertices of I are
dominated by z and all vertices of A are dominated by some vertex in {aj | 1 ≤
j ≤ �log2(|A| + 1)�}. Hence, i separates i itself from some other vertex i′ in I

156 F. Foucaud

(indeed, one can check that all other types of pairs which could be separated by i
are actually already separated by some vertex of C′∩ (V (G(I, A))\ I). But then,
the pair {i, i′} is unique (suppose i separates i itself from two distinct vertices i′

and i′′ of I, then i′ and i′′ would not be separated by C′, a contradiction). Since
(I, A) admits a discriminating code, there must be some vertex a of A separating
i from some i′. Hence we replace i by a. Doing this for every i ∈ C′ ∩ I, we get
code C∗, and |C∗| ≤ |C′| ≤ |C|.

Using these observations and similar arguments as in the first part of the
proof, one can check that the obtained code C∗ is still an identifying code.

To complete the proof, we claim that C∗∩A is a discriminating code of (I, A):
indeed, all pairs {I, I ′} of I are separated by C∗. By Condition (1), they must
be separated by some vertex of A (note that z is adjacent to all vertices of I),
and we are done. ��

Theorem 6 proves that Min Id Code for bipartite graphs is NP-hard, and
can be used to prove Theorem 4:

Proof (Proof of Theorem 4). We use Theorem 6 to show that any c-approximation
algorithm A for Min Id Code for bipartite graphs can be turned into a 7c-
approximation algorithm for Min Discriminating Code. Min Discriminat-

ing Code being log-APX-complete [12] and Min Id Code being in log-APX, we
get the claim.

Let (I, A) be a hypergraph with optimal value OPT, and let G(I, A) be the
bipartite graph constructed using Reduction 5. By Theorem 6, we have:

γID(G(I, A)) ≤ OPT + 6�log2(|A| + 1)�+ 2. (3)

Let C be an identifying code of G(I, A) computed by A . We have:

|C| ≤ cγID(G(I, A)). (4)

By Theorem 6, we can compute in polynomial time a discriminating code D
of (I, A). Using Inequalities 3 and 4 together with the fact that �log2(|A|)� ≤
OPT ≤ |D| (Theorem 1), we get:3

|D| ≤ |C| − 6�log2(|A|+ 1)� − 2 ≤ cγID(G(I, A)) − 6�log2(|A| + 1)� − 2

≤ c(OPT + 6�log2(|A|+ 1)�+ 2)− 6�log2(|A|+ 1)� − 2

≤ cOPT + (c − 1)(6�log2(|A|)�+ 8) ≤ cOPT + (c − 1)(6OPT + 8)

≤ 7cOPT. ��

2.3 Split Graphs and Co-bipartite Graphs

Theorem 7. Min Id Code is log-APX-complete for split graphs and for co-
bipartite graphs.

3 For the last line inequality, we assume here that OPT ≥ 2.

The Complexity of the Identifying Code Problem 157

Theorem 7 is proved using the two following reductions from Min Discrimi-

nating Code to Min Id Code.

Reduction 8. Given a hypergraph (I, A), we construct in polynomial time the
following split graph Sp(I, A) on |I| + |A| + 6�log2(|A| + 1)� + 1 vertices, with
vertex set V (Sp(I, A)) = K ∪ S (K is a clique and S, an independent set).
More specifically, K = I ∪ {u} ∪ {kj | 1 ≤ j ≤ 2�log2(|A| + 1)�} and S =
A ∪ {v} ∪ {sj, tj | 1 ≤ j ≤ 2�log2(|A|+ 1)�}.

Sp(I, A) has edge set:

E (Sp(I, A)) = {u, v} ∪ E (B(I, A))

∪ E (LOG∗(A, {kj | 1 ≤ j ≤ 2�log2(|A|+ 1)�}))
∪ {{kj , sj}, {kj, tj} | 1 ≤ j ≤ �log2(|A|+ 1)�}
∪ {a, b | a, b ∈ K, a 	= b},

where B(I, A) denotes the bipartite incidence graph of (I, A) and E (LOG∗(A,L))
denotes the non-singleton bipartite logarithmic identification of A over (A,L)
(see Construction 3). The construction is illustrated in Figure 2(a).

Reduction 9. Given a hypergraph (I, A), we construct in polynomial time the
following co-bipartite graph G(I, A) on |I| + |A| + 6�log2(|A| + 1)� vertices,
with vertex set V (G(I, A)) = K1 ∪ K2, where K1 and K2 are two cliques over
the two sets of vertices K1 = I ∪ {aj, bj , cj | 1 ≤ j ≤ �log2(|A| + 1)�} and
K2 = A ∪ {dj, ej , fj | 1 ≤ j ≤ �log2(|A|+ 1)�}.

G(I, A) has edge set:

E (G(I,A)) = E (B(I,A)) ∪ E (LOG(A, {aj | 1 ≤ j ≤ �log2(|A|+ 1)�}))
∪ {{aj , dj}, {bj , dj}, {bj , ej}, {bj , fj}, {cj , fj} | 1 ≤ j ≤ �log2(|A|+ 1)�}
∪ {x, y | x, y ∈ K1} ∪ {x, y | x, y ∈ K2}.

where B(I, A) denotes the bipartite incidence graph of (I, A) and E (LOG(A,L))
denotes the bipartite logarithmic identification of A over (A,L) (see Construc-
tion 2). The construction is illustrated in Figure 2(b).

Proof (Sketch of proof of Theorem 7). Reductions 8 and 9 can be used to show
that, given a hypergraph (I, A), (I, A) has a discriminating code of size at most k
if and only if Sp(I, A) has an identifying code of size at most k + 4�log2(|A| +
1)�+1 and G(I, A) has an identifying code of size at most k+5�log2(|A|+1)�−
2, respectively. Moreover these constructions can be performed in polynomial
time. Using similar arguments as for bipartite graphs, we can show that any c-
approximation algorithm forMin Id Code for split graphs or co-bipartite graphs
can be turned into a 5c- or 6c-approximation algorithm forMin Discriminating

Code, respectively.

158 F. Foucaud

k�

k1

..
.

s�

t�

s1

t1

..
.

u v

K S

I A

(a) Reduction for split graphs

a1

b1

c1

..
.

d1

e1

f1

..
.

K1 K2

I A

(b) Reduction for co-bipartite
graphs

Fig. 2. Two reductions from Min Discriminating Code to Min Id Code

3 Reductions for (Planar) Bipartite Graphs of Bounded
Maximum Degree and Chordal Bipartite Graphs

In this section, we improve results from the literature by showing that Min

Id Code is NP-hard for planar bipartite graphs of maximum degree 3. We also
improve and extend the APX-hardness results forMin Id Code for non-bipartite
graphs of maximum degree at least 8 from [21] by showing that they are APX-
hard even for bipartite graphs of maximum degree 3. Finally, we show that Min

Id Code is NP-hard for chordal bipartite graphs.
We will use the standard concept of L-reductions, that is widely used to prove

APX-hardness of optimization problems.

Definition 10 ([30]). Let P and Q be two optimization problems. An L-
reduction from P to Q is a four-tuple (f, g, α, β) where f and g are polynomial
time computable functions and α, β are positive constants with the following
properties:

1. Function f maps instances of P to instances of Q and for every instance IP
of P , OPTQ(f(IP)) ≤ α · OPTP (IP).

2. For every instance IP of P and every solution SOLf(IP) of f(IP), g maps the
pair (f(IP), SOLf(IP)) to a solution SOLIP of IP such that |OPTP (IP) −
|SOLIP || ≤ β · |OPTQ(f(IP))− |SOLf(IP)||.

As discovered in [30], if there exists an L-reduction between two optimization
problems P and Q with parameters α and β and it is NP-hard to approximate

The Complexity of the Identifying Code Problem 159

P within ratio rP = 1 + δ, then it is NP-hard to approximate Q within ratio
rQ = 1 + δ

αβ .

3.1 (Planar) Bipartite Graphs of Maximum Degree 3

Theorem 11. Reduction 12 applied to graphs of maximum degree 3 is an L-
reduction with parameters α = 4 and β = 1. Therefore, Min Id Code is APX-
complete, even for bipartite graphs of maximum degree 3. Moreover, Min Id

Code is NP-hard, even for planar bipartite graphs of maximum degree 3.

We prove Theorem 11 using the following reduction.

Reduction 12. Given a graph G, we construct the graph G′ on vertex set

V (G′) = V (G) ∪ {pe, qe | e ∈ E(G)},

and edge set

E(G′) ={{x, pe}, {y, pe}, {pe, qe} | e = {x, y} ∈ E(G)}.

The construction is illustrated in Figure 3 (where vertices of G are circled).

pe

qe

x y

Fig. 3. Reduction 12 from Min Vertex Cover to Min Id Code

For the following claims, let G be a graph and G′, the graph obtained from
G using Reduction 12.

Claim 13. Let N be a vertex cover of G. Using N , one can build an identifying
code of G′ of size at most |N |+ |E(G)|.

Proof. First of all, we may assume that G is connected. Furthermore, it has no
vertex of degree less than 2. Indeed, assuming we have a vertex cover contain-
ing a degree 2-vertex x, we can always replace it by its neigbour in the solution.
Removing x and its neighbour from the graph, one gets a computationally equiv-
alent instance.

Let C = N ∪ {pe | e ∈ E(G)}. Set C is an identifying code of G′: any original
vertex x of G is dominated by the unique set of vertices {pe | x ∈ e, e ∈ E(G)}
(this set having at least two elements). For each edge {x, y} = e ∈ E(G), vertex
pe is dominated by itself and at least one of x, y; qe is dominated by pe only. ��

Claim 14. Let C be an identifying code of G′. One can use C to build a vertex
cover of G of size at most |C| − |E(G)|.

160 F. Foucaud

Proof. For each edge e = {x, y} of G, one of pe, qe belongs to C, since C has to
dominate qe. Moreover, one of x, y belongs to C since pe, qe need to be separated.
Hence, C ∩ V (G) is a vertex cover of G with size at most |C| − |E(G)|. ��

We are now ready to prove Theorem 11. In what follows, let τ(G) denote the
minimum size of a vertex cover of G.

Proof (Proof of Theorem 11). Let G be a graph of maximum degree 3 and G′ the
graph constructed from G using Reduction 12. We have to prove Properties 1
and 2 from Definition 10.

By Claim 13, given an optimal vertex cover N ∗ of G, we can construct an
identifying code C with γID(G′) ≤ |C| ≤ |N ∗| + |E(G)| = τ(G) + |E(G)|. By
Claim 14, given an optimal identifying code C∗ of G′, we can construct a vertex
cover N of G such that τ(G) ≤ |N | ≤ |C∗| − |E(G)| = γID(G)− |E(G)|. Hence:

γID(G′) = τ(G) + |E(G)|. (5)

Proof of Property 1. Since G has maximum degree 3, each vertex can cover

at most three edges, hence we have τ(G) ≥ |E(G)|
3 , so |E(G)| ≤ 3τ(G). Using

Equality (5), we get that γID(G′) = τ(G) + |E(G)| ≤ 4τ(G).

Proof of Property 2. Let C be an identifying code of G′. Using Claim 14 ap-
plied to C, we obtain a vertex cover N with |N | ≤ |C|− |E(G)|. By Equality (5),
we have −τ(G) = |E(G)| − γID(G′). So we obtain:

|N | − τ(G) ≤|C| − |E(G)| + |E(G)| − γID(G′)
|τ(G) − |N || ≤|γID(G′)− |C||.

For the second part of the statement, Min Vertex Cover is known to be
APX-complete for graphs of maximum degree 3 [11]. It is easy to check that the
constructed graphs have maximum degree 3 and are bipartite. For the final part
of the statement, we apply Reduction 12 to Min Vertex Cover for planar
graphs of maximum degree 3, which is known to be NP-hard [19]. Claims 13
and 14 applied to an optimal vertex cover and an optimal identifying code show
that γID(G′) = τ(G) + |E(G)|. ��

3.2 Chordal Bipartite Graphs

Theorem 15. Min Id Code is NP-hard, even for chordal bipartite graphs.

Reduction 16. Given a graph G, we construct the graph G′ on vertex set

V (G′) = V (G) ∪ {ax, bx, cx, dx, ex | x ∈ V (G)},

and edge set

E(G′) =E(G) ∪ {{x, ax}, {x, ex}, {ax, bx}, {ax, cx}, {ax, dx}, {ex, bx},
{ex, cx}, {ex, dx} | x ∈ V (G)}.

The construction is illustrated in Figure 4.

The Complexity of the Identifying Code Problem 161

x

ax

bx cx dx

ex

G

..
.

Fig. 4. Reduction from Min Dominating Set to Min Id Code

To prove Theorem 15, we show that G has a dominating set of size at most k
if and only if G′ has an identifying code of size at most k + 3|V (G)|. The proof
is omitted due to lack of space.

4 Further Classes of Graphs for Which the Complexities
of Min Dominating Set, and Min Id Code Differ

We saw that for co-bipartite graphs, Min Id Code is hard (whereas Min Dom-

inating Set is trivially solvable in polynomial time). In this section, we define
a class for which the converse holds: Min Dominating Set is NP-hard, but
Min Id Code is solvable in polynomial time. We call these graphs SC-graphs.

Definition 17. A graph G is an SC-graph if it can be built from a bipartite
graph with parts S and T and an additional set S′ with |S′| = 2|S| such that:

– for each vertex x of S, there is a path x, ux, vx of length 2 starting at x with
ux, vx ∈ S′, degG(ux) = 2 and degG(vx) = 1, and

– each vertex of T has a distinct neighbourhood within S, and this neighbour-
hood has at least two elements.

An example of an SC-graph is pictured in Figure 5. We have the following
theorems (proofs are omitted due to lack of space).

Theorem 18. Let G be an SC-graph built from a bipartite graph with parts S
and T , with S1, the set of all degree 1-vertices of the pendant paths attached to
the vertices of S. We have γID(G) = 2|S| and S ∪S1 is an identifying code of G.
Hence, Min Id Code can be solved in polynomial time in the class of SC-graphs.

Theorem 19. Min Dominating Set is NP-hard in planar (bipartite) SC-
graphs of maximum degree 4.

162 F. Foucaud

T S S′

Fig. 5. Example of an SC-graph

5 Open Problems

The complexity for Min Id Code is open for several important input graph
classes, as shown in Table 1. Regarding interval graphs, the approximation com-
plexity of Min Id Code is still an open question. It is also of interest to deter-
mine the complexity of Min Id Code for permutation graphs (for which Min

Dominating Set is polynomial-time solvable [14]). Finally, we remark that Min

Dominating Set admits PTAS algorithms for planar graphs [4] and for unit
disk graphs [23]. Does the same hold for Min Id Code?

References

1. Auger, D.: Minimal identifying codes in trees and planar graphs with large girth.
Eur. J. Combin. 31(5), 1372–1384 (2010)

2. Auger, D., Charon, I., Hudry, O., Lobstein, A.: Complexity results for identifying
codes in planar graphs. Int. T. Oper. Res. 17(6), 691–710 (2010)

3. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A.,
Protasi, M.: Complexity and approximation. Springer (1999)

4. Baker, B.S.: Approximation algorithms for NP-complete problems on planar
graphs. J. ACM 41(1), 153–180 (1994)

5. Berger-Wolf, T.Y., Laifenfeld, M., Trachtenberg, A.: Identifying codes and the set
cover problem. In: Proc. 44th Allerton Conf. on Comm. Contr. and Comput. (2006)

6. Booth, K.S., Johnson, H.J.: Dominating sets in chordal graphs. SIAM J. Com-
put. 11(1), 191–199 (1982)

7. Charbit, E., Charon, I., Cohen, G., Hudry, O., Lobstein, A.: Discriminating codes
in bipartite graphs: bounds, extremal cardinalities, complexity. Adv. Math. Com-
mun. 4(2), 403–420 (2008)

8. Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. Discrete Math. 86(1-
3), 165–177 (1990)

9. Charon, I., Hudry, O., Lobstein, A.: Minimizing the size of an identifying or
locating-dominating code in a graph is NP-hard. Theor. Comput. Sci. 290(3), 2109–
2120 (2003)

10. Chleb́ık, M., Chleb́ıková, J.: Approximation hardness of edge dominating set prob-
lems. J. Comb. Optim. 11, 279–290 (2006)

11. Chleb́ık, M., Chleb́ıková, J.: Approximation hardness of dominating set problems
in bounded degree graphs. Inform. Comput. 206, 1264–1275 (2008)

12. De Bontridder, K.M.J., Halldórsson, B.V., Halldórsson, M.M., Hurkens, C.A.J.,
Lenstra, J.K., Ravi, R., Stougie, L.: Approximation algorithms for the test cover
problem. Math. Programm. Ser. B 98, 477–491 (2003)

The Complexity of the Identifying Code Problem 163

13. De Ridder, H.N., et al.: Information System on Graph Classes and their Inclusions
(ISGCI), http://www.graphclasses.org

14. Farber, M., Keil, J.M.: Domination in permutation graphs. J. Algorithm. 6, 309–
321 (1985)

15. Foucaud, F.: Combinatorial and algorithmic aspects of identifying codes in graphs.
PhD thesis, Université Bordeaux 1, France (2012),
http://tel.archives-ouvertes.fr/tel-00766138

16. Foucaud, F.: On the decision and approximation complexities for identifying codes
and locating-dominating sets in restricted graph classes (2013) (manuscript),
http://www-ma4.upc.edu/~florent.foucaud/Research

17. Foucaud, F., Gravier, S., Naserasr, R., Parreau, A., Valicov, P.: Identifying codes
in line graphs. J. Graph Theor. 73(4), 425–448 (2013), doi:10.1002/jgt.21686

18. Foucaud, F., Mertzios, G., Naserasr, R., Parreau, A., Valicov, P.: Identifying codes
in subclasses of perfect graphs. Manuscript (2012)

19. Garey, M.R., Johnson, D.S.: The rectilinear Steiner tree problem is NP-complete.
SIAM J. Appl. Math. 32(4), 826–834 (1977)

20. Garey, M.R., Johnson, D.S.: Computers and intractability: a guide to the theory
of NP-completeness. W. H. Freeman (1979)

21. Gravier, S., Klasing, R., Moncel, J.: Hardness results and approximation algorithms
for identifying codes and locating-dominating codes in graphs. Alg. Oper. Res. 3(1),
43–50 (2008)

22. Haynes, T.W., Hedetniemi, S.T., Slater, P.J. (eds.): Domination in graphs: ad-
vanced topics. Marcel Dekker (1998)

23. Hunt III, H.B., Marathe, M.V., Radhakrishnan, V., Ravi, S.S., Rosenkrantz, D.J.,
Stearns, R.E.: NC-approximation schemes for NP-and PSPACE-hard problems for
geometric graphs. J. Algor. 26, 238–274 (1998)

24. Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput.
Sys. Sci. 9, 256–278 (1974)

25. Karpovsky, M.G., Chakrabarty, K., Levitin, L.B.: On a new class of codes for
identifying vertices in graphs. IEEE T. Inform. Theory 44, 599–611 (1998)

26. Laifenfeld, M., Trachtenberg, A.: Identifying codes and covering problems. IEEE
T. Inform. Theory 54(9), 3929–3950 (2008)

27. Lobstein, A.: Watching systems, identifying, locating-dominating and discriminat-
ing codes in graphs: a bibliography,
http://www.infres.enst.fr/~lobstein/debutBIBidetlocdom.pdf

28. Müller, H., Brandtädt, A.: The NP-completeness of Steiner Tree and Dominating
Set for chordal bipartite graphs. Theor. Comput. Sci. 53, 257–265 (1987)

29. Müller, T., Sereni, J.-S.: Identifying and locating-dominating codes in (random)
geometric networks. Comb. Probab. Comput. 18(6), 925–952 (2009)

30. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complex-
ity classes. J. Comput. Sys. Sci. 43(3), 425–440 (1991)

31. Slater, P.J., Rall, D.F.: On location-domination numbers for certain classes of
graphs. Congr. Numer. 45, 97–106 (1984)

32. Suomela, J.: Approximability of identifying codes and locating-dominating codes.
Inform. Process. Lett. 103(1), 28–33 (2007)

33. Suomela, J.: Answer to the question “Is the dominating set problem restricted to
planar bipartite graphs of maximum degree 3 NP-complete?”,
http://cstheory.stackexchange.com/a/2508/1930

34. Ungrangsi, R., Trachtenberg, A., Starobinski, D.: An implementation of indoor lo-
cation detection systems based on identifying codes. In: Aagesen, F.A., Anutariya,
C., Wuwongse, V. (eds.) INTELLCOMM 2004. LNCS, vol. 3283, pp. 175–189.
Springer, Heidelberg (2004)

http://www.graphclasses.org
http://tel.archives-ouvertes.fr/tel-00766138
http://www-ma4.upc.edu/~florent.foucaud/Research
http://www.infres.enst.fr/~lobstein/debutBIBidetlocdom.pdf
http://cstheory.stackexchange.com/a/2508/1930

Expanding the Expressive Power of Monadic

Second-Order Logic on Restricted Graph Classes

Robert Ganian1 and Jan Obdržálek2

1 Vienna University of Technology, Austria�

rganian@gmail.com
2 Masaryk University, Brno, Czech Republic��

obdrzalek@fi.muni.cz

Abstract. We combine integer linear programming and recent advances
in Monadic Second-Order model checking to obtain two new algorithmic
meta-theorems for graphs of bounded vertex-cover. The first one shows
that the model checking problem for cardMSO1, an extension of the
well-known Monadic Second-Order logic by the addition of cardinality
constraints, can be solved in FPT time parameterized by vertex cover.
The second meta-theorem shows that the MSO partitioning problems
introduced by Rao can also be solved in FPT time with the same pa-
rameter.

The significance of our contribution stems from the fact that these
formalisms can describe problems which are W[1]-hard and even NP-
hard on graphs of bounded tree-width. Additionally, our algorithms have
only elementary dependence on the parameter and formula. We also show
that both results are easily extended from vertex cover to neighborhood
diversity.

1 Introduction

It is a well-known result of Courcelle, Makowski and Rotics that MSO1 (and
LinEMSO1) model checking is in FPT on graphs of bounded clique-width [4].
However, this leads to algorithms which are far from practical – the time com-
plexity includes a tower of exponents, the height of which depends on the MSO1

formula. Recently it has been shown that much faster model checking algorithms
are possible if we consider more powerful parameters such as vertex cover [15] –
with only an elementary dependence of the runtime on both the MSO1 formula
and parameter.

Vertex cover has been generally used to solve individual problems for which
traditional width parameters fail to help (see e.g. [1,6,9,10]). Of course, none of
these problems can be described by the standard MSO1 or LinEMSO1 formalism.
This raises the following, crucial question: would it be possible to naturally ex-
tend the language of MSO1 to include additional well-studied problems without
sacrificing the positive algorithmic results on graphs of bounded vertex-cover?

� Robert Ganian acknowledges support by ERC (COMPLEX REASON, 239962).
�� Jan Obdržálek is supported by the Czech Science Foundation, project P202/11/0196.

T. Lecroq and L. Mouchard (Eds.): IWOCA 2013, LNCS 8288, pp. 164–177, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Expanding the Expressive Power of Monadic Second-Order Logic 165

We answer this question by introducing cardMSO1 (Definition 2.3) as the ex-
tension of MSO1 by linear cardinality constraints – linear inequalities on vertex
set cardinalities and input-specified variables. The addition of linear inequalities
significantly increases the descriptive power of the logic, and allows to capture in-
teresting problems which are known to be hard on graphs of bounded tree-width.
We refer to Section 4 for a discussion of the expressive power and applications
of cardMSO1, including a new result for the c-balanced partitioning problem
(Theorem 4.1).

The first contribution of the article lies in providing an FPT-time model check-
ing algorithm for cardMSO1 on graphs of bounded vertex cover. This extends
the results on MSO1 model checking obtained by Lampis in [15], which intro-
duce an elementary-time FPT MSO1 model checking algorithm parameterized
by vertex cover. However, the approach used there cannot be straightforwardly
applied to formulas with linear inequalities (cf. Section 3 for further discussion).

Theorem 1.1. There exists an algorithm which, given a graph G with vertex
cover of size k and a cardMSO1 formula ϕ with q variables, decides if G |= ϕ in

time 22
O(k+q)+|ϕ| + 2k|V (G)|.

The core of our algorithm rests on a combination of recent advances in MSO1

model checking and the use of Integer Linear Programming (ILP). While using
ILP to solve individual difficult graph problems is not new [9], the goal here was
to obtain new graph-algorithmic meta-theorems for frameworks containing a
wide range of difficult problems. The result also generalizes to the neighborhood
diversity parameter introduced in [15] and to MSO2 (as discussed in Section 6).

In the second part of the article, we turn our attention to a different, already
studied extension of MSO1: the MSO partitioning framework of Rao [19]. MSO
partitioning asks whether a graph may be partitioned into an arbitrary number
of sets so that each set satisfies a fixed MSO1 formula, and has been shown
to be solvable in XP time on graphs of bounded clique-width. Although MSO
partitioning is fundamentally different from cardMSO1 and both formalisms ex-
pand the power of MSO1 in different directions, we show that a combination of
MSO1 model checking and ILP may also be used to provide an efficient FPT
model-checking algorithm for MSO1 partitioning parameterized by vertex-cover
or neighborhood diversity.

Theorem 1.2. There exists an algorithm which, given a graph G with vertex
cover of size k and a MSO partitioning instance (ϕ, r) with q variables, decides

if G |= (ϕ, r) in time 22
O(q2k) · |(ϕ, r)| + 2k|V (G)|.

2 Preliminaries and Definitions

2.1 Vertex Cover and Types

In the following text all graphs are simple and without loops. For a graph G we
use V (G) and E(G) to denote the sets of its vertices and edges, and use N(v)
to denote the set of neighbors of a vertex v ∈ V (G).

166 R. Ganian and J. Obdržálek

The graph parameter we are primarily interested in is vertex cover. A key
notion related to graphs of bounded vertex cover is the notion of a vertex type.

Definition 2.1 ([15]). Let G be a graph. Two vertices u, v ∈ V are of the same
type T if N(u) \ {v} = N(v) \ {u}. We use TG to denote the set of all types of
G (or just T if G is clear from the context).

Since each type is associated with its vertices, we also use T to denote the set
of vertices of type T . Note that then TG forms a partition of the set V (G).

For the sake of simplicity, we adopt the convention that, on a graph with a
fixed vertex cover X , we additionally separate each cover vertex into its own
type. Then it is easy to see that each type is an independent set, and a graph
with vertex cover of size k has at most 2k + k types.

It is often useful to divide vertices of the same type further into subtypes. The
subtypes are usually identified by a system of sets, and all subtypes of a given
type form a partition of that type:

Definition 2.2. Let G be a graph and U ⊆ 2V (G) a set of subsets of V (G). Then
two vertices u, v ∈ V (G) are of the same subtype (w.r.t. U) if u, v ∈ T for some
T ∈ TG and ∀U ∈ U .u ∈ U ⇐⇒ v ∈ U . We denote by SUT the set of all subtypes
of a type T ∈ TG, and also define the set of all subtypes of (w.r.t. U) as SUG. (If
G and U are clear form the context, we may write S instead of SUG)

Finally, notice that |SUG | ≤ 2|U||TG|.

2.2 MSO1 and Its Cardinality Extensions

Monadic Second Order logic (MSO1) is a well established logic of graphs. It is
the extension of first order logic with quantification over vertices and sets of
vertices. MSO1 in its basic form can only be used to describe decision problems.
To solve optimization problems we may use LinEMSO1 [4], which is capable of
finding maximum- and minimum-cardinality sets satisfying a certain MSO1 for-
mula. This is useful for providing simple descriptions of well-known optimization
problems such as Minimum Dominating Set (adj is the adjacency relation):

Min(X) : ∀a∃b ∈ X: (adj(a, b) ∨ a = b)

The crucial point is that LinEMSO1 only allows the optimization of set car-
dinalities over all assignments satisfying a MSO1 formula. It is not possible to
use LinEMSO1 to place restrictions on cardinalities of sets considered in the
formula. In fact, such restrictions may be used to describe problems which are
W[1]-hard on graphs of bounded tree-width, whereas all LinEMSO1-definable
problems may be solved in FPT time even on graphs of bounded clique-width
[4].

In this paper we define cardMSO1, an extension of MSO1 which allows re-
strictions on set cardinalities.

Definition 2.3 (cardMSO1). The language of cardMSO1 logic consists of ex-
pressions built from the following elements:

Expanding the Expressive Power of Monadic Second-Order Logic 167

– variables x, y . . . for vertices, and X,Y . . . for sets of vertices
– the predicates x ∈ X and adj(x, y) with the standard meaning
– equality for variables, quantifiers ∀, ∃ and the standard Boolean connectives
– tt and ff as the standard valuation constants representing true and false
– the expressions [ρ1 ≤ ρ2], for which the syntax of the ρ expressions is defined

as ρ ::= n | |X | | ρ + ρ, where n ∈ Z ranges over integer constants and X
over (vertex) set variables.

We call expressions of the form [ρ1 ≤ ρ2] linear (cardinality) constraints, and
write [ρ1 = ρ2] as a shorthand for [ρ1 ≤ ρ2] ∧ [ρ2 ≤ ρ1], and [ρ1 < ρ2] for
[ρ1 ≤ ρ2] ∧ ¬[ρ2 ≤ ρ1]. A formula ϕ of cardMSO1 is an expression of the form
ϕ = ∃Z1 . . . ∃Zm.ϕ such that ϕ is a MSO1 formula with linear constraints and
Z1, . . . , Zm are the only variables which appear in the linear constraints.

To give the semantics of cardMSO1 it is enough to define the semantics of
cardinality constraints, the rest follows the standard MSO1 semantics. Let V :
X → Z be a valuation of set variables. Then the truth value of [ρ1 ≤ ρ2] is
obtained be replacing each occurrence of |X | with the cardinality of V(X) and
evaluating the expression as standard integer inequality.

To give an example, the following cardMSO1 formula is true if, and only if, a
graph is bipartite and both parts have the same cardinality:

∃X1∃X2.(∀v ∈ V.(v ∈ X1 ⇐⇒ ¬v ∈ X2)) ∧ [|X1| = |X2|]∧
(∀u ∈ V.(adj(u, v) =⇒ ((u ∈ X1 ∧ v ∈ X2) ∨ (u ∈ X2 ∧ v ∈ X1)))

For a cardMSO1 formula ϕ = ∃Z1 . . . ∃Zm.ϕ we call ∃Z1 . . . ∃Zm the prefix
of ϕ, and the variables Zi prefix variables. We also put Z(ϕ) = {Z1, . . . , Zm},
and often write just Z if ϕ is clear from the context. Note that, since all prefix
variables are existentially quantified set variables, checking whether G |= ϕ (for
some graph G) is equivalent to finding a variable assignment χ : Z → 2V (G)

such that G |=χ ϕ. We call such χ the prefix assignment (for G and ϕ). Note
that the sets χ(Zi) can be used to determine subtypes, and therefore we often
write Sχ

G with the obvious meaning.

2.3 ILP Programming

Integer Linear Programming (ILP) is a well-known framework for formulating
problems, and will be used extensively in our approach. We provide only a brief
overview of the framework:

Definition 2.4 (p-Variable ILP Feasibility (p-ILP)). Given matrices A ∈
Zm×p and b ∈ Zm×1, the p-Variable ILP Feasibility (p-ILP) problem is whether
there exists a vector x ∈ Zp×1 such that A · x ≤ b. The number of variables p is
the parameter.

Lenstra [16] showed that p-ILP, together with its optimization variant p-OPT-
ILP, can be solved in FPT time. His running time was subsequently improved
by Kannan [14] and Frank and Tardos [11].

168 R. Ganian and J. Obdržálek

Theorem 2.5 ([16,14,11,9]). p-ILP and p-OPT-ILP can be solved using
O(p2.5p+o(p) · L) arithmetic operations in space polynomial in L, L being the
number of bits in the input.

3 cardMSO1 Model Checking

The main purpose of this section is to give a proof of Theorem 1.1. The proof
builds upon the following result of Lampis:

Lemma 3.1 ([15]). Let ϕ be an MSO1 formula with qS set variables and qv
vertex variables. Let G1 be a graph, v ∈ V (G1) a vertex of type T such that
|T | > 2qS · qv, and G2 a graph obtained from G1 by deleting v. Then G1 |= ϕ iff
G2 |= ϕ.

In other words, a formula ϕ of MSO1 cannot distinguish between two graphs
G1 and G2 which differ only in the cardinalities of some types, as long as the
cardinalities in both graphs are at least 2qS · qv.

This gives us an efficient algorithm for model checking MSO1 on graphs of
bounded vertex cover: We first “shrink” the sizes of types to 2qS · qv and then
recursively evaluate the formula, at each quantifier trying all possible choices for
each set and vertex variable1.

Theorem 3.2 ([15]). There exists an algorithm which, for a MSO1 sentence ϕ
with q variables and a graph G with n vertices and vertex cover of size at most

k, decides G |= ϕ in time 22
O(k+q)

+O(2kn).

However, a straightforward adaptation of the approach sketched above does
not work with linear constraints. To see this, simply consider e.g. the formula
∃Z1∃Z2.[|Z1| = |Z2|+1]. Changing the cardinality of Z1 by even a single vertex
can alter whether the linear constraint is evaluated as true or false, even if |Z1∩T |
is large for some type T . On the other hand, observe that the truth value of a
linear inequality [ρ1 ≤ ρ2] depends only on the prefix variables, not on the rest
of the formula. With this in mind, we continue by sketching the general strategy
for proving Theorem 1.1:

Given a graph G and a formula ϕ we begin by creating the graph Gϕ from G
by reducing the size of each type to 2qS · qv. Since this construction can impact
the possible values of linear constraints in ϕ, we replace each linear constraint
with either tt or ff, effectively claiming which linear constraints we expect to be
satisfied in G (for some assignment to prefix variables). We try all 2l possible
truth valuations of linear constraints.

For each MSO1 formula ψ obtained from ϕ by fixing some truth valuation of
linear constraints we now check whether Gϕ |= ψ, generating all prefix assign-
ments χ for which Gϕ |=χ ψ. The remaining step is to check whether some prefix
assignment (in Gϕ) can be extended to a prefix assignment in G in such a way

1 Note that both Lemma 3.1 and Theorem 3.2 implicitly utilize the symmetry between
vertices of the same type.

Expanding the Expressive Power of Monadic Second-Order Logic 169

that ψ would still hold in G and all linear cardinality constraints would evaluate
to their guessed values. This check is performed by the construction of an p-ILP
formulation which is feasible if, and only if, there is such an extension.

We now formalize the proof we have just sketched. First, we need a few def-
initions. We start by formalizing the process of “shrinking” (some types of) a
graph.

Definition 3.3. Given a graph G and a cardMSO1 formula ϕ = ∃Z1 . . . ∃Zm.ϕ
with qv vertex and m + qS set variables, we define the reduced graph Gϕ to be
the graph obtained from G by the following prescription:

1. For each type T ∈ TG s.t. |T | > 2qS+mqv we delete the “extra” vertices of
type T so that exactly 2qS+mqv vertices of this type remain, and

2. we take the subgraph induced by the remaining vertices.

Note that vertices of a type with cardinality at most 2qS+mqv are never deleted
in the process of “shrinking”G, and |V (Gϕ)| ≤ |TGϕ |·2qS+mqv. Next we formalize
the process of fixing the truth values of linear cardinality constraints.

Definition 3.4. Let l(ϕ) = {l1, . . . , lk} be the list of all linear cardinality con-
straints in the formula ϕ. Let α : l(ϕ) → {tt,ff}, called the pre-evaluation func-
tion, be an assignment of truth values to all linear constraints. Then by α(ϕ)
we denote the formula obtained from ϕ by replacing each linear constraint li by
α(li), and call α(ϕ) the pre-evaluation of ϕ. Note that α(ϕ) is a MSO1 formula.

As we mentioned earlier, the truth value for each linear cardinality constraint
depends only on the values of prefix variables. Therefore all linear constraints
can be evaluated once we have fixed a prefix assignment. We say that a prefix
assignment χ, of a cardMSO1 formula ϕ, complies with a pre-evaluation α if each
linear constraint l ∈ l(ϕ) evaluates to true (under χ) if, and only if, α(l) = tt.

We also need a notion of extending a prefix assignment for Gϕ to G. In the
following definition we use the implicit matching between the subtypes S of G
and the subtypes Sϕ of its subgraph Gϕ.

Definition 3.5. Given a graph G and a cardMSO1 formula ϕ = ∃Z1 . . . ∃Zm.ϕ
with qv vertex and qS set variables in ϕ, we say that a prefix assignment χ for
G extends a prefix assignments χϕ for Gϕ if for all S ∈ Sχ

G:

1. S = Sϕ if |Sϕ| ≤ 2qSqv
2. S ⊇ Sϕ if |Sϕ| > 2qSqv

Finally we will need the following statement, which directly follows from the
proof of Lemma 3.1 [15]:

Lemma 3.6. Let ϕ = ∃Z1 . . . ∃Zm.ϕ be an MSO1 formula, with qS set variables
in ϕ and qv vertex variables, and let χ1 : Z → 2V (G1) be a prefix assignment in
G1. Let v ∈ V (G1) be a vertex of subtype S ∈ Sχ

G1
such that |S| > 2qsqv, and G2

a graph obtained from G1 by deleting v. Then G1 |=χ1 ϕ iff G2 |=χ2 ϕ, where χ2

is the prefix assignment induced by χ1 on G2.

170 R. Ganian and J. Obdržálek

For the remainder of this section let us fix a cardMSO1 formula ϕ =
∃Z1 . . .∃Zm.ϕ with qv vertex variables, qS set variables in ϕ and with linear
cardinality constraints l(ϕ) = {l1, . . . , lk}. We are now ready to state the main
lemma:

Lemma 3.7. Let G be a graph, ϕ be a cardMSO1 formula, χϕ be a prefix as-
signment for Gϕ, and α a pre-evaluation such that Gϕ |=χϕ α(ϕ). Then we can,
in time O(|TG| · 2m|l(ϕ)|), construct a p-ILP formulation which is feasible iff χϕ

can be extended to a prefix assignment χ for G such that (a) χ complies with α,
and (b) G |=χ ϕ. Moreover, the formulation has |TG| · 2m variables.

Proof. We start by showing the construction of the p-ILP formulation. The
set of variables is created as follows: For each subtype S ∈ Sχϕ

Gϕ
we introduce

a variable xS which will represent the cardinality of S in G. There are three
groups of constraints:

1. We need to make sure that, for each type T ∈ TG, the cardinalities of all
subtypes of T sum up to the cardinality of a type T . This is easily achieved by
including a constraint

∑
S⊆T xS = |T | for each type T (note that here |T | is a

constant).
2. We need to guarantee that χ extends χϕ. Therefore we include xS = |Sϕ|

for each subtype with |Sϕ| ≤ 2qSqv, and xS > |Sϕ| if |Sϕ| > 2qSqv.
3. We need to check that χ complies with α, i.e. that each linear constraint

l is either true or false based on the value of α(l). For each constraint l we
first replace each occurrence of |Zi| with the sum of cardinalities of all subtypes
which are contained in Zi, i.e. by

∑
Sϕ⊆Zi

xS . Then if α(l) = tt, we simply
insert the modified constraint into the formulation. Otherwise we first reverse
the inequality (e.g. > instead of ≤), and then also insert it.

To prove the forward implication, let us assume that the p-ILP formulation is
feasible. To define χ we start with χ = χϕ. Then for each subtype S ∈ SG if xS >
|Sϕ| we add xS − |Sϕ| unassigned vertices of type T , where T is the supertype
of S. This is always possible thanks to constraints in 1. and 2. The constraints
in 3. guarantee that χ complies with α. Finally G |=χ ϕ by Lemma 3.6.

For the reverse implication let S ∈ SG be the subtype identified by the set
Y ⊂ Z. Then we put xS = |{v ∈ V (G)|∀Z ∈ Z.v ∈ χ(Z) ⇐⇒ Z ∈ Y}, and the
p-ILP formulation is satisfiable by our construction. Finally, it is easy to verify
that the size of this p-ILP formulation is at most O(|TG| · 2qS |l(ϕ)|).

Proof of Theorem 1.1. We start by constructing Gϕ from G, which may be
done by finding a vertex cover in time O(2k · n), dividing vertices into at most
2k + k types (in linear time once we have a vertex cover) and keeping at most
2qS+mqv vertices in each type.

Now for each pre-evaluation α : l(ϕ) → {tt,ff} we do the following: We run the
trivial recursive MSO1 model checking algorithm on Gϕ, by trying all possible
assignments of vertices of Gϕ to set and vertex variables. Each time we find a
satisfying assignment, we remember the values of the prefix variables Z, and
proceed to finding the next satisfying assignment. Since the prefix variables of
ϕ (and α(ϕ)) are existentially quantified, their value is fixed before α(ϕ) starts

Expanding the Expressive Power of Monadic Second-Order Logic 171

being evaluated and therefore is the same at any point of evaluating α(ϕ). At
the end of this stage we end up with at most (2|V (Gϕ)|)m different satisfying
prefix assignments of Z1, . . . , Zm for each pre-evaluation α.

We now need to check whether some combination of a pre-evaluation α and
its satisfying prefix assignment χϕ from the previous step can be extended to a
satisfying assignment for ϕ and G. This can be done by Lemma 3.7.

To prove correctness, assume that there exists a satisfying assignment χ for G.
We create G′

ϕ by, for each T ∈ TG such that |T | > 2qS+mqv, inductively deleting
vertices from subtypes S ⊆ T such that |S| > 2qsqv, until |T | = 2qS+mqv for every
T . Observe that G′

ϕ is isomorphic to Gϕ and that there is a satisfying assignment
χ′ induced by χ on G′

ϕ. Then applying the isomorphism to χ′ creates a satisfying
assignment χ2 on Gϕ, and Lemma 3.7 ensures that our p-ILP formulation is
feasible for χ2.

To compute the time complexity of this algorithm, note that we first need time
O(2k ·n) to compute Gϕ. Then for each of the 2|l| pre-evaluations we compute all

the satisfying prefix assignments in time 22
O(k+qS+m)qv by Theorem 3.2. For each

of the at most (2|V (Gϕ)|)m = (2(2
k+k)·2qS+mqv)m satisfying prefix assignments

for Gϕ, we check whether it can be extended to an assignment for G, which

can be done in time at most 22
O(k+qS+m)

by applying Theorem 2.5 on the p-ILP
formulation constructed by Lemma 3.7. We therefore need time O(2k · n) + 2m ·
(22

O(k+qS+m)qv+|l| + (2(2
k+k)·2qS+mqv)m · 22O(k+qS+m)

), and the bound follows.

Remark: The space complexity of the algorithm presented above may be
improved by successively applying Lemma 3.7 to each iteratively computed sat-
isfying prefix assignment (for each pre-evaluation).

Before moving on to the next section, we show how these results can be ex-
tended towards well-structured dense graphs. It is easy to verify that the only
reference to an actual vertex cover of our graph is in Theorem 3.2 – all other
proofs rely purely on bounding the number of types. In [15] Lampis also con-
sidered a new parameter called neighborhood diversity, which is the number of
different types of a graph. I.e. graph G has neighborhood diversity k iff |TG| = k.
Since there exist classes of graphs with unbounded vertex cover but bounded
neighborhood diversity (for instance the class of complete graphs), parameter-
izing by neighborhood diversity may in some cases lead to better results than
using vertex cover.

Corollary 3.8. There exists an algorithm which, given a graph G with neighbor-
hood diversity k and a cardMSO1 formula ϕ with q variables, decides if G |= ϕ

in time 2k2
O(q)+|ϕ| + k · poly(|V (G)|).

Proof. The proof is nearly identical to the proof of Theorem 1.1. The only
change is that we begin by computing the neighborhood diversity and the asso-
ciated partition into types (which may be done in polynomial time, cf. Theorem
5 in [15]), and we of course use the fact that the number of types is now at most
k instead of 2k + k.

172 R. Ganian and J. Obdržálek

4 Applications

4.1 Equitable Problems

Perhaps the most natural class of problems which may be captured by cardMSO1

but not by MSO1 (or even MSO2) are equitable problems. Equitable problems
generally ask for a partitioning of the graph into a (usually fixed) number of
specific sets of equal (±1) cardinality.

Equitable c-coloring [18] is probably the most extensively studied example of an
equitable problem. It asks for a partitioning of a graph into c equitable indepen-
dent sets and has applications in scheduling, garbage collection, load balancing
and other fields (see e.g. [5,3]). While even equitable 3-coloring is W[1]-hard on
graphs of bounded tree-width [8], equitable c-coloring may easily be expressed
in cardMSO1:

∃A,B,C : part(A,B,C)∧∀x, y : ((x, y ∈ A∨x, y ∈ B∨x, y ∈ C) =⇒ ¬adj(x, y))

∧equi(A,B) ∧ equi(A,C) ∧ equi(B,C), where

• part(A,B,C) =
(
∀x : (x ∈ A∧¬x ∈ B ∧¬x ∈ C)∨ (¬x ∈ A∧ x ∈ B ∧¬x ∈

C) ∨ (¬x ∈ A ∧ ¬x ∈ B ∧ x ∈ C)
)
.

• equi(T, U) = (
[
|T | = |U |+ 1

]
∨
[
|T |+ 1 = |U |

]
∨
[
|T | = |U |

]
).

Equitable connected c-partition [6] is another studied equitable problem which is
known to be W[1]-hard even on graphs of bounded path-width but which admits
a simple description in cardMSO1:

∃A,B,C : part(A,B,C) ∧ conn(A) ∧ conn(B) ∧ conn(C)

∧equi(A,B) ∧ equi(A,C) ∧ equi(B,C), where

• conn(U) =
(
∀T : (∀x : x ∈ T =⇒ x ∈ U) =⇒ (T = U ∨ (¬∃a : a ∈

T) ∨ ∃a, b : a ∈ U ∧ ¬a ∈ T ∧ b ∈ T ∧ adj(a, b)
)
.

4.2 Solution Size as Input

cardMSO1 allows us to restrict the set cardinalities by constants given as part
of the input. For instance, the formula below expresses the existence of an Inde-
pendent Dominating Set of cardinality k:

∃X : (∀a, b ∈ X.¬adj(a, b))∧
∧(∀b ∈ V.b ∈ X ∨ (∃a ∈ X. adj(a, b))) ∧ [|X | = k]

Notice that there is an equivalent MSO1 formula for any fixed k. However,
the number of variables in the MSO1 formula would depend on k, which would
negatively impact on the runtime of model checking. On the other hand, using
an input-specified variable only requires us to change a constant in the p-ILP
formulation, with no impact on runtime.

Expanding the Expressive Power of Monadic Second-Order Logic 173

4.3 c-Balanced Partitioning

Finally, we show an example of how our approach can be used to obtain new
results even for optimization problems, which are (by definition) not expressible
by cardMSO1. While the presented algorithm does not rely directly on Theorem
1.1, it is based on the same fundamental ideas.

The problem we focus on is c-balanced partitioning, which asks for a parti-
tion of the graph into c equitable sets such that the number of edges between
different sets is minimized. The problem was first introduced in [17], has appli-
cations in parallel computing, electronic circuit design and sparse linear solvers
and has been studied extensively (see e.g. [7,2]). The problem is notoriously hard
to approximate, and while an exact XP algorithm exists for the c-balanced par-
titioning of trees parameterized by c [7,17], no parameterized algorithm is known
for graphs of bounded tree-width.

Theorem 4.1. There exists an algorithm which, given a graph G with vertex

cover of size k and a constant c, solves c-balanced partitioning in time 22
O(k+c)

+
2k|V (G)|.

Proof. We begin by applying the machinery of Theorem 1.1 to the cardMSO1

formula ϕ for equitable c-partitioning ϕ:

∃A,B,C : part(A,B,C) ∧ equi(A,B) ∧ equi(A,C) ∧ equi(B,C)

Recall that this means trying all possible assignments of the c set variables
in Gϕ and testing whether each assignment can be extended to G in a manner
satisfying ϕ. Unlike in Theorem 1.1 though, we need to tweak the p-ILP formu-
lations to not only check the existence of an extension χ for our pre-evaluation
α, but also to find the χ which minimizes the size of the cut between vertex sets.

To do so, we add one variable β into the formulation and use a p-OPT-ILP
formulation minimizing β. We also add a single equality into the formulation
to make β equal to the size of the cut between the c vertex sets. While it is
not possible to count the edges directly, the fact that we always have a fixed
satisfying prefix assignment in Gϕ allows us to calculate β as:

β = const0+
∑

S∈U constS xS , where

– const0 is the number of edges between all pairs of cover vertices with different
types (this is obtained from the prefix assignment in Gϕ),

– U is the set of subtypes which do not contain cover vertices (recall that each
cover vertex has its own subtype),

– xS is the ILP variable for the cardinality of subtype S (cf. Lemma 3.7),
– For each subtype S, constS is the number of adjacent vertices in the cover

assigned to a different vertex set than S. The values of constS depend only
on the subtype S and the chosen prefix assignment χϕ in Gϕ.

For each satisfying prefix assignment χϕ in Gϕ, the p-OPT-ILP formulation
will not only check that this may be extended to an assignment χ in G, but also

174 R. Ganian and J. Obdržálek

find the assignment in G which minimizes β. All that is left is to store the best
computed β for each satisfying prefix assignment and find the satisfying prefix
assignment with minimum β after the algorithm from Theorem 1.1 finishes.

For correctness, assume that there exists a solution which is smaller than
the minimal β found by the algorithm. Such a solution would correspond to an
assignment of ϕ in G, which may be reduced to a prefix assignment χ of a pre-
evaluation α(ϕ) in Gϕ. If we construct the p-ILP formulation for χ and α(ϕ),
then the obtained β would equal the size of the cut. However, our algorithm
computes the β for all pre-evaluations and satisfying prefix assignments in Gϕ,
so this gives a contradiction.

5 MSO Partitioning

The MSO (or MSO1) partitioning framework was introduced by Rao in [19]
and allows the description of many problems which cannot be formulated in
MSO, such as Chromatic number, Domatic number, Partitioning into Cliques
etc. While a few of these problems (e.g. Chromatic number) may be solved
on graphs of bounded tree-width in FPT time by using additional structural
properties of tree-width, MSO partitioning problems in general are W[1]-hard
on such graphs.

Definition 5.1 (MSO partitioning). Given a MSO formula ϕ, a graph G
and an integer r, can V (G) be partitioned into sets X1, X2, . . . , Xr such that
∀i ∈ {1, 2, . . . , r} : Xi |= ϕ ?

Similarly to Section 3, we will show that a combination of ILP and MSO
model checking allows us to design efficient FPT algorithms for MSO partitioning
problems on graphs of bounded vertex cover. However, here the total number of
sets is specified on the input and so the number of subtypes is not fixed, which
prevents us from capturing the cardinality of subtypes by ILP variables. Instead
we use the notion of shape:

Definition 5.2. Given a graph G and a MSO1 formula ϕ with qS , qv set and
vertex variables respectively, two sets A,B ⊆ V (G) have the same shape iff for
each type T it holds that either |A∩T | = |B∩T | or both |A∩T |, |B∩T | > 2qSqv.

Let A be any set of shape s. We define |s ∩ T |, for any type T , as:

|s ∩ T | =
{
|A ∩ T | if |A ∩ T | ≤ 2qSqv

) otherwise

Since ϕ is a MSO1 formula, from Lemma 3.1 we immediately get:

(5.3) For any two sets A,B ⊆ V (G) of the same shape, it holds that A |= ϕ iff
B |= ϕ, and

Expanding the Expressive Power of Monadic Second-Order Logic 175

(5.4) Given a MSO formula with q variables, a graph G with vertex cover of

size k has at most (2qSqv)
2k+k distinct shapes.

With these in hand, we may proceed to:

Proof of Theorem 1.2. First, we consider all at most (2qSqv)
2k+k shapes of

a set X . For each such shape s, we decide whether a set Xs of shape s satisfies
ϕ by Theorem 3.2. We then create an ILP formulation with one variable xs for
each shape s satisfying ϕ. The purpose of xs is to capture the number of sets
Xs of shape s in the partitioning of G.

Two conditions need to hold for the number of sets of various shapes. First,
the total number of sets needs to be r. This is trivial to model in our formulation
by simply adding the constraint that the sum of all xs equals r.

Second, it must be possible to map each vertex in G to one and only one set
X (to ensure that the sets form a partition). Notice that if a partition were to
only contain shapes with at most 2qSqv vertices in each T , then the cardinality
of s ∩ T would be fixed and so the following set of constraints for each T ∈ T
would suffice:∑

∀s xs · |s ∩ T | = |T |
However, in general the partition will also contain shapes with more than 2qSqv

vertices in T , and in this case we do not have access to the exact cardinality of
their intersection with T . To this end, for each T ∈ T we add the following two
sets of constraints:

a)
∑
∀s:|s∩T |≤2qS qv

xs · |s ∩ T |+
∑
∀s:|s∩T |=� xs · (2qSqv) ≤ |T |

b)
∑
∀s:|s∩T |≤2qS qv

xs · |s ∩ T |+
∑
∀s:|s∩T |=� xs · |T | ≥ |T |

Here a) ensures that a partitioning of G into
∑
∀s xs sets of shape s can “fit”

into each T and b) ensures that there are no vertices which cannot be mapped to
any set. Notice that if the partition contains any shape s which intersects with
T in over 2qSqv vertices then b) is automatically satisfied, since all unmapped
vertices in T can always be added to s without changing Xs |= ϕ.

If the p-ILP formulation specified above has a feasible solution, then we can
construct a solution to (ϕ, r) on G by partitioning G as follows: For each shape
s we create sets Xs,1 . . . Xs,xs . Then in each type T in G, we map |T ∩ s| yet-
unmapped vertices to each set Xs,i. Constraints a) make sure this is possible. If
there are any vertices left unmapped in T , then due to constraint b) there must
exist some set X ′ such that |X ′ ∩T | > 2qSqv. We map the remaining unmapped
vertices in T to any such set X ′, resulting in a partition of G. Finally, the fact
that each of our sets satisfies ϕ follows from our selection of shapes.

On the other hand, if a solution to (ϕ, r) onG exists, then surely each set in the
partition has some shape and so it would be found by the p-ILP formulation. The
total runtime is the sum of finding the vertex cover, the time of model-checking

all the shapes and the runtime of p-ILP, i.e. O(2k|V (G)) + 22
O(k+q) · q(2k+k) +

q(2
k+k)·qO(2k+k)

.

176 R. Ganian and J. Obdržálek

Theorem 1.2 straightforwardly extends to neighborhood diversity as well. Di-
rectly bounding the number of types by k results in a bound of (2qSqv)

k on the
number of distinct shapes in Claim 5.4, and so we get:

Corollary 5.5. There exists an algorithm which, given a graph G with neighbor-
hood diversity at most k and a MSO partitioning instance (ϕ, r) with q variables,

decides if G |= (ϕ, r) in time 22
O(qk) · |(ϕ, r)| + k|V (G)|.

6 Concluding Notes

The article provides two new meta-theorems for graphs of bounded vertex cover.
Both considered formalisms can describe problems which are W[1]-hard on
graphs of bounded clique-width and even tree-width. On the other hand, we
provide FPT algorithms for both cardMSO1 and MSO partitioning which have
an elementary dependence on both the formula and parameter (as opposed to
the results of Courcelle et al. for tree-width).

The obtained time complexities are actually fairly close to the lower bounds

provided in [15] for MSO1 model checking (already 22
o(k+q) ·poly(n) would violate

ETH); this is surprising since the considered formalisms are significantly more
powerful than MSO1. Our methods may also be of independent interest, as they
show how to use p-ILP as a powerful tool for solving general model checking
problems.

Let us conclude with future work and possible extensions of our results. As
correctly observed by Lampis in [15], any MSO2 formula can be expressed by
MSO1 on graphs of bounded vertex cover. This means that an (appropriately
defined) cardMSO2 or MSO2 partitioning formula could be translated to an
equivalent cardMSO1 or MSO partitioning formula on graphs of bounded vertex
cover. However, the details of these formalisms would need to be laid out in
future work.

Another direction would be to extend the results of Theorems 1.1 and 1.2 to
more general parameters, such as twin-cover [12] or shrub-depth [13]. Finally,
it would be interesting to extend cardMSO1 to capture more hard problems.
Theorem 4.1 provides a good indication that the formalism could be adapted to
also describe a number of optimization problems on graphs.

References

1. Adiga, A., Chitnis, R., Saurabh, S.: Parameterized algorithms for boxicity. In:
Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010, Part I. LNCS, vol. 6506,
pp. 366–377. Springer, Heidelberg (2010)

2. Andreev, K., Räcke, H.: Balanced graph partitioning. Theory Comput. Syst. 39(6),
929–939 (2006)

3. Bazewicz, J., Ecker, K., Pesch, E., Schmidt, G., Weglarz, J.: Scheduling Computer
and Manufacturing Processes, 2nd edn. Springer-Verlag New York, Inc., Secaucus
(2001)

Expanding the Expressive Power of Monadic Second-Order Logic 177

4. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization prob-
lems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150
(2000)

5. Das, S., Finocchi, I., Petreschi, R.: Conflict-free star-access in parallel memory
systems. J. Parallel Distrib. Comput. 66(11), 1431–1441 (2006)

6. Enciso, R., Fellows, M.R., Guo, J., Kanj, I., Rosamond, F., Suchý, O.: What makes
equitable connected partition easy. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009.
LNCS, vol. 5917, pp. 122–133. Springer, Heidelberg (2009)

7. Feldmann, A., Foschini, L.: Balanced Partitions of Trees and Applications. In:
STACS 2012. Leibniz International Proceedings in Informatics (LIPIcs), vol. 14,
pp. 100–111. Schloss Dagstuhl, Dagstuhl (2012)

8. Fellows, M., Fomin, F., Lokshtanov, D., Rosamond, F., Saurabh, S., Szeider, S.,
Thomassen, C.: On the complexity of some colorful problems parameterized by
treewidth. Inf. Comput. 209, 143–153 (2011)

9. Fellows, M.R., Lokshtanov, D., Misra, N., Rosamond, F.A., Saurabh, S.: Graph
layout problems parameterized by vertex cover. In: Hong, S.-H., Nagamochi, H.,
Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 294–305. Springer, Heidel-
berg (2008)

10. Fiala, J., Golovach, P., Kratochv́ıl, J.: Parameterized complexity of coloring prob-
lems: Treewidth versus vertex cover. Theoret. Comput. Sci. 412(23), 2513–2523
(2011)

11. Frank, A., Tardos, É.: An application of simultaneous diophantine approximation
in combinatorial optimization. Combinatorica 7(1), 49–65 (1987)

12. Ganian, R.: Twin-cover: Beyond vertex cover in parameterized algorithmics. In:
Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp. 259–271.
Springer, Heidelberg (2012)

13. Ganian, R., Hliněný, P., Nešetřil, J., Obdržálek, J., Ossona de Mendez, P., Ra-
madurai, R.: When trees grow low: Shrubs and fast MSO1. In: Rovan, B., Sassone,
V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 419–430. Springer, Hei-
delberg (2012)

14. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math.
Oper. Res. 12, 415–440 (1987)

15. Lampis, M.: Algorithmic meta-theorems for restrictions of treewidth. Algorith-
mica 64(1), 19–37 (2012)

16. Lenstra, H.: Integer programming with a fixed number of variables. Math. Oper.
Res. 8, 538–548 (1983)

17. MacGregor, R.: On partitioning a graph: a theoretical and empirical study. PhD
thesis, University of California, Berkeley (1978)

18. Meyer, W.: Equitable coloring. American Mathematical Monthly 80, 920–922
(1973)

19. Rao, M.: MSOL partitioning problems on graphs of bounded treewidth and clique-
width. Theoret. Comput. Sci. 377, 260–267 (2007)

Dynamising Interval Scheduling:

The Monotonic Case

Alexander Gavruskin1, Bakhadyr Khoussainov1,
Mikhail Kokho1, and Jiamou Liu2

1 Department of Computer Science, University of Auckland, New Zealand
2 School of Computing and Mathematical Sciences,
Auckland University of Technology, New Zealand

{a.gavruskin,m.kokho}@auckland.ac.nz, bmk@cs.auckland.ac.nz,

jiamou.liu@aut.ac.nz

Abstract. We investigate dynamic algorithms for the interval schedul-
ing problem. We focus on the case when the set of intervals is mono-
tonic. This is when no interval properly contains another interval. We
provide two data structures for representing the intervals that allow effi-
cient insertion, removal and various query operations. The first dynamic
algorithm, based on the data structure called compatibility forest, runs
in amortised time O(log2 n) for insertion and removal and O(log n) for
query. The second dynamic algorithm, based on the data structure called
linearised tree, runs in time O(log n) for insertion, removal and query. We
discuss differences and similarities of these two data structures through
theoretical and experimental results.

1 Introduction

Background. Imagine a number of processes all need to use a particular resource
for a period of time. Each process i specifies a starting time s(i) and a finish-
ing time f(i) between which it needs to continuously occupy the resource. The
resource cannot be shared by two processes at any instance. One is required to
design a scheduler which chooses a subset of these processes so that 1) there
is no time conflict between processes in using the resource; and 2) there are as
many processes as possible that get chosen.

The above is a typical set-up for the interval scheduling problem, one of the
basic problems in the study of algorithms. Formally, given a collection of intervals
on the real line all specified by starting and finishing times, the problem asks for
a subset of maximal size consisting of pairwise non-overlapping intervals. The
interval scheduling problem and its variants appear in a wide range of areas in
computer science and applications such as in logistics, telecommunication, and
manufacturing. They form an important class of scheduling problems and have
been studied under various names and with application-specific constraints [9].

The interval scheduling problem, as stated above, can be solved by a greedy
scheduler as follows [8]. The scheduler sorts intervals based on their finishing
time, and then iteratively selects the interval with the least finishing time that

T. Lecroq and L. Mouchard (Eds.): IWOCA 2013, LNCS 8288, pp. 178–191, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Dynamising Interval Scheduling: The Monotonic Case 179

is compatible with the intervals that have already been scheduled. The set of
intervals chosen in this manner is guaranteed to have maximal size. This algo-
rithm works in a static context in the sense that the set of intervals is given a
priori and it is not subject to change.

In a dynamic context the instance of the interval scheduling problem is usu-
ally changed by a real-time events, and a previously optimal schedule may be-
come not optimal. Examples of such real-time events include job cancelation,
arrival of an urgent job, change in job processing time. To avoid the repetitive
work of rerunning the static algorithm every time when the problem instance
has changed, there is a demand for efficient dynamic algorithms for solving the
scheduling problem on the changed instances. In this dynamic context, the set
of intervals change through a number of update operations such as insertion or
removal. Our goal is to design data structures that allow us to solve the interval
scheduling problem in a dynamic setting.

In our effort to dynamise the interval scheduling problem, we focus on a
special class of interval sets which we call monotonic interval sets. In monotonic
interval sets no interval is properly contained by another interval. Considering
monotonic intervals is a natural setting for the problem. For example, if all
processes require the same amount of time to be completed, then the set of
intervals is monotonic. Moreover, monotonic interval sets are closely related to
proper interval graphs. An interval graph is an undirected graph whose nodes are
intervals and two nodes are adjacent if the two corresponding intervals overlap.
A proper interval graph is an interval graph for a monotonic set of intervals.
There exist linear time algorithms for representing a proper interval graph by a
monotonic set of intervals [1,6,2]. Furthermore, solving the interval scheduling
problem for monotonic intervals corresponds to finding a maximal independent
set in a proper interval graph.

Related work. On a somewhat related work, S. Fung, C. Poon and F. Zheng [3]
investigated an online version of interval scheduling problem for weighted in-
tervals with equal length (hence, the intervals are monotonic), and designed
randomised algorithms. We also mention that R. Lipton and A. Tompkins [5]
initiated the study of online version of the interval scheduling problem. In this
version a set of intervals are presented to a scheduler in order of start time. Upon
seeing each interval the algorithm must decide whether to include the interval
into the schedule.

A related problem on a set of intervals I asks to find a minimal set of points S
such that every interval from I intersects with at least one point from S. Such a
set S is called a piercing set of I. A dynamic algorithm for maintaining a minimal
piercing set S is studied in [4]. The dynamic algorithm runs in time O(|S| log |I|).
We remark here that if one has a maximal set J of disjoint intervals in I, one
can use J to find a minimal piercing set of I, where each point in the piercing set
corresponds to the finishing time of an interval in J in time O(|J |). Therefore our
dynamic algorithm can be adapted to one that maintains a minimal piercing set.
Our algorithm improves the results in [4] when the interval set I is monotonic.

180 A. Gavruskin et al.

Kaplan et al. in [7] studied a problem of maintaining a set of nested intervals
with priorities. The problem asks for an algorithm that given a point p finds the
interval with maximal priority containing p. Similarly to our dynamic algorithm,
the solution in [7] also uses dynamic trees to represent a set of intervals.

Our results. We provide two dynamic algorithms for solving the interval schedul-
ing problem on monotonic set of intervals. Both algorithms allow efficient inser-
tion, removal and query operation. Formal explanation are in the next sections.

The first algorithm maintains the compatibility forest data structure denoted
by CF. We say the right compatible interval of an interval i is the interval j such
that f(i) < s(j) and there does not exist an interval � such that f(i) < s(�)
and f(�) < f(j). The CF data structure maintains the right compatible interval
relation. The implementation of the data structure utilises, nontrivially, the dy-
namic tree data structure of Sleator and Tarjan [10]. As a result, in Theorem 4
of Section 3 we prove that the insert and remove operations take amortised time
O(log2 n) and the query operation takes amortised time O(log n).

The second dynamic algorithm maintains the linearised tree data structure
denoted by LT. We say that intervals are equivalent if their right compatible
intervals coincide. The LT data structure maintains both the right compatibility
relation and the equivalence relation. Then, in Theorem 9 of Section 4 we prove
that the insertion, removal and query operations take time amortised O(log n).
However, this comes with a cost. As opposed to the CF data structure that keeps
a representation of an optimal set after each update operation, the linearised tree
data structure does not explicitly represent the optimal solution.

To test the performance of our algorithms, we carried out experiments on
random sequences of update and query operations. The experiments show that
the two data structures CF and LT perform similarly. The reason for this is
that the first dynamic algorithm based on CF reaches the bound of log2 n only
on specific sequences of operations, while on uniformly random sequences the
algorithm may run much faster. Both algorithms outperform the modified naive
algorithm (described in Sec. 2).

Organisation of the paper. Section 2 introduces the problem, monotonic interval
sets and the modified naive dynamic algorithm. Section 3 and 4 describe the CF
and LT data structures and present our dynamic algorithms. Section 5 extends
the data structures by adding the report operation that outputs the full greedy
solution. Section 6 discusses the experiments.

2 Preliminaries

Interval scheduling basics. An interval is a pair (s(i), f(i)) ∈ R2 with s(i) < f(i),
where s(i) is the starting time and f(i) is the finishing time of the interval. We
abuse notation and write i for the interval (s(i), f(i)). Two intervals i and j are
compatible if f(i) < s(j) or f(j) < s(i). Otherwise, these two intervals overlap.
Given a collection of intervals I = {i1, i2, . . . , ik}, a compatible set of I is a subset
J ⊆ I such that the intervals in J are pairwise compatible. An optimal set of I

Dynamising Interval Scheduling: The Monotonic Case 181

is a compatible set of maximal size. The interval scheduling problem consists of
designing an algorithm that finds an optimal set.

We recall the greedy algorithm that solves the problem [8]. The algorithm
sorts intervals by their finishing time, and then iteratively chooses the interval
with the least finishing time compatible with the last selected interval. The set of
thus selected intervals is optimal. The algorithm is in O(n logn) where n is the
size of I. If the sorting is already given then the algorithm runs in linear time.
Below, we formally define the greedy optimal set found by this greedy algorithm.

Let * be the ordering of the intervals by their finishing time. Throughout,
by the least interval, the greatest interval, the next interval, the previous inter-
val, we mean the least, greatest, next and previous interval with respect to *.
Without loss of generality we may assume that the intervals in I have pairwise
distinct finishing times. Given the collection I, we inductively define the set
J = {i1, i2, . . .}, the greedy optimal set of I, as follows. The interval i1 is the
least interval in I. The interval ik+1 is the least interval compatible with ik such
that ik ≺ ik+1. The set J obtained this way is an optimal set [8].

Dynamic setting. In this setting the collection I of intervals changes over time.
Thus, the input to the problem is an arbitrary sequence o1, . . . , om of update
and query operations described as follows:

– Update operations: insert(i) inserts an interval i and remove(i) removes an
interval i.

– Query operation: The operation query(i) returns true if i belongs to the
greedy optimal set and false otherwise.

Our goal is to design algorithms for performing these operations that minimise
the total running time. We will use the following data structures.

– Interval tree. We maintain the ordered set of intervals I in a balanced binary
search tree. We call this tree the interval tree and denote it by T (I). The
interval tree supports all operations of a binary search tree and performs
them in O(log n) worst-case time.

– Splay tree. A splay tree is a self-balancing binary search tree for storing
linearly ordered objects. In addition to the standard binary search tree op-
erations, the splay tree data structure supports the following operations.
Operation splay(u) reorganises a splay tree so that u becomes the root.
Operation join(A,B) merges two splay trees A and B, such that any ele-
ment in A is less than any element in B, into one tree. Finally, operation
split(A, u) divides a splay tree into two splay trees R(u) and L(u), where
R(u) = {x ∈ A | u ≤ x} and L(u) = {x ∈ A | x < u}. All the operations
for splay trees take O(log n) amortised time [11].

– Dynamic trees. This data structure maintains a forest. Basic update opera-
tions are link(v, w), which creates an edge from a root v to a vertex w (thus v
becomes a child of w) and cut(v), which deletes the edge from v to its parent.
Query operations for dynamic tree depend on specific application. Usually, a
query operation searches for a node or an edge on a path from a given node.

182 A. Gavruskin et al.

For example, operation findmin(u) returns an edge with a minimal value on
a path from u to a root. These operations have O(log n) amortised time
complexity [10].

Monotonic Interval Sets. The set I of intervals is called monotonic if no interval in
I contains another interval. Since I changes over time through update operations,
to preserve monotonicity we assume that the insert(i) operation never adds an
interval i which contains or is contained in an existing interval. Recall that the
right compatible interval of i, denoted by rc(i), is the least interval j compatible
with i such that i ≺ j. Similarly, the left compatible interval of i, written lc(i),
is the greatest interval j compatible with i such that j ≺ i.

Monotonicity of I implies an important property of the interval tree T (I): if
an interval i ∈ T (I) is not compatible with an interval j, then the left subtree
of i does not contain rc(j) and the right subtree of i does not contain lc(j). This
allows us to define two efficient operations: right compatible(j), which is defined
below, and left compatible(j), which is similar except we replace “*” with “,”
and swap “left” and “right”.

Algorithm 1. right compatible(i)

1: r ← nil
2: j ← the root in the interval tree T (I).
3: while j �= nil do
4: if j � i or j overlaps i then
5: j ← the right child of j
6: else
7: r ← j
8: j ← the left child of j

9: return r

Lemma 1. On monotonic set I of intervals the operations right compatible(i)
and left compatible(i) run in time Θ(log n) and return rc(i) and lc(i) respectively.

To prove the lemma we observe that for a monotonic set I of intervals and
i, j ∈ I, if i overlaps j, then each of the intervals between i and j overlaps both
i and j.

Proof. We only prove the lemma for right compatible. The operation takes time
Θ(log n) as the length of paths from a leaf to the root in T (I) is �logn�+ 1.

For the correctness of right compatible, we use the following loop invariant: If
I contains rc(i), then the subtree rooted at j contains rc(i) or r equals rc(i).

Initially, j is the root of T (I), so the invariant holds. Each iteration of the
while loop executes either line 5 or lines 7-8 of Alg. 1. If line 5 is executed, then
we have j * i or j overlaps i. If j * i then all intervals in the left subtree of
j are less than i. If j , i but j overlaps i, then by the observation above, all
intervals between i and j overlap i. In both cases, none of the intervals in the

Dynamising Interval Scheduling: The Monotonic Case 183

left subtree of j is rc(i). Therefore setting j to be the right child of j preserves
the invariant.

If lines 7-8 are executed, then we have j , i and j is compatible with i. If
there exists an interval that is less than j and compatible with i, then such an
interval is in the left subtree of j. If such an interval does not exist, j is the
smallest interval which is compatible with i. Therefore setting r to be j and j
to be the right child of j preserves the invariant.

Thus, the algorithm outputs rc(i) if it exists and outputs nil otherwise. Indeed,
the loop terminates when j = nil. Hence if the set of intervals I contains rc(i) then
r = rc(i). If I does not contain rc(i) then line 5 is executed at every iteration,
so r = nil. ��

Modified naive dynamic algorithm. A naive dynamic algorithm for the interval
scheduling problem is to keep intervals sorted and construct the greedy optimal
set from scratch at each query operation. Another modified yet still naive dy-
namic algorithm is this. Store the greedy optimal set in a self-balancing binary
search tree T . After each insert(i) or delete(i) operation search for the greatest in-
terval j0 ∈ T such that f(j0) < s(i). Then insert a sequence j1 = rc(j0), . . . , jk =
rc(jk−1) of intervals into T . The sequence ends with the interval jk such that
rc(jk) does not exist or is already in T . While inserting, we remove all inter-
vals between j0 and jk+1 from T . The query(i) operation of this algorithm takes
O(log n) worst-case time. The insert(i) and remove(i) operations take O(k logn)
worst-case time, where k is the number of intervals inserted into T . In Section 6
we compare this modified algorithm with the algorithms provided by the CF and
LT data structures.

3 Compatibility Forest Data Structure (CF)

Building the data structure. Let I be a set of intervals. We define the compatibility
forest as a graph F(I) = (V,E) where V = I and (i, j) ∈ E if j = rc(i). By a
forest we mean a directed graph where the edge set contains links from nodes
to their parents. We use p(v) to denote the parent of node v. The roots and
leaves are standard notions that we do not define. Figure 1 shows an example
of a monotonic set of intervals with its compatibility forest. We note that for
every forest one can construct in a linear time a monotonic set of intervals whose
compatibility forest coincides (up to isomorphism) with the forest.

a

b

c

d

e

f

g

h g

c

h

d e

a b

f

Fig. 1. Example of a monotonic set of intervals and its compatibility forest

184 A. Gavruskin et al.

A path in the compatibility forest F(I) is a sequence of nodes i1, i2, . . . , ik
where (it, it+1) ∈ E for any t = 1, . . . , k−1. It is clear that any path in the forest
F(I) consists of compatible intervals. Essentially, the forest F(I) connects nodes
by the greedy rule: for any node i in the forest F(I), if the greedy rule is applied
to i, then the rule selects the parent j of i in the forest. Hence, the longest paths
in the compatibility forest correspond to optimal sets of I. In particular, the
path starting from the least interval is the greedy optimal set. Our first dynamic
algorithm amounts to maintaining this path in the forest F(I).

We explain how we maintain paths in the compatibility forest F(I). The
representation of the forest is developed from the dynamic tree data structure
as in [10]. The idea is to partition the compatibility forest into a set of node-
disjoint paths. Paths are defined by two types of edges, solid edges and dashed
edges. Each node in the compatibility forest is required to have at most one
incoming solid edge. A sequence of edges (u0, u1), (u1, u2), . . . , (uk−1, uk) where
each (ui, ui+1) is a solid edge is called a solid path. A solid path is maximal if
it is not properly contained in any other solid path. Therefore, the solid edges
in F(I) form several maximal solid paths in the forest. Furthermore, the data
structure ensures that each node belongs to some maximal solid path. There is
an important subroutine in the dynamic tree data structure called the expose
operation [10]. The operation starts from a node v and traverses the path from v
to the root: while traversing, if the edge (x, p(x)) is dashed, we declare (x, p(x))
solid and declare the incoming solid edge (if it exists) incident to p(x) dashed.
Thus, after exposing node v, all the edges on the path from v to the root become
solid. Note that in CF data structure the p(x) and rc(x) are the same.

To represent CF we use two data structures. The first is the interval tree
T (I). The operation right compatible computes the outgoing dashed edges of the
compatibility forest. The second is a set of splay trees. Each splay tree stores the
nodes of a maximal solid path in the compatibility forest with the underlying
order *. We denote by STu the splay tree containing the node u.

Dynamic Algorithm 1. We now describe algorithms for maintaining compatibil-
ity forest data structure. We call the algorithms queryCF, insertCF and removeCF
for the query, insertion, and removal operations, respectively.

The operation queryCF: To perform this operation on an interval i, we first find
in the interval tree T (I) the minimum element m. We then check if i belongs to
the splay tree STm. We return true if i ∈ STm; otherwise we return false.

The operation expose: To expose an interval i, we find the maximum element j
in the splay tree STi. Then find the right compatible interval i′ = rc(j). If i′ does
not exist (that is, j is a root in the compatibility forest), we stop the process.
Otherwise, (j, i′) is a dashed edge. We split the splay tree at i′ into trees L(i′)
and R(i′) and join STi with R(j′). We then repeat the process taking i′ as i.

The operation insertCF: To insert an interval i, we add i into the tree T (I). Then
we locate the next interval r of i in the ordering *. If such r exists, we access r in
the splay tree STr and find the interval j such that (j, r) is a solid edge. If such
a j exists and j is compatible with i, we delete the edge (j, r) and create a new

Dynamising Interval Scheduling: The Monotonic Case 185

edge (j, i) and declare it solid. We restore the longest path of the compatibility
forest by exposing the least interval in T (I).

The operation removeCF: To delete an interval i, we delete the incoming and
outgoing solid edges of i if such edges exist. We then delete i from the tree T (I).
We restore the longest path of the CF by exposing the least interval in T (I).

Correctness of the operations. For correctness, we use the following invariants.

(A1) Every splay tree represents a maximal path formed from solid edges.
(A2) Let m be the least interval in I. The splay tree STm contains all intervals

on the path from m to the root.

Note that (A2) guarantees that the query operation correctly determines if a
given interval i is in the greedy optimal set. The next lemma shows that (A1) and
(A2) are invariants indeed and that the operations correctly solve the dynamic
monotonic interval scheduling problem.

Lemma 2. (A1) and (A2) are invariants of insertCF, removeCF, and queryCF.

Proof. For (A1), first consider the operation of joining two splay trees A and
B via the operation expose(i). Let j be the maximal element in A and j′

be the minimum element in B. In this case, j′ is obtained by the operation
right compatible(j). It is clear that (j, j′) is an edge in the forest F(I). Next,
consider the case when we apply insertCF(i) into the splay tree A. In this case,
A is L(r) where r is the next interval of i in I. Let j be the previous interval
of r in the tree STr. By (A1), before inserting i, (j, r) is an edge in F(I) and
thus r = rc(j). Note we only insert i to L(r) when j is compatible with i. Since
i < r, after inserting i, i becomes the new right compatible interval of j. So,
joining L(r) with i preserves (A1). Operations removeCF(i) and queryCF(i) do
not create new edges in splay trees. Thus, (A1) is preserved under all operations.

For (A2), the expose(i) operation terminates when it reaches a root of the
compatibility forest. As a result, STi contains all nodes on the path from i to
the root. Since expose(minimum(T (I))) is called at the end of both insertCF(i)
and removeCF(i) operations, (A2) is preserved under every operation. ��

Complexity. Let n be the number of intervals in I. As discussed in Section 2,
all operations for the interval tree have O(log n) worst case complexity, and
all operations for splay trees have O(log n) amortised complexity. The query
operation, involves finding the minimum interval in T (I) and searching i in a
splay tree. Hence, the query operation runs in amortised time O(log n). For each
insert and remove operation, we perform a constant number of operations on
T (I) and the splay trees plus one expose operation.

To analyse expose operation, define the size size(i) of an interval i to be the
number of nodes in the subtree rooted at i in F(I). Call an edge (i, j) in F(I)
heavy if 2 · size(i) > size(j), and light otherwise. It is not hard to see that this
partition of edges has the following properties:

186 A. Gavruskin et al.

(�) Every node has at most one incoming heavy edge.
(��) Every path in the compatibility forest consists of at most logn light edges.

Lemma 3. In a sequence of k update operations, the total number of dashed
edges, traversed by expose operation, is O(k log n).

Proof. The number of iterations in expose operation is the number of dashed
edges in a path from the least interval to the root. A dashed edge is either
heavy or light. From (��), there are at most logn light dashed edges in the path.
To count the number of heavy edges, consider the previous update operations.
After deletion of i, all children of i become children of the next interval of i.
After inserting i, the children of the next interval of i that are compatible with
i become children of i. Figure 2 illustrates these structural changes. Thus, an
update operation transforms at most logn light dashed edges to heavy dashed
edges in each path, starting at the next interval or the right compatible interval
of i. Execution of expose in an update operation creates at most logn heavy
dashed edges from heavy solid edges. Hence, the total number of heavy dashed
edges created after k update operations is O(k logn). ��

a b c

j
i

Pj Pi

Inserting i. Removing i.

a b c

i
j

rc(i)

Prc(i)

Pj

Fig. 2. Redirections of edges in CF, where j is the next interval of i

Lemma 2 and Lemma 3 give us the following theorem:

Theorem 4. The algorithms queryCF, insertCF and removeCF solve the dynamic
monotonic interval scheduling problem. The algorithms perform insert interval
and remove interval operations in O(log2 n) amortised time and query operation
in O(log n) amortised time, where n is the size of the set I of intervals.

Remark. Tarjan and Sleator’s dynamic tree data structure has amortised time
O(log n) for update and query operations. To achieve this, the algorithm main-
tains dashed edges explicitly. Their technique cannot be adapted directly to
CF because insertion or removal of intervals may result in redirections of a
linear number of edges. Therefore, more care should be taken; for instance,

Dynamising Interval Scheduling: The Monotonic Case 187

one needs to maintain dashed edges implicitly in T (I) and compute them calling
right compatible operation.

Proposition 5 (Sharpness of the log2 n bound). In CF data structure there
exists a sequence of k update operations with Θ(k log2 n) total running time.

Proof. Consider a sequence which creates a set of n < k intervals. We assume
that n = 2h+1 − 1 for an h ∈ ω. The first n operations of the sequence are
insertCF such that the resulted compatibility forest is a perfect binary tree Tn,
that is, each internal node of Tn has exactly two children and the height of each
leaf in Tn is h. The next k − n operations starting form Tn are pairs of insertCF
followed by removeCF. At stage s = n+2m+1, insertCF inserts an interval is into
Ts producing the tree Ts+1. The interval is is such that in Ts+1 the path from is
to the root is of length h + 1 and the path consists of dashed edges only. Then,
at stage s + 1 we delete is. This produces a tree Ts+2 which is a perfect binary
tree of height h. We repeat this k − n times. We can select is as desired since
each perfect binary tree Ts always has a path of length h consisting of dashed
edges only. Therefore a sequence of k such operations takes time Θ(k log2 n). ��

4 Linearised Tree Data Structure (LT)

Building the data structure. We describe a second dynamic algorithm for solving
the monotonic interval scheduling problem. Our goal is to improve the running
time for the update operations by introducing the linearised tree data structure.

We say that intervals i and j are equivalent, written as i ∼ j, iff rc(i) = rc(j).
Denote the equivalence class of i by [i]. Thus, two intervals are in the same
equivalence class if they are siblings in the compatibility forest. In the linearised
tree we arrange all intervals in an equivalence class in a path using the *-order.
The linearised tree consists of all such “linearised” equivalence classes joined
by edges. Hence, there are two types of edges in the linearised tree. The first
type connects intervals in the same equivalence class. The second type joins
the greatest interval in an equivalence class with its right compatible interval.
Formally, the linearised tree L(I) is a triple (I;E∼, Ec), where E∼ and Ec are
disjoint set of edges such that:

– (i, j) ∈ E∼ if and only if i ∼ j and i is the previous interval of j. Call i the
equivalent child of j.

– (i, j) ∈ Ec if and only if i is the greatest interval in [i] and j = rc(i). Call i
the compatible child of j.

Figure 3 shows an example of a linearised tree. We stress three crucial dif-
ferences between the CF and LT data structures. The first is that a path in a
linearised tree may not be a compatible set of intervals. The second is that lin-
earised trees are binary. The third is when we insert or remove an interval we
need to redirect at most two existing edges in the linearised tree. We explain the
last fact in more details below when we introduce the dynamic algorithm.

188 A. Gavruskin et al.

g

c

h

d e

a b

f

a b

d e fc

g h

Fig. 3. Example of a compatibility forest (left) and linearised tree (right)

We use the dynamic tree data structure to represent the linearised tree. We
also maintain the interval tree T (I) as an auxiliary data structure. The interval
tree is used to compute previous and next intervals as well as left compatible
and right compatible intervals of a given interval.

Dynamic Algorithm 2. We now describe algorithms for maintaining linearised
tree data structure. We call the algorithms queryLT, insertLT and removeLT for
the query, insertion, and removal operations, respectively.

The operation queryLT: To detect if an interval i is in the greedy optimal set,
consider the path P from the least node m to the root in the linearised tree L(I).
If i /∈ P , return false. Otherwise, consider the direct predecessor j of i in the
path P . If j does not exist or (j, i) ∈ Ec, return true. Otherwise, we return false.

Algorithm 2. queryLT(i)

1: m ← minimum(T (I))
2: if i = m then � i is the least interval
3: return true
4: expose(m) � Make the path from m to the root solid
5: if i �= find(STm, i) then � i is not on the path from m to the root
6: return false
7: j ← predecessor(STm, i) � (j, i) is an edge in LT
8: if i is compatible with j then
9: return true
10: else
11: return false

Lemma 6. The operation queryLT(i) returns true if and only if a given interval
i belongs to the greedy optimal set of I.

The operation insertLT: Given i, we insert i into T (I). If i is the greatest interval
in [i], then we add the edge (i, rc(i)) into Ec. Otherwise, we add the edge (i, j)
to E∼, where j is the next interval equivalent to i. If i has an equivalent child
k then we add the edge (k, i) to E∼ and delete the old outgoing edge from k in
case such edge exists. If i has a compatible child � then we add the edge (�, i) to
Ec and delete the old outgoing edge in case such edge exists.

Dynamising Interval Scheduling: The Monotonic Case 189

Lemma 7. The operation insertLT(i) preserves linearised tree data structure.

The operation removeLT: Given i, we delete i from T (I). We delete an edge from
i to the parent of i and redirect the edge from the equivalent child j of i to the
parent of i. Then we redirect an edge from the compatible child � of i. Removing
i may add new intervals to the equivalence class of �. Therefore if � is still the
greatest interval in the updated equivalence class, we add an edge (�, rc(�) to Ec.
Otherwise, we add the edge (i, j) to E∼, where j is the next interval of �.

Lemma 8. The operation removeLT(i) preserves linearised tree data structure.

Lemmas 6-8 lead us to the following theorem:

Theorem 9. The queryLT, insertLT and removeLT operations solve the dynamic
monotonic interval scheduling problem in O(log n) amortised time, where n is
the size of the set I of intervals.

Note. The time complexity of the operations above depends on the type of
dynamic trees, representing paths of LT. We can achieve the worst-case bound
instead of amortized if we use globally biased trees instead of splay trees [10].
However, after each operation we must ensure that for every pair of edges (v, u)
and (w, u) of the linearised tree, nodes v and u are in the same dynamic tree if
and only if the numbers of nodes in the subtree rooter at v is greater or equal
to the number of nodes in the subtree rooted at u.

5 Extending Functionality of CF and LT Data Structures

The operations queryCF and queryLT detect if a given interval i belongs to the
current greedy optimal set. Alternatively, another intuitive meaning of the query
operation is to report the full greedy optimal set. The report operation, given a
set I of monotonic intervals, outputs all the intervals (with their starting and
finishing times) in the greedy optimal set. It turns out, our data structures allow
an efficient implementation of reportCF and reportLT operations.

In the CF data structure, the greedy schedule is the set of intervals on the
path from the least node m to the root. This path is represented by the splay
tree STm and is maintained after every update operation. Therefore the reportCF
amounts to in-order traversal of STm. The only thing we need to remember is
the root of STm after every update operation.

Theorem 10. The amortised complexity of the reportCF operation is O(|STm|),
where STm is the greedy optimal set.

The theorem above also shows a subtle difference between the two data struc-
tures CF and LT. In the LT data structure, in order to perform the reportLT
operation, one needs to examine the path P starting form the minimal element
in the tree L(I). But the path might contain nodes that are not necessarily in
the greedy optimal solution. Namely, we need to filter out those nodes v in P

190 A. Gavruskin et al.

for which there exists a u ∈ P such that (u, v) ∈ E∼. Hence, reportLT runs in
linear time on the size of P , where in the worst case P = I.

In the modified naive algorithm, reporting of the greedy optimal set J takes
O(|J |) time. However, to maintain the set J , update operations of the algorithm
take O(k logn) time as described in Section 2, where k is the number of changes
in J . In the worst case, k = Θ(n).

6 Experiments

Here we experimentally compare the naive (N), modified naive (MN), CF and
LT data structure algorithms. We implemented these algorithms in Java and run
experiments on a laptop with 4GB of RAM memory and Intel Core 2 Duo 2130
Mhz, 3MB of L2 cache memory processor.

In our tests, we measure the average running time in a randomly chosen
sequence of m = n+ rn+ qn operations on initially empty interval set, where n,
rn and qm are the number of insert, remove and query operations respectively.
Here both q and r are parameters. For insert(i) operation, the starting time s(i)
is a random number in [0, 1] and the finishing time is s(i)+ 1/n. The operations
remove and query are always randomly applied to the current set I of intervals.
The summary of our experiments are the following:

– CF performs similarly to LT in spite of the fact that CF takes O(log2 n) in
average as opposed to O(log n) of LT data structure. Figure 4 shows the
results of an experiment with q = n and r = 0.5n. Here our sequences of
operations do not contain report operation.

– CF data structure performs better than LT if we replace q query operations
with q report operations. This confirms our remarks at the end of Section 5.

18500014000095000500005000

0.010

0.009

0.008

0.007

0.006

0.005

0.004

n

av
er

ag
e

tim
e,

 m
s

CF
LT

Similarity of CF and LT

18000140001000060002000

0.4

0.3

0.2

0.1

0.0

n

av
er

ag
e

tim
e,

 m
s

CF
LT
MN

Reporting the greedy optimal set

Fig. 4. The parameters of the experiment on the left plot are q = n and r = 0.5. The
parameters of the experiment on the right plot are q = n and r = 0.

Dynamising Interval Scheduling: The Monotonic Case 191

– More surprisingly, even MN performs better than LT if we replace q query
operations with q report operations.

– CF outperformsMN if we replace q query operations with q report operations.
– N is outperformed by all algorithms in most of the settings.

7 Conclusions and Open Problems

Several directions for further research remain open. One of them is to remove
the monotonic restriction and allow intervals to be contained in other intervals.
To treat this general case a result in line with Lemma 1 would perhaps play a
crucial role. Another direction is to allow an arbitrary, but fixed number of avail-
able resources. Data structures, solving these more general interval scheduling
problems, would be valuable in practical applications.

References

1. Corneil, D.: A simple 3-sweep LBFS algorithm for the recognition of unit interval
graphs. Discrete Applied Mathematics 138(3), 371–379 (2004)

2. Deng, X., Hell, P., Huang, J.: Linear-time representation algorithms for proper
circular-arc graphs and proper interval graphs. SIAM Journal on Computing 25(2),
390–403 (1996)

3. Fung, S.P.Y., Poon, C.K., Zheng, F.: Online interval scheduling: Randomized and
Multiprocessor cases. In: Lin, G. (ed.) COCOON 2007. LNCS, vol. 4598, pp. 176–
186. Springer, Heidelberg (2007)

4. Katz, M.J., Nielsen, F., Segal, M.: Maintenance of a piercing set for intervals with
applications. Algorithmica 36(1), 59–73 (2003)

5. Lipton, R., Tompkins, A.: Online interval scheduling. In: Proceedings of the Fifth
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 302–311 (1994)

6. Heggernes, P., Meister, D., Papadopoulos, C.: A new representation of proper in-
terval graphs with an application to clique-width. Electronic Notes in Discrete
Mathematics 32, 27–34 (2009)

7. Kaplan, H., Molad, E., Tarjan, R.: Dynamic rectangular intersection with prior-
ities. In: Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of
Computing, pp. 639–648 (June 2003)

8. Kleinberg, J., Tardos, E.: Algorithm Design (2006)
9. Kolen, A., Lenstra, J.K., Papadimitriou, C.H., Spieksma, F.C.: Interval scheduling:

A survey. Naval Research Logistics 54(5), 530–543 (2007)
10. Sleator, D., Tarjan, R.: A Data Structure for Dynamic Trees. Journal of Computer

and System Sciences 26(3), 362–391 (1983)
11. Sleator, D., Tarjan, R.: Self-adjusting binary search trees. Journal of the

ACM 32(3), 652–686 (1985)

Graph Editing to a Fixed Target�

Petr A. Golovach1, Daniël Paulusma2, and Iain Stewart2

1 Department of Informatics, Bergen University,
PB 7803, 5020 Bergen, Norway
petr.golovach@ii.uib.no

2 School of Engineering and Computing Sciences, Durham University,
Science Laboratories, South Road, Durham DH1 3LE, United Kingdom

{daniel.paulusma,i.a.stewart}@durham.ac.uk

Abstract. For a fixed graph H , the H-Minor Edit problem takes as
input a graph G and an integer k and asks whether G can be modi-
fied into H by a total of at most k edge contractions, edge deletions
and vertex deletions. Replacing edge contractions by vertex dissolutions
yields the H-Topological Minor Edit problem. For each problem we
show polynomial-time solvable and NP-complete cases depending on the
choice of H . Moreover, when G is AT-free, chordal or planar, we show
that H-Minor Edit is polynomial-time solvable for all graphs H .

1 Introduction

Graph editing problems are well studied both within algorithmic and structural
graph theory and beyond (e.g. [1, 4, 22, 23]), as they capture numerous graph-
theoretic problems with a variety of applications. A graph editing problem takes
as input a graph G and an integer k, and the question is whether G can be modi-
fied into a graph that belongs to some prescribed graph class H by using at most
k operations of one or more specified types. So far, the most common graph op-
erations that have been considered are vertex deletions, edge deletions and edge
additions. Well-known problems obtained in this way are Feedback Vertex

Set, Odd Cycle Transversal, Minimum Fill-In, and Cluster Editing.
Recently, several papers [9, 10, 15–17] appeared that consider the setting in
which the (only) permitted type of operation is that of an edge contraction. This
operation removes the vertices u and v of the edge uv from the graph and re-
places them by a new vertex that is made adjacent to precisely those remaining
vertices to which u or v was previously adjacent. So far, the situation in which
we allow edge contractions together with one or more additional types of graph
operations has not been studied. This is the main setting that we consider in
our paper.

A natural starting approach is to consider families of graphsH of cardinality 1.
For such families, straightforward polynomial-time algorithms exist if the set of
permitted operations may only include edge additions, edge deletions and vertex

� Research supported by EPSRC (EP/G043434/1) and ERC (267959).

T. Lecroq and L. Mouchard (Eds.): IWOCA 2013, LNCS 8288, pp. 192–205, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Graph Editing to a Fixed Target 193

deletions. However, we show that this is no longer necessarily true in our case,
in which we allow both edge contractions and vertex deletions to be applied.

It so happens that setting H = {H} for some graph H , called the target graph
from now on, yields graph editing problems that are closely related to problems
that ask whether a given graph H appears as a “pattern” within another given
graph G so that G can be transformed to H via a sequence of operations without
setting a bound k on the number of operations allowed. These ‘unbounded’
problems are ubiquitous in computer science, and below we shortly survey a
number of known results on them; those results that we will use in our proofs
are stated as lemmas.

We start with some additional terminology. A vertex dissolution is the removal
of a vertex v with exactly two neighbors u and w, which may not be adjacent to
each other, followed by the inclusion of the edge uw. If we can obtain a graph
H from a graph G by a sequence that on top of vertex deletions and edge dele-
tions may contain operations of one additional type, namely edge contractions
or vertex dissolutions, then G contains H as a minor or topological minor, re-
spectively. For a fixed graph H , that is, H is not part of the input, this leads
to the decision problems H-Minor and H-Topological Minor, respectively.
Grohe, Kawarabayashi, Marx, and Wollan [13] showed that H-Topological

Minor can be solved in cubic time for all graphs H , whereas Robertson and
Seymour [25] proved the following seminal result.

Lemma 1 ([25]). H-Minor can be solved in cubic time for all graphs H.

We say that a containment relation is induced if edge deletions are excluded
from the permitted graph operations. In the case of minors and topological
minors, this leads to the corresponding notions of being an induced minor and
induced topological minor, respectively, with corresponding decision problems H-
Induced Minor and H-Induced Topological Minor. In contrast to their
non-induced counterparts, the complexity classifications of these two problems
have not yet been settled. In fact, the complexity status of H-Induced Minor

when H is restricted to be a tree has been open since it was posed at the AMS-
IMS-SIAM Joint Summer Research Conference on Graph Minors in 1991. Up
until now, only forests on at most seven vertices have been classified [8] (with
one forest still outstanding), and no NP-complete cases of forests H are known.
The smallest known NP-complete case is the graph H∗ on 68 vertices displayed
in Figure 1; this result is due to Fellows, Kratochv́ıl, Middendorf and Pfeiffer [7].

Lemma 2 ([7]). H∗-Induced Minor is NP-complete.

Lévêque, Lin, Maffray, and Trotignon [20] gave both polynomial-time solvable
and NP-complete cases for H-Induced Topological Minor. In particular
they showed the following result, where we denote the complete graph on n
vertices by Kn.

Lemma 3 ([20]). K5-Induced Topological Minor is NP-complete.

194 P.A. Golovach, D. Paulusma, and I. Stewart

Fig. 1. The smallest graph H∗ for which H-Induced Minor is NP-complete [7]

The complexity of H-Induced Topological Minor is still open when H
is a complete graph on 4 vertices. Lévêque, Maffray, and Trotignon [21] gave
a polynomial-time algorithm for recognizing graphs that neither contain K4 as
an induced topological minor nor a wheel as an induced subgraph. However,
they explain that a stronger decomposition theorem (avoiding specific cutsets) is
required to resolve the complexity status of K4-Induced Topological Minor

affirmatively.
Before we present our results, we first introduce some extra terminology. Let

G be a graph and H a minor of G. Then a sequence of minor operations that
modifies G into H is called an H-minor sequence or just a minor sequence of G
if no confusion is possible. The length of an H-minor sequence is the number of
its operations. An H-minor sequence is minimum if it has minimum length over
all H-minor sequences of G. For a fixed graph H , the H-Minor Edit problem
is that of testing whether a given graph G has an H-minor sequence of length
at most k for some given integer k. Also, for the other containment relations we
define such a sequence and corresponding decision problem.

Because any vertex deletion, vertex dissolution and edge contraction reduces
a graph by exactly one vertex, any H-induced minor sequence and any H-
topological induced minor sequence of a graph G has the same length for any
graph H , namely |VG|−|VH |. Hence, H-Induced Minor Edit and H-Induced
Topological Minor Edit are polynomially equivalent to H-Induced Minor

and H-Induced Topological Minor, respectively. We therefore do not con-
sider H-Induced Minor Edit and H-Induced Topological Minor Edit,
but will focus on the H-Minor Edit and H-Topological Minor Edit prob-
lems from now on. For these two problems edge deletions are permitted, and
this complicates the situation. For example, let G = Kn and H = K1. Then
a minimum H-minor sequence of G consists of n − 1 vertex deletions, whereas
the sequence that consists of n(n− 1)/2 edge deletions followed by n− 1 vertex
deletions is an H-minor sequence of G that has length n(n− 1)/2 + n − 1.

Our Results. In Section 2 we pinpoint a close relationship between H-Minor

Edit and H-Induced Minor, and also between H-Topological Minor Edit

and H-Induced Topological Minor. We use this observation in Section 3.1,
where we show both polynomial-time solvable and NP-complete cases for

Graph Editing to a Fixed Target 195

H-Minor Edit and H-Topological Minor Edit; note that the hardness re-
sults are in contrast with the aforementioned tractable results for H-Minor [25]
and H-Topological Minor [13]. There is currently not much hope in settling
the complexity of H-Minor Edit and H-Topological Minor Edit for all
graphsH , due to their strong connection toH-Induced Minor and H-Induced
Topological Minor, the complexity classification of each of which still must
be completed. However, in Section 3.2, we are able to show that H-Minor Edit

is polynomial-time solvable on AT-free graphs, chordal graphs and planar graphs.
In Section 3.3 we discuss parameterized complexity aspects, whereas Section 4
contains our conclusions and directions for further research.

Proofs of theorems and lemmas that are marked with the symbol � have been
omitted either completely or partially due to space restrictions.

2 Preliminaries

In this section we state some results from the literature and make some basic
observations; we will need these results and observations later on. We only con-
sider undirected finite graphs with no loops and with no multiple edges. We
denote the vertex set and edge set of a graph G by VG and EG, respectively.
If no confusion is possible, we may omit subscripts. We refer the reader to the
textbook of Diestel [5] for any undefined graph terminology.

The disjoint union of two graphs G and H with VG ∩ VH = ∅ is the graph
G + H that has vertex set VG ∪ VH and edge set EG ∪ EH . We let Pn and Cn

denote the path and cycle on n vertices, respectively, whereas K1,n is the star
on n+ 1 vertices; note that K1,1 = P2 and K1,2 = P3. The subgraph of a graph
G = (V,E) induced by a subset S ⊆ V is denoted by G[S]. A subgraph G′ of a
graph G is spanning if VG′ = VG. Let G be a graph that contains a cycle C as a
subgraph. If |VC | = |VG| then C is a hamilton cycle, and G is called hamiltonian.
An edge uv ∈ EG \ EC , with C some cycle and with u, v ∈ VC , is a chord of C.

We will frequently make use of the following observation.

Lemma 4. If (G, k) is a yes-instance of H-Minor Edit or H-Topological

Minor Edit, for some graph H, then |VH | ≤ |VG| ≤ |VH |+ k.

Proof. Let (G, k) be a yes-instance of H-Minor Edit or H-Topological Mi-

nor Edit for some graph H . An edge contraction, vertex deletion or vertex
dissolution reduces a graph by exactly one vertex, whereas an edge deletion does
not change the number of vertices. This has the following two implications. First,
no graph operation involved increases the number of vertices of a graph. Hence,
|VH | ≤ |VG|. Second, any H-minor sequence of G has length at least |VG|− |VH |.
Hence, |VG| − |VH | ≤ k, or equivalently, |VG| ≤ |VH |+ k. ��

We write Π1 ≤ Π2, for two decision problems Π1 and Π2, to denote that Π2

generalizes Π1. The following observation shows a close relationship between our
two editing problems and the corresponding induced containment problems.

196 P.A. Golovach, D. Paulusma, and I. Stewart

Lemma 5. Let H be a graph. Then the following two statements hold:

(i) H-Induced Minor ≤ H-Minor Edit.
(ii) H-Induced Topological Minor ≤ H-Topological Minor Edit.

Proof. We start with the proof of (i). Let H be a graph, and let G be an instance
of H-Induced Minor. We define k = |VG| − |VH |. We will show that (G, k) is
an equivalent instance of H-Minor Edit. If k < 0, then G is a no-instance
of H-Induced Minor, and by Lemma 4, (G, k) is a no-instance of H-Minor

Edit. Suppose that k ≥ 0. We claim that G contains H as an induced minor if
and only if (G, k) has an H-minor sequence of length at most k.

First supposeG containsH as an induced minor. Because one edge contraction
or one vertex deletion reduces a graph by exactly one vertex, any H-induced
minor sequence of G is an H-minor sequence ofG that has length |VG|−|VH | = k.

Now suppose that G has an H-minor sequence S of length at most k. Because
|VG| − |VH | = k, we find that S contains at least k operations that are vertex
deletions or edge contractions. Because S has length at most k, this means that
S contains no edge deletions. Hence, S is an H-induced minor sequence. We
conclude that G contains H as an induced minor.

The proof of (ii) uses the same arguments as the proof of (i); in particular
any vertex dissolution in a graph reduces the graph by exactly one vertex. ��

Two disjoint vertex subsets U and W of a graph G are adjacent if there exists
some vertex in U that is adjacent to some vertex in W . The following alternative
definition of being a minor is useful. Let G and H be two graphs. An H-witness
structure W is a vertex partition of a subgraph G′ of G into |VH | nonempty sets
W (x) called (H-witness) bags, such that

(i) each W (x) induces a connected subgraph of G, and
(ii) for all x, y ∈ VH with x 	= y, bags W (x) and W (y) are adjacent in G if x

and y are adjacent in H .

An H-witness structure W corresponds to at least one H-minor sequence of G.
In order to see this, we can first delete all vertices of VG \ VG′ , then modify
all bags W (x) into singletons via edge contractions and finally delete all edges
uv with u ∈ W (x) and v ∈ W (y) whenever uv /∈ EH . The remaining graph is
isomorphic to H . We note that G may have more than one H-witness structure.

An edge subdivision is the operation that removes an edge uv of a graph and
adds a new vertex w adjacent (only) to u and v. This leads to an alternative
definition of being a topological minor, namely that a graph G contains a graph
H as a topological minor if and only if G contains a subgraph H ′ that is a
subdivision of H ; that is, H ′ can be obtained from H by a sequence of edge
subdivisions. A subdivided star is a graph obtained from a star after p edge
subdivisions for some p ≥ 0.

Let G be a graph that contains a graph H as a minor. An H-minor sequence S
of G is called nice if S starts with all its vertex deletions, followed by all its edge
contractions and finally by all its edge deletions. It is called semi-nice if S starts
with all its vertex deletions, followed by all its edge deletions and finally by all

Graph Editing to a Fixed Target 197

its edge contractions. By replacing edge contractions with vertex dissolutions,
we obtain the notions of a nice and a semi-nice topological minor sequence.

Lemma 6 (�). Let H be a graph and k an integer. If a graph G has an H-
minor sequence of length k, then G has a nice H-minor sequence of length at
most k.

We note that a lemma for topological minors similar to Lemma 6 does not
hold. For example, build G as follows: take two disjoint copies of Kn, where
n ≥ 5; subdivide an edge in each copy, to introduce new vertices u and v; and
join the two new vertices u and v. Build H as two disjoint copies of Kn. If we
delete the edge (u, v) of G and next perform two vertex dissolutions (of u and
v) then we obtain an H-topological minor sequence of length 3 for G. It is not
difficult to see that there is no nice H-topological minor sequence for G of length
at most 3. However, for topological minor sequences the following holds.

Lemma 7 (�). Let H be a graph and k an integer. If a graph G has an H-
topological minor sequence of length k, then G has a semi-nice H-topological
minor sequence S of length at most k, such that the vertices not deleted by the
vertex deletions of S induce a subgraph that contains a subdivision of H as a
spanning subgraph.

We note that a lemma for minors similar to Lemma 7 does not hold. The
following example, which we will use later on as well, illustrates this.

Example 1. Let H = C6. We take a cycle Cr for some integer r ≥ 7. Let u be one
of its vertices. Add an edge between u and every (non-adjacent) vertex of the
cycle except the two vertices at distance two from u. This yields the graph G.
Then (G, r−5) is a yes-instance of H-Minor Edit (via a sequence of r−6 edge
contractions followed by an edge deletion). It is not difficult to see that every
H-minor sequence of length r − 5 of G must start with r − 6 edge contractions
followed by one edge deletion.

Let Kk,� be the complete bipartite graph with partition classes of size k and �.
Fellows et al. [7] showed that for all graphsH , H-Induced Minor is polynomial-
time solvable on planar graphs, that is, graphs that contain neither K3,3 nor K5

as a minor. This result has been extended by van ’t Hof et al. [18] to any minor-
closed graph class that is nontrivial, i.e., that does not contain all graphs.

Lemma 8 ([18]). Let G be any nontrivial minor-closed graph class. Then, for
all graphs H, the H-Induced Minor problem is polynomial-time solvable on G.

An asteroidal triple in a graph is a set of three mutually non-adjacent vertices
such that each two of them are joined by a path that avoids the neighborhood
of the third, and AT-free graphs are exactly those graphs that contain no such
triple. A graph is chordal if it contains no induced cycle on four or more vertices.
We will also need the following two results.

Lemma 9 ([11]). For all graphs H, the H-Induced Minor problem can be
solved in polynomial time on AT-free graphs.

198 P.A. Golovach, D. Paulusma, and I. Stewart

Lemma 10 ([2]). For all graphs H, the H-Induced Minor problem can be
solved in polynomial time on chordal graphs.

3 Complexity Results

In Section 3.1 we consider general input graphs G, whereas in Section 3.2 we
consider special classes of input graphs. In Section 3.3 we discuss parameterized
complexity aspects.

3.1 General Input Graphs

We first show that the computational complexities of H-Minor Edit and
H-Topological Minor Edit may differ from those of H-Minor and H-
Topological Minor, respectively.

Theorem 1. The following two statements hold:

(i) There is a graph H for which H-Minor Edit is NP-complete.
(ii) There is a graph H for which H-Topological Minor Edit is NP-complete.

Proof. For (i) we take the graph H∗ displayed in Figure 1. Then the claim follows
from Lemma 2 combined with Lemma 5-(i). For (ii) we take H = K5. Then the
claim follows from Lemma 3 combined with Lemma 5-(ii). ��

The remainder of this section is devoted to results for some special classes of
target graphs H . We start by considering the case when H is a complete graph;
note that Theorem 2-(ii) generalizes Theorem 1-(ii).

Theorem 2. The following two statements hold:

(i) Kr-Minor Edit can be solved in cubic time for all r ≥ 1.
(ii) Kr-Topological Minor Edit can be solved in polynomial time, if r ≤ 3,

and is NP-complete, if r ≥ 5.

Proof. We first prove (i). Let (G, k) be an instance of Kr-Minor Edit. If |VG|−
r < 0 or |VG| − r > k, then (G, k) is a no-instance of Kr-Topological Minor

Edit due to Lemma 4. Suppose that 0 ≤ |VG| − r ≤ k. Because we may remove
without loss of generality any edge deletions from a Kr-minor sequence of a
graph, we find that (G, k) is a yes-instance of Kr-Minor Edit if and only if G
contains Kr as a minor. Hence, the result follows after applying Lemma 1.

We now prove (ii). The cases H = K1 and H = K2 are trivial. The case
H = K3 = C3 follows from Theorem 5, which we will prove later. The case
H = K5 follows from the proof of Theorem 1-(ii).

Let r ≥ 6 and assume that Kr−1-Topological Minor Edit is NP-complete.
Let (G, k) be an instance of Kr−1-Topological Minor Edit. From G we con-
struct a graph G′ by adding a new vertex v that we make adjacent to all vertices
of G. Trivially, if (G, k) is a yes-instance of Kr−1-Topological Minor Edit

then (G′, k) is a yes-instance of Kr-Topological Minor Edit. Conversely,

Graph Editing to a Fixed Target 199

suppose that (G′, k) is a yes-instance of Kr-Topological Minor Edit. Then
G′ has a Kr-topological minor sequence S of length at most k. We modify S as
follows. We remove all edge deletions involving v. We replace the dissolution of
any vertex w 	= v that involves v with the deletion of w. If v is not deleted by
S, then this yields a Kr-topological minor sequence of G′ with length at most
k that is a Kr−1-topological minor sequence of G with length at most k. If v is
deleted by S, then we modify S further by removing this vertex deletion. Because
v is adjacent to all vertices of G′ other than itself, the resulting sequence is a
Kr+1-topological minor sequence of G′ with length at most k− 1. By extending
this sequence with the deletion of one of the remaining vertices not equal to v,
we obtain a Kr-topological minor sequence of G′ with length at most k that is
a Kr−1-topological minor sequence of G with length at most k. ��

We now consider H-Minor Edit for the case in which H is a path or a star.

Theorem 3 (�). Pr-Minor Edit and K1,r-Minor Edit can both be solved
in polynomial time for all r ≥ 1.

For topological minors we can show a stronger result than Theorem 3.

Theorem 4. Let H be a subdivided star. Then H-Topological Minor Edit

is polynomial-time solvable.

Proof. Let H be a subdivided star. Let (G, k) be an-instance ofH-Topological

Minor Edit with |VG| − |VH | = k′. We run the algorithm described below.
If k′ < 0 or k′ > k, then we return no. Otherwise, that is, if 0 ≤ k′ ≤ k, we

proceed as follows. We consider each subset U of |VH | vertices of G. We check if
G[U] contains an H-topological minor sequence of length at most k − k′ (note
that such a sequence only involves edge deletions). If so, then we return yes.
Otherwise, after considering all such subsets U , we return no.

We now analyze the running time. Let |VG| = n. Then there are at most n|VH |

possible choices of subgraphs G′ on |VH | vertices. This is a polynomial number,
because of our assumption that H is fixed. By the same assumption, every such
subgraph G′ has constant size, and hence can be processed in polynomial time.
We conclude that the total running time is polynomial.

We now prove the correctness of our algorithm. If k′ < 0 or k′ > k, then (G, k)
is a no-instance of H-Topological Minor Edit due to Lemma 4. Suppose
that 0 ≤ k′ ≤ k. We claim that our algorithm returns yes if and only if G has
an H-topological minor sequence of length at most k.

First suppose that our algorithm returns yes. Then G containsH as a topolog-
ical minor and our algorithm has obtained H from a graph G[U] on |VH | vertices
by at most k − k′ operations (which are all edge deletions), whereas the total
number of vertex deletions is |VG| − |VH | = k′. Hence, G has an H-topological
minor sequence of length at most k − k′ + k′ = k.

Now suppose that G has an H-topological minor sequence S of length at
most k. By Lemma 7, we may assume without loss of generality that S is a
semi-nice H-topological minor sequence S of length at most k, such that the

200 P.A. Golovach, D. Paulusma, and I. Stewart

vertices not deleted by the vertex deletions of S induce a subgraph G′ that
contains a subdivision H ′ of H as a spanning subgraph. We also assume without
loss of generality that the number of vertex deletions in S is maximum over all
such H-topological minor sequences of G. Then, because H is a subdivided star,
H ′ must be isomorphic to H (to see this, note that after all vertex deletions
of S, we must have a subdivided star, together with possibly some additional
edges, and that any subsequent vertex dissolutions can be replaced with vertex
deletions so contradicting the maximality of the number of vertex deletions in
S). Because H ′ - H is a spanning subgraph of G′, our algorithm will consider
G′ at some point. Because the remaining operations in S are at most k−k′ edge
deletions, they form an H-topological minor sequence of G′ that has length at
most k− k′. This will be detected by our algorithm, which will then return yes.
This completes the proof of Theorem 4. ��

Note that Theorem 3 can be generalized to be valid for target graphs H that
are linear forests (disjoint unions of paths) and Theorem 4 to be valid for target
graphs H that are forests, all connected components of which have at most one
vertex of degree at least 3, respectively.

We now consider the case when the target graph H is a cycle and show the
following result, which holds for topological minors only.

Theorem 5. Cr-Topological Minor Edit can be solved in polynomial time
for all r ≥ 3.

Proof. Let r ≥ 3. Let (G, k) be an instance of Cr-Topological Minor Edit.
We run the following algorithm. Let k′ = |VG| − r. If k′ < 0 or k′ > k, then we
return no. Otherwise, we do as follows. We check if G contains Cr as an induced
topological minor. If so, then we return yes. If not, then we do as follows for each
subgraph G′ of G with r ≤ |VG′ | ≤ 2r. We check if G′ contains a Cr-topological
minor sequence of length at most k − (|VG| − |VG′ |). If so, then we return yes.
Otherwise, after having considered all subgraphs G′ of G on at most 2r vertices,
we return no.

We first analyze the running time of this algorithm. Checking whether G
contains Cr as an induced topological minor is equivalent to checking whether
G contains an induced cycle of length at least r; the latter can be done in
polynomial time. Suppose G does not contain Cr as an induced topological
minor. Then the algorithm considers at most |VG|2r subgraphs of G, which is a
polynomial number because r is fixed. For the same reason, our algorithm can
process every such subgraph G′ in constant time.

We are left to prove correctness. If k′ < 0 or k′ > k, then (G, k) is a no-instance
of Cr-Topological Minor Edit due to Lemma 4. Suppose that 0 ≤ k′ ≤ k.
We claim that our algorithm returns yes if and only if G has a Cr-topological
minor sequence of length at most k.

First suppose that our algorithm returns yes. If G contains Cr as an induced
topological minor, then G has a Cr-topological minor sequence of length at most
k′ ≤ k. Otherwise, G contains a subgraph G′ of at most 2r vertices that has a
Cr-topological minor sequence of length at most k − (|VG| − |VG′ |). Adding the

Graph Editing to a Fixed Target 201

|VG| − |VG′ | vertex deletions that yielded G′ to this sequence gives us a Cr-
topological minor sequence of G that has length at most k.

Now suppose that G has a Cr-topological minor sequence of length at most k.
By Lemma 7, we may assume without loss of generality that S is a semi-nice
H-topological minor sequence S of length at most k, such that the vertices
not deleted by the vertex deletions of S induce a subgraph G′ that contains a
subdivision H ′ of Cr as a spanning subgraph; note that H ′ = Cs for some s ≥ r.
We also assume without loss of generality that the number of vertex deletions in
S is maximum over all such H-topological minor sequences of G, and moreover,
that Cr is obtained from G′ by first deleting all chords and then by dissolving
s− r vertices.

If G′ has at most 2r vertices, then the algorithm would consider G′ at some
point. Because S is a Cr-topological minor sequence of length at most k, we find
that G′ has a Cr-topological minor sequence of length at most k− (|VG|− |VG′|).
Hence, our algorithm would detect this and return yes.

Now suppose that G′ has at least 2r + 1 vertices. Suppose that Cs has at
least one chord e. Because s = |VG′ | ≥ 2r + 1, this means that G′ contains a
smaller cycle Ct on t ≥ r vertices that has exactly t − 1 edges in common with
Cs. We modify S as follows. We first remove all vertices of G′ not on Ct. Then
we remove all chords of Ct. Finally, we perform t − r vertex dissolutions on Ct

in order to obtain a graph isomorphic to Cr. Hence, the sequence S′ obtained in
this way is a Cr-topological minor sequence of G as well. By our construction,
S′ is semi-nice. Moreover, because Cs and Ct have t − 1 edges in common, any
edge deletion in S′ is an edge deletion in S as well. Hence S′ has length at most
k. However, S′ contains at least one more vertex deletion than S, because there
exists at least one vertex in G′ that is not on Ct. This contradicts the maximality
of the number of vertex deletions in S. Hence, Cs has no chords. Then Cs is an
induced cycle on at least s ≥ r vertices in G′, and consequently, in G. This means
that G contains Cr as an induced topological minor. The algorithm checks this
and thus returns yes. ��

3.2 Input Graphs Restricted to Some Nontrivial Graph Class

Instead of restricting the target graph H to belong to some special graph class,
as is done in Section 3.1, we can also restrict the input graph G to some special
graph class. In this section we do this for the H-Minor Edit problem.

For the H-Minor Edit problem, we may use the following lemma that
strengthens the relationship between H-Minor Edit and H-Induced Minor.

Lemma 11. Let G be a graph class and H a graph. If H ′-Induced Minor

is polynomial-time solvable on G for each spanning supergraph H ′ of H, then
H-Minor Edit is polynomial-time solvable on G.

Proof. Let G be a graph class and H a graph. Suppose that H ′-Induced Minor

is polynomial-time solvable on G for each spanning supergraph H ′ of H . Let
G ∈ G and k ∈ Z form an instance of H-Minor Edit. Let k∗ = |VG| − |VH |.

202 P.A. Golovach, D. Paulusma, and I. Stewart

If k∗ < 0 or k∗ > k, then we return no. Suppose 0 ≤ k∗ ≤ k. Then, for every
spanning supergraph H ′ of H with at most k−k∗ additional edges, we check if G
contains H ′ as an induced minor. As soon as we find that this is the case for some
H ′ we return yes. Otherwise, after having considered all spanning supergraphs
of H , we return no.

The running time of the above algorithm is polynomial for the following two
reasons. First, because H is fixed, the number of spanning supergraphs H ′ of H
is a constant. Second, by our assumption, we can solve H ′-Induced Minor in
polynomial time on G for each spanning supergraph H ′ of H .

We now prove that our algorithm is correct. If k∗ < 0 or k∗ > k then (G, k)
is a no-instance of H-Minor Edit due to Lemma 4. From now on we assume
that 0 ≤ k∗ ≤ k. We claim that our algorithm returns yes if and only if G has
an H-minor sequence of length at most k.

First suppose that our algorithm returns yes. Then there exists a spanning
supergraph H ′ of H with at most k − k∗ additional edges, such that H ′ is an
induced minor of G. Let S′ be an H ′-induced minor sequence of G. Then S′ has
length exactly |VG|−|VH′ | = |VG|−|VH | = k∗. We extend S′ by deleting the edges
in EH′ \EH . This yields an H-minor sequence S of G. As |EH′ \EH | ≤ k − k∗,
we find that S has length at most k∗+k−k∗ = k. Hence, (G, k) is a yes-instance
of H-Minor Edit.

Now suppose that G has an H-minor sequence S of length at most k. By
Lemma 6, we may assume without loss of generality that S is nice, thus all edge
deletions in S take place after all its edge contractions and vertex deletions.
Let S′ be the prefix of S obtained by omitting the edge deletions of S. Then
S′ is an H ′-induced minor sequence of G for some spanning supergraph H ′ of
H . Because every operation in S′ is a vertex deletion or edge contraction, S′

has length |VG| − |VH′ | = |VG| − |VH | = k∗. Because S has length at most k,
this means that H ′ can have at most k − k∗ more edges than H . Hence, as our
algorithm considers all spanning supergraphs of H with at most k−k∗ additional
edges, it will return yes, as desired. This completes the proof of Lemma 11. ��

Combining Lemmas 8–10 with Lemma 11 yields the following result.

Theorem 6. For all graphs H, the H-Minor Edit problem is polynomial-time
solvable on

(i) the class of AT-free graphs

(ii) the class of chordal graphs

(iii) any nontrivial minor-closed class of graphs.

3.3 Parameterized Complexity

A parameterized problem is fixed-parameter tractable if an instance (I, p) (where
p is the parameter) can be solved in time f(p) · |VG|O(1) for some function f that
only depends on p. Here, the natural parameter is the number of permitted
operations k. The following proposition follows immediately from Lemma 4.

Graph Editing to a Fixed Target 203

Proposition 1. For all graphs H, the H-Minor Edit and H-Topological

Minor Edit problems are fixed-parameter tractable when parameterized by k.

We now take |VH | as the parameter. Theorem 2 shows that in that case H-
Minor Edit and H-Topological Minor Edit are fixed-parameter tractable
and para-NP-complete, respectively, when H is a complete graph. The running
times of the algorithms given by Theorems 3–5 are bounded by O(n|VH |), where
H is a path, subdivided star or cycle, respectively. A natural question would
be if we can show fixed-parameter tractability with parameter |VH | for these
cases. However, the following result shows that this is unlikely (the class W[1] is
regarded as the parameterized analog to NP).

Proposition 2 (�). For H ∈ {Cr, Pr,K1,r}, the problems H-Minor Edit

and H-Topological Minor Edit are W[1]-hard when parameterized by r.

Proof. Due to space restrictions, we only consider the cases H = Pr and H = Cr.
Let H = Pr. Papadimitriou and Yannakakis [24] proved that the problem of

testing whether a graphG contains Pr as an induced subgraph isW[1]-hard when
parameterized by r (their proof was not done in terms of parameterized complex-
ity theory and was later rediscovered by Haas and Hoffmann [14]). We observe
that a graph G contains Pr as an induced subgraph if and only if G contains a
Pr-(topological) minor sequence of length at most |VG| − r. Hence, Pr-Minor

Edit and Pr-Topological Minor Edit are W[1]-hard when parameterized
by r.

Let H = Cr. It is known that the problem of testing whether a graph G contains
Cr as an induced subgraph is W[1]-hard when parameterized by r [14, 24]. The
corresponding hardness proofs in [14, 24] immediately imply that the problem
of testing whether a graph G contains a cycle Cs with s ≥ r as an induced
subgraph isW[1]-hard as well, when parameterized by r. We observe that a graph
G contains a cycle Cs with s ≥ r as an induced subgraph if and only if G contains
a Cr-(topological) minor sequence of length at most |VG| − r. Hence, Cr-Minor

Edit and Cr-Topological Minor Edit are W[1]-hard when parameterized
by r. ��

4 Conclusions

The ultimate goal is to complete our partial complexity classifications of H-
Minor Edit and H-Topological Minor Edit. For this purpose, the follow-
ing three research questions must be addressed.

1. Is H-Minor Edit polynomial-time solvable for all subdivided stars H?
2. Is Cr-Minor Edit polynomial-time solvable for all r ≥ 3?
3. Is K4-Topological Minor Edit polynomial-time solvable?

Answering Question 1 in the affirmative would generalize Theorem 3, in which
target graphs H that are paths or stars are considered. Note that generalizing

204 P.A. Golovach, D. Paulusma, and I. Stewart

Theorem 3 to all trees H may be very challenging, because a positive result
would solve the aforementioned open problem on H-Induced Minor restricted
to trees H , due to Lemma 5-i. The same holds for Question 3: a positive answer
to Question 3 would imply membership in P for K4-Induced Topological

Minor, the complexity status of which is a notorious open case (see e.g. [21]).
As regards Question 2, Example 1 shows that we cannot guess a bounded set
of vertices and consider the subgraph that these vertices induce instead of the
whole input graph, as was done for Cr-Topological Minor Edit. Hence, new
techniques are needed. So far, we only know that the statement is true if r ≤ 4.

Proposition 3. Cr-Minor Edit is polynomial-time solvable if r ≤ 4.

Proof. If r = 3 then H = C3 = K3 and we apply Theorem 2-(i). Let r = 4, and
let (G, k) be an instance of C4-Minor Edit. We run the following algorithm.
Let k′ = |VG| − r. If k′ < 0 or k′ > k, then we return no due to Lemma 4.
Otherwise, we do as follows. We check if G contains C4 as an induced minor. If
so then we return yes. Note that this is equivalent to checking if G contains an
induced cycle on at least four vertices, which can be done in polynomial time. If
not then G is chordal, and we apply Theorem 6-(ii). ��

Another question is whether we can prove an analog of Theorem 6 for
H-Topological Minor Edit. It is known that for all graphs H , the H-

Induced Topological Minor problem is polynomial-time solvable for AT-
free graphs [12], chordal graphs [2] and planar graphs [19]. However, as noted in
Section 2, we cannot always guarantee the existence of a nice topological minor
sequence of sufficiently small length. Hence, our proof technique used to prove
Theorem 6 can no longer be applied.

Finally, we can consider other graph containment relations as well. An edge
lift removes two edges uv and vw that share a common vertex v and adds an
edge between the other two vertices u and w involved (should this edge not
exist already). A graph G contains a graph H as an immersion if G can be
modified into H by a sequence of operations consisting of vertex deletions, edge
deletions and edge lifts. If edge deletions are not allowed then G contains H
as an induced immersion. It is known that the corresponding decision problems
H-Immersion [13] and H-Induced Immersion [3] polynomial-time solvable
for all fixed graphs H (the first problem can even be solved in cubic time [13]).
What is the computational complexity of H-Immersion Edit and H-Induced
Immersion Edit? The main difficulty is that for both problems, we can swap
neither edge lifts with vertex deletions nor edge deletions with vertex deletions.

References

1. Alon, N., Shapira, A., Sudakov, B.: Additive approximation for edge-deletion prob-
lems. In: Proc. FOCS 2005, pp. 419–428. IEEE Computer Society (2005)

2. Belmonte, R., Golovach, P.A., Heggernes, P., van, P.: Detecting fixed patterns in
chordal graphs in polynomial time. Algorithmica (to appear)

Graph Editing to a Fixed Target 205

3. Belmonte, R., van ’t Hof, P., Kamiński, M.: Induced Immersions. In: Chao, K.-M.,
Hsu, T.-S., Lee, D.-T. (eds.) ISAAC 2012. LNCS, vol. 7676, pp. 299–308. Springer,
Heidelberg (2012)

4. Burzyn, P., Bonomo, F., Duran, G.: NP-completeness results for edge modification
problems. Discrete Applied Mathematics 154, 1824–1844 (2006)

5. Diestel, R.: Graph Theory, Electronic Edition. Springer (2005)
6. Downey, R.G., Fellows, M.R.: Parameterized complexity. Monographs in Computer

Science. Springer, New York (1999)
7. Fellows, M.R., Kratochv́ıl, J., Middendorf, M., Pfeiffer, F.: The complexity of in-

duced minors and related problems. Algorithmica 13, 266–282 (1995)
8. Fiala, J., Kamiński, M., Paulusma, D.: Detecting induced star-like minors in poly-

nomial time. Journal of Discrete Algorithms 17, 74–85 (2012)
9. Golovach, P.A., van ’t Hof, P., Paulusma, D.: Obtaining planarity by contracting

few edges. Theoretical Computer Science 476, 38–46 (2013)
10. Golovach, P.A., Kamiński, M., Paulusma, D., Thilikos, D.M.: Increasing the mini-

mum degree of a graph by contractions. Theoretical Computer Science (to appear)
11. Golovach, P.A., Kratsch, D., Paulusma, D.: Detecting induced minors in AT-free

graphs. Theoretical Computer Science (to appear)
12. Golovach, P.A., Paulusma, D., van Leeuwen, E.J.: Induced disjoint paths in AT-

free graphs. In: Fomin, F.V., Kaski, P. (eds.) SWAT 2012. LNCS, vol. 7357, pp.
153–164. Springer, Heidelberg (2012)

13. Grohe, M., Kawarabayashi, K., Marx, D., Wollan, P.: Finding topological sub-
graphs is fixed-parameter tractable. In: Proc. STOC 2011, pp. 479–488 (2011)

14. Haas, R., Hoffmann, M.: Chordless paths through three vertices. Theoretical Com-
puter Science 351, 360–371 (2006)

15. Heggernes, P., van ’t Hof, P., Lévêque, B., Paul, C.: Contracting chordal graphs
and bipartite graphs to paths and trees. Discrete Applied Mathematics (to appear)

16. Heggernes, P., van ’t Hof, P., Lokshtanov, D., Paul, C.: Obtaining a bipartite graph
by contracting few edges. In: Proc. FSTTCS 2011, pp. 217–228 (2011)

17. Heggernes, P., van ’t Hof, P., Lévêque, B., Lokshtanov, D., Paul, C.: Contracting
graphs to paths and trees. Algorithmica (to appear)

18. van ’t Hof, P., Kamiński, M., Paulusma, D., Szeider, S., Thilikos, D.M.: On graph
contractions and induced minors. Discrete Applied Mathematics 160, 799–809
(2012)

19. Kobayashi, Y., Kawarabayashi, K.: A linear time algorithm for the induced disjoint
paths problem in planar graphs. Journal of Computer and System Sciences 78,
670–680 (2012)

20. Lévêque, B., Lin, D.Y., Maffray, F., Trotignon, N.: Detecting induced subgraphs.
Discrete Applied Mathematics 157, 3540–3551 (2009)

21. Lévêque, B., Maffray, F., Trotignon, N.: On graphs with no induced subdivision of
K4. Journal of Combinatorial Theory, Series B 102, 924–947 (2012)

22. Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties
is NP-complete. Journal of Computer and System Sciences 20, 219–230 (1980)

23. Natanzon, A., Shamir, R., Sharan, R.: Complexity classification of some edge mod-
ification problems. Discrete Applied Mathematics 113, 109–128 (2001)

24. Papadimitriou, C.H., Yannakakis, M.: On limited nondeterminism and the com-
plexity of the VC-dimension. Journal of Computer and System Sciences 43, 425–440
(1991)

25. Robertson, N., Seymour, P.D.: Graph minors. XIII. The disjoint paths problem.
Journal of Combinatorial Theory, Series B 63, 65–110 (1995)

Tight Bound on the Diameter

of the Knödel Graph

Hayk Grigoryan and Hovhannes A. Harutyunyan

Department of Computer Science and Software Engineering, Concordia University,
Montreal, Quebec, Canada H3G 1M8

h grig@encs.concordia.ca, haruty@cse.concordia.ca

Abstract. The Knödel graph WΔ,n is a regular graph of even order and
degree Δ where 2 ≤ Δ ≤ �log2 n�. Despite being a highly symmetric and
widely studied graph, the diameter of WΔ,n is known only for n = 2Δ.
In this paper we present a tight upper bound on the diameter of the
Knödel graph for general case. We show that the presented bound differs
from the diameter by at most 2 when Δ < α �log2 n� for some 0 < α < 1
where α → 1 when n → ∞. The proof is constructive and provides a
near optimal diametral path for the Knödel graph WΔ,n.

Keywords: Knödel graph, diametral path, broadcasting, minimum
broadcast graph.

1 Introduction

The Knödel graph WΔ,n is a regular graph of even order and degree Δ where
2 ≤ Δ ≤ �logn� (all logarithms in this paper are base 2, unless otherwise
specified). It was introduced by Knödel for Δ = �logn� and was used in an
optimal gossiping algorithm [17]. For smaller Δ, the Knödel graph is defined
in [8].

The Knödel graph was widely studied as an interconnection network topology
and proven to be having good properties in terms of broadcasting and gossiping.
The Knödel graph WΔ,2Δ is one of the three non-isomorphic infinite graph fam-
ilies known to be minimum broadcast and gossip graphs (graphs that have the
smallest possible broadcast and gossip times and the minimum possible num-
ber of edges). The other two families are the well known hypercube [5] and the
recursive circulant graph [18].

The Knödel graph WΔ−1,2Δ−2 is a minimum broadcast and gossip graph also
for n = 2Δ − 2(Δ ≥ 2) [16],[3]. One of the advantages of the Knödel graph,
as a network topology, is that it achieves the smallest diameter among known
minimum broadcast and gossip graphs for n = 2Δ(Δ ≥ 1). All the minimum
broadcast graph families — k-dimensional hypercube, C(4, 2k)-recursive circu-
lant graph and Wk,2k Knödel graph — have the same degree k, but have diam-

eters equal to k,
⌈
3k−1
4

⌉
and

⌈
k+2
2

⌉
respectively. A detailed description of some

graph theoretic and communication properties of these three graph families and
their comparison can be found in [6].

T. Lecroq and L. Mouchard (Eds.): IWOCA 2013, LNCS 8288, pp. 206–215, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Tight Bound on the Diameter of the Knödel Graph 207

As shown in [1], the edges of the Knödel graph can be grouped into dimensions
which are similar to hypercube dimensions. This allows to use these dimensions
in a similar manner as in hypercube for broadcasting and gossiping. Unlike the
hypercube, which is defined only for n = 2k, the Knödel graph is defined for any
even number of vertices. Properties such as small diameter, vertex transitivity
as a Cayley graph [15], high vertex and edge connectivity, dimensionality, em-
bedding properties [6] make the Knödel graph a good candidate as a network
topology and good architecture for parallel computing. W�logn�,n guarantees the
minimum time for broadcasting and gossiping. So, it is a broadcast and gos-
sip graph [1],[7],[8]. Moreover, W�logn�,n is used to construct sparse broadcast
graphs of a bigger size by interconnecting several smaller copies or by adding
and deleting vertices [13],[10],[9],[2],[4],[11],[16],[12].

Multiple definitions are known for the Knödel graph. We use the following def-
inition from [8], which explicitly presents the Knödel graph as a bipartite graph.

Definition 1. The Knödel graph on an even number of vertices n and of degree
Δ were 2 ≤ Δ ≤ �logn� is defined as WΔ,n = (V,E) where

V = {(i, j) | i = 1, 2 j = 0, ..., n/2− 1},

E = {((1, j), (2, (j + 2k − 1) mod (n/2))) |
j = 1, ..., n/2 k = 0, 1, ..., Δ− 1}.

We say that an edge ((1, j′), (2, j′′)) ∈ E is r-dimensional if j′ = (j′′ + 2r −
1) mod (n/2) where r = 0, 1, ..., Δ− 1. In this case, (1, j′) and (2, j′′) are called
r-dimensional neighbors.

Fig. 1 illustrates W3,14 and its 0, 1 and 2-dimensional edges. We can simplify
the illustration of the Knödel graph by minimizing the number of intersecting
edges. For this, we repeat few vertices and present the Knödel graph from Fig.
1 as illustrated in Fig. 2.

Despite being a highly symmetric and widely studied graph, the diameter of
the Knödel graph D(WΔ,n) is known only for n = 2Δ. In [7], it was proved
that D(WΔ,2Δ) =

⌈
Δ+2
2

⌉
. The nontrivial proof of this result is algebraic and

the actual diametral path is not presented. The problem of finding the shortest
path between any pair of vertices in the Knödel graph WΔ,2Δ is studied in [14],
where an 2-approximation algorithm with the logarithmic time complexity is
presented.

(1,4)

(2,4)

(1,5)

(2,5)

(1,6)

(2,6)

(1,1)

(2,1)

(1,2)

(2,2)

(1,3)

(2,3)

(1,0)

(2,0)

(2,6)dim 0
dim 1
dim 2

Fig. 1. The W3,14 graph and its 0, 1 and 2-dimensional edges

208 H. Grigoryan and H.A. Harutyunyan

(1,4)

(2,4)

(1,5)

(2,5)

(1,6)

(2,6)

(1,1)

(2,1)

(1,2)

(2,2)

(1,3)

(2,3)

(1,0)

(2,0)

dim 0
dim 1
dim 2

(2,1) (2,2)(2,0)

Fig. 2. The W3,14 graph

Most properties of the Knödel graph are known only forWΔ,2Δ andWΔ−1,2Δ−2.
In this paper we present a tight upper bound on the diameter of the Knödel graph
D(WΔ,n) for all even n and 2 ≤ Δ ≤ �logn�. We show that the presented bound
may differ from the actual diameter by at most 2 for almost all Δ. Our proof is
constructive and provides a near optimal diametral path in WΔ,n.

Usually the partition in which a vertex occurs is not relevant, so we just use
x to refer to either vertex (1, x) or vertex (2, x). The distance between vertices u
and v is denoted by dist(u, v). Using these notations and the vertex transitivity
of the Knödel graph, we can state that D(WΔ,n) = max{dist(0, x)|0 ≤ x <
n/2}. In this paper, we actually give a tight upper bound on dist(0, x) for all
0 ≤ x < n/2.

2 Paths in the Knödel Graph

In this section we construct three different paths between two vertices in the
Knödel graph WΔ,n. These paths have certain properties and are used in the
next section to prove the upper bound on the diameter of WΔ,n.

Before presenting our formal statements, let us get better understanding of the
Knödel graph and the set of vertices which can be reached from vertex 0 using
only 0 and (Δ− 1)-dimensional edges. Note that we can “move” in two different
directions from vertex 0 = (1, 0) or 0 = (2, 0) of WΔ,n. Fig. 3 illustrates the
discussed paths. We can choose the path (1, 0) → (2, 2Δ−1−1) → (1, 2Δ−1−1) →
(2, 2(2Δ−1−1)) → ... or we can move in the opposite direction following the path
(1, 0) → (2, 0) → (1, n/2 − (2Δ−1 − 1)) → (2, n/2 − (2Δ−1 − 1)) → Every
second edge in these paths is 0-dimensional. The (Δ− 1)-dimensional edges are
used to move “forward” by 2Δ−1 − 1 vertices, while the 0-dimensional edges are
only to change the partition. These two paths will eventually intersect or overlap
somewhere near vertex �n/4�. Excluding vertex 0, we have only n/2− 1 vertices

in each partition. The (Δ− 1)-dimensional edges will split WΔ,n into
⌈

n/2−1
2Δ−1−1

⌉
segments, each having length 2Δ−1 − 1, except the one containing vertex �n/4�.
We can perform only

⌊
1
2

⌈
n/2−1
2Δ−1−1

⌉⌋
=
⌊
1
2

⌈
n−2
2Δ−2

⌉⌋
(Δ−1)-dimensional passes in

each of these two paths before they intersect. Therefore, we will never use more

than
⌊
1
2

⌈
n−2
2Δ−2

⌉⌋
(Δ− 1)-dimensional passes to reach a vertex in WΔ,n.

Tight Bound on the Diameter of the Knödel Graph 209

Fig. 3. Schematic illustration of the paths. c =
⌊

1
2

⌈
n−2
2Δ−2

⌉⌋

Our first lemma constructs a path between vertex 0 and some vertex y which
is relatively close to our destination vertex x. Vertex y will have a special form
making such construction straightforward. Recall that x refers to (1, x) or (2, x),
and y refers to (1, y) or (2, y).

Lemma 2. For any vertex x of WΔ,n, by using at most 2c + 1 edges where

c =
⌊
1
2

⌈
n−2
2Δ−2

⌉⌋
, we can construct a path from vertex 0 to reach some vertex y

such that |x− y| ≤ 2Δ−1 − 1.

Proof. Our goal is to reach some vertex y of form y = c(2Δ−1 − 1) or y =
n/2 − c(2Δ−1 − 1) such that |x − y| ≤ 2Δ−1 − 1. We use only 0 and (Δ − 1)-
dimensional edges and one of two paths described above and illustrated in Fig.
3. We consider two cases. In the first case we cover the values of x that can be
reached by moving in “clockwise” direction from vertex 0. For the remaining
values of x, we use the path from Fig. 3 moving to the opposite direction.

Case 1: x < (c + 1)(2Δ−1 − 1). By alternating between 0 and (Δ − 1)-
dimensional edges, we can reach a vertex y of form y = c′(2Δ−1 − 1) and closest
to x from vertex 0 = (2, 0). We will need at most 2c′+1 edges for that. The path
to reach y = (1, y) will be (2, 0) → (1, 0) → (2, 2Δ−1 − 1) → (1, 2Δ−1 − 1) →
(2, 2(2Δ−1 − 1)) → ... → (2, c′(2Δ−1 − 1)) → (1, c′(2Δ−1 − 1)) = y. It is clear

that c′ ≤ c =
⌊
1
2

⌈
n−2
2Δ−2

⌉⌋
, hence the bound on the length of constructed path

follows. From the form of y follows that |x − y| ≤ 2Δ−1 − 1. Fig. 4 shows the
described path from (2, 0) to y = 6 = (1, 6).

Case 2: x > n/2− c(2Δ−1 − 1). This case is similar to case 1 except in order
to construct shorter path to y of form y = n/2 − c′(2Δ−1 − 1), we are moving
from vertex 0 = (1, 0) in anticlockwise direction. The path for y = (2, y) will

210 H. Grigoryan and H.A. Harutyunyan

(1,4)

(2,4)

(1,5)

(2,5)

(1,6)

(2,6)

(1,1)

(2,1)

(1,2)

(2,2)

(1,3)

(2,3)

(1,0)

(2,0)

(2,6)

(1,11)

(2,11)

(1,12)

(2,12)

(1,13)

(2,13)

(1,8)

(2,8)

(1,9)

(2,9)

(1,10)

(2,10)

(1,7)

(2,7) (2,1) (2,2)(2,0)

Fig. 4. A path between (2, 0) and (1, 6) vertices in W3,28 graph

be (1, 0) → (2, 0) → (1, n/2 − (2Δ−1 − 1) → (2, n/2 − (2Δ−1 − 1)) → ... →
(1, n/2− (c′ − 1)(2Δ−1 − 1)) → (2, n/2− (c′ − 1)(2Δ−1 − 1)) = y and will have
length at most 2c+ 1. Obviously we will have |x− y| ≤ 2Δ−1 − 1 as well. ��

The following lemma constructs a path between two vertices of WΔ,n that are
relatively close to each other. More precisely, when the difference of their labels
is upper bounded by 2Δ−1−1. We construct a path between two vertices x1 and
x2 which is not necessarily a shortest path between them. To reach the given
vertex with label x2 > x1 from vertex labeled x1, we first use a large dimensional
edge to “jump over” vertex x2 and reach some vertex y ≥ x2, such that y − x2
is the smallest. After that, we start moving from y in backward direction till
we reach x2 from right. This backward steps are performed in a greedy way. At
each step, we are using the largest dimensional edge to reach some new vertex
y′ such that y′ − x2 is minimal and y′ is on the right side of x2 i.e. y′ ≥ x2.

Lemma 3 (Existence of a special path). For any two vertices of WΔ,n

labeled x1 and x2, if |x2 − x1| ≤ 2Δ−1 − 1, then there exists a special path
between x1 and x2 of length at most 2Δ − 3. This path contains one “direct”
d-dimensional edge where d ≤ Δ− 1, some 0-dimensional edges and some edges
having dimensions between 1 and d − 1 pointing in “backward” direction. The
number of these backward edges is at most Δ− 2.

Proof. Without loss of generality, we assume that x1 = 0 and x2 > x1. In order
to construct the described path, we use an edge to get from vertex 0 to some
vertex y closest to x2 such that y > x2 and y is directly connected to 0. This will
be our “direct” d-dimensional edge. After reaching vertex y, we start to move in
“backward” direction towards x2. Once started moving in backward direction,
the distance from y to x2 which is upper bounded by 2Δ−2, will be cut at least
by half with each backward edge. Therefore we need at most Δ − 2 backward
edges. Combined with the 0-dimensional edges between these backward edges,
this will give a path of length 2(Δ − 2). By adding the initial edge, we get the
2Δ− 3 upper bound on the length of the constructed path.

Fig. 5 shows the described path between vertices x1 = (1, 0) and x2 = (2, 5).
In the illustrated example y = 7, d = 4, the “direct” edge is ((1, 0), (2, 7)) and
the “backward” edges are ((2, 7), (1, 6)) and ((2, 6), (1, 5)).

The reason we chose this particular path between x1 to x2 is that the backward
passes can be performed in the path constructed by Lemma 2. This will be crucial
in the proof of the main theorem. ��

Tight Bound on the Diameter of the Knödel Graph 211

(1,4)

(2,4)

(1,5)

(2,5)

(1,6)

(2,6)

(1,1)

(2,1)

(1,2)

(2,2)

(1,3)

(2,3)

(1,0)

(2,0)

(2,6)

(1,7)

(2,7)

Fig. 5. A path between (1, 0) and (2, 5) vertices in a section of the Knödel graph of
degree 5

Our last lemma deals with the problem of finding the shortest path in a
particular section of the Knödel graph.

Lemma 4 (Shortest path approximation). For any two vertices of WΔ,n

labeled x1 and x2, if |x2 − x1| ≤ 2d − 1 for some d ≤ Δ − 1, then there exist a
path between x1 and x2 of length at most 3 �d/4�+ 4.

Proof. Without loss of generality, we assume that x1 = 0 and x2 > x1. Our goal
is to construct a short path from vertex 0 to vertex x2 = x ≤ 2d − 1. The proof
is based on a recursive construction of a path between vertices 0 and x having
length at most 3 �d/4�+ 4. The recursion will be on d.

The base case is when d ≤ 3. This case is illustrated in Fig. 6, from which we
observe that we can reach any vertex x where 0 ≤ x ≤ 2d − 1 = 7 with a path
of length at most 4.

For d > 3, using at most three edges, we can cut the distance between 0 and
x by a factor of 16. Fig. 7 presents a schematic illustration of this. We divide the
initial interval of length 2d − 1 into eight smaller intervals A1, A2, ..., A8, each
having length at most

⌈
(2d − 1)/8

⌉
, where Ai = [(i − 1)m, im), i = 1, ..., 8 and

m = 2d−3.
It is not difficult to see that all these intervals, except A6, have both their

end vertices reachable from 0 by using at most three edges. For A6, using at
most 3 edges we can reach its middle vertex 11m/2− 1 and the end vertex 6m.
The paths, which use at most 3 edges, are illustrated in Fig. 7. This means that
when x ∈ Ai for all 1 ≤ i ≤ 8, using at most three edges, we will be within
distance m/2 from x. After relabeling the vertices, we will get the same problem
of finding a path between vertices 0 and x, but the new x will be at least 16
times smaller.

It will take at most
⌈
log16 (2

d − 1)
⌉
recursive steps to reach the base case, and

we will use at most three edges in each step. By combining this with at most 4
edges used for the base case, we will get that dist(0, x) ≤ 3

⌈
log16 (2

d − 1)
⌉
+4 ≤

3 �d/4�+ 4. ��

We note that each recursive step in Lemma 4 involves only constant number of
operations. Therefore the described path can be constructed by an algorithm of
complexity O(log n).

Lemma 4 can be used to construct a short path between any two vertices of
WΔ,n for the case when Δ = �logn�. The length of the constructed path will

212 H. Grigoryan and H.A. Harutyunyan

(1,4)

(2,4)

(1,5)

(2,5)

(1,6)

(2,6)

(1,1)

(2,1)

(1,2)

(2,2)

(1,3)

(2,3)

(1,0)

(2,0)

(2,6)

(1,7)

(2,7)

Fig. 6. Paths from vertex 0 to all other vertices x ≤ 7 in a section of the Knödel graph

Fig. 7. Illustration of the recursive step. m = 2d−3

be at most 3 �(Δ − 1)/4�+ 4. It follows that D(WΔ,n) ≤ 3 �(Δ − 1)/4�+ 4 for
Δ = �logn�.

3 Upper Bound on Diameter

In this section, using the lemmas from Section 2, we construct a path between
vertices 0 and x for any vertex x in WΔ,n. The maximum length of such a path
will be an upper bound on the diameter of WΔ,n.

Our first upper bound on D(WΔ,n) will trivially follow from Lemma 2 and
Lemma 4.

Theorem 5 (Trivial). D(WΔ,n) ≤ 2
⌊
1
2

⌈
n−2
2Δ−2

⌉⌋
+ 3 �(Δ − 1)/4�+ 5.

Proof. According to Lemma 2, for any vertex x in WΔ,n, we need at most

2
⌊
1
2

⌈
n−2
2Δ−2

⌉⌋
+ 1 edges to reach from vertex 0 to a vertex y of form y =

c(2Δ−1 − 1) or y = n/2−c(2Δ−1 − 1) within distance 2Δ−1−1 from x i.e. |x−y| ≤
2Δ−1 − 1. Now we can apply Lemma 4 and claim that dist(x, y) ≤ 3 �d/4� + 4
where d ≤ Δ − 1. Thus, we have that dist(0, x) ≤ dist(0, y) + dist(y, x) ≤
2
⌊
1
2

⌈
n−2
2Δ−2

⌉⌋
+ 3 �(Δ − 1)/4�+ 5. ��

Theorem 5 combines the paths described in Lemmas 2 and 4 in the most
trivial way. With the slight modification of the path described in Lemma 2 and
combining it with paths from Lemmas 3 and 4 we can significantly improve the
presented upper bound on D(WΔ,n).

Tight Bound on the Diameter of the Knödel Graph 213

Theorem 6 (Main). Let a =
⌊
1
2

⌈
n−2
2Δ−2

⌉⌋
and b = Δ − 2 (Δ ≥ 3). If a ≥

b then D(WΔ,n) ≤ 2a + 3 = 2
⌊
1
2

⌈
n−2
2Δ−2

⌉⌋
+ 3, otherwise D(WΔ,n) ≤ 2a +

3 �(Δ − 2− a)/4�+ 7 ≤ 3
4Δ+ 5

4a + 17
2 .

Proof. Case 1: a ≥ b. From Lemma 2, we recall that a is the maximum number of
(Δ−1)-dimensional edges necessary to reach a vertex of form y = c(2Δ−1 − 1) or
y = n/2− c(2Δ−1 − 1) closest to our destination vertex x. Recall that b = Δ− 2
is the maximum number of “backward” edges used in the path from Lemma 3.
We observe that when a ≥ b, then all the “backward” passes can be performed
by modifying the path described in Lemma 2 used to reach vertex y. We just
need to replace some of the 0-dimensional edges from Lemma 2 used only for
switching the graph partition with the corresponding “backward” passes from
Lemma 3. As a result of this modification, instead of reaching y, with 2a + 1
edges we will reach some vertex y′ precisely at distance 2Δ− 1 from x. By using
one more (Δ−1)-dimensional and one more 0-dimensional edge, we can perform
the final pass and reach x with a path of length at most 2a+ 3.

Case 2: a < b. In this case we will be able to perform only some of the reverse
passes from Lemma 3 by modifying the path from Lemma 2. More precisely,
out of b = Δ − 2 reverse passes, we will be able to perform only a of them
in the modified path. We note that each reverse pass in Lemma 3 cuts the
distance to x by half. This means that performing b − a reverse passes in the
path constructed by Lemma 2 of length 2a+3, we will be within distance 2Δ−2−a

from x compared to 2Δ−2 without performing these reverse passes. Now we can
use Lemma 4 with d = Δ − 2 − a and claim that we will be able to reach
x by using at most 3 �(Δ − 2− a)/4� + 4 additional edges. Thus, D(WΔ,n) ≤
(2a+ 3) + (3 �(Δ − 2− a)/4�+ 4) ≤ 3

4Δ+ 5
4a + 17

2 . ��

4 Tightness of the Upper Bound

In this section we analyze the tightens of the upper bound on the diameter of the
Knödel graph from Theorem 6. To do that we will first present a lower bound
on the diameter of the Knödel graph.

Theorem 7 (Lower bound). D(WΔ,n) ≥ 2
⌊
1
2

⌈
n−2
2Δ−2

⌉⌋
+ 1.

Proof. First, note that in order to reach vertex x = (1, c(2Δ−1 − 1)) where

c =
⌊
1
2

⌈
n−2
2Δ−2

⌉⌋
from vertex (2, 0), we cannot construct a path shorter than the

one described in Lemma 2 and illustrated in Fig. 3. This path contains exactly
c + 1 0-dimensional edges used for changing the graph partition and c (Δ − 1)-
dimensional edges used for moving towards x in the fastest possible way. Thus,

the lower bound D(WΔ,n) ≥ 2c+ 1 = 2
⌊
1
2

⌈
n−2
2Δ−2

⌉⌋
+ 1 follows. ��

The following theorem shows that the presented upper bound is tight, in
particular it is within additive factor 2, for almost all possible values of Δ.

214 H. Grigoryan and H.A. Harutyunyan

Theorem 8 (Tightness). For any 0 < α < 1, there exists some N(α) such
that for all n ≥ N(α) and Δ < α �logn�, the D(WΔ,n) ≤ 2a + 3 upper bound

from Theorem 6 (a =
⌊
1
2

⌈
n−2
2Δ−2

⌉⌋
) differs from actual diameter by at most 2,

i.e. 2
⌊
1
2

⌈
n−2
2Δ−2

⌉⌋
+ 1 ≤ D(WΔ,n) ≤ 2

⌊
1
2

⌈
n−2
2Δ−2

⌉⌋
+ 3.

Proof. From Theorem 7 it follows that the upper bound from Theorem 6 for the
case when a ≥ b may differ from actual diameter by at most 2. Now, we find a

sufficient condition for a ≥ b to be true. By observing that a =
⌊
1
2

⌈
n−2
2Δ−2

⌉⌋
≥

n/2
2Δ −1 and b = Δ−2 ≤ Δ−1 we get that if n/2

2Δ −1 ≥ Δ−1 then a ≥ b equality
is true. After further simplification, we get the 2Δ2Δ ≤ n sufficient condition
for a ≥ b to be true.

It follows that for given n and Δ, where 2 ≤ Δ ≤ �logn� such thatΔ2Δ+1 ≤ n,
we have 2a+1 ≤ D(WΔ,n) ≤ 2a+3. Finally, we observe that for any 0 < α < 1
and Δ < α �logn� the Δ2Δ+1 ≤ n inequality is always true for sufficiently large
n. ��

Note that Theorem 6, in almost all cases, actually gives an approximation
algorithm to find the diameter of WΔ,n with an additive factor 2.

5 Summary

In this paper we obtained tight lower and upper bounds on the diameter of the
Knödel graph WΔ,n for all even n and 2 ≤ Δ ≤ �logn�. We showed that the
presented bound differs from actual diameter by at most 2 for almost all Δ. Our
proofs are constructive and provide a near optimal diametral path in WΔ,n.

Recall that the only known results, regarding the diameter of the Knödel
graph, were the exact value D(WΔ,2Δ) =

⌈
Δ+2
2

⌉
[7] and an 2-approximation al-

gorithm with logarithmic time complexity for finding shortest path between any
pair of vertices in WΔ,2Δ [14]. Lemma 4 provides D(WΔ,2Δ) ≤ 3 �(Δ − 1)/4�+4.
Comparing this with the exact expression above, we see that Lemma 4 provides
an 3/2-approximation algorithm for the problem of finding a diametral path.
This is much better than the 2-approximation algorithm presented in [14]. How-
ever, we note that [14] addresses more general problem of finding a shortest
path in the Knödel graph and the 2-approximation ratio is for the shortest path
between any two vertices, while our result is only for the diametral path.

Our future research will be focused on routing and broadcasting problems in
the Knödel graph WΔ,n for all 2 ≤ Δ ≤ �logn�.

References

1. Bermond, J.C., Harutyunyan, H.A., Liestman, A.L., Perennes, S.: A note on the
dimensionality of modified knödel graphs. Int. J. Found. Comput. Sci. 8(2), 109–
116 (1997)

Tight Bound on the Diameter of the Knödel Graph 215

2. Bermond, J.C., Fraigniaud, P., Peters, J.G.: Antepenultimate broadcasting. Net-
works 26(3), 125–137 (1995)

3. Dinneen, M., Fellows, M., Faber, V.: Algebraic constructions of efficient broad-
cast networks. Applied Algebra, Algebraic Algorithms and Error-Correcting Codes,
152–158 (1991)

4. Dinneen, M.J., Ventura, J.A., Wilson, M.C., Zakeri, G.: Construction of time-
relaxed minimal broadcast networks. Parallel Processing Letters 9(1), 53–68 (1999)

5. Farley, A.M., Hedetniemi, S., Mitchell, S., Proskurowski, A.: Minimum broadcast
graphs. Discrete Mathematics 25, 189–193 (1979)

6. Fertin, G., Raspaud, A.: A survey on knödel graphs. Discrete Applied Mathemat-
ics 137(2), 173–195 (2004)

7. Fertin, G., Raspaud, A., Schröder, H., Sýkora, O., Vrťo, I.: Diameter of the knödel
graph. In: Brandes, U., Wagner, D. (eds.) WG 2000. LNCS, vol. 1928, pp. 149–160.
Springer, Heidelberg (2000)

8. Fraigniaud, P., Peters, J.G.: Minimum linear gossip graphs and maximal linear (δ,
k)-gossip graphs. Networks 38(3), 150–162 (2001)

9. Harutyunyan, H.A.: Minimum multiple message broadcast graphs. Networks 47(4),
218–224 (2006)

10. Harutyunyan, H.A.: An efficient vertex addition method for broadcast networks.
Internet Mathematics 5(3), 211–225 (2008)

11. Harutyunyan, H.A., Liestman, A.L.: More broadcast graphs. Discrete Applied
Mathematics 98(1-2), 81–102 (1999)

12. Harutyunyan, H.A., Liestman, A.L.: On the monotonicity of the broadcast func-
tion. Discrete Mathematics 262(1-3), 149–157 (2003)

13. Harutyunyan, H.A., Liestman, A.L.: Upper bounds on the broadcast function using
minimum dominating sets. Discrete Mathematics 312(20), 2992–2996 (2012)

14. Harutyunyan, H.A., Morosan, C.D.: On the minimum path problem in knödel
graphs. Networks 50(1), 86–91 (2007)

15. Heydemann, M.C., Marlin, N., Pérennes, S.: Complete rotations in cayley graphs.
European Journal of Combinatorics 22(2), 179–196 (2001)

16. Khachatrian, L.H., Harutounian, O.S.: Construction of new classes of minimal
broadcast networks. In: Conference on Coding Theory, Dilijan, Armenia, pp. 69–
77 (1990)

17. Knödel, W.: New gossips and telephones. Discrete Mathematics 13(1), 95 (1975)
18. Park, J.H., Chwa, K.Y.: Recursive circulant: a new topology for multicomputer net-

works (extended abstract). In: International Symposium on Parallel Architectures,
Algorithms and Networks, ISPAN 1994, pp. 73–80 (1994)

Structural Properties of Subdivided-Line Graphs�

Toru Hasunuma

Institute of Socio-Arts and Sciences,
The University of Tokushima,

1–1 Minamijosanjima, Tokushima 770–8502 Japan
hasunuma@ias.tokushima-u.ac.jp

Abstract. Motivated by self-similar structures of Sierpiński graphs, we newly
introduce the subdivided-line graph operation Γ and define the n-iterated
subdivided-line graph Γn(G) of a graph G. We then study structural properties
of subdivided-line graphs such as edge-disjoint Hamilton cycles, hub sets, con-
nected dominating sets, and completely independent spanning trees which can
be applied to problems on interconnection networks. From our results, the maxi-
mum number of edge-disjoint Hamilton cycles, the minimum cardinality of a hub
set, the minimum cardinality of a connected dominating set, and the maximum
number of completely independent spanning trees in Sierpiński graphs are ob-
tained as corollaries. In particular, our results for edge-disjoint Hamilton cycles
and hub sets on iterated subdivided-line graphs are generalizations of the previ-
ously known results on Sierpiński graphs, while our proofs are simpler than those
for Sierpiński graphs.

1 Introduction

Throughout the paper, a graph may have self-loops but not multiple edges, unless oth-
erwise stated. Let G be a graph. The vertex set and the edge set of G are denoted
by V(G) and E(G), respectively. The notion of Sierpiński graphs was introduced by
Klavžar and Milutinović [17]. The Sierpiński graph S (n, k) is the graph with the vertex
set consisting of all n-tuples of k numbers 1, 2, . . . , k, i.e, V(S (n, k)) = {(v1, v2, . . . , vn) |
1 ≤ vi ≤ k, 1 ≤ i ≤ n} and in which two vertices (u1, u2, . . . , un) and (v1, v2, . . . , vn) are
adjacent if and only if there exists an integer j, where 1 ≤ j ≤ n, such that ui = vi for
1 ≤ i < j, u j � v j, and ui = v j, vi = u j for j < i ≤ n. Fig. 1 shows the Sierpiński graphs
S (2, 3) and S (3, 3). A vertex of the form (i, i, . . . , i) of S (n, k) is called an extreme vertex.
Every vertex except for the k extreme vertices in S (n, k) has degree k, while the degree
of each extreme vertex is k − 1. The Sierpiński graph S (n, k) has a recursive structure,
i.e., S (n, k) can be constructed from k copies of S (n−1, k) by joining extreme vertices in
a fashion of the complete graph with k vertices. Since S (n, k) is not regular, two regular
variations called the extended Sierpiński graphs S +(n, k) and S ++(n, k) were also intro-
duced by Klavžar and Mohar [18]. An extended Sierpiński graph S +(n, k) is obtained
from S (n, k) by adding a new vertex and joining it to all the extreme vertices of S (n, k).
Another extended Sierpiński graph S ++(n, k) is obtained from k+1 copies of S (n−1, k)
by joining the extreme vertices in a fashion of the complete graph with k + 1 vertices

� This work was supported by JSPS KAKENHI 25330015.

T. Lecroq and L. Mouchard (Eds.): IWOCA 2013, LNCS 8288, pp. 216–229, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Structural Properties of Subdivided-Line Graphs 217

23

121

112

122

211

212

221

223232233322323332333 222

331

313

311

133

131

113

111

231

213

321

312

132 123

21

12

32
22

11

13

31

33

Fig. 1. The Sierpiński graphs S (2, 3) and S (3, 3)

(see Fig. 2). Because of their interesting self-similar structures with relations to the
problem of the Tower of Hanoi, various properties on the Sierpiński-like graphs have
been investigated: hamiltonicity [25], hub numbers [19], colorings [13,15], covering
codes [2,9], average eccentricity [14], and crossing number [18]. On the other hand, the
WK-recursive networks have independently been proposed by Vecchia and Sanges [23]
as interconnection networks, and their topological properties have been investigated in
[4,7]. The WK-recursive network and the Sierpiński graph have very similar structures,
and the difference between them is the existence of “open edges” incident to each ex-
treme vertex in the WK-recursive network. By deleting such open edges, they become
isomorphic. From the point of interconnection networks, WK-recursive networks have
a remarkable nice property for extendability.

Motivated by self-similar structures of the Sierpiński graphs (WK-recursive net-
works), we newly introduce the subdivided-line graph operation Γ and define the n-
iterated subdivided-line graphs Γn(G) of a graph G (the definitions of these notions
will be described in Section 3). We then study structural properties of subdivided-line
graphs such as edge-disjoint Hamilton cycles, hub sets, connected dominating sets,
and completely independent spanning trees (the definition of each term will be also
described in Section 4). These structural properties can be applied to problems on in-
terconnection networks. Especially, edge-disjoint Hamilton cycles and completely in-
dependent spanning trees have applications to fault-tolerant communication problems.
The Sierpiński graph S ◦(n, k) with a self-loop at each extreme vertex and the extended
Sierpiński graph S ++(n, k) can be defined as the n-iterated subdivided-line graphs of
the graph with one vertex and k self-loops and the complete graph with k + 1 vertices,
respectively. Thus, the class of iterated subdivided-line graphs generalizes the class of
these Sierpiński-like graphs. By applying our results on subdivided-line graphs with the
results on decompositions of complete graphs to the Sierpiński-like graphs, the maxi-
mum number of edge-disjoint Hamilton cycles [25], the minimum cardinality of a hub
set [19], the minimum cardinality of a connected dominating set, and the maximum
number of completely independent spanning trees in the Sierpiński-like graphs are ob-
tained as corollaries. In particular, our results for edge-disjoint Hamilton cycles and
hub sets on iterated subdivided-line graphs are generalizations of the previously known
results on Sierpiński-like graphs [25,19], while our proofs are simpler than those for
Sierpiński-like graphs.

218 T. Hasunuma

Fig. 2. The extended Sierpiński graphs S +(3, 3) and S ++(3, 3)

This paper is organized as follows. Section 2 presents terminology and notations
used in the paper. The subdivided-line graph operation and the n-iterated subdivided-
line graph of a graph are introduced in Section 3. Section 3 also presents fundamental
properties of iterated subdivided-line graphs such as diameter and connectivity. Struc-
tural properties of subdivided-line graphs and their applications to the Sierpiński-like
graphs are given in Section 4. Section 5 concludes the paper with several remarks.

2 Preliminaries

Let G = (V, E) be a graph. The number of self-loops in G is denoted by �(G). For
v ∈ V(G), let NG(v) and EG(v) denote the set of vertices adjacent to v and the set of
edges incident to v in G, respectively. The degree of v in G is denoted by degG(v), i.e.,
degG(v) = |EG(v)|. Note that in this paper, if v has a self-loop, then we count it one in
degG(v) instead of two. Let S ⊆ V(G) and T ⊆ E(G). Then, G − S (resp., G − T) is the
graph obtained from G by deleting every element of S (resp., T). The subgraph of G
induced by S is denoted by 〈S 〉G. Let δ(G) and Δ(G) denote the minimum degree and
the maximum degree of a vertex of G, respectively. The complete graph with k vertices
is denoted by Kk. For u, v ∈ V(G), the distance distG(u, v) of u and v in G is the length of
a shortest path between u and v in G. If there is no path between u and v in G, distG(u, v)
is defined to be ∞. The diameter diam(G) of G is the maximum distance of any pair
of vertices in G, i.e., diam(G) = maxu,v∈V(G) distG(u, v). The vertex-connectivity κ(G) is
the minimum cardinality of a proper subset S of V(G) such that G − S is disconnected
or G − S � K1. Also, the edge-connectivity κ̄(G) of G is the minimum cardinality of a
subset T of E(G) such that G − T is disconnected.

The line graph L(G) of G is the graph whose vertex set is E(G) and in which two
distinct vertices {u, v} and {x, y} are adjacent if and only if they are adjacent in G, i.e.,
{u, v} ∩ {x, y} � ∅. Besides, a vertex {w,w} corresponding to a self-loop in G also has
a self-loop in L(G). Let e = {x, y} ∈ E(G). Then, let Ge be the graph with V(Ge) =
V(G) ∪ {ve}, where ve � V(G), and E(Ge) = (E(G) − {{x, y}}) ∪ {{x, ve}, {ve, y}}. We
say that Ge is obtained from G by elementary subdividing the edge e. The barycentric
subdivision B(G) of G is the graph obtained from G by elementary subdividing every
edge of G except for self-loops.

Structural Properties of Subdivided-Line Graphs 219

yy

yyy

xyu xyv
xuy

xuu
xvu xvy

xvv
uxx vxx

vxu

vux
uvv vuu

uvx
uxv

xuv

xyy

yyx

yxy

yxx

xy

xu

ux

vu

vx

yx

u v

x

y

uv

xv

Fig. 3. G, Γ(G), and Γ2(G), where the vertex-labeling of Γ2(G) follows those for iterated
subdivided-line graphs

3 The Subdivided-Line Graph Operation and Iterated
Subdivided-Line Graphs

Combining the notions of the line graph and the barycentric subdivision of a graph, we
define the subdivided-line graph operation.

Definition 1. Let G be a graph. The subdivided-line graph Γ(G) of G is defined to be
the line graph of the barycentric subdivision of G. i.e., Γ(G) = L(B(G)). We call Γ the
subdivided-line graph operation.

Each vertex in Γ(G) can be denoted by the ordered pair of vertices. Namely, for each
non-loop edge {u, v} of G, there exist two corresponding vertices uv, vu in Γ(G). For a
self-loop {w,w} of G, the only corresponding vertex in Γ(G) is ww. Note that a vertex
of the form ww also has a self-loop in Γ(G). Two distinct vertices uv, xy in Γ(G) are
adjacent if and only if either u = x, or u = y and v = x (see the middle graph in
Fig. 3). The edge set of Γ(G) is naturally divided into two categories. An edge joining
vertices of the forms uv and vu is corresponding to the original edge {u, v} in G, while
an edge joining vertices uv and ux, where v � x, is newly generated in Γ(G). Then,
we call edges of the former type original edges and edges of the latter type generated
edges. Note that a self-loop at a vertex ww is an original edge. The subgraph of Γ(G)
induced by the set of generated edges is the disjoint union of complete graphs, i.e.,
∪v∈V(G)KdegG (v). For each v ∈ V(G), we denote by K(v) the complete graph induced by
a set {{vw, vw′} | w,w′ ∈ NG(v),w � w′} of generated edges. Original edges of the form
{vw,wv}, where w ∈ NG(v), are injectively incident to vertices of K(v). Thus, the degree
of every vertex of K(v) in Γ(G) is equal to degG(v).

Using the subdivided-line graph operation, we can naturally define the n-iterated
subdivided-line graph of a graph.

Definition 2. The n-iterated subdivided-line graph Γn(G) of G is the graph obtained
from G by iteratively applying the subdivided-line graph operation n times

For n ≥ 1, each vertex of Γn(G) can be expressed by a sequence v0v1 · · · vn of vertices
of G, where v1 · · · vn is any sequence on NG(v0). Intuitively, we can say that each vertex

220 T. Hasunuma

Fig. 4. Γi(K3
1) for i ≤ 3 and Γi(K4) for i ≤ 2

v in G is expanded to degG(v)n vertices in Γn(G). Thus, Γn(G) has
∑

v∈V(G) degG(v)n

vertices. Two vertices u0u1 · · ·un and v0v1 · · · vn are adjacent if and only if there exists
an integer 0 ≤ h ≤ n such that u0 · · · uh−1 = v0 · · · vh−1, uh � vh, and u j = vh, v j = uh

for h < j ≤ n (see the right graph in Fig. 3). Such an h for adjacent two vertices
u0u1 · · · un and v0v1 · · · vn is the level of the edge joining the vertices. Note that any
edge with level n is a generated edge, while any edge with level h < n is an original
edge corresponding to a generated edge in Γh(G). For any vertex v0v1 · · · vn in Γn(G),
the degree is equal to degG(v0). Hence, Γn(G) has 1

2 (|�(G)|+∑v∈V(G) degG(v)n+1) edges.
Note that �(G) = �(Γn(G)). Besides, a vertex v0v1 · · · vn is incident to degG(v0)−1 edges
with level n and one edge with level h < n.

Let S ◦(n, k) be the graph obtained from the Sierpiński graph S (n, k) by adding a
self-loop to each extreme vertex. Then, we have the following lemma, where Kk

1 is the
graph with one vertex and k self-loops, and K◦k is the complete graph with k vertices
and a self-loop at each vertex. Fig. 4 shows examples for S ◦(n, 3) and S ++(n, 3).

Lemma 1. Let n ≥ 1.

– Γn(Kk
1) = Γn−1(K◦k) � S ◦(n, k).

– Γn−1(Kk+1) � S ++(n, k).

By definition, we immediately have the following. Namely, the minimum degree and
the maximum degree are invariant with respect to the subdivided-line graph operation.

Proposition 1. δ(G) = δ(Γn(G)) ≤ Δ(Γn(G)) = Δ(G) for all n ≥ 0.

Let P = (u0, u1, . . . , ut) be a path of length t between vertices u0 and ut in G. Consider
a vertex u0vi ∈ V(K(u0)) and a vertex utv j ∈ V(K(ut)) in Γ(G). Then, there is a path
between u0vi and utv j of length at most 2t + 1. From this observation, we can see that
diam(Γ(G)) ≤ 2(diam(G)) + 1. Therefore, the next proposition holds.

Structural Properties of Subdivided-Line Graphs 221

Proposition 2. diam(Γn(G)) ≤ 2n(diam(G) + 1) − 1 for all n ≥ 0.

On vertex-connectivity and edge-connectivity, the following proposition holds.

Proposition 3. κ(Γn(G)) = κ̄(Γn(G)) = κ̄(G) for all n ≥ 1.

Proof: It clearly holds that κ(Γ(G)) ≤ κ̄(Γ(G)). If F is a cut of G, i.e., F ⊆ E(G) such
that G − F is disconnected, then the set of original edges of Γ(G) corresponding to F is
also a cut of Γ(G). Thus, it holds that κ̄(Γ(G)) ≤ κ̄(G). Therefore, it is sufficient to show
that κ(Γ(G)) ≥ κ̄(G).

If κ̄(G) = 1, then G is connected and thus Γ(G) is also connected, i.e., κ(Γ(G)) ≥ 1.
Let κ̄(G) ≥ 2 and ux, vy ∈ V(Γ(G)). If u � v, then there are κ̄(G) edge-disjoint paths
from u to v in G, thus there are κ̄(G) vertex-disjoint paths from ux to vy in Γ(G). Suppose
that u = v and x � y. In K(u), there are degG(u) − 1 vertex-disjoint paths from ux to
uy. In G, if there is a path from x to y without containing u, then there are totally
degG(u) vertex-disjoint paths from ux to uy. Suppose that in G every path from x to y
contains u. Then, the maximum number of edge-disjoint paths from x to y is at most
� degG(u)

2 � ≤ degG(u)− 1 and κ̄(G) ≤ � degG(u)
2 �. Thus, there are at least κ̄(G) vertex-disjoint

paths from ux to uy in Γ(G). Hence, κ(Γ(G)) ≥ κ̄(G). ��

4 Structural Properties of Subdivided-Line Graphs and
Sierpiński-Like Graphs

4.1 Edge-Disjoint Hamilton Cycles

Edge-disjoint Hamilton cycles are fundamental subjects and have been studied from not
only a theoretical point of view [5] but also a practical point of view, since the notion
has applications in interconnection networks [1,6,20,22].

We first present a necessary and sufficient condition for the subdivided-line graph
Γ(G) to be Hamiltonian. A graph is called supereulerian if the graph has a spanning
Eulerian subgraph.

Theorem 1. Γ(G) is Hamiltonian if and only if G is supereulerian.

Proof: Suppose that Γ(G) is Hamiltonian. Let C be a Hamilton cycle in Γ(G). Contract-
ing the vertices in each complete graph K(v) into a single vertex v, a spanning connected
subgraph FC of G is obtained from C. Since C is a Hamilton cycle, the degree of each
vertex of FC must be even. Thus, FC is a spanning Eulerian subgraph of G.

Conversely, suppose that G is supereulerian. Let F be a spanning Eulerian subgraph
of G with an Euler tour. Based on F, we can construct a Hamilton cycle in Γ(G) as fol-
lows. Let v ∈ V(G) and T (v) = {{{u1, v}, {v,w1}}, {{u2, v}, {v,w2}}, . . . , {{up, v}, {v,wp}}}
be the set of pairs of edges which are incident to v and consecutively appear in the Euler
tour in F. For every pair {{ui, v}, {v,wi}} in T (v) except for one pair {{up, v}, {v,wp}}, we
replace it with the consecutive three edges {uiv, vui}, {vui, vwi} and {vwi,wiv} in Γ(G).
Note that {vui, vwi} ∈ E(K(v)). For the pair of edges {{up, v}, {v,wp}} in F, we replace it
with the path starting from the original edge {upv, vup} and ending at the original edge
{vwp,wpv} which contains all the vertices in V(K(v))− {vu1, vw1, . . . , vup−1, vwp−1}. Re-
peating the similar process for all the other vertices in G and combining them according
to the Euler tour, we have a Hamilton cycle in Γ(G). ��

222 T. Hasunuma

A Hamilton cycle in a graph is clearly a spanning Euler subgraph of the graph. Thus,
we have the following corollary.

Corollary 1. Γn(G) is Hamiltonian if G is supereulerian for all n ≥ 1.

Next, we consider a sufficient condition for the existence of edge-disjoint Hamilton
cycles in Γ(G). For complete graphs, the existence and constructions of edge-disjoint
Hamilton cycles (paths) are already well-known. Namely, Kk can be decomposed into
Hamilton cycles (respectively, Hamilton paths) if k is odd (respectively, even) (e.g., see
Theorem 9.21 and Corollary 9.22 in [3]). This means that for any � k

2 � disjoint pairs
(u1, v1), (u2, v2), . . . , (u� k

2 �, v� k
2 �) of vertices of Kk, there are � k

2 � edge-disjoint Hamilton

paths between ui and vi (i = 1, 2, . . . , � k
2 �). Using the results, we can show the following

result.

Theorem 2. If there are � edge-disjoint Hamilton cycles in G, then there are � edge-
disjoint Hamilton cycles in Γ(G).

Proof: Suppose that there are � edge-disjoint Hamilton cycles C1,C2, . . . ,C� in G. For
every vertex v of G, it holds that degCi (v) = 2 for i = 1, 2, . . . , � and δ(G) ≥ 2�. Then,
let NCi (v) = {ui,wi} for i = 1, 2, . . . , �. In Γ(G), each vertex v of G is replaced with
the complete graph K(v) such that original edges of Γ(G) are injectively incident to the
vertices of K(v). Since K(v) has � degG(v)

2 � (≥ � δ(G)
2 � ≥ �) edge-disjoint Hamilton paths

between any � dgeG(v)
2 � disjoint pairs of vertices for each v ∈ V(G), by selecting � edge-

disjoint Hamilton paths Pi(v) between vui and vwi (1 ≤ i ≤ �) in K(v), and concatenating
Pi(v) and the original edges corresponding to the edges in Ci, � edge-disjoint Hamilton
cycles in Γ(G) are obtained. �

By the similar construction, we can also obtain � edge-disjoint Hamilton paths in
Γ(G) if G has � edge-disjoint Hamilton paths, where � ≤ � δ(G)

2 �. Applying Theorem 2
(with this remark) iteratively, we have the following corollary.

Corollary 2. Let � ≤ � δ(G)
2 �. If there are � edge-disjoint Hamilton cycles (resp., paths)

in G, then there are � edge-disjoint Hamilton cycles (resp., paths) in Γn(G) for all n ≥ 0.

Setting G = K◦k and G = Kk+1 in the above corollary and using the fact that there are
� k−1

2 � edge-disjoint Hamilton cycles in Kk, the next results which were recently shown
by Xue, Zuo, and Li [25], are immediately obtained. Note that the numbers of edge-
disjoint Hamilton cycles in Theorem 3 are optimal. Figure 5 shows an example of two
edge-disjoint Hamilton cycles in S (2, 5).

Theorem 3. [25]

– There are � k−1
2 � edge-disjoint Hamilton cycles in S (n, k).

– There are � k
2 � edge-disjoint Hamilton cycles in S ++(n, k).

Besides, we can easily check that there are � k
2 � edge-disjoint Hamilton paths be-

tween � k
2 � disjoint pairs of extreme vertices in S (n, k). Thus, there are � k

2 � edge-disjoint
Hamilton cycles in S +(n, k), which was also shown in [25].

Structural Properties of Subdivided-Line Graphs 223

Fig. 5. The Sierpiński graph S (2, 5) and its two edge-disjoint Hamilton cycles

4.2 Hub Sets and Connected Dominating Sets

The notion of a hub set was introduced by Walsh [24]. A hub set S h of G is a subset
of V(G) such that for every pair of distinct vertices u, v ∈ V(G) − S h, there exists a
path between u and v in which all the internal vertices are in S h (in what follows, we
call such a path a correct path between u and v). Note that there is no internal vertex
for a path of length one. Thus, the condition of a hub set vacuously holds for any pair
of adjacent vertices. The minimum cardinality of a hub set of G is the hub number
h(G) of G. A connected hub set S ′h of G is a hub set of G such that 〈S ′h〉G is connected
and the minimum cardinality of a connected hub set of G is denoted by hc(G). There
is a notion closely related to a connected hub set. A connected dominating set S c of
G is a subset of V(G) such that for every vertex v ∈ V(G) − S c, there exists a vertex
w in S c such that {v,w} ∈ E(G) and 〈S c〉G is connected. A connected dominating set
has an application to location problems of resources in communication networks. The
minimum cardinality of a connected dominating set of G is the connected domination
number γc(G) of G. A connected dominating set is a connected hub set. Thus, it holds
that h(G) ≤ hc(G) ≤ γc(G). Grauman et. al [8] proved that γc(G) ≤ h(G) + 1 and
presented a polynomial-time algorithm for checking hc(G) = γc(G). Johnson, Slater,
and Wlash [16] also characterized the graph G for which γc(G) = hc(G) + 1.

We determine the hub number, the connected hub number, and the connected domi-
nation number of Γ(G).

Theorem 4. Let G be a connected graph with Δ(G) ≥ 3. Then,

h(Γ(G)) = hc(Γ(G)) = γc(Γ(G)) = 2(|V(G)| − 1).

Proof: First, we show that γc(Γ(G)) ≤ 2(|V(G)| − 1). Let T be a spanning tree in G.
Let S T be the set of vertices of Γ(G) incident to original edges corresponding to edges
in T , i.e., S T = {vw | {v,w} ∈ E(T)}. Then, 〈S T 〉Γ(G) is clearly connected. Besides, for
any vertex uv ∈ V(Γ(G)) − S T , uv is incident to a vertex in S T , since for any u ∈ V(G),
K(u) contains at least one vertex in S T . Therefore, S T is a connected dominating set of
Γ(G).

Next, we will show that h(Γ(G)) ≥ 2(|V(G)| − 1). Let S ⊆ V(Γ(G)). For each con-
nected component C of 〈S 〉Γ(G), define the extended component Ex(C) with respect to S
as C∪(∪v∈V(G),K(v)∩V(C)�∅K(v)). Besides, for each K(u) containing no vertex in S , we call

224 T. Hasunuma

it an extended component for convenience. Now assume that h(Γ(G)) < 2(|V(G)| − 1)
and let S h be a minimum hub set of Γ(G) such that the number Nc(S h) of extended
components with respect to S h is minimum over all minimum hub sets of Γ(G). Since
|S h| < 2(|V(G)| − 1), Nc(S h) ≥ 2.

Since Γ(G) is connected, there exist two extended components M and M′ such that
there is an original edge joining a vertex in M and a vertex in M′. Let vw ∈ V(M) and
wv ∈ V(M′). By definition, it does not hold that vw,wv ∈ S h. Assume that vw,wv � S h.
If there is a vertex xy � S h, where x � y, such that xy is in an extended component
M′′ different from M and M′, then the vertex yx must be in V(M) ∩ S h for a correct
path between xy and vw and also must be in V(M′) ∩ S h for a correct path between
xy and wv, which is a contradiction. Thus, for any vertex xy � S h ∪ {vw,wv}, xy is in
V(M) ∪ V(M′) such that if xy ∈ V(M) (resp., xy ∈ V(M′)), then yx ∈ V(M′) ∩ S h

(resp., yx ∈ V(M) ∩ S h). Since |V(Γ(G))| ≥ 2|V(G)| + 1, |V(Γ(G)) − S h| ≥ 4. Let
x1y1, x2y2 � S h ∪ {vw,wv}. Then, letting S ′h = (S h − {y1x1, y2x2}) ∪ {vw,wv}, S ′h is
also a minimum hub set, however, Nc(S ′h) < Nc(S h), which contradicts the definition
of S h. Therefore, one of vw and wv is in S h and the other is not in S h. Without loss
of generality, we may assume that vw � S h and wv ∈ S h. If there is another vertex
ab ∈ V(M) − {vw} such that ba ∈ V(M′), then one of ab and ba is in S h, the other is
not in S h by the previous discussion, and we can also decrease the number of extended
components while preserving the cardinality of a minimum hub set. Thus, there is only
one original edge between M and M′. By the similar discussion, for any two extended
components, there is at most one original edge between them. Suppose that there is a
vertex xy ∈ V(M) − S h and ab ∈ V(M′) − S h. Then, for a correct path between xy
and ab, there exists an extended component M′′ different from M and M′ such that
yx, ba ∈ V(M′′) ∩ S h. However, in such a case, we can check that there exists a vertex
cd � S h ∪ {vw, xy, ab} and a vertex e f in {vw, xy, ab} such that there is no correct path
between cd and e f . Hence |V(M) − S h| = 1 or |V(M′) − S h| = 0.

Suppose that there is a vertex xy ∈ V(M)− (S h∪{vw}), i.e., |V(M)−S h| ≥ 2. Assume
that there is a vertex cd ∈ V(M′′) − S h, where M′′ is an extended component different
from M and M′ such that dc ∈ V(M′). Note that dc ∈ S h. In this case, for the existence
of a correct path between xy and cd, yx must be in V(M′′) ∩ S h. It can be checked that
there is no extended component containing a vertex not in S h except for M,M′, and M′′.
Besides, since |V(Γ(G))− S h| ≥ 4, there is a vertex in (V(M)∪V(M′)∪V(M′′))− (S h∪
{vw, xy, cd}). However, it follows that there exist two original edges between M and M′′
or between M′ and M′′, which is a contradiction by the previous discussion. Hence, if
there is a vertex cd ∈ V(M′′) − S h, then dc ∈ V(M) ∩ S h. Since V(M′) ⊆ S h and there
is no vertex not in S h adjacent to a vertex in V(M′), we can select an appropriate vertex
e f in M′ such that by letting S ′h = (S h − {e f }) ∪ {vw}, S ′h is a minimum hub set and
Nc(S ′h) < Nc(S h), which is a contradiction. Therefore, |V(M) − S h| = 1. Similarly, we
can check that |V(M′) − S h| = 0.

If an extended component M∗, where M∗ � M,M′, contains two vertices x1y1, x2y2 �
S h, then y1x1, y2x2 ∈ (V(M) ∪ V(M′)) ∩ S h, which implies the case that there are three
extended components with three original edges among them, which is a contradiction
by the previous discussions. Therefore, for any extended component M∗ different from
M and M′, M∗ contains at most one vertex not in S h. Besides, if there are two extended

Structural Properties of Subdivided-Line Graphs 225

Fig. 6. The Sierpiński graph S (2, 4), a spanning tree T in S (2, 4), the minimum connected domi-
nating set S c in S (3, 4) based on T , and 〈S c〉S (3,4) with vertices not in S c, where each vertex in S c

is denoted by an additional circle

components M′′ and M′′′ such that ab ∈ V(M′′)−S h, cd ∈ V(M′′′)−S h, ba ∈ V(M)∩S h,
and dc ∈ V(M′)∩S h, then there is no correct path between ab and cd. Therefore, we can
select an appropriate vertex e f in M or M′ such that by letting S ′h = (S h − {e f }) ∪ {vw},
S ′h is a minimum hub set and Nc(S ′h) < Nc(S h), which is a contradiction. Consequently,
we have h(Γ(G)) ≥ 2(|V(G)| − 1). �

Corollary 3. Let G be a connected k-regular graph such that k ≥ 3. Then,

h(Γn(G)) = hc(Γn(G)) = γc(Γn(G)) = 2(kn−1|V(G)| − 1) for all n ≥ 1.

From Corollary 3, the following results for S (n, k) and S ++(n, k), which were shown
by Lin et. al [19] except for γc(S (n, k)) and γc(S ++(n, k)), are immediately obtained. By
the proof of Theorem 4, based on a spanning tree in S (n−1, k) (resp., S ++(n−1, k)), we
can construct a minimum connected dominating set with 2(|V(S (n − 1, k))| − 1) (resp.,
2(|V(S ++(n − 1, k))| − 1)) vertices for S (n, k) (resp., S ++(n, k)). Figure 6 illustrates a
minimum connected dominating set in S (3, 4) based on a spanning tree in S (2, 4).

Theorem 5. [19]

– h(S (n, k)) = hc(S (n, k)) = γc(S (n, k)) = 2(kn−1 − 1) for all n > 1.
– h(S ++(n, k)) = hc(S ++(n, k)) = γc(S ++(n, k)) = 2(kn−1 + kn−2 − 1) for all n > 1.

By slightly modifying the proof of Theorem 4, we can show that h(S +(n, k)) =
hc(S +(n, k)) = γc(S +(n, k)) = 2kn−1 − k + 1, which were also shown in [19] except
for γc(S +(n, k)).

4.3 Completely Independent Spanning Trees

Motivated by fault-tolerant communication problems in interconnection networks, the
notion of completely independent spanning trees was introduced in [10]. Completely
independent spanning trees T1, T2, . . . , T� in G are spanning trees in G such that for
every pair of distinct vertices u and v, the � paths between u and v in T1, T2, . . . , T� are
pairwise internally vertex-disjoint. It was also shown in [10] that T1, T2, . . . , T� in G are

226 T. Hasunuma

completely independent spanning trees if and only if T1, T2, . . . , T� are edge-disjoint
spanning trees such that for every vertex v in G, the degrees of v in T1, T2, . . . , T� are
one except for at most one spanning tree Ti. Based on this characterization, we can
construct � completely independent spanning trees in G by coloring the vertices of G
using � colors c1, . . . , c� so that there are � edge-disjoint spanning trees T1, . . . , T� such
that all the internal (non-leaf) vertices of Ti are colored by ci. The notion of completely
independent spanning trees is related to connected dominating sets. Namely, if there are
� completely independent spanning trees in G, then there are � vertex-disjoint connected
dominating sets. Until now, the existence of completely independent spanning trees
have been studied for several graph classes [10,11,12]. Besides, it was shown in [21]
that there is no direct relationship between the vertex-connectivity of G and the number
of completely independent spanning trees in G.

Lemma 2. For any partition of V(Kk) with � parts P1, P2, . . . , P� , if |Pi| ≥ 2 for each
i, then Kk has � completely independent spanning trees T1, T2, . . . , T� such that the set
of internal vertices of Ti is contained in Pi for each i.

Proof: For the complete graph Kk with even k, we can directly construct k
2 completely

independent spanning trees as mentioned in [11]. Let V(Kk) = {v0, v1, . . . , vk−1}. Define
completely independent spanning trees Ti in Kk as follows:

Ti =

〈{

{vi, vi+ j}
∣∣∣∣∣ 1 ≤ j ≤ k

2

}

∪
{

{vi+ k
2 mod k, vi+ k

2+ j mod k}
∣∣∣∣∣ 1 ≤ j <

k
2

}〉

Kk

for i = 0, 1, . . . , k
2 − 1. Namely, Ti is obtained from T0 by clockwise-shifting i times

provided that the vertices of Kk are placed in circular positions.
Select two elements ai, bi from each Pi and let S = {a1, b1, a2, b2, . . . , a�, b�}. Then,

we construct � completely independent spanning trees T1, T2, . . . , T� in 〈S 〉Kk so that
{ai, bi} is the set of internal vertices in Ti for each i by the above construction. For each
vertex x ∈ V(Kk) − S , adding x to Ti with the edge {x, ai}, � completely independent
spanning trees in Kk are obtained. �

Theorem 6. If there are � edge-disjoint spanning trees T1, T2, . . . , T� in a graph G such
that for any vertex v of G,

degG(v) −
∑

1≤i≤�
degTi

(v) ≥ |{i | degTi
(v) = 1}|,

then there are � completely independent spanning trees in Γ(G).

Proof: Let T1, T2, . . . , T� be � edge-disjoint spanning trees in G. Let Hi be the subgraph
of Γ(G) induced by the set of the original edges corresponding to the edges in E(Ti),
i.e., Hi = 〈{{vw,wv} | {v,w} ∈ E(Ti)}〉Γ(G). Then, Hi is a non-spanning tree of Γ(G) for
each i ∈ {1, 2, . . . , �} such that H1,H2, . . . ,H� are edge-disjoint.

For each K(v) of Γ(G), let Pi(v) = V(K(v)) ∩ V(Hi) for i = 1, 2, . . . , �. From the
condition that degG(v) − ∑1≤i≤� degTi

(v) ≥ |{i | degTi
(v) = 1}|, we can select S i ⊆

V(K(v)) − ∪1≤i≤�V(Hi), where S i ∩ S j = ∅ for i � j, so that V(Kk) is partitioned to �
parts P1(v) ∪ S 1, P2(v) ∪ S 2, . . . , P�(v) ∪ S � and |Pi(v) ∪ S i| ≥ 2 for all i ∈ {1, 2, . . . , �}.

Structural Properties of Subdivided-Line Graphs 227

Fig. 7. Two edge-disjoint Hamilton paths in S (2, 4) and the corresponding two isomorphic com-
pletely independent spanning trees T1 and T2 in S (3, 4), where a vertex of S (3, 4) is colored white
if it is an internal vertex of T2

From Lemma 2, there are � completely independent spanning trees T ∗1 , T
∗
2 , . . . , T

∗
� in

each K(v) such that for each T ∗i , the set of internal vertices is contained in Pi(v) ∪ S i.
Hence, for i = 1, 2, . . . , �, combining T ∗i with Hi and deleting appropriate edges if
|Pi(v)| > 2, we have � completely independent spanning trees in Γ(G). �

If � ≤ � δ(G)
2 � and there are � edge-disjoint Hamilton paths T1, T2, . . . , T� in G, then

the degree condition in Theorem 6 is satisfied since degTi
(v) ≤ 2 for every Ti and every

v ∈ V(G). Therefore, the following corollary holds.

Corollary 4. Let � ≤ � δ(G)
2 �. If there are � edge-disjoint Hamilton paths in a graph G,

then there are � completely independent spanning trees in Γ(G).

From Corollaries 2 and 4, we have the next result on iterated subdivided-line graphs.

Corollary 5. Let � ≤ � δ(G)
2 �. If there are � edge-disjoint Hamilton paths in G, then there

are � completely independent spanning trees in Γn(G) for all n ≥ 1.

Applying Corollary 5 to Sierpiński-like graphs, the following theorem is obtained.
We can easily check that the number of completely independent spanning trees in this
theorem is optimal since completely independent spanning trees are edge-disjoint each
other. In particular, when k is even, the k

2 completely independent spanning trees in
S (n, k) (S ++(n, k)) are isomorphic each other. Figure 7 shows two isomorphic com-
pletely independent spanning trees in S (3, 4) based on two edge-disjoint Hamilton paths
in S (2, 4).

Theorem 7.

– There are � k
2 � completely independent spanning trees in S (n, k).

– There are � k
2 � completely independent spanning trees in S ++(n, k).

As mentioned in Subsection 4.1, there are � k
2 � edge-disjoint Hamilton paths between

� k
2 � disjoint pairs of extreme vertices in S (n, k). Thus, we can also construct � k

2 � com-
pletely independent spanning trees in S +(n, k).

228 T. Hasunuma

5 Concluding Remarks

In this paper, we have introduced a notion of the subdivided-line graph operation and
iterated subdivided-line graphs. The class of iterated subdivided-line graphs generalizes
the class of Sierpiński-like graphs. By investigating structural properties on iterated
subdivided-line graphs, we have obtained generalized results with simpler proofs for
the previously known results on edge-disjoint Hamilton cycles and minimum hub sets
of the Sierpiński-like graphs. Besides, we have obtained new results on completely
independent spanning trees in iterated subdivided-line graphs which can be applied to
fault-tolerant communication problems in WK-recursive networks.

For digraphs, the line digraph operation L is well-known as a useful graph operation
to construct a class of digraphs with bounded degree and small diameter. In fact, the
classes of de Brujin digraphs and Kautz digraphs which are known as interconnection
networks can be constructed by using the line digraph operation. By the subdivided-
line graph operation Γ, we can generate a class of graphs Γn(G) with bounded degree
and good extendability. Unfortunately, the diameter of a graph in the class is not small
in general, i.e., the diameter is not a logarithm of the number of vertices. However,
for small n, there are cases for which graphs generated by the subdivided-line graph
operation have advantages on the number of vertices compared with graphs with log-
arithmic diameter. For example, Table 1 shows the comparison of the hypercube and
the (extended) Sierpiński graphs for the order (the number of vertices), degree, and
diameter for small n. The k-dimensional hypercube Qk is one of the most popular inter-
connection networks with logarithmic diameter. In each case of Table 1, S (n, k) and/or
S ++(n, k) have more vertices than the hypercube with the same degree and the same (or
larger) diameter. The hypercube has a logarithmic diameter, while it does not have a
property of bounded degree. Then the hybrid class Γn(Qk) might be another candidate
for interconnection networks. In particular, as a spanning subgraph, Γ(Qk) contains the
cube-connected-cycles CCCk which is also known as an interconnection network, and
when n = 3 it holds that Γ(Q3) � CCC3.

Table 1. The cases for which S (n, k) and/or S ++(n, k) have advantages on the order compared
with the hypercube Qk when n ≤ 4

Hypercube Qk Sierpiński Graph S (n, k) Extended Sierpiński S ++(n, k)
n degree k diameter k order 2k diameter 2n − 1 order kn diameter 2n − 1 order kn + kn−1

2 3 3 8 3 9 3 12
2 4 4 16 3 16 3 20
3 7 7 128 7 343 7 392
3 8 8 256 7 512 7 576
3 9 9 512 7 729 7 810
3 10 10 1024 7 1000 7 1100
4 15 15 32768 15 50625 15 54000
4 16 16 65536 15 65536 15 69632

Structural Properties of Subdivided-Line Graphs 229

References

1. Bae, M.M., Bose, B.: Edge disjoint Hamiltonian cycles in k-ary n-cubes and hypercubes.
IEEE Trans. Comput. 52, 1271–1284 (2003)

2. Beaudou, L., Gravier, S., Klavžar, S., Kovše, M., Mollard, M.: Covering codes in Sierpiński
graphs. Discret. Math. Theor. Comput. Sci. 12, 63–74 (2010)

3. Chartrand, G., Lesniak, L.: Graphs & Digraphs, 4th edn. Chapman & Hall/CRC (2005)
4. Chen, G.-H., Duh, D.-R.: Topological properties, communication, and computation on WK-

recursive networks. Networks 24, 303–317 (1994)
5. Christofides, D., Kühn, D., Osthus, D.: Edge-disjoint Hamilton cycles in graphs. J. Combin.

Theory Ser. B 102, 1035–1060 (2012)
6. Čada, R., Kaiser, T., Rosenfeld, M., Ryjáček, Z.: Disjoint Hamilton cycles in the star graph.

Inform. Process. Lett. 110, 30–35 (2009)
7. Duh, D.-R., Chen, G.-H.: Topological properties of WK-recursive networks. J. Parallel and

Distrib. Comput. 23, 468–474 (1994)
8. Grauman, T., Hartke, S.G., Jobson, A., Kinnersley, B., West, D.B., Wiglesworth, L., Worah,

P., Wu, H.: The hub number of a graph. Inf. Process. Lett. 108, 226–228 (2008)
9. Gravier, S., Kovše, M., Mollard, M., Moncel, J., Parreau, A.: New results on variants of

covering codes in Sierpiński graphs. Des. Codes Cryptogr. (to appear)
10. Hasunuma, T.: Completely independent spanning trees in the underlying graph of a line

digraph. Discrete Math. 234, 149–157 (2001)
11. Hasunuma, T.: Completely independent spanning trees in maximal planar graphs. In: Kučera,

L. (ed.) WG 2002. LNCS, vol. 2573, pp. 235–245. Springer, Heidelberg (2002)
12. Hasunuma, T., Morisaka, C.: Completely independent spanning trees in torus networks. Net-

works 60, 59–69 (2012)
13. Hinz, A.M., Parisse, P.: Coloring Hanoi and Sierpiński graphs. Discrete Math. 312, 1521–

1535 (2012)
14. Hinz, A.M., Parisse, P.: The average eccentricity of Sierpiński graphs. Graphs Combin. 28,

671–686 (2012)
15. Jakovac, M., Klavžar, S.: Vertex-, edge-, and total-coloring of Sierpiński-like graphs. Dis-

crete Math. 309, 1548–1556 (2009)
16. Johnson, P., Slater, P., Walsh, M.: The connected hub number and the connected domination

number. Networks 58, 232–237 (2011)
17. Klavžar, S., Milutinović, U.: Graphs S (n, k) and a variant of the Tower of Hanoi problem.

Czechoslovak Math. J. 47(122), 95–104 (1997)
18. Klavžar, S., Mohar, B.: Crossing numbers of Sierpiński-like graphs. J. Graph Theory 50,

186–198 (2005)
19. Lin, C.-H., Liu, J.-J., Wang, Y.-L., Yen, W.C.-K.: The hub number of Sierpiński-like graphs.

Theory Comput. Syst. 49, 588–600 (2011)
20. Micheneau, C.: Disjoint Hamiltonian cycles in recursive circulant graphs. Inform. Process.

Lett. 61, 259–264 (1997)
21. Péterfalvi, F.: Two counterexamples on completely independent spanning trees. Discrete

Math. 312, 808–810 (2012)
22. Rowley, R., Bose, B.: Edge-disjoint Hamiltonian cycles in de Bruijn networks. In: Proceed-

ings of the Distributed Memory Computing Conference, vol. 6, pp. 707–709 (1991)
23. Vecchia, G.D., Sanges, C.: A recursively scalable network VLSI implementation. Future

Generat. Comput. Syst. 4, 235–243 (1988)
24. Walsh, M.: The hub number of a graph. Int J. Math. Comput. Sci. 1, 117–124 (2006)
25. Xue, B., Zuo, L., Li, G.: The hamiltonicity and path t-coloring of Sierpiński-like grraphs.

Discrete Applied Math. 160, 1822–1836 (2012)

Induced Subtrees in Interval Graphs�

Pinar Heggernes1, Pim van ’t Hof1, and Martin Milanič2

1 Department of Informatics, University of Bergen, Norway
{pinar.heggernes,pim.vanthof}@ii.uib.no

2 UP IAM and UP FAMNIT, University of Primorska, Slovenia
martin.milanic@upr.si

Abstract. The Induced Subtree Isomorphism problem takes as in-
put a graph G and a tree T , and the task is to decide whether G has
an induced subgraph that is isomorphic to T . This problem is known to
be NP-complete on bipartite graphs, but it can be solved in polynomial
time when G is a forest. We show that Induced Subtree Isomorphism

can be solved in polynomial time when G is an interval graph. In con-
trast to this positive result, we show that the closely related Subtree

Isomorphism problem is NP-complete even when G is restricted to the
class of proper interval graphs, a well-known subclass of interval graphs.

1 Introduction and Background

The problems Subgraph Isomorphism and Induced Subgraph Isomor-

phism both take as input two graphs G and H , and the task is to determine
whether G has a subgraph or an induced subgraph, respectively, that is isomor-
phic to H . Subgraph Isomorphism and Induced Subgraph Isomorphism

are two well-studied and notoriously hard problems in the area of graph algo-
rithms, generalizing classical NP-complete problems such as Clique, Indepen-
dent Set and Hamiltonian Path.

Both Subgraph Isomorphism and Induced Subgraph Isomorphism are
known to be NP-complete already when each of G and H is a disjoint union of
paths [7, 9], and thus both problems are NP-complete on any hereditary graph
class that contains arbitrarily long induced paths. In particular, both problems
are NP-complete on proper interval graphs and on bipartite permutation graphs.
Interestingly, Induced Subgraph Isomorphism can be solved in polynomial
time on connected proper interval graphs and connected bipartite permutation
graphs [13], whereas Subgraph Isomorphism remains NP-complete on these
connected graph classes [16]. Both problems can be solved in polynomial time
when G is a forest and H is a tree [23], but remain NP-complete when G is a
tree and H is a forest [9].

The problems Subgraph Isomorphism and Induced Subgraph Isomor-

phism remain hard also on several classes of graphs that do not contain long in-
duced paths. For example, both problems are NP-complete on connected

� This work is supported by the Research Council of Norway, by the Slovenian Re-
search Agency, and by the European Science Foundation.

T. Lecroq and L. Mouchard (Eds.): IWOCA 2013, LNCS 8288, pp. 230–243, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Induced Subtrees in Interval Graphs 231

cographs [1, 5, 7], and remain NP-complete even on connected trivially perfect
graphs [2, 16], a subclass of cographs. Both Subgraph Isomorphism and In-

duced Subgraph Isomorphism are also NP-complete when both input graphs
are split graphs [7,11]. Kijima et al. [16] showed that Subgraph Isomorphism

is NP-complete when G is restricted to the class of chain graphs, cochain graphs,
or threshold graphs, but the problem becomes polynomial-time solvable when,
in addition, H is also restricted to the same class as G.

Given the large amount of hardness results on the two problems, even under
severe restrictions on G, it makes sense to consider different restrictions on H
in an attempt to obtain tractability. A natural candidate for such a restriction
is demanding H to be a tree. This brings us to the two problems that we focus
on in this paper:

(Induced) Subtree Isomorphism

Input: A graph G and a tree T .
Question: Does G have an (induced) subgraph isomorphic to T ?

Since Subtree Isomorphism is a generalization of Hamiltonian Path, this
problem is NP-complete on all graph classes on which Hamiltonian Path is
NP-complete, like planar graphs, chordal bipartite graphs, and strongly chordal
split graphs [9, 26]. Similarly, the fact that finding a longest induced path in a
bipartite graph is NP-hard [9] implies that Induced Subtree Isomorphism is
NP-complete on bipartite graphs. Both Subtree Isomorphism and Induced

Subtree Isomorphism are also NP-complete on graphs of treewidth at most
2 [22], but can be solved in polynomial time when G is a forest [23].

The main result of this paper is a polynomial-time algorithm for Induced

Subtree Isomorphism on interval graphs, which gives a nice contrast to the
NP-completeness of Induced Subgraph Isomorphism on this graph class. On
the negative side, we show that Subtree Isomorphism is NP-complete already
on proper interval graphs. Note that the problem of finding a longest path in an
interval graph can be solved in polynomial time [14] (and even on cocompara-
bility graphs [24]). Hence, our negative result on proper interval graphs shows
that finding a given tree as a subgraph in a proper interval graph is much harder
than finding a path of given length in such a graph, despite the linear structure
that proper interval graphs possess.

2 Definitions and Notation

All graphs considered in this paper are finite, undirected and simple. We refer to
the monograph by Diestel [8] for basic graph terminology not defined below. De-
tailed information on all the graph classes mentioned in this paper can be found
in the books by Golumbic [12] and Brandstädt, Le, and Spinrad [3]. Figure 1
below shows the inclusion relations between most of the graph classes mentioned
this paper.

A graph is an interval graph if there is a bijection between its vertices and a
family of closed intervals of the real line such that two vertices are adjacent if

232 P. Heggernes, P. van ’t Hof, and M. Milanič

perfect

chordal

forest

tree

split interval cograph bipartite line graph of
bipartite

threshold

proper interval trivially perfect

line graph

Fig. 1. An overview of most of the graph classes mentioned in this paper. An arrow
from a class G to a class H indicates that H is a subset of G.

and only if the two corresponding intervals overlap. Such a bijection is called an
interval representation of the graph. A graph is a proper interval graph if it has
an interval representation where no interval properly contains another interval.
Many different characterizations of interval graphs are known in the literature.
In order to state the one we will use in our algorithm, we need the following
definition.

Definition 1. Let G = (V,E) be a graph. An ordering (u1, . . . , un) of V is called
an interval order of G if, for every triple (i, j, k) with 1 ≤ i < j < k ≤ n, it holds
that uiuk ∈ E implies ujuk ∈ E.

Olariu [27] showed that a graph G is an interval graph if and only if G has an
interval order.

A tree is a connected graph without cycles. Let G be a graph and let T be a
tree. If G has a induced subgraph that is isomorphic to T , then we say that T
is an induced subtree of G; a subtree of G is defined analogously. A tree T is a
caterpillar if it has a path that contains every vertex of degree at least 2 in T ;
such a path is called a backbone of T . A well-known characterization of interval
graphs by Lekkerkerker and Boland [20] immediately implies that a tree is an
interval graph if and only if it is a caterpillar.

Let G and H be two graphs. A mapping ϕ : V (H) → V (G) is said to be
an induced subgraph isomorphism, or isi mapping for short, of H into G, if ϕ is
injective and uv ∈ E(H) if and only if ϕ(u)ϕ(v) ∈ E(G) for all u, v ∈ V (H).
Consequently, H is an induced subgraph of G if and only if there exists an isi

mapping of H into G.

3 Induced Subtree Isomorphism on Interval Graphs

In this section, we show that Induced Subtree Isomorphism can be solved
in polynomial time on interval graphs. Before presenting our algorithm in the

Induced Subtrees in Interval Graphs 233

proof of Theorem 1 below, we first prove a sequence of five lemmas, as well as a
corollary of these lemmas that forms the main ingredient of our algorithm.

Throughout this section, up to the statement of Theorem 1, let G = (V,E) be
a connected interval graph and let T be a caterpillar on at least three vertices.
We fix an interval order σ = (u1, . . . , un) of G. For any two vertices x, y ∈ V ,
we write x ≺σ y if x appears before y in the interval order σ, i.e., if x = ui and
y = uj for some i < j.

Suppose there exists an isi mapping ϕ of T into G. Then, for any ordered path
P =(t1, . . . , tp) ofT , we say thatP isϕ-increasing ifϕ(t1) ≺σ ϕ(t2) ≺σ · · · ≺σ ϕ(tp),
and P is ϕ-decreasing if ϕ(tp) ≺σ ϕ(tp−1) ≺σ · · · ≺σ ϕ(t1).

Lemma 1. Let P = (t1, . . . , tp) be an ordered path in T whose vertices all have
degree at least 2 in T . Then, for any isi mapping ϕ of T into G, the path P is
either ϕ-increasing or ϕ-decreasing.

Proof. The statement is trivially true if p ≤ 2. Let p ≥ 3. Suppose, for contra-
diction, that there exists an isi mapping ϕ of T into G such that P is neither
ϕ-increasing nor ϕ-decreasing. Then, in particular, there exist three consecutive
vertices ti, ti+1, ti+2 of P such that the ordered path (ti, ti+1, ti+2) is neither
ϕ-increasing nor ϕ-decreasing. Let uj1 = ϕ(ti), uj2 = ϕ(ti+1) and uj3 = ϕ(ti+2).
Without loss of generality, we may assume that j1 < j3. Observe that Defini-
tion 1 implies that j1 < j2. Since we assumed the ordered path (ti, ti+1, ti+2) to
be neither ϕ-increasing nor ϕ-decreasing, it holds that j2 > j3.

Let w be a T -neighbor of ti+2 other than ti+1; such a vertex w exists since
we assume that all vertices of P have degree at least 2 in T . Let ujw = ϕ(w).
We consider three cases according to the value of jw.

– Suppose that jw < j1. Since ϕ preserves adjacencies and wti+2 ∈ E(T), we
have ujwuj3 ∈ E(G). On the other hand, since ϕ preserves non-adjacencies
and titi+2 	∈ E(T), we have uj1uj3 	∈ E(G). However, this contradicts Defi-
nition 1 applied to the triple (i, j, k) = (jw, j1, j3).

– Suppose that j1 < jw < j2. Since ϕ preserves adjacencies and titi+1 ∈ E(T),
we have uj1uj2 ∈ E(G). On the other hand, since ϕ preserves non-adjacencies
and wti+1 	∈ E(T), we have ujwuj2 	∈ E(G). Again, we have a contradiction
to Definition 1, this time for the triple (i, j, k) = (j1, jw, j2).

– Suppose that j2 < jw. Since ϕ preserves adjacencies and ti+2w ∈ E(T), we
have uj3ujw ∈ E(G). On the other hand, since ϕ preserves non-adjacencies
and ti+1w 	∈ E(T), we have uj2ujw 	∈ E(G). We have a contradiction to
Definition 1 for the triple (i, j, k) = (j3, j2, jw).

This completes the proof of the lemma. ��

We will show in Lemma 2 below that the problem of determining whether
G has an induced subgraph isomorphic to T can be reduced to computing the
values of a certain Boolean-valued function fB for each B ∈ B, where B is a
set of three or four so-called representative backbones of T . In order to state the
lemma, we first need to define the set B and the function fB.

234 P. Heggernes, P. van ’t Hof, and M. Milanič

Recall that a backbone of T is any path B containing all vertices of degree
at least 2 in T . The order of a backbone B is the number of vertices in B and
is denoted by |B|. For any ordered backbone B = (t1, t2, . . . , tp), the ordered
backbone B−1 = (tp, tp−1, . . . , t1) is called the reverse of B. Given two ordered
backbones B = (t1, t2, . . . , tp) and B′ = (t′1, . . . , t

′
p′) of T , we say that B and B′

are equivalent if p = p′ and ti = t′i for all i ∈ {1, 2, . . . , p − 1}.
We now define a set B consisting of three or four non-equivalent ordered

backbones of T as follows. Let Bmin = (t1, t2, . . . , tp) be an ordered backbone of
T of minimum order, i.e., Bmin is an ordered backbone of T whose vertex set
consists of exactly those vertices that have degree at least 2 in T . Let B−1

min =
(tp, tp−1, . . . , t1) be the reverse of Bmin, where Bmin = B−1

min if p = 1. Note that
every ordered backbone of T other than Bmin or B−1

min contains either |V (Bmin)|+
1 or |V (Bmin)| + 2 vertices. Let us fix a neighbor t′1 of t1 and a neighbor t′p of
tp such that t′1 	= tp and such that both t′1 and t′p have degree 1 in T . Such
neighbors t′1 and t′p exist due to the fact that both t1 and tp have degree at
least 2 in T and the assumption that T has at least three vertices. We now define
two ordered backbones B+ = (t1, t2, . . . , tp, t

′
p) and B− = (tp, tp−1, . . . , t1, t′1).

Finally, we define B = {Bmin, B
−1
min, B

+, B−}. The backbones in B are called
the representative backbones of T . Since we assume that T contains at least 3
vertices and Bmin = B−1

min if and only if p = 1, we have that |B| = 3 if p = 1 and
|B| = 4 if p ≥ 2.

Let B = (t1, . . . , tp) ∈ B be a representative backbone of T . For every i ∈
{1, . . . , p}, let Bi denote the subgraph of T induced by the first i vertices of B
together with their neighbors outside the backbone, that is,

Bi = T
[{

t1, . . . , ti
}
∪ L1 ∪ . . . ∪ Li

]
,

where Li denotes the set of neighbors of ti outside B, i.e., Li = NT (ti) \ V (B).
The following straightforward property of representative backbones will be useful
in later proofs.

Observation 1. For every representative backbone B = (t1, . . . , tp) ∈ B and
every i ∈ {1, . . . , p}, vertex ti has a neighbor in Bi. ��

For 1 ≤ j < k ≤ n, letGk
j denote the subgraph ofG induced by {u1, . . . , uj, uk},

that is,
Gk

j = G
[{

u1, . . . , uj , uk

}]
.

With these definitions in mind, we define a Boolean-valued function fB : TB →
{0, 1}, where

TB = {(i, j, k) | 1 ≤ i ≤ p and 1 ≤ j < k ≤ n},

as follows: for all (i, j, k) ∈ TB , we set fB(i, j, k) = 1 if and only if there exists
an isi mapping ϕ of Bi into Gk

j such that ϕ(ti) = uk.

Lemma 2. Graph G has an induced subgraph isomorphic to T if and only if
there exists a backbone B ∈ B and an integer k ∈ {2, . . . , n} such that fB(|B|, k−
1, k) = 1.

Induced Subtrees in Interval Graphs 235

Proof. Suppose first that there exists a backbone B ∈ B and an integer k with
1 < k ≤ n such that fB(|B|, k − 1, k) = 1. Then, denoting B = (t1, . . . , tp),
there exists an isi mapping ϕ of Bp = T into Gk

k−1 = G[{u1, . . . , uk}] such that
ϕ(tp) = uk. Trivially, ϕ is an isi mapping of T into G, and hence G has an
induced subgraph isomorphic to T .

Conversely, suppose G has an induced subgraph that is isomorphic to T . Then
there exists an isi mapping ϕ of T into G. Since every vertex of Bmin and B−1

min

has degree at least 2 in T , either Bmin or B−1
min is ϕ-increasing due to Lemma 1.

Among all pairs (ϕ,B) where ϕ is an isi mapping of T into G and B is a ϕ-
increasing backbone in B, choose a pair (ϕ,B) such that B = (t1, . . . , tp) ∈ B is
of maximum possible order. Let ϕ(tj) = uij for all j ∈ {1, . . . , p}. Let k = ip.

We claim that, with B and k defined as above, it holds that fB(p, k−1, k) = 1.
By definition of fB, this is equivalent to verifying the existence of an isi mapping
ψ of Bp = T into Gk

k−1 = G[{u1, . . . , uk}] such that ψ(tp) = uk. We claim that
such a mapping is obtained by taking ψ = ϕ. Condition ψ(tp) = uk follows from
the definition of k, and the fact that ψ is an injective mapping that preserves ad-
jacencies and non-adjacencies follows trivially from the corresponding properties
of ϕ. It remains to verify that ψ(T) = ϕ(T) ⊆ {u1, . . . , uk}.

Suppose for a contradiction that there exists a vertex v ∈ V (T) such that
ϕ(v) = ur for r > k. Since B is ϕ-increasing, we have ij ≤ ip = k for all
1 ≤ j ≤ p, and hence v is not a vertex of B. Therefore, vertex v has a unique
neighbor tj in B. Suppose first that 1 ≤ j < p. Then, p ≥ 2 and since ϕ
preserves adjacencies and non-adjacencies, we conclude that uijur ∈ E(G) and
ukur 	∈ E(G), which contradicts Definition 1 applied to the triple (ij, k, r) with
ij < k < r. Therefore, we may assume that j = p, and v is adjacent to tp.
Consider the backbone B′ = (t1, . . . , tp, v) of T , and let B′′ ∈ B be a backbone
in B equivalent to B′. Since B′′ is equivalent to B′, there exists a neighbor w
of tp such that B′′ = (t1, . . . , tp, w). By the maximality of B, it follows that
B′′ is not ϕ-increasing, and consequently ϕ(w) = us where s < k. Consider the
mapping ϕ′ : V (T) → V (G) obtained from ϕ by switching the images of v and
w. Formally, for every t ∈ V (T), set

ϕ′(t) =

⎧⎨
⎩

ϕ(t) if t 	∈ {v, w} ;
ϕ(w) if t = v ;
ϕ(v) if t = w .

Then ϕ′ is an isi mapping of T into G. However, since ϕ′(w) = ϕ(v) = ur

and r > k, backbone B′′ is a ϕ′-increasing backbone strictly longer than B,
contradicting the definition of the pair (ϕ,B). This shows that if T is isomorphic
to an induced subgraph of G, then there exists a backbone B ∈ B and an integer
k with 1 < k ≤ n such that fB(|B|, k − 1, k) = 1. ��

In what follows, we show that for any backbone B ∈ B, the values of
the function fB can be computed recursively. Definition 1 implies that for
every j ∈ {1, . . . , n}, there exists an index �(j) ≤ j such that NGj [uj] =
{u�(j), u�(j)+1, . . . , uj}, where Gj denotes the subgraph of G induced by

236 P. Heggernes, P. van ’t Hof, and M. Milanič

{u1, . . . , uj}. Also recall that for any given backbone B = (t1, . . . , tp) ∈ B and
any i ∈ {1, . . . , p}, we write Li to denote the set of neighbors of ti outside B.

First, we consider the simplest case, namely computing fB(i, j, k) when i = 1.

Lemma 3. Let B ∈ B be a representative backbone of T , and let (1, j, k) ∈ TB.
Then fB(1, j, k) = 1 if and only if α(G[{u�(k), . . . , uj}]) ≥ |L1| .

Proof. The definition of fB implies that fB(1, j, k) = 1 if and only if there exists
an isi mapping ϕ of B1 into Gk

j such that ϕ(t1) = uk. Notice that B1 is isomor-
phic to a star with |L1| leaves. Hence, there exists an isi mapping ϕ of B1 into
Gk

j such that ϕ(t1) = uk if and only if uk has at least |L1| pairwise non-adjacent
neighbors in the graph Gk

j . But this last condition is equivalent to the condition
that the independence number of the subgraph of G induced by {u�(k), . . . , uj} is
at
least |L1|. ��

Now, let us consider the problem of computing the value of fB(i, j, k) for some
(i, j, k) ∈ TB with i > 1, assuming that we have already computed the values
of fB(i

′, j′, k′) for all (i′, j′, k′) ∈ TB with i′ < i. Lemma 4 states a necessary
condition for fB(i, j, k) = 1.

Lemma 4. Let B ∈ B be a representative backbone of T , and let (i, j, k) be a
triple in TB with i ≥ 2 such that fB(i, j, k) = 1. Then there exists an integer
k′ ∈ {�(k), . . . , j} such that

fB(i− 1, �(k)− 1, k′) = 1 and α
(
G
[
{uk′+1, . . . , uj} \NG(uk′)

])
≥ |Li| .

Proof. Suppose that the conditions in the lemma are satisfied. By the definition
of fB, there exists an isi mapping ϕ of Bi into Gk

j such that ϕ(ti) = uk. Let
k′ ∈ {1, . . . , n} be the index satisfying ϕ(ti−1) = uk′ . Let us verify that k′ has
all the desired properties. First of all, it holds that k′ ≤ j, since k′ 	= k by the
injectivity of ϕ and since ϕ maps V (Bi) to V (Gk

j) = {u1, . . . , uj , uk}. Second,
since ϕ preserves adjacencies and ti−1ti ∈ E(T), we have uk′uk = ϕ(ti−1)ϕ(ti) ∈
E(G). Consequently, uk′ ∈ NGk

[uk] and hence k′ ≥ �(k).
Now, let us show that fB(i− 1, �(k)− 1, k′) = 1. This is equivalent to showing

the existence of an isi mapping ϕ′ of Bi−1 into Gk′
�(k)−1 such that ϕ′(ti−1) =

uk′ . Let ϕ′ be the restriction of ϕ to V (Bi−1). We will verify that ϕ′ is an isi

mapping of Bi−1 into Gk′
�(k)−1 such that ϕ′(ti−1) = uk′ . Since ϕ is an injective

mapping that preserves adjacencies and non-adjacencies, so is ϕ′. The condition
ϕ′(ti−1) = uk′ is also satisfied, by the definition of k′. It remains to verify that
for every w ∈ V (Bi−1), we have ϕ′(w) ∈ V (Gk′

�(k)−1), or, equivalently, that

ϕ(w) ∈ {u1, . . . , u�(k)−1, uk′}. For w = ti−1, this is clear, and we only need to
check that ϕ(w) ∈ {u1, . . . , u�(k)−1} for all w ∈ V (Bi−1) \ {ti−1}. Suppose for a
contradiction that there exists a vertex w ∈ V (Bi−1) \ {ti−1} with ϕ(w) = ur

for some r ∈ {�(k), . . . , j}. Then uruk ∈ E(G), and since ϕ preserves non-
adjacencies, this implies wti ∈ E(T). This contradiction to the fact that the

Induced Subtrees in Interval Graphs 237

only neighbor of ti in Bi−1 is ti−1 implies that fB(i − 1, �(k) − 1, k′) = 1, as
claimed.

It remains to show that the independence number of the graph G′ =
G
[
{uk′+1, . . . , uj} \ NG(uk′)

]
satisfies α(G′) ≥ |Li| . The vertices of Li form an

independent set of size |Li| in Bi, and since ϕ is an injective mapping preserving
non-adjacencies, its image ϕ(Li) is an independent set of size |Li| in Gk

j . Since ϕ
preserves non-adjacencies and Li∩NBi(ti−1) = ∅, we have ϕ(Li)∩NG(uk′) = ∅.
Hence, it is enough to show that ϕ(Li) ⊆ {uk′+1, . . . , uj}. Clearly, ϕ(Li) ⊆
{u1, . . . , uj}, so the only way the condition ϕ(Li) ⊆ {uk′+1, . . . , uj} could fail is if
there exists a vertex w ∈ Li such that ϕ(w) = uiw for some integer iw ≤ k′. Since
ϕmaps ti−1 to uk′ and w 	= ti−1, we have iw < k′. Moreover, since ϕ preserves ad-
jacencies and wti ∈ E(Bi), we have uiwuk ∈ E(G). By Observation 1, vertex ti−1
has a neighbor, say z, in Bi−1. Clearly z 	= ti; moreover, uizuk′ ∈ E(G), where
uiz = ϕ(z). Furthermore, Definition 1 implies that iz < k′. Since ϕ preserves
non-adjacencies and wti−1 	∈ E(Bi), we have uiwuk′ 	∈ E(G). Similarly, since
zti 	∈ E(Bi), we have uizuk 	∈ E(G). If iz < iw then iz < iw < k′, and we have a
contradiction to Definition 1 for the triple (i, j, k) = (iz, iw, k′). Hence, iw < iz,
and consequently iw < iz < k, and we have a contradiction to Definition 1 for
the triple (i, j, k) = (iw, iz, k). This shows that ϕ(Li) ⊆ {uk′+1, . . . , uj}. We con-
clude that ϕ(Li) is an independent set in the graph G′, implying α(G′) ≥ |Li|,
as claimed. ��

We now show that the necessary condition in Lemma 4 is also a sufficient
condition for fB(i, j, k) = 1.

Lemma 5. Let B ∈ B be a representative backbone of T , and let (i, j, k) be a
triple in TB with i ≥ 2. If there exists an integer k′ ∈ {�(k), . . . , j} such that

fB(i− 1, �(k)− 1, k′) = 1 and α
(
G
[
{uk′+1, . . . , uj} \NG(uk′)

])
≥ |Li| ,

then fB(i, j, k) = 1.

Proof. Suppose that the conditions in the lemma are satisfied. By the definition
of fB, there exists an isi mapping ϕ of Bi−1 into Gk′

�(k)−1 such that ϕ(ti−1) =
uk′ . We need to show that there exists an isi mapping ϕ′ of Bi into Gk

j such
that ϕ′(ti) = uk. Let I be an independent set of size |Li| in the graph G′ =
G
[
{uk′+1, . . . , uj} \ NG(uk′)

]
. We fix a bijection ψ : Li → I, and we define a

mapping ϕ′ : V (Bi) → V (G) as follows: for every v ∈ V (Bi), we have

ϕ′(v) =

⎧⎨
⎩

ϕ(v) if v ∈ V (Bi−1) ;
uk if v = ti ;

ψ(v) if v ∈ Li .

Notice that since the vertex set of Bi is the disjoint union of sets V (Bi−1), {ti}
and Li, the mapping ϕ′ is well-defined. In order to complete the proof, we will
verify that ϕ′ is an isi mapping of Bi into Gk

j such that ϕ′(ti) = uk. In what

follows, we will use the fact that Gk′
�(k)−1 is an induced subgraph of Gk

j .

238 P. Heggernes, P. van ’t Hof, and M. Milanič

(i) Since

ϕ′(V (Bi)) = ϕ(V (Bi−1)) ∪ {uk} ∪ ψ(Li)

⊆ V (Gk′
�(k)−1) ∪ {uk} ∪ I

⊆ {u1, . . . , uk′} ∪ {uk} ∪ {uk′+1, . . . , uj}
= V (Gk

j) ,

mapping ϕ′ is indeed a mapping from V (Bi) to V (Gk
j).

(ii) Condition ϕ′(ti) = uk is satisfied by definition.
(iii) The injectivity of ϕ′ follows immediately from the injectivity of ϕ and the

bijectivity of ψ.
(iv) ϕ′ preserves adjacencies:

Let uv ∈ E(Bi). If u, v ∈ V (Bi−1), then

ϕ′(u)ϕ′(v) = ϕ(u)ϕ(v) ∈ E(Gk′
�(k)−1) ⊆ E(Gk

j) ,

where the fact that ϕ(u)ϕ(v) is an edge of Gk′
�(k)−1 holds since ϕ preserves

adjacencies. If u = ti−1 and v = ti then ϕ′(u)ϕ′(v) = uk′uk, which is
an edge of Gk

j since �(k) ≤ k′ ≤ j. Finally, if u = ti and v ∈ Li, then

ϕ′(u)ϕ′(v) = ukψ(v), which is an edge of Gk
j , since ψ(v) = ur for some

r ∈ {k′ + 1, . . . , j} ⊆ {�(k) + 1, . . . , j}, implying ur ∈ NGk
j
(uk).

(v) ϕ′ preserves non-adjacencies:
Let u, v be a pair of distinct non-adjacent vertices of Bi.
If u, v ∈ V (Bi−1), then, since ϕ preserves non-adjacencies, ϕ′ maps {u, v}
to a pair of non-adjacent vertices in Gk′

�(k)−1, and hence in Gk
j .

Suppose that u ∈ V (Bi−1) and v = ti. Then u 	= ti−1 and hence ϕ′(u) ∈
{u1, . . . , u�(k)−1}. Consequently, by the definition of �(k), vertex ϕ(u) is

not adjacent to uk = ϕ(v) in Gk
j .

Suppose that u = ti−1 and v ∈ Li. Then ϕ′(u) = uk′ , and ϕ′(v) is not
adjacent to ϕ′(u) = uk′ since ϕ′(v) ∈ I ⊆ {uk′+1, . . . , uj} \NG(uk′).

Finally, suppose that u ∈ V (Bi−1) \ {ti−1} and v ∈ Li. Then ϕ′(u) = ur

for some r ∈ {1, . . . , �(k)− 1}, and ϕ′(v) = us for some s ∈ {k′+1, . . . , j}.
Suppose for a contradiction that ur and us are adjacent in Gk

j . Since Gk
j

is an induced subgraph of G, ur and us are adjacent in G. On the other
hand, the definition of I implies that uk′ and us are non-adjacent in G.
However, since r < k′ < s, this contradicts Definition 1 applied to the
triple (i, j, k) = (r, k′, s).

The above properties imply that ϕ′ is an isi mapping of Bi into Gk
j such that

ϕ′(ti) = uk. Consequently fB(i, j, k) = 1, completing the proof of the lemma. ��

The results of Lemmas 3–5 can be summarized as follows.

Corollary 1. For any representative backbone B = (t1, . . . , tp) ∈ B of T , the
values of the function fB : TB → {0, 1} can be computed recursively as follows:

Induced Subtrees in Interval Graphs 239

– for i = 1 and all 1 ≤ j < k ≤ n, we have fB(1, j, k) = 1 if and only if

α(G[{u�(k), . . . , uj}]) ≥ |L1| ;

– for all i ∈ {2, . . . , p} and all 1 ≤ j < k ≤ n, we have fB(i, j, k) = 1 if and
only if there exists an integer k′ ∈ {�(k), . . . , j} such that

fB(i− 1, �(k)− 1, k′) = 1 and α
(
G
[
{uk′+1, . . . , uj} \NG(uk′)

])
≥ |Li| .

We are now ready to prove the main result of this paper.

Theorem 1. Induced Subtree Isomorphism can be solved in polynomial
time on interval graphs.

Proof. Let (G, T) be an instance of Induced Subtree Isomorphism, where
G = (V,E) is an interval graph and T is a tree. We assume that T has at
least three vertices, as the problem can trivially be solved otherwise. We also
assume that |V (T)| ≤ |V (G)|, as otherwise we have a trivial no-instance. Finally,
we assume that G is connected; if G is disconnected, then the polynomial-time
algorithm described below can be applied to each of the connected components
of G within the same overall time bound.

Let t = |V (T)|, n = |V (G)| and m = |E(G)|. We start by checking whether
T is a caterpillar, which can easily be done in time linear in the size of T . As
mentioned in Section 2, every induced subtree of an interval graph is a caterpillar
due to a characterization of interval graphs by Lekkerkerker and Boland [20].
Hence, if T is not a caterpillar, then we output “no”. Suppose T is a caterpillar.
Then we compute a set B = {Bmin, B

−1
min, B

+, B−} of at most four representative
backbones of T in the way described just below Lemma 1. It is clear that such
a set B can be computed in time O(t). We also compute an interval order σ =
(u1, u2, . . . , un) of G, which can be done in O(n+m) time [27]. Using this interval
order σ, we then compute, for all i ∈ {1, . . . , n}, the indices �(i) that were defined
just above Lemma 3; this takes O(n +m) time in total.

Lemma 2 and Corollary 1 imply that we can determine whether or not T
is isomorphic to an induced subgraph of G by computing, for each backbone
B ∈ B, the value of fB(|B|, k − 1, k) for every k ∈ {2, . . . , n}. We will now
describe how this can be done in polynomial time for a fixed backbone B ∈ B.
Since B contains at most four backbones, this suffices to complete the proof of
Theorem 1.

Let B = (t1, . . . , tp) ∈ B be a representative backbone of T . For every i ∈
{1, . . . , p}, we compute the number |Li| = |NT (ti) \ V (B)|. Then, for every
pair (j, k) with 1 ≤ j < k ≤ n, we compute the independence number of the
graph G

[
{u�(k), . . . , uj}

]
. Since G

[
{u�(k), . . . , uj}

]
is an induced subgraph of G,

and thus an interval graph, its independence number can be computed in time
O(n+m) [10]. Hence, computing α

(
G
[
{u�(k), . . . , uj}

])
for all pairs (j, k) takes

O(n2(n + m)) time in total. We also compute the independence number of the
graph G

[
{uk′+1, . . . , uj} \ NG(uk′)

]
for every pair (k′, j) with 1 ≤ k′ ≤ j ≤ n,

which can be done in O(n2(n+m)) time in total for similar reasons.

240 P. Heggernes, P. van ’t Hof, and M. Milanič

Having precomputed these independence numbers and values of |Li|, we can
now use the recursions from Corollary 1 to compute the value of fB(i, j, k) for
every (i, j, k) ∈ TB, in increasing order of i ∈ {1, . . . , |B|}, in time O(tn3) in
total: each of the values fB(i, j, k) can be computed in constant time for i = 1
and in time O(n) for i ≥ 2 from the already computed values. The overall time
complexity of the algorithm is O(n2(n +m)) +O(tn3) = O(n2(tn+m)).

The algorithm can be easily extended so that it also produces an isi mapping
of T into G, in case such a mapping exists. We just need to store, for each B ∈ B
and each (i, j, k) ∈ TB such that fB(i, j, k) = 1, an isi mapping ϕ of Bi into Gk

j

such that ϕ(ti) = uk. The proofs of Lemmas 3 and 5 show that such mappings
can efficiently be computed in a recursive way. ��

4 Subtree Isomorphism on Interval Graphs

To complement our positive result on interval graphs in the previous section,
we show in this section that Subtree Isomorphism is NP-complete on interval
graphs. In fact, we prove that Subtree Isomorphism is NP-complete already
on proper interval graphs, a well-known subclass of interval graphs.

We first need to introduce some additional terminology. Let G = (V,E) be a
graph. The width of an ordering (u1, . . . , un) of V is max{|i − j| : uiuj ∈ E}.
The bandwidth of G is the minimum width of any ordering of the vertices of
G. The Bandwidth problem takes as input a graph G and an integer k, and
the task is to decide whether the bandwidth of G is at most k. An ordering
(u1, . . . , un) of V is a proper interval order of G if, for every triple (i, j, k) with
1 ≤ i < j < k ≤ n, it holds that uiuk ∈ E implies uiuj ∈ E and ujuk ∈ E. A
graph is a proper interval graph if and only if it has a proper interval order [21].

It follows from the definition of a proper interval order that for any proper
interval graph G, the width of a proper interval order of G is exactly the band-
width of G. Since a proper interval order of a proper interval graph can be
computed in linear time [21], Bandwidth is solvable in linear time on proper
interval graphs. However, Bandwidth is NP-complete on trees [25], and it is
from this problem that we reduce in the proof of the following result.

Theorem 2. Subtree Isomorhism is NP-complete on proper interval graphs.

Proof. We give a reduction from Bandwidth on trees. Let T be a tree on n ver-
tices which, together with an integer k, constitutes an instance of Bandwidth.
We construct a proper interval graph G as follows: start from a simple path
(v1, v2, . . . , vn), and add edges so that vi is adjacent to vj if and only if j− i ≤ k,
for all 1 ≤ i < j ≤ n. Such a graph is called a k-path power on n vertices, and is
well-known to be a proper interval graph. We show that T is a subgraph of G if
and only if T has bandwidth at most k.

If T is a subgraph of G, then clearly the bandwidth of T is at most k, since
|j − i| ≤ k for every edge vivj in G. If the bandwidth of T is at most k, then
we can take an ordering of the vertices of T of width at most k, and add edges to

Induced Subtrees in Interval Graphs 241

make it a k-path power on n vertices. Since no original edge of T has endpoints
that are more than k apart in the ordering, it is indeed possible to obtain a
k-path power G in this way, which means that T is a subgraph of G. The proof
is completed by observing that the problem is trivially in NP. ��

Observe that we in fact proved a stronger result than the statement of The-
orem 2. A tree is a spanning subtree of a graph G if it is a subtree of G and it
has the same number of vertices as G. The above proof shows that Spanning

Subtree Isomorphism is NP-complete on path powers, which form a subclass
of proper interval graphs.

5 Concluding Remarks

As a consequence of our results in this paper and previously known results,
the following boundaries are now established on subgraph problems on inter-
val graphs. The Induced Subgraph Isomorphism problem is NP-complete
even if both input graphs are connected interval graphs [2, 7], whereas it be-
comes polynomial-time solvable if G is an interval graph and H is a tree. The
Subgraph Isomorphism problem is NP-complete even if G is a proper interval
graph and H is a tree, but it becomes polynomial-time solvable if G is an interval
graph and H is a path.

The problem of deciding, given a graph G and an integer k, whether there
exists a (not necessarily induced) path of length k in G, is NP-complete on bi-
partite graphs [19]. An easy reduction from this problem, using the observation
that a graph contains a path of length k if and only if its line graph contains an
induced path of length k − 1, shows that Induced Subtree Isomorphism is
NP-complete on line graphs of bipartite graphs, a well-known subclass of per-
fect graphs. This contrasts our positive result on interval graphs in the following
sense. Line graphs are claw-free, implying that every induced tree of a line graph
is a path. The restricted nature of induced subtrees of interval graphs allowed
us to obtain a polynomial-time algorithm for Induced Subtree Isomorphism

on interval graphs. However, although line graphs have even more restricted in-
duced subtrees than interval graphs, this does not imply tractability for Induced
Subtree Isomorphism on line graphs.

We would also like to mention that Induced Subtree Isomorphism is triv-
ially solvable in polynomial time on cographs and on split graphs, since every
induced subtree of a cograph or a split graph is a caterpillar that has a backbone
on at most two vertices. By similar arguments, the problem can also be solved
in polynomial time on 3K2-free graphs, a superclass of split graphs.

We conclude with the following two questions regarding the complexity of
Induced Subtree Isomorphism problem on two graph classes generalizing
interval graphs:

– What is the computational complexity of Induced Subtree Isomorphism

on chordal graphs, a superclass of both interval graphs and split graphs?
Note that this problem is NP-complete on perfect graphs, a superclass of

242 P. Heggernes, P. van ’t Hof, and M. Milanič

chordal graphs, due to the aforementioned NP-completeness results on bi-
partite graphs [9] and on line graphs of bipartite graphs. Also note that the
easier problem of finding a longest induced path can be solved in polyno-
mial time on chordal graphs, or more generally, in O(nk) time on k-chordal
graphs, i.e., on graphs having no induced cycles on more than k vertices [15].

– What is the computational complexity of Induced Subtree Isomorphism

on AT-free graphs? This is a superclass of interval graphs, which also gener-
alizes the cocomparability graphs. AT-free graphs share many features with
interval graphs that were used by our algorithm in Section 3: they have
some kind of linear structure [6, 17], the only possible induced subtrees in
an AT-free graph are caterpillars, and computing the independence number
of an AT-free graph is a polynomially solvable task [4]. Also note that the
problem of finding a longest induced path can be solved in polynomial time
on AT-free graphs [15, 18].

References

1. Agarwal, R.K.: An investigation of the subgraph isomorphism problem. M.Sc. The-
sis, Dept. of Computer Science, University of Toronto, TR 138180 (1980)

2. Belmonte, R., Heggernes, P., van ’t Hof, P.: Edge contractions in subclasses of
chordal graphs. Discrete Appl. Math. 160, 999–1010 (2012)

3. Brandstädt, A., Le, V.B., Spinrad, J.: Graph Classes: A Survey. SIAM, Philadel-
phia (1999)

4. Broersma, H., Kloks, T., Kratsch, D., Müller, H.: Independent sets in asteroidal
triple-free graphs. SIAM J. Discrete Math. 12, 276–287 (1999)

5. Corneil, D.G., Lerchs, H., Stewart Burlingham, L.: Complement reducible graphs.
Discrete App. Math. 3, 163–174 (1981)

6. Corneil, D.G., Olariu, S., Stewart, L.: Asteroidal triple-free graphs. SIAM J. Dis-
crete Math. 10, 399–430 (1997)

7. Damaschke, P.: Induced subgraph isomorphism for cographs is NP-complete. In:
Proceedings WG 1991. LNCS, vol. 484, pp. 72–78. Springer (1991)

8. Diestel, R.: Graph Theory. Electronic Edition (2005)
9. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory

of NP-completeness. W.H. Freeman & Co. (1979)
10. Gavril, F.: Algorithms for minimum coloring, maximum clique, minimum covering

by cliques, and maximum independent set of a chordal graph. SIAM Journal on
Computing 1, 180–187 (1972)

11. Golovach, P.A., Kamiński, M., Paulusma, D., Thilikos, D.M.: Containment rela-
tions in split graphs. Discrete Appl. Math. 160, 155–163 (2012)

12. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs, 2nd edn. Annals
of Discrete Mathematics, vol. 57. North Holland (2004)

13. Heggernes, P.: van ’t Hof, P., Meister, D., Villanger, Y.: Induced subgraph isomor-
phism on proper interval and bipartite permutation graphs (submitted)

14. Ioannidou, K., Mertzios, G.B., Nikolopoulos, S.D.: The longest path problem has
a polynomial solution on interval graphs. Algorithmica 61, 320–341 (2011)

15. Ishizeki, T., Otachi, Y., Yamazaki, K.: An improved algorithm for the longest
induced path problem on k-chordal graphs. Discrete Appl. Math. 156, 3057–3059
(2008)

Induced Subtrees in Interval Graphs 243

16. Kijima, S., Otachi, Y., Saitoh, T., Uno, T.: Subgraph isomorphism in graph classes.
Discrete Math. 312, 3164–3173 (2012)

17. Kratsch, D.: Domination and total domination on asteroidal triple-free graphs.
Discrete Appl. Math. 99, 111–123 (2000)

18. Kratsch, D., Müller, H., Todinca, I.: Feedback vertex set and longest induced path
on AT-free graphs. In: Bodlaender, H.L. (ed.) WG 2003. LNCS, vol. 2880, pp.
309–321. Springer, Heidelberg (2003)

19. Krishnamoorthy, M.S.: An NP-hard problem in bipartite graphs. ACM SIGACT
News 7(1), 26 (1975)

20. Lekkerkerker, C.G., Boland, J.C.: Representation of a finite graph by a set of
intervals on the real line. Fund. Math. 51, 45–64 (1962)

21. Looges, P.J., Olariu, S.: Optimal greedy algorithms for indifference graphs. Com-
puters Math. Applic. 25, 15–25 (1993)

22. Matousek, J., Thomas, R.: On the complexity of finding iso- and other morphisms
for partial k-trees. Discrete Math. 108, 343–364 (1992)

23. Matula, D.W.: An algorithm for subtree identification. SIAM Rev. 10, 273–274
(1968)

24. Mertzios, G.B., Corneil, D.G.: A simple polynomial algorithm for the longest path
problem on cocomparability graphs. SIAM J. Discrete Math. 26, 940–963 (2012)

25. Monien, B.: The bandwidth minimization problem for caterpillars with hair length
3 is NP-complete. SIAM J. Alg. Discr. Meth. 7, 505–512 (1986)

26. Müller, H.: Hamiltonian circuits in chordal bipartite graphs. Discrete Math. 156,
291–298 (1996)

27. Olariu, S.: An optimal greedy heuristic to color interval graphs. Inform. Proc.
Lett. 37, 21–25 (1991)

Protein Folding in 2D-Triangular Lattice

Revisited

(Extended Abstract)

A.S.M. Shohidull Islam and M. Sohel Rahman

A�EDA Group,
Department of CSE, BUET, Dhaka 1000, Bangladesh
sohansayed@gmail.com, msrahman@cse.buet.ac.bd

Abstract. In this paper, we present a novel approximation algorithm
to solve the protein folding problem in the H-P model. Our algorithm is
polynomial in terms of the length of the given H-P string. The expected

approximation ratio of our algorithm is 1− 2 log n

n− 1
for n ≥ 6, where n2 is

the total number of H in a given H-P string. The expected approximation
ratio tends to 1 for large values of n. Hence our algorithm is expected to
perform very well for larger H-P strings.

Keywords: Protein Folding, Approximation Ratio, Algorithms, H-P
Model.

1 Introduction

A long standing problem in Molecular Biology and Biochemistry is to determine
the three dimensional structure of a protein given only the sequence of amino acid
residues that compose protein chains. This problem is known as the Holy Grail
of Computational Molecular Biology, also termed as “cracking the second half
of the genetic code”. There exist a variety of models attempting to simplify the
problem by abstracting only the “essential physical properties” of real proteins.
In these models, the three-dimensional space is often represented by a lattice.
Residues which are adjacent (i.e., covalently linked) in the primary sequence
must be placed at adjacent points in the lattice.

In this paper, we consider the Hydrophobic-Polar Model, HP Model for short,
introduced by Dill [2]. The HP model is based on the assumption that hydropho-
bicity is the dominant force in protein folding. This lattice model simplifies a
protein’s primary structure to a linear chain of beads. Each bead represents
an amino acid, which can be one of two types: H (hydrophobic or nonpolar)
or P (hydrophilic or polar). Conformations of proteins are embedded in either
a two-dimensional or three-dimensional square/triangular/hexagonal lattice. A
conformation of a protein is simply a self-avoiding walk along the lattice. The
goal of the protein folding problem is to find a conformation of the protein
sequence on the lattice such that the overall energy is minimized, for some rea-
sonable definition of energy. Each amino acid in the chain is represented by

T. Lecroq and L. Mouchard (Eds.): IWOCA 2013, LNCS 8288, pp. 244–257, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Protein Folding in 2D-Triangular Lattice Revisited 245

occupying one lattice point, connected to its chain neighbour(s) on adjacent lat-
tice points. An optimal embedding is one that maximizes the number of H-H
contacts which are not adjacent in amino acid chain. So, in effect, an input to
the problem is a finite string over the alphabet (H,P)+. Often, in what fol-
lows, the input strings to our problem will be referred to as H-P strings. For a
more biological background and motivations the readers are referred to [2,1]. A
number of approximation algorithms have been developed for the HP model on
the 2D square lattice, 3D cubic lattice, triangular lattice and the face-cantered-
cubic (FCC) lattice [3,10,11]. Istrail and lam [7] have presented a survey which
is composed of wide range of algorithms on different model of protein fold-
ing problem. The first approximation algorithm developed for this problem on
the square lattice by Hart and Istrail has an approximation ratio of 1/4 [3]. The
approximation ratio for this problem was improved to 1/3 by Newman [10]. The
algorithm presented in [3] can be generalized to an approximation algorithm for
the problem on the 3D cubic lattice. In [4] a general method for protein folding
on the HP model called masterapproximationalgorithm was presented by Hart
and Istrail. This method can be applied to a large class of lattice models. Hart
and Istrail [5] provided the first approximation algorithn for the problem of fold-
ing on the side-chain model which can be applied to 2D square, 3D cubic lattices,
and FCC lattices. Their provided approximation ratio remains the best ratio for
an approximation algorithm in any 3D HP-models to date. In [5] the authors
also illustrate the transformation of approximation algorithm from lattice mod-
els to off-lattice models. Another approximation algorithm, based on different
geometric ideas was presented in [11]. Heun [6] presented a linear-time approx-
imation algorithm for protein folding in the HP side chain model on extended
cubic lattice having approximate ration 0.84. In [8] the authors presented an
approximation algorithm with approximation ratio 0.17 that folds an arbitrary
protein sequence in the 2D hexagonal lattice HP-model.

2 Our Contribution

In this paper, we present an approximation algorithm for protein folding in 2D-
triangular lattice. To the best of our knowledge the best approximation ratio for
this problem was obtained by Agarwalla et al. [1], which is 6

11 . For our algorithm
we do a probabilistic analysis and deduce that the expected approximation ratio
of our algorithm is 1− 2 log n

n−1 for n ≥ 6 where n2 is the total number of H’s in a
given H-P string. Clearly our approximation ratio depends on n which in turn
depends on the number of H’s in the H-P string. For large values of n, this ratio
tends to reach 1. So it can be expected that our algorithm would provide very
close to optimal results for large values of n.

3 Roadmap

The rest of the paper is organized as follows. In Section 4, we define some no-
tations and notions. Section 5 describes our approach to solve the problem.

246 A.S.M. Shohidull Islam and M. Sohel Rahman

In Section 6 we deduce the expected approximation ratio. We briefly conclude
in Section 7.

4 Preliminaries

In this section, we present some notions and definitions (mostly in relation to
the underlying lattice) that we need to explain our algorithm. In a triangular
lattice, each lattice point has six neighbouring lattice points [1]. In the literature
it is also called a hexagonal lattice. Note that, by definition, a lattice is infinite.
However, in what follows, when we refer to a lattice we will refer to a finite
part of it. This finite part of the lattice would essentially be a hexagon. We now
define some notions related to a hexagon in the context of our approach. Note
that a hexagon is said to be perfect (or regular) if it has six equal sides and
six equal angles. Throughout the paper, when we refer to a hexagon we assume
that the opposite sides of it are parallel having the same length. Also, when we
consider a non-regular hexagon we assume that the sides of it can be grouped
into two groups based on their length. In particular, two of its sides (that are
parallel to each other) have a particular length, say, p and the other four sides
have a different length, say m. Clearly, when p = m, we have a regular hexagon.
Following the above discussion, it would be useful to define the former couple of
sides of the (non-regular) hexagon (i.e., that having a length of p each) as D-sides
and the latter four sides (i.e., that having a length of m each) as Q-sides.

The discussion that follows can be better understood with the help of Figure 1.
As has been mentioned above the finite portion of the lattice of our interest can
be seen as a hexagon, the boundary of which consists of those lattice points
that have fewer than six neighbours within the hexagon. An edge is formed by

Boundary Point

Depth of this point is 1

Bend

Remaining x2

points after
removing all bends

A D-side

A Q-side

Fig. 1. Lattice

Protein Folding in 2D-Triangular Lattice Revisited 247

two neighbouring lattice points. If the lattice points are filled by H, the two
neighbouring H’s also form an edge. If two H’s are non-adjacent in an H-P string
and placed on neighbouring lattice points to form an edge, they form a bond.
The points on the boundary are referred to as the boundary points. The depth of
a point in a lattice is the minimum number of points it needs to traverse to reach
any boundary point. Naturally, the depth of a boundary point is 0. The depth
of a hexagon is the maximum depth of all points in the hexagon. In Figure 1,
the depth of the hexagon is 2.

The length of the hexagon (or lattice) is the total number of points along the
D-sides. In Figure 1, the length of the hexagon is 6. A region in the hexagon is a
group of the lattice points such that each point in it has at least two neighbours
from within it. Similar to the boundary of a hexagon we also define the boundary
of a region. The boundary of a region consists of those lattice points that have
fewer than six neighbours within the region. A region must not contain any point
such that deleting that point creates two separate regions. In graph-theoretic
terms, the region cannot have a cut vertex. Also all the lattice points inside
the boundary of a region are parts of the region. So, by definition, only the
boundary itself cannot be considered as a region unless there are no points inside
the boundary at all. In Figure 1, the black vertices comprise a region (which has
only one point inside the boundary). The size of a region is the total number of
lattice points inside it including the boundary points.

We also introduce a notion of a bend for a hexagon if its length is greater
than its depth. A bend refers to the combined bent line along the 2 Q-sides
to the right. A bend could be defined identically considering the two Q-sides
to the left as well. However, for our purpose, we exclude that option from our
definition. A bend is illustrated in Figure 1. Notice that if the depth of such a
hexagon is x, then a bend contains 2x+1 points. There are a total of � bends in
a hexagon, where � is the length of the hexagon. Removing all bends from the
hexagon leaves a total of x2 lattice points (see Figure 1).

We use the usual notion of a run in an H-P string. In particular, a run in an
H-P string denotes the consecutive H’s or P’s. For example, in the H-P string
HHHPPHHPHHHH , we have a run of 3 H’s, followed by a run of 2 P’s and
so on. Here the run-length of the first run of H (P) is 3 (2). We will sometimes
use the term H-run (P-run) to indicate a run of H’s (P’s). The longest H-run
(P-run) of a string denotes the run of H (P) which has the highest run-length
among all the H-runs (P-runs) of the string. For the sake of conciseness, the
H-P strings shall often be represented as H and P’s with the corresponding run-
lengths as their powers. So, the H-P string S = HHHPPHHPHHHH will
often be conveniently represented by Ŝ = H3P 2H2P 1H4. Further, we will use
S(i), 1 ≤ i ≤ |S| to denote the ith character of the H-P string S. Similarly, Ŝ(j)
denotes the jth run of Ŝ. For example, Ŝ(1) refers to H3, Ŝ(2) refers to P 2 and
so on. We will use SumH as the sum of the run-lengths of all the H-runs of a
given string Ŝ. We end this section with a formal definition of the problem we
handle in this paper.

248 A.S.M. Shohidull Islam and M. Sohel Rahman

Problem 1. Given an H-P string Ŝ, the problem is to place the H-P string on a
triangular lattice such that the total number of bonds are maximized.

5 Our Approach

Our approach is a simple and intuitive one. Our idea is to identify the length and
depth of a suitable hexagon and then try to put all the H’s of a particular H-run
inside the hexagon and put the P’s of the following P-run (if any) outside that
hexagon. The length and depth of the hexagon depend on SumH. The motivation
here is to get the maximum number of bonds between H’s. Note carefully that
if we can fully fill a hexagon with n lattice points and get a total of k edges, the
number of total bonds will be k − n. This is evident from Figure 2(h), where
we have a hexagon of 37 points. Here after filling the hexagon fully we get a
total of 90 edges. It is easy to verify that the total number of bonds are 53.
We continue this process for every H-run and P-run of the string. We illustrate
the approach with an example below. In the figures throughout this paper the
bonds and edges are not shown explicitly. A connection between 2 lattice points
indicate the presence of 2 H’s that are adjacent in the input H-P string.

Example 1. Suppose we have an H-P string as follows:

Ŝ = H6P 5H2P 6H4P 5H6P 3H2P 5H4PH7P 6H2P 2H4.

Figure 2(a) gives us a suitable regular hexagon for Ŝ on the underlying lattice.
Our approach starts with the longest H-run of Ŝ. In Figure 2(b) the longest H-
run, i.e, Ŝ(13) = H7, is first positioned within the hexagon. Then, in Figure 2(c),
the subsequent P-run is positioned outside the hexagon. Similarly the approach
continues through Figures 2(d) to 2(f) where we illustrate the positioning of
H-runs and P-runs upto Ŝ(17). Then we wrap around and starts with Ŝ(1) in
Figure 2(g). The final position of all the runs of Ŝ is shown in Figure 2(h).

Notably, if two hexagons have the same number of lattice points and are filled
up fully with H by a given H-P string, the hexagon with higher number of total
edges have the higher number of total bonds as the difference between the total
number of the edges and that of bonds is a constant (i.e., the total number of
lattice points).

Now that we have discussed our main approach to fill up the hexagon, we can
shift our focus to the question of whether we can accommodate all the H-runs
of the input H-P string within the current hexagon. Recall that our goal is to
increase the number of edges as much as possible. We have the following useful
lemmas. The proofs of these lemmas will be given in the fuller version.

Lemma 1. If two hexagons have the same number of lattice points then the
hexagon with the greater depth will not have fewer edges.

Lemma 2. Suppose we have a regular hexagon H1 containing N points. Now
we reduce the length of this hexagon to get another hexagon H2 such that H2

contains N points as well. Then H2 will have fewer edges inside it than that of
H1.

Protein Folding in 2D-Triangular Lattice Revisited 249

(a) Lattice
points, i.e.,
Hexagon

(b) Positioning

Ŝ(13) = H7

(c) Positioning

Ŝ(14) = P 6

(d) Positioning

Ŝ(15) = H2

(e) Positioning

Ŝ(16) = P 2

(f) Positioning

Ŝ(17) = H4

(g) Positioning

Ŝ(1) = H6

(h) Final state

Fig. 2. Construction

250 A.S.M. Shohidull Islam and M. Sohel Rahman

Lemma 3. Assuming that we can fill up all the points of the hexagon, the num-
ber of edges (as well as the total number of bonds) will be maximum if, and only
if, the hexagon is a regular hexagon.

Proof. Lemma 3 follows readily from Lemmas 1 and 2. �

As has been mentioned before, our algorithm proceeds in an iterative fashion
in order to achieve the highest possible number of edges by iteratively changing
the length and depth of the hexagon. We start with an appropriate regular
hexagon. Note carefully that, by Lemma 3, if we can fill the points of a regular
hexagon, we get the optimum number of edges. If we fail to fill up all the points
of a regular hexagon, we reduce the depth of the hexagon and increase its length
with the hope that the number of edges will increase in the new hexagon. We
continue the iteration (i.e., reducing the depth of the hexagon and filling it up)
until we reach a case when the total number of edges decreases than that of
the previous iteration. In that case, we terminate our algorithm and return the
result of the previous iteration.

Notably, to fill up a regular hexagon with depth n at least one H-run having
length 2n+1 is needed. Besides, we need at least two H-runs of length 2n, three
of length 2n−2, three of length 2n−4... three H-runs of length 1 or 2 (depending
on the size of n) in the input. The string in Example 1 presented before meets
this criteria assuming n = 3. To explain a bit more, note that, in the H-P string
of Example 1 we have one H-run with run-length 7, two H-runs with run-length
6, three H-runs with run length 4 and the rest of the H-runs have run-length
2. Another example is given below where we cannot put all H’s in a regular
hexagon.

Example 2. Consider an H-P string

Ŝ = H6P 3H4P 4H3P 6H4P 3H2P 4H2P 3H6H5P 2H2PH3.

For this string, the length of a suitable regular hexagon is 4 (i.e., depth is 3)
as SumH is 37. But in Figure 3 we can see that we cannot properly fill the
hexagon. In such a case we have to increase the length of the hexagon to 6 as
well as decreasing its depth to 2. The new hexagon is shown in Figure 4. As is
evident from Figure 4, we can now fill the hexagon properly with Ŝ.

Now we formally present the steps of our algorithm below.

Step 1 Let SumH of the input H-P string Ŝ is z and the longest H-run is Ŝ(i)

having run-length k. Compute n =
1+

√
1+ 4×(z−1)

3

2 . Set globalB = 0.

Step 2 If k−1
2 ≥ n, then construct a regular hexagon with n lattice points at each

side. Otherwise set, n = k−1
2 and � = z−n2

2n+1 and construct a non-regular
hexagon with length � and depth n.

Step 3 For each of the H-runs and P-runs, starting from Ŝ(i) and wrapping
around the end (if applicable) execute the following two steps. For an
H-run, execute Step a and Step b; for a P-run execute Step c.

Protein Folding in 2D-Triangular Lattice Revisited 251

Remaining H’s
Unoccupied
Lattice points

Fig. 3. Ŝ of Example 2 cannot properly fill the hexagon

Fig. 4. Ŝ of Example 2 can fill the adjusted hexagon

Step a [for H-runs] If the run length of the H-run is less than 3 then we take
lattice points on the boundary of the hexagon. Otherwise, we try to find
a region from the remaining unoccupied points. Here the total number
of points in the region must be equal to the run-length of the current
H-run and at least two of these points must be boundary points of the
hexagon. We find the region executing the following steps (Steps i to
iv). We ensure that the region property is maintained as we proceed by
including the points one after another.

Step i Take two points on the boundary of the hexagon. These are the first
two points of the region.

Step ii Identify the unoccupied points in the hexagon such that each of those
has two neighbouring lattice points in the region. Find the point
having the highest depth among these points and add this point to
the region. Thus we increase the size of the region (by one).

252 A.S.M. Shohidull Islam and M. Sohel Rahman

Step iii If no such point is found then go to Step 6.
Step iv If the region size is less than the run length of the current H-run, go

to Step ii.
Step b [for H-runs]Fill up the identified region’s lattice points with the H-run.
Step c [for P-runs]Put the P-run outside the hexagon in two rows. The first P

of the run will be a neighbour of the previous H-run’s last H, while the
last P of the run will be a neighbour of the next H-run’s first H.

Step 4 Count the total number of bonds B.
Step 5 If globalB > B, return globalB.
Step 6 Otherwise set globalB = B and n = n− 1

Step 7 If n = 2, return B; otherwise compute � = z−n2

2n+1 . Construct a hexagon
with length � and depth n and go to Step 3.

Now we present and prove the following theorem which basically proves the
correctness of our approach.

Theorem 1. Given a region consisting of lattice points, a starting and an end-
ing point such that those are boundary points of the hexagon, there always exists
a path that starts at the starting point, ends at the ending point visiting each
point in the region exactly once.

Proof. We can traverse the points row wise from left to right within the region
starting from, say, Row i and then right to left in Row i + 1 and so on. If the
number of rows are even, then, in this manner we can traverse all the points 5).
If it is odd then we traverse in a similar way except for the last two rows, where
we simultaneously traverse those in a zigzag fashion 6). So filling up a region
appropriately can be done in linear time with respect to the run-length of the
corresponding H-run. �

Region

Fig. 5. For even number of rows

Protein Folding in 2D-Triangular Lattice Revisited 253

Region

Fig. 6. For odd number of rows

Our algorithm runs in polynomial time as discussed below. Firstly, the al-
gorithm iterates over at most n times. Now we have n ≤

√
z, because, z =

3×n× (n− 1) which is proved in Lemma 6 in the following section. In each iter-
ation we have to find a region for the current H-run. If a H-run has run-length �,
then Step 3(a) in the algorithm needs O(�2) time as Step 3(a(ii)) needs at most
O(�) time. So total time needed to perform this operation in each iteration, is at
most O(z2). As each of the other steps need constant time, the complete runtime
of the algorithm is O(z2 ×

√
z).

6 Expected Approximation Ratio

In this section, we are going to deduce the expected approximation ratio of
our algorithm. As the total number and run-lengths of H-runs may vary, in this
analysis, we will find the expected number of H-runs and the expected run-length
of each of the H-runs. These two values will depend only on SumH. Consider
a regular hexagon with a side having n points. So, its depth is n − 1. Assume
that the total number of points in the hexagon is S. Then we have the following
lemma.

Lemma 4. Suppose we have a regular hexagon with depth n − 1 and S points.
The total number of bonds, B, is 6 × (n− 1)2 − 1 when all the points are filled
with H.

The proof will be given in the fuller version. Now the following lemma con-
siders non-regular hexagons as well.

Lemma 5. Consider a hexagon (either regular or non regular) having n2 points.
Then, the total number of bonds B is less than 2× n(n− 1).

The proof will be given in the fuller version.
We will now deduce the approximation ratio based on an expected value

of the total number of bonds. We assume that all H-runs have equal length.

254 A.S.M. Shohidull Islam and M. Sohel Rahman

This assumption is valid in the context of our analysis and does not lose gener-
ality as follows. In what follows, we will be working with the expected number
of H-runs and the expected length (say kEx) of an H-run. Hence in our analy-
sis, each H-run will be assumed to have length kEx. We will now compute the
expected values of the total number of edges (bonds), EEx (BEx) under this
assumption.

From Figure 1, we can see that, the length of the hexagon is � and depth is x.
So each bend contains 2x+ 1 points and there are a total of � bends. There are
x2 remaining lattice points outside the � bends. So if the total number of points
are z (see Figure 1) then,

z = (2x+ 1)× �+ x2 (1)

So for a given z and x we can get,

� =
(z − x2)

2x+ 1
(2)

To calculate the total number of edges, at first we have to identify how many
edges can be formed by individual points. The arguments of Lemma 4 for cal-
culating E and B also apply here. Note that, on the perimeter, aside from the
corner points, total number of points are 2× (� − 2) + 4× (x − 1). So EEx can
be computed as follows:

2EEx = 6× ((2x+ 1)× �+ x2)− 6× 3− 2× (2 × (�− 2) + 4× (x− 1))
⇒ 2EEx = 2× 3× ((2x+ 1)× �+ x2)− 9− (2�− 4 + 4x− 4)
⇒ EEx = 3× ((2x+ 1)× �+ x2)− 1− 2× (� + 2x)

And BEx can be computed as follows:
BEx = EEx − z
BEx = 3× ((2x+ 1)× �+ x2)− 1− 2× (�+ 2x)− ((2x+ 1)× �+ x2)
⇒ BEx = 2× ((2x+ 1)× �+ x2)− 2× (�+ 2x)− 1
Hence, we get the following equation.

BEx = 2z − 2× (� + 2x)− 1 (3)

Note that according to our approach, the value of x is dependent on SumH.
For this analysis, we now derive the expected run-length of H for a given H-P
string where SumH is n2. This problem can be mapped into the problem of
Integer Partitioning as defined below.

Problem 2. Given an integer Y , the problem of Integer Partitioning aims to
provide all possible ways of writing Y , as a sum of positive integers.

Note that the ways that differ only in the order of their summands are consid-
ered to be the same partition. A summand in a partition is called a part. Now,
if we consider SumH as the input of Problem 2 (i.e., Y) then each run-length
can be viewed as parts of the partition. So at first, we have to find the expected

Protein Folding in 2D-Triangular Lattice Revisited 255

number of partitions, i.e., the expected number of runs of H. Kessler and Liv-
ingston [9] showed that to get an integer partition of an integer Y , the expected
number of required parts is-√

3Y

2π
× (log Y + 2γ − 2 log

√
π

6
),

where γ is the famous Euler’s constant.
For our problem Y = SumH = n2. If we denote E[P] as the expected number

of H-runs then,

E[P] =

√
6

π
× n× (logn + γ − log

√
π

6
).

Now, as (log n+ γ − log
√

π
6) ≤ (

√
2π
3 × logn) for n ≥ 5, we can say that

E[P] ≤ 2n× logn.

Since SumH is n2, expected value of each part, i.e., expected length of each

run is greater than or equal to n2

2n×logn = n
2 logn . Since all the H-runs are assumed

to have the same length so each of them will construct a bend of 2x+ 1 points
in the lattice. So we must have 2x + 1 ≥ n

2 logn . Hence we get the following
equations:

x ≥ n

4 logn
− 1

2
(4)

� ≤
n2 − (n2

16(logn)2 − n
4 logn + 1

4)
n

2 logn

(5)

Now, let us consider a hexagon H1 with length �max =

n2 − (
n2

16(logn)2
− n

4 logn
+

1

4
)

n

2 logn

and depth xmin =
n

4 logn
− 1

2
. Now, in H1

we also must have n2 points. So, from Lemma 1 and Equations 4 and 5, clearly
the number of bonds in H1 is less than or equal to than that in the hexagon
having length � and depth x. So from Equation 3 we have the following:

BEx ≥ 2n2 − 2× (2n logn − n

8 logn
− logn

2n
+

1

2
+

n

2 logn
− 1)− 1

⇒ BEx ≥ 2n2 − 2× (2n logn+
3n

8 logn
− logn

2n
)

Now from Lemma 5, recall the upper bound for the total number of bonds,
which is as follows: B < 2 × n(n − 1). Hence we get the following expected
approximation ratio :

BEx

B
≥

2n2 − 2× (2n logn+
3n

8 logn
− logn

2n
)

2n× (n− 1)

256 A.S.M. Shohidull Islam and M. Sohel Rahman

⇒ BEx

B
≥

n − 2 logn− 3

8 logn
+

logn

2n2

n− 1

As the term
logn

2n2
is very small we can ignore it from the final result. Hence we

have:

BEx

B
≥

n− 2 logn− 3

8 logn

n − 1

As,
3

8 logn
≤ 1 for n ≥ 2, so,

BEx

B
≥ n − 2 logn− 1

n− 1
or

BEx

B
≥ 1− 2 logn

n− 1
for n ≥ 6.

This is the final expected approximation ratio.

logn n z ratio

3 8 64 0.142

4 16 256 0.466

5 32 1024 0.677

6 64 4096 0.809

Fig. 7. Expected approximation ratio for different values of n

Note that the ratio increases significantly with the increase of the value of n
as presented in Figure 7. So we can see that for large values of n, the expected
approximation ratio tends to 1. So for large n it is expected that our algorithm
will outperform the approximation algorithm presented in [1]. Recall that the
approximation ratio of the algorithm of [1] is 6

11 , i.e., around 0.55.

7 Conclusion

In this paper, we have given a novel approximation algorithm to solve the protein
folding problem in the H-P model introduced by Dill [2]. Our algorithm is polyno-

mial and the expected approximation ratio is 1− 2 logn

n− 1
for n ≥ 6 where n2 is total

number of H’s in a given H-P string. For larger H-P strings it is expected that our
algorithm will give a better result than the algorithm provided in [1], which cur-
rently gives the best approximation ratio for a 2D-triangular lattice. Additionally,
our expected approximation ratio tends to reach one for large values of n. Hence
our algorithm is expected to perform very well for larger H-P strings.

Acknowledgement. The authors would like to express their gratitude to the
anonymous reviewers for their helpful comments and suggestions which helped
a lot in improving the quality of the presentation of the paper. Also, the authors
are grateful to Md. Mahbubul Hasan for insightful discussions and comments on
an early draft.

Protein Folding in 2D-Triangular Lattice Revisited 257

References

1. Agarwala, R., Batzoglou, S., Danćık, V., Decatur, S.E., Hannenhalli, S., Farach,
M., Muthukrishnan, S., Skiena, S.: Local rules for protein folding on a triangular
lattice and generalized hydrophobicity in the hp model. Journal of Computational
Biology 4(3), 275–296 (1997)

2. Dill, K.A.: Theory for the folding and stability of globular-proteins. Biochem-
istry 24(6), 1501–1509 (1985)

3. Hart, W.E., Istrail, S.: Fast protein folding in the hydrophobic-hydrophillic model
within three-eights of optimal. Journal of Computational Biology 3(1), 53–96
(1996)

4. Hart, W.E., Istrail, S.: Invariant patterns in crystal lattices: Implications for protein
folding algorithms (extended abstract). In: Hirschberg, D.S., Meyers, G. (eds.)
CPM 1996. LNCS, vol. 1075, pp. 288–303. Springer, Heidelberg (1996)

5. Hart, W.E., Istrail, S.: Lattice and off-lattice side chain models of protein folding:
Linear time structure prediction better than 86% of optimal. Journal of Compu-
tational Biology 4(3), 241–259 (1997)

6. Heun, V.: Approximate protein folding in the HP side chain model on extended
cubic lattices (Extended abstract). In: Nešetřil, J. (ed.) ESA 1999. LNCS, vol. 1643,
pp. 212–223. Springer, Heidelberg (1999)

7. Istrail, S., Lam, F.: Combinatorial algorithms for protein folding in lattice mod-
els: A survey of mathematical results. Communications in Information and Sys-
tems 9(4), 303–346 (2009)

8. Jiang, M., Zhu, B.: Protein folding on the hexagonal lattice in the hp model. J.
Bioinformatics and Computational Biology 3(1), 19–34 (2005)

9. Kessler, I., Livingston, M.: The expected number of parts in a partition of n.
Monatshefte für Mathematik 81(3), 203–212 (1976)

10. Newman, A.: A new algorithm for protein folding in the hp model. In: SODA, pp.
876–884 (2002)

11. Newman, A., Ruhl, M.: Combinatorial problems on strings with applications to
protein folding. In: Farach-Colton, M. (ed.) LATIN 2004. LNCS, vol. 2976, pp.
369–378. Springer, Heidelberg (2004)

SAT and IP Based Algorithms for Magic

Labeling with Applications

Gerold Jäger

Department of Mathematics and
Mathematical Statistics
University of Ume̊a

SE-90187 Ume̊a, Sweden
gerold.jaeger@math.umu.se

Abstract. A labeling of a graph with n vertices and m edges is a one-
to-one mapping from the union of the set of vertices and edges onto the
set {1, 2, . . . ,m+ n}. Such a labeling is defined as magic, if one or both
of the following two conditions is fulfilled: the sum of an edge label and
the labels of its endpoint vertices is constant for all edges; the sum of a
vertex label and the labels of its incident edges is constant for all vertices.
We present effective IP and Sat based algorithms for the problem of
finding a magic labeling for a given graph. We experimentally compare
the resulted algorithms by applying it to random graphs. Finally, we
demonstrate its performance by solving five open problems within the
theory of magic graphs, posed in the book of Wallis.

Keywords: Boolean Satisfiability, Integer Programming, Magic
Labeling.

1 Introduction

In this work we propose algorithms for Magic Labeling which has the following
important application. Consider a communication network which consists of a
set of devices and communication lines between some pairs of devices (see [1,4]).
In order to prevent collisions, all communication lines have to be unique. Thus
it is reasonable to assign each device and each communication line a different
number. Because of security reasons, knowing the numbers of two devices should
identify the communication line between them. This aim has been reached, if
the numbers of two devices and its corresponding communication line sum to
a constant value. Another application of Magic Labeling is radar impulses used
to measure the distance of objects (see [1,5] for details). More exactly, both
problems can be modeled as a so-called EML which will be formally defined in
the following.

Let an undirected graph G = (V,E) be given with vertex set V and edge
set E, where |V | = n and |E| = m. A labeling is a one-to-one mapping λ :
V ∪ E → {1, 2, . . . ,m + n}. For a given labeling define the weight ω(e) of an
edge e ∈ E as the sum of the label of e and of the labels of its two endpoints.

T. Lecroq and L. Mouchard (Eds.): IWOCA 2013, LNCS 8288, pp. 258–268, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

SAT and IP Based Algorithms for Magic Labeling with Applications 259

An edge-magic labeling (EML) is a labeling λ for which a constant k ∈ N exists
such that ω(e) = k for each edge e ∈ E (for examples see Figure 1). Similarly,
define the weight ω(v) of a vertex v ∈ V as the sum of the label of v and of the
labels of all edges incident to v. A vertex-magic labeling (VML) is a labeling λ for
which a constant h ∈ N exists such that ω(v) = h for each vertex v ∈ V (for an
example see Figure 1). Finally, a totally magic labeling (TML) is a labeling λ for
which (not necessarily equal) constants h, k ∈ N exist such that λ is edge-magic
with constant k and vertex-magic with constant h (for examples see Figure 1).
h and k are called magic constants. A vertex v ∈ V and an edge e ∈ E are
denoted neighboring, if e is incident to v. Note that different EMLs exist for the
same graph (see Figure 1), and the same holds for VMLs. Surveys of results for
magic labeling and related problems are given in [8] and [22]. Properties and
algorithms for magic labeling on special graphs like cycles, wheels, paths and
complete graphs can be found in [2,16,17]. We consider the problems, whether
there exists an EML with given magic constant k ∈ N, a VML with given magic
constant h ∈ N, and a TML with given magic constants h, k ∈ N. Furthermore,
we also consider the corresponding problems, where the constants are not given
in the problem formulation.

Only few complexity results or general effective algorithm are known for these
problems. Whereas in [13] the relationship between magic labeling and other
combinatorial problems is discussed, which can be used to derive complexity
results and algorithms, in [7] a sieve method for totally magic labelings is de-
scribed, and in [3] a heuristic for magic (as well as antimagic) labelings is pre-
sented, where also an IP algorithm is utilized. Furthermore, an algorithm exists
for a similar labeling problem, where only the edges are labeled and the labels
do not necessarily differ [19]).

In the Sections 2.1 and 2.2, we present two different approaches for magic la-
beling, namely based on integer programming (IP) and on Boolean satisfiability
(Sat). Whereas integer programming is a standard tool for solving combinato-
rial problems, see, e.g., [20], Sat encodings have only been used in recent times
for this purpose. For instance, such encodings were given for the Hamiltonian
Cycle Problem [11,12,18,21], Haplotype Inference by Pure Parsimony [14], the
Social Golfer Problem [9], and the game Sudoku [15]. The reason is that in the
last years much progress has been made in the optimization of practical Sat
solvers (see [10] and the Sat competition [25]).

In Section 3 we compare the performance of these IP and Sat based algo-
rithms for the problems EML and VML. Note that TML has been omitted in
the experiments, as TMLs are rather rare. In particular, it has been proven that
there are only six graphs with 10 and fewer vertices, for which a TML exists [22]
(e.g., the TMLs of Figure 1).

In Section 4 we apply the introduced algorithms to the theory of magic la-
belings. We succeed in solving five unsolved research problems from this area,
posed in the book of Wallis [22] about magic graphs.

We close this work with some suggestions for future work in Section 5

260 G. Jäger

2 6

13

7

4

8

5

5 6

41

7

2

8

3

2 8

15

6

3

7

4

Fig. 1. Three EMLs of graphs with n = 4, m = 4, k = 12, n = 4, m = 4, k = 13, and
n = 4, m = 4, k = 13

8 7

29

1

4

6

53

Fig. 2. VML of a graph with n = 4, m = 5 and h = 16

1 5 3 41 2 3

1

24

5 6

Fig. 3. Three TMLs of graphs with n = 1, m = 0, h = 1, k = 0, n = 3, m = 2, h = 6,
k = 9, and n = 3, m = 3, h = 12, k = 9

2 Algorithms for Magic Labelings

Let G = (V,E) be a graph with |V | = n, |E| = m, and let r = n + m. For
our convenience, we define a fixed ordering on the set V ∪ E by the numbers
1, 2, . . . , r, i.e., each number of {1, 2, . . . , r} represents an edge or a vertex of the
graph.

2.1 IP Based Algorithm

For the IP we consider integer variables wi for 1 ≤ i ≤ r. We define

wi = j, if edge/vertex i receives label j

SAT and IP Based Algorithms for Magic Labeling with Applications 261

for 1 ≤ i, j ≤ r. This definition leads to the following linear constraint:

1 ≤ wi ≤ r for i = 1, 2, . . . , r.

To ensure that there is a one-to-one mapping between the edges/vertices and
the labels, we introduce further 0-1 variables xij , which are defined as follows:

xi,j =

⎧⎨
⎩

1, if the label of edge/vertex i
is larger than the label of edge/vertex j

0, otherwise

for 1 ≤ i 	= j ≤ r. This can be expressed by the following linear constraint:

wi − wj ≥ 1 + (xij − 1) · r for 1 ≤ i 	= j ≤ r.

The correctness of this constraint is based on the fact that wi and wj do not
differ by more than r − 1.

Clearly, exactly one of the labels wi and wj is larger than the other one, i.e.,

xij + xji = 1 for 1 ≤ i < j ≤ r.

Finally, we have to add linear constraints which ensure that the conditions of
EML/VML/TML are fulfilled. For this purpose, we distinguish the cases that the
weight of each single edge is constant and that the weight of each single vertex
is constant, where in the case of TML both conditions have to be fulfilled.

– EML/TML: Let an arbitrary edge e = (v, w) be given, where e, v, w are
represented by the labels wi1 , wi2 , wi3 . This leads to the following linear
constraint:

wi1 + wi2 + wi3 = k.

– VML/TML: Let an arbitrary vertex v be given with incident edges e1, e2,
. . . , el with 1 ≤ l ≤ n−1, where v, e1, e2, . . . , el are represented by the labels
wi1 , wi2 , . . . , wil , wil+1

. We receive the following linear constraint:

l+1∑
t=1

wit = h.

Remark 1. In total we have 3
2

(
(n+m)2 − (n +m)

)
+sn+tm constraints, where

we have for VML s = 1, t = 0, for EML s = 0, t = 1, and for TML s = 1, t = 1.

Remark 2. This IP based model can easily be transformed to a model, where
the magic constants h and k are integer variables of the IP. This variant of the
IP algorithm searches for magic labelings with arbitrary magic constants. We
denote this variant as Arb-IP-Magic.

262 G. Jäger

2.2 SAT Based Algorithm

For the encoding we use r2 Boolean variables xi,j with 1 ≤ i, j ≤ r, where we
set

xi,j =

{
True, if edge/vertex i receives label j
False, otherwise

.

Labeling Clauses. For receiving a feasible labeling we need the following con-
ditions.

First, each edge/vertex needs to have exactly one label. This leads to the
condition:

For i = 1, 2, . . . , r exactly one j ∈ {1, 2, . . . , r} exists with xi,j = True. (1)

Second, each label has to be used by exactly one edge/vertex. This leads to
the condition:

For j = 1, 2, . . . , r exactly one i ∈ {1, 2, . . . , r} exists with xi,j = True. (2)

All 2r restrictions of (1) and (2) have the same structure, namely that exactly
one of the r involved Boolean variables is set to True and the rest to False.
To represent this, we introduce 2r2 auxiliary variables y1, y2, . . . , y2r2 with r
y’s for one restriction. W.l.o.g., consider the first restriction, which contains
the Boolean variables x1,1, x1,2, . . . , x1,r, and the corresponding auxiliary vari-
ables y1, y2, . . . , yr. For 1 ≤ i ≤ r we use yi to represent that at least one of
x1,1, x1,2, . . . , x1,i is True. Precisely, the y variables are defined as follows.

• y1 = x1,1 or equivalently (¬x1,1 ∨ y1) ∧ (x1,1 ∨ ¬y1),
• yi = x1,i ∨ yi−1 or equivalently (yi ∨¬x1,i)∧ (yi ∨¬yi−1)∧ (¬yi ∨x1,i ∨ yi−1)
for i = 2, 3, . . . , r.

In addition, we need to enforce that no more than one x1,i with 1 ≤ i ≤ r can
be True. This means, if x1,i is True, none of the x1j for 1 ≤ j < i ≤ r can be
True. This is formulated as

• ¬yi−1 ∨ ¬x1i for i = 2, . . . , r.

Finally, yr must be True.

Magic Clauses. Furthermore we have to add clauses which ensure that the
conditions of EML/VML/TML are fulfilled. We consider the parameters c ∈ N
for the magic constants h and k, respectively, and l ∈ N, which captures the
number of summands for each single condition.

– EML/TML: Set c = k and l = 2. For a given edge the sum of l + 1 labels
(namely the label of the edge and of its l endpoint vertices) equals c.

– VML/TML: Set c = h. For a given vertex with degree l ∈ N the sum of l+1
labels (namely the label of the vertex and of its l incident edges) equals c.

SAT and IP Based Algorithms for Magic Labeling with Applications 263

Observe that both conditions have the following structure: For given constants
c, l ∈ N the sum of l + 1 labels equals c. For l ∈ N let W be the set containing
all possible l-tuples −→w = (w1, w2, . . . , wl) with wi ∈ {1, 2, . . . , r} for 1 ≤ i ≤ l
and wi 	= wj for 1 ≤ i < j ≤ l.

As an example instance, consider l = 3 and r = 4. Then it holds |W | = 24
and

W = {(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1), (1, 2, 4), (1, 4, 2),
(2, 1, 4), (2, 4, 1), (4, 1, 2), (4, 2, 1), (1, 3, 4), (1, 4, 3), (3, 1, 4), (3, 4, 1),

(4, 1, 3), (4, 3, 1), (2, 3, 4), (2, 4, 3), (3, 2, 4), (3, 4, 2), (4, 2, 3), (4, 3, 2)}.

Now let an edge or vertex f be given with corresponding c, l ∈ N, i.e., if f is
an edge, then c = k and l = 2, and otherwise, c = h and l is the degree of f . We
want to fulfill the condition that f has constant weight c. This means that the
sum of the label of f and of its neighboring elements is c. Let f1, f2, . . . , fl be the
neighboring elements of f . For this l compute the set W and choose an arbitrary
element −→w ∈ W with w :=

∑l
i=1 wi. Then label f1, f2, . . . , fl by w1, w2, . . . , wl,

and consider four cases:

Case 1: i ∈ {1, 2, . . . , l} exists with c − w = wi,
Case 2: w ≥ c,
Case 3: w < c− r,
Case 4: Otherwise.

As all labels are different and are contained in the set {1, 2, . . . , r}, it is clear
that for the Cases 1, 2, or 3 no labeling of f exists such that the sum of the
labels of f, f1, f2, . . . , fl is c. In these cases we add the clause

¬xf1,w1 ∨ ¬xf2,w2 ∨ · · · ∨ ¬xfl,wl

meaning that labeling f1, f2, . . . , fl by w1, w2, . . . , wl is not possible. For Case 4
such a labeling is possible, but only if f is labeled with c−w. This leads to the
following clause:

¬xf1,w1 ∨ ¬xf2,w2 ∨ · · · ∨ ¬xfl,wl
∨ xf,c−w.

Thus for each −→w ∈ W we have an additional clause.

Note that if we consider VMLs or TMLs with vertices of large degree, the
cardinality of |W | and therefore the number of magic clauses becomes expo-
nential. Thus for dense graphs, the resulted algorithm is expected to have bad
performance, which is confirmed by the results presented in Section 3.

3 Experimental Results

As already mentioned, no effective algorithm is known for general instances
of EML, VML, and TML, respectively. In this section we compare the algo-
rithms of Section 2, which are called IP-Magic, and Sat-Magic. All algo-
rithms have been implemented in C++, where we make use of the IP solver

264 G. Jäger

Cplex, version 12 [24], and a Sat solver implemented by Eén and Sörensson,
calledMiniSat [6,23]. The experiments were carried out on a SunOS system with
a 386 CPU with 2613 MHz clock rate and 32192 MB of RAM. We test random
graphs with number of vertices n = 10, 15, where p = 10%, 20%, 30%, 40% edges
are chosen randomly and uniformly distributed from all possible n·(n−1)/2 ones.
Note that the following lower and upper bounds for possible magic constants can
easily be computed: Consider the following cases:

– Lower bound for k:
Let l be the number of vertices with degree 0. Label these vertices with
m + n − l + 1,m + n − l + 2, . . . ,m + n. Label the remaining vertices with
1, 2, . . . , n− l and the edges with n− l + 1, n− l + 2, . . . ,m+ n− l. Let the
vertices i = 1, 2, . . . , n − l with degree 	= 0 be ordered by decreasing degree
and let deg(i) be their degrees. This leads to the lower bound(

n−l∑
i=1

deg(i) · i+
m∑
i=1

(n− l + i)

)
/m,

where l is the number of isolated vertices.
– Upper bound for k:

Let l be the number of vertices with degree 0. Label these vertices with
1, 2, . . . , l. Label the remaining vertices with m+ l+ 1,m+ l+ 2, . . . ,m+ n
and the edges with l+1, l+2, . . . ,m+ l. Let the vertices 1, 2, . . . , n− l with
degree 	= 0 be ordered by increasing degree and let deg(i) be their degrees.
This leads to the upper bound(

n−l∑
i=1

(deg(i) · (m + l + i)) +
m∑
i=1

(l + i)

)
/m,

where l is the number of isolated vertices.
– Lower bound for h:

Label the m edges with the labels 1, 2, . . . ,m and the n vertices with m+1,
m+ 2, . . . , m+ n. This leads to the lower bound(

m∑
i=1

(2 · i) +
n∑

i=1

(m + i)

)
/n.

– Upper bound for h:
Label the m edges with the labels n+1, n+2, . . . , n+m and the n vertices
with 1, 2, . . . , n. This leads to the upper bound(

n∑
i=1

i+

m∑
i=1

2 · (n+ i)

)
/n.

For each single instance of the tests this lower bound lb ∈ N and this upper
bound ub ∈ N are computed. Then we choose min{10, ub− lb+ 1} values of the

SAT and IP Based Algorithms for Magic Labeling with Applications 265

interval [lb, ub] and for each value receive a single instance of the forms EML or
VML. Thus we have 16 = 2 · 2 · 4 test classes, where each test class consists of
up to 10 single instances.

For both algorithms and for each test class, Table 1 and Table 2 give the
percentage of successes in short time. More precisely, the given value is the
percentage of how many instances of this test class can be solved within 1 hour.

The results show that Sat-Magic performs better for EML. On the other
hand, as expected, Sat-Magic behaves badly for VMLs with large density.

Table 1. Comparison of IP-Magic and Sat-Magic for random graphs with 10 vertices

Size 10 EML VML

Density p (%) 10 20 30 40 10 20 30 40

IP-Magic (%) 100 70 80 0 100 100 100 10

Sat-Magic (%) 100 100 100 100 100 100 0 0

Table 2. Comparison of IP-Magic and Sat-Magic for random graphs with 15 vertices

Size 15 EML VML

Density p (%) 10 20 30 40 10 20 30 40

IP-Magic (%) 30 0 0 0 100 100 20 0

Sat-Magic (%) 70 70 0 0 100 0 0 0

4 Applications to the Theory of Magic Labelings

Wallis’ book [22] contains a summary over the most known results in the theory
of magic labeling. Moreover, he lists more than 30 open research problems, where
mostly for specific classes of graphs the characteristics of EML, VML, TML are
investigated. To show their potential we have applied our algorithms to those
open problems and received solutions for five open problems. All these solutions
are negative results, i.e., counterexamples for the corresponding claims. However,
we expect that the algorithms also make contributions to positive results in
the future, as the analysis of concrete labelings found by the algorithms can
lead to new theoretical ideas. The solved research problems are described in the
following.

266 G. Jäger

4.1 Research Problem 2.4

Problem: For n ∈ N define the graph K2n\n as the graph with 2n vertices,
which contains all possible edges {i, j} with 1 ≤ i < j ≤ 2n except those with
n+ 1 ≤ i < j ≤ 2n. Does K2n\n have an EML for all n ∈ N?

Solution: Consider n = 3. The algorithm Arb-IP-Magic proves in 223.81
seconds that the graph K6\3 (6 vertices and 12 edges) has no EML.

4.2 Research Problem 2.5a)

Problem: Let n be odd. Does a cycle Cn with n vertices have an EML, where
for the magic constant k holds 5n+3

2 ≤ k ≤ 7n+3
2 ?

Solution: Consider n = 5. Then we have 14 ≤ k ≤ 19. The algorithms Sat-

Magic (IP-Magic) proves in 0.06 (4.52) seconds for k = 15 and in 0.05 (5.88)
seconds for k = 18 that the graph C5 (5 vertices and 5 edges) has no EML. Note
that for the remaining values k = 14, 16, 17, 19 the graph C5 does have an EML.

4.3 Research Problem 2.9

Problem: For m,n, p ∈ N consider the complete tripartite graph Km,n,p con-
sisting of three sets with the number of vertices m, n, p, respectively, where
edges appear only between these three sets, but not inside. Does Km,n,p always
have an EML?

Solution: Consider m = n = p = 2. The algorithm Arb-IP-Magic proves in
217.89 seconds that the graph K2,2,2 (6 vertices and 12 edges) has no EML.

4.4 Research Problem 2.16

Problem: For n ∈ N consider the graph nK4 consisting of n copies of the
complete graph K4, where no edges appear between these copies. Does nK4

always have an EML, if n is even.

Solution: Consider n = 2. The algorithm Arb-IP-Magic proves in 18963.25
seconds that the graph 2K4 (8 vertices and 12 edges) has no EML.

4.5 Research Problem 3.3

Problem: For m ∈ N consider the complete bipartite graph Km,m+1 consisting
of two sets with the number of vertices m, m+1, respectively, where edges appear
only between these two sets, but not inside. Does Km,m+1 always have a VML,

where for the magic constant h holds (m+1)2(m+2)
2 ≤ h ≤ (m+1)(m2+4m+2)

2 ?

Solution: Consider m = 2. Then we have 18 ≤ h ≤ 21. The algorithms Sat-

Magic (IP-Magic) proves in 0.18 (14.55) seconds for h = 21 that the graph
K2,3 (5 vertices and 6 edges) has no VML. Note that for the remaining values
h = 18, 19, 20 the graph K2,3 does have a VML.

SAT and IP Based Algorithms for Magic Labeling with Applications 267

5 Future Work

It would be interesting to find specialized IP or Sat encodings for graphs like cy-
cles, wheels, paths and complete graphs etc. In particular, symmetry conditions
of these graphs should be helpful to specialize the general encoding.

A further question is whether it is possible to create a Sat encoding of poly-
nomial size also for finding VMLs and TMLs in dense graphs?

There is another open research question from [22], namely about the very rare
TMLs. In [7,22] it has been shown by an exhaustive computer search that only
6 graphs with number of vertices smaller than 11 exist which have a TML. In [1]
this search has been extended so that it can be applied to the 1, 018, 997, 864
non-isomorphic graphs with 11 vertices (for details see [1]). However, it has
turned out that still some candidate graphs have to be considered, and for these
graphs, in particular the not connected graphs, the algorithms of this work are
a reasonable method.

References

1. Arnold, F.: Totally Magic Graphs – A Complete Search On Small Graphs. Master
Thesis, Clausthal University of Technology, Germany (2013)

2. Baker, A., Sawada, J.: Magic Labelings on Cycles and Wheels. In: Yang, B., Du,
D.-Z., Wang, C.A. (eds.) COCOA 2008. LNCS, vol. 5165, pp. 361–373. Springer,
Heidelberg (2008)

3. Bertault, F., Feria-Purón, R., Miller, M., Pérez-Rosés, H., Vaezpour, E.: A Heuris-
tic for Magic and Antimagic Graph Labellings. In: Proc. VII Spanish Congress on
Metaheuristics and Evolutive and Bioinspired Algorithms, Valencia, Spain (2010)

4. Bloom, G.S., Golomb, S.W.: Applications of Numbered Undirected Graphs.
Proc. IEEE 65(4), 562–570 (1977)

5. Bloom, G.S., Golomb, S.W.: Numbered Complete Graphs, Unusual Rulers, and
Assorted Applications. In: Theory and Applications of Graphs. Lecture Notes in
Mathematics, vol. 642, pp. 53–65 (1978)

6. Eén, N., Sörensson, N.: An Extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

7. Exoo, G., Ling, A.C.H., McSorley, J.P., Philipps, N.C., Wallis, W.D.: Totally Magic
Graphs. Discrete Math. 254(1-3), 103–113 (2002)

8. Gallian, J.A.: A Dynamic Survey of Graph Labelings. Electron. J. Combin. 15,
DS6 (2008)

9. Gent, I.P., Lynce, I.: A Sat Encoding for the Social Golfer Problem. In: 19th In-
ternational Joint Conference on Artificial Intelligence (IJCAI), Workshop on Mod-
elling and Solving Problems with Constraints (2005)

10. Gomes, C.P., Kautz, H., Sabharwal, A., Selman, B.: Satisfiability Solvers. In: van
Harmelen, F., Lifschitz, V., Porter, B. (eds.) Handbook of Knowledge Representa-
tion. Foundations of Artificial Intelligence, vol. 3, pp. 89–134. Elsevier (2008)

11. Hoos, H.H.: Sat-Encodings, Search Space Structure, and Local Search Performance.
In: Proc. 16th International Joint Conference on Artificial Intelligence (IJCAI), pp.
296–303. Morgan Kaufmann (1999)

12. Jäger, G., Zhang, W.: An Effective Algorithm for and Phase Transitions of the
Directed Hamiltonian Cycle Problem. J. Artificial Intelligence Res. 39, 663–687
(2010)

268 G. Jäger

13. Kalantari, B., Khosrovshahi, G.B.: Magic Labeling in Graphs: Bounds, Complexity,
and an Application to a Variant of TSP. Networks 28(4), 211–219 (1996)

14. Lynce, I., Marques-Silva, J., Prestwich, S.D.: Boosting Haplotype Inference with
Local Search. Constraints 13(1-2), 155–179 (2008)

15. Lynce, I., Ouaknine, J.: Sudoku as a Sat Problem. In: Proc. 9th International
Symposium on Artificial Intelligence and Mathematics, AIMATH (2006)

16. MacDougall, J.A., Miller, M., Slamin, Wallis, W.D.: Vertex-magic Total Labelings
of Graphs. Util. Math. 61, 3–21 (2002)

17. MacDougall, J.A., Miller, M., Wallis, W.D.: Vertex-magic Total Labelings of
Wheels and Related Graphs. Util. Math. 62, 175–183 (2002)

18. Prestwich, S.D.: Sat Problems with Chains of Dependent Variables. Discrete
Appl. Math. 130(2), 329–350 (2003)

19. Sun, G.C., Guan, J., Lee, S.-M.: A Labeling Algorithm for Magic Graph.
Congr. Numer. 102, 129–137 (1994)

20. Vanderbei, R.J.: Linear Programming: Foundations and Extensions, 3rd edn. Inter-
national Series in Operations Research & Management Science, vol. 114. Springer
(2008)

21. Velev, M.N., Gao, P.: Efficient Sat Techniques for Absolute Encoding of Permu-
tation Problems: Application to Hamiltonian Cycles. In: Proc. 8th Symposium on
Abstraction, Reformulation and Approximation (SARA), pp. 159–166 (2009)

22. Wallis, W.D.: Magic Graphs. Birkhäuser, Boston (2001)
23. Source Code of [6] (MiniSat), http://minisat.se/
24. Homepage of IP solver Cplex,

http://www.ilog.com/products/optimization/archive.cfm

25. International Sat Competition, http://www.satcompetition.org/

http://minisat.se/
http://www.ilog.com/products/optimization/archive.cfm
http://www.satcompetition.org/

An Optimal Algorithm for Computing

All Subtree Repeats in Trees

Tomáš Flouri1,�, Kassian Kobert1,��,
Solon P. Pissis1,2,���, and Alexandros Stamatakis1,3

1 Heidelberg Institute for Theoretical Studies, Germany
2 Florida Museum of Natural History, University of Florida, USA

3 Karlsruhe Institute of Technology, Institute for Theoretical Informatics,
Postfach 6980, 76128 Karlsruhe

Abstract. Given a labeled tree T , our goal is to group repeating sub-
trees of T into equivalence classes with respect to their topologies and
the node labels. We present an explicit, simple, and time-optimal algo-
rithm for solving this problem for unrooted unordered labeled trees, and
show that the running time of our method is linear with respect to the
size of T . By unordered, we mean that the order of the adjacent nodes
(children/neighbors) of any node of T is irrelevant. An unrooted tree T
does not have a node that is designated as root and can also be referred
to as an undirected tree. We show how the presented algorithm can easily
be modified to operate on trees that do not satisfy some or any of the
aforementioned assumptions on the tree structure; for instance, how it
can be applied to rooted, ordered or unlabeled trees.

1 Introduction

Tree data structures are among the most common and well-studied of all com-
binatorial structures. Tree structures are present in a wide range of applica-
tions, such as, in the implementation of functional programming languages [12],
term-rewriting systems [11], programming environments [2], code optimization in
compiler design [1], code selection [8], theorem proving [13], and computational
biology [14].

Thus, efficiently extracting the repeating patterns in a tree structure,
represents an important computational problem. Recently, Christou et al. [5]
presented a linear-time algorithm for computing all subtree repeats in rooted or-
dered unlabeled trees. In [4], Christou et al. extended this algorithm to compute
all subtree repeats in rooted ordered labeled trees in linear time and space.

The limitation of the aforementioned results is that they cannot be applied
to unrooted or unordered trees. By unrooted, we mean that the input tree does
not have a dedicated root node; and, by unordered, we mean that the order of

� Supported by the DFG grant STA 860/4.
�� Supported by a PhD scholarship from institutional funding at HITS.

��� Supported by the NSF–funded iPlant Collaborative (NSF grant #DBI-0735191).

T. Lecroq and L. Mouchard (Eds.): IWOCA 2013, LNCS 8288, pp. 269–282, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

270 T. Flouri et al.

the descendant nodes (children) of any node of the tree is irrelevant. Such trees
are a generalization of rooted ordered trees, and, hence, they arise naturally in
a broader range of real-life applications. For instance, unrooted unordered trees
are used in the field of (molecular) phylogenetics [7,16].

The field of molecular phylogenetics deals with inferring the evolutionary
relationships among species using molecular sequencing technologies and sta-
tistical methods. Phylogenetic inference methods typically return unrooted un-
ordered labeled trees that represent the evolutionary history of the organisms
under study. These trees depict evolutionary relationships among the molecular
sequences of extant organisms (living organisms) that are located at the tips
(leaves) of those trees and hypothetical common ancestors at the inner nodes
of the tree. With the advent of so-called next-generation sequencing technolo-
gies, large-scale multi-national sequencing projects such as, for instance, 1KITE1

(1000 insect transcriptome sequencing project) emerge. In these projects, large
phylogenies that comprise thousands of species and massive amounts of whole-
transcriptome or even whole-genome molecular data need to be reconstructed.

Provided a fixed multiple sequence alignment (MSA) of the sequences—
representing species—under study, the goal of phylogenetic inference is to find
the tree topology that best explains the underlying data, using a biologically
reasonable optimality criterion—a scoring function for the trees. One such opti-
mality criterion is Maximum Likelihood (ML) [6]. Finding the optimal tree under
ML is known to be NP-complete [3]. Note that the number of possible unrooted
tree topologies for n species, located at the tips, grows super-exponentially with
n. Therefore, widely-used tools for ML-based inference of phylogenies, such as
RAxML [15] and PHYML [9], rely on heuristic search strategies for exploring
the immense tree space.

The likelihood of each candidate tree topology T is calculated by computing
the conditional likelihoods at each inner node of T . The conditional likelihoods
are computed independently for each site (column in the MSA). The conditional
likelihoods are computed via a post-order traversal of T starting from a virtual
root. Note that, as long as the statistical model of evolution is time-reversible
(i.e. evolution occurred in the same way if followed forward or backward in time)
the likelihood score is invariant with respect to where in T the virtual root has
been placed.

In phylogenetic inference software, a common technique for optimizing the
likelihood function, which typically consumes ≈ 95% of total execution time, is
to eliminate duplicate sites (equivalent columns in the MSA). This is achieved by
compressing identical sites into site patterns and assigning them a corresponding
weight. This can be done because duplicate sites yield exactly the same likelihood
iff they evolve under the same statistical model of evolution. When two sites are
identical, this means that the leaves of the tree are labeled equally. Consider a
forest of trees with the same topology, where, for each tree, the labels are defined
by the molecular data stored at a particular site of the MSA and the position of
the tips. Knowing equivalent subtrees within such a forest would allow someone

1 http://www.1kite.org/

http://www.1kite.org/

An Optimal Algorithm for Computing All Subtree Repeats in Trees 271

to minimize the number of operations required to compute the likelihood of a
phylogenetic tree. This can be seen as a generalization of the site compression
technique.

Our Contribution. In this article, we extend the series of results presented
in [5] and [4] by introducing an algorithm that computes all subtree repeats in
unrooted unordered labeled trees in linear time and space. The importance of
our contribution is underlined by the fact that the presented algorithm can be
easily modified to work on trees that do not satisfy some or any of the above
assumptions on the tree structure; e.g. it can be applied to rooted, ordered or
unlabeled trees.

2 Preliminaries

2.1 Basic Definitions

An unrooted unordered tree is an undirected unordered acyclic connected graph
T = (V,E) where V is the set of nodes andE the set of edges such that E ⊂ V ×V
with |E| = |V | − 1. The number of nodes of a tree T is denoted by |T | := |V |.
An alphabet Σ is a finite, non-empty set whose elements are called symbols. A
string over an alphabet Σ is a finite, possibly empty, string of symbols of Σ.
The length of a string x is denoted by |x|, and the concatenation of two strings
x and y by xy. A tree T is labeled if every node of T is labeled by a symbol from
some alphabet Σ. Different nodes may have the same label.

A tree center of an unrooted tree T = (V,E) is the set of all vertices such
that the greatest node distance to any leaf is minimal. An unrooted tree T has
either one node that is a tree center, in which case it is called a central tree, or
two adjacent nodes that are tree centers, in which case it is called a bicentral
tree [10]. Let T̂ (T) = (V̂ , Â) be the rooted tree on V̂ = V ∪ {r}, where Â is
defined such that |Â| is minimal with (u, v) ∈ Â only if {u, v} ∈ E and each
node other than r is reachable from one central point. If T is a bicentral tree,
we add the additional root node r to V and add two edges to Â, namely (r, v)
and (r, u), where v and u are the central points of T . Otherwise, if T is a central
tree, with tree center u, we set r := u and thus V̂ = V .

We call u ∈ V a child of v iff (v, u) ∈ Â. In this case, we call v the parent
of u and define parent(u) := v. We call u and u′ siblings iff there exists a node
v ∈ V̂ such that (v, u), (v, u′) ∈ Â. Note that under this definition two central
points of a bicentral tree are siblings of each other.

The (rooted) subtree that is obtained by removing edge {v, u} and contains
node v as its root node is denoted by T̂ (v, u). We consider only full subtrees,
i.e. subtrees which contain all nodes and edges that can be reached from v when
only the edge {v, u} is removed from the tree. The special case T̂ (v, v) denotes
the tree containing all nodes that is rooted in v. For simplicity, we refer to
T̂ (v, parent(v)) as T̂ (v). The diameter of an unrooted tree T is denoted by d(T)
and is defined as the number of edges of the longest path between any two leafs
(nodes with degree 0) of T . The height of a rooted (sub)tree T̂ (v, u) of some tree

272 T. Flouri et al.

a

b

c

d

d

a

c

b

d

d

a

c a

c b

d d

b

d d

a

a c

c b

d d

d d

b

(b)(a)

1

4

4

4

3

3

3

2

1

2

2

1

Fig. 1. (a) An unrooted tree T consisting of 10 nodes; a non-overlapping subtree repeat
R = {(3, 2), (4, 1)} is marked with dashed rounded rectangles; another non-overlapping
subtree repeat containing the trees T̂ (1, 2), T̂ (2, 1) is marked with dashed rectangles (b)
An overlapping subtree repeat R = {(2, 3), (1, 4)} of T resulting from the deletion of
the dashed edge and its corresponding dotted subtree. This is an overlapping subtree
repeat since nodes 1 and 2–and the node labeled by c–are contained in both subject
trees. A total repeat R = {(1, 1), (2, 2)} of T can be obtained by keeping all the edges
and rooting T in node 1 (T̂ (1, 1)) and 2 (T̂ (2, 2)), respectively

T , denoted by h(v, u), is defined as the number of edges on the longest path
from the root v to some leaf of T̂ (v, u). The height of a node v, denoted by h(v),
is defined as the length of the longest path from v to some leaf in T̂ (T).

For simplicity, in the rest of the text, we denote: a rooted unordered labeled
tree by T̂ ; an unrooted unordered labeled tree by T ; and the rooted (directed)
version of T by T̂ (T), as defined above.

2.2 Subtree Repeats

Two trees T̂1 = (V1, A1) and T̂2 = (V2, A2) are equal (T̂1 = T̂2) if there exists a
bijective mapping f : V1 → V2 such that the following two properties hold

(v1, v2) ∈ A1 ⇔ (f(v1), f(v2)) ∈ A2

label(v) = label(f(v)), ∀v ∈ V1.

A subtree repeat R in a tree T is a set of node tuples (u1, v1), . . . , (u|R|, v|R|),
such that T̂ (u1, v1) = . . . = T̂ (u|R|, v|R|). We call |R| the repetition frequency of
R. If |R| = 1 we say that the particular subtree does not repeat. An overlapping
subtree repeat is a subtree repeat R, where at least one node v is contained in
all |R| trees. If no such v exists, we call it a non-overlapping subtree repeat.
A total repeat R is a subtree repeat that contains all nodes in T , that is, R =
{(u1, u1), . . . , (u|R|, u|R|)}. See Fig. 1 in this regard.

In the following, we consider the problem of computing all such subtree repeats
of an unrooted tree T .

An Optimal Algorithm for Computing All Subtree Repeats in Trees 273

3 Algorithm

The algorithm works in two stages: the forward/non-overlapping stage and the
backward/overlapping stage. The forward stage finds all non-overlapping subtree
repeats of some tree T . The backward stage uses the identifiers assigned dur-
ing the forward stage to detect all overlapping subtree repeats, including total
repeats.

3.1 The Forward/Non-overlapping Stage

We initially present a brief description of the algorithmic steps. Thereafter, we
provide a formal description of each step in Algorithm 1.

In the following, we identify each node in the tree by a unique integer in the
range of 1 to |T |. Such a unique integer labeling can be obtained, for instance,
by a pre- or post-order tree traversal.

The basic idea of the algorithm can be explained by the following steps:
1. Partition nodes by height.
2. Assign a unique identifier to each label in Σ.
3. For each height level starting from 0 (the leaves).

i For each node v of the current height level construct a string containing
the identifier of the label of v and the identifiers of the subtrees that are
attached to v.

ii For each such string, sort the identifiers within the string.
iii Lexicographically sort the strings (for the current height level).
iv Find non-overlapping subtree repeats as identical adjacent strings in the

lexicographically sorted sequence of strings.
v Assign unique identifiers to each set of repeating subtrees (equivalence

class).

We will explain each step by referring to the corresponding lines in Algorithm 1.
Partitioning the nodes according to their height requires time linear with

respect to the size of the tree, and is described in line 2 of Algorithm 1. This is
done using an array H of queues, where H [i], for all 0 ≤ i ≤ �d(T)/2�, contains
all nodes of height i. Thereafter, we assign a unique identifier to each label in Σ
in lines 3-7. The main loop of the algorithm starts at line 8 and processes the
nodes at each height level starting bottom-up from the leaves towards the central
points. The main loop consists of four steps. First, a string is constructed for each
node v which comprises the identifier for the label at v followed by the identifiers
assigned to u1, u2, . . . , ucv . The identifiers u1, u2, . . . , ucv represent the subtrees
T̂ (u1), T̂ (u2), . . . , T̂ (ucv), where u1, u2, . . . , ucv are the children of v (lines 11-16).
Assume that this particular step constructs k strings s1, s2, . . . , sk.

In the next step, we sort the identifiers within each string. To obtain this
sorting in linear time, we first need to remap individual identifiers contained
as letters in those strings to the range [1,m]. Here, m is the number of unique
identifiers in the strings constructed for this particular height, and the following
property holds: m ≤

∑k
i=1 |si|. We then apply a bucket sort to these remapped

identifiers and reconstruct the ordered strings r1, r2, . . . , rk (lines 17-20).

274 T. Flouri et al.

Algorithm 1. Forward-Stage

Input : Unrooted tree T = (V,E) labeled from Σ
Output: Sets Rreps of non-overlapping subtree repeats of T

1 � Partition tree nodes by height
2 for all v ∈ V do Enqueue(H [h(v)], v)
3 cnt ← 0
4 � Assign a number from 1 to |Σ| to each label
5 for all labels � ∈ Σ do
6 cnt ← cnt+ 1
7 L[�] ← cnt

8 � Compute subtree repeats
9 reps ← 0

10 for i ← 0 to �d(T)/2� do
11 S ← ∅
12 � Construct a string of numbers for each node v and its children
13 foreach v ∈ H [i] do
14 Let children(v) = { u | {u, v} ∈ E } \ {parent(v)} and cv = |children(v)|
15 sv ← L[label(v)]K[u1]K[u2] . . .K[ucv], if children(v) = {u1, u2, . . . , ucv}
16 S ← S ∪ {sv}
17 � Remap numbers [1, |T |+ |Σ|) to [1, |H [i]|+∑

v∈H[i] cv]

18 R ← Remap(S)
19 � Bucket sort strings
20 Bucket sort the (unique) numbers of all strings in R.
21 Let R′ be the set of individually sorted strings that have been extracted

from the respective sorted list from the previous step.
22 Lexicographically sort the strings in R′ using radix sort and obtain a sorted

list R′′ of strings r1, r2, . . . , r|R′′|.
23 Let each ri be of the form ki

1k
2
i . . . k

i
|ri| and the corresponding, original

unsorted string si of the form L[vi1]K[vi2] . . .K[vi|ri|].
24 reps ← reps+ 1
25 Rreps ← {(v11 , parent(v11))}
26 K[v11] ← reps + cnt
27 for j ← 2 to k do
28 if rj = rj−1 then

29 Rreps ← Rreps ∪ {(vj1, parent(vj1))}
30 else
31 reps ← reps+ 1

32 Rreps ← {(vj1, parent(vj1))}
33 K[vj1] ← reps+ cnt

The next step for the current height level is to find the subtree repeats as
identical strings. To achieve this, we lexicographically sort the ordered strings
r1, r2, . . . , rk (line 22), and check neighboring strings for equivalence (lines 23-
33). For each equivalence class Ri we choose a new, unique identifier, that is

An Optimal Algorithm for Computing All Subtree Repeats in Trees 275

assigned to the root nodes of all the subtrees in that class (lines 26 and 33).
Finally, each set Ri contains exactly the tuples of those nodes that are the roots
of a particular non-overlapping subtree repeat of T and their respective parents.

Remapping from D1 = [1, |T | + |Σ|) to D2 = [1, |H [i]| +
∑

v∈H[i] cv] can be

done using an array A of size |T |+ |Σ|, a counter m, and a queue Q. We read
the numbers of the strings one by one. If a number x from domain D1 is read
for the first time, we increase the counter m by one, set A[x] := m, and place
m in Q. Subsequently, we replace x by m in the string. In case a number x has
already been read, that is, A[x] 	= 0, we replace x by A[x] in the string. When
the remapping step is completed, only the altered positions in array A will be
cleaned up, by traversing the elements of Q.

Theorem 1 (Correctness). Given an unrooted tree T , Algorithm 1 correctly
computes all non-overlapping subtree repeats.

Proof. First note that if any two subtrees T̂1 and T̂2 are repeats of each other,
they must, by definition, be of the same height. So the algorithm is correct in
only comparing trees of the same height. Additionally, non-overlapping subtrees
repeats of a tree T can only be of height �d(T)/2� or less, where d(T) is the
diameter of T . Therefore, the algorithm is correct in stopping after processing all
�d(T)/2�+ 1 height classes, in order to extract all the non-overlapping subtree
repeats. Since the algorithm only extracts non-overlapping repeats, we define
repeats to mean non-overlapping repeats for the rest of this proof. In addition,
for simplicity, we consider the rooted version of T for the rest of this proof.

We show that the algorithm correctly computes all repeats for a tree of any
height by induction. For the base case we consider an arbitrary tree of height
1 (trees with height 0 are trivial). Any tree of height 1 only has the root node
and any number of leafs attached to it. At the root we can never find a subtree
repeat, so we only need to consider the next lower (height) level, that is, the leaf
nodes. Any two leafs with identical labels will, by construction of the algorithm,
be assigned the same identifiers and thus be correctly recognized as repeats of
each other.

Now, assume that all (sub)trees of height m− 1 have correctly been assigned
with identifiers by the algorithm and that they are identical for two (sub)trees
iff they are unordered repeats of each other.

Consider an arbitrary tree of height m+1. The number of repeats for the tree
spanned from the root (node r) is always one (the whole tree). Now consider the
subtrees of height m. The root of any subtree of height m must be a child of r.
For any child of r that induces a tree of height smaller than m, all repeats have
already been correctly calculated according to our assumption.

Two (sub)trees are repeats of each other iff the two roots have the same label
and there is a one-to-one mapping from subtrees induced by children of the root
of one tree to topologically equivalent subtrees induced by children of the root
of the second tree. By the induction hypothesis, all such topologically equiva-
lent subtrees of height m − 1 or smaller have already been assigned identifiers
that are unique for each equivalence class. Thus, deciding whether two subtrees
are repeats of each other can be done by comparing the root labels and the

276 T. Flouri et al.

corresponding identifiers of their children, which is exactly the process described
in the algorithm. The approach used in the algorithm correctly identifies iden-
tically labeled strings since the order of identifiers has been sorted for a given
height class. Thus the algorithm finds all repeats of height m (and m+1 at the
root). ��

Theorem 2 (Complexity). Algorithm 1 runs in time and space O(|T |).

Proof. We prove the linearity of the algorithm by analyzing each of the steps in
the outline of the algorithm. Steps 1 and 2 are trivial and can be computed in
|T | and |Σ| steps, respectively. Notice that |Σ| ≤ |T |.

The main for loop visits each node of T once. For each node v a string sv
is constructed which contains the identifier of the label of v and the identifiers
assigned to the child nodes of v. Thus, each node is visited at most twice: once
as parent and once as child. This leads to 2n− 1 node traversals, where n is the
number of nodes of T , since the root node is the only node that is visited exactly
once. The constructed strings for a height level i are composed of the nodes in
H [i] and their respective children. In total we have c(i) :=

∑
v∈H[i] cv child nodes

at a height level i, where cv is the number of children of node v. Therefore, the
total size of all constructed strings for a particular height level i is |H [i]|+ c(i).
Step 3ii runs in linear time with respect to the number of nodes at each height
level i and their children. This is because the remapping is computed in linear
time with respect to |H [i]|+c(i). By the remapping, we ensure that the identifiers
in each string are within the range of 1 to |H [i]|+ c(i). Using bucket sort we can
then sort the remapped identifiers in time |H [i]| + c(i) for each height level i.
Consequently, the identifiers in each string can be sorted in time |H [i]|+ c(i) by
traversing the sorted list of identifiers and positioning the respective identifier in
the corresponding string on a first-read-first-place basis. This requires additional
space |H [i]|+ c(i) to keep track which remapped identifier corresponds to which
strings.

After remapping and sorting the strings, finding identical strings as repeats
requires a lexicographical sorting of the strings. Strings that are identical form
classes of repeats. Lexicographical sorting (using radix sort) requires time
O(|H [i]|+ c(i)) and at most space for storing |T |+ |Σ| elements since the identi-
fiers are in the range of 1 to |T |+ |Σ|. This memory space needs to be allocated
only once. Moreover, the elements that have been used are cleared/cleaned-up
at each step via a queue as explained for the remapping function.

By summing over all height levels we obtain
∑�d(T)/2�

i=0 (|H [i]|+ c(i)) = 2n−1.
Thus the total time over all height levels for each step described in the loop is
O(|T |). The overall time and space complexity of the algorithm is thus O(|T |).

��

We conclude this section with an example demonstrating Algorithm 1. Consider
the tree T from Fig. 2. The superscript indices denote the number associated
with each node, which, in this particular example, correspond to a pre-order
traversal of T̂ (T) by designating node 1 as the root. Lines 1-2 partition the
nodes of T in �d(T)/2� + 1 sets according to their height. The sets H [0] =

An Optimal Algorithm for Computing All Subtree Repeats in Trees 277

a b

a

b

a

b

a

b

c

a

d

b

c

d
a

a

b

c

d

a

c

b

d

b

c

b

c

a

161

21

18

27

24

22

19

20

17

23

25

26

28

2

9

3

4

8

5

6

7

10

11

12

13

14

15

Fig. 2. Graphical representation of tree T . The superscript indices denote the unique
identifier assigned to each node by traversing T

{3, 5, 6, 7, 8, 10, 11, 13, 14, 15, 17, 19, 20, 23, 25, 26, 28}, H [1] = {4, 12, 18, 22, 24,
27}, H [2] = {2, 9, 21} and H [3] = {1, 16} are created. Lines 5-7 create a mapping
between labels and numbers. L[a] = 1, L[b] = 2, L[c] = 3, and L[d] = 4. Table 1
shows the state of lists S,R,R′, R′′ during the computation of the main loop of
Algorithm 1 for each height level, where S is the list of string identifiers, R is

Table 1. State of lists S,R,R′, R′′ for each height level and resulting sets Rreps of
non-overlapping subtree repeats

Height Step Process Repeats

Strings: S 2, 1, 3, 2, 4, 4, 2, 2, 3, 1, 1, 2, 3, 4, 2, 3, 4 R1 = {3, 7, 11, 13, 19, 25}
Remapping: R 1, 2, 3, 1, 4, 4, 1, 1, 3, 2, 2, 1, 3, 4, 1, 3, 4 R2 = {5, 15, 17}

0 Sorting: R′ 1, 2, 3, 1, 4, 4, 1, 1, 3, 2, 2, 1, 3, 4, 1, 3, 4 R3 = {6, 14, 20, 26}
Repeats: R′′ 1, 1, 1, 1, 1, 1︸ ︷︷ ︸

5

, 2, 2, 2︸ ︷︷ ︸
6

, 3, 3, 3, 3︸ ︷︷ ︸
7

, 4, 4, 4, 4︸ ︷︷ ︸
8

R4 = {8, 10, 23, 28}

Strings: S 3 6 7 5, 3 5 7 6, 2 5 7, 1 8, 2 5 7, 1 8
Remapping: R 1 2 3 4, 1 4 3 2, 5 4 3, 6 7, 5 4 3, 6 7 R7 = {22, 27}

1 Sorting: R′ 1 2 3 4, 1 2 3 4, 3 4 5, 6 7, 3 4 5, 6 7 R5 = {4, 12}
Repeats: R′′ 1 2 3 4, 1 2 3 4︸ ︷︷ ︸

9

, 3 4 5, 3 4 5︸ ︷︷ ︸
10

, 6 7, 6 7︸ ︷︷ ︸
11

R6 = {18, 24}

Strings: S 1 5 9 8, 1 8 5 9, 1 11 10 11
Remapping: R 1 2 3 4, 1 4 2 3, 1 5 6 5

2 Sorting: R′ 1 2 3 4, 1 2 3 4, 1 5 5 6
R8 = {2, 9}

Repeats: R′′ 1 2 3 4, 1 2 3 4︸ ︷︷ ︸
12

, 1 5 5 6︸ ︷︷ ︸
13

R9 = {21}

Strings: S 2 6 10 13, 1 12 12
Remapping: R 1 2 3 4, 5 6 6

3 Sorting: R′ 1 2 3 4, 5 6 6
R10 = {16}

Repeats: R′′ 1 2 3 4︸ ︷︷ ︸
14

, 5 6 6︸ ︷︷ ︸
15

R11 = {1}

278 T. Flouri et al.

the list of remapped identifiers, R′ is the list of individually sorted remapped
identifiers, and R′′ is the list R′ lexicographically sorted. Fig. 3 depicts tree T
with the respective identifiers for each node as assigned by Algorithm 1.

15 14

13

10

11

10

11

5

7

6

8

5

7

8
12

12

5

9

8

6

7

5

8

5

9

5

7

6

161

21

18

27

24

22

19

20

17

23

25

26

28

2

9

3

4

8

5

6

7

10

11

12

13

14

15

Fig. 3. Graphical representation of tree T with the associated identifier for each node
as assigned by Algorithm 1

3.2 The Backward/Overlapping Stage

Definition 1 (Sibling repeat). Given an unrooted tree T , two equal subtrees
of T̂ (T) whose roots have the same parent are called a sibling repeat.

Definition 2 (Child repeat). Given an unrooted tree T , two subtrees of T̂ (T)
whose root’s have the same identifiers and whose root’s respective parents are
roots of trees in the same sibling or child repeat, are called a child repeat.

Note that with these definitions we get that two trees with roots u and v respec-
tively, are child or sibling repeats of each other iff the unique path between nodes
u and v is symmetrical with respect to the node labels of the nodes traversed
on the path. Also note, that child repeats and sibling repeats can occur in the
same repeat class; it is merely a property shared between two (or more) trees.

The two following lemmas illustrate why it is necessary and sufficient to know
the identifiers from the forward stage to compute all overlapping subtree repeats.

Lemma 1 (Sufficient conditions). Let r be the parent of u and v, where u and
v are roots of a sibling repeat. Then the trees T̂ (u, u) and T̂ (v, v) are elements
of the same total repeat. The trees T̂ (r, u) and T̂ (r, v) are elements of the same
overlapping subtree repeat.

Let u and v be roots of a child repeat. Further let ru and rv be the parents
of u and v, respectively. Then the trees T̂ (u, u) and T̂ (v, v) are elements of the
same total repeat, and the trees T̂ (ru, u) and T̂ (rv, v) are elements of the same
overlapping subtree repeat.

Proof. Trivial, by inspection; see Fig. 2. ��

An Optimal Algorithm for Computing All Subtree Repeats in Trees 279

In Fig. 2, the trees T̂ (2, 1) and T̂ (9, 1) form a sibling repeat, thus the trees
T̂ (4, 2) and T̂ (12, 9) form a child repeat. From the sibling repeat, we get that
T̂ (2, 2) and T̂ (9, 9) are elements of a total repeat, while T̂ (1, 2) and T̂ (1, 9) are
within the same overlapping repeat. Analogously, for the child repeat we get the
trees T̂ (4, 4) and T̂ (12, 12) as total repeats and {(2, 4), (9, 12)} as an overlapping
repeat.

Note that Lemma 1 implies that all nodes of a subtree that is element of an
overlapping subtree repeat with repetition frequency |R| are roots of trees in
overlapping repeat classes of frequency at least |R|.

Lemma 2 (Necessary conditions). Any two trees that are elements of a to-
tal repeat must have been assigned the same identifiers at their respective roots
during the forward stage, and be rooted in roots of either sibling or child repeats.

Any two trees that are elements of an overlapping subtree repeat, but not of
a total repeat, must have been assigned the same identifiers at their respective
roots during the forward stage, and be rooted in parents of roots of either sibling
or child repeats.

Proof. We first look at the case of total repeats. Let T̂ (u, u) = T̂ (v, v). We now
consider the unique path p between u and v. Obviously, for equality among these
two trees to hold, the path must be symmetrical, which by recursion implies that
u and v are roots of either sibling or child repeats; see Fig. 4.

The case of other overlapping subtree repeatsworks just the same.Let T̂(ru, u) =
T̂ (rv, v) not be total, but overlapping subtree repeat. These trees are obtained by
removing a single edge from the tree: (ru, u) and (rv, v), respectively. Let p be the
path between u and v. Since the trees are elements of an overlapping subtree re-
peat, ru and rv must lie on this path. Additionally, since ru and rv are on the path
from u to v, h(v) = h(u), and any tree is acyclic, then ru and rv must be closer to
the central points than u and v, respectively. Since there is an edge connecting ru
with u and rv with v this means that ru and rv are parents of u and v, respectively.
Again, the path p is symmetrical with respect to the node labels of nodes along the
path, so u and v are roots of either sibling or child repeats. ��

Given these two lemmas, we can compute all overlapping subtree repeats by
checking for sibling and child repeats. This can be done by comparing the iden-
tifiers assigned to nodes in the forward stage. The actual procedure of computing
all overlapping subtree repeats is described in Algorithm 2. Algorithm 2 takes as
input an unrooted tree T that has been processed by Algorithm 1; i.e. each node
of tree T has already been assigned an identifier according to its non-overlapping
repeat class.

First, the algorithm considers the rooted version of T , that is T̂ (T). This is
done since many operations and definitions rely on T̂ (T). Next, we define a queue
Q, whose elements are sets of nodes. Initially, Q contains only the set containing
the root node of T̂ (T) (line 2). Processing Q is done by dequeuing a single set
of nodes at a time (lines 5-16). For a given set U of Q, the algorithm creates
a set I containing the identifiers of children of all the nodes in U . Then, the
algorithm remaps these identifiers to the range of [1, |I|] constructing a new set

280 T. Flouri et al.

u1

u2

v1

v2

uk vk

w

Fig. 4. T (v2, vk) = T (u2, uk) is an overlapping repeat iff T (uk, u2) = T (vk, v2) is a child
repeat, which is true iff identifier(uk) = identifier(vk), identifier(u2) = identifier(v2),
identifier(u1) = identifier(v1)

I ′ (line 12). Then, we construct a list C of tuples, such that each tuple contains
the remapped identifier of a child and the corresponding node. Therefore, we can
use bucket sort to sort these tuples by the remapped identifiers in time linear in
the cardinality of I.

We are now in a position to apply Lemmas 1 and 2. By Lemma 2, finding sib-
ling and child repeats is done by creating sets of nodes with equivalent identifiers
in C (line 18). This can be easily done due to the sorting part of the algorithm.
These sets are then enqueued in Q, and, by Lemma 1 and 2, all resulting sub-
tree repeats (overlapping and total) are, thus, created (lines 21-22). Hence we
immediately obtain the following result.

Theorem 3 (Correctness). Given an unrooted tree T with identifiers assigned
by Algorithm 1, Algorithm 2 correctly computes all overlapping subtree repeats,
including total repeats.

Algorithm 2 enqueues each node of T once. For each enqueued node, a constant
number of operations is performed. Therefore we get the following result.

Theorem 4 (Complexity). Algorithm 2 runs in time and space O(|T |).

4 Final Remarks

We presented a simple and time-optimal algorithm for computing all full subtree
repeats in unrooted unordered labeled trees; and showed that the running time
of our method is linear with respect to the size of the input tree.

The presented algorithm can easily be modified to operate on trees that do
not satisfy some or any of the aforementioned assumptions on the tree structure.

– Rooted trees : In a rooted tree T̂ , only non-overlapping repeats can occur.
Therefore it is sufficient to apply Algorithm 1 with the following modifica-
tions: first, we define T̂ (T̂) := T̂ ; second, the main for loop must iterate over
the height of T̂ , instead of depending on its diameter.

An Optimal Algorithm for Computing All Subtree Repeats in Trees 281

Algorithm 2. Backward-Stage

Input : Unrooted tree T = (V,E) labeled from Σ with identifiers assigned by
Algorithm 1

Output: Sets R′
reps of overlapping subtree repeats of T

1 � Initialize queue Q with the root node r of T̂ (T)
2 Enqueue(Q, {r})
3 � Compute overlapping subtree repeats
4 while Queue-Not-Empty(Q) do
5 U ← Dequeue(Q)
6 � Get the identifiers of the children of the nodes in U
7 Let cod(U) be the cumulated out degree of all the nodes in U
8 Let children(U) = {u1, u2, . . . , ucod(U)} be the children of the nodes in U
9 Let ids(children(U)) = {i1, i2, . . . , icod(U)} be the identifiers of

{u1, u2, . . . , ucod(U)}
10 I ← ids(children(U))
11 � Remap numbers [1, |T |+ |Σ|) to [1, |I |]
12 I ′ ← Remap(I)
13 Let I ′ = {i′1, i′2, . . . , i′cod(U)} be the remapped identifiers of

{u1, u2, . . . , ucod(U)}
14 Let C =< i′1, u1 >,< i′2, u2 >, . . . , < i′cod(U), ucod(U)) > be a list of tuples

15 � Bucket sort the remapped identifiers
16 Bucket sort the list C by i′1, i

′
2, . . . , i

′
cod(U).

17 � Extract the equivalence classes
18 foreach E = {v1, v2, . . . , vk}of nodes with equivalent identifiers in C do
19 Enqueue(Q,E)
20 for i ← 1 to k do
21 R′

reps ← R′
reps ∪ {(parent(vi), vi)}

22 R′
reps+1 ← R′

reps+1 ∪ {(vi, vi)}
23 reps ← reps+ 2

– Ordered trees : If for a node the order of its adjacent nodes is relevant, i.e.
the tree is ordered, the bucket sort procedures in Algorithms 1 and 2 must
be omitted. Additionally, sibling repeats must not be merged in line 19 of
Algorithm 2 but rather be enqueued separately.

– Unlabeled trees : Trivially, an unlabeled tree can be seen as a labeled tree
with a single uniform symbol assigned to all nodes.

Algorithm 1 can also be used to compute subtree repeats over a forest of
rooted unordered trees. The method is the same as for the case of a single tree.
The method reports all subtree repeats by clustering the identifiers of equal
subtrees from all trees in the forest into an equivalence class. The correctness of
this approach can be trivially obtained by connecting the roots of all trees in the
forest with a virtual root node, and applying the algorithm to this single tree.

282 T. Flouri et al.

References

1. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: principles, techniques,
and tools, 2nd edn. Addison-Wesley (2006)

2. Barstow, D.R., Shrobe, H.E., Sandewall, E.: Interactive Programming Environ-
ments. McGraw-Hill, Inc. (1984)

3. Chor, B., Tuller, T.: Finding a maximum likelihood tree is hard. Journal of
ACM 53(5), 722–744 (2006)

4. Christou, M., Crochemore, M., Flouri, T., Iliopoulos, C.S., Janoušek, J., Melichar,
B., Pissis, S.P.: Computing all subtree repeats in ordered trees. Information Pro-
cessing Letters 112(24), 958–962 (2012)

5. Christou, M., Crochemore, M., Flouri, T., Iliopoulos, C.S., Janoušek, J., Melichar,
B., Pissis, S.P.: Computing all subtree repeats in ordered ranked trees. In: Grossi,
R., Sebastiani, F., Silvestri, F. (eds.) SPIRE 2011. LNCS, vol. 7024, pp. 338–343.
Springer, Heidelberg (2011)

6. Felsenstein, J.: Evolutionary trees from DNA sequences: a maximum likelihood
approach. Journal of Molecular Evolution 17(6), 368–376 (1981)

7. Felsenstein, J.: Inferring phylogenies. Sinauer Associates (2003)
8. Ferdinand, C., Seidl, H., Wilhelm, R.: Tree automata for code selection. Acta

Inf. 31, 741–760 (1994)
9. Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W., Gascuel,

O.: New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies:
Assessing the Performance of PhyML 3.0. Systematic Biology 59(3), 307–321 (2010)

10. Harary, F.: Graph Theory. Addison Wesley Publishing Company (1994)
11. Hoffmann, C.M., O’Donnell, M.J.: Programming with equations. ACM Trans. Pro-

gram. Lang. Syst. 4, 83–112 (1982)
12. Hudak, P.: Conception, evolution, and application of functional programming lan-

guages. ACM Computing Surveys 21, 359–411 (1989)
13. Knuth, D.E., Bendix, P.B.: Simple word problems in universal algebra. In: Leech, J.

(ed.) Computational Problems in Abstract Algebra, pp. 263–297. Pergamon Press
(1970)

14. Mauri, G., Pavesi, G.: Algorithms for pattern matching and discovery in RNA
secondary structure. Theoretical Computer Science 335(1), 29–51 (2005)

15. Stamatakis, A.: RAxML-VI-HPC: maximum likelihood-based phylogenetic analy-
ses with thousands of taxa and mixed models. Bioinformatics 22(21), 2688–2690
(2006)

16. Yang, Z.: Computational Molecular Evolution. Oxford University Press, Oxford
(2006)

Approximation Bounds on the Number

of Mixedcast Rounds in Wireless Ad-Hoc
Networks�

Sang Hyuk Lee and Tomasz Radzik

Department of Informatics, King’s College London, United Kingdom
{sang hyuk.lee,tomasz.radzik}@kcl.ac.uk

Abstract. We consider the following type of Maximum Network Life-
time problems. For a wireless network N with given capacities of node
batteries, and a specification of a communication task which is to be
performed periodically in N , find a maximum-size feasible collection of
routing topologies for this task. Such a collection of routing topologies
defines the maximum number of rounds this task can be performed before
the first node in the network dies due to battery depletion. The types of
communication tasks which we consider are unicast, broadcast, converge-
cast and mixedcast. The mixedcast is the requirement that some fixed
number of tasks of the basic types (unicast, broadcast, convergecast) are
periodically performed. We show that one can compute in polynomial
time the number k of mixedcast rounds which is at least �kopt/5�, for
the single-topology variant of the problem, and at least �kopt/6�, for the
multiple-topology variant, improving the previous bounds.

Keywords: Network Lifetime, Wireless Networks, Approximation Al-
gorithm, Broadcast, Convergecast.

1 Introduction

Unicast, broadcast and convergecast are the fundamental communication tasks
in wireless ad-hoc networks. Unicast is one-to-one communication, where infor-
mation held in one node (the source) is transmitted to another node (the desti-
nation), possibly via intermediate nodes. Broadcast is one-to-all communication,
where information held in one node (the source) is transmitted to all other nodes.
Convergecast can be viewed as the opposite to broadcast: information held in
every node is transmitted to one specified node (the sink, or the destination).
Many network operations and services such as information dissemination and
data collection rely on these three communication tasks.

The nodes of a wireless ad-hoc network are often battery-powered, but are
intended to operate over a long period of time. Typical applications for such

� Research partially supported by the EPSRC grant EP/J006300/1 ”Random walks
on computer networks” and the 2012 SAMSUNG GRO project “Fast Low Cost
Methods to Learn Structure of Large Networks.”

T. Lecroq and L. Mouchard (Eds.): IWOCA 2013, LNCS 8288, pp. 283–296, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

284 S.H. Lee and T. Radzik

networks include environmental monitoring and military surveillance, where re-
placing or recharging the batteries may not be easy, or even not possible at all.
Therefore, an important design objective for communication algorithms is to
optimise the energy efficiency, so that the network lifetime is maximised.

A wide range of optimization problems modelling the energy efficiency in ad-
hoc wireless networks have been proposed. One general approach is to focus on
a single session, aiming to minimize the energy used to complete one specified
communication task [11, 23, 25]. The example of this approach is the Minimum
Energy Broadcast problem [2, 22, 23, 25]. The other general approach is to con-
sider multiple sessions with the aim of maximising the lifetime of the network,
which could mean, for example, maximising the number of times that specified
communication tasks can be repeated until the first node depletes its all energy
[5, 16–20]. This second approach is typically employed in continuous monitoring
applications, where periodic data gathering (convergecast) or reporting (uni-
cast) have to be performed. For such applications, the first, “greedy” approach
of optimizing only the current session may give sub-optimal solutions. This is
because the network lifetime does not solely depend on the energy spent while
performing a specified communication task, but also on the remaining battery
capacity of the individual nodes.

In this paper we follow the second, “global” approach to energy efficient com-
munication, and consider a class of Maximum Network Lifetime (MNL) problems
[5, 17, 18]. A problem of this class is given by a specification of a network (node-
to-node connections, communication costs, initial capacities of node batteries,
etc.) and a specification of a communication task (e.g., a broadcast from a given
node). This communication task is to be executed periodically, as many times
as possible. We refer to one execution of this task as one communication round.
The output is a collection of routing topologies such that each routing topology
defines one execution of the specified communication task (one round). The ob-
jective is to maximise the number of communication rounds, that is, to maximise
the network lifetime. The constraints are that every node must have sufficient
battery capacity to participate in all rounds.

The structure of a routing topology depends on the type of a communication
task. For broadcast and convergecast, a routing topology is a rooted directed
spanning tree, with the edges directed away from the root for broadcast, or
towards the root for convergecast. Such trees are referred to as broadcast trees
and convergecast trees. Each communication round is defined by one routing
tree. A routing topology for unicast is a simple path from the source to the
destination.

The MNL problems can be categorized according to various characteristics.
For example, both fractional and discrete MNL problems have been consid-
ered [5, 19]. In the fractional variant, a message is allowed to be divided into
smaller messages, which can be transmitted separately and possibly along differ-
ent routes. Whereas in the discrete variant, each message has to be sent in one
transmission. The discrete variant seems to reflect better the existing network
protocols, which often treat data packets as unsplitable units of transmission.

Mixedcast in Wireless Ad-Hoc Networks 285

Another categorization of MNL problems is related to the type of antenna
used for communication. In the omnidirectional model, each node has a 360-
degree coverage. This means that if a node u transmits a message with enough
power to reach another node at distance d, then all nodes which are located
within distance d in any direction are also able to receive the same message.
In the directional antenna model, each node has a limited angular coverage.
Only the nodes which are located within distance d in that direction are able
to receive the message. The special case of the directional antenna model is the
unidirectional antenna model, called also the single-recipient model [16–18, 20]:
each transmission is directed to a single node.

In this paper we consider the discrete variant of the MNL problems under
the unidirectional antenna model and with full aggregation of messages. This
last condition means that each node of a convergecast tree T waits until it
receives messages from all its children. Then it combines all messages and sends
them together as one message in one transmission to the parent. We focus on
mixedcast, which is a combination of unicast, broadcast and convergecast. The
mixedcast MNL problem was introduced in [17] as a problem of designing the
maximum number of communication rounds such that each round consists of τ
broadcasts and γ convergecasts, where τ and γ are given non-negative integers.
We will follow this definition, but note that our method can be also applied
to a generalized mixedcast, when all three types of communication tasks can be
combined, and more than one task of each type can be specified. For example,
we might require that each round consists of two broadcasts from each of the
source nodes r1, r2, . . . , rq and one convergecast to the destination node r0.

The MNL problems can be also categorised into single topology and multiple
topology problems [18], which are distinguished by different output requirements.
In the single topology variant, the same routing topology is used for the same
task in all communication rounds (for example, the same broadcast tree is used
in each round to broadcast from the source node r1). In the multiple topology
variant, the routing topologies can be different in different rounds.

We consider both single and multiple topology MNL problems. Thus the fol-
lowing eight problems (and their acronyms) are relevant in this paper: Single
Topology and Multiple Topology Unicast (STU and MTU), Broadcast (STB
and MTB), Convergecast (STC and MTC) and Mixedcast (STM and MTM).

1.1 Previous Work

The previous studies of the topic of maximising the lifetime of ad-hoc wire-
less networks have been considering mainly the omnidirectional communication
model [9, 12, 13, 18, 19, 24]. Kang and Poovendran [9] investigate the fractional
variants of the maximum network lifetime problem for broadcast communication,
proposing a polynomial time algorithm for the STB problem and some heuristics
for the MTB problem. Orda and Yassour [18] improve the time complexity of
the STB and STU problem, prove that the MTB problem is NP-hard, and pro-
pose additional MTB heuristics. Segal [20] further improves the running time of
the STB problem. Additional results related to the maximum network lifetime

286 S.H. Lee and T. Radzik

problem under broadcast communication can be found in [3, 14, 19]. Kalpakis
et al. [8] consider the fractional variants of the MTC problem with full aggre-
gation, giving a polynomial time algorithm, but the polynomial bound is of
high-degree. For the same problem, Standford and Tongngam [21] give (1− ε)-
approximation algorithm with a considerably faster running time. Wu et al. [24]
consider the convergecast problem with full aggregation and propose an online
approximation algorithm, which is based on Fürer and Raghavachari [6] algo-
rithm for the minimum-degree Steiner tree problem. Lin et al. [13] extend [24] to
a more general model with adjustable transmission power levels. Liang and Liu
[12] propose heuristics for the online maximum network problem for converge-
cast.

Orda and Yassour [18] were the first to consider the complexity of the MNL
problem in unidirectional communication model. Under this model, they show
that the fractional variant of the STB problem is NP-hard, and propose a poly-
nomial time algorithm for the fractional variant of the MTB problem.

We consider now the MNL problems in the unidirectional discrete model.
It is not difficult to show that in this model the STU and STC problems can
be solved in polynomial time. Segal [20] shows that we can actually get a linear
time algorithm for the STC problem (and a similar algorithm works for the STU
problem). Bodlaender et al. [1] show that the decision variant of the multiple
topology unicast (MTU) problem is strongly NP-complete and APX-hard. A
simple reduction from MTU to MTC implies that MTC is also strongly NP-
complete and APX-hard. Elkin et al. [5] show that the broadcast problems STB
andMTB are NP-hard. Actually, the special case of the MNL broadcast problems
which asks whether a given network allows one broadcast is already NP-complete
(a simple reduction from the Hamiltonian path problem).

Elkin et al. [5] give also an Ω(1/ logn)-approximation algorithm for the STB
problem, under the assumption that kopt (the maximal number of rounds) is ap-
propriately large. Nutov [16] shows a constant-ratio approximation algorithm for
the MTU problem, and Nutov and Segal [17] show constant-ratio approximation
algorithms for the STB, MTB and MTC problems, if kopt is appropriately large.
They also show that the MTC problem admits a 1/31-approximation polyno-
mial time algorithm. In [10], we further improve approximation ratios for the
STB, MTB and MTC problems (and a simple reduction from MTU to MTC im-
plies also an improved approximation ratio for the MTU problem). The previous
results for the discrete variants of the MNL problems under the unidirectional
model are summarized in Table 1. The values in the table are the lower bounds
on the computed number of rounds. If an algorithm computes at least �kopt/β�
rounds, then we refer to the value β as the approximation factor of this algorithm.

A simple reduction shows that the broadcast problems STB and MTB can
be viewed as special cases of the mixedcast problems STM and MTM, implying
that the mixedcast problems are NP-hard. Nutov and Segal [17] show constant-
ratio approximation algorithms for both STM and MTM problems. These ap-
proximation ratios can be improved by combining the mixedcast approxima-
tion framework from [17] with the approximation ratios for the broadcast and

Mixedcast in Wireless Ad-Hoc Networks 287

convergecast problems shown in [10]. The exact values of approximation ratios
for the mixedcast problems are given in Table 2.

1.2 Our Contribution

We study the discrete variant of the Maximum Network Lifetime problems for
unicast, broadcast, convergecast and mixedcast, under the unidirectional an-
tenna model. We consider both the single and multiple topology variants of
these problems. We improve the approximation factors for the mixedcast prob-
lems shown in, or implied by, [10, 16, 17] to the values given in the theorem
below (see also Table 2).

Theorem 1. For each of the single and multiple topology mixedcast problems
STM and MTM, there exists a polynomial time algorithm, which finds a solution
with k rounds, such that k ≥ �kopt/β�, where:

– β = 5, for the STM problem;
– β = 6, for the MTM problem.

The approximation algorithms for the mixedcast problems proposed in [17]
are based on approximation algorithms for the broadcast and convergecast prob-
lems. First the battery capacity at each node is split into two parts, in the same
fixed ratio, with one part designated to support broadcasts and the other con-
vergecasts. Then broadcast and convergecast trees are computed separately us-
ing approximation broadcast and convergecast algorithms. If βB and βC are the
approximation factors of the algorithms for the MNL broadcast and converge-
cast problems, respectively, then the resulting algorithm for the MNL mixedcast
problem has the approximation factor of βB + βC . For example, the approxima-
tion factor of 10 for the MTM problem in the column “[17] + [10]” in Table 2 is
the sum of the approximation factors 6 and 4 for the MTB and MTC problems.

We improve the βB + βC approximation factor for the mixedcast problems
by replacing the fixed split of the battery capacities with a computed adaptive
split. In our algorithm a node which turns out to be more important for broad-
casts than for convergecasts will have more battery capacity (possibly the whole
capacity) designated for broadcasts. The approximation factor of our mixedcast
algorithm is equal to max{βB, βC}. As mentioned earlier, our algorithm extends
to the generalized mixedcast problem.

2 Notation and Preliminaries

Graph Preliminaries. For a directed graph G = (V,E) and a node v ∈ V , let
δoutG (v) = δoutE (v) be the set of edges out-going from v, and let δinG (v) = δinE (v)
be the set of edges in-coming to v. For F ⊆ E, δoutF (v) is the set of edges in F
out-going from v. We define δinF (v) analogously. For S ⊆ V , let δoutG = δoutE (S)
be the set of edges outgoing from the set S, that is,

δoutG (S) = {(v, u) : v ∈ S and u ∈ V \S}.

288 S.H. Lee and T. Radzik

Table 1. Lower bounds on the number of rounds computed by the previous poly-time
approximation algorithms for the discrete MNL problems

unicast convergecast broadcast

Single topology kopt kopt �kopt/25�, [17]

�kopt/5�, [10]

Multiple Topology �kopt/16�, [16] �kopt/16�, [17] �kopt/36�, [17]

(1/31)kopt, [16] (1/31)kopt, [17]

�kopt/4�, [10] �kopt/4�, [10] �kopt/6�, [10]

Table 2. Previous results and new contributions for the mixedcast problems

[17] [17] + [10] this paper

Single Topology Mixedcast �kopt/36� �kopt/6� �kopt/5�
Multiple Topology Mixedcast �kopt/100� �kopt/10� �kopt/6�

A directed graph G is said to be k-edge-outconnected from a node r, if there
are k-edge-disjoint paths from r to each node in G. A directed graph G is said to
be k-edge-inconnected to a node r, if there are k-edge-disjoint paths from every
node to r. It is well known that there are k edge-disjoint paths from a node
r to each nodes in G (from each node in G to r), if and only if, δinG (S) ≥ k
(δoutG (S) ≥ k), for every subset ∅ 	= S ⊆ V \{r}.

An out-arborescence (broadcast tree) Tout is a directed spanning tree that has
a unique path from a root r to every node in V . An in-arborescence (convergecast
tree) Tin is a directed spanning tree that has a path from every node to the root r.
An arborescence refers to either out-arborescence or in-arborescence, depending
on the context.

Model. We consider a wireless ad-hoc network N consisting of n stationary
nodes. Each node v is equipped with a unidirectional antenna, which only permits
a single node to receive a transmitted message. Each node v has a finite amount
of battery capacity. Let R+ denote the set of non-negative real numbers.

Definition 1. A (static) wireless ad-hoc network N = (V,E,w,B) is a
weighted, directed graph (V,E), where V is a set of nodes with |V | = n,
E ⊆ V × V is a set of directed edges, w : E → R+ is an edge-weight func-
tion representing energy cost of transmissions, and B : V → R+ is a battery
capacity function.

In the network N , a directed edge (u, v) exists, if node u is able to directly
transmit a message to node v. The edge-weight w(u, v) of this edge denotes the
amount of energy consumed to transmit one message from node u to node v. The
edge weights are part of the input and we do not assume that they are related

Mixedcast in Wireless Ad-Hoc Networks 289

to distances between the nodes (the network is not embedded in any geometric
space). The battery capacity B(v) denotes the current battery power of node v.
We allow the initial battery capacities to be different at different nodes.

In our model, we take into account only the energy consumption of trans-
missions, assuming that in wireless networks the radio frequency transmission
dominates the energy usage. In particular, we do not consider energy consump-
tion for receiving and processing data. We assume that all nodes share the same
frequency band and the MAC layer is based on a “collision-free” protocol, so
transmissions do not interfere with each other. For the convergecast problem,
we additionally assume that the messages from different nodes can always be ag-
gregated into one message. and then aggregate them into one message and send
The properties of our model imply that it suffices to consider trees as routing
topologies for broadcast and convergecast, and paths for unicast.

Definitions of the Problems. The Maximum Network Lifetime (MNL) prob-
lem for unicast, broadcast and convergecast is defined as follows. The input to
the problems is a network N = (V,E,w,B), and a node r ∈ V (for broadcast
and convergecast) or two nodes r, s ∈ V (for unicast). The output is a collection
of routing topologies R = {R1, ..., Rk} for the given communication task, which
satisfy the following energy constraints.

k∑
i=1

w(δoutRi
(v)) =

k∑
i=1

∑
e∈δout

Ri
(v)

w(e) ≤ B(v), for all v ∈ V. (1)

The left-hand side of (1) is the total energy used by node v over k communication
rounds, when the ith round is done according to the routing topology Ri. The
objective of the problem is to maximise k. In the single topology variant, the
same routing topology R is employed for all k rounds, i.e. Ri = R for all i ≤ k.
In this case, the constraints (1) simplify to the following constraints.

k ·
∑

e∈δout
R (v)

w(e) ≤ B(v), for all v ∈ V. (2)

The MNL mixedcast problem is defined in the following way. We are given
two positive integer parameters τ and γ, and the objective is to find the max-
imum integer k such that τk broadcast trees and γk convergecast trees can be
performed whilst the energy constraints are satisfied. More formally, the input
to this problem is a network N = (V,E,w,B), two nodes rb, rc ∈ V , and two in-
tegers τ, γ ≥ 1. The output is a maximum integer k, a collection of τk broadcast
trees Tout = {T ′1, ..., T ′τk} rooted at node rb and a collection of γk convergecast
trees Tin = {T ′′1 , ..., T ′′γk} rooted at node rc, that satisfy the following energy
constraints.

τk∑
i=1

∑
e∈δout

T ′
i
(v)

w(e) +

γk∑
i=1

∑
e∈δout

T ′′
i
(v)

w(e) ≤ B(v), for all v ∈ V. (3)

290 S.H. Lee and T. Radzik

In the single topology variant, we need to find one convergecast tree Tin and one
broadcast tree Tout that are feasible for γk convergecast rounds and τk broadcast
rounds. Hence, the energy constraints (3) simplify to:

τk ·
∑

e∈δout
Tout

(v)

w(e) + γk ·
∑

e∈δout
Tin

(v)

w(e) ≤ B(v), for all v ∈ V. (4)

3 Decision Versions of the MNL Problems

Nutov and Segal [17] proposed approximation algorithms for the MNL problems
which first find a good value of k using binary search. When a good value of k is
identified, a full solution (a collection of routing topologies) is computed using
Nutov’s bi-criteria algorithm for a certain type of network design problems [15].
We considered the same approach in [10], simplifying the analysis and deriving
better approximation factors for the STB, MTB and MTC problems.

We continue discussion focusing on the multiple topology broadcast, converge-
cast and mixedcast problems. The single topology case is similar, with simpler
details. The decision versions MTB(k) and MTC(k) of the multiple topology
broadcast and convergecast problems are to compute feasible solutions (collec-
tions of trees) for the given number of rounds k. Some help in solving this decision
problems comes from Edmonds’ theorem [4] stated below.

Theorem 2. [4] Let H = (V,E) be a directed graph with a specified root
r ∈ V . The graph H contains k edge-disjoint spanning out-arborescences (in-
arborescences) rooted at r, if and only if, H is k-edge-outconnected from r (k-
edge-inconnected to r). Moreover, there is a polynomial time algorithm that com-
putes such k disjoint arborescences, if they exist.

In the context of the MTB(k) and MTC(k) problems, Edmonds’ theorem is
used in the following way. Since the routing topologies used in different rounds
do not have to be edge-disjoint, we consider a multigraph Gk instead of the input
graph G. The multigraph Gk = (V,Ek) is obtained from G by replacing each
edge with its k copies. If we are solving MTB(k), then we first find a k-edge-
outconnected subgraph H of Gk which satisfies energy constraints (the way to
do this is discussed later). Then we apply Edmonds’ theorem to H to retrieve k
out-arborescences from H . These will be k broadcast trees in G, which satisfy
the energy constraints.

As mentioned in Section 2, a graph H is k-edge-outconnected (contains k
edge-disjoint paths from node r to each node), if and only if, δinH (S) ≥ k for
every subset ∅ 	= S ⊆ V \{r}. Therefore, the MTB(k) problem reduces (via
Edmonds’ theorem) to the following integer program PMTB

IP (k,B) with variables
x(e), e ∈ E, where E here is the edge set Ek of the multigraph Gk:

x(δinE (S)) ≥ k, for all ∅ 	= S ⊆ V \{r}, (C)∑
e∈δout

E (v)

x(e)w(e) ≤ B(v), for all v ∈ V, (W)

x(e) ∈ {0, 1}, for all e ∈ E. (B)

Mixedcast in Wireless Ad-Hoc Networks 291

In the above formulation, for a subset of edges F ⊆ E, x(F) =
∑

e∈F x(e). The
MTC(k) problem leads to a similar integer program, but with the cut constraints
(C) replaced with

x(δoutE (S)) ≥ k, for all ∅ 	= S ⊆ V \{r}.

We refer to the resulting integer program as PMTC
IP (k,B).

Nutov [15] showed a polynomial-time approximation algorithm for a type of
network design problems, which includes these two integer programs. This is
summarised in the theorem below.

Theorem 3. [15] For each integer program PMTB
IP (k,B) and PMTC

IP (k,B),
there exists a polynomial time algorithm, which computes one of the following
two outcomes.

1. The algorithm correctly determines that the corresponding LP polytope (the
polytope of the LP relaxation) is empty.

2. If the LP-polytope is not empty, then the algorithm finds a k-edge-
outconnected spanning subgraph H (for the MTB IP problem), or a k-edge-
inconnected spanning subgraph H (for the MTC IP problem), which violates
the energy constraints (1) by at most a factor of β, that is,∑

e∈δout
H (v)

w(e) ≤ β · B(v), for all v ∈ V, (5)

where β = 6, for the MTB IP problem, and β = 4, for the MTC IP problem.

4 Mixedcast Problems

In this section, we discuss the mixedcast problems. Nutov and Segal [17] proposed
solving the mixedcast problem by splitting the battery capacity at each node into
two parts in proportion βB : βC , where βB and βC are the approximation factors
of algorithms for the broadcast and convergecast problems, respectively. One
part is used for the computation of broadcast trees and the other for convergecast
trees. The approximation factor of the resulting algorithm is βB + βC . This
approach, together with the approximation factors βB and βC derived in [10]
(see Table 1) gives the following approximation bounds.

Lemma 1. For the mixedcast problems, we can find in polynomial time solutions
with values k ≥ �kopt/βM�, where βM = 6, for the STM problem, and βM = 10,
for the MTM problem.

Proof. For the sake of simplicity, we give a proof only for the multiple topology
mixedcast (MTM) problem, but note that the single topology (STM) problem
can also be proved in a similar fashion.

Let βB and βC denote the values of β for the multiple topology broadcast and
convergecast problems, that is, βB = 6 and βC = 4. Let BM denote the node’s

292 S.H. Lee and T. Radzik

battery capacity function of the MTM problem and let k∗ denote our solution
for the mixedcast problem. The algorithm works as follows. We apply the MTB
algorithm [10] for the root node rb and the battery capacity function

BB =
βB

βB + βC
BM .

As a result, we compute a collection of broadcast trees TB = {T1, T2, ..., Tk∗
B
}

rooted at node rb, which use at most BB(v) amount of energy at each node v.
Similarly, we apply the MTC algorithm [10] for the root node rc and the battery
capacity function

BC =
βC

βB + βC
BM .

We get a collection of convergecast trees TC = {T1, T2, ..., Tk∗
C
} rooted at node

rc, which use at most BC(v) amount of energy at each node v. Hence, the total
energy used by the k∗B broadcast trees and k∗C convergecast trees is bounded by
the initial battery capacity BM , i.e, all these trees together sastify the energy
constraints (1). Our solution to the mixedcast problem MTM is

k∗ = min

{⌊
k∗B
τ

⌋
,

⌊
k∗C
γ

⌋}
,

and the first T1, T2, ..., Tτk∗ broadcast trees from TB and the first T1, T2, ..., Tγk∗

convergecast trees from TC .
Now we show that k∗ ≥ �kopt/βM�, where kopt is the optimal value of k for

the multiple topology mixedcast (MTM) problem. Note that βM = βB+βC . We
note that k is feasible for the MTB (MTC) problem, if and only if, the integer
program PMTB

IP (k,B)
(
PMTC
IP (k,B)

)
is not empty.

The algorithm for the multiple topology mixedcast problem always returns
a feasible solution: either k∗ = 0, or k∗ > 0, and a collection of broadcast
trees and convergecast trees that are feasible for k∗ rounds. This implies that
if kopt = 0, then k∗ = 0. Assume now that kopt ≥ 1. This implies that τkopt
broadcast and γkopt convergecast rounds can be performed within the battery
capacity function BM . This implies that the integer programs PMTC

IP (γkopt, BM)
and PMTB

IP (τkopt, BM) are not empty.
Lemma 2 (given below) implies that the following polytope

PMTB
LP

(⌊
τ · kopt
βB + βC

⌋
,

BM

βB + βC

)

is not empty, so,

k∗B ≥
⌊

τ · kopt
βB + βC

⌋
≥ τ

⌊
kopt

βB + βC

⌋
.

Similarly, the following polytope

PMTC
LP

(⌊
γ · kopt
βB + βC

⌋
,

BM

βB + βC

)
,

Mixedcast in Wireless Ad-Hoc Networks 293

is not empty, so,

k∗C ≥
⌊

γ · kopt
βB + βC

⌋
≥ γ

⌊
kopt

βB + βC

⌋
.

Hence,

k∗ = min

{⌊
k∗C
γ

⌋
,

⌊
k∗B
τ

⌋}
≥

⌊
kopt

βB + βC

⌋
=

⌊
kopt
βM

⌋
.

The following lemma is intuitive, though the formal proof (given in [10]) has
to deal with the technicality that for different values of k, polytopes PX

LP (k,B)
are defined on different (multi) graphs Gk.

Lemma 2. If the polytope PMTB
LP (k,B) is not empty, then the polytope

PMTB
LP (�k/β�, B/β) is also not empty, for any β ≥ 1. The analogous property

holds for the PMTC
LP and PSTB

LP polytopes.

To prove the better approximation factors given in Theorem 1, we need a new
approach. We replace the fixed split of the battery capacities with a computed,
more efficient partitioning, which does not have to be the same at all nodes. We
discuss here only the multiple topology problem MTM.

Theorem 1. (The MTM problem) For multiple topology mixedcast problem
MTM, there exists a polynomial time algorithm, which finds a solution with k
rounds, such that k ≥ �kopt/β�, where β = 6.

Proof. Let βM = max{βB, βC}. Let PMTM
IP (k,B) be the following integer pro-

gram, with variables x(e) and y(e), e ∈ E, where E is the set Ek of edges in the
multigraph Gk, and k = τk + γk.

x(δinE (S)) ≥ τk, for all ∅ 	= S ⊆ V \{r},
y(δoutE (S)) ≥ γk, for all ∅ 	= S ⊆ V \{r},∑

e∈δout
E (v)

(x(e) + y(e))w(e) ≤ B(v), for all v ∈ V,

x(e), y(e) ∈ {0, 1}, for all e ∈ E.

The discussion in Section 3 implies that there is a k-round feasible solution
for MTM, if and only if, this integer program is feasible. We denote the LP-
relaxation of the above IP by PMTM

LP (k,B). Let k′ be the largest integer k such
that the polytope PMTM

LP (k,B/βM) is not empty.
The algorithm for MTM first finds k′ using binary search, solving in each

iteration a linear relaxation of the current integer program. If k′ = 0, we output
the empty collections of convergecast and broadcast trees. If k′ ≥ 1, then the
algorithm also finds a feasible solution 〈x(e)〉e∈E and 〈y(e)〉e∈E for the polytope
PMTM
LP (k′, B/βM). Let Bx(v) (resp., By(v)) be the fraction of the battery capacity

B(v)/βM which is used by the broadcast part 〈x(e)〉e∈E of the solution (resp.,
by the convergecast part 〈y(e)〉e∈E of the solution). That is,

Bx(v) =
∑

e∈δout
E (v)

x(e)w(e), By(v) =
∑

e∈δout
E (v)

y(e)w(e).

294 S.H. Lee and T. Radzik

Now we apply the approximation algorithms of Theorem 3 to (nonempty)
sets PMTB

IP (τk′, Bx) and PMTC
IP (γk′, By). This way we compute a collection of

broadcast trees TB = {T ′1, .., T ′τk′} rooted at node rb, which use at most βBBx(v)
energy at each node v, and a collection of convergecast trees TC = {T ′′1 , .., T ′′γk′}
rooted at node rc, which use at most βCBy(v) energy at each node v. The output
of our MTM algorithm is (k′, TB, TC). This output is feasible, because the energy
usage at each node v is at most

βBBx(v) + βCBy(v) ≤ βM (Bx(v) + By(v)) ≤ βM (B(v)/βM) = B(v).

We now show that
k′ ≥ �kopt/βM�. (6)

If kopt = 0, then PMTM
LP (k,B/βM) is empty for each k ≥ 1, so k′ = 0 and (6)

holds. Assume now that kopt ≥ 1. The set PMTM
IP (kopt, B) is not empty, so the

LP polytope PMTM
LP (kopt, B) is not empty. Lemma 3 (below) implies that the

LP polytope PMTM
LP (�kopt/βM�, B/βM) is not empty, and k′ has been computed

as the largest integer k such that PMTM
LP (k,B/βM) is not empty, so (6) holds

also in this case.

The following lemma is analogous to Lemma 2.

Lemma 3. If the polytope PMTM
LP (k,B) is not empty, then the polytope

PMTM
LP (�k/β�, B/β) is also not empty, for any β ≥ 1. The analogous property

holds for the PSTM
LP polytopes.

It should be clear that our approach can be extended to more general mixed-
cast problems mentioned in Section 1. If, for example, we require that con-
vergecast, broadcast and unicast tasks are periodically performed in proportion
γ : τ : η, then we extend the integer program PMTM

IP (k,B) by adding variables
z(e), e ∈ E, and the cut constraints appropriate for the unicast problem. The
approximation factor of the obtained algorithm is equal to max{βB, βC , βU},
which currently is equal to 6 (see Table 1). The mixedcast can also contain a
number of different communication tasks of the same type. Since in our model we
may have at most n different broadcast tasks, n different convergecast tasks and
n2 different unicast tasks, then also in this general case we have a polynomial
time algorithm with the same approximation factor max{βB, βC , βU}.

We conclude with some remarks regarding the running times of the MNL
algorithms discussed in this paper. We have described these algorithms in terms
of the multigraph Gk, which may have exponential size, because the values of k
may be exponential. To get polynomial running times, the multigraph Gk has
to be replaced with an appropriate capacitated graph G, and the capacitated
versions of Edmonds’ and Nutov’s theorems have to be used. More specifically,
for example in the integer program PMTM

IP (k,B) used in the proof of Theorem
1, we would have one integral variable x(e) for each edge e of the original graph
G, with the bounds 0 ≤ x(e) ≤ k. The capactitated version of Nutov’s algorithm
gives a directed capacitated spanning subgraph, in which for every node v there
is an integral flow of value k from the root node r to v (if the corresponding

Mixedcast in Wireless Ad-Hoc Networks 295

polytope PMTM
LP (k,B) is not empty). Now Edmonds’ theorem for uncapaciated

graphs discussed in Section 3 cannot be applied. Instead, Gabow’s algorithm [7]
can be used to extract k trees from a directed capacitated graph in polynomial
time.

Another technical issue is that the MNL algorithms have to solve linear pro-
grams, which have polynomial number of variables, but exponential number of
constraints. Those LP’s have, however, polynomial-time separation oracles, so
they can be solved in polynomial times by the ellipsoid method. For exam-
ple, for the current values (x(e), y(e))e∈E for PMTM

LP (k,B/βM), finding a set
∅ 	= S ⊆ V \ {r} such that x(δoutE (S)) < γk (a violated cut constraint) can be
done in polynomial time by computing minimum cuts (Pv, Qv) in G separating
the root node rc ∈ Pv from a node v ∈ Qv, for each node v ∈ V .

5 Conclusions

We considered the single and multiple topology discrete Maximum Network Life-
time (MNL) problems for unicast, broadcast, convergecast and mixedcast, under
the unidirectional model. We have shown improved approximation algorithms
for the problem of computing the maximum number of rounds in the mixedcast
problems. Our approach also extends to more general mixedcast problems than
considered previously.

We conclude with suggestions for some possible further research. One direction
is to investigate whether the current approximation factors of MNL algorithms
can be further improved. The approach which we follow is an iterative process,
where in each iteration the LP-relaxation of an appropriate IP problem has to
be solved, giving good (polynomial) theoretical running times, but high prac-
tical computational costs for larger networks. Hence, development of practical
algorithms or heuristics for the MNL problems is worth further investigations.
Another direction is to solve these problems by distributed algorithms. In this
study we have considered only a centralized approach, in which a prior knowledge
of the full network topology is assumed.

References

1. Bodlaender, H.L., Tan, R.B., van Dijk, T.C., van Leeuwen, J.: Integer maximum
flow in wireless sensor networks with energy constraint. In: Gudmundsson, J. (ed.)
SWAT 2008. LNCS, vol. 5124, pp. 102–113. Springer, Heidelberg (2008)

2. Clementi, A.E.F., Crescenzi, P., Penna, P., Rossi, G., Vocca, P.: On the complexity
of computing minimum energy consumption broadcast subgraphs. In: Ferreira, A.,
Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 121–131. Springer, Heidelberg
(2001)

3. Deng, G., Gupta, S.K.S.: maximising broadcast tree lifetime in wireless ad hoc
networks. In: GLOBECOM (2006)

4. Edmonds, J.: Edge-disjoint branchings. In: Rustin, B. (ed.) Combinatorial Algo-
rithms, pp. 91–96. Academic Press (1973)

296 S.H. Lee and T. Radzik

5. Elkin, M., Lando, Y., Nutov, Z., Segal, M., Shpungin, H.: Novel algorithms for the
network lifetime problem in wireless settings. Wireless Networks 17(2), 397–410
(2011)

6. Fürer, M., Raghavachari, B.: Approximating the minimum-degree steiner tree to
within one of optimal. J. Algorithms 17(3), 409–423 (1994)

7. Gabow, H.N., Manu, K.S.: Packing algorithms for arborescences (and spanning
trees) in capacitated graphs. Math. Program. 82, 83–109 (1998)

8. Kalpakis, K., Dasgupta, K., Namjoshi, P.: Efficient algorithms for maximum life-
time data gathering and aggregation in wireless sensor networks. Computer Net-
works 42(6), 697–716 (2003)

9. Kang, I., Poovendran, R.: maximising network lifetime of broadcasting over wireless
stationary ad hoc networks. MONET 10(6), 879–896 (2005)

10. Lee, S.-H., Radzik, T.: Improved Approximation Bounds for Maximum Lifetime
Problems in Wireless Ad-Hoc Network. In: Li, X.-Y., Papavassiliou, S., Ruehrup,
S. (eds.) ADHOC-NOW 2012. LNCS, vol. 7363, pp. 14–27. Springer, Heidelberg
(2012)

11. Liang, W.: Constructing minimum-energy broadcast trees in wireless ad hoc net-
works. In: MobiHoc, pp. 112–122 (2002)

12. Liang, W., Liu, Y.: Online data gathering for maximising network lifetime in sensor
networks. IEEE Trans. Mob. Comput. 6(1), 2–11 (2007)

13. Lin, H.C., Li, F.J., Wang, K.Y.: Constructing maximum-lifetime data gathering
trees in sensor networks with data aggregation. In: ICC, pp. 1–6 (2010)

14. Maric, I., Yates, R.D.: Cooperative multicast for maximum network lifetime. IEEE
Journal on Selected Areas in Communications 23(1), 127–135 (2005)

15. Nutov, Z.: Approximating directed weighted-degree constrained networks. In: Goel,
A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds.) APPROX and RANDOM 2008.
LNCS, vol. 5171, pp. 219–232. Springer, Heidelberg (2008)

16. Nutov, Z.: Approximating maximum integral flows in wireless sensor networks via
weighted-degree constrained k-flows. In: DIALM-POMC, pp. 29–34 (2008)

17. Nutov, Z., Segal, M.: Improved approximation algorithms for maximum lifetime
problems in wireless networks. In: Dolev, S. (ed.) ALGOSENSORS 2009. LNCS,
vol. 5804, pp. 41–51. Springer, Heidelberg (2009)

18. Orda, A., Yassour, B.A.: Maximum-lifetime routing algorithms for networks with
omnidirectional and directional antennas. In: MobiHoc, pp. 426–437 (2005)

19. Park, J., Sahni, S.: Maximum lifetime broadcasting in wireless networks. In:
AICCSA, p. 8. IEEE Computer Society (2005)

20. Segal, M.: Fast algorithm for multicast and data gathering in wireless networks.
Inf. Process. Lett. 107(1), 29–33 (2008)

21. Stanford, J., Tongngam, S.: Approximation algorithm for maximum lifetime in
wireless sensor networks with data aggregation. In: SNPD, pp. 273–277 (2006)

22. Wan, P.J., Li, X.Y., Frieder, O.: Minimum energy cost broadcasting in wireless
networks. In: Encyclopedia of Algorithms (2008)

23. Wieselthier, J.E., Nguyen, G.D., Ephremides, A.: On the construction of energy-
efficient broadcast and multicast trees in wireless networks. In: INFOCOM, pp.
585–594 (2000)

24. Wu, Y., Fahmy, S., Shroff, N.B.: On the construction of a maximum-lifetime data
gathering tree in sensor networks: Np-completeness and approximation algorithm.
In: INFOCOM, pp. 356–360 (2008)

25. Zagalj, M., Hubaux, J.P., Enz, C.C.: Minimum-energy broadcast in all-wireless
networks: Np-completeness and distribution issues. In: MOBICOM, pp. 172–182
(2002)

Maximum Spectral Radius of Graphs

with Connectivity at Most k and Minimum
Degree at Least δ

Hongliang Lu1 and Yuqing Lin2

1 Department of Mathematics
Xi’an Jiaotong University, Xi’an 710049, P.R. China

2 School of Electrical Engineering and Computer Science
The University of Newcastle, Newcastle, Australia

Abstract. Li, Shiu, Chan and Chang [On the spectral radius of graphs
with connectivity at most k, J. Math. Chem., 46 (2009), 340-346] studied
the spectral radius of graphs of order n with κ(G) ≤ k and showed that
among those graphs, the maximum spectral radius is obtained uniquely
at Kn

k , which is the graph obtained by joining k edges from k vertices of
Kn−1 to an isolated vertex. In this paper, we study the spectral radius
of graphs of order n with κ(G) ≤ k and minimum degree δ(G) ≥ k. We
show that among those graphs, the maximum spectral radius is obtained
uniquely at Kk + (Kδ−k+1 ∪Kn−δ−1).

Keywords: connectivity, spectral radius.

1 Introduction

Let G be a simple graph of order n with vertex set V (G) = {v1, v2, . . . , vn}. We
denote by δ(G) the minimum degree of vertices of G. We use NG(v) to denote
the set of neighbors of vertex v, dG(v) = |NG(v)| to denote the degree of vertex
v of graph G.Let x and y be two nonadjacent vertices of G. G+ xy is obtained
from G by adding an edge xy. Let G1 = (V1, E1) and G2 = (V2, E2) be two
graphs. The union G1 ∪ G2 is defined to be G1 ∪ G2 = (V1 ∪ V2, E1 ∪ E2). The
join G1 +G2 is obtained from G1 ∪G2 by adding all the edges joining a vertex
of G1 to a vertex of G2.

The adjacency matrix of the graph G is defined to be a matrix A(G) = [aij]
of order n, where aij = 1 if vi is adjacent to vj , and aij = 0 otherwise. Since
A(G) is symmetric and real, the eigenvalues of A(G), also referred to as the
eigenvalues of G, can be arranged as: λn(G) ≤ λn−1(G) ≤ · · · ≤ λ1(G). The
largest eigenvalue λ1(G) is called spectral radius and also denoted by ρ(G). Let
π = (V1, . . . , Vr) be a partition of V (G). The partition is equitable if the number
of neighbors in Vj of a vertex u in Vi is a constant bij , independent of u. The
entries of the adjacency matrix of this quotient are given by

A(G/π)ij = bij .

T. Lecroq and L. Mouchard (Eds.): IWOCA 2013, LNCS 8288, pp. 297–302, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

298 H. Lu and Y. Lin

For k ≥ 1, we say that a graph G is k-connected if either G is a complete graph
Kk+1, or else it has at least k+2 vertices and contains no (k−1)-vertex cut. The
connectivity κ(G) of G is the maximum value of k for which G is k-connected.

When G is connected, A(G) is irreducible and by the Perron-Frobenius Theo-
rem, the spectral radius is simple and there is an unique positive unit eigenvector.
We shall refer to such an eigenvector as the Perron vector of G. For more details
on the Perron-Frobenius Theorem for nonnegative matrices, see Chapter 8 of [3].

The eigenvalues of a graph are related to many of its properties and key
parameters. The most studied eigenvalues have been the spectral radius ρ(G) (in
connection with the chromatic number, the independence number and the clique
number of the graph [10, 12]). Brualdi and Solheid [2] proposed the following
problem concerning spectral radius:

Given a set of graphs C , find an upper bound for the spectral radius of graphs
in C and characterize the graphs in which the maximal spectral radius is attained.

If C is the set of all connected graphs on n vertices with k cut vertices, Berman
and Zhang [1] solved this problem. Liu et al. [9] studied this problem for C to
be the set of all graphs on n vertices with k cut edges. Wu et al. [13] studied
this problem for C to be the set of trees on n vertices with k pendent vertices.
Feng, Yu and Zhang [4] studied this problem for C to be the set of graphs on n
vertices with matching number β.

Li, Shiu, Chan and Chang studied this question for graphs with n vertices
and connectivity at most k, and obtained the following result.

Theorem 1 (Li, Shiu, Chan and Chang [11]). Among all the graphs with
connectivity at most k, the maximum spectral radius is obtained uniquely at
Kk + (K1 ∪Kn−k−1).

Let Gk,δ,n = Kk +(Kδ−k+1 ∪Kn−δ−1). We denote by Vk,δ,n the set of graphs
of order n with κ(G) ≤ k ≤ n − 1 and δ(G) ≥ k. Clearly, Vk,δ+1,n ⊆ Vk,δ,n.
In this paper, we investigate the problem stated above for the graphs in Vk,δ,n.
We show that among all those graphs, the maximal spectral radius is obtained
uniquely at Gk,δ,n.

In our arguments, we need the following technical lemmas.

Theorem 2 (Li and Feng [8]). Let G be a connected graph, and G′ be a proper
subgraph of G. Then ρ(G′) < ρ(G).

Theorem 3 (Haemers, [5]). Let G be a graph and π = (V1, . . . , Vr) be a
partition of V (G) with quotient matrix Q = A(G/π). Then

λ1(G) ≥ λ1(Q), (1)

with equality if the partition is equitable.

2 Main Results

Theorem 4. Let G be a connected graph. Let {v1, . . . , vk} ⊆ NG(v) and {vk+1,
. . . , uk+l} ⊆ V (G) − NG(v). Suppose x = (x1, x2, . . . , xn)

T is the Perron vector

Maximum Spectral Radius of Graphs with Connectivity 299

of G, where xi corresponds to the vertex vi (1 ≤ i ≤ n). Let G∗ be the graph
obtained from G by deleting the edges vvi (1 ≤ i ≤ k) and adding the edges

vvi (k+1 ≤ i ≤ k+l). If
∑k

i=1 xi ≤
∑k+l

i=k+1 xi, then ρ(G) ≤ ρ(G∗). Furthermore,

if
∑k

i=1 xi <
∑k+l

i=k+1 xi, then ρ(G) < ρ(G∗).

Proof. We have

xT (A(G∗)−A(G))x = −xv

k∑
i=1

xi + xv(

k+l∑
j=k+1

xj −
k∑

i=1

xi) + xv

k+l∑
j=k+1

xj

= 2xv(
k+l∑

j=k+1

xj −
k∑

i=1

xi) ≥ 0.

So we have

ρ(G∗) = max
‖y‖=1

yTA(G∗)y ≥ xTA(G∗)x ≥ xTA(G)x = ρ(G). (2)

If
∑k

i=k xi <
∑k+l

i=k+1 xi, then we have

ρ(G∗) = max
‖y‖=1

yTA(G∗)y ≥ xTA(G∗)x > xTA(G)x = ρ(G). (3)

Hence ρ(G∗) > ρ(G). This completes the proof. ��
With above proof, we obtain the following result.

Corollary 5 Suppose G∗ in Theorem 4 is connected, and y = (y1, y2, . . . , yn)
T is

the Perron vector of G∗, then
∑k+l

i=k+1 yi ≥
∑k

i=1 yi. Furthermore, if
∑k+l

i=k+1 xi >∑k
i=1 xi, then

∑k+l
i=k+1 yi >

∑k
i=1 yi.

Proof. Suppose that
∑k+l

i=k+1 yi <
∑k

i=1 yi, by Theorem 4, we have ρ(G∗) <
ρ(G), a contradiction.

Since
∑k+l

i=k+1 xi >
∑k

i=1 xi, by Theorem 4, we have ρ(G∗) > ρ(G). If
∑k+l

i=k+1

yi ≤
∑k

i=1 yi, by Theorem 4 then we have ρ(G∗) ≤ ρ(G), a contradiction. This
completes the proof. ��

Lemma 1. Let G be a graph. If the minimum degree of G is no less than n+k−1
2 ,

then G is (k + 1)-connected.

Theorem 6. Let n, k and δ be three positive integers. Among all the connected
graphs of order n with connectivity at most k and minimum degree δ, the maximal
spectral radius is obtained uniquely at Gk,δ,n.

Proof. By Lemma 1, we have 2δ ≤ n+k+2. If n = k+1, then Kk+1 is an unique
k-connected graph with order n. So we can assume that n ≥ k+2. Now we have
to prove that for every G ∈ Vk,δ,n, then ρ(G) ≤ ρ(Gk,δ,n), where the equality
holds if and only if G = Gk,δ,n. Let G∗ ∈ Vk,δ,n with V (G∗) = {v1, . . . , vn} be

300 H. Lu and Y. Lin

the graph with maximum spectral radius in Vk,δ,n, that is, ρ(G) ≤ ρ(G∗) for all
G ∈ Vk,δ,n.

Denote the Perron vector by x = (x1, . . . , xn), where xi corresponding to vi
for i = 1, . . . , n. Since G∗ ∈ Vk,δ,n and it is not a complete graph, then G∗ has a
k-vertex cut, say S = {v1, . . . , vk}. In the following, we will prove the following
three claims.

Claim 1. G∗ − S contains exactly two components.

Suppose contrary that G∗−S contains three components G1, G2 and G3. Let
u ∈ G1 and v ∈ G2. It is obvious that S is also an k-vertex cut of G∗ + uv; i.e.
G∗ + uv ∈ Vk,δ,n. By Theorem 2, we have ρ(G∗) < ρ(G∗ + uv). This contradicts
the definition of G∗.

Therefore, G∗ − S has exactly two components G1 and G2.

Claim 2. Each subgraph of G∗ induced by vertices V (Gi) ∪ S, for i = 1, 2, is
a clique.

Suppose contrary that there is a pair of non-adjacent vertices u, v ∈ V (Gi)∪S
for i = 1 or 2. Again, G∗+uv ∈ Vk,δ,n. By Theorem 2, we have ρ(G∗) < (G∗+uv).
This contradicts the definition of G∗.

From Claim 2, it is clear that all G1 and G2 are cliques too. Then we write
Kni instead of Gi, for i = 1, 2, in the rest of the proof, where ni = |Gi|. Since
δ(G) ≥ k, we have ni ≥ δ − k + 1 for i = 1, 2.

Claim 3. Either n1 = δ − k + 1 or n2 = δ − k + 1.

Otherwise, we have n1 > δ−k+1 and n2 > δ−k+1. Let v ∈ G1 and u ∈ G2.
Suppose

NG∗(v) = {v1, v2, . . . , vn1−1, v1, v2, . . . , vk}
and

NG∗(u) = {u1, u2, . . . , un2−1, v1, v2, . . . , vk}.
Partition the vertex set of G∗ into three parts: the vertices of S; the vertices of

G1; the vertices of G2. This is an equitable partition of G with quotient matrix

Q =

⎛
⎝k − 1 n1 n2

k n1 − 1 0
k 0 n2 − 1

⎞
⎠

By Perron-Frobenius Theorem, Q has a Perron-vector x = (x1, x2, x3). Now we
show that x2 < x3 if n1 < n2. Let ρ(Q) denote the largest eigenvalue of Q. Then
we have

kx1 + (n1 − 1)x2 = ρ(Q)x2 (4)

kx1 + (n2 − 1)x3 = ρ(Q)x3 (5)

By (4) and (5), we have

(n2 − 1)x3 − (n1 − 1)x2 = ρ(Q)(x3 − x2).

Maximum Spectral Radius of Graphs with Connectivity 301

Hence

(ρ(Q)− n2 + 1)(x3 − x2) = (n2 − n1)x2 > 0.

By Theorem 3, ρ(Q) is also the largest eigenvalue of G∗, so we have ρ(Q) >
ρ(Kn2) = n2 − 1. Hence x3 > x2. The eigenvector x can be extended to an
eigenvector of A(G∗), say

y = (x11, . . . , x1k, x21, . . . , x2n1 , x31, . . . , x3n2),

where xi1 = . . . = xini = xi for i = 2, 3 and x11 = · · · = x1k = x1. Let
z = 1√

kx2
1+n1x2

2+n3x2
3

y. We have zzT = 1 and so z is a Perron-vector of G∗.

Let H = G∗− {vv1, vv2, . . . , vvn1−1}+ {vu1, . . . , vun2} and we have H ∈ Vk,δ,n.
Since n2x3 > (n1−1)x2, by Theorem 4, ρ(G∗) < ρ(H), which is a contradiction.
This completes claim 3.

By Claim 3, we can say n2 ≥ n1 = δ + 1 − k. Hence G∗ = Gk,δ,n. This
completes the proof. ��

Theorem 7. Spectral radius of Gk,δ,n is the largest root of the following equation
x3 + (3− n)x2 + (nδ− δ2 − n− kn+ k+ kδ+2− 2δ)x+ (knδ+ k2 + nδ+ k2δ−
kδ − k2n − kδ2 − 2δ − δ2) = 0.

Proof. Let G1 be the subgraph of Gk,δ,n induced by the k vertices of degree
n− 1 of Gk,δ,n, G2 be the subgraph induced by the δ − k + 1 vertices of degree
δ and G3 be the subgraph induced by the remaining n− δ− 1 vertices of degree
n − δ − 1 + k. Also, let Gij be the bipartite subgraph induced by V (Gi) and
V (Gj) and let eij be the size of Gij . The quotient matrix Q corresponding to
partition π = (V (G1), V (G2), V (G3)) is the following

Q =

⎛
⎝

2e1
n1

e12
n1

e13
n1

e21
n2

2e2
n2

e23
n2

e31
n3

e32
n3

2e33
n3

⎞
⎠ =

⎛
⎝k − 1 δ − k + 1 n− δ − 1

k δ − k 0
k 0 n− δ − 2

⎞
⎠ .

After the calculation, we obtain

det(xI −Q) =x3 + (3− n)x2 + (nδ − δ2 − n− kn+ k + kδ + 2− 2δ)x+

(knδ + k2 + nδ + k2δ − kδ − k2n− kδ2 − 2δ − δ2).

By Theorem 3, we get

λ1(Gk,δ,n) ≥ λ1(Q), (6)

with the equality if the partition is equitable. Note that the partition is equitable,
so the equality hold. This completes the proof. ��

302 H. Lu and Y. Lin

References

1. Berman, A., Zhang, X.D.: On the spectral radius of graphs with cut vertices. J.
Combin. Theory Ser. B. 83, 233–240 (2001)

2. Brualdi, R.A., Solheid, E.S.: On the spectral radius of complementary acyclic ma-
trices of zeros and ones. SIAM J. Algebra Discret. Method. 7, 265–272 (1986)

3. Carl, M.: Matrix analysis and applied linear algebra. SIAM (2000) ISBN 0-89871-
454-0

4. Feng, L., Yu, G., Zhang, X.: Spectral radius of graphs with given matching number.
Linear Algebra Appl. 422, 133–138 (2007)

5. Haemers, W.: Interlacing eigenvalues and graphs. Linear Algebra Appl. 226-228,
593–616 (1995)

6. Godsil, C., Royle, G.: Algebraic Graph Theory. Springer, New York (2001)
7. Guo, J.: The effect on the Laplacian spectral radius of a graph by adding or grafting

edges. Linear Algebra Appl. 413, 59–71 (2006)
8. Li, Q., Feng, K.: On the largest eigenvalue of graphs. Acta Math. Appl. Sinica. 2,

167–175 (1979)
9. Liu, H., Lu, M., Tian, F.: On the spectral radius of graphs with cut edges. Linear

Algebra Appl. 389, 139–145 (2004)
10. Nikiforov, V.: Some inequalities for the largest eigenvalue of a graph. Combin.

Probab. Comput. 11, 179–189 (2001)
11. Li, Shiu, Chan, Chang: On the spectral radius of graphs with connectivity at most

k. J. Math. Chem. 46, 340–346 (2009)
12. Wilf, H.: Spectral bounds for the clique and independence number of graphs. J.

Combin. Theory Ser. B 40, 113–117 (1986)
13. Wu, B., Xiao, E., Hong, Y.: The spectral radius of trees on k pendant vertices.

Linear Algebra Appl. 395, 343–349 (2005)
14. Zhou, B., Trinajstić, N.: On the largest eigenvalue of the distance matrix of a

connected graph. Chem. Phys. Lett. 447, 384–387 (2007)

Degree Sequences of PageRank Uniform Graphs

and Digraphs with Prime Outdegrees

Nacho López and Francesc Sebé

Dept. of Mathematics, Universitat de Lleida,
C.Jaume II, 69, E-25001, Spain

{nlopez,fsebe}@matematica.udl.cat

Abstract. A PageRank uniform digraph is a digraph whose vertices
have all the same PageRank score. These digraphs are interesting in
the scope of privacy preserving release of digraph data in environments
where a dishonest analyst may have previous structural knowledge about
the PageRank score of some vertices. In this paper we first characterize
PageRank uniform graphs (viewed as symmetric digraphs) and their de-
gree sequence. Next, given a sequence of prime integers S, we give nec-
essary and sufficient conditions for S to be the outdegree sequence of a
PageRank uniform digraph.

1 Introduction

A sequence which is the degree sequence of some graph is called a graphical
sequence. A necessary and sufficient condition for a sequence to be graphical was
found independently by Havel [7] and Hakimi [5]. A different characterization was
given by Erdös and Gallai (see [1]). Since then, the study of graphical sequences
has been focused on graphs with some specific properties. These studies include
graphical sequences of self-complementary, planar, bipartite and hamiltonian
graphs, graphs with a prescribed vertex connectivity or graphs containing a
hamiltonian path (see [6] for a complete survey).

The degree sequence of a directed graph (digraph) contains ordered pairs with
the outdegree and the indegree of each of its vertices. A sequence of pairs of
nonnegative integers is said to be digraphical if it is the degree sequence of some
digraph. Degree sequences of digraphs have been widely studied. Their main
characterization was found independently by Fulkerson [4] and Ryser [14]. As it
happens with graphs, digraphical sequences have also been studied for digraphs
with prescribed properties. Research on digraphical sequences has also been
carried out for indegree and outdegree sequences separately. For instance, Nash
and Williams [12] found sufficient conditions for the indegree and the outdegree
sequences of a digraph that guarantee the hamiltonicity of that digraph.

In this paper, we study the outdegree sequence of PageRank uniform digraphs,
i.e. digraphs whose vertices have all the same PageRank score. More precisely, we
provide a characterization of the degree sequence of PageRank uniform symmet-
ric digraphs (graphs) and the outdegree sequence of PageRank uniform digraphs
with prime outdegrees.

T. Lecroq and L. Mouchard (Eds.): IWOCA 2013, LNCS 8288, pp. 303–313, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

304 N. López and F. Sebé

1.1 Applications to Privacy Preserving Release of Social Network
Data

Online platforms (like Facebook1) in which people can create an account and es-
tablish relations among them are becoming very popular. The arising social net-
work can be modeled by means of (directed) graphs in which each user/account
corresponds to a vertex and the relations between pairs of users are the edges
(for symmetric relations like ‘be friends’) or the arcs (for asymmetric relations
like ‘trust in’). These platforms manage very sensitive personal data whose leak
would endanger users’privacy.

Social network data [15] are a source of valuable information for several re-
search areas like psychology, sociology and economics, but due to their private
content, their release for scientific analysis requires a pre-processing for ensuring
no private information about people will be disclosed. The measures to be taken,
including identifiers removal, depend on the previous structural information a
dishonest analyst is assumed to have [19]. Some proposals [3,9,17,18,20] apply
variants of the k-anonymity model to achieve vertex privacy (it has to be diffi-
cult for an attacker to link identities of network members to the vertices of the
released anonymous graph), so that they perturb the graph until the groups of
vertices sharing a given structural parameter have at least size k.

In a recent proposal [10], a solution is given in which the n-confusion model [16]
is applied to directed graph data in scenarios where an attacker may have pre-
vious knowledge about the PageRank score of some vertices. In this context,
releasing a perturbed digraph whose vertices have all the same PageRank score
would provide perfect privacy since its vertices are indistinguishable with respect
to that score.

Before being able to perturb a digraph so that it becomes PageRank uniform,
we need a characterization of such digraphs. This paper provides a step towards
that objective by studying two particular cases: symmetric digraphs (graphs)
and digraphs with prime outdegrees.

2 Preliminaries

This section presents the used notation together with an introduction to PageR-
ank.

2.1 Terminology and Notation

A digraph D = (V,A) is a finite nonempty set V of objects called vertices and a
set A of ordered pairs of vertices called arcs . The order of D is the cardinality of
its set of vertices V . If (u, v) is an arc, it is said that u is adjacent to v and also
that v is adjacent from u. The set of vertices that are adjacent from [to] a given
vertex v is denoted by N+(v) [resp. N−(v)] and its cardinality is the outdegree
of v, d+(v) [resp. indegree of v, d−(v)]. If d+(v) = k [resp. d−(v) = k], for all

1 http://www.facebook.com/

Degree Sequences of PageRank Uniform Graphs and Digraphs 305

v ∈ V , then D is said to be outregular [resp. inregular] of degree k. A digraph
D is called regular of degree k if d+(v) = d−(v) = k for every vertex v of D. If
d+(v) = 0 for all v ∈ V , then D is said to be the empty digraph.

A graph G can be viewed as a symmetric digraph where every symmetric pair
of arcs (a, b) and (b, a) is identified as a non ordered pair {a, b} called edge. A
walk of length h from a vertex u to a vertex v (u − v walk) in G is a sequence
of vertices u = u0, u1, . . . , uh−1, uh = v such that each pair {ui−1, ui} is an edge
of G. A graph G is connected if there is a u− v walk for every pair of vertices u
and v of G. The reader is referred to Chartrand and Lesniak [1] for additional
concepts on digraphs and graphs.

2.2 The PageRank Vector of a Digraph

The PageRank [8,13] algorithm was designed as a method for assigning a rele-
vance score to webpages. This score, together with some other criteria, is then
considered for determining the order in which the results of search engine queries
are shown to the user. The PageRank algorithm first creates a directed graph
representing web pages (the vertices) and the hyperlinks among them (the arcs).

Given a directed graph D = (V,A) of order n, the n×n normalized link matrix
P = (pij) is defined so that, for each pair of vertices vi, vj ∈ V ,

pij =

⎧⎨
⎩

1
d+(vj)

if d+(vj) > 0 and (vj , vi) ∈ A,

0 if d+(vj) > 0 and (vj , vi) /∈ A,
1
n if d+(vj) = 0.

By considering a surfer riding the digraph vertices, each coefficient pij of P
corresponds to the probability that the surfer jumps to vertex vi after having
reached vertex vj , assuming the next movement is taken uniformly at random
among the arcs emanating from vj . If the random surfer falls in a vertex with no
outgoing arcs, the navigation is restarted from a randomly chosen vertex. This
random restart behaviour is allowed at any moment (with a small probability
1− α), by creating matrix P(α),

P(α) = αP+ (1 − α)
1

n
J, (1)

where J denotes the order n all ones square matrix. By construction, P(α) is a
positive matrix [11], hence, it has a unique dominant eigenvalue. The PageRank
vector is defined to be the (positive) eigenvector P = (p0, . . . , pn−1) with

∑
i pi =

1 (the Perron vector of P(α)) associated to this eigenvalue. The value of α
(dumping factor) is usually chosen to be α = 0.85. The relevance score assigned
by PageRank to vertex vj is pj . This value represents the long-run fraction of
time the surfer would spend at vertex vj .

This algorithm can be applied to provide a relevance score to the vertices
of any digraph. For instance, by applying it to a digraph representing scientific
publications and the ‘cite’ relations among them, we could determine the most
influent publications.

306 N. López and F. Sebé

Example 1. Let us consider a small digraph (Figure 1) D = (V,A), with V =
{v0, v1, v2, v3, v4} and

A = {(v0, v1), (v0, v4), (v1, v2), (v2, v1), (v3, v0), (v3, v1), (v3, v2), (v3, v4)}.

v0

v1

v2

v3 v4

Fig. 1. Digraph having v1 as its most relevant vertex, while v3 is the least one

Applying the PageRank algorithm to digraph D, the following scores vec-
tor is obtained: P = (p0, p1, p2, p3, p4) = (0.0515, 0.4222, 0.4104, 0.0425, 0.0734).
Hence, v1 is the most relevant vertex while v3 is the least one (no vertex points
to it). In this particular example, we took α = 0.85. Matrix P is as follows,

P =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 1
4

1
5

1
2 0 1 1

4
1
5

0 1 0 1
4

1
5

0 0 0 0 1
5

1
2 0 0 1

4
1
5

⎞
⎟⎟⎟⎟⎟⎟⎠

.

3 Characterization of PageRank Uniform Graphs

A digraph D is called to be PageRank uniform2 when its PageRank vector P is
uniform, that is, all the vertices of D have the same PageRank score.

In [2], it was proven that the value given to the dumping factor α does not
influence the PageRank uniformity of a digraph. Hence, we can focus our atten-
tion on matrix P (instead of P(α)). By definition, the normalized link matrix P
of an order n digraph without self-loops nor zero outdegree vertices, satisfies:

a) All the elements in the main diagonal of P are zero, that is pii = 0.

b) Given pij =
1

k
⇒ ∃ i1, · · · , ik such that pi′j =

{
1
k if i′ ∈ {i1, · · · , ik},
0 otherwise.

2 These digraphs were called PageRank regular in [2]. Nevertheless, we prefer the term
uniform so as to avoid confusion with the term regular in the classical sense.

Degree Sequences of PageRank Uniform Graphs and Digraphs 307

In particular, each column of P sums 1. In addittion, a digraph is PageRank
uniform if and only if each row of P also sums 1, as it is stated in the next
proposition whose proof was given in [2].

Proposition 1. Let D be a digraph and let P be its normalized link matrix. D
is a PageRank uniform digraph if and only if each row of P sums 1, that is,∑

j pij = 1, for each i.

The condition
∑

j pij = 1 is equivalent to saying that
(
1, 1

n j
)
is an eigenpair

for P (j denotes the length n all ones vector). The next proposition states that
regular digraphs are PageRank uniform:

Proposition 2. Let D be a regular digraph. Then, D is a PageRank uniform
digraph.

Proof. If D is the empty digraph of order n, then P = P(α) = 1
nJ and

(
1, 1

n j
)

is its Perron eigenpair so that D is PageRank uniform.
Let D be a regular digraph of degree k > 0. The adjacency matrix A of D

satisfies AT = kP. Besides, for any regular vector v, we have ATv = kv, since
the elements of each column of A sum k (every vertex of D has indegree k). By
chosing v = 1

n j, we get kPv = kv, that is, Pv = v. So, (1, 1
n j) is an eigenpair for

P and, by Proposition 1, we conclude that D is a PageRank uniform digraph. ��

The converse of Proposition 2 is not true in general. Nevertheless, if we re-
strict our attention to graphs (symmetric digraphs), then the condition of being
regular turns out to be sufficient to achieve PageRank uniformity for connected
graphs. By considering a non-connected graph G as the union of its connected
components, the next theorem provides a characterization for PageRank uniform
graphs.

Theorem 1. Let G = (V,E) be a graph. The following statements are equiva-
lent,

– G is a PageRank uniform graph.
– G = H1 ∪ · · · ∪Hs, where each Hi is a connected regular graph of order ≥ 2,

or G is the empty graph.

Proof. If G is the empty graph, we can consider it as the empty (symmetric)
digraph. Since it is regular then it is PageRank uniform by Proposition 2. Let us
assume G = H1∪· · ·∪Hs, with each Hi being a connected regular graph of order
≥ 2. First of all, every Hi is PageRank uniform by Proposition 2. Let P1, . . . ,Ps

be the normalized link matrices of H1, . . . , Hs, respectively. The normalized link
matrix P of G is block diagonal, being Pi its diagonal blocks, that is,

P =

⎛
⎜⎜⎜⎝

P1 0 · · · 0
0 P2 · · · 0
...

...
. . .

...
0 0 · · · Ps

⎞
⎟⎟⎟⎠ .

308 N. López and F. Sebé

Hence, P satisfies Proposition 1 if and only if each Pi does, which is the case.

Conversely, let us assume G is PageRank uniform. We distinguish two cases:

– G is connected. Let us consider a minimum degree vertex u ∈ V , with d(u) =
k > 0 and let {v1, v2, . . . , vk} be the neighbors of u. The sum of the row of

P corresponding to vertex u is
∑k

i=1
1

d(vi)
. This sum is 1 by the assumed

PageRank uniformity. Now, since k ≤ d(vi) for any vi ∈ V , we get,

1 =

k∑
i=1

1

d(vi)
≤

k∑
i=1

1

k
= 1,

which is only possible if d(vi) = k for each 1 ≤ i ≤ k. In this way, all the
neighbors of a minimum degree vertex have also minimum degree. By recur-
sively applying this reasoning and taking into account that G is connected,
we conclude that all the vertices in G have the same minimum degree k, that
is, G is regular.

– G is non-connected. Then, G = H1 ∪ · · · ∪Hs where each Hi is a connected
graph of order ≥ 2. Since G is assumed to be PageRank uniform, every Hi is
also PageRank uniform. Now, we can apply the previous argument to each
connected component and derive that each Hi is regular.
If some Hi had order 1, then G would have at least one isolated vertex. The
digraph surfer considered by the PageRank algorithm only visits isolated
vertices as a result of a random restart, while connected vertices can be
visited after a random restart or by reaching them from a neighbor vertex.
Hence, non-isolated vertices receive a higher PageRank score than isolated
ones. In this way, G would be PageRank uniform only if all the other vertices
were also isolated in which case G would be empty.

��

4 PageRank Uniformity and Degree Sequences

In this section we study the degree sequence of PageRank uniform digraphs.
We provide necessary and sufficient conditions for a sequence of nonnegative
integers to be the degree sequence of a PageRank uniform graph. Regarding
directed graphs, we give necessary and sufficient conditions for a sequence of
prime integers to be the outdegree sequence of a PageRank uniform digraph.

4.1 PageRank Uniform Graphical Sequences

A nondecreasing sequence S : d1, d2, · · · , dn of nonnegative integers is called a
PageRank uniform graphical sequence if there is a PageRank uniform graph G
of order n whose degree sequence is S.

For short, a degree sequence will be denoted by S : dn1
1 , dn2

2 , . . . , dns
s , where

dni

i denotes that value di appears ni times in S. It is well known that a degree

Degree Sequences of PageRank Uniform Graphs and Digraphs 309

sequence can correspond to a regular graph if and only if it is of the form S : dn

with n ≥ d + 1 and the product dn is even. By proposition 1, every PageRank
uniform graph G is either the empty graph or the union of regular connected
components of order ≥ 2. As a consequence, the characterization of PageRank
uniform graphical sequences is immediately determined.

Proposition 3. Let S : dn1
1 , dn2

2 , . . . , dns
s be a nondecreasing sequence of non-

negative integers. Then, S is a PageRank uniform graphical sequence if and only
if di ≥ 1, ni ≥ di + 1 and dini is even, for each 1 ≤ i ≤ s; or d1 = 0 and s = 1.

4.2 PageRank Uniform Outdigraphical Sequences Composed of
Prime Numbers

A nondecreasing sequence S : d1, d2, · · · , dn of nonnegative integers, is called a
PageRank uniform outdigraphical sequence if there exists a PageRank uniform
digraph D of order n such that S is the outdegree sequence of D.

In this paper, we focus on the particular case in which d1, d2, · · · , dn are all
prime numbers. PageRank uniform digraphs with prime outdegrees were studied
in [2]. The authors proved that, in a PageRank uniform digraph with prime
outdegrees, the inneighbors of any vertex v have all the same (prime) outdegree
which coincides with the indegree of v. This property can be expressed in terms
of the normalized link matrix P of D as follows.

Lemma 1. Let P be the normalized link matrix of a digraph D having prime
outdegrees. Then, D is PageRank uniform if and only if all the non-null elements
of each row of P are equal and their sum is 1.

If a PageRank uniform digraph D has a vertex v with prime outdegree q, its
corresponding column of P contains the value 1

q exactly q times. Hence, value 1
q

appears in at least q different rows of P. Let i be such a row. By Lemma 1, the
non-null elements of row i must all be 1

q . Since each row of P sums 1, there must

be exactly q elements with value 1
q in row i. This observation gives a necessary

condition for a sequence to be PageRank uniform outdigraphical when all its
elements are prime.

Proposition 4. Let S : qn1
1 , qn2

2 , . . . , qns
s be a PageRank uniform outdigraphical

sequence of prime numbers. Then, ni ≥ qi for each 1 ≤ i ≤ s.

If we strenghten the necessary condition of Proposition 4 by requiring ni ≥
qi + 1, for each 1 ≤ i ≤ s, we transform it into a sufficient condition. To see
that, let us denote by Zn the additive group of integers modulo n. For any set
I of integers, the circulant digraph Cay(Zn; I) has vertex set Zn, and there is
an arc from u to u + a, for every u ∈ Zn and a ∈ I. When I = {1, 2, . . . , d}
with d ≤ n − 1, we have that Cay(Zn; I) is a PageRank uniform digraph whose
outdegree sequence is S : dn. Moreover, by constructing a digraph as the union
of order ni circulant digraphs whose vertices have all outdegree qi, with ni ≥
qi + 1, we construct a PageRank uniform digraph whose outdegree sequence

310 N. López and F. Sebé

is S : qn1
1 , qn2

2 , . . . , qns
s . That is, the digraph D = ∪s

i=1Cay(Zni ; {1, 2, . . . , qi}) is
PageRank uniform and its outdegree sequence is S. As we will next see, circulant
digraphs play a prominent role in the characterization of PageRank uniform
digraphical sequences composed of prime numbers.

Let v be a dimension n vector. The circulant matrix Cv with generating
vector v is a n × n matrix such that its first column is v and the remaining
columns of Cv are cyclic permutations of v with offset equal to the column
index. For our purposes, a given vector (a1, . . . , a1, a2, . . . , a2, . . . , as, . . . , as) in
which a1 appears b1 times, a2 appears b2 times, and so on, will be denoted by
[ab11 , ab22 , . . . , abss]. Note that the normalized link matrix of Cay(Zn; {1, 2, . . . , d})
is a circulant matrix with generating vector [01, (1d)

d, 0n−d−1] (see Figure 2).
Given the sequence S : qn1

1 , qn2

2 , . . . , qns
s with ni ≥ qi + 1, we can construct a

PageRank uniform digraph whose outdegree sequence is S by considering circu-
lant matrices. For each i, we just need to take vector vi = [01, (1

qi
)qi , 0ni−qi−1]

and construct matrix P as follows,

P =

⎛
⎜⎜⎜⎝

Cv1 0 · · · 0
0 Cv2 · · · 0
...

...
. . .

...
0 0 · · · Cvs

⎞
⎟⎟⎟⎠

where Cvi
is the circulant matrix with generating vector vi. In fact, P is the nor-

malized link matrix of D = ∪s
i=1Cay(Zni ; {1, 2, . . . , qi}). Next, a characterization

of the PageRank uniform outdigraphical sequences having prime outdegrees is
given.

Theorem 2. Let S : qn1
1 , qn2

2 , . . . , qns
s be a sequence of prime numbers given in

nondecreasing order. Then, S is a PageRank uniform outdigraphical sequence if
and only if the following conditions hold:

i) ni ≥ qi, for all 1 ≤ i ≤ s, and

ii) if ns = qs then ns ≤ �n
2
�, where n =

s∑
i=1

ni.

Proof. The necessity of condition (i) was stated in Proposition 4. To see the
necessity of (ii), let S be a PageRank uniform outdigraphical sequence such that
ns = qs and let P be the normalized matrix of a digraph D having S as its
outdegree sequence.

We assert that, if ns > �n
2 �, then there exist integers i < j and i′ > j′, such

that pij = pi′j′ =
1
qs
. That is, matrix P has 1

qs
values at both sides of its main

diagonal.
Assume to the contrary that pij =

1
qs

only when i < j (pij is above the main

diagonal of P). Let pij be such a value. Since D is PageRank uniform and qs
is prime, there must be qs elements taking value 1

qs
at row i and qs elements

taking that value at column j, each of them located above the main diagonal of
P. Row i has (n− i) positions above the main diagonal and column j has (j−1)

Degree Sequences of PageRank Uniform Graphs and Digraphs 311

0

1

2

3

4

5

6

7

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1
3

1
3

1
3

1
3

0 0 0 0 0 1
3

1
3

1
3

1
3

0 0 0 0 0 1
3

1
3

1
3

1
3

0 0 0 0 0

0 1
3

1
3

1
3

0 0 0 0

0 0 1
3

1
3

1
3

0 0 0

0 0 0 1
3

1
3

1
3

0 0

0 0 0 0 1
3

1
3

1
3

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 2. The circulant digraph Cay(Z8; {1, 2, 3}) and its normalized link matrix P. Ma-
trix P is circulant with generating vector [01, (1

3
)3, 04].

so that we need, {
j − 1 ≥ qs,
n− i ≥ qs.

Besides, since qs = ns > �n
2 �, we get,

1 + �n
2
� < j < i < n− �n

2
�,

so that n > 1 + 2�n
2 � which is impossible. Hence our assertion is true. As a

consequence, every row and column of P containing a 1
qs

value should have in

addition at least one zero (the one located in the main diagonal of P), so that
ns > qs and our assumption is contradicted.

Now, we will see that (i) and (ii) are sufficient conditions by constructing the
matrix P of a PageRank uniform digraph having S as its outdegree sequence.
We start by putting an ns ×ns circulant matrix Cvs into the right upper corner
of P. This matrix contains all the 1

qs
values of P together with (maybe) some

zeroes. Matrix P is constructed from Cvs and an (n− ns)× (n− ns) matrix Q
as follows,

P =

(
0 Cvs

Q 0

)
.

Besides, matrix Q has the following form:

Q =

⎛
⎜⎜⎜⎝

Cv1 0 · · · 0
0 Cv2 · · · 0
...

...
. . .

...
0 0 · · · Cvs−1

⎞
⎟⎟⎟⎠

where eachCvi
is a circulant order ni matrix containing the 1

qi
values ofP. Notice

that the main diagonal of P (it contains zeroes since self-loops are not allowed)

312 N. López and F. Sebé

crosses through either Cvs , Q or none of them, depending on the particular
value of ns.

Now, we define the generating vectors vi of Cvi
by distinguishing two cases.

a) Case ns > �n
2 �: The generating vector vs of matrix Cvs is defined to be,

vs = [(
1

qs
)n−ns , 0ns−qs , (

1

qs
)qs+ns−n].

Notice that vs contains at least one zero since ns ≥ qs +1 by (ii). Moreover,
ns > �n

2 � implies that the main diagonal of P crosses through Cvs , so that
some null diagonal of Cvs is part of the main diagonal of P. Now, matrix Q
has order n− ns and it is not crossed by the main diagonal of P. Hence, we
can define the generating vectors vi of matrices Cvi

(i 	= s) as follows,

vi =

{
[(1

qi
)qi , 0ni−qi] if ni > qi,

[(1
qi
)qi] if ni = qi.

(2)

b) Case ns ≤ �n
2 �: The generating vector vs of matrix Cvs is defined to be,

vs =

{
[(1

qs
)qs , 0ns−qs] if ns > qs,

[(1
qs
)qs] if ns = qs.

In this case, the main diagonal of P falls below Cvs and it may cross through
Q. The circulant matrices Cvi

that are not crossed by the main diagonal of
P, are defined as we did in the previous case (Eq. 2). By construction of Q,
if the main diagonal of P crosses through some Cvi

(i 	= s) then ni ≥ ns.
But since ns ≥ qs > qi, we get ni > qi and vector vi contains at least one
zero so that we can arrange its elements in such way that some null diagonal
of Cvi

accomodates the main diagonal of P.

In any case P is the normalized link matrix of a PageRank uniform digraph
whose outdegree sequence is S.

��

Acknowledgements. The authors are partially funded by the Spanish Min-
istry of Economy and Competitiveness under project TIN2010-18978 and by the
Government of Catalonia under Grant 2009SGR-442.

References

1. Chartrand, G., Lesniak, L.: Graphs & Digraphs, 4th edn. CRC Press, Boca Raton
(2004)

2. Conde, J., López, N., Sebé, F.: PageRank regular digraphs with prime out-degrees.
In: Proc. of 5th Intl. Workshop on Optimal Network Topologies (in press, 2013)

3. Cheng, J., Fu, A.W.-C., Liu, J.: K-Isomorphism: privacy preserving network pub-
lication against structural attacks. In: Proc. of SIGMOD 2010 (2010)

Degree Sequences of PageRank Uniform Graphs and Digraphs 313

4. Fulkerson, D.R.: Zero-one matrices with zero traces. Pacific J. Math. 10, 831–836
(1960)

5. Hakimi, S.L.: On the realizability of a set of integers as degrees of the vertices of
a graph. J. SIAM Appl. Math. 10, 496–506 (1962)

6. Hakimi, S.L., Schmeichel, E.F.: Graphs and their degree sequences: a survey. The-
ory and applications of graphs, pp. 225–235 (1976)

7. Havel, V.: A remark on the existence of finite graphs. Časopis Pěst. Mat. 80, 477–
480 (1955)

8. Langville, A.N., Meyer, C.D.: Deeper inside pagerank. Internet Mathematics 1(3),
335–380 (2004)

9. Liu, K., Terzi, E.: Towards identity anonymization on graphs. In: Proc. of SIGMOD
2008 (2008)

10. López, N., Sebé, F.: Privacy-preserving release of blogosphere data in the presence
of search engines. Inf. Processing and Management 49, 833–851 (2013)

11. Meyer, C.D.: Matrix analysis and applied linear algebra. SIAM: Society for Indus-
trial and Applied Mathematics (2001)

12. Nash-Williams, C.S.J.A.: Hamilton circuits in graphs and digraphs. In: The Many
Facets of Graph Theory, pp. 237–243. Springer (1968)

13. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking:
bringing order to the web. Technical Report, Stanford InfoLab (1998)

14. Ryser, H.: Combinatorial Mathematics. Wiley, New York (1963)
15. Scott, J.: Social network analysis handbook. Sage Publications Inc. (2000)
16. Stokes, K., Torra, V.: n-Confusion: a generalization of k-anonymity. In: Proc. of

5th Intl. Workshop on Privacy and Anonymity in the Information Society (2012)
17. Wu, W., Xiao, Y., Wang, W., He, Z., Wang, Z.: K-Symmetry model for identity

anonymization in social networks. In: Proc. of EDBT 2010 (2010)
18. Zhou, B., Pei, J.: Preserving privacy in social networks against neighborhood at-

tacks. In: Proc. of ICDE 2008, pp. 506–515 (2008)
19. Zhou, B., Pei, J., Luk, W.-S.: A brief survey on anonymization techniques for

privacy preserving publishing of social network data. ACM SIGKDD Explorations
Newsletter 10(2), 12–22 (2008)

20. Zou, L., Chen, L., Öszu, M.T.: K-Automorphism: a general framework for privacy
preserving network publication. In: Proc. of VLDB 2009 (2009)

On the Maximum Independent Set Problem
in Subclasses of Subcubic Graphs�

Vadim Lozin1, Jérôme Monnot3,2, and Bernard Ries2,3

1 DIMAP and Mathematics Institute, University of Warwick,
Coventry, CV4 7AL, UK
V.Lozin@warwick.ac.uk

2 PSL, Université Paris-Dauphine, 75775 Paris Cedex 16, France
3 CNRS, LAMSADE UMR 7243

{monnot,ries}@lamsade.dauphine.fr

Abstract. It is known that the maximum independent set problem is
NP-complete for subcubic graphs, i.e. graphs of vertex degree at most
3. Moreover, the problem is NP-complete for H-free subcubic graphs
whenever H contains a connected component which is not a tree with
at most 3 leaves. We show that if every connected component of H is a
tree with at most 3 leaves and at most 7 vertices, then the problem can
be solved for H-free subcubic graphs in polynomial time.

Keywords: Independent set, Polynomial-time algorithm, Subcubic graph.

1 Introduction

In a graph, an independent set is a subset of vertices no two of which are adja-
cent. The maximum independent set problem consists in finding in a graph an
independent set of maximum cardinality. This problem is generally NP-complete
[3]. Moreover, it remains NP-complete even under substantial restriction, for in-
stance, for planar graphs or subcubic graphs (i.e. graphs of vertex degree at
most 3). In the present paper, we focus on subcubic graphs in the attempt to
identify further restrictions which may lead to polynomial-time algorithms to
solve the problem. One such restriction is known to be a bound on the chordal-
ity, i.e. on the length of a largest chordless cycle. Graphs of bounded degree
and bounded chordality have bounded tree-width [2], and hence the problem
can be solved in polynomial time for such graphs. In terms of forbidden induced
subgraphs bounded chordality means excluding large chordless cycles, i.e. cycles
Ck, Ck+1, . . . for a constant k. More generally, it was recently shown in [6] that
excluding large apples (all definitions can be found in the end of the introduc-
tion) together with bounded degree leads to a polynomial-time algorithm to solve
the problem. In both cases (i.e. for graphs without large cycles and for graphs

� The first author gratefully acknowledges support from DIMAP - the Center for
Discrete Mathematics and its Applications at the University of Warwick, and from
EPSRC, grant EP/I01795X/1.

T. Lecroq and L. Mouchard (Eds.): IWOCA 2013, LNCS 8288, pp. 314–326, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

On the Maximum Independent Set Problem in Subclasses 315

without large apples) the restrictions are obtained by excluding infinitely many
graphs. In the present paper, we study subclasses of subcubic graphs obtained
by excluding finitely many graphs. A necessary condition for polynomial-time
solvability of the problem in such classes was given in [1] and can be stated as
follows: the maximum independent set problem can be solved in polynomial time
in the class of graphs defined by a finite set Z of forbidden induced subgraphs
only if Z contains a graph every connected component of which is a tree with at
most three leaves. In other words, for polynomial-time solvability of the problem
we must exclude a graph every connected component of which has the form Si,j,k

represented in Figure 1. Whether this condition is sufficient for polynomial-time
solvability of the problem is a big open question.

�
�
�

�
�

��
�

��
��

���
��

�

� �
� �

� � �
��

�

1

2

i−1

i

1
2

j−1
j

1
2

k−1

k

�

�

�

�

�

�

�
�

�
�
�
�

�
�
��

�
�
��

f

v1

v2

v3v4

v5

Fig. 1. Graphs Si,j,k (left) and A5 (right)

Without the restriction on vertex degree, polynomial-time solvability of the
problem in classes of Si,j,k-free graphs was shown only for very small values of
i, j, k. In particular, the problem can be solved for S1,1,1-free (claw-free) graphs
[11], S1,1,2-free (fork-free) graphs [5], and S0,1,1+S0,1,1-free (2P3-free) graphs [7].
The complexity of the problem in S0,2,2-free (P5-free) graphs remains an open
problem in spite of the multiple partial results on this topic (see e.g. [4,8,9,10]).

With the restriction on vertex degree, we can do much better. In particular, we
can solve the problem for S1,j,k-free graphs of bounded degree for any j and k,
because by excluding S1,j,k we exclude large apples. However, nothing is known
about classes of Si,j,k-free graphs of bounded degree where all three indices i, j, k
are at least 2. To make a progress in this direction, we consider best possible
restrictions of this type, i.e. we study S2,2,2-free graphs of vertex degree at most
3, and show that the problem is solvable in polynomial time in this class. More
generally, we show that the problem is polynomial-time solvable in the class of
H-free subcubic graphs, where H is a graph every connected component of which
is isomorphic to S2,2,2 or to S1,j,k.

The organization of the paper is as follows. In the rest of this section, we
introduce basic definitions and notations. In Section 2 we prove a number of
preliminary results. Finally, in Section 3 we present a solution.

All graphs in this paper are simple, i.e. undirected, without loops and multiple
edges. The vertex set and the edge set of a graph G are denoted by V (G) and
E(G), respectively. For a vertex v ∈ V (G), we denote by N(v) the neighborhood
of v, i.e., the set of vertices adjacent to v, and by N [v] the closed neighbourhood
of v, i.e. N [v] = N(v) ∪ {v}. For v, w ∈ V (G), we set N [v, w] = N [v] ∪ N [w].

316 V. Lozin, J. Monnot, and B. Ries

The degree of v is the number of its neighbors, i.e., d(v) = |N(v)|. The subgraph
of G induced by a set U ⊆ V (G) is obtained from G by deleting the vertices
outside of U and is denoted G[U]. If no induced subgraph of G is isomorphic to
a graph H , then we say that G is H-free. Otherwise we say that G contains H . If
G contains H , we denote by [H] the subgraph of G induced by the vertices of H
and all their neighbours. As usual, by Cp we denote a chordless cycle of length
p. Also, an apple Ap, p ≥ 4, is a graph consisting of a cycle Cp and a vertex f
which has exactly one neighbour on the cycle. We call vertex f the stem of the
apple. See Figure 1 for the apple A5. The size of a maximum independent set in
G is called the independence number of G and is denoted α(G).

2 Preliminary Results

We start by quoting the following result from [6].

Theorem 1. For any positive integers d and p, the maximum independent set
problem is polynomial-time solvable in the class of (Ap, Ap+1, . . .)-free graphs
with maximum vertex degree at most d.

We solve the maximum independent set problem for S2,2,2-free subcubic graphs
by reducing it to subcubic graphs without large apples.

Throughout the paper we let G be an S2,2,2-free subcubic graph and K ≥ 1
a large fixed integer. If G contains no apple Ap with p ≥ K, then the problem
can be solved for G by Theorem 1. Therefore, from now on we assume that G
contains an induced apple Ap with p ≥ K formed by a chordless cycle C = Cp

of length p and a stem f . We denote the vertices of C by v1, . . . , vp (listed along
the cycle) and assume without loss of generality that the only neighbour of f on
C is v1 (see Figure 1 for an illustration).

If v1 is the only neighbour of f in G, then the deletion of v1 together with
f reduces the independence number of G by exactly 1. This can be easily seen
and also is a special case of a more general reduction described in Section 2.1.
The deletion of f and v1 destroys the apple Ap. The idea of our algorithm is
to destroy all large apples by means of other simple reductions that change
the independence number by a constant. Before we describe the reductions in
Section 2.1, let us first characterize the local structure of G in the case when the
stem f has a neighbor different from v1.

Lemma 1. If f has a neighbor g different from v1, then g has at least one
neighbor on C and the neighborhood of g on C is of one of the 8 types represented
in Figure 2.

Proof. First observe that g must have a neighbor among {vp−1, vp, v2, v3}, since
otherwise we obtain an induced S2,2,2. If g has only 1 neighbor on C, then clearly
we obtain configuration (1) or (2).

Now assume that g has two neighbors on C. Suppose first that g is adjacent
neither to v2 nor to vp. Then g must be adjacent to at least one of vp−1, v3.

On the Maximum Independent Set Problem in Subclasses 317

Without loss of generality, we may assume that g is adjacent to vp−1 and denote
the third neighbor of g by vj . If 2 < j < p−3, then we clearly obtain an induced
S2,2,2 centered at g. Otherwise, we obtain configuration (3) or (4).

Now assume g is adjacent to one of v2, vp, say to vp, and again denote the
third neighbor of g by vj . If j ∈ {p− 2, p− 1}, then we obtain configuration (5)
or (6). If j ∈ {2, 3}, then we obtain configuration (7) or (8). If 3 < j < p − 2,
then G contains an S2,2,2 induced by {vj−2, vj−1, vj , vj+1, vj+2, g, f}. ��

� � � � �

�
f

�
g

v1vp v2vp−1
(1) (2) � � � � �

�
f

�
g

v1vp v2vp−1

� � � � � �

�
f

��
�

g

v1vp v2vp−1vp−2
(3) (4) � � � � � �

�
f

����

�
g

v1vp v2vp−1vp−2

� � � � � �

�
f

�
g

����
v1vp v2vp−1vp−2

(5) (6) � � � � � �

�
f

�
g

�
�

v1vp v2vp−1vp−2

� � � � � �

�f

�g	
	

	
	

v1vp v2vp−1vp−2
(7) (8) � � � � � �

�f

�g	
	

	
	

�
�
�
�

v1vp v2vp−1 v3vp−2

Fig. 2. Ap + g

2.1 Graph Reductions

H-subgraph reduction Let H be an induced subgraph of G.

Lemma 2. If α(H) = α([H]), then α(G − [H]) = α(G)− α(H).

Proof. Since any independent set of G contains at most α([H]) vertices in [H],
we know that α(G− [H]) ≥ α(G)− α([H]). Now let S be an independent set in
G−[H] and A an independent set of size α(H) in H . Then S∪A is an independent
set in G and hence α(G) ≥ α(G− [H]) + α(H). Combining the two inequalities
together with α(H) = α([H]), we conclude that α(G− [H]) = α(G)−α(H). ��

The deletion of [H] in the case when α(H) = α([H]) will be called the H-
subgraph reduction. For instance, if a vertex v has degree 1, then the deletion of
v together with its only neighbour is the H-subgraph reduction with H = {v}.

318 V. Lozin, J. Monnot, and B. Ries

Φ-Reduction. Let us denote by Φ the graph represented on the left of Figure 3.
The transformation replacing Φ by Φ′ as shown in Figure 3 will be called Φ-
reduction.

� � � �

� � � �

� �

� �

Φ Φ′

a

c

b

d
→

1

3

2

4

a

c

b

d

Fig. 3. Φ-reduction

Lemma 3. By applying the Φ-reduction to an S2,2,2-free subcubic graph G, we
obtain an S2,2,2-free subcubic graph G′ such that α(G′) = α(G) − 2.

Proof. Let S be an independent set in G. Clearly it contains at most two vertices
in {a, b, c, d} and at most two vertices in {1, 2, 3, 4}. Denote X = S ∩ {1, 2, 3, 4}.
If the intersection S ∩ {a, b, c, d} contains at most one vertex or one of the
pairs {a, d}, {b, c}, then S − X is an independent set in G′ of size at least
α(G) − 2. If S ∩ {a, b, c, d} = {a, b}, then X contains at most one vertex and
hence S−(X∪{b}) is an independent set in G′ of size at least α(G)−2. Therefore,
α(G′) ≥ α(G) − 2.

Now let S′ be an independent set in G′. Then the intersection S′ ∩ {a, b, c, d}
contains at most two vertices. If S′ ∩ {a, b, c, d} = {a, d}, then S′ ∪ {2, 3} is an
independent set of size α(G′) + 2 in G. Similarly, if S′ ∩ {a, b, c, d} contains at
most one vertex, then G contains an independent set of size at least α(G′) + 2.
Therefore, α(G) ≥ α(G′) + 2. Combining the two inequalities, we conclude that
α(G′) = α(G) − 2.

Now let us show that G′ is an S2,2,2-free subcubic graph. The fact that G′ is
subcubic is obvious. Assume to the contrary that it contains an induced subgraph
H isomorphic to S2,2,2. If H contains none of the edges ab and cd, then clearly
H is also an induced S2,2,2 in G, which is impossible. If S contains both edges ab
and cd, then it contains C4 = (a, b, c, d), which is impossible either. Therefore,
H has exactly one of the two edges, say ab. If vertex b has degree 1 in H , then
by replacing b by vertex 1 we obtain an induced S2,2,2 in G. By symmetry, a
also is not a vertex of degree 1 in H . Therefore, we may assume, without loss of
generality, that a has degree 3 and b has degree 2 in H . Let us denote by x the
only neighbour of b in H . Then (H − {b, x}) ∪ {1, 2} is an induced S2,2,2 in G.
This contradiction completes the proof. ��

AB-Reduction. The AB-reduction deals with two graphs A and B represented
in Figure 4. We assume that the vertices vi belong to the cycle C = Cp, and the
vertices pj are outside of C.

Lemma 4. If G contains an induced subgraph isomorphic to A, then

On the Maximum Independent Set Problem in Subclasses 319

� � �

� � �

�
�
�
�

�

� � �

� � �

�

�
�
�
�

�

vi vi+1 vi+2

pj pj+1 pj+2

vi vi+1 vi+2

pj pj+1 pj+2

vi+3 vi+3

pj+3

Fig. 4. Induced subgraphs A (left) and B (right)

– either A can be extended to an induced subgraph of G isomorphic to B in
which case pj+2 can be deleted without changing α(G)

– or the deletion of N [vi] ∪N [pj] reduces the independence number by 2.

Proof. Assume first that A can be extended to an induced B (by adding vertex
pj+3). Consider an independent set S containing vertex pj+2. Then S contains
neither pj+1 nor pj+3 nor vi+2. If neither pj nor vi belongs to S, then pj+2

can be replaced by pj+1 in S. Now assume, without loss of generality, that vi
belongs to S. Then vi+1 	∈ S and therefore we may assume that vi+3 ∈ S, since
otherwise pj+2 can be replaced by vi+2 in S. If pj+3 has one more neighbour
x in S (different from pj+2), then vertices vi, vi+2, vi+3, pj+1, pj+2, pj+3 and x
induce an S2,2,2 in G (because the 3 endpoints are in S and the internal vertices
have degree 3 in A). Therefore, we conclude that pj+2 is the only neighbour
of pj+3 in S, in which case pj+2 can be replaced by pj+3 in S. Thus, for any
independent S in G containing vertex pj+2, there is an independent set of size
|S| which does not contain pj+2. Therefore, the deletion of pj+2 does not change
the independence number of G.

Now let us assume that A cannot be extended to B. Clearly, every independent
set S in G−N [vi, pj] can be extended to an independent set of size |S|+2 in G
by adding to S vertices vi and pj . Therefore, α(G) ≥ α(G −N [vi, pj]) + 2.

Conversely, consider an independent set S in G. If it contains at most 2 vertices
in N [vi, pj], then by deleting these vertices from S we obtain an independent set
of size at least |S| − 2 in G−N [ci, pj].

Suppose now that S contains more than 2 vertices in N [vi, pj]. Let us show
that in this case it must contain exactly three vertices in N [vi, pj], two of which
are vi+1 and pj+1. Indeed, N [vi, pj] contains at most 6 vertices: vi−1, vi, vi+1, pj ,
pj+1 and possibly some vertex x. Moreover, if x exists, then it is adjacent to vi−1,
since otherwise an S2,2,2 arises induced either by vertices x, pj , pj+1, pj+2, vi+2,
vi−1, vi (if pj+2 is not adjacent to vi−1) or by vertices pj, vi+1, vi+2, vi+3, vi+4,
vi−1, pj+2 (if pj+2 is adjacent to vi−1). Therefore, S cannot contain more than
three vertices in N [vi, pj], and if it contains tree vertices, then two of them are
vi+1 and pj+1. As a result, S contains neither vi+2 nor pj+2. If each of vi+2

and pj+2 has one more neighbour in S (different from vi+1 and pj+1), then A
can be extended to B, which contradicts our assumption. Therefore, we may
assume without loss of generality that pj+1 is the only neighbour of pj+2 in S.
In this case, the deletion from N [vi, pj] of the three vertices of S and adding
to it vertex pj+2 results in an independent set of size |S| − 2 in G − N [vi, pj].

320 V. Lozin, J. Monnot, and B. Ries

Therefore, α(G−N [vi, pj]) ≥ α(G) − 2. Combining with the inverse inequality,
we conclude that α(G −N [vi, pj]) = α(G) − 2. ��

Other Reductions. Two other reductions that will be helpful in the proof are
the following.

– The A∗-reduction applies to an induced A∗ (Figure 5) and consists in deleting
vertex pj+2.

– The House-reduction applies to an induced House (Figure 5) and consists
in deleting the vertices of the triangle vi+2, vi+3, pj+2.

� � �

� � �

�
�
�
�

� �
�

vi vi+1 vi+2

pj pj+1 pj+2

vi+3 � �

� �

�

�
�

vi+1 vi+2

pj+1 pj+2

vi+3

Fig. 5. Induced subgraphs A∗ (left) and House (right)

Lemma 5. The A∗-reduction does not change the independence number, and
the House-reduction reduces the independence number by exactly 1.

Proof. Assume G contains an induced A∗ and let S be an independent set con-
taining pj+2. If S does not contain vi+1, then pj+2 can be replaced by vi+2,
and if S contains vi+1, then pj+2 can be replaced by pj+1. Therefore, G has an
independent set of size |S| which does not contain pj+2 and hence the deletion
of pj+2 does not change the independence number.

Assume G contains an induced House and let S be a maximum independent
set in G. Then obviously at most one vertex of the triangle vi+2, vi+3, pj+2 be-
longs to S. On the other hand, S must contain at least one vertex of this triangle.
Indeed, if none of the three vertices belong to S, then each of them must have
a neighbour in S (else S is not maximum), but then both vi+1 and pj+1 belong
to S, which is impossible. Therefore, every maximum independent set contains
exactly one vertex of the triangle, and hence the deletion of the triangle reduces
the independence number by exactly 1. ��

3 Solving the Problem

In the subgraph of G induced by the vertices having at least one neighbor on
C = Cp, every vertex has degree at most 2 and hence every connected component
in this subgraph is either a path or a cycle. Let F be the component of this
subgraph containing the stem f . In what follows we analyze all possible cases
for F and show that in each case the apple Ap can be destroyed by means of
graph reductions described above or by other simple reductions.

On the Maximum Independent Set Problem in Subclasses 321

Lemma 6. If F is a cycle, then Ap can be destroyed by graph reductions that
change the independence number by a constant.

Proof. If F is a triangle, then, according to Lemma 1, the neighbors of F in C
are three consecutive vertices of C. In this case, F together with two consecutive
vertices of C form a House and hence the deletion of F reduces the independence
number of G by exactly one.

Assume F is a cycle of length 4 induced by vertices f1, f2, f3, f4. With the
help of Lemma 1 it is not difficult to see that the neighbors of F in C must
be consecutive vertices, say vi, . . . , vi+3, and the only possible configuration, up
to symmetry, is this: vi is a neighbor of f1, vi+1 is a neighbor of f2, vi+2 is
a neighbor of f4, vi+3 is a neighbor of f3. In this case, the deletion of vertex
vi+1 does not change the independence number of G. To show this, consider an
independent set S containing vertex vi+1. Then S does not contain 2, vi, vi+2. If
f4 ∈ S, then f1, f3 	∈ S, in which case vi+1 can be replaced by f2 in S. So, assume
f4 	∈ S. If f3 	∈ S, then we can assume that vi+3 ∈ S (else vi+1 can be replaced
by f3 in S), in which case vi+1, vi+3 can be replaced by vi+2, f3. So, assume
f3 ∈ S, and hence vi+3 	∈ S. But now vi+1 can be replaced by vi+2 in S. This
proves that for every independent set S containing vi+1, there is an independent
set of the same size that does not contain vi+1. Therefore, the deletion of vi+1

does not change the independence number of G.
Assume F is a cycle of length 5 induced by vertices f1, f2, f3, f4, f5. With the

help of Lemma 1 it is not difficult to verify that the neighbors of F in C must be
consecutive vertices, say vi, . . . , vi+4, and the only possible configuration, up to
symmetry, is this this: f1 is adjacent to vi, f2 is adjacent to vi+1, f3 is adjacent
to vi+3, f4 is adjacent to vi+4, f5 is adjacent to vi+2. But then the vertices
f2, f3, f4, f5, vi+2, vi+4, vi+5 induce an S2,2,2.

If F is a cycle of length more than 5, then an induced S2,2,2 can be easily
found. ��

Lemma 7. If F is a path with at least 5 vertices, then Ap can be destroyed by
graph reductions that change the independence number by a constant.

Proof. Assume F has at least 5 vertices f1, . . . , f5. Denote the neighbour of f3
on C by vi. Assume vi−1 has a neighbour in {f1, f5}, say f1 (up to symmetry).
By Lemma 1, f2 is adjacent either to vi−2 or vi+1.

Let first f2 be adjacent to vi+1. Then either f1 is not adjacent to vi−2, in
which case the vertices vi−2, . . . , vi+1, f1, f2, f3 induce an A, or f1 is adjacent to
vi−2, in which case f4 is adjacent to vi+2 (by Lemma 1) and hence the vertices
vi, . . . , vi+3, f2, f3, f4 induce an A. In either case, we can apply Lemma 4.

Suppose now that f2 is adjacent to vi−2. Then f1 is not adjacent to vi+1,
since otherwise f4 is adjacent to vi+2 (by Lemma 1), in which case the vertices
vi+1, . . . , vi+4, f1, f3, f4 induce an S2,2,2. As a result, vertices vi−2, . . . , vi+1, f1,
f2, f3 induce an A and we can apply Lemma 4.

The above discussion shows that vi−1 has no neighbour in {f1, f5}. By sym-
metry, vi+1 has no neighbour in {f1, f5}. Then each of vi−1 and vi+1 has a
neighbour in {f2, f4}, since otherwise f1, . . . , f5, vi together with vi−1 or with

322 V. Lozin, J. Monnot, and B. Ries

vi+1 induce an S2,2,2. Up to symmetry, we may assume that vi−1 is adjacent to
f2, while vi+1 is adjacent to f4.

If f1 is adjacent to vi−2 or f5 is adjacent to vi+2, then an induced Φ arises,
in which case we can apply the Φ-reduction. Therefore, we can assume that f1
is adjacent to vi−3, while f5 is adjacent to vi+3.

We may assume that vertex vi−2 has no neighbour x different from vi−3, vi−1,
since otherwise x must be adjacent to f1 (else vertices x, vi−2, vi−1, vi, vi+1, f1, f2
induce an S2,2,2), in which case vi−3, . . . , vi, x, f1, f2 induce an A and we can ap-
ply the AB-reduction. Similarly, we may assume that vertex f1 has no neighbour
x different from vi−3, f2. But then d(f1) = d(vi−2) = 2 and we can apply the
H-subgraph reduction with H = {vi−2, f1}. ��

Lemma 8. If F is a path with 4 vertices, then Ap can be destroyed by graph
reductions that change the independence number by a constant.

Proof. Let F be a path (f1, f2, f3, f4). Without loss of generality we assume that
f2 is adjacent to vi and f3 to vj with j > i. By Lemma 1, j = i+1 or j = i+2.

Case j = i+1. Assume f1 is adjacent to vi+2. Then vertices vi, vi+1, vi+2, vi+3,
f1, f2, f3 induce either the graph A (if f1 is not adjacent to vi+3) or the graph
A∗ (if f1 is adjacent to vi+3), in which case we can apply either Lemma 4
or Lemma 5. Therefore, we may assume that f1 is not adjacent to vi+2, and
by symmetry, f4 is not adjacent to vi−1. Then by Lemma 1, f1 must have a
neighbour in {vi−2, vi−1} and f4 must have a neighbour in {vi+2, vi+3}.

Assume that f4 is adjacent to vi+3. If vi+2 has a neighbour x outside of the
cycle C, then x is not adjacent to f4 (else F has more than 4 vertices) and hence
vi−1, vi, vi+1, vi+2, x, f3, f4 induce an S2,2,2. Therefore, the degree of vi+2 in G is
2. Similarly, the degree of f4 in G is two. But now we can apply the H-subgraph
reduction with H = {vi+2, f4}. This allows us to assume that f4 is not adjacent
to vi+3, and by symmetry, f1 is not adjacent to vi−2. But then f1 is adjacent to
vi−1 and f4 is adjacent to vi+2, in which case we can apply the Φ-reduction to
the subgraph of G induced by vi−1, vi, vi+1, vi+2, f1, f2, f3, f4.

Case j = i + 2. If f1 or f4 is adjacent to vi+1, then an induced graph A
arises, in which case we can apply Lemma 4. Then f1 must be adjacent to
vi−1, since otherwise it adjacent to vi−2 (by Lemma 1), in which case vertices
vi−2, f1, f2, f3, f4, vi, vi+1 induce an S2,2,2. By symmetry, f4 is adjacent to vi+3.

If f1 is adjacent to vi−2, then we can apply the House-reduction to the sub-
graph of G induced by vi−2, vi−1, vi, f1, f2, and if f1 is adjacent to vi−3, then
vertices vi−3, f1, f2, f3, f4, vi, vi+1 induce an S2,2,2. Therefore, we may assume
by Lemma 1 that f1 has degree 2 in G. By symmetry, f4 has has degree 2. Also,
to avoid an induced S2,2,2, we conclude that vi+1 has degree 2. But now we
apply the H-subgraph reduction with H = {f1, vi, vi+2, f4}, which reduces the
independence number of G by 4. ��

Lemma 9. If F is a path with 3 vertices, then Ap can be destroyed by graph
reductions that change the independence number by a constant.

On the Maximum Independent Set Problem in Subclasses 323

Proof. Assume F is a path (f1, f2, f3). Without loss of generality let f2 be ad-
jacent to v1. Since G is S2,2,2-free, each of f1 and f3 must have at least one
neighbor in {vp−1, vp, v2, v3}. Denote L = {vp−1, vp} and R = {v2, v3}.

Case (a): f1 and f3 have both a neighbor in R. Due to the symmetry, we may
assume without loss of generality that f1 is adjacent to v2, while f3 is adjacent
to v3. Then we may further assume that f1 is adjacent to v4, since otherwise
vertices v1, v2, v3, v4, f1, f2, f3 induced either an A (if f3 is not adjacent to v4)
or an A∗ (if f3 is adjacent to v4), in which case we can apply either Lemma 4 or
Lemma 5. But now the deletion of f3 does not change the independence number
of G. Indeed, let S be an independent set containing f3. If f1 ∈ S, then f3 can
be replaced by v3. If f1 	∈ S, then we can assume that v1 ∈ S (else f3 can be
replaced by f2), in which case f3, v1 can be replaced by f2, v2.

The above discussion allows us to assume, without loss of generality, that f1
has no neighbor in R, while f3 has no neighbor in L.

Case (b): f3 is adjacent to v3. Then we may assume that f3 is not adjacent
to v2, since otherwise we can apply the House-reduction to the subgraph of G
induced by v1, v2, v3, f3, f2. Let us show that in this case

– the degree of v2 is 2. Assume to the contrary v2 has a third neighbour x.
Then x is not adjacent to vp−1, since otherwise G contains an S2,2,2 in-
duced either by vp−1, x, v2, v1, f2, v3, v4 (if x is not adjacent to v4) or by
vp−2, vp−1, x, v2, v1, v4, v5 (if x is adjacent to v4). This implies that x is ad-
jacent to vp, since otherwise x, v2, v1, f2, f3, vp, vp−1 induced an S2,2,2. As
a result, f1 is adjacent to vp−1. Due to the degree restriction, x may have
at most one neighbour in {vp−3, vp−2, v4, v5}. By symmetry, we may as-
sume without loss of generality that x has no neighbour in {v4, v5}. Also, f3
has no neighbour in {v4, v5}, since otherwise this neighbour together with
vp−1, f1, f2, f3, v1, v2 would induce an S2,2,2. But now x, v2, v3, v4, v5, f3, f2
induce an S2,2,2. This contradiction complete the proof of the claim.

If f3 also has degree two, then we can apply the H-subgraph reduction with H =
{v3, f3}. Therefore, may assume that f3 has one more neighbour, which must be,
by Lemma 1, either v4 or v5. If f3 is adjacent to f5, then f1, f2, f3, v5, v6, v3, v2
induce an S2,2,2. Therefore, f3 is adjacent to v4. But now v3 can be deleted
without changing the independence number. Indeed, let S be an independent
set containing v3. If S does not contain v1, then v3 can be replaced by v2, and
if S contains v1, then v1, v3 can be replaced by v2, f3.

Cases (a) and (b) reduce the analysis to the situation when f1 is adjacent
to vp and non-adjacent to vp−1, while f3 is adjacent to v2 and non-adjacent to
v3. If f3 is adjacent to v4, then vertices vp, v1, v2, v3, v4, f1, f2, f3 induced the
graph Φ, in which case we can apply Lemma 3. Therefore, we can assume by
Lemma 1 that the degree of f3 is 2, and similarly the degree of f1 is 2. But now
we can apply the H-subgraph reduction with H = {f1, v1, f3}, which reduces
the independence number of G by 3. ��

324 V. Lozin, J. Monnot, and B. Ries

Lemma 10. If F is a path with 2 vertices, then Ap can be destroyed by graph
reductions that change the independence number by a constant.

Proof. If F is a path with 2 vertices, we deal with the eight cases represented in
Figure 2. It is easy to see that in cases (1) and (7), every maximum independent
set must contain exactly one of f, g and thus by deleting f, g we reduce the
independence number by exactly 1.

In case (5), the deletion of f, g also reduces the independence number by ex-
actly 1. Indeed, let S be a maximum independent set containing neither f nor
g. Since S is maximum it must contain v1, vp−2 and hence it does not contain
vp, vp−1. But then (S \ {v1}) ∪ {vp, f} is an independent set larger than S, con-
tradicting the choice of S. Therefore, every maximum independent set contains
exactly one of f and g and hence α(G − {f, g}) = α(G) − 1.

In case (2), the deletion of the set X = {vp−1, vp, v1, f, g} reduces the inde-
pendence number of the graph by exactly 2. Indeed, any independent set of G
contains at most two vertices in X , and hence α(G − X) ≥ α(G) − 2. Assume
now that S is a maximum independent set in G−X . If v2 	∈ S, then S∪{v1, g} is
an independent set in G of size α(G−X)+2. Now assume v2 ∈ S. By symmetry,
vp−2 ∈ S. Assume vp has a neighbour x in S. Then x is adjacent neither to vp−2
nor to v2, as all three vertices belong to S. Also, x cannot be adjacent to both
vp−3 and v3, since otherwise an induced S2,2,2 can be easily found. But if x is not
adjacent, say, to v3, then x, vp, v1, v2, v3, f, g induce an S2,2,2. This contradiction
shows that vp has no neighbours in S. Therefore, S ∪ {vp, f} is an independent
set in G of size α(G−X) + 2, and hence α(G) ≥ α(G−X) + 2. Combining the
two inequalities, we conclude that α(G −X) = α(G) − 2.

In case (3), we may delete g without changing the independence number,
because in any independent set S containing g, vertex g can be replaced either
by vp−1 (if S does not contain vp) or by f (if S contains vp). In case (6), we
apply the House-reduction.

In cases (4) and (8), we find another large apple A′ whose stem f ′ belongs
to a path F ′ with at least 3 vertices. In case (4), A′ is induced by the cycle
v1, . . . , vp−3, g, f with stem f ′ = vp−1, and in case (8) the apple is induced by
the cycle v3, . . . , vp, g with stem f ′ = v1. In both cases, the situation can be
handled by one of the previous lemmas. ��

Theorem 2. Let H be a graph every connected component of which is isomor-
phic either to S2,2,2 or to S1,j,k. The maximum independent set problem can be
solved for H-free graphs of maximum vertex degree at most 3 in polynomial time.

Proof. First, we show how to solve the problem in the case when H = S2,2,2. Let
G = (V,E) be an S2,2,2-free subcubic graph and let K be a large fixed constant.
We start by checking if G contains an apple Ap with p ≥ K. To this end, we
detect every induced S1,k,k with k = K/2, which can be done in time nK . If G is
S1,k,k-free, then it is obviously Ap-free for each p ≥ K. Assume a copy of S1,k,k

has been detected and let x, y be the two vertices of this copy at distance k from
the center of S1,k,k. We delete from G all vertices of V (S1,k,k) − {x, y} and all
their neighbours, except x and y, and determine if in the resulting graph there

On the Maximum Independent Set Problem in Subclasses 325

is a path connecting x to y. It is not difficult to see that this procedure can be
implemented in polynomial time.

Assume G contains an induced apple Ap with p ≥ K. If the stem of the apple
has degree 1 in G, we delete it together with its only neighbour, which destroys
the apple and reduces the independence number of G by exactly one. If the stem
has degree more than 1, we apply one of the lemmas of Section 3 to destroy Ap

and reduce the independence number of G. It is not difficult to see that all the
reductions used in the lemmas can be implemented in polynomial time.

Thus in polynomial time we reduce the problem to a graph G′ which does not
contain any apple Ap with p ≥ K, and then we find a maximum independent set
in G′ with the help of Theorem 1. This also shows that in polynomial time we
can compute α(G), since we know the difference between α(G) and α(G′). To
find a maximum independent set in G, we take an arbitrary vertex v ∈ V (G). If
α(G− v) = α(G), then there is a maximum independent set in G that does not
contain v and hence v ignored (deleted). Otherwise, v belongs to every maximum
independent set in G and hence it must be included in the solution. Therefore, in
polynomial time we can find a maximum independent set in G. This completes
the proof of the theorem in the case when H = S2,2,2.

By Theorem 1 we also know how to solve the problem in the case when
H = S1,j,k. Now we assume that H contains s > 1 connected components.
Denote by S any of the components of H and let H ′ be the graph obtained from
H by deleting S. Consider an H-free graph G. If G does not contain a copy of
S, the problem can be solved for G by the first part of the proof. So, assume G
contains a copy of S. By deleting from G the vertices of [S] we obtain a graph
G′ which is H ′-free and hence the problem can be solved for G′ by induction on
s. The number of vertices in [S] is bounded by a constant independent of |V (G)|
(since |V (S)| < |V (H)| and every vertex of S has at most three neighbours in
G), and hence the problem can be solved for G in polynomial time as well, which
can be easily seen by induction on the number of vertices in [S]. ��

4 Conclusion

Unless P = NP , the maximum independent set problem can be solved in poly-
nomial time for H-free subcubic graphs only if every connected component of H
has the form Si,j,k represented in Figure 1. Whether this condition is sufficient
for polynomial-time solvability of the problem is a challenging open question.
In this paper, we contributed to this topic by solving the problem in the case
when every connected component of H is isomorphic either to S2,2,2 or to S1,j,k.
Our poof also shows that, in order to answer the above question, one can be
restricted to H-free subcubic graphs where H is connected. In other words, one
can consider Si,j,k-free, or more generally, Sk,k,k-free subcubic graphs. We be-
lieve that the answer is positive for all values of k and hope that our solution
for k = 2 can base a foundation for algorithms for larger values of k.

326 V. Lozin, J. Monnot, and B. Ries

References

1. Alekseev, V.E.: On the local restrictions effect on the complexity of finding the
graph independence number. In: Combinatorial-Algebraic Methods in Applied
Mathematics, pp. 3–13. Gorkiy University Press (1983) (in Russian)

2. Bodlaender, H.L., Thilikos, D.M.: Treewidth for graphs with small chordality. Dis-
crete Appl. Math. 79, 45–61 (1997)

3. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guie to the Theory
of NP-Completeness, 5th edn. W.H. Freeman (1979) ISBN 0-7167-1045-5

4. Gerber, M.U., Hertz, A., Schindl, D.: P5-free augmenting graphs and the maximum
stable set problem. Discrete Applied Mathematics 132, 109–119 (2004)

5. Lozin, V., Milanič, M.: A polynomial algorithm to find an independent set of
maximum weight in a fork-free graph. J. Discrete Algorithms 6, 595–604 (2008)

6. Lozin, V.V., Milanic, M., Purcell, C.: Graphs Without Large Apples and
the Maximum Weight Independent Set Problem. Graphs and Combinatorics,
doi:10.1007/s00373-012-1263-y

7. Lozin, V.V., Mosca, R.: Maximum regular induced subgraphs in 2P3-free graphs.
Theoret. Comput. Sci. 460, 26–33 (2012)

8. Lozin, V.V., Mosca, R.: Maximum independent sets in subclasses of P5-free graphs.
Information Processing Letters 109, 319–324 (2009)

9. Maffray, F.: Stable sets in k-colorable P5-free graphs. Information Processing Let-
ters 109, 1235–1237 (2009)

10. Mosca, R.: Some results on maximum stable sets in certain P5-free graphs. Discrete
Applied Mathematics 132, 175–183 (2003)

11. Minty, G.J.: On maximal independent sets of vertices in claw-free graphs. J. Com-
bin. Theory Ser. B 28, 284–304 (1980)

Construction Techniques for Digraphs

with Minimum Diameter

Mirka Miller1,2,3,4, Slamin5, Joe Ryan6, and Edy Tri Baskoro4,6

1 School of Mathematical and Physical Sciences, University of Newcastle, Australia
2 Department of Mathematics, University of West Bohemia, Pilsen, Czech Republic

3 Department of Informatics, King’s College London, United Kingdom
4 Department of Mathematics, ITB Bandung, Indonesia

5 School of Information Systems, University of Jember, Indonesia
6 School of Electrical Engineering and Computer Science, University of Newcastle,

Australia
{mirka.miller,joe.ryan}@newcastle.edu.au, slamin@unej.ac.id,

ebaskoro@gmail.com

Abstract. We consider the so-called order/degree problem, that is, to
determine the smallest diameter of a digraph given order and maximum
out-degree. There is no general efficient algorithm known for the con-
struction of such optimal digraphs but various construction techniques
for digraphs with minimum diameter have been proposed. In this paper,
we survey the known techniques.

1 Introduction

In communication network design, there are several factors which should be con-
sidered. For example, each processing element should be directly connected to
a limited number of other processing elements in such a way that there always
exists a connection route from one processing element to another. Furthermore,
in order to minimise the communication delay between processing elements, the
directed connection route must be as short as possible. Informally, a commu-
nication network can be modelled as a digraph, where each processing element
is represented by a vertex and the directed connection between two processing
elements is represented by an arc. The number of vertices (processing elements)
is called the order of the digraph and the number of arcs (directed connections)
incident from a vertex is called the out-degree of that vertex. The diameter is de-
fined to be the largest of the shortest paths (directed connection routes) between
any two vertices of the digraph.

In graph-theoretical terms, the problems in communication network design can
be modelled as optimal digraph problems. The example described above corre-
sponds to the so-called order/degree problem: Construct digraphs with the small-
est possible diameter K(n, d) for a given order n and maximum out-degree d.

Let G(n, d, k) denotes the set of all digraphs G, not necessarily diregular, of
order n, maximum out-degree d, and diameter k. Then we have the following
well known optimisation problem for digraphs,

T. Lecroq and L. Mouchard (Eds.): IWOCA 2013, LNCS 8288, pp. 327–336, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

328 M. Miller et al.

The degree/diameter problem: determine the largest orderN(d, k) of a digraph
given maximum out-degree d and diameter at most k.

A related but less well known problem is
The order/degree problem: determine the smallest diameter K(n, d) of a di-

graph given order n and maximum out-degree d.
For the degree/diameter problem, there is a natural upper bound on the

number of vertices of the digraph given maximum out-degree d and diameter at
most k, namely,

N(d, k) =

k∑
i=0

ni ≤ 1 + d + d2 + . . .+ dk =
dk+1 − 1

d − 1
(1)

The right-hand side of (1) is called the Moore bound and is denoted by M(d, k).
A digraph of (necessarily constant) out-degree d, diameter k and order equal to
M(d, k) is called a Moore digraph. It is well known that Moore digraphs exist
only in the trivial cases when d = 1 (directed cycles of length k + 1, Ck+1, for
any k ≥ 1) or k = 1 (complete digraphs of order d + 1, Kd+1, for any d ≥ 1)
[10,2].

With regards to the order/degree problem, we can derive a lower bound for
the diameter by performing a log operation and taking into account that for
d > 1 and k > 1 the Moore bound is not attainable. Then we obtain

K(n, d) ≥ �logd(n(d − 1) + d)� − 1 (2)

where 1 < d ≤ n− 1 and �x� is the smallest integer larger than x.
The known results on this problem are the generalised deBruijn digraphs of

order n, N(d, k − 1) < n ≤ dk [6] and the generalised Kautz digraphs of order
n, N(d, k − 1) < n ≤ dk and order n = dk + dk−b, for odd b, [7]. Using the line
digraph technique, it is shown in [5] that it is possible to construct digraphs on
n = dk + dk−b vertices and diameter k with b odd or even. More general results
are the digraphs of order n, N(d, k− 1) < n ≤ dk + dk−1. These digraphs can be
obtained by several constructions such as, generalised digraphs on alphabets [4],
partial line digraphs [3], and the construction based on deletion of some vertices
whose out-neighbourhoods are identical [9]. In the case d = 2 and k ≥ 4, the best
known results are the digraphs of order n, N(2, k−1) < n ≤ 25×2k−4 [3,9] (here
the upper bound is obtained by the Alegre digraph and its line digraphs). In the
next section we describe several construction techniques for large digraphs. In
Section 3 we present the characteristics and classifications of the construction
techniques.

2 Construction Techniques

In this section we describe the construction techniques for large digraphs with
minimum diameter: the generalised deBruijn digraphs, generalised Kautz di-
graphs, line digraphs, digon reduction, vertex deletion scheme, and voltage as-
signment technique.

Construction Techniques for Digraphs with Minimum Diameter 329

2.1 Generalised deBruijn Digraphs

Imase and Itoh [6] constructed digraphs for given arbitrary order n and out-
degree d, 1 < d < n, by the following procedure. Let the vertices of the digraphs
be labeled by 0, 1, ..., n− 1. A vertex u is adjacent to v, if

v ≡ du+ i (mod n), i = 0, 1, ..., d− 1 (3)

For example, Figure 1 shows the digraph of order n = 8, out-degree d = 2
and diameter k = 3 which is obtained from this construction.

0

1

2

4 6

5 7

3

Fig. 1. The generalised deBruijn digraph G ∈ G(8, 2, 3)

We note that when n = dk, the digraphs obtained from this construction
are isomorphic to the deBruijn digraphs of degree d and diameter k (see, for
example, the digraph in Figure 1).

2.2 Generalised Kautz Digraphs

Imase and Itoh [7] presented a second construction of digraphs for given arbitrary
order n and out-degree d, 1 < d < n, by the following procedure. Let the vertices
of digraphs be labeled by 0, 1, ..., n− 1. A vertex u is adjacent to v, if

v ≡ −du− i (mod n), i = 1, 2, ..., d (4)

For example, Figure 2 shows the digraph of n = 9, out-degree d = 2 and
diameter k = 3 that is obtained by this construction.

Note that when n = dk + dk−1, the digraphs obtained from this construction
are isomorphic to the Kautz digraphs of degree d and diameter k.

Fiol, Llado and Villar [4] constructed generalisations of Kautz digraphs using
their representation as digraphs on alphabets, that is, digraphs whose vertices
are represented by words from a given alphabet and whose arcs are defined by
an adjacency rule that relates pairs of words.

330 M. Miller et al.

0 5

7

2 3

4 1

68

Fig. 2. The generalised Kautz digraph G ∈ G(9, 2, 3)

2.3 Line Digraphs

Let G = (V,A) and let N be the multiset of all walks of length 2 in G. The line
digraph of a digraph G, L(G) = (A,N), that is, the set of vertices of L(G) is
equal to the set of arcs of G and the set of arcs of L(G) is equal to the set of
walks of length 2 in G. This means that a vertex uv of L(G) is adjacent to a
vertex wx if and only if v = w. As an illustration, Figure 3 shows an example of
a digraph and its line digraph.

The order of the line digraph L(G) is equal to the number of arcs in the
digraph G. For a diregular digraph G of out-degree d ≥ 2, the sequence of line
digraph iterations

L(G), L2(G) = L(L(G)), ..., Li(G) = L(Li−1(G)), ...

is an infinite sequence of diregular digraphs of degree d.

F 2
2

00

F 2
1

0 1 11

01

10

Fig. 3. The digraph F 2
1 and its line digraph F 2

2

Fiol, Yebra, and Alegre [5] constructed the digraphs with minimum diameter
using line digraph iterations applied to a modification of the so-called F d

k digraph.
Another interesting construction for digraphs with minimum diameter was

presented by Fiol and Llado [3], based on their concept of partial line digraph.

Construction Techniques for Digraphs with Minimum Diameter 331

2.4 Digon Reduction

A digon {u, v} is a pair of arcs (u, v) and (v, u) in a digraph G. Alternatively,
we can say that a digon is K2, a directed clique on two vertices in G. Miller and
Fris [8] gave a construction technique for digraphs of degree 2 with minimum
diameter using digon reduction scheme which they applied together with line
digraph iterations. The construction procedure is as follows.

Let G ∈ G(n, d, k) be a digraph of order n, out-degree d = 2 and diameter k
which contains p digons. Then G′ ∈ G(n − 1, d, k′), for k′ ≤ k, can be obtained
from G by ‘gluing’ two vertices which share a digon. This procedure can be
repeated as many time as there are digons in the base digraph. For example,
Figure 4(b) shows the digraph G′ which is obtained from digraph G (Figure
4(a)) by gluing two vertices y and z.

o

yz

o

q

p

sr

u

t

yx

v

wz

t

u

r s

p

q

w

v

x

(a) (b)

Fig. 4. The digraphs G ∈ G(12, 2, 3) and G′ ∈ G(11, 2, 3)

A generalisation of the digon reduction is Kd-reduction, that is, ‘gluing to-
gether’ all the vertices of a directed clique Kd.

Another generalisation can be obtained by gluing together a subdigraph H of
G to form a single vertex h, if the multiset of the out-neighbours of V (H) within
V (G)\V (H) contains at most d vertices. If the original digraph G had diameter
k then the digraph G−H + {h} has diameter at most k.

2.5 Vertex Deletion Scheme

Vertex deletion scheme was introduced in [9] as described in the following pro-
cedure.

332 M. Miller et al.

Let G ∈ G(n, d, k) and N+(u) = N+(v) for two vertices u, v ∈ G, Then
G1 ∈ G(n − 1, d, k′), k′ ≤ k is derived from G by deleting vertex u together
with its outgoing arcs and reconnecting the incoming arcs of u to the vertex
v. Figure 5(a) shows an example of digraph G ∈ G(12, 2, 3) with the property
that some vertices have identical out-neighbourhoods. For example, N+(7) =
N+(12). Deleting vertex 12 together with its outgoing arcs and then reconnecting
its incoming arcs to vertex 7 (since N+(7) = N+(12)), we obtain a new digraph
G1 ∈ G(11, 2, 2) as shown in Figure 5(b).

(a) (b)

1

2

11

10

0

3

6

5

87

4

1

2

10

0

3

6

5

12 4

7

8

11

Fig. 5. The digraph G ∈ G(12, 2, 3) and G1 ∈ G(11, 2, 3) obtained from G

Note that line digraphs are one class of digraphs that is suitable as base
digraphs for a vertex deletion scheme since line digraphs contain pairs of vertices
with the same out-neighbourhoods. However, line digraphs are not the only
possible base digraphs for this scheme. Notably, the Alegre digraph which is not
a line digraph but contains 10 pairs of vertices with the same out-neighbourhoods
can be used for vertex deletion.

2.6 Voltage Assignments

One of the most successful construction techniques is voltage assignment [1].
Interestingly, it was first introduced for digraphs but the subsequent modification
for undirected graphs has proved to be the single most successful technique
currently in use. So far this has not been the case for directed graphs. However,
we include the technique here for completeness and also because there is a good
chance that it could be used to produce new optimal digraphs in the future. The
technique can be described as follows.

Let G be a digraph and A(G) be the set of arcs of G. Let Γ be an arbitrary
group. Any mapping α : A(G) → Γ is called a voltage assignment. The lift
of G by α, denoted by Gα, is the digraph defined as follows: the vertex-set
V (Gα) = V (G) × Γ , the arc-set A(Gα) = A(G) × Γ , and there is an arc (a, f)
in Gα from (u, g) to (v, h) if and only if f = g, a is an arc from u to v, and
h = gα(a).

Construction Techniques for Digraphs with Minimum Diameter 333

For example, Figure 6 shows the digraph G and its lift Gα with Γ = Z3 and
the voltage assignment α(a) = α(e) = 2, α(b) = α(d) = 1, α(c) = α(f) = α(g) =
α(h) = 0.

w x

Gα

(v,1)(u,1)

(v,2)

(u,2)(v,0)

(u,0)

(x,2)(x,1)

(x,0)

(w,1) (w,2)

(w,0)

v

a b

u
G

c d

h

g

e f

Fig. 6. The digraph G and its lift Gα

3 Characterisation and Classification

In this section, we discuss the characteristics of the various construction tech-
niques.

Generalised deBruijn digraphs: Given order n and maximum out-degree d, we
can construct a digraph directly using the formula given in (3). The resulting
digraphs are always diregular of degree d. The minimum diameter is achieved
when the order N(d, k − 1) < n ≤ dk.

Generalised Kautz digraphs: Given order n and maximum out-degree d, we
can construct a digraph directly using the formula given in (4). The generated
digraphs are always diregular of degree d. The minimum diameter is achieved
when the order N(d, k − 1) < n ≤ dk or n = dk + dk−b, for odd b.

Line digraphs: Given order n and maximum out-degree d, we can construct
a digraph based on another digraph with smaller order and the same maximum
out-degree. The generated digraphs are always diregular of degree d. The mini-
mum diameter is achieved when the order N(d, k−1) < n ≤ dk or n = dk+dk−b,
for any 1 ≤ b ≤ k − 1.

Digon reduction: Given order n and maximum out-degree d = 2, we can
construct a digraph based on another digraph with larger order that contains
digons or based on another digraph with smaller order by applying line digraph
iteration. The generated digraphs are always diregular of degree d. The minimum
diameter is achieved when the order N(d, k − 1) < n ≤ dk + dk−1, for d = 2.

334 M. Miller et al.

Generalised digraphs on alphabets: Given order n and maximum out-degree d,
we can construct a digraph directly using given formulas. The generated digraphs
are very likely to be non-diregular. The minimum diameter is achieved when the
order N(d, k − 1) < n ≤ dk + dk−1.

Partial line digraphs: Given order n and maximum out-degree d, we can
construct a digraph based on another digraph with smaller order and the same
maximum out-degree. The generated digraphs are very likely to be non-diregular.
The minimum diameter is achieved when the order N(d, k− 1) < n ≤ dk + dk−1

and N(d, k − 1) < n ≤ dk + dk−1 + dk−4, for d = 2 and k ≥ 4.
Vertex deletion scheme: Given order n andmaximum out-degree d, we can con-

struct a digraph based on another digraph with larger order and the same max-
imum out-degree that contains vertices with the identical out-neighbourhoods.
The generated digraphs are very likely to be non-diregular. The minimum diam-
eter is achieved when the order N(d, k − 1) < n ≤ dk + dk−1, for d ≥ 3 and
N(d, k − 1) < n ≤ dk + dk−1 + dk−4, for d = 2 and k ≥ 4.

Voltage assignments: Given order n and maximum out-degree d, we can
construct a digraph based on another digraph with smaller order and the same
maximum out-degree. The generated digraphs are diregular.

Table 1. The range of order n when minimum diameter is achieved by different tech-
niques

Technique Order

Generalised de Bruijn digraphs N(d, k − 1) < n ≤ dk

Generalised Kautz digraphs (a) N(d, k − 1) < n ≤ dk

(b) n = dk + dk−b for odd 0 < b < k

Line digraphs (a) N(d, k − 1) < n ≤ dk

(b) n = dk + dk−b for any 0 < b < k

Digon reduction N(2, k − 1) < n ≤ 2k + 2k−1

Generalised digraphs on alphabets N(d, k − 1) < n ≤ dk + dk−1

Partial line digraphs N(d, k − 1) < n ≤ dk + dk−1 for d ≥ 3
N(2, k − 1) < n ≤ 25 · 2k−4 for k ≥ 4

Vertex deletion scheme N(d, k − 1) < n ≤ dk + dk−1 for d ≥ 3

N(2, k − 1) < n ≤ 25 · 2k−4 for k ≥ 4

In Table 1, we summarise the range of order n of the digraphs with out-
degree d ≥ 2 when the minimum diameter k, for k ≥ 2, is achieved by different
construction techniques.

We conclude with some open problems.

Problem 1. Find other construction techniques that generate diregular digraphs
with minimum diameter for the same or better range of order n as given by these
three constructions.

Construction Techniques for Digraphs with Minimum Diameter 335

Problem 2. Find digraphs which are larger than Kautz digraphs for any out-
degree d > 2 and diameter k > 1.

References

1. Baskoro, E.T., Branković, L., Miller, M., Plesńık, J., Ryan, J., Siráň, J.: Large
digraphs with small diameter: A voltage assignment approach. JCMCC 24, 161–
176 (1997)

2. Bridges, W.G., Toueg, S.: On the impossibility of directed Moore graphs. J. Com-
binatorial Theory Series B29, 339–341 (1980)

3. Fiol, M.A., Llado, A.S.: The partial line digraph technique in the design of large
interconnection networks. IEEE Trans. on Computers 41(7), 848–857 (1992)

4. Fiol, M.A., Llado, A.S., Villar, J.L.: Digraphs on alphabets and the (d,N) digraph
problem. Ars Combinatoria 25C, 105–122 (1988)

5. Fiol, M.A., Yebra, J.L.A., Alegre, I.: Line digraph iterations and the (d, k) digraph
problem. IEEE Transactions on Computers C-33, 400–403 (1984)

6. Imase, M., Itoh, M.: Design to minimize a diameter on building block network.
IEEE Trans. on Computers C-30, 439–442 (1981)

7. Imase, M., Itoh, M.: A design for directed graphs with minimum diameter. IEEE
Trans. on Computers C-32, 782–784 (1983)

8. Miller, M., Fris, I.: Minimum diameter of diregular digraphs of degree 2. Computer
Journal 31, 71–75 (1988)

9. Miller, M.: On the monotonicity of minimum diameter with respect to order and
maximum out-degree. In: Du, D.-Z., Eades, P., Sharma, A.K., Lin, X., Estivill-
Castro, V. (eds.) COCOON 2000. LNCS, vol. 1858, pp. 193–201. Springer, Heidel-
berg (2000)

10. Plesńık, J., Znám, Š.: Strongly geodetic directed graphs. In: Acta F. R. N. Univ.
Comen. - Mathematica XXIX, pp. 29–34 (1974)

Appendix

In Table 2, we compare the values of diameter obtained by each construction
technique for order 1 ≤ n ≤ 50 and out-degree d = 2.

Technique:

GBD Generalised deBruijn digraphs
GKD Generalised Kautz digraphs
LD Line digraphs
DR Digon reduction
GDA Generalised digraphs on alphabets
PLD Partial line digraphs
VDS Vertex deletion scheme
VA Voltage assignments

336 M. Miller et al.

Table 2. The diameter of digraphs obtained by various technique for d = 2 and n ≤ 50

n GBD GKD LD DR GDA PLD VDS VA

1 0 0 0 0 0 0 0 N/A
2 1 1 1 1 1 1 1 N/A
3 1 1 1 1 1 1 1 N/A
4 2 2 2 2 2 2 2 2
5 3 3 2 2 2 2 2 N/A
6 3 3 2 2 2 2 2 2
7 3 3 3 3 3 3 3 N/A
8 3 3 3 3 3 3 3 3
9 4 3 3 3 3 3 3 3
10 4 4 3 3 3 3 3 3
11 4 4 4 3 3 3 3 N/A
12 4 3 3 3 3 3 3 3
13 4 4 4 4 4 4 4 N/A
14 4 4 4 4 4 4 4 4
15 4 4 4 4 4 4 4 4
16 4 4 4 4 4 4 4 4
17 5 5 5 5 4 4 4 N/A
18 5 4 4 4 4 4 4 4
19 5 5 5 4 4 4 4 N/A
20 5 5 4 4 4 4 4 4
21 5 5 5 4 4 4 4 4
22 5 5 5 4 4 4 4 4
23 5 5 5 4 4 4 4 N/A
24 5 4 4 4 4 4 4 4
25 5 5 5 5 5 4 4 4
26 5 5 5 5 5 5 5 5
27 5 5 5 5 5 5 5 5
28 5 5 5 5 5 5 5 5
29 5 5 5 5 5 5 5 N/A
30 5 5 5 5 5 5 5 5
31 5 5 5 5 5 5 5 N/A
32 5 5 5 5 5 5 5 5
33 6 6 6 6 5 5 5 5
34 6 6 5 6 5 5 5 5
35 6 6 6 6 5 5 5 5
36 6 5 5 5 5 5 5 5
37 6 6 6 6 5 5 5 N/A
38 6 6 6 5 5 5 5 5
39 6 6 6 5 5 5 5 5
40 6 6 5 5 5 5 5 5
41 6 6 6 5 5 5 5 N/A
42 6 6 6 5 5 5 5 5
43 6 6 6 5 5 5 5 N/A
44 6 6 6 5 5 5 5 5
45 6 6 6 5 5 5 5 5
46 6 6 6 5 5 5 5 5
47 6 6 6 5 5 5 5 N/A
48 6 6 6 5 5 5 5 5
49 6 6 6 6 6 5 5 5
50 6 6 6 6 6 5 5 5

Suffix Tree of Alignment:

An Efficient Index for Similar Data

Joong Chae Na1, Heejin Park2, Maxime Crochemore3, Jan Holub4,
Costas S. Iliopoulos3, Laurent Mouchard5, and Kunsoo Park6,�

1 Sejong University, Korea
2 Hanyang University, Korea
3 King’s College London, UK

4 Czech Technical University in Prague, Czech Republic
5 University of Rouen, France

6 Seoul National University, Korea
kpark@snu.ac.kr

Abstract. We consider an index data structure for similar strings. The
generalized suffix tree can be a solution for this. The generalized suffix
tree of two strings A and B is a compacted trie representing all suffixes
in A and B. It has |A|+ |B| leaves and can be constructed in O(|A|+ |B|)
time. However, if the two strings are similar, the generalized suffix tree
is not efficient because it does not exploit the similarity which is usually
represented as an alignment of A and B.

In this paper we propose a space/time-efficient suffix tree of alignment
which wisely exploits the similarity in an alignment. Our suffix tree for
an alignment of A and B has |A|+ ld+ l1 leaves where ld is the sum of the
lengths of all parts of B different from A and l1 is the sum of the lengths
of some common parts of A and B. We did not compromise the pattern
search to reduce the space. Our suffix tree can be searched for a pattern
P in O(|P | + occ) time where occ is the number of occurrences of P in
A and B. We also present an efficient algorithm to construct the suffix
tree of alignment. When the suffix tree is constructed from scratch, the
algorithm requires O(|A| + ld + l1 + l2) time where l2 is the sum of the
lengths of other common substrings of A and B. When the suffix tree of
A is already given, it requires O(ld + l1 + l2) time.

Keywords: Indexes for similar data, suffix trees, alignments.

1 Introduction

The suffix tree of a string S is a compacted trie representing all suffixes of
S [18,22]. Over the years, the suffix tree has not only been a fundamental data
structure in the area of string algorithms but also it has been used for many
applications in engineering and computational biology. The suffix tree can be

� Corresponding author.

T. Lecroq and L. Mouchard (Eds.): IWOCA 2013, LNCS 8288, pp. 337–348, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

338 J.C. Na et al.

constructed in O(|S|) time for a constant alphabet [18,21] and an integer alpha-
bet [8], where |S| denotes the length of S. The suffix tree has |S| leaves and
requires O(|S|) space.

We consider storing and indexing multiple data which are very similar. Nowa-
days, tons of new data are created every day. Some data are totally original
and substantially different from existing data. Others are, however, created by
modifying some existing data and thus they are similar to the existing data. For
example, a new version of a source code is a modification of its previous ver-
sion. Today’s backup is almost the same as yesterday’s backup. An individual
Genome is more than 99% identical to the Human reference Genome (the 1000
genome project [1]). Thus, storing and indexing similar data in an efficient way
is becoming more and more important.

Similar data are usually stored efficiently: When new data are created, they
are aligned with the existing ones. Then, the resulting alignment shows the
common and different parts of the new data. By only storing the different parts
of the new data, the similar data can be stored efficiently.

When it comes to indexing, however, neither the suffix tree nor any variant of
the suffix tree uses this similarity or alignment to index similar data efficiently.
Consider the generalized suffix tree [2,10] for two similar strings A = aaatcaaa

and B = aaatgaaa. Three common suffixes aaa, aa, a are stored twice in the
generalized suffix tree. Moreover, two similar suffixes aaatcaaa and aaatgaaa are
stored in distinct leaves even though they are very similar. Thus, the generalized
suffix tree has |A|+ |B| leaves, most of which are redundant.

Recently, there have been some studies concerning efficient indexes for similar
strings. Mäkinen et al. [16,17] first proposed an index for similar (repetitive)
strings using run-length encoding, a suffix array, and BWT [5]. Huang et al. [11]
proposed an index of size O(n + N logN) bits where n is the total length of
common parts in one string, N is the total length of different parts in all strings.
Their basic approach is building separately data structures for common parts
and ones for different parts between strings. A self-index based on LZ77 com-
pression [23] has been also developed due to Kreft and Navarro [13]. Another
index based on Lemple-Ziv compression scheme is due to Do et al. [7]. They
compressed sequences using a variant of the relative Lempel-Ziv (RLZ) com-
pression scheme [14] and used a number of auxiliary data structures to support
fast pattern search. Navarro [19] gave a short survey on some of these indexes.

Although these studies assume slightly different models on similar strings,
most of them adopt classical compressed indexes to utilize the similarity among
strings, that is, they focus on how to efficiently represent or encode common
(repetitive) parts in strings. However, none of them support linear-time pattern
search. Moreover, their pattern search time do not depend on only the pattern
length but also the text length, and some indexes require (somewhat compli-
cated) auxiliary data structures to improve pattern search time. In short, those
data structures achieve smaller indexes by sacrificing pattern search time.

In this paper, we propose an efficient index for similar strings without sac-
rificing the pattern search time. It is a novel data structure for similar strings,

Suffix Tree of Alignment: An Efficient Index for Similar Data 339

named suffix tree of alignment. We assume that strings (texts) are aligned with
each others, e.g., two strings A and B can be represented as α1β1 . . . αkβkαk+1

and α1δ1 . . . αkδkαk+1, respectively, where αi’s are common chunks and βi’s and
δi’s are chunks different from the other string. (We note that the given align-
ment is not required to be optimal.) Then, our suffix tree for A and B has the
following properties. (It should be noted that our index and algorithms can be
generalized to three or more strings, although we only describe our contribution
for two strings for simplicity.)

– Space Reduction: Our suffix tree has |A| + ld + l1 leaves where ld is the
sum of the lengths of all chunks of B different from A (i.e., Σk

i=0|δi|) and
l1 is the sum of the lengths of some common chunks of A and B. More
precisely, l1 is Σk

i=0|α∗i | where α∗i is the longest suffix of αi appearing at
least twice in A or in B. The value of α∗i is O(logmax(|A|, |B|)) on average
for random strings [12]. Furthermore, the values of ld and l1 are very small
in practice. For instance, consider two human genome sequences from two
different individuals. Since they are more than 99% identical, ld is very small
compared to |B|. We have computed α∗i for human genome sequences and
found out α∗i is very close to logmax(|A|, |B|), even though human genome
sequences are not random. Hence, our suffix tree is space-efficient for similar
strings. Note that the space of our index can be further reduced in the form
of compressed indexes such as the compressed suffix tree [9,20]. Our index is
an important building block (rather than a final product) towards the goal
of efficient indexing for highly similar data.

– Pattern Search: Our index is achieved without compromising the linear-
time pattern search. That is, using our suffix tree, one can search a pattern
P in O(|P | + occ) time, where occ is the number of occurrences of P in A
and B. In addition to the linear-time pattern search, we believe that our
index supports the most of suffix tree functionalities, e.g., regular expression
matchings, matching statistics, approximate matchings, substring range re-
porting, and so on [3,4,10], because our index is a kind of suffix trees.

We also present an efficient algorithm to construct the suffix tree of alignment.
One näıve method to construct our suffix tree is constructing the generalized suf-
fix tree and deleting unnecessary leaves. However, it is not time/space-efficient.

– When our suffix tree for the strings A and B is constructed from scratch, our
construction algorithm requires O(|A|+ ld+ l1+ l2) time where l2 is the sum
of the lengths of other parts of common chunks of A and B. More precisely,
l2 is Σk+1

i=1 |α̂i| where α̂i is the longest prefix of αi such that diαi appears at
least twice in A and B (di is the character preceding αi in B. Likewise with
l1, the value of l2 is also very small compared to |A| or |B| in practice.

– Our algorithm is incremental, i.e., we construct the suffix tree of A and then
transform it to the suffix tree of the alignment. Thus, when the suffix tree
of A is already given, it requires O(ld + l1 + l2) time. O(ld + l1 + l2) is
the minimum time required to make our index a kind of suffix tree so that
linear-time pattern search is possible on both A and B. Furthermore, our

340 J.C. Na et al.

ba

a
#

b

b
a
a
b
a
#

aab b

a

#

a
a
a
b
b
a
a
b
a
#

b
a
a
b
a
#

a
a
b
b
a
a
b
a
#

a
a
b
b
a
a
b
a
#b

a
a
b
a
##

Fig. 1. The suffix tree of string aaabaaabbaaba#

algorithm can be applied to the case when some strings are newly inserted
or deleted.

– Our algorithm uses constant-size extra working space except for our suffix
tree itself. Thus, it is space-efficient compared to the näıve method.

The space/time-efficiency of our construction algorithm becomes large when
handling many strings. The efficiency is feasible when the alignment has been
computed in advance, which is the case in some applications. For instance, in
the Next-Generation Sequencing, the reference genome sequence is given and
the genome sequence of a new individual is obtained by aligning against the
reference sequence. So, when a string (a new genome sequence) is obtained, the
alignment is readily available. Moreover, since our index does not require that
the given alignment is optimal, we can use a near-optimal alignment instead
of the optimal alignment if the time to compute an alignment is an important
issue. Since the given strings are assumed to be highly similar, a near-optimal
alignment can be computed fast from exact string matching instead of dynamic
programming requiring much time.

2 Preliminaries

2.1 Suffix Trees

Let S be a string over a fixed alphabet Σ. A substring of S beginning at the first
position of S is called a prefix of S and a substring ending at the last position of
S is called a suffix of S. We denote by |S| the length of S. We assume that the
last character of S is a special symbol # ∈ Σ, which occurs nowhere else in S.

The suffix tree of a string S is a compacted trie with |S| leaves, each of
which represents each suffix of S. Figure 1 shows the suffix tree of a string
aaabaaabbaaba#. For formal descriptions, the readers are referred to [6,10]. Mc-
Creight [18] proposed a linear-time construction algorithm using auxiliary links
called suffix links and also an algorithm for an incremental editing, which trans-
form the suffix tree of S = αβγ to that of S′ = αδγ for some (possibly empty)
string α, β, δ, γ.

Suffix Tree of Alignment: An Efficient Index for Similar Data 341

a

a
$

b

ab b a ba

aa

baaba#

a

ba a

#
$

a
b
a
b

a
$

a
b
b
a
a
b
a
#

b
a
a
b
b
a
b
a
$

a #

a
b
a
b

a
$

a
b
b
a
a
b
a
#

b

a
a
b
b
a
b
a
$ b

a
b
a
$ab

ba
ab
a# b

aa
bb
ab
a$ baba$

b

Fig. 2. The generalized suffix tree of two strings A = aaabaaabbaaba# and B =
aaabaabaabbaba$. Leaves denoted by white squares and gray squares represent suf-
fixes of A and B, respectively.

The generalized suffix tree of two strings A and B is a suffix tree representing
all suffixes of the two strings. It can be obtained by constructing the suffix tree
of the concatenated string AB where it is assumed that the last characters of A
and B are distinct [2,10]. Thus, the generalized suffix tree has |A| + |B| leaves
and can be constructed in O(|A| + |B|) time. Figure 2 shows the generalized
suffix tree of two strings aaabaaabbaaba# and aaabaabaabbaba$.

2.2 Alignments

Given two strings A and B, an alignment of A and B is a mapping between the
two strings that represents how A can be transform to B by replacing substrings
of A into those of B. For example, let A = αβγ and B = αδγ for some strings
α, β, γ, and δ (= β). Then, we can get B from A by replacing β with δ. We
denote this replacement by alignment α(β/ δ)γ.

More generally, an alignment of two strings A = α1β1 . . . αkβkαk+1 and B =
α1δ1 . . . αkδkαk+1, for some k ≥ 1, can be denoted by α1(β1/ δ1) . . . αk(βk/ δk)
αk+1. For simplicity, we assume that both A and B end with the special symbol
∈ Σ, which is contained in αk+1. Without loss of generality, we assume the
following conditions are satisfied for every i = 1, . . . , k.

– αi+1 is not empty (α1 can be empty).
– Either βi or δi can be empty.
– The first characters of βiαi+1 and δiαi+1 are distinct.

Note that these conditions are satisfied for the optimal alignments by most of
popular distance measures such as the edit distance [15]. Moreover, alignments
unsatisfying the conditions can be easily converted to satisfy the conditions. If
αi+1 (i = 1, . . . , k− 1) is empty, βi and βi+1 (δi and δi+1) can be merged. (Note
that αk+1 cannot be empty since # is contained in αk+1.) If both βi and δi are

342 J.C. Na et al.

empty, αi and αi+1 can be merged. Finally, if the first characters of βiαi+1 and
δiαi+1 are identical (say c), we include c in αi instead of βiαi+1 and δiαi+1.

3 Suffix Tree of Simple Alignments

In this section, we define the suffix tree of a simple alignment (k = 1) and present
how to construct the suffix tree.

3.1 Definitions

For some strings α, β, γ, and δ, let α(β/ δ)γ be an alignment of two strings
A = αβγ and B = αδγ. We define suffixes of the alignment, called alignment-
suffixes (for short a-suffixes). Let αa and αb be the longest suffixes of α which
occur at least twice in A and B, respectively, and let α∗ be the longer of αa and
αb. That is, α∗ is the longest suffix of α which occurs at least twice in A or in
B. Then, there are 4 types of a-suffixes as follows.

1. a suffix of γ,
2. a suffix of α∗βγ longer than γ,
3. a suffix of α∗δγ longer than γ,
4. α′(β/ δ)γ where α′ is a suffix of α longer than α∗. (Note that an a-suffix of

this type represents two normal suffixes derived from A and B.)

For example, consider an alignment aaabaa(abba/baabb)aba#. Then, αa and
αb are baa and aabaa, respectively, and α∗ is aabaa. Since α∗ is aabaa, ba#,
abaaabbaaba#, aabbaba#, and aaabaa(abba/baabb)aba# are a-suffixes of type
1, 2, 3, and 4, respectively (underlined strings denote symbols in β and δ).
The reason why we divide a-suffixes longer than (β/ δ)γ into ones longer than
α∗(β/ δ)γ (type 4) and the others (types 2 and 3), or why α∗ becomes the division
point, has to do with properties of suffix trees and we explain the reason later.

The suffix tree of alignment α(β/ δ)γ is a compacted trie representing all a-
suffixes of the alignment. Formally, the suffix tree T for the alignment is a rooted
tree satisfying the following conditions.

1. Each nonterminal arc is labeled with a nonempty substring of A or B.
2. Each terminal arc is labeled with a nonempty suffix of βγ or δγ, or with

α′(β/ δ)γ, where α′ is a nonempty suffix of α.
3. Each internal node v has at least two children and the labels of arcs from v

to its children begin with distinct symbols.

Figure 3 shows the suffix tree of the alignment aaabaa(abba/baabb)aba#.
The differences from classic suffix trees of strings (including generalized suffix

trees) are as follows. To reduce space, we represent common suffixes of A and B
with one leaf. For example, there exists one leaf representing aba# in Figure 3
because aba# is common suffixes of A and B (type 1). However, suffixes of A
and B longer than γ derived from (β/δ)γ are not common and thus we deal
with these suffixes separately (types 2 and 3). For suffixes longer than (β/δ)γ,

Suffix Tree of Alignment: An Efficient Index for Similar Data 343

a

a
#

b

ab b a

ba

a
a
(
a
b
b
a
/
b
a
a
b
b
)
a
b
a
b

a
a
b
a
#

a

ba a #

a
b
a
b

a
#

a #

a
b
a
b

a
#

a
b
b
a
a
b
a
#

b

a
a
b
b
a
b
a
b

a
b
a
#ab

ba
ab
a# b

aa
bb
ab
a# baba#

b

Fig. 3. The suffix tree of an alignment aaabaa(abba/baabb)aba#. Leaves denoted by
black squares, white squares, gray squares, and black circles represent a-suffixes of
types 1, 2, 3, and 4, respectively.

we have two cases. First, consider an a-suffix α′(β/ δ)γ (type 4) such that α′ is a
suffix of α longer than α∗, e.g., aaabaa(abba/baabb)aba#. Due to the definition
of α∗, α′ appears only once in each of A and B (at the same position) and we can
represent α′(β/ δ)γ with one leaf by considering the terminal arc connected to
the leaf is labeled with an alignment not a string, e.g., the leftmost (black circle)
leaf in Figure 3. However, it cannot be applicable to an a-suffix α′′(β/ δ)γ such
that α′′ is a suffix of α∗, e.g., abaa(abba/baabb)aba#. Since α′′ appears at least
twice in A or in B, (β/ δ) may not be contained in the label of one arc. Thus,
we represent the a-suffix by two leaves, one of which represents α′′βγ (type 2)
and the other α′′δγ (type 3), e.g., leaf x representing abaaabbaaba# and leaf y
representing abaabaabbaba# in Figure 3.

Pattern search can be solved using the suffix tree of alignment in the same
way as using suffix trees of strings except for handling terminal arcs labeled with
alignments. When we meet a terminal arc labeled with an alignment α′(β/ δ)γ
during search, we first compare α′ with the pattern and then decide which of β
and δ we compare with the pattern by checking the first symbols of βγ and δγ.
This comparison is in fact similar to branching at nodes.

3.2 Construction

We describe how to construct the suffix tree T for an alignment. We assume the
suffix tree TA of string A is given. (TA can be constructed in O(|A|) time [18,21].)
To transform TA into the suffix tree T of the alignment, we should insert the
suffixes of B into TA. We divide the suffixes of B into three groups: suffixes of
γ, suffixes of α∗δγ longer than γ, and suffixes of αδγ longer than α∗δγ, which
correspond to a-suffixes of types 1, 3, and 4, respectively. First, we do not have to
do anything for a-suffixes of type 1. The suffixes of type 1 (suffixes of γ) already
exist in TA because these are common suffixes in A and B.

344 J.C. Na et al.

ba

a
#

b

ba

a
b
a
b

a
#

aab b

a
#

a
a
a
b
b
a
a
b
a
#

b
a
a
b
a
#

#a
a
b
b
a
a
b
a
b

b
a
b
a
#

a

b
b
a
b
a
#

a
b
b
a
a
b
a
#

ba

b
a
#

a
b
a
#

Fig. 4. The tree when Step A is applied to the suffix tree of A in Figure 1

Inserting the suffixes of B longer than γ consists of three steps. We explicitly
insert the suffixes shorter than or equal to α∗δγ (type 3) in Steps A and B, and
implicitly insert the suffixes longer than α∗δγ (type 4) in Step C as follows.

A. Find αa and insert the suffixes of αaδγ longer than γ.
B. Find α∗ and insert the suffixes of α∗δγ longer than αaδγ.
C. Insert implicitly the suffixes of αδγ longer than α∗δγ.

In Step A, we first find αa in TA using the doubling technique in incremental
editing of [18] as follows. For a string χ, we call a leaf a χ-leaf if the suffix
represented by the leaf contains χ as a prefix. Then, if and only if a string χ
occurs at least twice in A, there are at least two χ-leaves in TA. To find αa, we
check for some suffixes α′ of α whether or not there are at least two α′-leaves in
TA. Let α(j) be the suffix of α of length j. We first check whether or not there
are at least two α(j)-leaves in increasing order of j = 1, 2, 4, 8, . . . , |α|. Suppose
α(h) is the shortest suffix among these α(j)’s such that there is only one α(j)-leaf.
(Note that h/2 ≤ |αa| < h.) Then, αa can be found by checking whether or not
there are at least two α(j)-leaves in decreasing order of j = h−1, h−2, . . ., which
can be done efficiently using suffix links [18].

After finding αa, we insert the suffixes from the longest αaδγ to the shortest
dγ where d is the last character of αδ: Inserting the longest suffix is done by
traversing down the suffix tree from the root and inserting the other suffixes can
be done efficiently using suffix links [18,21]. Figure 4 shows the tree when Step
A is applied to the suffix tree of A in Figure 1.

Let T ′ be the tree when Step A is finished. In Step B, we first find α∗ using
T ′ and insert into T ′ the suffixes longer than αaδγ from the longest α∗δγ to the
shortest in the same way as we did in Step A. Unlike Step A, however, we have
the following difficulties for finding α∗ because T ′ is an incomplete suffix tree:
i) suffixes of B longer than αaδγ are not represented in T ′, ii) both suffixes of
A and suffixes of B are represented in one tree T ′, and iii) some suffixes of B
(a-suffixes of type 1) share leaves with suffixes of A but some suffixes (a-suffixes
of type 3) of B do not.

But we show that T ′ has sufficient information to find α∗. (Recall α∗ is the
longest suffix of α occurring at least twice in A or in B.) Notice that our goal in

Suffix Tree of Alignment: An Efficient Index for Similar Data 345

Step B is finding α∗ but not αb. If |αb| ≤ |αa|, for no suffix α′ of α longer than
αa, there are at least two α′-leaves in T ′, in which case α∗ = αa. Thus, we do
not need to consider suffixes of α shorter than or equal to αa.

Lemma 1. For a suffix α′ of α longer than αa, if and only if α′ occurs at least
twice in B, there are at least two α′-leaves in T ′.

Proof. (If) We first show that there is an α′-leaf in T ′ due to the occurrence occ1
of α′ as a suffix of α. Since α is common in A and B, occ1 appears in both A and
B as prefixes of α′βγ and α′δγ, respectively. Note that α′δγ is not represented
in T ′ but α′βγ is. Hence, there is an α′-leaf f1 in T ′ due to occ1.

Next, we show that there is another α′-leaf in T ′ due to an occurrence occ2 of
α′ other than occ1 in B. Let p1 and p2 be the start positions of occ1 and occ2 in
B, respectively, and let pa be the start position of the suffix αaδγ in B. We first
prove by contradiction that occ2 is contained in αaδγ. Suppose otherwise, that is,
p2 precedes pa. We have two cases according to which of p1 and p2 precedes. First
consider the case that p2 precedes p1, In this case, occ2 is properly contained in
α, which means that α′ appears at least twice in α and also in A. This contradicts
with the definition of αa since α′ is longer than αa. Consider the case that p1
precedes p2. Let α′′ be the suffix of α starting at p2. Then, |α′| > |α′′| > |αa|
and α′′ is a prefix of occ2. Furthermore, α′′ is also a prefix of α′δγ. It means
that α′′ occurs twice in α as a proper prefix of α′ and a proper suffix of α′. This
contradicts with the definition of αa since α′′ is longer than αa. Therefore, p2
does not precede pa, which means occ2 is contained in αaδγ.

Now we show that there is an α′-leaf f2 in T ′ due to occ2 and f2 is distinct
from f1. Let η be the suffix of B starting at position p2. Then, η is a proper
suffix of αaδγ since p2 follows pa. Because T ′ represents all suffixes of αaδγ,
there exists an α′-leaf f2 representing η in T ′. Moreover, suffixes of A and B
share leaves in T ′ only if they are suffixes of γ. Since the suffix α′βγ represented
by f1 is longer than γ, f1 and f2 are distinct.

(Only if) We prove by contradiction the converse, i.e., if α′ occurs only once
in B, there is only one α′-leaf in T ′. Suppose there are two α′-leaves in T ′. Since
α′ occurs only once in B, no suffix of B except for α′δγ contains α′ as a prefix.
Moreover, there is no leaf representing α′δγ in T ′ because |α′δγ| > |αaδγ| and
no suffix of B longer than αaδγ is represented in T ′. Thus, no α′-leaf in T ′

represents a suffix of B and the two α′-leaves in T ′ represent two suffixes of
A. It means α′ occurs twice in A, which contradicts with the definition of αa

that αa is the longest suffix of α occurring at least twice in A since |α′| > |αa|.
Therefore, there is only one α′-leaf in T ′ if α′ occurs only once in B. ��

Corollary 1. For a suffix α′ of α longer than αa, if and only if α′ occurs at
least twice in A or in B, there are at least two α′-leaves in T ′.

By Corollary 1, we can find α∗ by checking for some suffixes α′ of α longer than
αa whether or not there are at least two α′-leaves in T ′. It can be done in O(|α∗|)
using the way similar to Step A. When Step B is applied to the tree in Figure 4,
the resulting tree is the same as the tree in Figure 3 except that the terminal arc

346 J.C. Na et al.

connected to the leftmost leaf (black circle) is labeled with suffix aaabbaaba# of
string A but not with a-suffix aa(abba/baabb)aba# of the alignment.

In Step C, for every suffix α′ of α longer than α∗, we implicitly insert the
suffix α′δγ of B. Since the suffix α′δγ of B and the suffix α′βγ of A (a-suffixes
of type 4) should be represented by one leaf, we do not insert a new leaf but
convert the leaf representing α′βγ to represent the a-suffix α′(β/ δ)γ. It can be
done by replacing implicitly every β properly contained in labels of terminal
arcs with (β/ δ). Consequently, we explicitly do nothing in Step C, and these
implicit changes are already reflected in the given alignment. For example, the
suffix tree in Figure 3 is obtained by replacing implicitly the label aaabbaaba#
of the terminal arc connected to the leftmost leaf (black circle) with a-suffix
aa(abba/baabb)aba# of the alignment.

We consider the time complexity of our algorithm. In step A, finding αa takes
O(|αa|) time and inserting suffixes takes O(|αaδγ̂|) time, where γ̂ is the longest
prefix of γ such that dγ̂ occurs at least twice in A and B (where d is the character
preceding γ). For detailed analysis, the readers are referred to [18]. In step B,
similarly, finding α∗ takes O(|α∗|) time and inserting suffixes takes O(|α∗δγ̂|)
time. Step C takes no time since it is implicitly done. Thus, we get the following
theorem.

Theorem 1. Given an alignment α(β/ δ)γ and the suffix tree of string αβγ, the
suffix tree of α(β/ δ)γ can be constructed in O(|α∗|+ |δ|+ |γ̂|) time.

4 Suffix Tree of General Alignments

We extend the definitions and the construction algorithm into more general
alignments. Let α1(β1/ δ1) . . . αk(βk/ δk)αk+1 be an alignment of two strings
A = α1β1 . . . αkβkαk+1 and B = α1δ1 . . . αkδkαk+1. For 1 ≤ i ≤ k + 1, let
αa
i and αb

i be the longest suffixes of αi occurring at least twice in A and B,
respectively, and let α∗i be the longer of αa

i and αb
i . That is, α∗i is the longest

suffix of αi which occurs at least twice in A or in B. Moreover, let α̂i be the
longest prefix of αi such that diα̂i occurs at least twice in A and B where di is
the character preceding αi in B.

The suffix tree of the alignment is a compacted trie that represents the fol-
lowing a-suffixes of the alignment.

1. a suffix of αk+1,
2. a suffix of α∗i βiαi+1 . . . αk+1 longer than αi+1 . . . αk+1,
3. a suffix of α∗i δiαi+1 . . . αk+1 which is longer than αi+1 . . . αk+1,
4. α′i(βi/ δi) . . . αk+1, where α′i is a suffix of αi longer than α∗i .

Given the suffix tree of A, the suffix tree of the alignment can be constructed
as follows (the details are omitted).

A1. Find αa
i using the suffix tree of A for each i (1 ≤ i ≤ k).

A2. Insert the suffixes of αa
i δiαi+1 . . . αk+1 longer than αi+1 . . . αk+1 for each i.

B1. Find α∗i for each i.

Suffix Tree of Alignment: An Efficient Index for Similar Data 347

B2. Insert the suffixes of α∗i δi . . . αk+1 longer than αa
i δi . . . αk+1 for each i.

C. Insert implicitly the suffixes of αiδi . . . αk+1 longer than α∗i δi . . . αk+1 for
each i.

Theorem 2. Given an alignment α1(β1/ δ1) . . . αk(βk/ δk)αk+1 and the suffix
tree of string α1β1 . . . αkβkαk+1, the suffix tree of the alignment can be con-
structed in time at most linear to the sum of the lengths of α∗i , δi, α̂i+1 for
1 ≤ i ≤ k.

Our definitions and algorithms can be also extended into alignments of more
than two strings. For example, consider an alignment α(β/ δ/ ϑ)γ of three strings
A = αβγ, B = αδγ, and C = αϑγ such that the first characters of βγ, δγ, and
ϑγ are distinct. We define αa, αb, and αc as the longest suffix of α which occurs
at least twice in A, B, and C, respectively, and α∗ as the longest of αa, αb,
and αc. Then, there are 5 types of a-suffixes. (Suffixes of α∗ϑγ longer than γ
are added as a new type of a-suffixes.) The suffix tree of the alignment can be
defined similarly and constructed as follows: From the suffix tree of αβγ, we
construct the suffix tree of α(β/ δ)γ by inserting some suffixes of B, and then
convert into the suffix tree of (β/ δ/ ϑ)γ by inserting suffixes of C (and some
suffixes of B occasionally). We omit the details.

Acknowledgements. Joong Chae Na was supported by Basic Science Research
Program through the National Research Foundation of Korea(NRF) funded by
the Ministry of Education, Science and Technology(2012-0003214), and by the IT
R&D program of MKE/KEIT [10038768, The Development of Supercomputing
System for the Genome Analysis]. Heejin Park was supported by Basic Science
Research Program through the National Research Foundation of Korea(NRF)
funded by the Ministry of Education, Science and Technology(2012-0006999),
by Seoul Creative Human Development Program (HM120006), by the Proteoge-
nomics Research Program through the National Research Foundation of Korea
funded by the Korean Ministry of Education, Science and Technology, and by
the National Research Foundation of Korea(NRF) funded by the Ministry of
Science, ICT & Future Planning(2012-054452). Jan Holub has been partially
supported by the Czech Science Foundation (GAČR) as project No. 13-03253S.
Kunsoo Park was supported by National Research Foundation of Korea-Grant
funded by the Korean Government(MSIP) (2012K1A3A4A07030483).

References

1. The 1000 Genomes Project Consortium. A map of human genome variation from
population-scale sequencing 467(7319), 1061–1073 (2010)

2. Amir, A., Farach, M., Galil, Z., Giancarlo, R., Park, K.: Dynamic dictionary match-
ing. J. Comput. Syst. Sci. 49, 208–222 (1994)

3. Baeza-Yates, R.A., Gonnet, G.H.: Fast text searching for regular expressions or
automaton searching on tries. J. ACM 43(6), 915–936 (1996)

4. Bille, P., Gørtz, I.L.: Substring range reporting. In: Giancarlo, R., Manzini, G.
(eds.) CPM 2011. LNCS, vol. 6661, pp. 299–308. Springer, Heidelberg (2011)

348 J.C. Na et al.

5. Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm.
Technical Report 124, Digital Equipment Corporation, California (1994)

6. Crochemore, M., Rytter, W.: Jewels of Stringology. World Scientific Publishing,
Singapore (2002)

7. Do, H.H., Jansson, J., Sadakane, K., Sung, W.-K.: Fast relative lempel-ziv self-
index for similar sequences. In: Snoeyink, J., Lu, P., Su, K., Wang, L. (eds.) FAW-
AAIM 2012. LNCS, vol. 7285, pp. 291–302. Springer, Heidelberg (2012)

8. Farach-Colton, M., Ferragina, P., Muthukrishnan, S.: On the sorting-complexity of
suffix tree construction. J. ACM 47(6), 987–1011 (2000)

9. Grossi, R., Vitter, J.S.: Compressed suffix arrays and suffix trees with applications
to text indexing and string matching. SIAM J. Comput. 35(2), 378–407 (2005)

10. Gusfield, D.: Algorithms on Strings, Tree, and Sequences. Cambridge University
Press, Cambridge (1997)

11. Huang, S., Lam, T.W., Sung, W.K., Tam, S.L., Yiu, S.M.: Indexing similar dna
sequences. In: Chen, B. (ed.) AAIM 2010. LNCS, vol. 6124, pp. 180–190. Springer,
Heidelberg (2010)

12. Karlin, S., Ghandour, G., Ost, F., Tavare, S., Korn, L.J.: New approaches for
computer analysis of nucleic acid sequences. Proc. Natl. Acad. Sci. 80(18), 5660–
5664 (1983)

13. Kreft, S., Navarro, G.: On compressing and indexing repetitive sequences. Theor.
Comput. Sci. (to appear)

14. Kuruppu, S., Puglisi, S.J., Zobel, J.: Relative lempel-ziv compression of genomes
for large-scale storage and retrieval. In: Chavez, E., Lonardi, S. (eds.) SPIRE 2010.
LNCS, vol. 6393, pp. 201–206. Springer, Heidelberg (2010)

15. Levenshtein, V.: Binary codes capable of correcting deletions, insertions and rever-
sals. Soviet Physics Doklady 10(8), 707–710 (1966)

16. Mäkinen, V., Navarro, G., Sirén, J., Välimäki, N.: Storage and retrieval of individ-
ual genomes. In: Batzoglou, S. (ed.) RECOMB 2009. LNCS, vol. 5541, pp. 121–137.
Springer, Heidelberg (2009)

17. Mäkinen, V., Navarro, G., Sirén, J., Välimäki, N.: Storage and retrieval of highly
repetitive sequence collections. J. Comput. Bio. 17(3), 281–308 (2010)

18. McCreight, E.M.: A space-economical suffix tree construction algorithm.
J. ACM 23(2), 262–272 (1976)

19. Navarro, G.: Indexing highly repetitive collections. In: Arumugam, S., Smyth, B.
(eds.) IWOCA 2012. LNCS, vol. 7643, pp. 274–279. Springer, Heidelberg (2012)

20. Sadakane, K.: Compressed suffix trees with full functionality. Theor. Comput.
Sci. 41(4), 589–607 (2007)

21. Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14(3), 249–260
(1995)

22. Weiner, P.: Linear pattern matching algorithms. In: Proc. of the 14th IEEE Symp.
on Switching and Automata Theory, pp. 1–11 (1973)

23. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE
Trans. on Information Theory 23(3), 337–343 (1977)

Fitting Voronoi Diagrams to Planar Tesselations�

Greg Aloupis1, Hebert Pérez-Rosés2,3, Guillermo Pineda-Villavicencio4,5,
Perouz Taslakian6, and Dannier Trinchet-Almaguer7

1 Chargé de Recherches FNRS, Université Libre de Bruxelles, Belgium
aloupis.greg@gmail.com

2 Department of Mathematics, University of Lleida, Spain
3 Conjoint Fellow, University of Newcastle, Australia

hebert.perez@matematica.udl.cat
4 Center for Informatics and Applied Optimization, University of Ballarat, Australia

5 Department of Mathematics, Ben-Gurion University of the Negev, Israel
work@guillermo.com.au

6 School of Science and Engineering, American University of Armenia
ptaslakian@aua.am

7 AlessTidyCraft Software Solutions, Havana, Cuba
trinchet@gmail.com

Abstract. Given a tesselation of the plane, defined by a planar straight-
line graph G, we want to find a minimal set S of points in the plane, such
that the Voronoi diagram associated with S ‘fits’ G. This is the Gener-
alized Inverse Voronoi Problem (GIVP), defined in [12] and rediscovered
recently in [3]. Here we give an algorithm that solves this problem with
a number of points that is linear in the size of G, assuming that the
smallest angle in G is constant.

Keywords: Voronoi diagram, Dirichlet tesselation, planar tesselation,
inverse Voronoi problem.

1 Introduction

Any planar straight-line graph (PSLG) subdivides the plane into cells, some of
which may be unbounded. The Voronoi diagram (also commonly referred to as
Dirichlet tesselation, or Thiessen polygon) of a set S of n points is a PSLG with
n cells, where each cell belongs to one point from S and consists of all points in
the plane that are closer to that point than to any other in S.

Let G be a given PSLG, whose cells can be considered bounded and convex
for all practical purposes. Indeed, if some cell is not convex, it can always be
partitioned into convex subcells, thus yielding a finer tesselation. The asymptotic
size complexity of the PSLG remains the same by this ‘convexification’ operation.

The Inverse Voronoi Problem (IVP) consists of deciding whether G coincides
with the Voronoi diagram of some set S of points in the plane, and if so, finding
S. This problem was first studied by Ash and Bolker [1]. Subsequently, Auren-
hammer presented a more efficient algorithm [2], which in turn was improved by

� Mathematics Subject Classification: 52C45, 65D18, 68U05.

T. Lecroq and L. Mouchard (Eds.): IWOCA 2013, LNCS 8288, pp. 349–361, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

350 G. Aloupis et al.

Hartvigsen, with the aid of linear programming [5], and later by Schoenberg,
Ferguson and Li [8]. Yeganova also used linear programming to determine the
location of S [13,14].

In the IVP, the set S is limited to have one point per cell; a generalized version
of this problem (GIVP) allows more than one point per cell. In this case, new
vertices and edges may be added to G, but the original ones must be kept, as
shown in Figure 1. With this relaxation the set S always exists, hence we are
interested in minimizing its size.

Fig. 1. GIVP: Thick edges represent the original input tesselation

The GIVP in R2 was indirectly mentioned in [13,14], in the context of set
separation. It was formally stated and discussed in the III Cuban Workshop on
Algorithms and Data Structures, held in Havana in 2003, where an algorithm
for solving the problem in R2 was sketched by the current authors. However,
the manuscript remained dormant for several years, and the algorithm was only
published in Spanish in 2007 [12]. Recently, the problem was revisited in [3],
where another algorithm for the GIVP in R2 is given, and the special case of
a rectangular tesselation is discussed in greater detail. The authors of [3] were
unaware of [12], however the two algorithms turn out to have certain common
aspects.

This paper is an expanded and updated English version of [12]. It contains a
description and analysis of the aforementioned algorithm for solving the GIVP
in R2. This is followed by the description of an implementation of the algorithm,
which was used to make a first (if only preliminary) experimental study of the
algorithm’s performance. Our algorithm generates O(E) sites in the worst case,
where E is the number of edges of G (provided that the smallest angle of G
is constant). This bound is asymptotically optimal for tesselations with such
angular constraints.

In comparison, the analysis given for the algorithm in [3] states that O(V 3)
sites are generated, where V is the size of a refinement of G such that all faces
are triangles with acute angles. Given an arbitrary PSLG, there does not appear

Fitting Voronoi Diagrams to Planar Tesselations 351

to be any known polynomial upper bound on the size of its associated acute
triangulation. Even though it seems to us that the analysis in [3] should have
given a tighter upper bound in terms of V , even a linear bound would not make
much of a difference, given that V can be very large compared to the size of G.
The analysis in [3] is purely theoretical, so it would be interesting to perform
an experimental study to shed some light on the algorithm’s performance in
practice.

This paper is organized as follows: In Section 2 we describe the algorithm and
discuss its correctness and performance. In Section 3 we derive some variants of
the general strategy, and deal with several implementation issues of each variant.
Section 4 is devoted to an experimental analysis of the algorithm’s performance.
Finally, in Section 5 we summarize our results and discuss some open problems
arising as a result of our work.

2 The Algorithm

First we establish some notation and definitions. In that respect we have followed
some standard texts, such as [4].

Let p and q be points of the plane; as customary, pq is the segment that joins
p and q, and |pq| denotes its length. Bpq denotes the bisector of p and q, and
Hpq is the half-plane determined by Bpq, containing p. For a set S of points in
the plane, Vor(S) denotes the Voronoi diagram generated by S. The points in
S are called Voronoi sites or generators.

If p ∈ S, V (p) denotes the cell of Vor(S) corresponding to the site p. For any
point q, CS(q) is the largest empty circle centered at q, with respect to S (the
subscript S can be dropped if it is clear from the context). Two points p, q ∈ S
are said to be (strong) neighbors (with respect to S) if their cells share an edge
in Vor(S); in this case Epq denotes that edge.

We will make frequent use of the following basic property of Voronoi diagrams:

Lemma 1 ([4], Thm. 7.4, p. 150). The bisector Bpq defines an edge of the
Voronoi diagram if, and only if, there exists a point x on Bpq such that CS(x)
contains both p and q on its boundary, but no other site. The (open) edge in
question consists of all points x with that property.

The technique used by the algorithm is to place pairs of points (sentinels)
along each edge e of the PSLG (each pair is placed so that it is bisected by e)
in order to ‘guard’ or ‘protect’ e. The number of sentinels required to protect e
depends on its length and the relative positions of its neighboring edges. Each
pair of sentinels meant to guard e is placed on the boundary of some circle,
whose center lies on e. Furthermore this circle will not touch any other edge.
The only exception is when the circle is centered on an endpoint of e, in which
case it is allowed to touch all other edges sharing that endpoint. More formally,
we have the following.

Definition 1. Let G be a PSLG, and let e be an edge of G. Let S be a set of
points, and p, q ∈ S. The pair of points p, q is said to be a pair of sentinels of

352 G. Aloupis et al.

e if they are strong neighbors with respect to S, and Epq is a subsegment of e.
In this case, e (or more precisely, the segment Epq) is said to be guarded by p
and q.

The algorithm works in two stages: First, for each vertex v of G we draw a
circle centered on v. This is our set of initial circles (this is described in more
detail below). Then we proceed to cover each edge e of G by non-overlapping
inner circles, whose centers lie on e, and which do not intersect any other edges
of G.

Let u be a given vertex of G, and let λ be the length of the shortest edge of
G incident to u. We denote as ξG(u) the initial circle centered at u, which will
be taken as the largest circle with radius ρ0 ≤ λ/2 that does not intersect any
edge of G, except those that are incident to u. Once we have drawn ξG(u), for
each edge e incident to u we can choose a pair of sentinels p, q, placed on ξG(u),
one on each side of e, at a suitably small distance ε from e, as in Figure 2. Later
in this section we discuss how to choose ε appropriately.

u

p

q
w

e

Fig. 2. Initial circle ξG(u) for vertex u and sentinels of e

Let w be the point of intersection between ξG(u) and e; now p and q guard
the segment uw of e, which means that uw will appear in the Voronoi diagram
that will be constructed, provided that we do not include any new points inside
ξG(u) (see Lemma 1).

Let e = uv be an edge of G, and w1, w2 the intersection points of ξ(u) and
ξ(v) with e, respectively.1 The segments uw1 and uw2 are now guarded, whereas
the (possibly empty) segment w1w2 still remains unguarded. In order to guard
w1w2 it suffices to cover that segment with circles centered on it, not intersecting
with any edge other than e, and not including any sentinel belonging to another
circle. Then we can choose pairs of sentinels on each covering circle, each sentinel
being at distance ε from e, as shown in Figure 3.

As a consequence of Lemma 1, e will be guarded in all its length, provided that
no new point is later included inside one of the circles centered on e. To ensure

1 For convenience, we have dropped the subscript G.

Fitting Voronoi Diagrams to Planar Tesselations 353

u ve

Fig. 3. Edge covered by circles

this, we will not allow an inner circle of e to get closer than ε to another edge
f , because then a sentinel of f might fall inside the circle. With this precaution,
the sentinels guarding e will not interfere with other edges, since they will not
be included in any circle belonging to another edge.

In summary, an outline of the algorithm is:

1. For each vertex u ∈ G, draw initial circle ξG(u) centered on u.
2. Choose a suitable value of ε.
3. For each vertex u and for each edge e incident to u, place a pair of sentinels

on ξG(u), symmetric to one another with respect to e, at distance ε from e.
4. For each edge e ∈ G, cover the unguarded segment of e with inner circles

centered on e, and then place pairs of sentinels on each circle.

This algorithm is a general strategy that leads to several variants when Step 4
is specified in more detail, as will be seen in Section 3. In order to prove that
the algorithm works it suffices to show that:

1. The algorithm terminates after constructing a finite number of circles (and
sentinels).

2. After termination, every edge of G is guarded (see the discussion above).

In order to show that the algorithm terminates we will establish some facts. Let
ρ0 > 0 be the radius of the smallest initial circle. Now let α be the smallest angle
formed by any two incident edges of G, say e and f . By taking ε ≤ ρ0 sin

α
2 we

make sure that any sentinel will be closer to the edge that it is meant to guard
than to any other edge. This is valid for all initial circles.

After all initial circles have been constructed, together with their correspond-
ing sets of sentinels, for every edge e there may be a middle segment that remains
unguarded. This segment must be covered by a finite number of inner circles.
Take one edge, say e, with middle unguarded segment of length δ. If we use cir-
cles of radius ε to cover the unguarded segment, then we can be sure that these
circles will not intersect any circle belonging to another edge. Exactly �δ/2ε�+1

354 G. Aloupis et al.

such circles will suffice to cover the middle segment, where the last one may have
a radius ε′ smaller than ε. For this last circle, the sentinels could be placed at
distance ε′ < ε from e (c.f. Figure 4).

u v

Fig. 4. Covering the middle segment of edge uv by inner circles of radius ε

Using circles of radius ε is, among all the possible variants mentioned here,
the one that yields the largest number of circles, and hence the largest number
of sentinels (generators of the Voronoi diagram). Now let e be the longest edge
of G, with length Δ. In the worst case, the number of inner circles that cover e
will be �(Δ−2ρ0)/2ε�+1, and the number of sentinels will be twice that number
plus four (corresponding to the sentinels of both initial circles). Therefore, the
algorithm generates a number of points that is linear in E, the number of edges,
which is asymptotically optimal, since a lower bound for the number of points
is the number of faces in G.

Note that by letting G become part of the problem instance, the number of
generators becomes a function of α, and it is no longer linear in E. In practice,
however, screen resolution and computer arithmetic impose lower bounds on α.
Under such constraints, the above analysis remains valid. This leads to our main
result:

Theorem 1. Let G be a planar straight-line graph, whose smallest angle α
is larger than a fixed constant. Then, the corresponding Generalized Inverse
Voronoi Problem can be solved with O(E) generators, where E is the number
of edges of G.

3 Implementation

In step 4 of the algorithm given in the previous section, the method to construct
the inner circles was left unspecified. Taking the circles with radius ε, as suggested
in the preceding analysis, is essentially a brute-force approach, and may easily
result in too many sentinels being used. In this section we discuss two different
methods for constructing the inner circles.

First let us note that in order to reduce the number of sentinels in our con-
struction we may allow two adjacent circles on the same edge to overlap a little,
so that they can share a pair of sentinels (see Figure 5). This observation is valid
for all variants of the algorithm.

Fitting Voronoi Diagrams to Planar Tesselations 355

u ve

Fig. 5. Adjacent circles share a pair of sentinels

The first variant for the construction of the inner circles along an edge is
to place them sequentially (iteratively), letting them grow as much as possible,
provided that they do not enter the ε-wide ‘security area’ of another edge. Ob-
viously, this greedy heuristic must yield a smaller number of Voronoi generators
than the naive approach of taking all circles with radius ε.

Suppose we want to construct an inner circle χ for edge e, adjacent to another
circle on e that has already been fixed and on which we have already placed two
sentinels: a = (xa, ya), and b = (xb, yb). Let f be the first edge that will be
touched by χ as it grows, while constrained to have its center on e and a, b on its
boundary. Let f ′ be a straight line parallel to f , at distance ε from f , and closer
to χ than f . Let e be defined by the equation y = mx+n, and f ′ by the equation

Ax+By+C = 0.2 The distance of any point (x, y) to f ′ is given by |Ax+By+C|√
A2+B2

.

The radius of χ must be equal to this distance. Hence the x-coordinate of the
center satisfies the following quadratic equation:

(A2 +B2)((xa − x)2 + (ya − (mx+ n))2) = (Ax+B(mx + n) + C)2

or

−(A2 + 2ABm+ B2m2 − D(m2 + 1))x2

−2(A(Bn+ C) +B2mn+BCm +D(xa −m(n − ya)))x

−B2n2 − 2BCn− C2 +D(n2 − 2nya + x2a + y2a) = 0

where D = A2 +B2.

Our second variant for constructing inner circles is also based on the princi-
ple of letting them grow until they come within distance ε of some edge. Yet,
instead of growing the circles sequentially along the edge that is to be covered,
we center the first inner circle on the midpoint of the unguarded middle segment.

2 The equation of f ′ can be obtained easily after the initial circles have been con-
structed and their sentinels placed.

356 G. Aloupis et al.

This will yield at most two smaller disjoint unguarded segments, on which we
recurse. In the worst case, a branch of the recursion will end when an unguarded
segment can be covered by a circle of radius ε. The advantage of this approach is
that the coordinates of the center can be determined with much less computation,
thus avoiding potential roundoff errors. Additionally, this variant is more suitable
for parallel implementation than the previous one. On the other hand, we need
an extra data structure to handle the unguarded segments.

We end this discussion with a word about the choice of ε. On one hand, ε
must be sufficiently small for the construction to be carried out. On the other
hand, for the sake of robustness to numerical errors, it is convenient to take ε
as large as possible. That is why we defer the actual choice of ε until the initial
circles have been drawn. A different approach might be to use a variable-sized ε,
which would lead to a more complicated, yet (hopefully) more robust algorithm.

A final remark: For the sake of simplicity we have assumed throughout the
whole discussion that the cells of the input tesselation are convex, but our algo-
rithm could be easily generalized to accept tesselations with non-convex cells.

4 Experimental Analysis

From the analysis in Section 2 we know that the number of sites generated by
our algorithm is linear in the size of the input, provided that the smallest angle
α is constant. However, we would like to get a more precise idea about the
algorithm’s performance, and the difference between the two strategies we have
suggested for Step 4. For that purpose, we have implemented the algorithm and
carried out a set of experiments.

Our experimental workbench consists of a Graphical User Interface, which can
generate a tesselation on a random point set, store it in a DCEL data structure,
and then apply one of the two variants of the algorithm for solving the GIVP,
described in Section 2.

Fig. 6. Histogram of α Fig. 7. Histogram of ε

Fitting Voronoi Diagrams to Planar Tesselations 357

Table 1. Experimental results

Num. of sites generated
Exp. Tesselation Smallest
num. Recursive Sequential angle ε-neigh.

Vertices Edges Regions version version (degrees) (pixels)

1 72 142 66 1 020 852 1.63 1.20
2 117 206 91 916 870 4.09 12.30
3 194 252 60 1 468 1 296 1.07 9.61
4 274 376 105 1 672 1 596 1.60 12.26
5 229 429 202 2 400 2 148 3.38 0.91
6 314 441 129 2 208 2 020 0.56 5.70
7 336 472 138 2 656 2 374 0.47 4.03
8 339 475 138 3 098 2 618 3.95 0.18
9 344 480 138 3 140 2 720 0.23 4.48
10 357 493 138 2 844 2 530 0.13 7.24
11 339 501 164 2 580 2 364 0.38 3.81
12 390 568 180 2 680 2 520 8.92 0.60
13 438 637 281 3 320 3 028 0.21 6.34
14 403 641 240 3 838 3 382 0.16 7.07
15 472 684 214 3 432 3 144 0.25 2.56
16 397 721 319 4 244 3 718 0.11 3.16
17 421 784 365 5 112 4 406 1.30 0.12
18 564 826 264 4 092 3 790 0.70 0.11
19 504 986 463 4 148 4 020 2.37 14.16
20 512 999 472 4 276 4 134 1.52 3.68
21 552 1 056 506 4 048 4 796 0.25 4.40
22 574 1 107 535 4 856 4 689 3.68 0.75
23 601 1 166 567 5 240 5 009 0.80 3.43
24 645 1 256 613 5 852 5 521 0.77 3.62
25 672 1 292 622 5 720 5 992 0.25 3.44
26 738 1 311 575 6 124 5 832 0.34 1.84
27 724 1 399 677 6 440 6 194 0.23 3.23
28 815 1 441 628 6 832 6 478 1.20 0.30
29 763 1 479 718 6 960 6 599 2.14 0.19
30 772 1 495 725 6 900 6 610 2.54 0.29
31 855 1 522 669 7 684 7 158 1.43 0.31
32 894 1 607 712 9 062 8 685 0.36 0.23
33 898 1 615 716 8 152 7 580 1.19 0.33
34 963 1 750 789 9 637 9 045 0.88 0.29
35 1 006 1 842 838 9 236 8 582 1.85 0.34
36 1 018 1 874 858 10 144 9 228 1.09 0.27
37 984 1 902 920 7 924 7 792 4.40 0.25
38 1 015 1 962 949 8 396 8 198 3.34 0.31
39 1 066 1 973 909 10 392 9 492 0.63 0.30
40 1 019 1 999 982 8 952 8 616 1.49 0.45

MED 558 1 027.5 489 4 566 4 547.5 3.4 0.3
AVG 590 1 054 467 5 192 4 891 0.59 4.06
STD 282.7 571.24 292.73 2 715.5 2 600 3.36 0.74

358 G. Aloupis et al.

Fig. 8. Plot of the results in Table 1

Fitting Voronoi Diagrams to Planar Tesselations 359

The GUI is described in more detail in [11,12], and a beta Windows ver-
sion can be downloaded from https://www.researchgate.net/publication/

239994361 Voronoi data. The file ‘Voronoi data.rar’ contains the Windows ex-
ecutable and a few DCEL files, consisting of sample tesselations. The user can
generate additional tesselations randomly, and apply either variant of the algo-
rithm on them.

The tesselations are generated as follows: First, the vertex set of G is randomly
generated from the uniform distribution in a rectangular region. Then, pairs of
vertices are chosen randomly to create edges. If a new edge intersects existing
edges, then the intersection points are added as new vertices, and the intersecting
edges are decomposed into their non-intersecting segments. Finally, some edges
are added to connect disjoint connected components and dangling vertices, so
as to make the PSLG biconnected.

Table 1 displays some statistics about 40 such randomly generated tesse-
lations: Number of vertices, number of edges, number of regions, number of
Voronoi sites with the recursive version of Step 4, number of Voronoi sites with
the sequential version of Step 4, the smallest angle α, and the width ε of the
security area. The tesselations have been listed in increasing order of the number
of edges. For each parameter, the table also provides the median (MED), the
mean value (AVG), and the standard deviation (STD).

From the tabulated data we can also get empirical estimates about the corre-
lation among different parameters, especially α and ε, and about the distribution
of their values. The parameters α and ε show a weak negative correlation with
the number of edges, of −0.548 and −0.358 respectively. In turn they are pos-
itively correlated with one another, with a correlation of 0.67. These empirical
findings agree with intuition.

Figures 6 and 7 display the histograms of α and ε with 20 bins. They can
be well approximated by Poisson distributions, with λ = 4.06 and λ = 0.59,
respectively, and with 95% confidence intervals [3.437; 4.686] and [0.375; 0.8784].

The comparison between the two variants of the algorithm is shown in Figure 8.
We can see that the sequential variant is slightly better than the recursive variant,
as it generates a smaller number of sites in most cases. However, the difference
between both variants is not significant. Indeed, the linear regression fits have very
similar slopes: The linear fit for the sequential variant is y = 4.4831x + 158.59,
whereas the linear fit in the recursive case is y = 4.6241x+ 318.51.

5 Conclusions and Open Problems

Our results show that the Generalized Inverse Voronoi Problem can be solved
with a number of generators that is linear in the size of the input tesselation,
provided that we enforce a lower bound on the size of the smallest angle. On the
other hand, the algorithm described in [3] produces O(V 3) generators, where V
is the number of vertices of an acute triangulation of G. As the performance of
the two algorithms is given as a function of different parameters, a theoretical
comparison between them is not straightforward. An experimental study could

https://www.researchgate.net/publication/239994361_Voronoi_data
https://www.researchgate.net/publication/239994361_Voronoi_data

360 G. Aloupis et al.

be helpful, but that would require an implementation of the algorithm in [3].
In practice, our algorithm generates approximately 4.48E + 159 Voronoi sites,
where E is the number of edges of the input tesselation.

In any case, the number of generators produced by both algorithms may still
be too large, and it may be possible to reduce it to a number closer to F , the
number of faces of the tesselation, which is the trivial lower bound. This lower
bound can only be achieved if the tesselation is a Voronoi tesselation. In the
more general case, how close to F can we get?

In particular, our algorithm still has plenty of room for improvement. In Sec-
tion 3 we have already mentioned several strategies that can decrease the number
of Voronoi sites produced. The design of a parallel version, and a version that is
robust against degenerate cases and numerical roundoff errors, are other issues
to consider. Roundoff errors have long been an important concern in Computa-
tional Geometry in general, and in Voronoi diagram computation, in particular
(see e.g. [10]).

Other practical questions have to do with the experimental analysis of our al-
gorithms. We have devised a method to generate a PSLG on a random point set,
but we have not analyzed how this compares to generating such graphs uniformly
from the set of all PSLGs that can be defined on a given point set. Regarding
certain properties of our generated graphs (expected number of vertices, edges,
and faces, expected area of the faces, distribution of the smallest angle, etc.), we
have not attempted a theoretical analysis, but we have estimated some of these
parameters empirically. A more comprehensive set of experiments will reveal how
these tesselations compare with those generated by other methods.

As a final remark, we point out that our algorithm could also be generalized
to other metrics, continuous or discrete, including graph metrics. Potential ap-
plications include image representation and compression, as described in [6], and
pattern recognition (e.g. given a partition of some sample space, we could select a
set of ‘representatives’ for each class). In the case of graphs, Voronoi partitions can
be used to find approximate shortest paths (see [9,7], for instance). In social net-
works, node clustering around a set of ‘representative’ nodes, or ‘super-vertices’,
is a popular technique for network visualization and/or anonymization [15].

Acknowledgements. Janos Pach contributed some key ideas for the algorithm,
at the early stages of this work. Hebert Pérez-Rosés was partially supported by
the Spanish Ministry of Economy and Competitiveness, under project TIN2010-
18978.GuillermoPineda-Villavicencio was supported by a postdoctoral fellowship
funded by the Skirball Foundation, via the Center for Advanced Studies in Math-
ematics at the Ben-Gurion University of the Negev, Israel, and by an ISF grant.

References

1. Ash, P., Bolker, E.D.: Recognizing Dirichlet Tesselations. Geometriae Dedicata 19,
175–206 (1985)

2. Aurenhammer, F.: Recognising Polytopical Cell Complexes and Constructing Pro-
jection Polyhedra. J. Symbolic Computation 3, 249–255 (1987)

Fitting Voronoi Diagrams to Planar Tesselations 361

3. Banerjee, S., Bhattacharya, B.B., Das, S., Karmakar, A., Maheshwari, A., Roy, S.:
On the Construction of a Generalized Voronoi Inverse of a Rectangular Tesselation.
In: Procs. 9th Int. IEEE Symp. on Voronoi Diagrams in Science and Engineering,
pp. 132–137. IEEE, New Brunswick (2012)

4. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geome-
try. Algorithms and Applications, 3rd edn. Springer, Berlin (2008)

5. Hartvigsen, D.: Recognizing Voronoi Diagrams with Linear Programming. ORSA
J. Comput. 4, 369–374 (1992)

6. Mart́ınez, A., Mart́ınez, J., Pérez-Rosés, H., Quirós, R.: Image Processing using
Voronoi diagrams. In: Procs. 2007 Int. Conf. on Image Proc., Comp. Vision, and
Pat. Rec., pp. 485–491. CSREA Press (2007)

7. Ratti, B., Sommer, C.: Approximating Shortest Paths in Spatial Social Networks.
In: Procs. 2012 ASE/IEEE Int. Conf. on Social Computing and 2012 ASE/IEEE
Int. Conf. on Privacy, Security, Risk and Trust, pp. 585–586. IEEE Comp. Soc.
(2012)

8. Schoenberg, F.P., Ferguson, T., Li, C.: Inverting Dirichlet Tesselations. The Com-
puter J. 46, 76–83 (2003)

9. Sommer, C.: Approximate Shortest Path and Distance Queries in Networks. PhD
Thesis, Department of Computer Science, The University of Tokyo, Japan (2010)

10. Sugihara, K., Iri, M.: Construction of the Voronoi Diagram for ‘One Million’ Gen-
erators in Single-Precision Arithmetic. Procs. IEEE 80, 1471–1484 (1992)

11. Trinchet-Almaguer, D.: Algorithm for Solving the Generalized Inverse Voronoi
Problem. Honour’s Thesis, Department of Computer Science, University of Ori-
ente, Cuba (2005) (in Spanish)

12. Trinchet-Almaguer, D., Pérez-Rosés, H.: Algorithm for Solving the Generalized In-
verse Voronoi Problem (in Spanish). Revista Cubana de Ciencias Informaticas 1(4),
58–71 (2007)

13. Yeganova, L., Falk, J.E., Dandurova, Y.V.: Robust Separation of Multiple Sets.
Nonlinear Analysis 47, 1845–1856 (2001)

14. Yeganova, L.E.: Robust linear separation of multiple finite sets. Ph.D. Thesis,
George Washington University (2001)

15. Zhou, B., Pei, J., Luk, W.-S.: A brief survey on anonymization techniques for
privacy preserving publishing of social network data. ACM SIGKDD Explorations
Newsletter 10, 12–22 (2008)

Partial Information Network Queries

Ron Y. Pinter and Meirav Zehavi

Department of Computer Science, Technion - Israel Institute of Technology,
Haifa 32000, Israel

{pinter,meizeh}@cs.technion.ac.il

Abstract. We present a new pattern matching problem, the partial in-
formation query (PIQ) problem, which includes as special cases two prob-
lems that have important applications in bioinformatics: the alignment
query (AQ) problem and the topology-free query (TFQ) problem. In both
problems we have a pattern P and a graph H , and we seek a subgraph of
H that resembles P . AQ requires knowing the topology of P , while TFQ
ignores it. PIQ fits the scenario where partial information is available
on the topology of P . Our main result is a parameterized algorithm for
PIQ, which can handle inputs where P is a set of trees. It significantly
improves the best known running time in solving TFQ. We also improve
the best known running times in solving two special cases of AQ.

Keywords: parameterized algorithm, pattern matching, partial infor-
mation query, alignment query, topology-free query.

1 Introduction

Algorithms for the alignment query (AQ) and the topology-free query (TFQ)
problems provide means to study the function and evolution of biological net-
works. Given a pattern P and a host graph H , these queries seek a subgraph
of H that resembles P . Similar queries for sequences have been studied and
used extensively in the past four decades. Today, with the increasing amount of
information we have on biological networks, they are relevant to them as well.

TFQ requires only the connectivity of the solution, while AQ requires re-
semblance between the topology of P and the solution. A user having partial
information on the topology of P can either run an alignment query for each
possible topology for P , given this partial information, or run a topology-free
query. The first method is inefficient, while the second may output undesirable
results that contradict the partial information on P . We present a generaliza-
tion of AQ and TFQ, that we call the partial information query (PIQ) problem,
which fits the scenario where only partial information is available on P .

Parameterized algorithms are an approach to solve NP-hard problems by con-
fining the combinatorial explosion to a parameter k. More precisely, a problem
is fixed-parameter tractable (FPT) with respect to a parameter k if an instance
of size n can be solved in O∗(f(k)) time for some function f [15].1 In this paper
we present parameterized algorithms for NP-hard special cases of PIQ.

1 O∗ hides factors polynomial in the input size.

T. Lecroq and L. Mouchard (Eds.): IWOCA 2013, LNCS 8288, pp. 362–375, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Partial Information Network Queries 363

Notation: Given a graph G, V (G) and E(G) denote its node set and edge set,
respectively. Given U ⊆ V (G), G[U] denotes the subgraph of G induced by U .
Denote the label of a node v by l(v), and its neighbor set by N(v). Given a set
of tuples A, i ∈ N and an element e, A[(i, e)] denotes the set of tuples in A such
that e appears in their ith position.

1.1 Problem Statement

Roughly speaking, given a graph H and a set of graphs P , PIQ asks if H has
a connected subgraph that can be partitioned into subgraphs, such that each
resembles a different graph in P .

Formally, the input for PIQ consists of

– L - A set of labels.
– Δ : L× L → R - A label-to-label similarity score table.
– P - A set of labeled graphs P1, P2, . . . , Pt.
– H,w : E(H) → R - An edge-weighted labeled graph.
– W ∈ R - Minimum score.

We need to decide if there is a connected subgraph S of H , a partition of
V (S) into the subsets {V 1

S , . . . , V t
S}, and an isomorphism mi between S[V i

S] and
Pi, for all 1 ≤ i ≤ t, such that

–
∑

1≤i≤t

∑
v∈V i

S
Δ(l(v), l(mi(v))) +

∑
e∈E(S) w(e) ≥ W .

– Any cycle in S is completely contained in S[V i
S], for some 1 ≤ i ≤ t.2

Denote V (P) =
⋃

1≤i≤t V (Pi), and k = |V (P)|.

Special Cases of PIQ: AQ is the special case where t = 1, and all the edge-
weights are 0. Moreover, TFQ is the special case where t = k, and Δ(l, l′) ∈
{−∞, 0} for all l, l′ ∈ L.

1.2 Related Work

AQ – Related Work: Even the special case of AQ where P1 is a simple path
is NP-hard since it generalizes the Hamiltonian path problem [9].

Pinter et al. [16] gave an O∗(1) time algorithm for AQ, which can handle
inputs where both P1 and H are trees. This algorithm was used to perform inter-
species and intra-species alignments of metabolic pathways [17], and a pathway
evolution study [14]. It was recently extended to a certain family of DAGs [18].

Another approach, based on color coding [1], enables H to be a general graph,
and provides parameterized algorithms with parameter k. This approach is used
by QPath [19] to perform simple path queries in O∗(5.437k) time. QNet [6]
extends QPath by allowing P1 to be a graph whose treewidth tw is bounded.
Its running time is O∗(8.155k|V (H)|tw+1). PADA1 [3] is an alternative to QNet

2 We thus avoid solving a generalization of the W[1]-hard Clique problem [7].

364 R.Y. Pinter and M. Zehavi

Table 1. Parameterized algorithms for TFQ. The first two algorithms require W and
the edge-weights of H to be nonnegative integers, and their running times depend on
the numeric value of W (which is exponential in its length).

Reference Running Time Method

Guillemot et al. [10] O∗(4kW 2) multilinear detection [12]

Pinter et al. [18] O∗(2kW) narrow sieves [2]

Bruckner et al. [4] O∗(k!3k) color coding [1]

This paper O∗(20.25k+O(log2 k)) randomized divide-and-conquer [5]

that bounds the size fvs of the feedback vertex set of P1 instead of its treewidth.
Its running time is O∗(8.155k|V (H)|fvs). Hüffner et al. [11] reduce the running
time of QPath to O∗(4.314k). All of these algorithms are randomized.

We note that there is a variety of problems related to AQ that have applica-
tions in bioinformatics, and refer the reader to the surveys [8,21] for information.

TFQ – Related Work: Unweighted TFQ (i.e., TFQ restricted to inputs where
w(e) = 0, for all e ∈ E(H)) was introduced by Lacroix et al. [13], and TFQ was
introduced by Bruckner et al. [4]. Lacroix et al. [13] proved that unweighted
TFQ is NP-hard even if H is a tree.

On the positive side, TFQ parameterized by k is in FPT. Table 1 presents
known parameterized algorithms for TFQ. All of them are randomized.

We note that there are several problems related to TFQ that have applications
in bioinformatics, and refer the reader to the survey [20] for information.

1.3 Our Contribution

Our first algorithm, AQ-Alg, can handle inputs for PIQ where H is a general
graph and P is a set of one tree. AQ-Alg runs in O∗(6.75k) time, which improves
QNet and PADA1 for inputs where P1 is a tree. If P1 is a path, AQ-Alg runs in
O∗(4k) time, which further improves QPath. Our algorithm uses the randomized
divide-and-conquer method [5].

Our main result is the second algorithm, PIQ-Alg, which is a modification of
AQ-Alg. PIQ-Alg can handle inputs for PIQ where H is a general graph and P is
a set of trees. It runs in O∗(6.75k+O(log2 k)3t) time. In particular, it solves TFQ

in O∗(20.25k+O(log2 k)) time (since then t = k), which significantly improves the
running time of the previous best algorithm by Bruckner et al. [4].

Due to space constraints, proofs are omitted.

2 AQ-Alg: An Algorithm for AQ

We start by presenting an algorithm, that we call AQ-Alg, for the special case of
PIQ where P is a set of one tree (i.e., t = 1 and P1 is a tree).

Partial Information Network Queries 365

2.1 Overview

We use the randomized divide-and-conquer method [5]. AQ-Alg randomly divides
the problem into two smaller subproblems that it recursively solves, and then
combines the answers. The following overview is illustrated in Fig. 1.

Each recursive stage concerns a rooted subtree R of P1, U ⊆ V (H) and a set
Solved of rooted subtrees of R. The subgraph of R induced by the nodes in R
that are not in any tree in Solved and the roots of the trees in Solved is a tree.
We next denote this subgraph by R′.

Each tree in Solved has several pairs. Such a pair consists of a node h ∈ V (H)
and a score s, and it concerns an isomorphism of score s between the tree and a
subtree of H that maps the root of the tree to h. These pairs and isomorphisms
between R′ and subtrees of H that map the nodes of R′ (excluding its root) to
nodes in U help finding scores of isomorphisms between R and subtrees of H .

In the base cases of the recursion, R′ has at most two nodes. Otherwise we
divide R′ into two subtrees that have a common node, and randomly divide U
into two subsets. We use the first subset to map the first subtree. Then we use
the results and the second subset to map the second subtree.

2.2 Preliminaries

Each definition presented in this section is preceded by an explanation of its
relevance, and is illustrated in Fig. 1.

Choose p3 ∈ V (P1), and add p1, p2, {p1, p2} and {p2, p3}, that are new nodes
and edges, to P1. Add a new node h∗ to H and connect it to all the nodes in
V (H) by edges of weight 0. Thus we avoid a special treatment of the first call
to the recursive procedure AQ-Rec, that is the main part of AQ-Alg.

Root P1 at p1, and use a preorder to denote its nodes by p1, p2, . . . , p|V (P1)|.
For nodes p and np ∈ N(p), T (p, np) is the subtree induced by p, its children
whose indexes are greater than that of np, and the descendants of these children.

Each stage of AQ-Rec concerns a subtree of P1 of the form T (r, nr), for nodes
r and nr ∈ N(r), a set U ⊆ V (H), and a set Solved of disjoint subtrees of
T (r, nr). The trees in Solved are of the form T (p, np), and thus represented by
pairs (p, np). Definition 1 concerns this set of trees.

Definition 1. Given Solved ⊆ {(p, np) : p ∈ V (P1), np ∈ N(p)}, r ∈ V (P1) and
nr ∈ N(r), we say that Solved is an (r, nr)-subtree set if its trees are disjoint
subtrees of T (r, nr) and one of them is rooted at r (i.e., Solved[(1, r)] 	= ∅).

Each tree T (p, np) in Solved has several scores. Each score corresponds to its
mapping to a subtree T of H . We only know the root of T , and it belongs to
U iff p 	= r. Moreover, no tree has different scores for isomorphisms that map
its root to the same node in V (H). We use a tuple (p, np, h, s) to represent an
isomorphism of score s between T (p, np) and a subtree of H that maps p to h.
Definition 2 concerns these tuples. We note that PS stands for Partial Solutions.

Definition 2. Let PS ⊆ {(p, np, h, s) : p ∈ V (P1), np ∈ N(p), h ∈ V (H), s ∈
R}, r ∈ V (P1), nr ∈ N(r) and U ⊆ V (H). PS is an (r, nr, U)-set if

366 R.Y. Pinter and M. Zehavi

p1

p2

p3

p11 p4

p5

p6

p7

p8 p9

p10

to all other
nodes in H

…
h* P1 H a

b

c

d f g

e

h

i n l

j k o

m
R

Assume that all the nodes (in P and H) have the
same label x, and that �(x,x)=1.
Assume that all the edges in H have weight 0.

U = {g,h,i,n}

p11

p3
:
2 2

:
2

:
3 3

A

p7

p6 p5

p9

p10

c

d

e

f

i

j

i

k

m

h

l

o

p5

p6 p8

U = {i,n}

2

3

p7

p6

p5

p9

p10

i

j

h

l

o

p3

p4

p5

:

:

p5

6

:
p6

U = {g,h}

B C

h

i

p8

j

n l

o

p7

p9

p10

2 2 c

d

e

f

:
p3

p11

Fig. 1. An illustration for Section 2.1. Part A presents the input for AQ-Alg and
a recursive stage. Solved contains the squares, triangles and hexagons trees. R′ is
the subtree induced by the bold nodes. Each tree in Solved has information on
several isomorphisms that are represented by pairs (e.g., the pairs of the squares
tree: (c, 2) and (e, 2)). We divide the problem of Part A into the subproblems of
Parts B and C. We solve Part B and use its answer (i.e., the isomorphism of the
hexagons tree in Part C) to solve Part C. Examples for the definitions of Section
2.2 (see Part A): T (p3, p2) = R, Solved = {(p3, p4), (p6, p5), (p5, p8)} is a (p3, p2)-
subtree set, PS = {(p3, p4, c, 2), (p3, p4, e, 2), (p6, p5, i, 2), (p5, p8, i, 3), (p5, p8, h, 3)} is
a (p3, p2, U)-set, T (PS) = R′, mid(PS) = {(p3, p2, 4, 0), (p3, p4, 0, 4), (p3, p11, 0, 4),
(p4, p3, 3, 1), (p4, p5, 0, 4), (p5, p4, 2, 2), (p5, p6, 1, 3), (p5, p8, 0, 4), (p5, p9, 0, 4), (p6,
p5, 0, 4), (p6, p7, 0, 4), (p8, p5, 0, 4)}.

Partial Information Network Queries 367

1. {(p, np) : PS[(1, p), (2, np)] 	= ∅} is an (r, nr)-subtree set.
2. ∀(p, np, h, s) ∈ PS: ∀s′[(p, np, h, s

′) ∈ PS → s = s′] and (p 	= r ↔ h ∈ U).

Suppose we have an (r, nr, U)-set PS. We find the best options (corresponding
to different mappings of r) to map the roots of the subtrees of T (r, nr) in PS and
the nodes in T (r, nr) which do not belong to these subtrees to subtrees whose
nodes (excluding the mappings of r) are in U . Thus we map all T (r, nr) and
use only nodes in U and nodes that we have already used for computing PS.
Definition 3 concerns this set of nodes in T (r, nr) which we want to map.

Definition 3. Given an (r, nr, U)-set PS, T (PS) is the subtree of P1 induced
by {v ∈ V (T (r, nr)) : �(p, np, h, s) ∈ PS s.t. v ∈ V (T (p, np)) \ {p}}.

We divide our problem into two smaller subproblems. We achieve this by
finding a node m ∈ V (T (PS)) and a neighbor nm ∈ N(m) that divide T (PS)
into two smaller subtrees: P1[V (T (PS)) ∩ V (T (m,nm))] and P1[V (T (PS)) \
V (T (m,nm))] ∪ {m}. Definition 4 concerns our division options.

Definition 4. Given an (r, nr, U)-set PS, we define:
mid(PS) = {(m,nm, sizeL, sizeR) : m ∈ V (T (PS)), nm ∈ N(m), sizeL =
|V (T (PS)) ∩ V (T (m,nm))| − 1, sizeR = |V (T (PS))| − sizeL − 1}.

We seek a tuple (m,nm, sizeL, sizeR) ∈ mid(PS) that minimizes max{sizeL,
sizeR}. Then, as the following lemma implies, our new subproblems are small.

Lemma 1. Given a rooted tree T s.t. v1, v2, . . . , vn is a preorder of V (T) and
n ≥ 3, there are vi ∈ V (T) and vj ∈ N(vi) s.t. max{2, �n

3 �} ≤ |V (T (vi, vj))| ≤
� 2n3 �. If T is a path, there are vi ∈ V (T) and vj ∈ N(vi) s.t. |V (T (vi, vj))| = �n

2 �.

2.3 The Algorithm

First note that an input for AQ-Rec is of the form (r, nr, U, PS), where r ∈ V (P1),
nr ∈ N(r), U ⊆ V (H), and PS is ∅ or an (r, nr, U)-set. The output SOL is ∅ or
an (r, nr, U)-set s.t. SOL[(1, r), (2, nr)] = SOL (i.e., the tuples in SOL represent
mappings of T (r, nr)).

AQ-Alg(P , H,Δ,W):

1. Add elements to the input as noted in Section 2.2.
2. SOL ⇐ AQ-Rec(p2, p1, V (H) \ {h∗}, {(p2, p3, h∗, 0)}).
3. Accept iff (SOL 	= ∅ ∧max(p,np,h,s)∈SOL{s} ≥ W).

Now we present the pseudocode of AQ-Rec.

AQ-Rec(r, nr, U, PS):

1. If PS = ∅ ∨ |V (T (PS))| = 1: Return PS.

We handle two base cases. PS = ∅ implies that we could not map some
subtree of T (r, nr) in previous computations, and thus we return ∅.

368 R.Y. Pinter and M. Zehavi

2. If |V (T (PS))| = 2:
(a) Denote by v the node in V (T (PS)) which is not r.
(b) If PS[(1, v)] = ∅: Return

⋃
h s.t. U∩N(h) �=∅,s s.t. (r,v,h,s)∈PS{(r, nr, h,

maxh′∈U∩N(h){s+ w({h, h′}) +Δ(l(v), l(h′))})}.
(c) Return

⋃
h s.t. ∃h′∈N(h)[PS[(1,v),(3,h′)] �=∅],s s.t. (r,v,h,s)∈PS{(r, nr, h,

maxh′∈N(h),s′ s.t. (v,r,h′,s′)∈PS{s+ s′ + w({h, h′})})}.

We handle the two remaining base cases. They correspond to whether or not
v is a root of a tree in PS. In both, for each mapping of r, we find the best legal
mapping of v to a node h′ in U .

3. SOL ⇐ ∅.

SOL will hold tuples that represent the best mappings we find for T (r, nr).

4. Choose (m,nm, sizeL, sizeR) ∈ mid(PS) that minimizes max{sizeL, sizeR}.

We find the best nodes m and nm to divide our problem of mapping T (PS)
into the two smaller subproblems of mapping V (T (PS)) ∩ V (T (m,nm)) and
(V (T (PS)) \ V (T (m,nm))) ∪ {m}.

5. probL ⇐ sizeL
|V (T (PS))|−1 and probR ⇐ 1− probL.

6. Repeat 1
(1−1/e)2probLsizeLprobRsizeR

times:

(a) UL ⇐ ∅ and UR ⇐ U .
(b) ForEach h ∈ U : With probability probL move h from UR to UL.

We randomly partition U into two sets, UL and UR, which we use in the first
and second subproblems, respectively: the nodes in (V (T (PS))∩V (T (m,nm)))\
{m} are mapped to nodes in UL, and then the other nodes in V (T (PS)) \ {r}
are mapped to nodes in UR. The probability probL of a node to be in UL and
the number of executions of Step 6 guarantee that with good probability the
solutions to our subproblems allow solving our problem of mapping T (PS).

6. (c) SOLL ⇐ ∅ and SOLR ⇐ ∅.

SOLL and SOLR will hold the solutions we find for our subproblems.

6. (d) PSL ⇐ {(p, np, h, s) ∈ PS : p ∈ V (T (m,nm)), p 	= m ↔ h ∈ UL}.
(e) If PS[(1,m)] = ∅:

i. If UR = ∅: Next iteration.
ii. Add

⋃
np∈N(m) s.t. V (T (m,np))={m},h∈UR

{(m,np, h,Δ(l(m), l(h)))} to
PSL.

(f) If ∃p ∈ V (T (m,nm))[PS[(1, p)] 	= ∅ ∧ PSL[(1, p)] = ∅]: Next iteration.

PSL holds the tuples in PS that are relevant to mapping T (m,nm). If it does
not have a tree rooted at m, we add all the options for mapping the tree that
contains only m to a node in UR (if UR = ∅, we skip the iteration). If we lost
the tuples representing all the mappings in PS of a tree that is relevant to PSL,
we skip the iteration.

Partial Information Network Queries 369

6. (g) SOLL ⇐ AQ-Rec(m,nm, UL, PSL).

We solve our first subproblem.

6. (h) PSR ⇐ SOLL ∪ {(p, np, h, s) ∈ PS : p /∈ V (T (m,nm)), h /∈ UL}.
(i) If SOLL = ∅ ∨ ∃p /∈ V (T (m,nm))[PS[(1, p)] 	= ∅ ∧ PSR[(1, p)] = ∅]:

Next iteration.

PSR holds SOLL and the tuples of PS that are relevant to our second sub-
problem. If SOLL = ∅ or we lost the tuples representing all the mappings in PS
of a tree that is relevant to our second subproblem, we skip the iteration.

6. (j) SOLR ⇐ AQ-Rec(r, nr, UR, PSR).
(k) For each h, s s.t. (r, nr, h, s) ∈ SOLR ∧ �s′[(r, nr, h, s

′) ∈ SOL ∧ s ≤ s′]:
SOL ⇐ (SOL ∪ {(r, nr, h, s)}) \ SOL[(1, r), (2, nr), (3, h)].

7. Return SOL.

We solve our second subproblem. Then we update SOL to hold the tuples
representing the best mapping of T (r, nr) we have found so far.

Theorem 1. AQ-Alg solves inputs for PIQ where P is a set of one tree in
O(6.75k+O(log k)|E(H)|) time and O(|V (H)| log2 k) space. If P1 is a path, it runs
in O(4k+O(log k)|E(H)|) time.

3 PIQ-Alg: An Algorithm for PIQ

We now present an algorithm for PIQ that can handle inputs where P is a set
of trees (i.e., Pi is a tree for all 1 ≤ i ≤ t). PIQ-Alg is a modification of AQ-Alg.

3.1 Overview

The overview is illustrated in Fig. 2. Each recursive stage concerns a rooted
subtree R of a tree in P , U ⊆ V (H), a set Solved of rooted trees and size ∈ N.
Each tree in Solved has several triples (AQ-Alg only needs pairs). Each triple
consists of a set of trees P̂ ⊆ P , h ∈ V (H) and a score s. It concerns a subtree S

of H , a partition of V (S) into the subsets {V 1
S , . . . , V

|P̂|+1
S }, an isomorphism m1

between the tree in Solved and S[V 1
S] that maps the root of the tree to h, and an

isomorphism mi between S[V i
S] and a different tree in P̂ for all 2 ≤ i ≤ |P̂|+ 1,

such that
∑

1≤i≤|P̂|+1

∑
v∈V i

S
Δ(l(v), l(mi(v))) +

∑
e∈E(S) w(e) = s. Note that

such a triple can be considered as a partial solution.
Using the triples, we map sets of size nodes to subtrees of H . Each node

(excluding the root of R) is mapped to a node in U , such that neighbors are
mapped to neighbors. Such a set contains the nodes of R′, that is the subtree
of R induced by the nodes in R that are not in any tree in Solved and the
roots of the subtrees of R that are in Solved. Moreover, such a set must help
us complete mapping the trees in P that have subtrees in Solved, excluding the

370 R.Y. Pinter and M. Zehavi

tree containing R. Thus it also contains their nodes, excluding those that belong
to trees in Solved and are not their roots. The number of nodes such set a must
contain may be less than size, and thus we map several sets of size nodes (we
add nodes of trees in P that do not have subtrees in Solved).

In the base cases of the recursion, size ≤ 2. Otherwise we divide our problem
into two subproblems as follows. Any set of size nodes that we attempt to map
may contain nodes of different trees in P , and we do not know in advance how to
connect them.3 Thus we examine several options for dividing the set of nodes we
must map into two sets to be used in the first and second subproblems. Such a
division may not imply the number of nodes we should map in each subproblem
(since the number of nodes we must map may be less than size), and thus we also
examine several options for these numbers. As in AQ-Alg, we randomly divide
U into two subsets. We use the first subset to solve our first subproblem. Then
we use the results and the second subset to solve our second subproblem.

3.2 Preliminaries

Each definition presented in this section is preceded by an explanation of its
relevance, and is illustrated in Fig. 2.

Choose p2 ∈ V (P1), and add to P1 a new node p1 and an edge {p1, p2} of
weight 0. Define ∀l ∈ L : Δ(l(p1), l) = −∞. Add a new node h∗ to H and
connect it to all the nodes in V (H) by edges of weight 0.

Since we may not know a topology for a solution (we only know it is a tree),
we cannot define a preorder on its nodes and use the form T (p, np), as in AQ-Alg.

We order the neighbors of each p ∈ V (P) (arbitrarily), and denote them by
nei1(p), . . . , nei|N(p)|(p). Denote N(p, neii(p), neij(p)) = {neil(p) ∈ N(p) : i ≤
l < j ∨ j < i ≤ l ∨ l < j < i}, N(p, neii(p), nil) = {neil(p) ∈ N(p) : i ≤
l} and N(p, nil, nil) = {}. P (p) denotes the tree in P that contains p, and
T (p, neii(p), neij(p)) denotes the subtree induced by the nodes reachable from p
in P (p)[V (P (p)) \ (N(p) \N(p, neii(p), neij(p)))]. We root T (p, neii(p), neij(p))
at p. In PIQ-Alg, T (p, neii(p), neij(p)) is the form of the trees that we have at
each recursive stage. Definition 5 concerns these trees.

Definition 5. Given Solved ⊆ {(p, n1
p, n

2
p) : p ∈ V (P), n1

p ∈ N(p) ∪ {nil}, n2
p ∈

N(p) ∪ {nil} s.t. n1
p = nil → n2

p = nil}, r ∈ V (P), n1
r ∈ N(r) ∪ {nil} and

n2
r ∈ N(r)∪{nil} s.t. n1

r = nil → n2
r = nil, we say that Solved is an (r, n1

r , n
2
r)-

subtree set if its trees are disjoint, those that are subtrees of P (r) are also subtrees
of T (r, n1

r, n
2
r), and Solved[(1, r), (3, n2

r)] 	= ∅.

Now we define the information of each tree in Solved. It is similar to Defini-
tion 2, but now each tree also has information on a set P̂ of trees in P that are
connected to it, and each of its scores also corresponds to their mappings.

Definition 6. Let PS ⊆ {(p, n1
p, n

2
p, P̂, h, s) : p ∈ V (P), n1

p ∈ N(p)∪{nil}, n2
p ∈

N(p)∪{nil} s.t. n1
p = nil → n2

p = nil, h ∈ V (H), P̂ ⊆ P , s ∈ R}, r ∈ V (P), n1
r ∈

3 We need to connect these trees to get one tree that is mapped to a subtree of H

Partial Information Network Queries 371

Assume that all the nodes (in P and H) excluding p1 have the same label x, and �(x,x)=1.
Assume that all the edges in H have weight 0.
Assume that the order between the neighbors of a node in P is the same as the order
between their indexes (e.g. nei1(p3)=p2 and nei2(p3)=p4).

p1

R

P1 P2 P3

P4
P5 P6

to all other nodes
in H

…
h* H

p2

p3

p4

p5

p6 p7

p8

p9

p10 p11 p12 p14

p13

p15

p16

p17 p18 p19

a

d k l n

e m o

f g

b

c

i

h j

q r

t s u

size=10
U={d,e,f,i,n,o,
 r,s,t,u}

p4 3 3 3 p2

p6 p7

p8

: 4 :

2

e

p14

p15

g

h

:=> R' is the subtree induced by {p2,p3,p4,p5}.
=> The set of nodes we must map is {p2,p3,p4,p5,p13,p14}.

e

g

h

i

h j

p4 p4 p4

p16

p17

p18

p19

p18 p19

p2

p6 p7

p8

a

k l

m

p14

p15

o

q

p14

p15
R

A

2 p14

p15

p14

p15

o

q

size=5, U={i,r,s,t,u}

=> R' is the subtree induced by
 {p14}, and the set of nodes we
 must map is {p14}. B

R = the tree R of part A, size=6, U={d,e,f,n,o}

p4 3 3 : e

g

h

e

g

h

p4 p4

p16

p17

p18

p19

p2

p6 p7

p8

:

p14

p15
: 6

6

p7

=> R' is the subtree induced by {p2,p3,p4,p5}, and the
 set of nodes we must map is {p2,p3,p4,p5,p13,p14}.

p14

p15

p14

p15

p2

p6 p7

p8

a

k l

m

p9

p10 p11 p12

p16

p17 p18 p19

o

q r

s t u

o

q r

s t u

4

C:

Fig. 2. An illustration for Section 3.1. Part A presents the input for PIQ-Alg and a
recursive stage. Solved contains the squares, triangles and hexagons trees. Each tree in
Solved has information on several isomorphisms that are represented by triples (e.g.,
the triples of the triangles tree: ({P4}, e, 3), ({P5, P6}, e, 3) and ({P5, P6}, i, 3)). We
divide the problem of Part A into the subproblems of Parts B and C. We solve Part
B and use its answer (i.e., the isomorphisms of the hexagons tree in Part C) to solve
Part C. Examples for the definitions of Section 3.2 (see Part A): T (p2, p3, p1) = R,
Solved = {(p2, p6, p1), (p4, p3, p3), (p14, p15, p13)} is a (p2, p3, p1)-subtree set, PS =
{(p2, p6, p1, {}, a, 4), (p4, p3, p3, {P4}, e, 3), (p4, p3, p3, {P5, P6}, e, 3), (p4, p3, p3, {P5, P6},
i, 3), (p14, p15, p13, {}, o, 2)} is a (p2, p3, p1, U)-set, V (PS) = {p2, p3, p4, p5, p13, p14}.

372 R.Y. Pinter and M. Zehavi

N(r) ∪ {nil}, n2
r ∈ N(r) ∪ {nil} s.t. n1

r = nil → n2
r = nil, and U ⊆ V (H). PS

is an (r, n1
r, n

2
r, U)-set if

1. {(p, n1
p, n

2
p) : PS[(1, p), (2, n1

p), (3, n
2
p)] 	= ∅} is an (r, n1

r , n
2
r)-subtree set.

2. ∀(p, n1
p, n

2
p, P̂ , h, s) ∈ PS: ∀s′[(p, n1

p, n
2
p, P̂, h, s′) ∈ PS → s = s′], (p 	= r ↔

h ∈ U) and ∀P̂ ′[PS[(4, P̂ ′)] 	= ∅ → P (p) /∈ P̂ ′].

Next we define the set of nodes that a given (r, n1
r , n

2
r, U)-set PS implies we

must map. This is a modification of Definition 3.

Definition 7. Given an (r, n1
r, n

2
r, U)-set PS, V (PS) is the set of nodes

(V (T (r, n1
r, n

2
r)) ∪ (

⋃
p s.t. PS[(1,p)] �=∅∧P (p) �=P (r) V (P (p)))) \

(
⋃

(p,n1
p,n

2
p,P̂,h,s)∈PS V (T (p, n1

p, n
2
p)) \ {p}).

We do not use a definition similar to Definition 4 since we may not know a
topology for V (PS) in a solution, and thus cannot determine how each node
divides it. We consider every node in V (PS) as a possible divisor of our problem
and examine several options for the sizes of the resulting smaller subproblems.

The next definition is used for the sake of clarity of the pseudocode. Given
(r, n1

r, n
2
r, U)-sets PS and PS′, we define a calculation that uses PS′ to update

PS to hold the information of both sets that corresponds to the best scores.

Definition 8. Given (r, n1
r, n

2
r, U)-sets PS and PS′, PS

+⇐ PS′ is defined as
{(p, n1

p, n
2
p, P̂, h, s) ∈ PS ∪ PS′ : ∀s′[(p, n1

p, n
2
p, P̂, h, s′) ∈ PS ∪ PS′ → s′ ≤ s]}.

3.3 The Algorithm

First note that an input for PIQ-Rec is of the form (r, n1
r, n

2
r, U, size, PS), where

r ∈ V (P), n1
r ∈ N(p) ∪ {nil}, n2

r ∈ N(p) ∪ {nil} s.t. n1
r = nil → n2

r = nil,
U ⊆ V (H), size ∈ N and ∅ or an (r, n1

r , n
2
r, U)-set PS s.t. |V (PS)| ≤ size.

The output SOL is ∅ or an (r, n1
r, n

2
r, U, size)-set such that SOL[(1, r), (2, n1

r),
(3, n2

r)] = SOL.

PIQ-Alg(P , H,Δ,W):

1. Add elements to the input as noted in Section 3.2.
2. SOL ⇐ PIQ-Rec(p1, p2, nil, V (H) \ {h∗}, k + 1, {(p1, nil, nil, h∗, 0)}).
3. Accept iff (SOL 	= ∅ ∧max(p,n1

p,n
2
p,P̂,h,s)∈SOL{s} ≥ W).

Now we present the pseudocode of PIQ-Rec.

PIQ-Rec(r, n1
r, n

2
r, U, size, PS):

1. If PS = ∅ ∨ size = 1: Return PS.
2. SOL ⇐ ∅.

Step 1 concerns two base cases that we handle as in AQ-Rec. SOL, as in
AQ-Rec, will hold tuples that represent the best mappings we find.

Partial Information Network Queries 373

3. If size = 2:
(a) If |V (PS)| = 2: Denote by v the node in V (PS) which is not r.
(b) If |V (PS)| = 1 then ForEach (p, n1

p, n
2
p, P̂ , h, s) ∈ PS, v ∈ V (P)\{r} s.t.

[P (v) /∈ P̂ ∧ N(v) = ∅], h′ ∈ U ∩N(h):

– SOL
+⇐ {(r, n1

r, n
2
r, P̂ ∪ {P (v)}, h, s+ w({h, h′}) +Δ(l(v), l(h′)))}.

(c) ElsIf PS[(1, v)] = ∅ then ForEach (p, n1
p, n

2
p, P̂ , h, s) ∈ PS, h′ ∈ U∩N(h):

– SOL
+⇐ {(r, n1

r, n
2
r, P̂ , h, s+ w({h, h′}) +Δ(l(v), l(h′)))}.

(d) ElsIf v ∈ V (P (r)) then ForEach (p, n1
p, n

2
p, P̂ , h, s) ∈ PS[(1, r)], P̂ ′ ⊆

P \ P̂ , h′ ∈ N(h), s′ s.t. ∃nv[(v, nv, r, P̂
′, h′, s′) ∈ PS]:

– SOL
+⇐ {(r, n1

r, n
2
r, P̂ ∪ P̂ ′, h, s+ w({h, h′}) + s′)}.

(e) Else ForEach (p, n1
p, n

2
p, P̂ , h, s) ∈ PS[(1, r)], P̂ ′ ⊆ P \ P̂, h′ ∈ N(h), s′

s.t. ∃nv[(v, nv, nil, P̂ ′, h′, s′) ∈ PS]:

– SOL
+⇐ {(r, n1

r, n
2
r, P̂ ∪ P̂ ′ ∪ {P (v)}, h, s+ w({h, h′}) + s′)}.

(f) Return SOL.

If size = 2, we have four base cases. For each of the two base cases corre-
sponding to whether or not PS[(1, v)] = ∅ (these are the base cases of AQ-Rec),
we need two base cases that correspond to whether or not v and r belong to the
same tree in P (note that if they do, then they are neighbors).

4. ForEachm ∈ V (P), n1
m ∈ N(m)∪{nil}, n2

m ∈ N(m)∪{nil} s.t. (n1
m = nil →

n2
m = nil), sizeL ∈ {max{1, � size

3 � − 1},max{2, � size
3 �}, . . . , � 2size3 � − 1},

partition (PL, PR) of {p : PS[(1, p)] 	= ∅]} s.t. m /∈ PR:

We examine choices for m,n1
m and n2

m that may divide our problem of map-
ping a set of size nodes, which is a superset of V (PS), into smaller subproblems.

Since we do not know the entire set of nodes we need to map in each of
the resulting subproblems, we examine several options to choose their sizes. We
examine only options in which both are at most � 2size3 �+1 (if size = 3, then at
most 2) to get the running time stated in Theorem 2. This still allows us to find
a solution (see Lemma 1 for intuition). For the same reason, we examine all the
partitions of the set roots of trees in PS into two sets, PL and PR, to be used
in the first and second subproblems, respectively. We require that m /∈ PR since
in our second subproblem we will only be interested in the mappings of m that
were found for our first subproblem (as in AQ-Rec).

4. (a) sizeR ⇐ size− sizeL − 1, probL ⇐ sizeL
size−1 and probR ⇐ 1− probL.

(b) Repeat 1
(1−1/e)2probLsizeLprobRsizeR

times:

i. UL ⇐ ∅ and UR ⇐ U, SOLL ⇐ ∅ and SOLR ⇐ ∅.
ii. ForEach h ∈ U : With probability probL move h from UR to UL.

As in AQ-Rec, we examine several partitions of U into UL and UR, and SOLL

and SOLR hold the solutions we find for our first and second subproblems.

4. (b) iii. PSL ⇐ {(p, n1
p, n

2
p, P̂, h, s) ∈ PS : p ∈ PL, p 	= m ↔ h ∈ UL}.

iv. If m /∈ PL: PSL
+⇐
⋃

h∈UR
{(m,n2

m, n2
m, ∅, h,Δ(l(m), l(h)))}.

374 R.Y. Pinter and M. Zehavi

v. ForEach (p, n1
p, n

2
p, P̂, h, s) ∈ PSL s.t. P (m) ∈ P̂: PSL ⇐ PSL \

{(p, n1
p, n

2
p, P̂ , h, s)}.

vi. If ∃p ∈ PL s.t. PSL[(1, p)] = ∅ ∨ PSL is not an (m,n1
m, n2

m, UL)-set
∨ |V (PSL)| > sizeL + 1: Next iteration.

As in AQ-Rec, PSL holds the tuples of PS that are relevant to our first
subproblem, and if it does not have a tree rooted at m, we add all the options
for mapping the tree that contains only m to a node in UR. We remove from
PSL tuples that do not correspond to m and yet map its entire tree. If PL has
a node that is not a root of a tree in PSL, or PSL is not a (m,n1

m, n2
m, U)-set,

or PSL requires mapping too many nodes, we skip the iteration.

4. (b) vii. SOLL ⇐ PIQ-Rec(m,n1
m, n2

m, UL, sizeL + 1, PSL).

We solve our first subproblem.

4. (b)viii. PSR ⇐ SOLL ∪ {(p, n1
p, n

2
p, P̂ , h, s) ∈ PS : p ∈ PR, h /∈ UL}.

ix. ForEach (p, n1
p, n

2
p, P̂ , h, s) ∈ PSR s.t. ∃p′ ∈ PR ∪ {m} for which

P (p′) ∈ P̂ : PSR ⇐ PSR \ {(p, n1
p, n

2
p, P̂ , h, s)}.

x. If ∃p ∈ PR∪{m} s.t. PSR[(1, p)] = ∅ ∨ PSR is not an (r, n1
r , n

2
r, UR)-

set ∨ |V (PSR)| > sizeR + 1: Next iteration

PSR holds the solutions of the first subproblem and the tuples of PS that
are relevant to our second subproblem. We remove from PSR tuples that do not
correspond to a node p′ ∈ PR ∪ {m} and yet map its entire tree. If the resulting
PSR is illegal (the check is similar to that in Step 4(b)vi), we skip the iteration.

4. (b) xi. SOL
+⇐ PIQ-Rec(r, n1

r , n
2
r, UR, sizeR + 1, PSR).

5. Return SOL.

We solve our second subproblem and update SOL.

Theorem 2. PIQ-Alg solves inputs for PIQ where P is a set of trees in
O(6.75k+O(log2 k)3t|E(H)|) time and O(2t|V (H)| log2 k) space.

References

1. Alon, N., Yuster, R., Zwick, U.: Color coding. J. Assoc. Comput. Mach. 42(4),
844–856 (1995)

2. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Narrow sieves for parameter-
ized paths and packings. CoRR abs/1007.1161 (2010)

3. Blin, G., Sikora, F., Vialette, S.: Querying graphs in protein-protein interactions
networks using feedback vertex set. IEEE/ACM Trans. Comput. Biol. Bioin-
form. 7(4), 628–635 (2010)

4. Bruckner, S., Hüffner, F., Karp, R.M., Shamir, R., Sharan, R.: Topology-free query-
ing of protein interaction networks. In: Batzoglou, S. (ed.) RECOMB 2009. LNCS,
vol. 5541, pp. 74–89. Springer, Heidelberg (2009)

Partial Information Network Queries 375

5. Chen, J., Kneis, J., Lu, S., Molle, D., Richter, S., Rossmanith, P., Sze, S., Zhang,
F.: Randomized divide-and-conquer: Improved path, matching, and packing algo-
rithms. SIAM J. on Computing 38(6), 2526–2547 (2009)

6. Dost, B., Shlomi, T., Gupta, N., Ruppin, E., Bafna, V., Sharan, R.: Qnet: a tool
for querying protein interaction networks. J. Comput. Biol. 15(7), 913–925 (2008)

7. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness ii: on
completeness for w [1]. Theor. Comput. Sci. 141(1-2), 109–131 (1995)

8. Fionda, V., Palopoli, L.: Biological network querying techniques: Analysis and
comparison. J. Comput. Biol. 18(4), 595–625 (2011)

9. Garey, M.R., Johnson, D.S.: Computers and intractability: a guide to the theory
of NP-completeness. W.H. Freeman, New York (1979)

10. Guillemot, S., Sikora, F.: Finding and counting vertex-colored subtrees. In:
Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 405–416. Springer,
Heidelberg (2010)

11. Hüffner, F., Wernicke, S., Zichner, T.: Algorithm engineering for color-coding with
applications to signaling pathway detection. Algorithmica 52(2), 114–132 (2008)

12. Koutis, I.: Faster algebraic algorithms for path and packing problems. In: Aceto, L.,
Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz,
I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 575–586. Springer, Heidelberg
(2008)

13. Lacroix, V., Fernandes, C.G., Sagot, M.F.: Motif search in graphs: Application to
metabolic networks. IEEE/ACM Trans. Comput. Biol. Bioinform. 3(4), 360–368
(2006)

14. Mano, A., Tuller, T., Beja, O., Pinter, R.Y.: Comparative classification of species
and the study of pathway evolution based on the alignment of metabolic pathways.
BMC Bioinform 11(S-1), S38 (2010)

15. Niedermeier, R.: Invitation to fixed-parameter algorithms. Oxford University Press
(2006)

16. Pinter, R.Y., Rokhlenko, O., Tsur, D., Ziv-Ukelson, M.: Approximate labelled sub-
tree homeomorphism. J. Discrete Algorithms 6(3), 480–496 (2008)

17. Pinter, R.Y., Rokhlenko, O., Yeger-Lotem, E., Ziv-Ukelson, M.: Alignment of
metabolic pathways. Bioinformatics 21(16), 3401–3408 (2005)

18. Pinter, R.Y., Zehavi, M.: Algorithms for topology-free and alignment queries. Tech-
nion Technical Reports CS-2012-12 (2012)

19. Shlomi, T., Segal, D., Ruppin, E., Sharan, R.: Qpath: a method for querying path-
ways in a protein-protein interaction networks. BMC Bioinform. 7, 199 (2006)

20. Sikora, F.: An (almost complete) state of the art around the graph motif problem.
Université Paris-Est Technical reports (2012)

21. Wang, H., Xiang, T., Hu, X.: Research on pattern matching with wildcards and
length constraints: methods and completeness (2012),
http://www.intechopen.com/books/bioinformatics

http://www.intechopen.com/books/bioinformatics

An Application of Completely Separating

Systems to Graph Labeling

Leanne Rylands1, Oudone Phanalasy2,3, Joe Ryan4, and Mirka Miller2,5,6,7

1 School of Computing, Engineering and Mathematics, University of Western Sydney,
Sydney, Australia

l.rylands@uws.edu.au
2 School of Mathematical and Physical Sciences, University of Newcastle, Newcastle,

Australia
oudone.phanalasy@gmail.com, mirka.miller@newcastle.edu.au

3 Department of Mathematics, National University of Laos, Vientiane, Laos
4 School of Electrical Engineering and Computer Science, University of Newcastle,

Newcastle, Australia
joe.ryan@newcastle.edu.au

5 Department of Mathematics, University of West Bohemia, Pilsen, Czech Republic
6 Department of Informatics, King’s College London, London, UK
7 Department of Mathematics, ITB Bundung, Bundung, Indonesia

Abstract. In this paper a known algorithm used for the construction of
completely separating systems (CSSs), Roberts’ Construction, is modi-
fied and used in a variety of ways to build CSSs. The main interest is
in CSSs with different block sizes. A connection between CSSs and ver-
tex antimagic edge labeled graphs is then exploited to prove that various
non-regular graphs are antimagic. An outline for an algorithm which pro-
duces some of these non-regular graphs together with a vertex antimagic
edge labeling is presented.

Keywords: completely separating system, antimagic labeling,
non-regular graph.

1 Introduction

In 1969, Dickson [4] introduced completely separating systems. A completely
separating system (CSS) on [n] = {1, 2, . . . , n}, or (n)CSS, is a collection of
subsets C of [n] in which for each pair of distinct elements a, b ∈ [n], there exist
A,B ∈ C such that a ∈ A, b /∈ A, a /∈ B and b ∈ B. We say that a and b are
completely separated.

The sets in the (n)CSS are called blocks. Let k be a positive integer and C
an (n)CSS. If |A| = k for all A ∈ C, then C is an (n, k)CSS. A d-element in a
collection of sets is an element which occurs in exactly d sets in the collection. We
often omit the brackets and commas when writing a block, for example, the set
{a, b, c} is often written as abc. An example of a CSS is C = {123, 145, 246, 356};
it is a (6, 3)CSS.

T. Lecroq and L. Mouchard (Eds.): IWOCA 2013, LNCS 8288, pp. 376–387, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Completely Separating Systems and Graph Labeling 377

Several variants on the theme of CSSs have been explored in [13,15,16], among
others. Roberts [16] gives a method for the construction of various CSSs; a special
case of this is given below as it proves useful for the study of antimagic labelings
of graphs.
Roberts’ Construction [16] Assume that k ≥ 2, n ≥

(
k+1
2

)
and k|2n, and let

R = 2n/k. Roberts’ Construction is the following algorithm:

1. Begin with an R × k array M = (mij) with each entry set to 0;
t := 1.

2. Repeat
Place t in the two positions mij determined by

min
j

min
i
{mij | mij = 0} and

min
i

min
j

{mij | mij = 0}

t := t+ 1
Until t = n+ 1.

An (R × k)-array M is constructed; each row of M forms a subset of [n] and
the R rows of M are the blocks of an (n, k)CSS.

Roberts’ Construction was used to obtain the array of the (12, 4)CSS shown
in Figure 1. Roberts’ Construction produces an (n, k)CSS for every n and k,
with k ≥ 2, n ≥

(
k+1
2

)
and k|2n.

Magic labeling of graphs was first introduced by Sedláček [17]. A graph G is
magic (more specifically, vertex magic) if it has an edge labeling, with range the
real numbers, such that the sums of the edge labels incident with a vertex are
all equal to the same integer, independent of the choice of the vertex.

The idea of a magic labeling has been generalized and used as an inspiration
by many authors, for example, [9,8,10,11,12,18]. For more details see [19]. Instead
of labeling edges of a graph, it is possible to label vertices, or both edges and
vertices. In this paper we deal with edge labeling.

An edge labeling is a bijection

l : E(G) → {1, 2, . . . , |E(G)|} .

The weight of a vertex x, x ∈ V (G) is defined as

wt(x) =
∑

l(xy)

where the sum is taken over all vertices y adjacent to x.
At the other extreme in terms of magicness, is the situation whereby all the

vertex weights are pairwise distinct. The notion of an antimagic labeling of a
graph was introduced by Hartsfield and Ringel [6] in 1990. An antimagic labeling
of a graph G with q edges is a bijection from the set of edges to the set of positive
integers {1, 2, . . . , q} such that all the vertex weights are pairwise distinct. We
call such a labeling a ‘vertex antimagic edge labeling’, or simply, ‘antimagic

378 L. Rylands et al.

labeling’, and we say that a graph G is antimagic if there exists an antimagic
labeling of G. Figure 1 shows an antimagic graph.

Note that most edge labelings of a given graph will be neither magic nor
antimagic. However, there is the Hartsfield and Ringel conjecture [6], proposed
in 1990.

Conjecture 1. [6] Every connected graph, except K2, is antimagic.

While in general the Hartsfield and Ringel conjecture remains open, research
has been conducted in two main directions: some investigate antimagic label-
ings with restrictions placed on the weights, while others stay with the idea of
plain antimagicness but restrict their attention to particular classes of graphs.
For example, Bodendiek and Walther [2] introduced the concept of (a, d)-vertex
antimagic edge labeling. This is an antimagic edge labeling such that the ver-
tex weights form an arithmetic progression starting at a and with difference d.
Clearly, any (a, d)-vertex antimagic edge labeling is an antimagic labeling.

The second direction of research into antimagic labeling has been proving the
antimagicness of particular families of graphs. Alon et al. [1] used probabilistic
methods and some techniques from analytic number theory to show that the
conjecture is true for all graphs having minimum degree at least Ω(log |V (G)|).
They also proved that if G is a graph with order |V (G)| ≥ 4 and maximum
degree Δ(G), |V (G)| − 2 ≤ Δ(G) ≤ |V (G)| − 1, then G is antimagic. Alon
et al. [1] also have shown that all complete multipartite graphs, except K2,
are antimagic. Hefetz [7] used the combinatorial nullstellensatz to prove that a
graph with 3k vertices, where k is a positive integer, and admits a K3-factor
is antimagic. Many, many papers have appeared proving that particular classes
of graphs are antimagic. Gallian’s dynamic survey [5] summarises much of this
work.

However, to date there are not many results on the antimagicness of non-
regular graphs and, especially, of trees [3,6].

In this paper we present a powerful relationship between completely separat-
ing systems and edge labeling of graphs. Based on this relationship we produce
a family of regular vertex antimagic edge labeled graphs and then we extend our
results to construct vertex antimagic edge labeling for regular and non-regular
graphs.

2 Relationship between Completely Separating Systems
and Labeling of Graphs

The following two theorems, stated without proof in [14], provide a relationship
between completely separating systems and edge labeled graphs.

Theorem 1. Let V = {v1, . . . , vp} be a collection of subsets of [q]. If V is
a (q)CSS in which each element of [q] is a 2-element and E is the set of all
unordered pairs {vi, vj}, where vi ∩ vj 	= ∅, then G = (V,E) is a simple graph,
|V | = p and |E| = q. Also, G has an edge labeling l given by l(vi, vj) = vi ∩ vj.

Completely Separating Systems and Graph Labeling 379

Proof. Let V = {v1, v2, . . . , vp} be a (q)CSS. Since V is a (q)CSS consisting of
2-elements, an element e of [q] must be in exactly two sets of V . Take V to be
the set of vertices of a graph. Define the edges to be the pairs of vertices {vj , vl}
for which there is, in the (q)CSS V , an element e common to both. This e is
the label of that edge. The set of edges E can be identified with the set [q]. If
G = (V,E) is not a simple graph, then there exists either a loop or multiple
edge. This means that either there exists at least one member of V containing
a duplicate element e of [q] or there is a pair of sets which both contain ei and
ej , i 	= j. Both scenarios contradict V being a CSS.

Note that if V = {v1, . . . , vp} is a (q, k)CSS then G is a k-regular graph
together with an edge labeling.

Theorem 2. Let G = (V,E) be a simple graph with |V | = p, |E| = q with an
edge labeling given by bijection l : E → [q]. For v ∈ V , let Sv be the set of labels
of edges incident with v. Then the collection {Sv | v ∈ V } is a (q)CSS consisting
of 2-elements.

Proof. Let G = (V,E) be a graph having an edge labeling. As each edge has a
unique label from the set [q], E can be identified with [q]. Let V = {v1, v2, . . . , vp}.
Identify vj ∈ V , with Svj . Then vj ⊆ [q], and V is a collection of subsets of [q].
As each edge is incident with two distinct vertices, each e ∈ [q] appears in exactly
2 sets in V .

Assume that V is not a completely separating system on E. Then there exist
at least two numbers ej , el ∈ [q] which are not separated from each other. As
each element of [q] is a 2-element, this means that there exist two members vj
and vl, j 	= l, both containing ej and el. Hence G contains multiple edges which
contradicts the fact that G is a simple graph. Therefore, V is a (q)CSS.

Note that in Theorem 2, if G is a k-regular graph, that is, each vertex of G
has degree k, then V is a (q, k)CSS.

1 2 3 4
1 5 6 7
2 6 8 9
3 7 10 11
4 8 10 12
5 9 11 12

1

2

4

3

9

5

7
6

810

12

11

Fig. 1. A CSS obtained using Roberts’ Construction and the corresponding graph with
antimagic edge labeling

Based on the relationship between CSSs and edge labeled graphs we present
results concerning the antimagicness of some regular and non-regular graphs
obtained from modificaitons of Roberts’ Construction for CSSs.

380 L. Rylands et al.

A CSS is often written as an “array” of numbers, which need not be rectangu-
lar (the array can be considered as rectangular with some places unused). This is
done in Figure 1. If an array is the array of a CSS consisting of 2-elements then
it defines a labeled graph. Consequently we write G(V,E, L) (or simply, G(L))
to denote a graph G = (V,E) (or G) with the array L as an edge labeling.

Theorem 3. Let L be the array of a (q, k)CSS obtained by Roberts’ Construc-
tion. Then the k-regular graph G(V,E, L), where |V | = p = 2q/k, |E| = q, is
antimagic.

Proof. Use Roberts’ Construction to obtain V = {v1, v2, . . . , vp}, a (q, k)CSS,
where vi is the set of elements in row i of the array L. It is clear that V consists
of 2-elements. Let ei,j be the element in row i and column j of L. Given any
pair vi and vl with i < l, for 1 ≤ j ≤ k, either ei,j is less than el,j or there
exists at most one pair ei,j = el,j . Therefore, wt(vi) =

∑
e∈vi e must be less than

wt(vl) =
∑

e∈vl e.

Thus for every integer p = 2q/k, Roberts’ Construction defines an antimagic
k-regular graph G = (V,E) with |V | = p and |E| = q; write B(p, k) for this
labeled graph. This family of graphs includes all cycles Cn = B(n, 2) and all
complete graphs Kn = B(n, n − 1), for n ≥ 3. Figure 1 shows the antimagic
graph B(6, 4) (corresponding to the (12, 4)CSS shown).

Disjoint unions of graphs in the family B(n, k) are proved to be antimagic in
the following lemma.

Lemma 1. Let Gj(Lj), 1 ≤ j ≤ s, where Lj is the array of a (qj , kj)CSS
obtained using Roberts’ Construction. Then the disjoint union H =

⋃s
j=1 Gj is

antimagic.

Proof. Let Gj(Lj), 1 ≤ j ≤ s be a k-regular graph with pj vertices and qj edges.
We may assume that kj ≤ kj+1. We construct the array A of edge labels of H
as follows.

1. Relabel the edge labels in the array Lj , 1 ≤ j ≤ s, by adding
∑j−1

t=1 qt to
each of the original edge labels;

2. Form the array A as shown below.

L1

L2

...
Ls

By the construction of the array A, it is clear that the weight of each vertex
(row) in the array is less than the weight of the vertex below.

3 Modification of Completely Separating Systems

In this section Roberts’ Construction and Theorems 1 and 2 are exploited to
provide further constructions of antimagic edge labeling of graphs.

Completely Separating Systems and Graph Labeling 381

3.1 Edge Deletion with No Isolated Vertex

Let G = (V,E) be a graph and D ⊂ E. Define the edge deletion subgraph G−D
to be the subgraph of G obtained from G by deleting all edges in D and isolated
vertices if any exist.

Theorem 4. Let G(V,E, L) be a graph, where L is the array of edge labels
obtained by Roberts’ Construction. Identify E with {1, 2, . . . , |E|}, the set of
edge labels. Let D = [t] ⊂ E with t ≤ |E| − 2. Then G−D is antimagic.

Proof. Construct the array L′ of edge labels of G−D by subtracting t from each
edge label in L and deleting all non positive edge labels and then the vertices
(rows) with no entries. It is clear that L′ defines a CSS. By Theorem 1 G(L′)
is an edge labeled graph and it easy to check that the weight of each vertex
(row) in the array L′ is less than the weight of the vertex (row) below; hence
G(L′) = G−D is antimagic.

Recall the antimagic graph G = (V,E) from Figure 1. Let D = {1, 2, 3}. The
antimagic graph G − D is shown in Figure 2. Note that the deleted edges are
shown by dashed lines.

1
2 3 4
3 5 6
4 7 8

1 5 7 9
2 6 8 9

1
6

2

4
3

57

9

8

Fig. 2. The array (CSS) L′ corresponding to the graph G−D and an antimagic edge
labeling

3.2 Edge Switching

Let Gj(Lj), for 1 ≤ j ≤ 2, be a labeled kj-regular graph with qj edges, where Lj

is the CSS, or array of edge labels obtained by Roberts’ Construction. Assume
that k1 ≤ k2. We construct the edge switching of n1 < k1 edges in G1 with
n2 < k2 edges in G2 as follows.

1. Replace the edge labels in L2 with the new labels obtained by adding q1 to
each of the original edge labels;

2. Switch the last largest n1 labels in the last row of L1 with the smallest n2

labels in the first row of L2.

Denote by Gn1
1 $% Gn2

2 the graph obtained from this edge switching construc-
tion.

382 L. Rylands et al.

To guarantee the antimagicness of Gn1
1 $% Gn2

2 , the conditions k1 ≤ k2, 1 ≤
n2 ≤ �k2

2 � and k1 ≤ k1−n1+n2 ≤ k2−n2+n1 ≤ k2 must hold. Note that when
k1 = k2 then n1 and n2 must be equal.

It is easy to prove that the weights of all vertices in Gn1
1 $% Gn2

2 are pairwise
distinct. It is clear that Gn1

1 $% Gn2
2 is connected.

As an example, take K4 and its antimagic labeling obtained using Roberts’
Construction as shown in Figure 3 and recall the 4-regular antimagic graph G
from Figure 1. Then we have the graph K2

4 $% G2 and its antimagic labeling in
Figure 4.

1 2 3
1 4 5
2 4 6
3 5 6

1

6

25

34

Fig. 3. A CSS L and corresponding graph G(L) = K4 with antimagic edge labeling

1 2 3
1 4 5
2 4 6
3 7 8

5 6 9 10
7 11 12 13
8 12 14 15
9 13 16 17
10 14 16 18
11 15 17 18

1

2

4 3

6

78

5

11
9

10
15

18

1416

1217
13

Fig. 4. An array (CSS) obtained by edge switching and corresponding graph K2
4 �� G2

with antimagic edge labeling

By repeating this process, we can switch the edges of more such kj-regular

graphs Gj , 1 ≤ j ≤ m, with kj ≤ kj+1 and nj < kj , 1 ≤ nj+1 ≤ �kj+1

2 � and
kj ≤ kj − nj + nj+1 ≤ kj+1 − nj+1 + nj ≤ kj+1, for 1 < j < m − 1, then
(((Gn1

1 $% Gn2
2) $% Gn3

3) $% . . . $% G
nm−1

m−1) $% Gnm
m is antimagic.

Completely Separating Systems and Graph Labeling 383

3.3 Splitting of Roberts’ Construction

Let G = (V,E, L) be a labeled graph with |V | = p and |E| = q, where L is an
array of edge labels using Roberts’ Construction. We split L into two subarrays
L1 and L2 (not rectangular) as follows.

1. Choose any integer q1, 1 ≤ q1 < q. Take L1 to be the array containing edge
labels from 1 to q1 and L2 containing edge labels from q1 + 1 to q;

2. Replace each edge label ei in L1 with a new edge label q1 + 1− ei;
3. Replace each edge label ei in L2 with a new edge label ei − q1.

The arrays L1 and L2 clearly define CSSs. By the construction of the array
L1, it is clear that the weight of each vertex (row) in the array is greater than
the weight of the vertex (row) below. Similarly, for the array L2, the weight of
each vertex (row) in the array is less than the weight of the vertex (row) below.

Note that if L1 or L2 is not the array of edge labeling of K2 (that is, q1 = 1
or q1 = q− 1), then we have two non-regular antimagic graphs corresponding to
the edge labelings L1 and L2, otherwise we have only one non-regular antimagic
graph.

For an example of the splitting of Roberts’ Construction, recall the 4-regular
antimagic graph G from Figure 1. If we choose q1 = 7, then we obtain the CSS
L1 and its corresponding antimagic graph G(L1), shown in Figure 5, and L2

and its corresponding antimagic graph G(L2), shown in Figure 6. Note that the
solid dots and dark lines represent the vertices and edges of G(Lj), j = 1, 2,
respectively, while the dashed lines and circles show where edges and vertices of
the original graph have been deleted.

7 6 5 4
7 3 2 1
6 2 . .
5 1 . .
4 . . .
3 . . .

2

7

6

4

3

1

5

Fig. 5. The array (CSS) L1 and graph G(L1) with antimagic edge labeling

. . . .

. . . .

. . 1 2

. . 3 4

. 1 3 5

. 2 4 5

4

13

2
5

Fig. 6. The array (CSS) L2 and graph G(L2) with antimagic edge labeling

384 L. Rylands et al.

3.4 Antimagic Graphs with Degrees k and k − 1

The next theorem gives a new construction for particular CSSs with two different
block sizes. The corresponding graphs are antimagic.

Lemma 2. The number of blocks in an (n)CSS with n > 1 is greater than the
number of elements in the largest block.

Proof. This is clear if all blocks have size 1. Otherwise, each element in a largest
block B must appear again at least once to be completely separated from the
other elements in B. This requires at least |B| blocks in addition to block B.

Theorem 5. Let r ≥ k + 1 ≥ 3 and let L be an r × k array with the bottom s
places of the last column unused for some s with r > s ≥ 1 and rk − s even. Let
n = rk−s

2 .
Entries for L can be found so that

1. L represents an (n)CSS with r− s blocks of size k and s blocks of size k− 1;
2. L consists of 2-elements;
3. If a and b are entries in the same column of L with a above b, then a ≥ b.

Proof. The proof is by induction on the number of rows r, beginning with r = 3
(so k = n = 2). There exists one such CSS, and it is the smallest satisfying the
conditions.

For r > 3 use Roberts’ Construction to fill the array L, starting at n and
decreasing, but stopping when the first r − s blocks have been filled. Let l be
the last number to have been entered. Such an array is illustrated in Figure 7,
where the shaded portion has been filled.

n
n

l

l
L rotate

180◦
L′

Fig. 7. A partially filled array; the grey portion contains numbers, the white portion
is yet to be filled

Remove the unfilled portion and rotate it 180 degrees; call this smaller array
L′. There are 3 cases:
(a) L′ is a 0× 0 array—there is nothing further to be done,
(b) L′ is a rectangular s×k′ array and so can be filled using Roberts’ Construction
from top to bottom with 1, 1, 2, 2, . . . , l − 1, l − 1,
(c) L′ is an s× k′ (k′ ≥ 2) array L′, which has some, but not all, of the bottom
part of the last column removed. Roberts’ Construction ensures that s 	= 1
and the previous cases cover s = 2. Hence s ≥ 3. Roberts’ Construction could

Completely Separating Systems and Graph Labeling 385

be continued to yield an array which would be a CSS, therefore, by Lemma 2
s > k′ + 1. By induction L′ can be filled, but work from 1 up to l − 1, so as to
form a CSS consisting of 2-elements.

The construction ensures that if a and b are entries in L′ with a above b, then
a ≤ b; when L′ is rotated 180 degrees and placed in L we will have a above b
implies a ≥ b.

Each integer appears twice in L, so to show that complete separation is
achieved it is only necessary to show that no two pairs of integers appear in
the same two rows.

The numbers n, n − 1, . . . , l are completely separated by Roberts’ Construc-
tion. The numbers l − 1, . . . , 2, 1 are completely separated from each other by
Roberts’ Construction. Each a ∈ {l, l + 1, . . . , n} appears at least once in the
first r − s rows of L, and each b ∈ {1, 2, . . . , l − 1} appears twice after the first
r − s rows, so each pair a, b are completely separated. Hence L represents an
(n)CSS.

Example 1. The recursive algorithm used in the proof of Theorem 5 is applied
here to obtain a (10)CSS with two blocks of size 4 and four blocks of size 3:

L =

10 9 8 7
10 6 5 4
9 5 .
8 4 .
7 . .
6 . .

. So L′ is

. .

. .

.

.

→
1 2
1 3
2
3

. Hence L becomes

10 9 8 7
10 6 5 4
9 5 3
8 4 2
7 3 1
6 2 1

.

Corollary 1. The weights of the blocks in the CSSs produced in Theorem 5 are
distinct, and so the graph determined by the CSS is antimagic.

Proof. The graph has r − s vertices have degree k and s vertices have degree
k − 1. The construction ensures that each element is no smaller than the one
below, if there is one. As k ≥ 2, and as it is only possible for one element in a
row to equal the one below, each row sum is greater than the one below.

The proof of Theorem 5 gives a recursive algorithm for producing CSSs, and
hence antimagic graphs:

1. Begin with L as in Theorem 5, with all places marked as empty.
2. Repeat

Case based on L
L is a 0× 0 array : Halt.
L is rectangular : Use Roberts’ Construction; Halt.
Default : Fill L until the large rows are full.

L := unfilled portion rotated 180◦.
Endcase

Until L filled.

The antimagic graph corresponding to the CSS in Example 1 is shown in
Figure 8.

386 L. Rylands et al.

12 3

4

56

78

9

10

Fig. 8. The antimagic graph corresponding to the CSS in Example 1

Consider the degree sequence of a connected regular graph with r vertices: s
of degree k − 1 and r − s of degree k with r > s ≥ 1. We must have r > k ≥ 2
and the sum of the degrees s(k−1)+(r−s)k = rk−s even. By Theorem 5 there
is an (r)CSS, which by Corollary 1 yields an antimagic graph with the original
degree sequence. One can prove that the graph obtained is connected. Therefore,
for any degree sequence corresponding to a connected non-regular graph whose
vertices have degrees k and k− 1, there exists a connected antimagic graph with
that degree sequence.

Theorem 5 does not generalise to part of two or more columns being removed.
For example, it is not possible to place integers in the array with three rows of
size 4 and two rows of size 2 so as to form a CSS. Other methods will be needed
to prove that, in general, for the degree sequence of a graph with vertices of
degrees k and k′ there is an antimagic graph with that degree sequence.

The work presented in this paper is a small step towards proving a weak
version of the Hartsfield and Ringel conjecture:

Conjecture 2. For every degree sequence of connected graph, except for 1, 1,
there is a connected antimagic graph with that degree sequence.

References

1. Alon, A., Kaplan, G., Lev, A., Rodity, Y., Yuster, R.: Dense graphs are antimagic.
J. Graph Theory 47(4), 297–309 (2004)

2. Bodendiek, R., Walther, G.: On number theoretical methods in graph labelings.
Res. Exp. Math. 21, 3–25 (1995)

3. Chawathe, P.D., Krishna, V.: Antimagic labelings of complete m-ary trees. In:
Number Theory and Discrete Mathematics. Trends Math., pp. 77–80. Birkhäuser,
Basel (2002)

4. Dickson, T.J.: On a problem concerning separating systems of a finite set. J. Com-
binatorial Theory 7, 191–196 (1969)

5. Gallian, J.A.: A dynamic survey of graph labeling. Electron. J. Combin. 19(�DS6)
(2012)

6. Hartsfield, N., Ringel, G.: Pearls in Graph Theory: A Comprehensive Introduction.
Academic Press Inc., Boston (1990)

Completely Separating Systems and Graph Labeling 387

7. Hefetz, D.: Anti-magic graphs via the combinatorial nullstellensatz. J. Graph The-
ory 50(4), 263–272 (2005)

8. Kotzig, A., Rosa, A.: Magic valuations of complete graphs. Publ. Centre de
Recherches Mathématiques, Université de Montréal 175, CRM–175 (1972)

9. Kotzig, A.: On certain vertex-valuations of finite graphs. Utilitas Math. 4, 261–290
(1973)

10. Kotzig, A., Rosa, A.: Magic valuations of finite graphs. Canad. Math. Bull. 13,
451–461 (1970)

11. MacDougall, J.A., Miller, M., Slamin, Wallis, W.D.: Vertex magic total labelings
of graphs. Utilitas Math. 61, 3–21 (2002)

12. MacDougall, J.A., Miller, M., Wallis, W.D.: Vertex magic total labelings of wheels
and related graphs. Utilitas Math. 62, 175–183 (2002)

13. Phanalasy, O.: Covering Separating Sytems. Master’s thesis, Northern Territory
University, Australia (1999)

14. Phanalasy, O., Miller, M., Rylands, L., Lieby, P.: On a relationship between com-
pletely separating systems and antimagic labeling of regular graphs. In: Iliopoulos,
C.S., Smyth, W.F. (eds.) IWOCA 2010. LNCS, vol. 6460, pp. 238–241. Springer,
Heidelberg (2011)

15. Ramsay, C., Roberts, I.T., Ruskey, F.: Completely separating systems of k-sets.
Discrete Math. 183(1–3), 265–275 (1998)

16. Roberts, I.T.: Extremal Problems and Designs on Finite Sets. Ph.D. thesis, Curtin
University of Technology, Australia (1999)

17. Sedláček, J.: Problem 27. In: Theory of Graphs and its Applications (Proc. Sympos.
Smolenice, 1963), pp. 163–164. Publ. House Czechoslovak Acad. Sci, Prague (1964)

18. Stewart, B.M.: Magic graphs. Canad. J. Math. 18, 1031–1056 (1966)
19. Wallis, W.D.: Magic graphs. Birkhäuser Boston Inc., Boston (2001)

Universal Cycles for Weight-Range Binary Strings

Joe Sawada1,�, Aaron Williams2,��, and Dennis Wong1

1 School of Computer Science, University of Guelph, Canada
{jsawada,cwong}@uoguelph.ca

2 Department of Mathematics and Statistics, McGill University, Canada
haron@uvic.ca

Abstract. We present an efficient universal cycle construction for the set of bi-
nary strings of length n with weight (number of 1s) in the range c, c + 1, . . . , d
where 0 ≤ c < d ≤ n. The construction is based on a simple lemma for gluing
universal cycles together, which can be implemented to generate each character
in constant amortized time using O(n) space. The Gluing lemma can also be
applied to construct universal cycles for other combinatorial objects including
passwords and labeled graphs.

1 Introduction

Let B(n) denote the set of all binary strings of length n. A universal cycle for a set
S is a cyclic sequence u1u2 · · ·u|S| where each substring of length n corresponds to a
unique object in S. When S = B(n) these sequences are commonly known as de Bruijn
sequences [6, 7, 14] and efficient constructions are well known [9, 10, 17]. For example,
the cyclic sequence 0000100110101111 is a universal cycle (de Bruijn sequence) for
B(4); the 16 unique substrings of length 4 when the sequence is considered cyclicly
are:

0000, 0001, 0010, 0100, 1001, 0011, 0110, 1101, 1010, 0101, 1011, 0111, 1111, 1110, 1100, 1000.

Universal cycles have been studied for a variety of combinatorial objects including
permutations, partitions, subsets, labeled graphs, various functions, and passwords [1,
3–5, 12, 13, 15, 16, 18, 21]. In this paper we focus on the set Bd

c(n), which de-
notes the subset of B(n) containing strings with weight (number of 1s) in the range
c, c + 1, . . . , d, or in other words, the subset of B(n) containing strings with weight-
range from c to d. We refer to universal cycles as dual-weight universal cycles when
c = d − 1. We also say a weight-range is even if |{c, c + 1, . . . , d}| is even, and
we say a weight-range is odd if |{c, c + 1, . . . , d}| is odd. As an example, B3

2(4) =
{0011, 0101, 0110, 1001, 1010, 1100, 0111, 1011, 1101, 1110}and a universal cycle for
this set is 0011101011 which has even weight-range. Using standard techniques, it can
be shown that universal cycles exist for all Bd

c(n) where 0 ≤ c < d ≤ n (when c = d,
they exist only when c ∈ {0, 1, n − 1, n}). However, finding efficient constructions
remains a difficult problem.

� Research supported by NSERC.
�� Research supported in part by the NSERC Accelerator and Discovery Programmes, and a basic

research grant from ONR.

T. Lecroq and L. Mouchard (Eds.): IWOCA 2013, LNCS 8288, pp. 388–401, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Universal Cycles for Weight-Range Binary Strings 389

001 011

100 110

1

1

0

0010 101

0

1

111

1

0

1

1

1

Fig. 1. The de Bruijn graph G(B4
2(4)).

In this paper, a universal cycle has an efficient construction if each successive sym-
bol of the sequence can be generated in constant amortized time (CAT) while using a
polynomial amount of space with respect to n. Some special cases on the construction
of universal cycles for Bd

c(n) have been previously studied:

– if c = d − 1, then an efficient construction is known [20],
– if c = 0 or d = n, then an efficient construction is known [24],
– if the weight-range is even, then a polynomial construction is known [25, 26].

This paper provides the first efficient construction for universal cycles of Bd
c(n) for

all 0 ≤ c < d ≤ n. By applying the efficient construction known for the case when
c = d − 1 [20], a universal cycle for Bd

c(n) can be constructed in constant amortized
time using O(n) space.

The rest of this paper is presented as follows. In Section 2 we provide a simple proof
for the existence of universal cycle for Bd

c(n) where 0 ≤ c < d ≤ n; an alternate proof
is given in [2]. In Section 3, we present a generic result that considers when two univer-
sal cycles can be “glued together” to obtain a new universal cycle. We then apply this
result in Section 4 and Section 5 to provide an efficient universal cycle construction for
Bd

c(n). We conclude with Section 6, where we apply our gluing technique to universal
cycles for other combinatorial objects, including passwords and labeled graphs.

2 Universal Cycle Existence for Bc
d(n)

The de Bruijn graph G(S) for a set of length n strings S is a directed graph whose
vertex set consists of the length n−1 strings that are a prefix or a suffix of the strings
in S. For each string b1b2 · · · bn ∈ S there is an edge labeled bn that is directed from
the vertex b1b2 · · · bn−1 to the vertex b2b3 · · · bn. Thus, the graph has |S| edges. As an
example, the de Bruijn graph G(B4

2(4)) is illustrated in Fig. 1.
In this article, a cycle in a directed graph G = (V,E) is a sequence v1, v2, . . . , vj , v1

where vi ∈ V and (vi, vi+1) ∈ E. A directed graph is said to be Eulerian if it contains
an Euler cycle, that is, a cycle that includes each edge exactly once. It is well known that
S admits a universal cycle if and only if G(S) is Eulerian. If G(S) is Eulerian, then a
universal cycle is produced by traversing an Euler cycle and outputting the edge labels.

390 J. Sawada, A. Williams, and D. Wong

However, in practice, such a method for producing a universal cycle is often impractical
due to the size of the graph that must be stored in memory. For example, because the
number of edges for the de Bruijn graph G(B(n)) is equal to 2n, the memory required
to store all edges of the de Bruijn graph G(B(n)) is Ω(2n).

A directed graph is said to be balanced if the in-degree of each vertex is the same
as its out-degree. It is strongly connected if there is a directed path between every pair
of vertices. The following result is well-known, and appears in many references such
as [19]:

Lemma 1. A directed graph is Eulerian if and only if it is balanced and strongly con-
nected.

Theorem 1. G(Bd
c(n)) is Eulerian for 0 ≤ c < d ≤ n.

Proof. We prove that G(Bd
c(n)) is Eulerian by showing that it is balanced and strongly

connected.

Balanced: The vertex set of G(Bd
c(n)) contains all strings of length n− 1 with weight

in the range c − 1, c, . . . , d. Each vertex with weight c − 1 has one incoming edge and
one outgoing edge, each labeled 1. Each vertex with weight d has one incoming edge
and one outgoing edge, each labeled 0. All other vertices have in-degree and out-degree
equal to 2.

Strongly Connected: We apply induction on the size of the weight-range c, c+1, . . . , d.
The base case when c = d − 1 is proved in Theorem 2.4 of [20]. For the inductive
step assume that G(Bd−1

c (n)) is strongly connected for 0 ≤ c < d − 1, and consider
G(Bd

c(n)). Observe:

– the vertex set of G(Bd
c(n)) is equal to the union of the vertex sets of G(Bd−1

c (n))
and G(Bd

d−1(n)),
– the intersection of the vertex sets for G(Bd−1

c (n)) and G(Bd
d−1(n)) is non-empty,

– the edge sets of G(Bd−1
c (n)) and G(Bd

d−1(n)) are both subsets of the edge set for
G(Bd

c(n)).

Thus, since both G(Bd−1
c (n)) and G(Bd

d−1(n)) are strongly connected (inductive hy-
pothesis and base case), there will be a directed path between any two vertices in
G(Bd

c(n)). ��

3 Gluing Universal Cycles

In this section we consider concatenating two universal cycles together to obtain a new
universal cycle. If a directed graph is Eulerian, then an Euler cycle of the graph can be
obtained by Hierholzer’s algorithm [11, 19]. Hierholzer’s approach is to construct an Eu-
ler cycle by exhaustively concatenating edge-disjoint cycles that share a common vertex.
The algorithm repeatedly applies the following observation to produce an Euler cycle.

Observation 2. Let G = (V,E) and H = (V ′, E′) be two directed Eulerian graphs
such that V ∩ V ′ 	= ∅ and E ∩ E′ = ∅. Let CG = u1, u2, . . . , uj , u1 and CH =
v1, v2, . . . , vk, v1 denote Euler cycles in G and H respectively such that u1 = v1. Then
the concatenation of the two cycles CGH = u1, . . . , uj , v1, . . . , vk, v1 is an Euler cycle
for G ∪H .

Universal Cycles for Weight-Range Binary Strings 391

As mentioned in Section 2, each universal cycle for a set S corresponds to an Euler
cycle of its de Bruijn graph G(S). Thus by Observation 2, universal cycles for two sets
S1 and S2 can be joined together to form a new universal cycle for S1 ∪ S2 if G(S1)
and G(S2) are edge-disjoint and share a common vertex, or in other words, S1 and S2

are disjoint and have elements that share a length n − 1 prefix or a length n− 1 suffix.
As an example, consider the following two universal cycles:

– universal cycle for B2
1(5): 000011000101001,

– universal cycle for B4
3(5): 001111011010111.

The de Bruijn graphs G(B2
1(5)) and G(B4

3(5)) are edge-disjoint and share a com-
mon vertex α = 0011. Since the universal cycles are cyclic they can be re-written
as 001100010100100 and 001111011010111 respectively. By gluing these two strings
together, observe that we obtain a universal cycle for B4

1(5) = B2
1(5) ∪ B4

3(5):

001100010100100001111011010111.

This example illustrates the following result which follows directly from Observation 2.

Lemma 3 (The Gluing lemma). Let U1 and U2 be universal cycles for the sets of
length n strings S1 and S2, where S1∩S2 = ∅ and the length n− 1 prefixes of U1 and
U2 are the same. Then the concatenated string U1 ·U2 is a universal cycle for S1 ∪S2.

4 Universal Cycle Construction for Bd
c(n)

As mentioned earlier, there exists an efficient universal cycle construction for
Bd

d−1(n) [20]. We use the Gluing lemma to create a universal cycle for binary strings
with an even weight-range by joining these dual-weight universal cycles. To create uni-
versal cycles for binary strings with an odd weight-range, we also have to glue in indi-
vidual necklaces which are defined in the following subsection.

4.1 Preliminary Definitions and Notations

A necklace is the lexicographically smallest string in an equivalence class of strings
under rotation. The aperiodic prefix of a string α, denoted as ap(α), is its shortest
prefix whose repeated concatenation yields α. That is, the aperiodic prefix of α =
a1a2 · · · an is the shortest prefix ap(α) = a1a2 · · ·ap such that (ap(α))

n
p = α, where

exponentiation denotes repeated concatenation. For example, when α = 001001001,
ap(α) = 001. A string is a prenecklace if it is the prefix of some necklace. A string α
is aperiodic if ap(α) = α. Aperiodic necklaces are also known as Lyndon words. Let
the set of length n binary prenecklaces, necklaces and Lyndon words with weight w be
denoted by P(n,w), N(n,w) and L(n,w) respectively. For example:

– P(6, 4) = {001111, 010111, 011011, 011101, 011110},
– N(6, 4) = {001111, 010111, 011011},
– L(6, 4) = {001111, 010111}.

Observe that the prenecklaces 011101 and 011110 are prefixes of the necklaces
01110111 and 0111101111 respectively so they are in P(6, 4).

392 J. Sawada, A. Williams, and D. Wong

�������� � ��������
� ��������

�������������������
���

��
��
��
��
��
��
�
� �

��
��
��

� �
���

����� ���������

��������

��������

��������

��������

��������

��������

��������

��������

��������

��������

��������

��

��������

����

��������

��������

��������

������	
���	�

�	�����	�
���������

���	�����
����	��
	�

������	������ �!	������"��	��������#��
$

Fig. 2. Concatenating the aperiodic prefixes of N4(8) in reverse cool-lex order to create a dual-
weight universal cycle for B4

3(7).

4.2 Even Weight-Range

Suppose we want to construct a universal cycle for Bd
d−3(n) from universal cycles for

Bd−2
d−3(n) and Bd

d−1(n). Observe that Bd−2
d−3(n) and Bd

d−1(n) are disjoint, and their
universal cycles share common length n − 1 substrings with weight d − 2. Thus, we
can apply the Gluing lemma to construct a universal cycle for Bd

d−3(n). We can then
repeatedly apply the Gluing lemma on the resulting universal cycle and dual-weight
universal cycles of lower weight-ranges to obtain a universal cycle of an even weight-
range. However, the difficult task remains: How can we produce the glued universal
cycle efficiently, that is, without scanning for common substrings of length n−1?

To find an efficient construction, we must revisit the efficient construction of univer-
sal cycles for Bd

d−1(n), which we will refer to as UCd
d−1 in this article:

1. List the necklaces of length n+ 1 and weight d in reverse cool-lex order [22],
2. Append the aperiodic prefixes of the necklaces following the order to create UCd

d−1.

As an example, Fig. 2 demonstrates a dual-weight universal cycle forB4
3(7) constructed

by concatenating the aperiodic prefixes of N4(8) in reverse cool-lex order. Using this
construction, we can find a common length n−1 substring α of the universal cycles
UCd−2

d−3(n) and UCd
d−1(n) by the following lemma.

Lemma 4. [20] The first necklace in reverse cool-lex order for Bd(n+1) is 0n−d+11d.

Applying this lemma, the first n+1 characters in UCd−2
d−3(n) and UCd

d−1(n) are

0n−d+31d−2 and 0n−d+11d respectively. Thus, if we rotate UCd−2
d−3(n) to the left by

2 characters, then the first n− 1 characters of both cycles will be 0n−d+11d−2.
Let VCd

d−1(n) denote the sequence UCd
d−1(n) with the first 2 characters removed.

The following recursive formula provides a construction of the universal cycle UEd
c(n)

for Bd
c(n) where the weight-range is even.

UEd
c(n) =

{
UCd

d−1(n) if c = d− 1;

UCd
c+2(n) · VCc+1

c (n) · 00 if c < d− 1.

Universal Cycles for Weight-Range Binary Strings 393

We obtain the following formula by expanding the recursive function.

UEd
c(n) = UCd

d−1(n) · VCd−2
d−3(n) · VCd−4

d−5(n) · · ·VCc+1
c (n) · 0d−c−1.

Theorem 2. UEd
c(n) is a universal cycle for Bd

c(n) when 0 ≤ c < d ≤ n and the
weight-range is even.

The example discussed in Section 3 shows how UE4
1(5) is constructed from UC4

3(5) and
UC2

1(5). Note that the universal cycle UEd
c(n) is different from those created in [25, 26].

Theorem 3. A universal cycle UEd
c(n) for Bd

c(n) can be constructed in constant amor-
tized time using O(n) space when weight-range is even and 0 ≤ c < d ≤ n.

Proof. Since the universal cycle UCd
d−1 can be constructed in constant amortized time

using O(n) space by the algorithm described in [20], and VCd
d−1 can easily be ob-

tained by constructing UCd
d−1 and removing its first 2 characters, therefore UEd

c(n)
can be constructed in constant amortized time using O(n) space when weight-range is
even. ��

This is the first known efficient construction of even weight-range universal cycles,
since the previous constructions discussed in [25, 26] were not accompanied by an
efficient algorithm.

4.3 Incrementing the Weight-Range (Odd Weight-Range)

In this section, we consider extending the weight-range of a universal cycle forBd−1
c (n)

into a universal cycle for Bd
c(n). We refer this process as incrementing the universal

cycle’s weight range. The process of incrementing the universal cycle’s weight range
allows us to extend an even weight-range universal cycle to an odd weight-range uni-
versal cycle.

Let Neck(β) denote the set of strings rotationally equivalent to β. We partition the
strings inBd(n) into their necklace equivalence classes such thatBd(n) = Neck(n1)∪
Neck(n2)∪· · ·∪Neck(n|Nd(n)|) where nj ∈ Nd(n). For example, B3(6) can be par-
titioned into four subsets B3(6) = Neck(000111)∪Neck(001011)∪Neck(001101)∪
Neck(010101) with elements of each set listed as follows:

$ Neck(000111) = {000111, 001110, 011100, 111000, 110001, 100011},
$ Neck(001011) = {001011, 010110, 101100, 011001, 110010, 100101},
$ Neck(001101) = {001101, 011010, 110100, 101001, 010011, 100110}, and
$ Neck(010101) = {010101, 101010}.

Observe that the de Bruijn graph G(Neck(nj)) forms a simple cycle with concatena-
tion of its edge labels correspond to ap(nj), which is a universal cycle for Neck(nj).
As an example, Fig. 3 illustrates the de Bruijn graphs for the four necklace equivalence
classes that make up B3(6). The concatenation of edge labels of the cycles are 000111,
001011, 001101 and 01, which correspond to the universal cycles for Neck(000111),
Neck(001011),Neck(001101) and Neck(010101) respectively. Notice that there ex-
ists universal cycles for Neck(nj) that have length less than n, which happens when

394 J. Sawada, A. Williams, and D. Wong

00111 00011

1100011100

01110 10001

1

0

0

0

1

1

01011 00101

1100101100

10110 10010

1

0

0

1

0

1

01101 00110

0100110100

11010 10011

1

0

0

1

1

0

01010

10101

1 0

Fig. 3. Illustrating the de Bruijn graph corresponding to the universal cycles of the 4 necklace
equivalence classes Neck(000111), Neck(001011), Neck(001101) and Neck(010101) that
make up B3(6).

nj are periodic. The length n− 1 prefixes of these universal cycles are the length n− 1
prefixes of the corresponding necklace. For example, 01010 is the length 5 prefix of the
universal cycle 01 when n = 6, since the universal cycle is traversed repeatedly.

Observe that Bd−1
c (n) and Neck(nj) are disjoint, and we can rotate a universal cy-

cles forBd−1
c (n) such that its length n−1 prefix is equal that ofNeck(nj). We can then

apply Lemma 3 (the Gluing lemma) to repeatedly concatenate universal cycles for each
necklace equivalence class Neck(nj) with the universal cycle for Bd−1

c (n). For exam-
ple, consider the universal cycles for Neck(000111), Neck(001011), Neck(001101),
Neck(010101) and B2

1(6):

– universal cycle for Neck(000111): 000111,
– universal cycle for Neck(001101): 001101,
– universal cycle for Neck(001011): 001011,
– universal cycle for Neck(010101): 01,
– universal cycle for B2

1(6): 000110000101000100100.

By repeatedly applying the Gluing lemma, we obtain a universal cycle for B3
1(6) as

follows:

1. Glue universal cycles for Neck(000111) and B2
1(6):

– 000111000110000101000100100, which is equivalent to the rotation,
– 001100001010001001000001110.

2. Glue universal cycles for Neck(001101) and B2
1(6) ∪Neck(000111):

– 001101001100001010001001000001110, which is equivalent to the rotation,
– 001010001001000001110001101001100.

3. Glue universal cycles for Neck(001011) and B2
1(6) ∪ Neck(000111) ∪ Neck

(001101):
– 001011001010001001000001110001101001100,which is equivalent to the ro-

tation,
– 010100010010000011100011010011000010110.

4. Glue universal cycles for Neck(010101) and B2
1(6) ∪ Neck(000111) ∪ Neck

(001101)∪Neck(001011):
– 01010100010010000011100011010011000010110.

Universal Cycles for Weight-Range Binary Strings 395

Since B2
1(6)∪Neck(000111)∪Neck(001101)∪Neck(001011)∪Neck(010101) =

B3
1(6), we obtain a universal cycle forB3

1(6). The order of inserting the universal cycles
for Neck(nj) does not affect the final universal cycle.

A linear universal string of a universal cycle is obtained by appending the first
n − 1 characters to its end. For example, a linear universal string for the universal cy-
cle 0000100110101111 for B(4) is 0000100110101111000. Let u1u2 · · ·u|UDd−1

c |+n−1
denote the linear universal string from UDd−1

c , where UDd−1
c is a universal cycle for

Bd−1
c (n). The linear universal string contains each element of Bd−1

c exactly once as
a substring. Observe that if α · 1 ∈ Nd(n), then the string α · 0 exists as a substring
of UDd−1

c . Thus, we can increment the weight-range of UDd−1
c and output a universal

cycle for Bd
c(n) as follows:

for s from 1 to |UDd−1
c | do

α = usus+1 · · ·us+n−1
if α · 1 ∈ Nd(n) then

Print(ap(α · 1))
Print(us)

Let UDd
c denote the output string that results from this construction.

Theorem 4. UDd
c is a universal cycle for Bd

c(n) when 0 ≤ c < d ≤ n.

Proof. The string ap(α · 1) is a universal cycle for Neck(α · 1). Since Bd−1
c (n) and

Neck(α · 1) are disjoint and have the same length n− 1 prefix, that is α, by the Gluing
lemma the construction exhaustively concatenates UDd−1

c and universal cycles for each
necklace equivalence class Neck(nj), where nj ∈ Nd(n). The resulting string UDd

c is
a universal cycle for the set Bd−1

c (n)∪Neck(n1)∪Neck(n2)∪· · ·∪Neck(n|Nd(n)|),
that is Bd

c(n). ��

5 Implementation

In this section, we efficiently increment the weight-range of a universal cycle for
Bd−1

c (n) into a universal cycle for Bd
c(n). We assume that there is an efficient algo-

rithm that outputs a universal cycle for Bd−1
c (n) one character at a time. We buffer this

output into a sliding window, and examine it to determine if any additional characters
need to be output. We first describe how this process works, and then we describe how
to make the process efficient.

5.1 A Simple Algorithm: SimpleIncrement()

The construction SimpleIncrement() follows the approach in Section 4.3. The algorithm
reads each character from a linear universal string u1u2 · · ·u|UDd−1

c |+n−1. It examines
the sliding window α = usus+1 · · ·ut of size n − 1 and inserts ap(α · 1) if α · 1 ∈
Nd(n). The weight of α is maintained by the variable w. The weight w change by
at most one between successive iterations which can be maintained in constant time.

396 J. Sawada, A. Williams, and D. Wong

To examine if α · 1 ∈ Nd(n), we apply Duval’s algorithm [8] which returns 0 if α · 1 is
not a necklace, or otherwise returns the length of ap(α · 1). The length of ap(α · 1) is
maintained by the variable p. The algorithm runs in O(n) time per character.

function AperiodicNecklacePrefix(x1x2 · · · xn)
1: p ← 1
2: for i from 2 to n do
3: if xi−p < xi then p ← i

4: else if xi−p > xi then return 0

5: if n mod p = 0 then return p
6: else return 0

procedure SimpleIncrement()
1: s ← 1
2: for s from 1 to |UDd−1

c | do
3: t ← s+ n− 1
4: w ← Weight(usus+1 · · ·ut)
5: p ← AperiodicNecklacePrefix(usus+1 · · ·ut1)
6: if p > 0 and w = d− 1 then
7: Print(usus+1 · · ·us+p−21) // Insertion of ap(α · 1)
8: Print(us)
9: s ← s+ 1

Fig. 4. Pseudocode of SimpleIncrement().

Pseudocode that produces UDd
c(n) is shown in Fig. 4. The initial call is SimpleIn-

crement(). The procedure calls the function AperiodicNecklacePrefix(x1 · · ·xn) to ex-
amine if α · 1 ∈ Nd(n), which is an implementation of Duval’s algorithm. Thus, each
time we read a character from an input linear universal string we need O(n) amount of
work to examine α · 1 for its aperiodic prefix. The sliding window of size n− 1 can be
implemented using a circular array that requires a constant amount of computation to
update using O(n) space.

Thus, in addition to the time and space required to produce an input linear universal
string for Bd−1

c (n), the algorithm SimpleIncrement() uses an additional O(n) amount
of work per character and O(n) space to construct a universal cycle UDd

c(n) for Bd
c(n).

From Theorem 3, because we can construct even weight-range universal cycle in con-
stant amortized time using O(n) space, we arrive the following theorem.

Theorem 5. A universal cycle UDd
c(n) for Bd

c(n) can be constructed in O(n) amor-
tized time using O(n) space for any weight-range where 0 ≤ c < d ≤ n.

5.2 Extending SimpleIncrement() to CAT

The major overhead of SimpleIncrement() in runtime comes from the function Aperiod-
icPrefix(x1 · · ·xn) that examines the sliding window for its aperiodic prefix using O(n)
amount of work per character. To efficiently locate the position to insert the aperiodic
prefixes, we instead maintain a sliding window β = usus+1 · · ·ut of variable size.

Pseudocode of the efficient construction is shown in Fig. 5. The initial call is FastIn-
crement(). The function Update(k, w) scans the string ukuk+1 · · · at to update s to s′

such that us′us′+1 · · ·ut is a prenecklace and p is the length of ap(us′us′+1 · · ·ut). The
algorithm is summerized into three stages as follows:

Glue Universal Cycles: We insert ap(usus+1 · · ·ut−1 · 1) before the position s if
usus+1 · · ·ut−1 ·1 ∈ Nd(n). The string usus+1 · · ·ut−1 · 1 ∈ Nd(n) if t− s+1 = n,
w = d − 1 and ut = 0.

Maintain Prenecklace: We maintain the variables s and p such that β is a prenecklace
and p is the length of ap(β). There are a few possible cases here:

Universal Cycles for Weight-Range Binary Strings 397

function Update(int k, int w)
1: s′ ← k; p ← 1;w′ ← w
2: for i from k + 1 to t do
3: if ui−p < ui then p ← i− s′ + 1

4: else if ui−p > ui then

5: s′ ← s′ + � i−s′
p � · p

6: p ← 1
7: for j from s′ + 1 to i do
8: if uj−p < uj then p ← j − s′ + 1

9: // Update weight w
10: for i from s to s′ − 1 do
11: if ui = 1 then w′ ← w − 1
12: return (s′, p, w′)

procedure FastIncrement()
1: p ← 1;w ← 0; s ← 1
2: for t from 1 to |UDd−1

c | + n− 1 do
3: w ← w + ut

4: // Glue universal cycles
5: if t− s+ 1 = n and w = d− 1 and ut = 0 then
6: if ut−p < 1 then Print(usus+1 · · ·ut−11)
7: else Print(usus+1 · · ·us+p−1)
8: // Maintain prenecklace
9: if ut−p < ut then p ← t− s + 1

10: else if ut−p > ut then
11: (s′, p, w)← Update(s+ � t−s

p � · p, w)

12: Print(usus+1 · · ·us′−1)

13: s ← s′

14: // Maintain window-size
15: if t− s+ 1 = n then
16: if p > n/2 then (s′, p, w)← Update(s + 1, w)
17: else (s′, p, w)← Update(s + p, w)
18: Print(usus+1 · · ·us′−1)
19: s ← s′

Fig. 5. Pseudocode of FastIncrement().

– if ut−p < ut, then β is a prenecklace and ap(β) = usus+1 · · ·ut, thus we update
p = |β| = t− s+ 1;

– if ut−p = ut, then β is a prenecklace and the aperiodic prefix remains unchanged,
that is ap(β) = ap(usus+1 · · ·ut−1) = usus+1 · · ·us+p−1, we keep s and p un-
changed;

– if ut−p > ut, then β is not a prenecklace; we update s to s+ � t−s
p � · p; we update

p to be the length of ap(us+� t−s
p �·p · · ·ut);

$ for example, consider n = 13, β = u1u2 · · ·u12 = 001001001000 and p = 3;
β is not a necklace because u12−3 > u12; the variable s is thus updated to
1 + � 12−13 � · 3 = 10 such that the sliding window β starts with u10u11u12 =
000 which is lexicographically smaller than u1u2u3 = 001; p is updated to
the length of ap(u10u11u12) = |ap(000)| = 1.

Maintain Window-size: We increment the variable s to s′ when the size of β
reaches n such that us′us′+1 · · ·ut is a prenecklace; we update p to be the length of
ap(us′us′+1 · · ·ut).

Analysis: We analyze the amount of work divided by the number of character in univer-
sal cycle for Bd

c(n), we demonstrate that the total amount of work of FastIncrement()
divided by the number of character in universal cycle for Bd

c(n) is bounded by a con-
stant. The work required for each of the above stage is as follows:

Glue universal cycles: The string usus+1 · · ·ut−1 · 1 ∈ Nd(n) if w = d − 1, ut = 0
and t− s+ 1 = n, this can be verified using only a constant amount of work.

Maintain Prenecklace: If ut−p ≤ ut, then β is a prenecklace and we update p which
requires a constant amount of work; if at−p > at, we call the function Update(s +
� t−s

p � · p, w) which requires O(t − s − � t−s
p � · p) amount of work; however, we print

398 J. Sawada, A. Williams, and D. Wong

at least � t−s
p � · p characters. Since t− s− � t−s

p � · p < � t−s
p � · p, the amount of work is

proportional to the number of character.

Maintain Window-size: The size of the sliding window reaches n. It calls the function
Update(s + 1, w) to update the variables s and p but prints only one character, thus it
requires O(n) amount of work per character.

Let N(n,w), L(n,w) and P (n,w) denote the cardinality of N(n,w), L(n,w) and
P(n,w), and let P0(n,w) and P1(n,w) denote the cardinality of the set of binary pre-
necklaces of length n and weight w that end with the character 0 and 1 respectively. We
show that the number of length n prenecklaces is bounded by the number of elements in
the universal cycle for Bd

c(n) over n, and thus the total amount of computation required
to update all prenecklaces is proportional to the length of the universal cycle for Bd

c(n).
The following lemma provides an upper bound of P1(n,w) in terms of N(n,w) and
L(n,w).

Lemma 5. [23] P1(n,w) ≤ N(n,w) + L(n,w).

Consider the upper bound of P0(n,w), replacing the last character of a prenecklace of
weight w that ends with a 0 with the character 1 will always yield a unique necklace
of weight w + 1, P0(n,w) is therefore bounded by the number of necklaces of weight
w + 1.

Lemma 6. P0(n,w) ≤ N(n,w + 1).

The upper bound of N(n,w) and L(n,w) in terms of
(
n
w

)
has been discussed in [23]

and are given as follows:

L(n,w) ≤ 1

n

(
n

w

)
and N(n,w) ≤ 2L(n,w) ≤ 2

n

(
n

w

)
.

The upper bound of P (n,w) in terms of
(
n
w

)
is therefore as follows:

P (n,w) = P0(n,w) + P1(n,w)

≤ N(n,w + 1) +N(n,w) + L(n,w)

≤ 2

n

(
n

w + 1

)
+

2

n

(
n

w

)
+

1

n

(
n

w

)

≤ 2

n

(
n

w + 1

)
+

3

n

(
n

w

)
.

Theorem 6. Algorithm FastIncrement() is a CAT algorithm.

Proof. Let hn be the amount of work required in stage 3 of FastIncrement() to update
the prenecklace, where h is a constant. The ratio between the total amount of work
required in stage 3 of FastIncrement() to the number of elements in the universal cycle
for Bd

c(n) is as follows:

Universal Cycles for Weight-Range Binary Strings 399

Total work in stage 3

|Bd
c |

=
(P (n, d − 1) + P (n, d − 2) + · · ·+ P (n, c))× hn(

n
d

)
+
(

n
d−1

)
+ · · ·+

(
n
c

)
≤

(2n
(
n
d

)
+ 5

n

(
n

d−1
)
+ 5

n

(
n

d−2
)
+ · · ·+ 5

n

(
n

c+1

)
+ 3

n

(
n
c

)
)× hn(

n
d

)
+
(

n
d−1

)
+ · · ·+

(
n
c

)
≤

(2
(
n
d

)
+ 5

(
n

d−1
)
+ 5

(
n

d−2
)
+ · · ·+ 5

(
n

c+1

)
+ 3

(
n
c

)
)× h(

n
d

)
+
(

n
d−1

)
+ · · ·+

(
n
c

)
< 5h.

Since stage 1 and 2 of FastIncrement() requires only constant amount of work per char-
acter, the algorithm FastIncrement() is a CAT algorithm. ��

Theorem 7. A universal cycle UDd
c(n) for Bd

c(n) can be constructed in constant amor-
tized time using O(n) space for any weight-range where 0 ≤ c < d ≤ n.

6 Other Applications of the Gluing Lemma

In this section we consider other sets of strings and their associated universal cycles and
apply the Gluing lemma to produce new universal cycles.

6.1 Passwords

In [18], the set of passwords is defined to be the set of all strings of length n over an
alphabet of size k partitioned into q < k classes where each string contains at least one
character from each class. For instance, 4 natural classes would be: lower case letters,
upper case letters, digits, and special characters. A very secure password would contain
one symbol from each class. They prove the following result:

Theorem 8. [18] A universal cycle exists for all n-letter passwords over an alphabet
of size k partitioned into q < k classes, provided that n ≥ 2q.

We relax the definition of a password to be a string that contains at least one sym-
bol from q′ ≤ q classes. In fact, this is a common requirement of passwords where
they must either contain a number or a special character. As an example, consider all
passwords of length n containing characters in at least two classes. Such strings can
be partitioned into

(
4
2

)
sets of words containing exactly 2 classes, plus 4 sets of words

containing exactly 3 classes, plus one set containing characters from all 4 classes. Ob-
serve that all sets are disjoint, and the sets containing strings from exactly 2 classes have
many strings that have n − 1 characters in common. For instance ‘aAAAAAAA’ and
‘1AAAAAAA’ and ‘#AAAAAAA’. Similarly, there exist common strings of length
n − 1 between a set of exactly 2 classes and a set with one additional class. For in-
stance ‘aAAAAAAA’ and ‘aAAAAAA3’. Thus, the following theorem follows from
Lemma 3.

400 J. Sawada, A. Williams, and D. Wong

Theorem 9. Let an alphabet of size k be partitioned into q < k classes. There exists a
universal cycle for all strings of length n containing letters from at least q′ ≤ q classes,
provided that n ≥ 2q.

Observe that if q′ = 1, then the universal cycle is a traditional de Bruijn sequence over
an alphabet of size k.

6.2 Labeled Graphs

In [3], a number of universal cycle existence questions are given for various labeled
graphs. Instead of strings, they consider graphs with a sliding window of size k that
represent labeled graphs. In particular, they give the following result.

Theorem 10. [3] Universal cycle exists for labeled graphs with precisely m edges (and
k vertices).

Since graphs with m edges and graphs with m + 1 edges are disjoint and their uni-
versal cycles have many graphs with identical k − 1 windows, we can apply Lemma 3
to obtain the following result:

Theorem 11. Universal cycle exists for labeled graphs with between m1 and m2 edges
(and k vertices).

It remains an open problem to find efficient constructions for such universal cycles.

References

1. Bechel, A., LaBounty-Lay, B., Godbole, A.: Universal cycles of discrete functions. In:
Proceedings of the Thirty-Ninth Southeastern International Conference on Combinatorics,
Graph Theory and Computing, vol. 189, pp. 121–128. Congressus Numerantium (2008)

2. Blanca, A., Godbole, A.: On universal cycles for new classes of combinatorial structures.
SIAM J. Discret. Math. 25(4), 1832–1842 (2011)

3. Brockman, G., Kay, B., Snively, E.: On universal cycles of labeled graphs. Electronic Journal
of Combinatorics 17(1), 9 (2010)

4. Casteels, K., Stevens, B.: Universal cycles for (n− 1)-partitions of an n-set. Discrete Math-
ematics 309, 5332–5340 (2009)

5. Chung, F., Diaconis, P., Graham, R.: Universal cycles for combinatorial structures. Discrete
Mathematics 110, 43–59 (1992)

6. de Bruijn, N.G.: A combinatorial problem. Koninklijke Nederlandse Akademie v. Weten-
schappen 49, 758–764 (1946)

7. de Bruijn, N.G.: Acknowledgement of priority to C. Flye Sainte-Marie on the counting of
circular arrangements of 2n zeros and ones that show each n-letter word exactly once. T.H.
Report 75-WSK-06, p. 13 (1975)

8. Duval, J.P.: Factorizing words over an ordered alphabet. J. Algorithms 4(4), 363–381 (1983)
9. Fredericksen, H., Kessler, I.J.: An algorithm for generating necklaces of beads in two colors.

Discrete Mathematics 61, 181–188 (1986)
10. Fredericksen, H., Maiorana, J.: Necklaces of beads in k colors and k-ary de Bruijn sequences.

Discrete Mathematics 23, 207–210 (1978)

Universal Cycles for Weight-Range Binary Strings 401

11. Hierholzer, C., Wiener, C.: Ueber die Möglichkeit, einen Linienzug ohne Wiederholung und
ohne Unterbrechung zu umfahren. Mathematische Annalen 6(1), 30–32 (1873)

12. Holroyd, A.E., Ruskey, F., Williams, A.: Shorthand universal cycles for permutations. Algo-
rithmica 64(2), 215–245 (2012)

13. Hurlbert, G.: On universal cycles for k-subets of an n-element set. Siam Journal on Discrete
Mathematics 7, 598–604 (1994)

14. Hurlbert, G., Jackson, B., Stevens, B. (eds.): Generalisations of de Bruijn sequences and
Gray codes. Discrete Mathematics 309, 5255–5348 (2009)

15. Jackson, B.: Universal cycles of k-subsets and k-permutations. Discrete Mathematics 117,
114–150 (1993)

16. Johnson, R.: Universal cycles for permutations. Discrete Mathematics 309, 5264–5270
(2009)

17. Knuth, D.E.: Generating all tuples and permutations, fascicle 2. The Art of Computer Pro-
gramming 4 (2005)

18. Leitner, A., Godbole, A.: Universal cycles of classes of restricted words. Discrete Mathemat-
ics 310, 3303–3309 (2010)

19. Rosen, K.H.: Discrete Mathematics and Its Applications, 5th edn. McGraw-Hill Higher Ed-
ucation (2002)

20. Ruskey, F., Sawada, J., Williams, A.: De Bruijn sequences for fixed-weight binary strings.
SIAM Journal on Discrete Mathematics 26(2), 605–617 (2012)

21. Ruskey, F., Williams, A.: An explicit universal cycle for the (n−1)-permutations of an n-set.
ACM Transactions on Algorithms 6(3), 12 (2010)

22. Ruskey, F., Williams, A., Sawada, J.: Binary bubble languages and cool-lex order. J. Comb.
Theory, Ser. A 119(1), 155–169 (2012)

23. Sawada, J., Ruskey, F.: An efficient algorithm for generating necklaces with fixed density.
In: Tarjan, R.E., Warnow, T. (eds.) SODA, pp. 752–758. ACM/SIAM (1999)

24. Sawada, J., Stevens, B., Williams, A.: De bruijn sequences for the binary strings with max-
imum density. In: Katoh, N., Kumar, A. (eds.) WALCOM 2011. LNCS, vol. 6552, pp.
182–190. Springer, Heidelberg (2011)

25. Stevens, B., Williams, A.: The coolest order of binary strings. In: Kranakis, E., Krizanc, D.,
Luccio, F. (eds.) FUN 2012. LNCS, vol. 7288, pp. 322–333. Springer, Heidelberg (2012)

26. Stevens, B., Williams, A.: The coolest way to generate binary strings. Theory of Computing
Systems, 1–27 (2013)

Circuit Complexity of Shuffle

Michael Soltys�

McMaster University
Dept. of Computing & Software

1280 Main Street West
Hamilton, Ontario L8S 4K1, Canada

soltys@mcmaster.ca

Abstract. We show that Shuffle(x, y, w), the problem of determining
whether a string w can be composed from an order preserving shuffle of
strings x and y, is not in AC0, but it is in AC1. The fact that shuffle
is not in AC0 is shown by a reduction of parity to shuffle and invoking
the seminal result [FSS84], while the fact that it is in AC1 is implicit
in the results of [Man82a]. Together, the two results provide a strong
complexity bound for this combinatorial problem.

Keywords: String shuffle, circuit complexity, lower bounds.

1 Introduction

Given three strings over the binary alphabet, it is a natural question to ask
whether the third string can be composed from a “shuffle” of the first two.
That is, can we compose the third string by weaving together the first two,
while preserving the order within each string? For example, given 000, 111, and
010101, we can obviously answer in the affirmative. [Man82a] shows that a clever
dynamic programming algorithm can determine Shuffle(x, y, w) in time O(|w|2),
and the same paper poses the question of determining a lower bound.

In this paper we show a strong upper and lower bound for the shuffling prob-
lem in terms of circuit complexity. We show that: (i) bounded depth circuits of
polynomial size cannot solve shuffle, but that (ii) logarithmic depth circuits of
polynomial size can do so. In the nomenclature of circuit complexity this can
be stated as follows: Shuffle 	∈ AC0 but Shuffle ∈ AC1, which provides a good
characterization of the circuit complexity of shuffle.

As a side remark, we also show a lower bound for shuffle on single-tape Turing
machines; for this model of computation, we can show that a number of steps
in the order of Ω(n2) is necessary to solve the problem. Both lower bounds,
the one in terms of bounded depth circuits, and the one in terms of single tape
Turing machines, are obtained by reductions. In the former case, the reduction
is from the “parity problem” and in the latter case, the reduction is from the
“palindromes problem.”

� Supported in part by the NSERC Discovery Grant.

T. Lecroq and L. Mouchard (Eds.): IWOCA 2013, LNCS 8288, pp. 402–411, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Circuit Complexity of Shuffle 403

This paper is structured as follows: in section 2 we give the background on
circuit complexity; in section 3 we give an upper bound and in section 4 we give
the lower bound on the complexity of shuffle. The bounds are summarized in
Theorem 1 in the conclusion, and we finish with some open problems.

Formal Definition of Shuffle. If x, y, and w are strings over an alphabet Σ,
then w is a shuffle of x and y provided there are (possibly empty) strings xi and
yi such that x = x1x2 · · ·xk and y = y1y2 · · · yk and w = x1y1x2y2 · · ·xkyk. Note
that |w| = |x| + |y| is a necessary condition for the existence of a shuffle. Also
note that [Man82a] gives a different but equivalent definition.

A shuffle is sometimes instead called a “merge” or an “interleaving”. The
intuition for the definition is that w can be obtained from u and v by an operation
similar to shuffling two decks of cards. In this paper we assume the binary
alphabet, i.e., x, y, w ∈ {0, 1}∗.

The predicate Shuffle(x, y, w) holds iff w is a shuffle of x, y, as described in
the above paragraph. We are going to present circuits and Turing machines that
compute the Shuffle(x, y, w), and so they must take the three binary strings
x, y, w as input. We let 〈x, y, w〉 denote the encoding of the three strings; this
encoding can be just a concatenation of the strings, so that for a properly formed
input, where |x| = |y| = n, we have |〈x, y, w〉| = 4n, and the n can be extracted
by the machine. We can also use demarcation of the strings, by encoding 0
with 00, and 1 with 01, and use 11 as separators. In that case, a well formed
input where |x| = m, |y| = n, |w| = m + n, would be such that |〈x, y, w〉| =
2m+ 1+ 2n+ 1+ 2(m+ n). The point is that it does not matter how we do it,
as long as we do it “reasonably.”

History. Following the presentation of the history of shuffle in [BS13], wemention
that the initial work on shuffles arose out of abstract formal languages. Shuffles
were later motivated by applications to modeling sequential execution of concur-
rent processes. The shuffle operation was first used in formal languages by Gins-
burg and Spanier [GS65]. Early researchwith applications to concurrent processes
can be found in Riddle [Rid73, Rid79] and Shaw [Sha78]. A number of authors,
including [Gis81, GH09, Jan81, Jan85, Jed99, JS01, JS05, MS94, ORR78, Sho02]
have subsequently studied various aspects of the complexity of the shuffle and it-
erated shuffle operations in conjunction with regular expression operations and
other constructions from the theory of programming languages.

In the early 1980’s, Mansfield [Man82b, Man83] and Warmuth and Haus-
sler [WH84] studied the computational complexity of the shuffle operator on its
own. The paper [Man82b] gave a polynomial time dynamic programming algo-
rithm for deciding Shuffle(x, y, w). In [Man83], this was extended to give polyno-
mial time algorithms for deciding whether a string w can be written as the shuffle
of k strings u1, . . . , uk, for a constant integer k. The paper [Man83] further proved
that if k is allowed to vary, then the problem becomes NP-complete (via a re-
duction from Exact Cover with 3-Sets). Warmuth and Haussler [WH84]
gave an independent proof of this last result and went on to give a rather

404 M. Soltys

striking improvement by showing that this problem remains NP-complete even
if the k strings u1, . . . , uk are equal. That is to say, the question of, given strings
u and w, whether w is equal to an iterated shuffle of u is NP-complete. Their
proof used a reduction from 3-Partition.

In [BS13] we show that square shuffle, i.e., the problem of determining whether
some string w is a shuffle of some x with itself, that is, ∃xShuffle(x, x, w), is
NP-hard.

2 Background on Complexity

A Boolean circuit can be seen as a directed, acyclic, connected graph in which
the input nodes are labeled with variables xi and constants 1, 0 (or T,F), and
the internal nodes are labeled with standard Boolean connectives ∧,∨,¬, that
is, AND,OR,NOT, respectively. We often use x̄ to denote ¬x, and the circuit
nodes are often called gates.

The fan-in (i.e., number of incoming edges) of a ¬-gate is always 1, and the
fan-in of ∧,∨ can be arbitrary, even though for some complexity classes (such
as SAC1 defined below) we require that the fan-in be bounded by a constant.
The fan-out (i.e., number of outgoing edges) of any node can also be arbitrary.
Note that when the fan-out is restricted to be exactly 1, circuits become Boolean
formulas. Each node in the graph can be associated with a Boolean function in
the obvious way. The function associated with the output gate(s) is the function
computed by the circuit. Note that a Boolean formula can be seen as a circuit
in which every node has fan-out 1 (and ∧,∨ have fan-in 2, and ¬ has fan-in 1).

The size of a circuit is its number of gates, and the depth of a circuit is the
maximum number of gates on any path from an input gate to an output gate.

A family of circuits is an infinite sequence C = {Cn} = {C0, C1, C2, . . .} of
Boolean circuits where Cn has n input variables. We say that a Boolean predicate
P has polysize circuits if there exists a polynomial p and a family C such that
|Cn| ≤ p(n), and ∀x ∈ {0, 1}∗, x ∈ P iff C|x|(x) = 1. In order to make this more
concrete, note that in the case of shuffle, the family C computes it if

Shuffle(x, y, w) = 1 ⇐⇒ C|〈x,y,w〉|(〈x, y, w〉) = 1.

Note that |〈x, y, w〉| only depends on the length of the inputs x, y, w and so the
same circuit decided all the inputs of a given fixed length.

Let P/poly be the class of all those predicates which have polysize circuits. It
is a standard result in complexity that all predicates in P have polysize circuits;
that is, if a predicate has a polytime Turing machine, it has polysize circuits. The
converse of the above does not hold, unless we put a severe restriction on how
the n-th circuit is generated; as it stands, there are undecidable predicates that
have polysize circuits. The restriction that we place here is that there is a Turing
machine that on input 1n computes {Cn} in space O(log n). This restriction
makes a family of circuits C uniform. All our circuit results hold with and
without the condition of uniformity.

Circuit Complexity of Shuffle 405

Those predicates (or Boolean functions) that can be decided with polysize,
constant fan-in, and depth O(logi n) circuits, form the class NCi. The class
ACi is defined in the same way, except we allow unbounded fan-in. We set
NC =

⋃
i NCi, and AC =

⋃
iACi, and while it is easy to see that the uniform

version of NC is in P, it is an interesting open question whether they are equal.
We have the following standard result: for all i,

ACi ⊆ NCi+1 ⊆ ACi+1.

Thus, NC = AC. Finally, SACi is just like ACi, except we restrict the ∧ fan-
in to be at most two. Recall that NC1 ⊆ L ⊆ NL ⊆ NC2, where L and NL
are deterministic and non-deterministic logarithmic space, respectively. It is not
known whether any of these containments are strict. For more details see any
complexity textbook; for example [Pap94, Sip06, Sol09].

3 Upper Bound

In this section we show a circuit upper bound for shuffle — that is, we show
that Shuffle ∈ SAC1, which means that shuffle can be decided with a polysize
family of circuits of logarithmic depth (in the size of the input), where all the
∧-gates have fan-in 2. This result relies on the dynamic programming algorithm
given in [Man82a] and the complexity result of [Sud78, Ven91] which shows that
NL ⊆ SAC1.

In order to show that Shuffle ∈ NL, we show that shuffle can be reduced (in
low complexity) to the graph reachability problem. We start with an example:
consider Figure 1. On the left we have a shuffle of 000 and 111 that yields
010101, and on the right we have a shuffle of 011 and 011 that yields 001111.
The left instance has a unique shuffle; there is a unique path from (0, 0) to (3, 3).
On the right, there are several possible shuffles — in fact, eight of them, each
corresponding to a distinct path from (0, 0) to (3, 3).

Fig. 1. On the left we have a shuffle of 000 and 111 that yields 010101, and on the
right we have a shuffle of 011 and 011 that yields 001111. The dynamic programming
algorithm in [Man82a] computes partial solutions along the red diagonal lines.

406 M. Soltys

The number of paths is always bounded by:(
|x|+ |y|

|x|

)

and this bound is achieved for 〈1n, 1n, 12n〉. Thus, the number of paths can be
exponential in the size of the input, and so an exhaustive search is not feasible
in general.

Lemma 1. Shuffle ∈ NL.

Proof. The dynamic programming algorithm proposed in [Man82a] works by
reducing shuffle to directed graph reachability. The graph is an (n+1)× (n+1)
grid of nodes, with the lower-left corner labeled (0, 0), and the upper-right corner
labeled (n, n). For any i ≤ n and j ≤ n, we have edge{

((i, j), (i + 1, j)) if xi+1 = wi+j+1

((i, j), (i, j + 1)) if yj+1 = wi+j+1.

Note that both edges may be present, which is what introduces the element of
non-determinism.

The correctness of the reduction follows from the assertion that given the
edges of the grid, defined as in the paragraph above, there is a path from (0, 0)
to (i, j) if and only if the first i + j bits of w can be obtained by shuffling the
first i bits of x and the first j bits of y. Thus, node (n, n) can be reached from
node (0, 0) if and only if Shuffle(x, y, w) is true.

Thus Shuffle ∈ NL. ��

Corollary 1. Shuffle ∈ SAC1

Proof. Since NL ⊆ SAC1 (see [Sud78, Ven91]) it follows directly from Lemma 1
that Shuffle ∈ SAC1 ⊆ AC1. ��

Note that since the graph resulting from the shuffle reduction is planar, it
follows that Shuffle ∈ UL. [BTV07] shows that directed planar reachability is
in the class UL (for “Unambiguous Logarithmic Space”; this class is just like
NL except that we can design a non-deterministic log-space bounded machine
such that “no” instances of the problem have no accepting paths, while “yes”
instances have exactly one accepting path).

Note that Shuffle ∈ UL does not mean that there is a unique path from
(0, 0) to (n, n); rather, there exists a machine deciding the problem in log-space
such that, while the machine is non-deterministic, at most one computational
path accepts. Further, the planar graph in the proof of Lemma 1 is layered —
and such graphs have been studied in [ABC+09]. It would be interesting to know
whether the results contained therein could improve the upper bound for shuffle.
In particular, can this be used to show that Shuffle ∈ NC1, and hence shuffle
can be decided with a polysize family of Boolean formulas? The fact that NC1

circuits are computationally equivalent to Boolean formulas follows from Spira’s
theorem (see [Sol09, Theorem 6.3]).

Circuit Complexity of Shuffle 407

4 Lower Bound

In this section we show a circuit lower bound for shuffle — that is, we show
that Shuffle 	∈ AC0, which means that shuffle cannot be decided with a polysize
family of circuits of constant depth where all the ∧,∨-gates may have arbitrary
fan-in. This result relies on the seminal complexity result showing that parity is
not in AC0, due to [FSS84]. A very accessible presentation of this result can be
found in [SP95, Chapters 11 & 12]; many of the details of that presentation are
made explicit in [Sol09, section 5.3]. We also show that shuffle requires Ω(n2)
steps on a single-tape Turing machines.

Circuit Lower Bound. We start with a definition: let #(x)s be the number
of occurrences of a symbol s in the string x. Obviously, Shuffle(0#(x)0 , 1#(x)1 , x)
is always true. We can use this observation in order to reduce parity to shuffle,
where the reduction itself is AC0.

Intuitively, what we claim is the following: suppose that we have a “black-box”
that takes 〈x, y, w〉 as input bits and computes Shuffle(x, y, w). We could then
construct a circuit for parity with the standard gates ∧,∨,¬, plus black-boxes for
computing shuffle. If the black-boxes for shuffle were computable with AC0 cir-
cuits, we would then obtain an AC0 circuit for parity, giving us a contradiction.
The details are given in Lemma 2 below and in Figure 2.

Lemma 2. Parity ∈ AC0[Shuffle].

Proof. In order to compute the parity of x, run the following algorithm: for all
odd i ∈ {0, . . . , |x|}, check if Shuffle(0|x|−i, 1i, x) is true; if it is the case for at
least one i, then the parity of x is 1. Note that if it is true for at least one i, it
is true for exactly one i. In terms of circuits, this can be expressed as follows:

Parity(x) =
∨

0 ≤ i ≤ |x|
i is odd

Shuffle(0|x|−i, 1i, x), (1)

which gives us an AC0 circuits with “black-boxes” for shuffle, and hence the
claim follows. See Figure 2. ��

Corollary 2. Shuffle 	∈ AC0.

Proof. Since by [FSS84] Parity 	∈ AC0, and by Lemma 2 we know that parity
AC0-reduces to shuffle, it follows that shuffle is not in AC0. ��

Turing Machine Lower Bound. The string x is a palindrome if it reads the
same backward as forward. If xR is the reverse of x, i.e., xR = xnxn−1 . . . x1,
then x is a palindrome if and only if x = xR. It is a folklore result in complexity
that given a single tape Turing machine as the model of computation, testing

408 M. Soltys

n−i

i=1 i=3 i=5 i=n

0 x 1 1 10 0 0x x x1 ii n−i i in−i n−i

Fig. 2. Parity of x computed in terms of Shuffle; note that we assume that n is odd in
this Figure. If n were even the last “black box” for shuffle would be for i = n− 1.

for palindromes requires Ω(|x|2) many steps. This result uses Kolmogorov com-
plexity and the “crossing sequences technique.” The interested reader can check,
for example, [SP95, Chapter 9] or [Sol09, §1.3].

We can use this lower bound for palindromes in order to show that shuffle also
requires Ω(n2) many steps on a single tape Turing machine. Let Palindrome(x)
be the eponymous predicate and note that we can use shuffle to express that a
string is a palindrome as follows:

Palindrome(x) ⇐⇒ Shuffle(ε, x, xR). (2)

As the first string is empty, shuffle will hold iff xi = xn+1−i, for i ∈ [n], which is
true iff x = xR.

Lemma 3. Shuffle takes Ω(n2) many steps on a single-tape Turing machine.

Proof. Suppose that a single-tape Turing machine can decide, on input 〈x, y〉
whether Shuffle(ε, x, y). Then, the same machine can decide on input

〈w1 . . . w�n
2 �, wn . . . w�n

2 �+1〉

whether w, where n = |w|, is a palindrome. As palindromes require Ω(n2) steps
(in the worst-case), so does Shuffle(ε, x, y). As Shuffle(ε, x, y) is a special case of
the general shuffle problem, the Lemma follows. ��

Other Reductions to Shuffle. It is interesting that several different string
predicates reduce to shuffle in a natural way. We have (1) which gives a reduction
of parity to shuffle; we have that equality of strings reduces to shuffle: x = y ⇐⇒
Shuffle(ε, x, y); we have (2) which shows that palindromes reduce to shuffle.

Circuit Complexity of Shuffle 409

We end by showing that concatenation reduces to shuffle. Let p0, p1 be “padding”
functions on strings defined as follows:

p0(x) = p0(x1x2 . . . xn) = 00x100x200 . . .00xn00

p1(x) = p1(x1x2 . . . xn) = 11x111x211 . . .11xn11

that is, pb, b ∈ {0, 1} pads the string x with a pair of b’s between any two bits
of x, as well as a pair of b’s before and after x. Now note that

w = u·v ⇐⇒ Shuffle(p0(u), p1(v), p0(w1w2 . . . w|u|)·p1(w|u|+1w|u|+2 . . . w|u|+|v|)),

where “·” denotes concatenation of strings. The direction “⇒” is easy to see; for
direction “⇐” we use the following notation:

r = p0(u) = 00u100 . . .

s = p1(v) = 11v111 . . .

t = p0(w1w2 . . . w|u|) · p1(w|u|+1w|u|+2 . . . w|u|+|v|) = 00w100 . . .

If t is a shuffle of r, s, i.e., Shuffle(r, s, t), then we must take the first two bits of
r (00) in order to cover the first two bits of t (00). If u1 = w1 = 1, then we could
ostensibly take the first bit of s (1), but the bit following w1 is 0, and u1 = 1
and the second bit of s is 1; so taking the first bit of s leads to a dead end. Thus,
we must use u1 to cover w1. We continue showing that we must first take all of
r, and then take all of s in order to cover t. This argument can be formalized
with induction.

It follows that Shuffle(r, s, t) implies t = r · s, which in turn implies w = u · v.

5 Conclusion

Putting everything together we have the following Theorem.

Theorem 1. Shuffle 	∈ AC0, but Shuffle ∈ SAC1 ⊆ AC1. Also, shuffle requires
Ω(n2) many steps on a single tape Turing machine.

The significance of this result is that shuffle cannot be decided with bounded
depth circuits of polynomial size. On the other hand, shuffle can be decided with
polynomial size circuits of unbounded fan-in and logarithmic depth — which
in turn implies that shuffle can be decided in the class NC2. In general, the
classes NCi capture those problems that can be solved with polynomially many
processors in poly-logarithmic time, which are problems that have fast parallel
algorithms. See [Coo85] for a discussion of NC2.

6 Open Problems

It follows from the results of [Man82a] that shuffle can be decided in SAC1. Can
shuffle be decided in NC1? We know that NC1 ⊆ SAC1 ⊆ NC2, and SAC1

410 M. Soltys

is almost the same as NC1 except that SAC1 allows unbounded fan-in for the
∨-gates (and bounded fan-in for the ∧-gates), whereas NC1 has bounded fan-in
for all gates. If shuffle were in NC1 it would mean that shuffle can be decided
with a polysize family of Boolean formulas, which would be a very interesting
result.

Acknowledgments. The author is grateful to Bill Smyth, Franya Franek and
Dragan Rakas for comments on this paper, and especially to Bill Smyth for
introducing me to the “shuffle problem.” This paper has benefited greatly from
the insights of anonymous referees.

References

[ABC+09] Allender, E., Barrington, D.A.M., Chakraborty, T., Datta, S., Roy, S.:
Planar and grid graph reachability problems. Theory of Computing Sys-
tems 45, 675–723 (2009)

[BS13] Buss, S.R., Soltys, M.: Unshuffling a square is NP-hard (submitted for
publication, March 2013)

[BTV07] Bourke, C., Tewari, R., Vinodchandran, N.V.: Directed planar reachabil-
ity is in unambiguous log-space. In: Proceedings of IEEE Conference on
Computational Complexity CCC (2007)

[Coo85] Cook, S.A.: A taxonomy of problems with fast parallel algorithms. Infor-
mation and Computation 64(13), 2–22 (1985)

[FSS84] Furst, M., Saxe, J.B., Sipser, M.: Parity, circuits, and the polynomial-time
hierarchy. Math. Systems Theory 17, 13–27 (1984)

[GH09] Gruber, H., Holzer, M.: Tight Bounds on the Descriptional Complexity of
Regular Expressions. In: Diekert, V., Nowotka, D. (eds.) DLT 2009. LNCS,
vol. 5583, pp. 276–287. Springer, Heidelberg (2009)

[Gis81] Gischer, J.: Shuffle languages, petri nets, and context-sensivite grammars.
Communications of the ACM 24(9), 597–605 (1981)

[GS65] Ginsburg, S., Spanier, E.: Mappings of languages by two-tape devices.
Journal of the A.C.M 12(3), 423–434 (1965)

[Jan81] Jantzen, M.: The power of synchronizing operations on strings. Theoretical
Computer Science 14, 127–154 (1981)

[Jan85] Jantzen, M.: Extending regular expressions with iterated shuffle. Theoret-
ical Computer Science 38, 223–247 (1985)

[Jed99] Jedrzejowicz, J.: Structural properties of shuffle automata. Grammars 2(1),
35–51 (1999)

[JS01] Jedrzejowicz, J., Szepietowski, A.: Shuffle languages are in P. Theoretical
Computer Science 250(1-2), 31–53 (2001)

[JS05] Jedrzejowicz, J., Szepietowski, A.: On the expressive power of the shuffle
operator matched with intersection by regular sets. Theoretical Informatics
and Applications 35, 379–388 (2005)

[Man82a] Mansfield, A.: An algorithm for a merge recognition problem. Discrete
Applied Mathematics 4(3), 193–197 (1982)

[Man82b] Mansfield, A.: An algorithm for a merge recognition problem. Discrete
Applied Mathematics 4(3), 193–197 (1982)

Circuit Complexity of Shuffle 411

[Man83] Mansfield, A.: On the computational complexity of a merge recognition
problem. Discrete Applied Mathematics 1(3), 119–122 (1983)

[MS94] Mayer, A.J., Stockmeyer, L.J.: The complexity of word problems — this
time with interleaving. Information and Computation 115, 293–311 (1994)

[ORR78] Ogden, W.F., Riddle, W.E., Rounds, W.C.: Complexity of expressions al-
lowing concurrency. In: Proc. 5th ACM Symposium on Principles of Pro-
gramming Languages (POPL), pp. 185–194 (1978)

[Pap94] Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1994)
[Rid73] Riddle, W.E.: A method for the description and analysis of complex soft-

ware systems. SIGPLAN Notices 8(9), 133–136 (1973)
[Rid79] Riddle, W.E.: An approach to software system modelling and analysis.

Computer Languages 4(1), 49–66 (1979)
[Sha78] Shaw, A.C.: Software descriptions with flow expressions. IEEE Transac-

tions on Software Engineering SE-4(3), 242–254 (1978)
[Sho02] Shoudai, T.: A P-complete language describable with iterated shuffle. In-

formation Processing Letters 41(5), 233–238, 1002
[Sip06] Sipser, M.: Introduction to the Theory of Computation, 2nd edn. Thomp-

son (2006)
[Sol09] Soltys, M.: An introduction to computational complexity. Jagiellonian Uni-

versity Press (2009)
[SP95] Schöning, U., Pruim, R.: Gems of Theoretical Computer Science. Springer

(1995)
[Sud78] Sudborough, I.H.: On the tape complexity of deterministic context-free

languages. Journal of the Association of Computing Machinery 25, 405–
415 (1978)

[Ven91] Venkateswaran, H.: Properties that characterize LOGCFL. Journal of
Computer and System Science 43, 380–404 (1991)

[WH84] Warmuth, M.K., Haussler, D.: On the complexity of iterated shuffle. Jour-
nal of Computer and System Sciences 28(3), 345–358 (1984)

An Optimal Algorithm for the Popular

Condensation Problem

Yen-Wei Wu1, Wei-Yin Lin1, Hung-Lung Wang4, and Kun-Mao Chao1,2,3

1 Department of Computer Science and Information Engineering
2 Graduate Institute of Biomedical Electronics and Bioinformatics

3 Graduate Institute of Networking and Multimedia
National Taiwan University, Taipei, Taiwan 106
4 Institute of Information and Decision Sciences

National Taipei College of Business, Taipei, Taiwan 100

Abstract. We consider an extension of the popular matching problem:
the popular condensation problem. An instance of the popular matching
problem consists of a set of applicants A and a set of posts P . Each
applicant has a strictly ordered preference list, which is a sequence of
posts in order of his/her preference. A matching M mapping from A to
P is popular if there is no other matching M ′ such that more applicants
prefer M ′ to M than prefer M to M ′. Although some efficient algorithms
have been proposed for finding a popular matching, a popular matching
may not exist for those instances where the competition of some appli-
cants cannot be resolved. The popular condensation problem is to find a
popular matching with the minimum number of applicants whose prefer-
ences are neglected, that is, to optimally condense the instance to admit
a local popular matching. We show that the problem can be solved in
O(n +m) time, where n is the number of applicants and posts, and m
is the total length of the preference lists.

1 Introduction

Consider the problem of matching applicants to a set of posts, where every ap-
plicant provides a strictly ordered preference list, ranking a non-empty subset
of posts. This problem has been extensively studied due to its plentiful applica-
tions [18]. Various optimality criteria have been proposed to measure the quality
of a matching, like Pareto optimality, rank maximality, and fairness [1,2,11]. Pop-
ularity is another criterion that has drawn much attention in recent years [20].

A matching M of applicants to posts is popular if there is no other matching
M ′ such that more applicants prefer M ′ to M than prefer M to M ′. Abraham et
al. [3] gave a linear-time algorithm to determine if an instance admits a popular
matching, and to report a largest one if any popular matching exists. For those
instances admitting no popular matching, we introduce an extension, which is
called the popular condensation problem, to deal with the circumstance.

T. Lecroq and L. Mouchard (Eds.): IWOCA 2013, LNCS 8288, pp. 412–422, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

An Optimal Algorithm for the Popular Condensation Problem 413

1.1 Motivation

In the popular matching problem, a given instance may admit no popular match-
ing when there are more applicants competing for fewer specific posts. For ex-
ample, if there are three applicants and three posts, and all applicants have the
same preference lists, then there exists no popular matching in such an instance.
However, many applications prefer a compromising answer rather than just re-
porting “none exists,” and thus it makes sense to find an alternative solution for
all the instances.

In [15], Kavitha and Nasre looked for an alternative solution by copying the
posts until the “expanded” instance admits a popular matching. Not surprisingly,
a solution is to copy some applicants’ favorite posts. Based on this result, the
applicant who is matched with one of the copied posts can be viewed as a “lucky
guy” since he/she will certainly get his/her favorite post. From this viewpoint,
the problem of finding some “candidates” among the applicants (either lucky
ones or unlucky ones) to be neglected until the “condensed” instance admits
a popular matching arises. We define the problem as the popular condensation
problem. In the popular condensation problem, we ask how many preference
lists of applicants should be neglected to guarantee the existence of popular
matchings. In other words, the objective is to find a popular matching with a
minimum number of applicants being neglected. Similar manipulations were also
investigated in voting theory [5].

1.2 Related Works

Since the popular matching problem was proposed by Gardenfors [7] and was
characterized by Abraham et al. [3] in 2005, there have been several exciting ex-
tensions in recent years. For those instances with more than one popular match-
ing, Kavitha and Nasre [14] and McDermid and Irving [20] investigated the
notions of optimality among all popular matchings. There were also extensions
such as weighted popular matchings [21], many-to-one [18] and many-to-many
matchings [22], mixed matchings (with probability distributions over match-
ings) [13], dynamic matchings (where applicants and posts can be inserted or
deleted dynamically) [4], random popular matchings [17], and popular matchings
in the marriage and the roommates problems [6, 8, 9, 12].

Similar to our motivation, there were some investigations that focused on the
case where no popular matching exists in the instance. Kavitha and Nasre [15]
considered the problems stating that: “Suppose that there are upper bounds on
the number of copies for all the items. Is there an instance induced by copying the
items (respecting these upper bounds) such that it admits a popular matching?”
and “Given a subset of items that can be deleted, is there any possibility to
delete some items so that the resulting instance admits a popular matching?”
Kavitha et al. [16] also considered the problem where each copy is associated
with a price, and sought for a popular matching by augmenting the instance
with minimum costs. Unfortunately, both extensions have been shown to be
NP-hard. The concept of unpopularity [10, 19] has also been investigated.

414 Y.-W. Wu et al.

1.3 Problem Definition

An input instance is a bipartite graph G = (A ∪ P,E), where A is the set of
applicants, P is the set of posts, and {E1, E2, ..., E�} is a partition of the edge set
E. We call such a graph the instance graph or the instance. The cardinalities of
A∪P and E are denoted by n and m, respectively. For an instance graph G, its
rank function rG : E �→ N is defined as rG(e) = i if e ∈ Ei. We also denote rG(e)
as rG(a, p) if e has end vertices a and p, and rG is abbreviated as r if there is no
ambiguity. We say that a prefers p to p′ if rG(a, p) < rG(a, p

′). For any applicant
a, a’s preference list can be viewed as the ordered sequence of posts adjacent
to a. All the preference lists have to be nonempty and strictly ordered. For an
instance graph G = (A ∪ P,E), if p ∈ P is the first post on some applicant’s
preference list, we say that p is an f-post with respect to G and denote the set of
all f-posts of G by FG. Let fG(a) denote the first post on a’s preference list, and
let sG(a), which is called an s-post, denote the first non-f-post on a’s preference
list. As in [3], there is a unique last resort post appended at the end of every
applicant’s preference list. By appending last resort posts, every applicant has
at least one choice that nobody else competes with him/her.

We say that an instance H = (AH ∪ P,EH) is a popular condensation of a
given instance graph G = (A ∪ P,E) if H admits a popular matching, AH ⊆ A,
EH = {(a, p) ∈ E : a ∈ AH}, and EH is partitioned such that rH(e) = rG(e) for
all e ∈ EH . The set A−AH is called a condensing set of G with respect to H . The
set of all popular condensations of G is denoted by Cond(G). Figure 1(b) is an
illustration of the above definition for the input instance shown in Figure 1(a);
from the examples, we can see that the s-posts may alter after some applicants
are neglected. A formal problem definition is stated below.

a1 : p1 p2 p3 p4 p5

a2 : p1 p2 p4 p3 p5

a3 : p2 p4 p3 p1 p5

a4 : p2 p3 p1 p4

a5 : p4 p3 p1

(a) G

a1 : p1 p2 p3 p4 p5

a2 : p1 p2 p4 p3 p5

a3 : p2 p4 p3 p1 p5

a4 : p2 p3 p1 p4

(b) H1

Fig. 1. The f -posts and s-posts of a graph and its popular condensation. The subfig-
ures (a) and (b) are the preference lists w.r.t. G and H1, respectively, where H1 is a
popular condensation of G with {a5} being a condensing set. The double-underlined
posts represent f -posts and the underlined posts represent s-posts on each instance
graph. We can see that M1 = {(a1, p1), (a2, p4), (a3, p2), (a4, p3)} is a popular match-
ing on H1.

An Optimal Algorithm for the Popular Condensation Problem 415

Problem 1 (The Popular Condensation Problem). Given an instance graph G =
(A ∪ P,E), the popular condensation problem asks for a popular matching of a
popular condensation H∗ = (AH∗ ∪ P,EH∗) of G satisfying

H∗ = arg max
H∈Cond(G)

|AH |.

For an instance graph G, the popular condensation H∗ of G we seek for in Prob-
lem 1 is called an optimal popular condensation, and the condensation number
μ(G) is defined as |A| − |AH∗ |.

Notice that when an instance consists of only one applicant, the instance must
admit a popular matching since each preference list is nonempty. Therefore, we
have the following property, which implies that the popular matching sought in
Problem 1 always exists.

Property 1. For an instance graph G, Cond(G) is nonempty.

The rest of this paper is organized as follows. First, we define some basic
notations in Section 2. Then, we give our solution to the popular condensation
problem in Section 3. Finally, concluding remarks are given in Section 4.

2 Preliminaries

In this section, we define the notation and summarize some useful previous re-
sults. By the definitions of f -post and s-post, Property 2 holds immediately.

Property 2. For any instance graph G, if rG(a, fG(a)) < rG(a, p) < rG(a, sG(a)),
then p ∈ FG.

The reduced graph G′ = (A ∪ P,E′) is a subgraph of G containing only two
edges, (a, fG(a)) and (a, sG(a)), for each applicant a (see Figure 2). The neighbor-
hood NG(a) of a vertex a in G is the set of vertices adjacent to a. For simplicity,
we denote

⋃
x∈X NG(x) as NG(X). We quote Lemma 1, which will be used later

to evaluate whether a matching is popular. For any matching M of G′, M is said
to be applicant-complete if all applicants are matched in M .

Lemma 1 (See Theorem 2.1 in [3]). M is a popular matching of G if and
only if

(i) every f-post with respect to G is matched in M , and
(ii) M is an applicant-complete matching of the reduced graph G′.

Lemma 2. Let G′ = (A ∪ P,E′) be the reduced graph of an instance graph G.
If there is a component Ci = (Ai ∪ Pi, E

′
i) of G′ satisfying |Ai| > |Pi|, where

Ai ⊆ A,Pi ⊆ P , and E′
i = {(a, p) ∈ E′ : a ∈ Ai and p ∈ Pi}, then G admits no

popular matching.

Proof. Since Ci contains more applicants than posts, applicant-complete match-
ings do not exist in G′. By Lemma 1, G admits no popular matching. ��

416 Y.-W. Wu et al.

a1

a2

a3

a4

a5

p1

p2

p3

p4

f

f

f

s

(a) G′

a1

a2

a3

a4

p1

p2

p3

p4

f

s

f

s

(b) H ′
1

Fig. 2. The reduced graphs of G and H1 in Figure 1, denoted by G′ and H ′
1, respec-

tively. Note that H ′
1 � G′

3 Popular Condensations

This section focuses on the popular condensation problem. First, for a given
instance graph, we give a linear-time algorithm to find a popular matching of a
popular condensation H . Then, we prove that H is an optimal popular conden-
sation. A sketch of our algorithm is given below.

Step 1. For a given instance graph G, compute its reduced graph G′.
Step 2. Compute G̃ by removing a matching M∗ from G′.
Step 3. Find a maximum matching M̃ of G̃.
Step 4. Modify M∗ ∪ M̃ to be the requested popular matching.

We name the algorithm as PopularCondensation, and the pseudocode is
given in Algorithm 1.

Basically, line 1 computes the reduced graph of an input instance as in [3].
Lines 3 to 6 then iteratively match a post p with degree 1 to the applicant a
adjacent to p, and remove both a and p (no succeeding augmenting path can
involve p). After that, posts with degree 0 are removed by lines 7 to 8 (up to
now, the modified graph of G′ is G̃). Lines 9 to 16 compute a matching of G̃ by
repeatedly taking an unmatched post p if any, and finding a path by arbitrarily
walking from p till encountering a matched post. All the edges passed by are
removed, and two ends of any odd edge are matched. These steps are taken
for each component of G̃ (the outer while loop). Line 17 puts all unmatched
applicants into a set D. For each f -post p w.r.t. G, if it is not matched, lines 18
to 20 promote an applicant a to p, i.e., rematching a to p, where fG(a) = p.
Finally, line 21 outputs a matching together with the set D.

Similar to [3], PopularCondensation simplifies the discussions by restrict-
ing our attention to the reduced graph. Each applicant in the reduced graph has
degree equal to two. For bipartite graphs with such a restriction, the following
lemma holds.

An Optimal Algorithm for the Popular Condensation Problem 417

Algorithm 1. PopularCondensation(G = (A ∪ P,E))

1 G′ := the reduced graph of G;
2 M := ∅;
3 while some post p in G′ has degree 1 do
4 a := the applicant which is adjacent to p;
5 M := M ∪ {(a, p)};
6 G′ := G′ − {a, p}; /* remove a, p, and related edges */

7 while some post p in G′ has degree 0 do
8 G′ := G′ − {p} ; /* remove p */

9 while some post p in G′ is not in M do
10 do
11 a := any applicant adjacent to p;
12 M := M ∪ {(a, p)};
13 G′ := G′ − {(a, p)}; /* remove edge (a,p) */

14 p := the post adjacent to a;
15 G′ := G′ − {(a, p)}; /* remove edge (a,p) */

16 while p is not in M ;

17 D := the set of applicants not in M ;
/* G−D is the selected popular condensation */

18 foreach f-post p w.r.t. G which is not in M do
19 a := any applicant satisfying rG(a, p) = 1;
20 promote a to p in M ;

21 return M , D;

Lemma 3. Let G = (A ∪ P,E) be a bipartite graph where all applicants have
degree 2. If there is a component C = (Ac ∪ Pc, Ec) of G satisfying |Ac| < |Pc|,
then either ∃p ∈ Pc such that p has degree 1 or C contains only an isolated
vertex.

Due to Lemma 3, after executing lines 3 to 8, all the components C̃i = (Ãi ∪
P̃i, Ẽi) of the intermediate graph G̃ satisfy |P̃i| � |Ãi|. Intuitively, the partite
set Ã =

⋃
i Ãi contains the applicants who compete for the same posts, and

some of them might not be matched with any post. Let M̃ be the matching of
G̃ produced by lines 9 to 16 of PopularCondensation.

Lemma 4. M̃ is a maximum matching of G̃, which includes all posts in P̃ .

Proof. By Lemma 3, we have that |P̃ | � |Ã|. Thus, it suffices to show that all
posts in P̃ are matched. Suppose to the contrary that a post p is not matched.
Since p ∈ P̃ , p has degree at least 2. Let a1 be the first matched neighbor of p.
According to lines 9 to 16 of PopularCondensation, there must be another
neighbor of p that is matched with p, which is a contradiction. ��

Let M∗ be the matching produced by lines 3–8. Together with Lemma 4, the
following lemma holds immediately.

Lemma 5. M∗ ∪ M̃ is a maximum matching of G′.

418 Y.-W. Wu et al.

We prove in the following lemma that the set of unmatched applicants D is a
condensing set of G, and M is a popular matching of the corresponding popular
condensation.

Lemma 6. For an instance graph G = (A∪P,E), PopularCondensation(G)

computes a popular matching of a popular condensation of G.

Proof. Let M and D be the output of PopularCondensation(G), and let
H = (AH ∪P,EH) be an instance graph where AH = A−D , EH = E−{(a, p) :
a ∈ D}, and rH(e) = rG(e). For the reduced graphs G′ and H ′, we claim the
following:

– claim 1. H ′ is a subgraph of G′, and FH = FG.
Clearly, each applicant a ∈ AH has the same preference list w.r.t. G and H .
Denote two subsets F 1

G = {fG(a) : a ∈ A−AH} and F 2
G = {fG(a) : a ∈ AH}

of FG. For each post p ∈ F 2
G, there is always an applicant a ∈ AH that regards

p as the first preferred post; hence, p ∈ FH holds intuitively. For each post
p ∈ F 1

G, p must be matched in M∗ ∪ M̃ , otherwise M∗ ∪ M̃ ∪ {(a, p) : a ∈
A−AH , p = fG(a)} can be a larger matching, a contradiction. However, if an
f -post p is matched to an applicant ap in M∗ ∪ M̃ , ap must be put into AH ,
and p ∈ F 2

G holds. It follows that F 1
G ⊆ F 2

G = FG, and FG = FH . For each
applicant a ∈ AH , a’s preference list remains the same as that in G, and all
f -posts w.r.t. G are still f -posts w.r.t. H ; this implies that sH(a) = sG(a)
holds for each applicant a ∈ AH . We conclude that H ′ is a subgraph of G′.

– claim 2. The output matching M is a popular matching of H .
By Lemma 1, it suffices to show that M is an applicant-complete matching
of H ′ and that every f -post w.r.t. H is matched in M . By the definition of
D, M is applicant-complete. Together with claim 1, lines 18 to 20 promote
every f -post w.r.t. H to some applicant, and therefore claim 2 holds.

��

In the proof of Lemma 6, it has been shown that D is a condensing set of
G. Thus, μ(G) � |D|. To prove the correctness of PopularCondensation, it
remains to show that μ(G) = |D|. We derive this equality by showing that

α � μ(G) � |D| � α,

for some value α. Let C′
i = (A′i ∪ P ′

i , E
′
i) be the components of G′ satisfying

|P ′
i | � |A′i|. We define the “trouble” subgraph of G′ as

⋃
i C

′
i = (AT ∪ PT , ET).

We shall prove that α = |AT | − |PT | by showing that |D| = |AT | − |PT | and
|AT | − |PT | � μ(G) in Lemma 7 and Theorem 1, respectively.

Lemma 7. |D| = |AT | − |PT |.

Proof. Let C̃ = {C̃1, C̃2, . . . , C̃s} be the components of G̃, and let C′={C′
1, C

′
2,

. . . , C′
t} be the components of G′ satisfying |P ′

i | � |A′i|, where C′
i = (A′i∪P ′

i , E
′
i).

By Lemma 3, we have that s = t, and without loss of generality assume that
C̃i is a subgraph of C′

i. Let C̃i = (Ãi ∪ P̃i, Ẽi). According to lines 3 to 6 of

An Optimal Algorithm for the Popular Condensation Problem 419

PopularCondensation, C̃i is reduced from C′
i by iteratively removing one

vertex from each partite set. As a result, the following property holds:

|Ãi| − |P̃i| = |A′i| − |P ′
i |, ∀C̃i ∈ C̃ and C′

i ∈ C′. (1)

According to line 17, D contains the applicants that are not in M . By Lemma 4,
we have that |D| = |Ã| − |P̃ |. It follows that

|D| = |Ã| − |P̃ | =
∑

{i:C̃i∈C̃}

(
|Ãi| − |P̃i|

)

=
(1)

∑
{i:C′

i∈C′}
(|A′i| − |P ′

i |)

=
∑
i∈I1

(|A′i| − |P ′
i |) +

∑
i∈I2

(|A′i| − |P ′
i |)

= |AT | − |PT |+ 0 = |AT | − |PT |,

where I1 = {i : C′
i ∈ C′ and |P ′

i | < |A′i|} and I2 = {i : C′
i ∈ C′ and |P ′

i | = |A′i|}.
��

To deal with a lower bound on μ(G), we consider the condensing set Δ of
G w.r.t. an arbitrary popular condensation H . By the definition of popular
condensations, rH(a, p) = rG(a, p) for all a ∈ AH . It implies that a has the same
preference list w.r.t. both G and H . We state this observation in Lemma 8.

Lemma 8. Let G = (A ∪ P,E) be an instance graph and H = (AH ∪ P,EH)
be a popular condensation of G. We have that fH(a) = fG(a) for all applicants
a ∈ AH .

The set Δ can be partitioned into Δ1 and Δ2, where

Δ1 = {δ : δ ∈ Δ and δ ∈ AT } and Δ2 = {δ : δ ∈ Δ and δ /∈ AT }.

As illustrated in Figure 1, the set of f -posts (also, the s-posts) may be different
w.r.t. G and H . Fortunately, we show in Lemma 9 that for any applicant, if there
is a “new neighbor” p in H ′, then p has to be fG(δ) for some δ ∈ Δ.

Lemma 9. For any applicant a ∈ AH , if ∃p ∈ NH′(a) − NG′(a), then ∃δ ∈ Δ
such that p = fG(δ).

Proof. Consider the following two cases: (i) p = fH(a) and (ii) p = sH(a).
Case (i) is not possible since otherwise, by Lemma 8, p = fG(a) ∈ NG′(a). For
case (ii), by Property 2, we have that sH(a) = fG(a

∗) for some a∗ ∈ Δ. ��

Based on Lemma 9, we give a lower bound on μ(G).

Theorem 1. For an instance graph G, μ(G) = |AT | − |PT |.

420 Y.-W. Wu et al.

Proof. In Lemma 6 and Lemma 7, it has been shown that μ(G) � |AT | − |PT |.
Therefore, in the following, we show that |AT | − |PT | � μ(G). Since H admits a
popular matching, by Lemma 2, it follows that

|X | � |NH′(X)|, ∀X ⊆ AH . (2)

For each a ∈ AT − Δ1, by Lemma 9, we have that NH′(a) ⊆ PT ∪ {fG(δ) : δ ∈
Δ} = PT ∪ {fG(δ) : δ ∈ Δ2}. Thus, NH′ (AT −Δ1) ⊆ PT ∪ {fG(δ) : δ ∈ Δ2}.

By integrating the above arguments, we have that

|AT | − |Δ1| = |AT −Δ1|
�
(2)

|NH′(AT −Δ1)|

� |PT |+ |{fG(δ) : δ ∈ Δ2}|
� |PT |+ |Δ2|,

which implies that |AT | − |PT | � |Δ1|+ |Δ2| = |Δ|. Thus, |AT | − |PT | � μ(G).
��

We conclude this section by proving Theorem 2.

Theorem 2. The popular condensation problem can be solved in O(n+m) time.

Proof. Lemma 6, Lemma 7, and Theorem 1 demonstrate that algorithm Pop-

ularCondensation solves the popular condensation problem. Here, we take a
look at the time complexity of the algorithm. It takes O(n + m) time to con-
struct the reduced graph in line 1. There are O(n) edges in the reduced graph.
By properly recording degree information, lines 3–8 can be done in O(n) time.
Since p takes an arbitrary neighbor a in line 11, lines 9–16 also can be done in
O(n) time. Lastly, line 17 and lines 18–20 take O(n) time intuitively. Therefore,
the popular condensation problem can be solved in O(n +m) time. ��

4 Concluding Remarks

In this paper, we provide a solution to find relatively good matchings in practice
when the instance admits no popular matching, and we show that the popular
condensation problem can be solved in linear time. For an instance G = (A ∪
P,E), according to the proposed algorithm, we get an upper bound for the
condensation number μ(G). Furthermore, we derive that the upper bound, |AT |−
|PT |, which we get for μ(G) is at the same time a lower bound for μ(G).

We note that in the problem of copying posts to get a popular matching,
Kavitha and Nasre gave the exact value on the minimum number of copies
needed [15]. We denote the value by ν(G), and it can be easily shown by Lemma 7
that ν(G) = |AT | − |PT | if the input preference lists are strictly ordered. As a
result, we conclude this paper by the following theorem.

Theorem 3. For any instance graph G, μ(G) = ν(G).

An Optimal Algorithm for the Popular Condensation Problem 421

Acknowledgements. Yen-Wei Wu, Wei-Yin Lin, and Kun-Mao Chao were
supported in part by NSC grants 100-2221-E-002-131-MY3 and NSC 101-2221-
E-002-063-MY3, and Hung-Lung Wang was supported in part by the NSC grant
101-2221-E-141-002- from the National Science Council, Taiwan.

References

1. Abdulkadiroǧlu, A., Sönmez, T.: Random serial dictatorship and the core from
random endowments in house allocation problems. Econometrica 66(3), 689–701
(1998)

2. Abraham, D.J., Cechlárová, K., Manlove, D.F., Mehlhorn, K.: Pareto optimality
in house allocation problems. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004.
LNCS, vol. 3341, pp. 3–15. Springer, Heidelberg (2004)

3. Abraham, D.J., Irving, R.W., Kavitha, T., Mehlhorn, K.: Popular matchings.
SIAM Journal on Computing 37(4), 1030–1045 (2007)

4. Abraham, D.J., Kavitha, T.: Dynamic Matching Markets and Voting Paths. In:
Arge, L., Freivalds, R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 65–76. Springer,
Heidelberg (2006)

5. Bartholdi, J.J., Tovey, C.A., Trick, M.A.: How hard is it to control an election?
Mathematical and Computer Modeling 16(8/9), 27–40 (1992)

6. Biró, P., Irving, R.W., Manlove, D.F.: Popular Matchings in the Marriage and
Roommates Problems. In: Calamoneri, T., Diaz, J. (eds.) CIAC 2010. LNCS,
vol. 6078, pp. 97–108. Springer, Heidelberg (2010)

7. Gardenfors, P.: Match Making: assignments based on bilateral preferences. Be-
havioural Sciences 20, 166–173 (1975)

8. Huang, C.-C., Kavitha, T.: Near-popular matchings in the roommates problem.
SIAM Journal on Discrete Mathematics 27(1), 43–62 (2013)

9. Huang, C.-C., Kavitha, T.: Popular matchings in the stable marriage problem.
Information and Computation 222, 180–194 (2013)

10. Huang, C.-C., Kavitha, T., Michail, D., Nasre, M.: Bounded Unpopularity Match-
ings. In: Gudmundsson, J. (ed.) SWAT 2008. LNCS, vol. 5124, pp. 127–137.
Springer, Heidelberg (2008)

11. Irving, R.W., Kavitha, T., Mehlhorn, K., Michail, D., Paluch, K.: Rank-maximal
matchings. ACM Transactions on Algorithms 2(4), 602–610 (2006)

12. Kavitha, T.: Popularity vs maximum cardinality in the stable marriage setting. In:
Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 123–134 (2012)

13. Kavitha, T., Mestre, J., Nasre, M.: Popular mixed matchings. Theoretical Com-
puter Science 412(24), 2679–2690 (2011)

14. Kavitha, T., Nasre, M.: Optimal popular matchings. Discrete Applied Mathemat-
ics 157(14), 3181–3186 (2009)

15. Kavitha, T., Nasre, M.: Popular matchings with variable item copies. Theoretical
Computer Science 412, 1263–1274 (2011)

16. Kavitha, T., Nasre, M., Nimbhorkar, P.: Popularity at Minimum Cost. In: Cheong,
O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010, Part I. LNCS, vol. 6506, pp. 145–156.
Springer, Heidelberg (2010)

17. Mahdian, M.: Random popular matchings. In: Proceedings of the 7th ACM Con-
ference on Electronic Commerce, pp. 238–242 (2006)

422 Y.-W. Wu et al.

18. Manlove, D.F., Sng, C.T.S.: Popular Matchings in the Capacitated House Alloca-
tion Problem. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp.
492–503. Springer, Heidelberg (2006)

19. McCutchen, R.M.: The Least-Unpopularity-Factor and Least-Unpopularity-
Margin Criteria for Matching Problems with One-Sided Preferences. In: Laber,
E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957,
pp. 593–604. Springer, Heidelberg (2008)

20. McDermid, E., Irving, R.W.: Popular matchings: structure and algorithms. Journal
of Combinatorial Optimization 22(3), 339–358 (2011)

21. Mestre, J.: Weighted Popular Matchings. In: Bugliesi, M., Preneel, B., Sassone, V.,
Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 715–726. Springer, Heidelberg
(2006)

22. Paluch, K.: Popular and Clan-Popular b-Matchings. In: Chao, K.-M., Hsu, T.-s.,
Lee, D.-T. (eds.) ISAAC 2012. LNCS, vol. 7676, pp. 116–125. Springer, Heidelberg
(2012)

Maximum st-Flow in Directed Planar Graphs

via Shortest Paths

Glencora Borradaile1 and Anna Harutyunyan2,�

1 Oregon State University
2 Vrije Universiteit Brussel

Abstract. In this paper, we give a correspondence between maximum
flows and shortest paths via duality in directed planar graphs with no
constraints on the source and sink.

1 Introduction

The asymptotically best algorithm for max st-flow in directed planar graphs
is the O(n log n)-time leftmost-paths algorithm due to Borradaile and Klein [4],
a generalization of the seminal uppermost-paths algorithm by Ford and Fulker-
son for the st-planar case [6]. Both algorithms augment O(n) paths, with each
augmentation implemented in O(log n) time. However, this bound is achieved
using the overly versatile dynamic-trees data structure [11] in Borradaile and
Klein’s algorithm, and only priority queues in the st-planar case [7]; priority
queues are arguably simpler and more practical than dynamic trees [13]. The
reason priority queues are sufficient for the st-planar case is due the equivalence
between flow and shortest-paths problems via duality. We conjecture that an
augmenting-paths algorithm for the more general problem can be implemented
via O(n) priority-queue operations. We make progress toward this goal by show-
ing that maximum flow in the general case is equivalent to computing shortest
paths in a covering graph, even though, algorithmically, we do not improve on
the algorithm of Johnson and Venkatesan [9].

Background. For omitted proofs and full definitions and an additional shortest-
path based algorithm, please see the full version of this paper [2]. For a full
background on planarity and flow, see Refs. 1 and 10.

For a path P , left (P) (right (P)) is the maximal subset of the darts whose
head or tail (but not both) is in P , and who enter or leave P from the left (right).
We define the graph G �P as the graph cut open along P . G �P contains two
copies of P , PL and PR, so that the edges in left (P) are adjacent to PR and the
edges in right (P) are adjacent to PL. The parameter φ is the minimum number
of faces that any s-to-t curve must pass through [10].

An excess (deficit) vertex is that with more flow entering (leaving) than leaving
(entering). A flow is maximum if and only if there are no residual source-to-sink
paths [6]. A pseudoflow is maximum if and only if there are no residual paths

� Work done while at Oregon State University.

T. Lecroq and L. Mouchard (Eds.): IWOCA 2013, LNCS 8288, pp. 423–427, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

424 G. Borradaile and A. Harutyunyan

from a source or excess vertex to a deficit or sink vertex [8]. The notion of
leftmost flows is essential in understanding this paper, and is covered in Ref. 1;
a flow is leftmost if it admits no clockwise residual cycles. The following lemma
follows directly from definitions of leftmost and the following theorem provides
structural insight into leftmost paths and flows.

Lemma 1. A leftmost circulation can be decomposed into a set of flow-carrying
clockwise simple cycles.

Theorem 1. Let L be the leftmost residual s-to-t-path in G w.r.t. c.w. acyclic
capacities c. Let f be any st-flow (of any value). Then no simple s-to-t flow path
crosses L from the left to right.

Infinite Covers. Embed G on a sphere and remove the interiors of ft and fs.
The resulting surface is a cylinder with t and s embedded on opposite ends.
The repeated drawing of G on the universal cover of this cylinder [12] defines
a covering graph1 G of G. For a subgraph X of G, we denote the subgraph of
G whose vertices and darts map to X by G[X]. We say X̄ ⊂ G[X] is a copy of
X if X̄ maps bijectively to X . We number the copies of a vertex u from left to
right: G[u] = {. . . u−1, u0, u1, . . .}, picking u0 arbitrarily. We say that X̄ is an
isomorphic copy of X if X̄ is isomorphic to X .2 For a simple s-to-t path P in G,
we denote by P i the isomorphic copy of P in G[P] that ends at ti. Gi

P ∪P i+1 is
the finite component of subgraph of G �P

i

�P
i+1. Lemma 2 relates clockwise

cycles in G and G and Lemma 3 is key to bounding the size of the finite portion
of G required by our algorithm:

Lemma 2. The mapping of the following into G contains a clockwise cycle: Any
ui-to-uj path in G for ui ∈ Gi

P , uj ∈ Gj
P , and i < j and any simple clockwise

cycle in G.

Lemma 3 (Pigeonhole). Let P be a simple path in G. Then P̄ contains a dart
of at most φ+ 2 copies of G in G. If P may only use s and t as endpoints, then
P̄ contains darts in at most φ copies of G in G.

2 Maximum Flow, Shortest Paths Equivalences

Starting with c.w. acyclic capacities c, we compute the leftmost maximum
flow in a finite portion of G (containing k copies of G), Gk, via embedding
two additional vertices T (above) and S (below) the cover, and computing
the leftmost max ST -flow fST via the priority-queue implementation of Ford
and Fulkerson’s uppermost-paths algorithm (Section 2.1). Note that shortest-
paths/priority-queue based implementations always produce leftmost flows. From
fST we show how to extract the value of max st-flow |f | (Section 2.2). Using this
value we are able to modify the capacities cST in a way that allows to extract f
from fST (Section 2.3). While this method requires a factor k additional space,
we believe this can be overcome in future work (Section 2.4).

1 This is similar to a cover used by Erickson analysis [5]; we remain in the primal.
2 Note that an isomorphic copy need not exist, e.g., the boundary of fs.

Maximum st-Flow in Directed Planar Graphs via Shortest Paths 425

2.1 The Finite Cover

Let L be the leftmost residual s-to-t path in G and let f be the (acyclic) leftmost
maximum st-flow in G. Let Gk be the finite component of G �L

0

�L
k, made of k

copies of G (plus an extra copy of L). We start by relating a max multi-source,
multi-sink maximum flow in Gk (f1) to a max pseudoflow f0 (Lemma 4), and, in
turn relate f0 to f (Lemma 5). This will illustrate that the flow in the central
copy of Gk is exactly f . However, f1 is not necessarily leftmost and so, we cannot
necessarily compute it. We relate f1 to the leftmost max ST -flow in GST

k (which
we can compute), in Section 2.2, from which we can compute the value of f .

Let f0 be a flow assignment for Gk given by f0[d̄] = f [d], ∀d̄ ∈ G[d]. We overload
c to represent capacities in both G and Gk, where capacities in Gk are inherited
from G in the natural way. In Gk and G, we use residual to mean w.r.t. cf0 and
cf , respectively.

Lemma 4. For k > φ+ 2, f0 is a maximum pseudoflow with excess vertices on
L0 and deficit vertices on Lk.

Proof. Since f0 is balanced for all vertices in Gk except those on L0 and Lk and it
follows from Theorem 1 that V + resp. V − belong to L0 resp. Lk, where V + resp.
V − denote the set of excess resp. deficit vertices. Since a source-to-sink path in
Gk maps to an s-to-t path in G, it remains to show that there are no V +-to-T ,
S-to-V − or V +-to-V − residual paths. By the Pigeonhole Lemma and Part 2 of
Lemma 2, the last case implies a clockwise residual cycle in G, contradicting f
being leftmost. The first two cases are similar, we only prove the first case here.

Consider the flow assignment for G: f ′[d̄] = f [d], ∀d̄ ∈ G[d]. For v+ ∈ V +

to be an excess vertex, there must be a v-to-t flow path Q in f where v is the
vertex in G that v+ maps to. There is a copy Q̄ of Q in G that starts at v+,
and by Theorem 1 is left of L0. For a contradiction, let R be a v+-to-ti residual
path, for some ti ∈ T . Then, rev (Q) ◦ R is a residual tj-to-ti path in G (w.r.t.
f ′), j ≤ i. If j = 0, Q̄ ◦ rev (L0[v+, t0]) is a clockwise cycle, which, by Part 2 of
Lemma 2, implies a clockwise cycle in G; contradicting the leftmost-ness of L.
If j < i, by Part 1 of Lemma 2, rev (Q) ◦R implies a clockwise residual cycle in
G, contradicting the leftmost-ness of f . ��

Lemma 5. There is a maximum ST -flow f1 in Gk that is obtained from f0 by
removing flow on darts in the first and last φ copies of G in Gk. Further, the
amount of flow into sink ti for i ≤ k − φ and the amount of flow out of source
sj for j ≥ φ is the same in f0 and f1.

Proof. Since f0 is an acyclic max pseudoflow, it can be converted to a max
flow by removing flow from source-to-excess flow paths and deficit-to-sink flow
paths [8]. Let P be such a flow path. P must map to a simple path in G. By
the Pigeonhole Lemma, P must be contained within φ copies of G. This proves
the first part of the lemma. Since P cannot start at sj for j ≥ φ without going
through more than φ copies (and likewise, P cannot end at ti for i ≤ k−φ), the
second part of the lemma follows. ��

426 G. Borradaile and A. Harutyunyan

2.2 Value of the Maximum Flow

In the next lemma, we prove that from fST , the leftmost maximum ST -flow in
GST
k , we can extract |f |, the value of the maximum st-flow in G.

Lemma 6. For k ≥ 4φ, the amount of flow through s2φ in fST is |f |.

Proof. We show that the amount of flow leaving s2φ in fST is the same as in f1.
By Lemma 5, the amount of flow leaving s2φ is the same in f1 as f0 which is the
same as the amount of flow leaving s in f ; this proves the lemma.

First extend f1 into a (max) ST -flow, fST
1 , in GST

k in the natural way. To
convert fST

1 into a leftmost flow, we must saturate the clockwise residual cycles
with a c.w. circulation. By Lemma 1 and for a contradiction, there then must
be c.w. simple cycle C that changes the amount of flow through s2φ. C must go
through S, C is residual w.r.t. cfST

1
, and cannot visit T , therefore C must contain

a si-to-s2φ residual path P that is in Gk. Since C is c.w. , i < 2φ. Suppose P
does not use a dart in the first or last φ copies of G in Gk. Then P must map
to a set P ′ of darts in G which, by Lemma 5 are residual w.r.t. cf . By Part 1
of Lemma 2, P ′ contains a clockwise cycle, contradicting the leftmostness of f .
It follows that P must cross either from the φth copy to s2φ or from s2φ to the
3φth + 1 copy. Then, by the Pigeonhole Lemma, P contains a subpath Q that
goes from v̄ to v̄′, where v̄ is an earlier copy of a vertex v than v̄′, and neither
are in the first or last φ copies. By Part 1 of Lemma 2, the map of Q contains a
clockwise cycle in G. Since Q does not contain darts in the first or last φ copies
of G, by Lemma 5, this cycle is residual w.r.t. cf in G, again contradicting that
f is leftmost. ��

2.3 Maximum Flow

Now, suppose we know |f | (as per Lemma 2.2). We change the capacities of the
arcs into T and out of S in GST

k to |f |, resulting in capacities c|f |. Now, fST
1 ,

respects c|f | since, by Lemmas 4 and 5, the amount of flow leaving any source
or entering any sink in f1 is at most |f |. The proof of the following is similar to
that of Lemma 6:

Lemma 7. fST
1 can be converted into a leftmost maximum ST -flow f |f | for the

capacities c|f | while not changing the flow on darts in the first or last 2φ copies
of G in Gk.

To summarize, Lemmas 5 and 7 guarantee that the maximum leftmost ST -
flow, f |f |, in GST

k given capacities c|f | has the same flow assignment on the darts
in copy 2φ+1 as f so long as k ≥ 4φ+1. Starting from scratch, we can find c.w.
acyclic capacities c via Khuller, Naor and Klein’s method (one shortest path
computation); we can find |f | (Lemma 6, a second shortest path computation)
and then f (Lemma 7, a third shortest path computation). Therefore, finding a
maximum st-flow in a directed planar graph G is equivalent to three shortest
path computations: one in G and two in a covering of G that is 4φ + 1 times
larger than G.

Maximum st-Flow in Directed Planar Graphs via Shortest Paths 427

2.4 Discussion

The linear bound on the number of augmentations required by Borradaile and
Klein’s leftmost augmenting-paths algorithm is given by way on an unusability
theorem which states that an arc can be augmented, and then its reverse can
be augmented, but, if this reverse-augmentation occurs, the arc cannot be aug-
mented again. In a companion paper, we show how to implement an augmenting
paths algorithm whose analysis depends on a similar unusability theorem using
only priority-queue operations [3]. In this algorithm, we also use dual shortest-
paths to illustrate the priority-queue implementation. We believe that combining
these ideas – the unusability theorem and dual-shortest paths correspondence –
could lead to a max st-flow algorithm for planar graphs that uses O(n) (instead
of O(φn) as implied by our work here) priority-queue operations. Provided the
constants are reasonable, this would certainly be more efficient in practice than
a dynamic-trees based implementation.

Acknowledgements. The authors thank Jéremy Barbay for very helpful dis-
cussions. This material is based upon work supported by the National Science
Foundation under Grant No. CCF-0963921.

References

1. Borradaile, G.: Exploiting Planarity for Network Flow and Connectivity Problems.
PhD thesis, Brown University (2008)

2. Borradaile, G., Harutyunyan, A.: Maximum st-flow in directed planar graphs via
shortest paths. Technical report, arXiv:1305.5823 (2013)

3. Borradaile, G., Harutyunyan, A.: Boundary-to-boundary flows in planar graphs.
In: Lecroq, T., Mouchard, L. (eds.) IWOCA 2013. LNCS, vol. 8288, Springer,
Heidelberg (2013)

4. Borradaile, G., Klein, P.: An O(n log n) algorithm for maximum st-flow in a di-
rected planar graph. J. of the ACM 56(2), 1–30 (2009)

5. Erickson, J.: Maximum flows and parametric shortest paths in planar graphs. In:
Proc. SODA, pp. 794–804 (2010)

6. Ford, C., Fulkerson, D.: Maximal flow through a network. Canadian J. Math. 8,
399–404 (1956)

7. Hassin, R.: Maximum flow in (s, t) planar networks. IPL 13, 107 (1981)
8. Hochbaum, D.: The pseudoflow algorithm: A new algorithm for the maximum-flow

problem. Operations Research 56(4), 992–1009 (2008)
9. Johnson, D., Venkatesan, S.: Partition of planar flow networks. In: Proc. SFCS,

pp. 259–264 (1983)
10. Kaplan, H., Nussbaum, Y.: Minimum st-cut in undirected planar graphs when the

source and the sink are close. In: Proc. STACS, pp. 117–128 (2011)
11. Sleator, D., Tarjan, R.: A data structure for dynamic trees. JCSS 26(3), 362–391

(1983)
12. Spanier, E.: Algebraic Topology. Springer (1994)
13. Tarjan, R., Werneck, R.: Dynamic trees in practice. J. Exp. Algorithmics 14, 5:4.5–

5:4.23 (2010)

Hypergraph Covering Problems Motivated

by Genome Assembly Questions

Cedric Chauve1,2, Murray Patterson3, and Ashok Rajaraman2,4

1 LaBRI, Université Bordeaux 1, Bordeaux, France
2 Department of Mathematics, Simon Fraser University, Burnaby (BC), Canada

{cedric.chauve,arajaram}@sfu.ca
3 Centrum Wiskunde & Informatica, Amsterdam, The Netherlands

murray.patterson@cwi.nl
4 International Graduate Training Center in Mathematical Biology, PIMS, Canada

Abstract. We describe some genome assembly problems as a general
problem of covering a hypergraph by linear and circular walks, where
vertices represent sequence elements, repeated sequences are modelled by
assigning a multiplicity to vertices, and edges represent co-localization
information. We show that deciding if a given assembly hypergraph ad-
mits an assembly is fixed-parameter tractable, and we provide two exact
polynomial time algorithms for clearing ambiguities caused by repeats.

1 Introduction

Some genome assembly problems can be seen as hypergraph covering problems,
where vertices represent genomic sequences, and weighted edges encode the co-
localization of sequence elements; a cover of the hypergraph with a set of linear
walks (or circular walks, for genomes with circular chromosomes) corresponds to
a genome assembly that respects the co-localization information encoded in the
traversed edges. Repeats, genomic elements that appear in several locations in
the genome being assembled, often confuse assembly algorithms and introduce
ambiguity in assemblies. Repeats can be modelled in graph theoretical models of
genome assembly by associating a multiplicity to each vertex, an upper bound on
the number of occurrences of this vertex in linear/circular walks that cover the
hypergraph. A vertex with multiplicity greater than 1 can then belong to several
walks. The general assembly problem we consider is to extract a maximum weight
subset of edges such that there exists a set of linear and/or circular walks on
the resulting graph that contains every edge as a subwalk and respects the
multiplicity of the vertices. Recent investigations describe both hardness and
tractability results for related decision and optimization problems [1,6,2,5].

We formalize these problems in terms of covering of assembly hypergraphs by
linear and circular walks, and edge-deletion problems. We show that deciding if
a given assembly hypergraph admits a covering by linear (circular) walks that
respects the multiplicity of all vertices is FPT. We also describe polynomial time
algorithms for decision and edge-deletion problems for certain instances of the
problems which consider information allowing us to clear ambiguities due to
repeats. Full proofs and details for each result are available in [3].

T. Lecroq and L. Mouchard (Eds.): IWOCA 2013, LNCS 8288, pp. 428–432, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Hypergraph Covering Problems Motivated by Genome Assembly Questions 429

2 Preliminaries

Definition 1. An assembly hypergraph is a quadruple (H,w, c, o) where H =
(V,E) is a hypergraph and w, c, o are mappings: w : E → R, c : V → N, o :
E → V ∗ where o({v1, . . . , vk}) is either a sequence on the alphabet {v1, . . . , vk}
where each element appears at least once, or λ (the empty sequence).

We use the notation |V | = n, |E| = m, s =
∑

e∈E |e|, Δ = maxe∈E |e|, δ =
maxv∈V |{e ∈ E | v ∈ e}|, γ = maxv∈V c(v). We call c(v) the multiplicity of v. A
vertex v s.t. c(v) > 1 is called a repeat; VR ⊆ V is the set of repeats and ρ = |VR|.
Edges s.t. |e| = 2 are called adjacencies; w.l.o.g., we assume that o(e) = λ if e is
an adjacency. Edges s.t. |e| > 2 (resp. |e = 3|) are called intervals (resp. triples).
We denote the set of adjacencies (resp. weights of adjacencies) by EA ⊆ E (resp.
wA), and the set of intervals (resp. weights of intervals) by EI ⊆ E (resp. wI). An
interval is ordered if o(e) 	= λ; an assembly hypergraph with no ordered interval is
unordered. Unless explicitly specified, our assembly hypergraphs are unordered.
An assembly hypergraph with no intervals, i.e. Δ = 2, is an adjacency graph.
Given an assembly hypergraph H = (H = (V,E), w, c, o), we denote its induced
adjacency graph by HA = (HA = (V,EA), wA, c, oA).

Definition 2. Let (H = (V,E), w, c, o) be an assembly hypergraph and P (resp.
C) be a linear (resp. circular) sequence on the alphabet V . An unordered interval
e is compatible with P (resp. C) if there is a contiguous subsequence of P (resp.
C) whose content is e. An ordered interval e is compatible with P (resp. C) if
there exists a contiguous subsequence of P (resp. C) equal to o(e) or its mirror.

Definition 3. An assembly hypergraph (H = (V,E), w, c, o) admits a linear as-
sembly (resp. mixed assembly) if there exists a set A of linear (resp. circular)
sequences on V such that every edge e ∈ E is compatible with A, and every vertex
v appears at most c(v) times in A. The weight of an assembly is

∑
e∈E w(e).

In the following, we consider two kinds of algorithmic problems, a decision
problem and an edge-deletion problem.

– The Assembly Decision Problem: Given an assembly hypergraph H = (H,w,
c, o) and a genome model (linear or mixed), does there exist an assembly of
H in this model?

– The Assembly Maximum Edge Compatibility Problem: Given an assembly
hypergraph H = (H = (V,E), w, c, o) and a genome model, compute a max-
imum weight subset E′ of E such that the assembly hypergraph H′ = (H ′ =
(V,E′), {w(e) | e ∈ E′}, c, {o(e) | e ∈ E′}) admits an assembly in this model.

Definition 4. Let (H = (V,E), w, c, o) be an assembly hypergraph. A maximal
repeat cluster is a connected component of the hypergraph (VR, {e∩VR | e ∈ E}).

We now summarize some known results. Theorem 1 below follows from the
equivalence between the Assembly Decision Problem with no repeats and the
classical Consecutive Ones Property [4].

430 C. Chauve, M. Patterson, and A. Rajaraman

Theorem 1. The Assembly Decision Problem can be solved in O(n + m + s)
time and space when γ = 1, in the linear and mixed genome models.

Theorem 2. [6] (1) The Assembly Decision Problem can be solved in time and
space O(n+m+s) for adjacency graphs in the linear and mixed genome models.
(2) The Assembly Decision Problem is NP-hard in the linear and the mixed
genome models if Δ ≥ 3 and γ ≥ 2.

Theorem 3. [2] The Assembly Decision Problem can be solved in polynomial
time and space in the linear genome model for unordered assembly hypergraphs
where, for every edge e containing a repeat, either e is an adjacency, or e is an
interval that contains a single repeat r and there exists an edge e′ = e \ {r}.

Theorem 4. [5] (1) The Assembly Maximum Edge Compatibility Problem can
be solved in polynomial time and space in the mixed genome model for adjacency
graphs. (2) The Assembly Maximum Edge Compatibility Problem is NP-hard in
the mixed genome model if Δ ≥ 3, even if γ = 1.

3 New Results

We now describe three positive algorithmic results, together with the correspond-
ing algorithms and proof outlines. We first show that the Assembly Decision
Problem is FPT with respect to parameters Δ, δ, γ and ρ.

Theorem 5. The Assembly Decision Problem can be solved in space O(n+m+

s + ργ) and time O
(
(δ(Δ + ργ))

2ργ
(n+m + s+ ργ)

)
in the linear and mixed

genome models for unordered assembly hypergraphs.

As we consider a decision problem on unordered graphs, we omit w and o
from the notation. The idea is to consider a set of derived assembly hypergraphs
Hf = (Hf = (Vf , Ef), cf) s.t. cf (v) = 1 for all v ∈ Vf by making c(r) copies
of each r ∈ VR and considering each possible set f of choices of 2 neighbours
for each of these copies. A given Hf can then be checked for the existence of
an assembly using Theorem 1, and H admits an assembly if and only if there
exists an Hf which admits an assembly for some f . Finally, if Δ, δ, γ and ρ
are bounded, there is a fixed number of such sets f , which results in an FPT
algorithm.

Algorithm

1. For each r ∈ VR, make c(r) distinct copies of r. Call this set R′(r), and
R′ =

⋃
r R′(r).

2. For each v ∈ R′(r), choose 2 neighbours from N ′(r), the union of the set
of non-repeat neighbours of r and of

⋃
p R′(p), the union being taken over

all repeat neighbours p of r. Call this choice of neighbours for r fr, and
f =

⋃
r∈VR

fr.

Hypergraph Covering Problems Motivated by Genome Assembly Questions 431

3. Construct a new assembly hypergraph Hf = (Hf = (Vf , Ef), cf) with Vf =
(V \ VR) ∪ R′, cf (v) = 1 for all v ∈ Vf , and Ef defined as follows: (1) for
each vr ∈ R′(r), r ∈ VR, f(vr) = {u, v} for some u, v ∈ N ′(r), add {vr, u}
and {vr, v} to Ef , and (2) for each e ∈ E, add an edge e′ ∈ Ef containing
{v | v ∈ e \ VR}.

4. For each v ∈ Vf \ R′ adjacent to a vertex r1 ∈ R′, let v.r1.rk.u be
the unique path in Hf s.t. {r1, . . . , rk} ⊆ R′ and u ∈ Vf \ R′. Add all of
{r1, . . . , rk} to e′ for each e′ ∈ Ef such that v ∈ e′.

5. Use Theorem 1 on Hf . Output Yes and exit if Hf admits an assembly in the
chosen genome model.

6. Iterate over all possible sets of neighbour choices f in Step 2.
7. Output No (no Hf admits an assembly in the chosen genome model).

We now describe an algorithm to find a maximum weight subset S ⊆ EI for an
assembly hypergraph H = (H = (V,E \ S) , w, c, o) to admit a mixed assembly,
given that HA admits a mixed assembly. We extend the notion of compatibility
for an assembly hypergraph H as follows.

Definition 5. An unordered interval e ∈ EI is said to be compatible with HA

if there exists a walk in HA = (V,EA) whose vertex set is exactly e.

Then, we can state the following theorem.

Theorem 6. Let H = (H = (V,E) , w, c, o) be an unordered weighted assembly
hypergraph such that HA admits a mixed genome assembly, and each interval
is a triple compatible with HA, containing at most one repeat. Then, we can
find a maximum weight subset S ⊆ EI , such that H′ = (H ′ = (V,E′ = EA ∪
S), {w(e) | e ∈ E′}, c, {o(e) | e ∈ E′}) admits a mixed assembly, in linear space
and O((n +m)3/2) time.

The proof relies on the following ideas: (1) repeat-free triples, as well as triples
whose non-repeat vertices form an adjacency, must always be included in a max-
imum weight compatible set of triples, and (2) the remaining triples to include
can be decided using the adjacency compatibility algorithm of [5].

Algorithm

1. Initialize empty sets S,D, and E′ = EA.
2. Add to S every e ∈ EI having no repeats, and every e = {v0, v1, r} ∈ EI

having one repeat r s.t. {v0, v1} ∈ EA . Let E′
I = EI\S.

3. For every e = {v0, v1, r} ∈ E′
I containing exactly one repeat r:

(i) Add an adjacency ae = {v0, v1} to D. Set wD (ae) = w (e).
(ii) Remove {v0, r} and {v1, r} from E′, if present.

4. For every adjacency e ∈ E′ \D, set w′ (e) = 1 +
∑

ae∈D wD (ae).
5. Apply the linearization algorithm [5] (Theorem 4(1)) on (HD = (V,E′ ∪

D), w′ ∪wD, c, oA).
6. For each ae ∈ D retained in step 5, add the triple e to S.

We finally turn to instances with larger, but ordered, intervals.

432 C. Chauve, M. Patterson, and A. Rajaraman

Definition 6. Let (H = (V,E), w, c, o) be an assembly hypergraph. An interval
e ∈ EI is an ordered repeat spanning interval for a maximal repeat cluster R if
e = {u, v, r1, . . . , rk} with c(u) = c(v) = 1, {r1, . . . , rk} ⊆ R, and o(e) = u.s.v,
where s is a sequence on the set {r1, . . . , rk}, containing every element at least
once. The subset of ordered repeat spanning intervals in EI is denoted by Ers

Theorem 7. Let H = (H = (V,E) , w, c, o) be an assembly hypergraph such
that every repeat r ∈ VR is either contained in an adjacency, or is contained in
an interval e ∈ EI s.t. either e is an ordered repeat spanning interval, or r is the
only repeat in e and there exists an edge e′ = e \ {r}. The Assembly Decision
Problem in the linear genome model can be solved for H in polynomial time and
space.

The basic idea of the proof is to realize the sequence o(e) for every repeat
spanning interval e ∈ Ers by creating unique copies of the repeats in e and
decreasing the multiplicity accordingly. This leads to an assembly graph that
can then be checked using Theorem 3. As we consider a decision problem, we
omit w from now.

Algorithm

1. Let V ′ = V , E′ = E\Ers, c
′ = c, o′ = {o(e) | e ∈ E′}, D = ∅.

2. For every repeat spanning interval e ∈ Ers:
(a) Let o = o(e) = u.r1.rk.v, possibly ri = rj for i 	= j (the ri are

repeats)
(b) For i from 1 to k add a vertex ti to V ′, with multiplicity c′(ti) = 1, and

decrease c′(ri) by 1.
(c) For i from 1 to k − 1 add an adjacency {ti, ti+1} to E′.
(d) Add edges {u, t1} and {v, tk} to E′.
(e) If the adjacencies {u, r1} and {rk, v} are present, add them to D.

3. Return Yes if the assembly hypergraphH′ = (H ′ = (V ′, E′\D), c′, o′) admits
a linear genome assembly (checked by using Theorem 3) and if c′ (r) ≥ 0 for
all r ∈ VR. Else, return No.

References

1. Batzoglou, S., Istrail, S.: Physical mapping with repeated probes: The hypergraph
superstring problem. In: Crochemore, M., Paterson, M. (eds.) CPM 1999. LNCS,
vol. 1645, pp. 66–77. Springer, Heidelberg (1999)

2. Chauve, C., Maňuch, J., Patterson, M., Wittler, R.: Tractability results for the
consecutive-ones property with multiplicity. In: Giancarlo, R., Manzini, G. (eds.)
CPM 2011. LNCS, vol. 6661, pp. 90–103. Springer, Heidelberg (2011)

3. Chauve, C., Patterson, M., Rajaraman, A.: Hypergraph covering problems moti-
vated by genome assembly questions. arXiv:1306.4353 [cs.DS] (2013)

4. Dom, M.: Algorithimic aspects of the consecutive-ones property. Bull. EATCS 98,
27–59 (2009)

5. Manuch, J., Patterson, M., Wittler, R., Chauve, C., Tannier, E.: Linearization of an-
cestral multichromosomal genomes. BMC Bioinformatics 13(suppl. 19), S11 (2012)

6. Wittler, R., Manuch, J., Patterson, M., Stoye, J.: Consistency of sequence-based
gene clusters. J. Comput. Biol. 18, 1023–1039 (2011)

Cluster Editing with Locally Bounded

Modifications Revisited

Peter Damaschke

Department of Computer Science and Engineering
Chalmers University, 41296 Göteborg, Sweden

ptr@chalmers.se

Abstract. For Cluster Editing where both the number of clusters
and the edit degree are bounded, we speed up the kernelization by almost
a factor n compared to Komusiewicz and Uhlmann (2012), at cost of a
marginally worse kernel size bound. We also give sufficient conditions for
a subset of vertices to be a cluster in some optimal clustering.

1 Introduction

We consider graphs G = (V,E) with n vertices and m edges and use standard
notation like N(v) for the open neighborhood of a vertex, N [v] := N(v) ∪ {v},
N [W] :=

⋃
v∈W N [v], and N(W) := N [W] \ W . A cluster graph is a disjoint

union of cliques. G is a cluster graph if and only if G has no conflict triple,
i.e., three vertices inducing exactly two edges. Cluster Editing asks to turn
a graph G = (V,E) into a cluster graph using at most k edge edits, that is,
insertions or deletions. An optimal clustering is an optimal solution to Cluster

Editing. The edit degree of v is the number of edits v is incident to. Cluster

Editing has applications in, e.g., molecular biology, and is well studied [1,2,5,9].
Cluster Editing is NP-hard [10], but is also fixed-parameter tractable (FPT)
in k. The currently smallest problem kernel has 2k vertices [4,3]. An obstacle
for the practical use of an FPT algorithm is that k may still be too large. Thus,
stronger parameters have been proposed:

(d, t)-Constrained Cluster Editing [6]: Given a graph G = (V,E), parame-
ters d, t, and k, and individual constraints τ(v) ≤ t for every vertex v, transform
G into a cluster graph with at most d clusters, by applying at most k edits, such
that every vertex v has edit degree at most τ(v).

The problem is in FPT already in the combined parameter (d, t). A kernel
with at most 4dt vertices is computed in O(n3) time [6]. An O(dt) kernel can be
preferable to an O(k) kernel: If every vertex actually has edit degree Θ(t), we get
k = Θ(nt), whereas d is typically much smaller than n. Besides kernel sizes, the
time for the kernelization is also decisive for scalability. Here we speed up the
kernelization for (d, t)-Constrained Cluster Editing. We compute a kernel
with at most 5dt + d vertices in O((m + dt2) logn) time, and randomization
yields a kernel size arbitrarily close to 4dt in O(m + dt2 log n) expected time.

T. Lecroq and L. Mouchard (Eds.): IWOCA 2013, LNCS 8288, pp. 433–437, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

434 P. Damaschke

Note that m = O(n2), and dt < n can be assumed. Hence our time is within
O(n2 logn), with a sliightly worse kernel size bound. This appears to be a good
deal. Moreover, O((m+dt2) logn) is within a logarithmic factor of the size (edge
number m) of the graph. Namely, assuming dt < n, we have dt2 < nt < n2/d,
and a graph of d disjoint cliques has Ω(n2/d) edges. Another difference to [6] is
that the “old” reduction rules are only based on the (d, t)-constraints, whereas
we find edit-optimal clusters, as defined below.

Definition 1. In a graph G = (V,E), a subset C ⊆ V is an edit-optimal cluster
if G has an optimal solution to Cluster Editing where C is one of the clusters.

The value of this notion is the following: Once some C is recognized as edit-
optimal, we can safely split off C and work on G−C in order to solve Cluster

Editing on G. Of course, we cannot expect a polynomial algorithm to recognize
edit-optimal clusters, because iterated application would solve Cluster Edit-

ing in polynomial time. Therefore we quest for sufficient conditions π: If some C
satisfies π, then C is edit-optimal. Ideally, π should be both efficient and not too
restrictive. Here is a known example of a condition π used in a kernelizations: Let
γ(C) be the number of edges between C and G−C, and let δ(C) be the number
of non-edges in C. If some v ∈ C satisfies N [v] = C, and 2δ(C) + γ(C) < |C|,
then C is edit-optimal [3]. This inequality relates the total number of edits to |C|.
Here we will add further conditions π that relate only the edit degrees and list
edge coloring numbers to |C|. Note that we only study the combinatorial side.
Further research could deal with algorithmic implications, e.g., the complexity
of recognizing such edit-optimal clusters, and perhaps smaller kernels.

Pointing out optimal clusters in parts of a large graph can be more appropriate
than computing an optimal clustering of the entire graph. For instance, it has
been observed [7] that large social networks tend to consist of a core that lacks a
clear clustering structure, and a periphery containing clusters, which are “exotic”
groups that are highly connected but have little external interaction.

2 Faster Kernelization

Definition 2. Let C ⊂ V be a vertex set in a graph G = (V,E). The edit degree
of v ∈ C is the number of edits incident to v when we split off C as a cluster.
The edit degree of C is the maximum edit degree of the vertices in C.

Lemma 1. Let v be any fixed vertex, and g the degree of v. Assume that some
cluster C / v with edit degree at most t exists. Let c := |C|, and let m(C) denote
the number of edges incident to C. If g > 4t or c ≥ g > 3t, then C is uniquely
determined, and we can compute C in O((m(C) + t2) log c) time.

Proof. Define x := |N(v) \C| and y := |C \N(v)|. Since v ∈ C is incident to at
most t edits, we have x+ y ≤ t. Also note that |C ∩N(v)| = g − x = c − y.

Every vertex u ∈ C is incident to at most t non-edges in C, hence u has at
least g − t− x neighbors in N(v), even in C ∩N(v). Every vertex u /∈ C has at

Cluster Editing with Locally Bounded Modifications Revisited 435

most t+ x neighbors in N(v) (namely, at most t in C ∩N(v), and at most x in
N(v)\C). In the case g > 4t we have t+x ≤ 2t < g/2 = g−g/4−g/4 ≤ g−t−x.
In the case c ≥ g > 3t (hence x ≤ y and x ≤ t/2) we have t+x ≤ t+(x+y)/2 ≤
t + t/2 = 3t/2 < g/2 ≤ g − 3t/2 ≤ g − t − t/2 ≤ g − t − x. Thus, by comparing
|N(u) ∩ N(v)| with g/2 we can decide whether u /∈ C or u ∈ C, in these two
cases. We refer to this comparison as the threshold test for u. It also follows that
C / v with edit degree at most t is uniquely determined in the mentioned cases.

Next we show how to calculate C, or recognize that v is in no cluster with
edit degree at most t. Since |C \N(v)| ≤ t, every vertex in C can have at most
2t neighbors outside N(v).

Phase 1: We do the threshold test for all u ∈ N(v) as follows. We traverse the
adjacency list of every such u and check for each neighbor of u whether it also
belongs to N(v). Actually we can stop as soon as (i) g/2 neighbors in N(v) or
(ii) 2t+1 neighbors outside N(v) are found, or (iii) the end of u’s adcacency list
is reached. In case (i) and (iii) we know u ∈ C and u /∈ C, respectively. In case
(ii), v is in no cluster with edit degree at most t. Using a dictionary for N(v),
membership of a vertex in N(v) can be tested in O(log g) time.

Phase 2: We also find the at most t vertices of C \ N(v) as follows. Since
they all have neighbors in C ∩ N(v), it suffices to do the threshold test for the
O(ct) vertices in N(C ∩ N(v)) only. More precisely, we traverse the adjacency
lists of all vertices in C ∩N(v) again and count how often every vertex u /∈ N(v)
appears there. According to our threshold test, we have u ∈ C if and only if u
is met at least g/2 times. Each time a vertex u is met, u can be retrieved (for
incrementing its count) in O(log c + log t) time.

All edges in the adjacency lists of vertices u ∈ C∩N(v), processed in Phase 1,
are incident to C. We also have to deal with vertices u ∈ N(v)\C, but there are
at most t of them, and in each of their lists we consider at most (t− 1)+ (2t+1)
edges which are not incident to C: those ending in N(v) \C again, and at most
2t + 1 edges ending outside N(v). (After that we can stop, as we saw above.)
All edges in the lists processed in Phase 2 are also incident to C. Hence O(t2)
processed edges are not indicent to C. Since g = O(c) and t = O(c), each of
log g, log c, log t is O(log c), thus every edge is processed in O(log c) time. ��
Theorem 1. We can compute a kernel for (d, t)-Constrained Cluster Edit-

ing with at most 5dt + d vertices in O((m + dt2) logn) time.

Proof. As long as there exists some vertex v of degree g > 4t we apply Lemma 1
to find C / v with edit degree at most t. If no such C exists, the problem instance
has no solution. If C exists, it is uniquely determined due to Lemma 1. We check
whether the individual degree constraints τ(u) are satisfied by all u ∈ C, remove
C and all incident edges, and reduce the individual degree constraints of vertices
outside C by the respective numbers of adjacent vertices in C. If the test in C
fails or a constraint drops below zero, the instance has no solution. By iteration
we get rid of all vertices of degree above 4t, and every set C we have obtained
must be a cluster in any valid solution. Any vertex of degree g ≤ 4t must belong
to a cluster of size c ≤ 5t+1, since c ≤ g+ t+1 holds in general. Since at most
d clusters are allowed, there remain at most 5dt + d vertices, or we know that

436 P. Damaschke

there is no solution. By Lemma 1, every cluster C is found in O((m(C)+t2) log c)
time. Since edges incident to some C are processed only once, the m(C) terms
sum up to at most m. The t2 term appears at most d times. ��

This kernel consists of vertices of degree at most 4t in at most d clusters of size
at most 5t+1. Using Lemma 1 we can keep on trying vertices v with 4t ≥ g > 3t.
If v belongs to a cluster of size c ≥ g and edit degree t, this appears in a valid
solution, by the same reasoning as in Theorem 1. However, trying all O(dt)
vertices would require O((m + dt3) log c) time. This situation suggests the idea
of picking v randomly. The following time bound holds with high probability,
since the probability not to hit a large cluster decreases exponentially over time.

Theorem 2. We can compute a kernel for (d, t)-Constrained Cluster Edit-

ing with at most (4 + ε)dt vertices in O((m + (1/ε)dt2) logn) expected time.

3 Sufficient Conditions for Edit-Optimal Clusters

Theorem 3. Every C with c := |C| ≥ 5t is an edit-optimal cluster.

The proof replaces any clustering C1, . . . , Cd with C,C1 \C, . . . , Cd \C (split-
ting off C as a new cluster) and shows by bookkeeping arguments that the num-
ber of edits is not increased. – Compare Theorem 3 to condition 2δ(C)+γ(C) < c
from [3]. We get that already t = O(c) is sufficient, whereas the total number of
edits can be tc, and even quadratic in c. We also connect this result to Section
2. Suppose that we have computed a kernel for (d, t)-Constrained Cluster

Editing, but we may also want to solve unrestricted Cluster Editing, be-
cause it might need fewer edits. The size bounds in Section 2 remain valid if we
remove only those edit-optimal clusters C with c > 5t. This yields:

Corollary 1. If a graph has a clustering with at most d clusters, where every
vertex has edit degree at most t, then we can compute a kernel for Cluster

Editing with at most 5dt vertices in O((m + dt2) log n) time.

Next we derive a further condition related to another graph problem:

List Edge Coloring: Given a graph where every edge carries a list of suitable
colors, paint every edge such that incident edges get distinct colors.

Definition 3. Given a vertex set C ⊂ V in a graph G = (V,E), we define an
auxiliary graph H(C) on vertex set N [C], where the edges of H(C) are the non-
edges in C and the cut edges between C and G−C, that is, the edits incident to
C when we split off C as a cluster. Let every vertex s ∈ C represent a color.

Theorem 4. Consider the graph H(C), colors corresponding to the vertices of
C, and let s ∈ C be a suitable color for edge uv if and only if s is not adjacent
to u, v in H(C). Then the following condition is sufficient for C being an edit-
optimal cluster: H(C) admits a list edge coloring with the extra property that, if
an edge e uses a vertex of edge f as its color, then edge f may not use a vertex
of edge e as its color.

Cluster Editing with Locally Bounded Modifications Revisited 437

The proof is sketched as follows: When an edge uv is colored with s, then
u, s, v form a conflict triple with an edge in C. Every edit in H(C) is in such a
conflict triple, conversely, every such conflict triple contains exactly one edit. The
conditions enforce that no two of our conflict triples share two vertices. Since,
in any clustering, some pair from every conflict triple must be edited, splitting
off C as a cluster requires the minimum number of edits incident to C.

This result provides further possibilities to confirm edit-optimal clusters. As
a little example, let C be an isolated clique K7 from which the 6 edges of some
K4 are removed. Then 2δ(C) + γ(C) = 2 · 6 + 0 = 12 > 7, also t = 3, hence the
previous conditions do not apply. But the 6 edges of H(C) can be colored by 3
suitable colors represented by vertices of C. The algorithmic use of our coloring
condition needs to be further explored. There is a well-known close connection
between degrees and edge colorings (see [8]), and progress on the List Edge

Coloring problem could further strengthen our conditions.

Acknowledgments. This work has been supported by project grants from the
Swedish Research Council (Vetenskapsr̊adet), 2010-4661, “Generalized and fast
search strategies for parameterized problems”, and the Swedish Foundation for
Strategic Research (SSF), “Data-driven secure business intelligence”.

References

1. Böcker, S.: A Golden Ratio Parameterized Algorithm for Cluster Editing. J. Discr.
Algor. 16, 79–89 (2012)

2. Böcker, S., Briesemeister, S., Klau, G.W.: Exact Algorithms for Cluster Editing:
Evaluation and Experiments. Algorithmica 60, 316–334 (2011)

3. Cao, Y., Chen, J.: Cluster Editing: Kernelization Based on Edge Cuts. Algorith-
mica 64, 152–169 (2012)

4. Chen, J., Meng, J.: A 2k Kernel for the Cluster Editing Problem. J. Comp. System
Sci. 78, 211–220 (2012)

5. Fomin, F.V., Kratsch, S., Pilipczuk, M., Pilipczuk, M., Villanger, Y.: Tight Bounds
for Parameterized Complexity of Cluster Editing. In: Portier, N., Wilke, T. (eds.)
STACS 2013., Dagstuhl. LIPIcs, vol. 20, pp. 32–43 (2013)

6. Komusiewicz, C., Uhlmann, J.: Cluster Editing with Locally Bounded Modifica-
tions. Discr. Appl. Math. 160, 2259–2270 (2012)

7. Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Community Structure
in Large Networks: Natural Cluster Sizes and the Absence of Large Well-Defined
Clusters. Internet Math. 6, 29–123 (2009)

8. Misra, J., Gries, D.: A Constructive Proof of Vizing’s Theorem. Info. Proc. Let-
ters 41, 131–133 (1992)

9. Rahmann, S., Wittkop, T., Baumbach, J., Martin, M., Truß, A., Böcker, S.: Exact
and Heuristic Algorithms for Weighted Cluster Editing. In: Markstein, P., Xu, Y.
(eds.) CSB 2007, pp. 391–401. Imperial College Press (2007)

10. Shamir, R., Sharan, R., Tsur, D.: Cluster Graph Modification Problems. Discr.
Appl. Math. 144, 173–182 (2004)

New Approximation Algorithms for the Vertex

Cover Problem�

François Delbot1, Christian Laforest2, and Raksmey Phan2

1 Université Paris Ouest Nanterre / LIP6, CNRS UMR7606
4 place Jussieu, 75005 Paris, France
francois.delbot@u-paris10.fr

2 Université Blaise Pascal / LIMOS, CNRS UMR 6158
Campus des Cézeaux, 24 avenue des Landais, 63173 Aubière Cedex, France

{laforest,phan}@isima.fr

Abstract. The vertex cover is a classical NP-complete problem that
has received great attention these last decades. A conjecture states that
there is no c-approximation polynomial algorithm for it with c a con-
stant strictly less than 2. In this paper we propose a new algorithm with
approximation ratio strictly less than 2 (but non constant). Moreover we
show that our algorithm has the potential to return any optimal solution.

Keywords: vertex cover, approximation, lower bound.

1 Introduction

Let G = (V,E) be any undirected non weighted graph where V is the set of
vertices and E is the set of edges. A vertex cover V C is a subset of the vertices
(V C ⊆ V) such that each edge uv has at least one extremity in V C (u ∈ V C
or v ∈ V C or both). The associated optimization problem (i.e. the vertex cover
problem) is to construct a vertex cover of minimum size. This is a classical
optimization problem and many works have been devoted to this problem or to
its variations.

The vertex cover problem is shown to be not approximable (in polynomial
time) within a factor of 1.166 [8]. Some very simple approximation algorithms
give a tight approximation ratio of 2 (see [13] p.3 and [12]). One of them, discov-
ered independently by Gavril and Yannakakis (see [11] p.432) which considers
the maximal matching is certainly the most famous and studied. Despite a lot
of works, no polynomial algorithm whose approximation ratio is bounded by
a constant less than 2 has been found and it is conjectured that there is no
smaller constant ratio unless P = NP [10]. Bar-Yehuda and Even [3] proposed
algorithms with an approximation ratio of 2 − log log n

2 logn and Karakostas [9] re-

duced this ratio to 2 − Θ(1√
logn

). More recently [1,2,6] describe experimental

comparisons and give analytical results on the treatment of huge graphs.

� This work is supported by the French Agency for Research under the DEFIS program
TODO, ANR-09-EMER-010.

T. Lecroq and L. Mouchard (Eds.): IWOCA 2013, LNCS 8288, pp. 438–442, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Vertex Cover by Clique Partition 439

Notations and definitions. Given a graph G we will note OPT the size of an
optimal vertex cover of G. A vertex cover V C of G is minimal (for inclusion)
if any subset of VC is not a vertex cover of G. If H ⊆ V , we note G[H] the
subgraph of G induced by H in G, ie. the graph whose set of vertices is H and
edges are the ones of G linking two vertices of H : {uv : uv ∈ E, u ∈ H and
v ∈ H}. H ⊆ V is a clique of G if G[H] contains all possible edges between
each pair of vertices of H in G. H ⊆ V is an independent (or stable) if G[H]
contains no edges. We call a clique partition of a graph G, a partition of the set
V of n vertices into disjoint subsets C = {C1, . . . , Ck} (∪k

i=1Ci = V and if i 	= j,
Ci ∩ Cj = ∅) such that each subgraph G[Ci] induced by Ci in G is a clique (its
number of vertices will be denoted by ni (1 ≤ ni ≤ |V |)). A clique that contains
only one vertex is called a trivial clique. A clique partition is minimal if for all
i 	= j the graph G[Ci ∪ Cj] induced by the cliques Ci and Cj is not a clique.

2 Lower Bound

Let G = (V,E) be any graph and C1, . . . , Ck (ni = |Ci|) be any clique partition
of G. Then:

k∑
i=1

(ni − 1) = n − k ≤ OPT (1)

Our bound generalizes the classical lower bound by maximal matching (see [7]
for more details).

3 A New Approximation Algorithm: CP

3.1 Algorithm CP

Let G = (V,E) be any graph. Let C1, . . . , Ck be any minimal clique partition
of G. We suppose that cliques are sorted such that all trivial cliques are at the
end. Let l ≤ k be the number of non-trivial cliques, we have |Ci| ≥ 2 (i ≤ l)
and |Cl+1| = . . . = |Ck| = 1. Algorithm CP takes as input any graph G and a

minimal clique partition and returns: S =
l⋃

i=1

Ci (union of the vertices of non-

trivial cliques). In the following, we suppose that G contains at least one edge
(otherwise: |S| = OPT = 0), then we can prove Theorem 1 (see [7]).

Theorem 1. S is a vertex cover of G and:

|S|
OPT

≤ l∑l
i=1(ni − 1)

+ 1 =
l

n− k
+ 1 ≤ 2

The bound of 2 is tight.

440 F. Delbot, C. Laforest, and R. Phan

Proof. Trivially S is a vertex cover of G (see [7]). Now we prove the approxima-

tion ratio. With Equation 1, we know that: OPT ≥
∑k

i=1(ni−1) =
∑l

i=1(ni−1).

Note that ni = 1 (i = l + 1, . . . , k). By construction: |S| =
∑l

i=1 ni.

Thus: |S|
OPT ≤

∑l
i=1 ni∑

l
i=1(ni−1) =

l+
∑l

i=1(ni−1)∑
l
i=1(ni−1) = l∑

l
i=1(ni−1) + 1 ≤ 2

To finish, let us consider a cycle with 4 vertices a, b, c, d in this order on the
cycle and the clique partition {{a, b}, {c, d}}. In this graph OPT = 2 but CP
returns the 4 vertices, leading to an approximation ratio of exactly 2. ��

3.2 An Algorithm to Construct Any Minimal Clique Partition:
CPGathering

Algorithm CP takes as input a graph G and a minimal clique partition of G. In
this part we describe an algorithm that takes any graph G as input and is able
to construct any minimal clique partition of G (Lemma 1).

Let G = (V,E) be any graph. At the beginning, each vertex u is considered
as a clique {u}. Then two vertices linked by an edge can be merged to get a new
clique. We keep this idea over all the algorithm. That is, at each step we can
merge two cliques Ci and Cj in a new clique if G[Ci ∪ Cj] is a clique.

We give now more details on our algorithm called CPGathering. We firstly
associate at each vertex u the trivial clique {u}. While there is an edge, we
randomly chose one uv. We create a new vertex w. The clique associated to w is
the union of cliques associated to u and v. Vertices u and v are deleted (and all
their incident edges). We create new edges between w and all vertices that were
adjacent to both u and v. Thus at the next step, w is only adjacent to vertices
with which it is allowed to be merged. At the end there is no remaining edge
and the final clique partition of G is composed of the cliques associated to the
remaining vertices. This algorithm is polynomial.

Lemma 1. CPGathering returns always minimal clique partition and can re-
turn any minimal clique partition of G (see [7]).

At this step CP gives a 2-approximation solution S (Theorem 1) from a
minimal clique partition (given by CPGathering for example). In Section 4 we
present a new approximation algorithm that takes benefit of the current solution
to improve the approximation ratio.

4 A Refinement of CP for the Vertex Cover

In this section we improve the solution given by CP (see Section 3) by applying
the ListRight algorithm [4,5]. We show how the new algorithm reduces the solu-
tion domain by excluding non-minimal solutions. We also show that any optimal
vertex cover can be constructed (Theorem 3) and that the approximation ratio
of our method is strictly smaller than 2 (Theorem 2).

F. Delbot and Ch. Laforest [5] have proposed in 2008 ListRight, a list heuristic
for the vertex cover problem. The algorithm is simple: For a given graph G and

Vertex Cover by Clique Partition 441

any list of all its vertices, read this list, vertex by vertex, from right to left; For
each current read vertex u, if u has at least one neighbor (in G) at its right in the
list, not in the current solution V C (initially empty) then u is added to V C (in
all other cases u is not added). It is shown in [5] that at the end V C is a minimal
vertex cover of G. However, ListRight does not have a constant approximation
ratio. Now we describe how to combine CP and ListRight.

4.1 Vertex Cover by Clique Partition (VCCP)

Let G be any graph and C be any sorted minimal clique partition C = {C1, . . . ,

Cl, Cl+1, . . . , Ck} (|Ci| ≥ 2, ∀i ≤ l and |Ci| = 1, l < i ≤ k) of G. Let S =
⋃l

i=1 Ci

be the solution returned by CP. We construct a list L of the n vertices of G from
C: At the right of L we put all the vertices, in any order, from the trivial cliques
Cl+1, . . . , Ck; At the left of this part we put all the other vertices in any order.
Then we apply ListRight on this list L. We note S′ the new solution. As CP
and ListRight are all polynomial then VCCP is polynomial. With Lemma 2 we
can prove that VCCP has an approximation ratio stritly less than 2 (Theorem
2). Moreover we prove that V CCP can return any optimal vertex cover for any
graph (Theorem 3).

Lemma 2. S′ is a minimal vertex cover and S′ ⊆ S (see [7]).

Theorem 2. Let G = (V,E) be any graph, with at least one edge. Then: |S′| <
2OPT .

Proof. G contains at least one edge, thus OPT ≥ 1 (otherwise OPT = |S| =
|S′|=0). As S′ is a subset of S, Theorem 1 shows that VCCP is a 2-approximation
algorithm:

|S′|
OPT

≤ |S|
OPT

≤ l

n− k
+ 1 ≤ 2

With this inequality, we will show that the approximation ratio is strictly
smaller than 2. Suppose there is a graph G with a clique partition {C1, . . . , Cl,
Cl+1, . . . , Ck} such that |S′| = 2OPT . As we have |S| ≤ 2OPT and |S′| ≤ |S|
then |S| = 2OPT and l

n−k + 1 = 2, thus l = n − k. We show now that the
non-trivial cliques have exactly 2 vertices.

Suppose there is at least one clique that initially has 3 vertices. If in each
non-trivial clique we remove one vertex then it remains 2 vertices in this clique.
Considering these non-trivial cliques we have removed l = n− k vertices and it
remains at least l+1 vertices in these cliques. Also there are k−l vertices in trivial
cliques. Thus the number of vertices n is at least n ≥ l+(l+1)+(k−l) = l+k+1.
With the previous equality (l = n − k) we have n ≥ n + 1: contradiction. Thus

we have |C1| = . . . = |Cl| = 2 and these vertices fill the solution: S =
⋃l

i=1 Ci.
We note I = Cl+1∪. . .∪Ck the set composed of the union of the trivial cliques

then I = V − S. We remind that S is an (exact) 2-approximation of size 2l and
an optimal vertex cover V C∗ (|V C∗| = OPT = l) must cover the l cliques/edges
Ci (i ≤ l). Then V C∗ has at least one vertex in each Ci (i ≤ l). Moreover these

442 F. Delbot, C. Laforest, and R. Phan

cliques/edges are independent then they need l vertices from V C∗ to be covered
and as the size of V C∗ is l thus V C∗ has exactly one vertex in each clique Ci

(i ≤ l). Thus V C∗ ⊆ S and a consequence is that V C∗ ∩ I = ∅.
As |S′| = |S| = 2OPT , all vertices in non-trivial cliques are selected by

ListRight. Let us consider a clique Ci (i ≤ l) of two vertices u and v (uv ∈ E).
Suppose u ∈ V C∗ and v /∈ V C∗. Vertex v has no neighbor w in I (otherwise,
edge vw would not be covered by V C∗ since V C∗ ∩ I = ∅). Then all neighbors
of v are in S′ and S′ −{v} is also a vertex cover. But it is in contradiction with
the fact that S′ is minimal (Lemma 2). ��
Theorem 3. VCCP can return any optimal vertex cover for any graph if the
clique partition is constructed by CPGathering.

Proof. Let V C∗ be any optimal vertex cover of G. In [7] we have proved that
there is a minimal clique partition of G such that all vertices of V C∗ belong
to its non-trivial cliques. As V C∗ is also minimal, it is easy to see ([7]) that
VCCP can return V C∗ if it has as input the minimal clique partition in which
non-trivial cliques containt V C∗. To finish, Lemma 1 shows that CPGathering
can return any minimal clique partition. ��

References

1. Angel, E., Campigotto, R., Laforest, C.: Analysis and comparison of three algo-
rithms for the vertex cover problem on large graphs with low memory capacities.
Algorithmic Operations Research 6(1), 56–67 (2011)

2. Angel, E., Campigotto, R., Laforest, C.: Implementation and comparison of heuris-
tics for the vertex cover problem on huge graphs. In: Klasing, R. (ed.) SEA 2012.
LNCS, vol. 7276, pp. 39–50. Springer, Heidelberg (2012)

3. Bar-Yehuda, R., Even, S.: A local ratio theorem for approximating the weighted
vertex cover problem. Annals of Discrete Mathematics 25, 27–45 (1985)

4. Birmelé, E., Delbot, F., Laforest, C.: Mean analysis of an online algorithm for the
vertex cover problem. Information Processing Letters 109(9), 436–439 (2009)

5. Delbot, F., Laforest, C.: A better list heuristic for vertex cover. Information Pro-
cessing Letters 107(3-4), 125–127 (2008)

6. Delbot, F., Laforest, C.: Analytical and experimental comparison of six algorithms
for the vertex cover problem. ACM Journal of Experimental Algorithmics 15,
1.4:1.1–1.4:1.27 (2010)

7. Delbot, F., Laforest, C., Phan, R.: New approximation algorithms for the vertex
cover problem and variants. Research Report RR-13-02, LIMOS, Clermont Fer-
rand, France (2013)

8. H̊astad, J.: Some optimal inapproximability results. In: STOC, pp. 1–10 (1997)
9. Karakostas, G.: A better approximation ratio for the vertex cover problem. ACM

Transactions on Algorithms 5, 41:1–41:8 (2009)
10. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2 − ε.

Journal of Computer and System Sciences 74(3), 335–349 (2008)
11. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and

Complexity. Prentice-Hall (1982)
12. Savage, C.: Depth-first search and the vertex cover problem. Inf. Process.

Lett. 14(5), 233–235 (1982)
13. Vazirani, V.V.: Approximation algorithms. Springer (2001)

Improved Approximation Algorithm for the

Number of Queries Necessary to Identify a
Permutation

Mourad El Ouali and Volkmar Sauerland

Department of Computer Science
Christian-Albrechts-Universität, Kiel, Germany

{meo,vsa}@informatik.uni-kiel.de

Abstract. In the past three decades, deductive games have become in-
teresting from the algorithmic point of view. A well known deductive
game is the famous Mastermind game. In this paper, we consider the
so called Black-Peg variant of Mastermind. More precisely, we deal with
a special version of the Black-Peg game with n holes and k ≥ n col-
ors where no repetition of colors is allowed. We present a strategy that
identifies the secret code in O(n log2 n) queries. Our algorithm improves
the previous result of Ker-I Ko and Shia-Chung Teng (1986) by almost
a factor of 2 for the case k = n. To our knowledge there is no previous
work dealing with the case k > n.

1 Introduction

The original Mastermind is a two players board game invented in 1970 by Morde-
cai Meirowitz. It consists of a board with several rows, each containing four holes,
and pegs of six different colors. The idea of the game is that a Codemaker chooses
a secret color combination y of pegs from the possible colors and a Codebreaker
has to identify the code by a sequence of queries and corresponding information
that is provided by the Codemaker. All queries are also color combinations of the
possible colors. Information concerning a query σ is given about the number of
it’s correctly positioned colors (black(σ, y)) and further correct colors in a wrong
place (white(σ, y)), respectively.

1.1 Mastermind Variants and Related Works

Let us denote the code length with n and the number of possible colors by k.
Clearly, variants of Mastermind are obtained by changing the values of n and k,
respectively. Further popular variants are

– Black-Peg: only black information about the number of correctly positioned
colors is given.

– AB Game: color repetition is forbidden for both secret code and queries.

T. Lecroq and L. Mouchard (Eds.): IWOCA 2013, LNCS 8288, pp. 443–447, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

444 M. El Ouali and V. Sauerland

Before its market launch, Erdös and Rényi [3] (1963) already analyzed a Mas-
termind variant with two colors. One of the earliest analysis of the original game
with 4 wholes and 6 colors was done by Knuth [6] (1977) giving a strategy that
identifies the secret code in at most 5 queries. Stuckman and Zhang [8] (2006)
showed that it is NP-complete to determine if a sequence of queries and an-
swers is satisfiable. There are many approximation results regarding different
methods.

The Black-Peg game was first introduced by Chvátal [1] (1983) for the case
k = n. He gave a deterministic adaptive strategy that uses 2n�log2 k� + 4n
queries. Goodrich [4] (2009) improved the result of Chvátal for arbitrary n and
k to n�log2 k�+ �(2 − 1/k)n�+ k queries and proved that this kind of game is
NP-complete. A further improvement to n�log2 n� + k − n + 1 for k > n and
n�log2 n� + k for k ≤ n was done by Jäger and Peczarski [5] (2011). Recently,
Doerr et al. [2] improved the result obtained by Chvátal to O(n log logn) and
also showed that this asymptotic order even holds for up to n2 log logn colors,
if both black and white information is allowed.

Concerning the combination of both variants, Black-Peg game and AB game,
there is only one work due to Ker-I Ko and Shia-Chung Teng [7] (1986) for the
case k = n. They presented a strategy that identifies the secret permutation
in at most 2n log2 n + 7n queries and proved that the corresponding counting
problem is #P-complete. To our knowledge there is no result for the case k > n,
yet.

1.2 Our Contribution

We present an algorithm for the Black-Peg game with forbidden color
repetition (also for queries). It identifies the secret code in less than n log2 n+λn
queries for the case k = n and in less than n log2 n+ k + 2n queries for the case
k > n. Our performance in the case k = n is an improvement of the result of
Ker-I Ko and Shia-Chung Teng [7] by almost a factor of 2.

2 A Strategy for Permutation Master Mind

We consider the case k = n, here. Let [n] := {1, . . . , n} be the set of colors. Our
algorithm for finding the secret code includes two main phases which are based
on two ideas.

2.1 Phase 1 Queries

In the first phase the codebreaker guesses an initial sequence of n queries that
has a predefined structure. The first query, say σ1, is some permutation of the
n colors. For the next query, we shift the color order of the first query circularly
to the right. The procedure is repeated until query n (actually the nth query can

Improved Approximation Algorithm for the Number of Queries 445

queries n1 n2 n3

1 2 3 4 5 6 7 8 0 0 0σ1

8 1 2 3 4 5 6 7 2 0 2σ2

7 8 1 2 3 4 5 6 3 2 1σ3

6 7 8 1 2 3 4 5 1 1 0σ4

5 6 7 8 1 2 3 4 0 0 0σ5

4 5 6 7 8 1 2 3 0 0 0σ6

3 4 5 6 7 8 1 2 1 0 1σ7

2 3 4 5 6 7 8 1 1 0 1σ8

Fig. 1. Initial queries with associated black information n1, coincidences with a partial
solution n2 and the difference of both n3

be saved). As an example, let us consider the case n = k = 8 and suppose that
the secret code y is

7 1 4 3 2 8 5 6

Figure 1 shows n possible initial queries.

2.2 Phase 2 Queries

The structure of the initial guesses and the corresponding information by the
codemaker enable us to identify the colors of the secret code one after another,
each by using a binary search. It is required to keep record of the identified colors
within a partial solution x that satisfies xi ∈ {0, yi} for all i ∈ {1, . . . , n}. The
non-zero components of x indicate the components of y that have already been
identified.

Suppose, we have already found the 3 colors given in the partial solution of
Figure 2. Now, we regard two neighbored initial queries, say σj and σj+1, with

. . . . 2 . 5 6

Fig. 2. A partial solution

the property that σj contains some correct peg, that has not yet been identified
but σj+1 contains no unidentified correct peg any more. We call the index j of
such a pair of queries active. Note, that the number n3 of unidentified correct
pegs of a query is obtained by subtracting the number n2 of pegs in which
it coincides with the partial solution from its total number of correct pegs n1.
Clearly, a pair of initial queries with the desired property exists, if at least one but
not all pegs of the secret code have been identified (since

∑n
j=1 black(σ

j , y) = n).

For our example we can choose the highlighted queries σ3 and σ4 in Figure 1.
We choose one of the identified colors (here 2) as a pivot color and compose new

446 M. El Ouali and V. Sauerland

queries n1 n2 n3

σa

σb

σc

2 7 8 1 3 4 5 6 2 2 0

7 8 2 1 3 4 5 6 3 2 1

7 2 8 1 3 4 5 6 3 2 1

Fig. 3. Binary search queries to extend the partial solution. The highlighted subse-
quences correspond to subsequences of the selected initial queries.

queries from our pair of queries within a binary search that identifies the next
correct peg as demonstrated in Figure 3. Since the information n3 for query σa

is 0, all correctly placed pegs in query σ3 are on the left side of the pivot peg.
Thus, we can apply a binary search for the left most correct peg in the first 4
places of query σ3 using the pivot peg. The binary search is done by queries
σb and σc and identifies the peg with color 7 (in general the peg that is left to
the most left pivot position for which n3 is non-zero). If the answer to query σa

would have been greater than 0, we could have found a correct peg in query σ3

on the right side of the pivot peg by a similar approach.
Thus, the identification of one correct peg (except for the first one) requires

at most 1 + log2(n) queries. The general procedure is outlined as Algorithm 2.
The first correct peg can be found in 2 log2(n) queries by a similar procedure,
say findFirst. Both procedures are part of the main algorithm outlined as
Algorithm 1. The approach yields (n − 3)�log2 n� + 5

2n − 1 as an upper bound
for the number of queries to break the secret code for the case k = n. For k > n
similar considerations yield an upper bound of (n−1)�log2 n�+k+n−2 queries.
Our algorithms were implemented in Matlab and testet for code lengths up to
n = 1000.

Algorithm 1. Algorithm for Permutations
1 Let y be the secret code and set x := (0, 0, . . . , 0);

2 Guess the initial permutations σi, i ∈ [n− 1];

3 Initialize v ∈ {0, 1, . . . , n}n by vi := black(σi, y), i ∈ [n− 1], vn := n−∑n−1
i=1 vi;

4 if v = 1n then
5 j := 1;

6 Find the position m of the correct peg in σ1 by at most n
2 + 1 further guesses;

7 else

8 Call findFirst for an active j ∈ [n] to find the position of the correct peg in σj by at
most 2�log2 n� further guesses;

9 xm := σj
m;

10 vj := vj − 1;
11 while |{i ∈ [n] | xi = 0}| > 2 do
12 Choose an active index j ∈ [n];
13 m := findNext(y, x, j);

14 xm := σj
m;

15 vj := vj − 1;

16 Make at most two more guesses to find the remaining two unidentified colors;

Improved Approximation Algorithm for the Number of Queries 447

Algorithm 2. Function findNext

input : Code y, partial solution x �= 0 and an active index j ∈ [n]

output: Position m of a correct open component in σj

1 if j = n then r := 1 else r := j + 1;
2 Choose a color c with identified position (a value c of some non-zero component of x);

3 Let lj and lr be the positions with color c in σj and σr , respectively;
4 if lj = n then leftS := true else

5 Guess σj,0 :=
(
c, (σj

i)
lj−1

i=1 , (σj
i)

n
i=lj+1

)
;

6 s := black(σj,0, y, x);
7 if s = 0 then leftS := true;
8 else leftS := false;

9 if leftS then let a := 1 and b := lj ;
10 else let a := lr and b := n;
11 m := n ; // position to be found
12 while b > a do

13 l := � a+b
2 � ; // position for peg c

14 if leftS then σj,l :=
(
(σj

i)
l−1
i=1, c, (σ

j
i)

lj−1

i=l , (σj
i)

n
i=lj+1

)
;

15 else σj,l :=
(
(σr

i)
lr−1
i=1 , (σr

i)
l
i=lr+1, c, (σ

r
i)

n
i=l+1

)
;

16 Guess σj,l;

17 s := black(σj,l, y, x);
18 if s > 0 then
19 b := l− 1;
20 if b < m then let m := b;

21 else a := l;

22 Return m;

References

1. Chvátal, V.: Mastermind. Combinatorica 3, 325–329 (1983)
2. Doerr, B., Spöhel, R., Thomas, H., Winzen, C.: Playing Mastermind with Many

Colors. In: Proc. of ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.
695–704. SIAM Society for Industrial and Applied Mathematics (2013)

3. Erdös, P., Rényi, C.: On Two Problems in Information Theory. Publications of the
Mathematical Institute of the Hungarian Academy of Science 8, 229–242 (1963)

4. Goodrich, M.T.: On the algorithmic complexity of the Mastermind game with black-
peg results. Information Processing Letters 109, 675–678 (2009)

5. Jäger, G., Peczarski, M.: The number of pessimistic guesses in generalized black-peg
Mastermind. Information Processing Letters 111, 933–940 (2011)

6. Knuth, D.E.: The computer as a master mind. Journal of Recreational Mathemat-
ics 9, 1–5 (1977)

7. Ko, K., Teng, S.: On the Number of queries necessary to identify a permutation.
Journal of Algorithms 7, 449–462 (1986)

8. Stuckman, J., Zhang, G.: Mastermind is NP-complete. INFOCOMP Journal of
Computer Science 5, 25–28 (2006)

Motif Matching Using Gapped Patterns

Emanuele Giaquinta1,�, Kimmo Fredriksson2,
Szymon Grabowski3, and Esko Ukkonen1

1 Department of Computer Science, University of Helsinki, Finland
{emanuele.giaquinta,ukkonen}@cs.helsinki.fi

2 School of Computing, University of Eastern Finland, P.O. Box 1627, FI-70211
Kuopio, Finland

kimmo.fredriksson@uef.fi
3 Institute of Applied Computer Science, Lodz University of Technology, Al.

Politechniki 11, 90–924 �Lódź, Poland
sgrabow@kis.p.lodz.pl

1 Introduction and Basic Definitions

We consider the problem of matching a set P of gapped patterns against a given
text T of length n, where a gapped pattern is a sequence of strings (keywords),
over a finite alphabet Σ of size σ, such that there is a gap of fixed length between
each two consecutive strings. We assume the RAM model, with words of size w in
bits. We are interested in computing the list of matching patterns for each position
in the text. This problem is a specific instance of the Variable Length Gaps prob-
lem [2] (VLG problem) for multiple patterns and has applications in the discovery
of transcription factor (TF) binding sites in DNA sequences when using general-
ized versions of the PositionWeightMatrix (PWM)model to representTF binding
specificities.The paper [5] describes howamotif represented as a generalizedPWM
canbematched as a set of gappedpatternswith unit-length keywords, andpresents
algorithms for the restricted case of patterns with two unit-length keywords.

In the VLG problem a pattern is a concatenation of strings and of variable-
length gaps. The best time bounds for this problem are: i) O(n(k logw

w +log σ)) [3],
where k is the number of the strings and gaps in the pattern; ii) O(n log σ+α) [2],
where α is the total number of occurrences of the strings in the patterns within
the text1; iii) O(n(log σ+K)+α′) [6], whereK is the maximum number of suffixes
of a keyword that are also keywords and α′ is the number of text occurrences of
pattern prefixes that end with a keyword. Recently, a variant of this algorithm
based on word-level parallelism was presented in [7]. Let len(P) be the total
number of alphabet symbols in the patterns. If all the keywords have unit length,

the last two results are not ideal because in this case α and α′ are Ω(n len(P)
σ) and

Ω(n |P|σ) on average, respectively, if we assume that the symbols in the patterns
are sampled from Σ according to a uniform distribution. When α or α′ is large,
the bound of [3] may be preferable. The drawback of this algorithm is that, to
our knowledge, it is not practical.

� Supported by the Academy of Finland, grant 118653 (ALGODAN).
1 Note that the number of occurrences of a keyword that occurs in r patterns and in
l positions in the text is equal to r × l.

T. Lecroq and L. Mouchard (Eds.): IWOCA 2013, LNCS 8288, pp. 448–452, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Motif Matching Using Gapped Patterns 449

In this paper we present the following novel result, based on dynamic pro-
gramming and word-level parallelism:

Theorem 1. Given a set P of gapped patterns and a text T of length n, all
the occurrences in T of the patterns in P can be reported in time O(n(log σ +
log2 gsize(P)�k-len(P)/w�) + occ)

where gsize(P) is the size of the variation range of the gap lengths, k-len(P) is the
total number of keywords in the patterns and occ is is the number of occurrences
of the patterns in the text. Note that in the case of unit-length keywords we have
k-len(P) = len(P). The proposed algorithm obtains a bound similar to the one
of [3], in the restricted case of fixed-length gaps. In particular, it is a moderate
improvement for log gsize(P) = o(

√
logw). Moreover, it is also practical. For this

reason, it provides an effective alternative when α or α′ is large. For more details
on the motivation, one additional result and an experimental evaluation of the
algorithms against the state of the art see [4]. The proposed algorithms are fast
in practice, and preferable if all the strings in the patterns have unit length.

Let Σ∗ denote the set of all possible sequences over Σ. |S| is the length of
string S, S[i], i ≥ 0, denotes its (i + 1)-th character, and S[i . . . j] denotes its
substring ranging from i to j. For any two strings S and S′, we say that S′ is
a suffix of S (in symbols, S′ 0 S) if S′ = S[i . . . |S| − 1], for some 0 ≤ i < |S|.
A gapped pattern P is of the form S1 · j1 · S2 · . . . · j�−1 · S� , where Si ∈ Σ∗,
|Si| ≥ 1, is the i-th string (keyword) and ji ≥ 0 is the length of the gap between
keywords Si and Si+1, for i = 1, . . . , �. We say that P occurs in a string T at
ending position i if T [i−m+1 . . . i] = S1 ·A1 ·S2 · . . . ·A�−1 ·S� , where Ai ∈ Σ∗,
|Ai| = ji, for 1 ≤ i ≤ �− 1, and m =

∑�
i=1 |Si|+

∑�−1
i=1 ji. In this case we write

P 0g Ti. We denote by k-len(P) = � the number of keywords in P . The gapped
pattern Pi = S1 · j1 · S2 · . . . · ji−1 · Si is the prefix of P of length i ≤ �.

We use some bitwise operations following the standard C language notation:
&, |, ∼, 1 for and, or, not and left shift, respectively. The position of the
most significant non-zero bit of a word x is equal to �log2(x)�.

2 Online Algorithm for Matching a Set of Gapped
Patterns

Let P k be the k-th pattern in P . We adopt the superscript notation for Si, ji
and Pl with the same meaning. We define the set

Di = {(k, l) | P k
l 0g Ti} ,

of the prefixes of the patterns that occur at position i in T , for i = 0, . . . , n− 1,
1 ≤ k ≤ |P| and 1 ≤ l ≤ k-len(P k). From the definition of Di it follows that
the pattern P k occurs in T at position i if and only if (k, k-len(P k)) ∈ Di. Let
K = {1, . . . , k-len(P)} be the set of indices of the keywords in P and let T̄i ⊆ K
be the set of indices of the matching keywords in T ending at position i. The
sequence T̄i, for 0 ≤ i < n, is basically a new text with character classes over

450 E. Giaquinta et al.

K. We replace each pattern S1 · j1 · S2 · . . . · j�−1 · S� in P with the pattern
S̄1 · j̄1 · S̄2 · . . . · j̄�−1 · S̄� , with unit-length keywords over the alphabet K, where
S̄i ∈ K and j̄i = ji + |Si+1| − 1, for 1 ≤ i < �.

The sets Di can be computed using the following lemma:

Lemma 1. Let P and T be a set of gapped patterns and a text of length n,
respectively. Then (k, l) ∈ Di, for 1 ≤ k ≤ |P|, 1 ≤ l ≤ k-len(P k) and i =
0, . . . , n− 1, if and only if

(l = 1 or (k, l − 1) ∈ Di−1−j̄kl−1
) and S̄k

l ∈ T̄i.

The idea is to match the transformed patterns against the text T̄ . Let gmin(P)
and gmax(P) denote the minimum and maximum gap length in the patterns,
respectively. We also denote with gsize(P) = gmax(P) − gmin(P) + 1 the size of
the variation range of the gap lengths. For each position i in T , the main steps of
the algorithm are i) compute the set T̄i in O(log σ) time using the Aho-Corasick
(AC) automaton [1] for the set of distinct keywords in P ; ii) compute the set
Di, using Lemma 1 and word-level parallelism, in time O(gw-span�k-len(P)/w�),
where 1 ≤ gw-span ≤ w is the maximum number of distinct gap lengths that span
a single word in our encoding. We also describe how to obtain an equivalent set of
patterns with O(log gsize(P)) distinct gap lengths at the price of O(log gsize(P))
new keywords per gap, thus achieving O(log2 gsize(P)�k-len(P)/w�) time.

Let Q denote the set of states of the AC automaton, root the initial state and
label(q) the string which labels the path from state root to q, for any q ∈ Q. The
transition function δ(q, c) is defined as the unique state q′ such that label (q′) is
the longest suffix of label(q) · c. We also store for each state q a pointer fo(q)
to the state q′ such that label(q′) is the longest suffix of label(q) that is also a
keyword, if any. Let

B(q) = {(k, l) | Sk
l 0 label (q)} ,

be the set of all the occurrences of keywords in the patterns in P that are suffixes
of label (q), for any q ∈ Q. We preprocess B(q) for each state q such that label(q)
is a keyword and compute it for any other state using B(fo(q)). Let G be the
set of all the distinct gap lengths in the patterns. In addition to the sets B(q),
we preprocess also a set C(g), for each g ∈ G, defined as follows:

C(g) = {(k, l) | j̄kl = g} ,

for 1 ≤ k ≤ |P| and 1 ≤ l < k-len(P k). We encode the sets Di, B(q) and
C(g) as bit-vectors of k-len(P) bits. The generic element (k, l) is mapped onto

bit
∑k−1

i=1 k-len(P i) + k-len(P k
l−1), where k-len(P k

0) = 0 for any k. We denote
with Di, B(q) and C(g) the bit-vectors representing the sets Di, B(q) and C(g),
respectively. We also compute two additional bit-vectors I and M, such that the
bit corresponding to the element (k, 1) in I and (k, k-len(P k)) in M is set to 1,
for 1 ≤ k ≤ |P|. We basically mark the first and the last bit of each pattern,
respectively. Let Hi be the bit-vector equal to the bitwise or of the bit-vectors

Di−1−g & C(g) , (1)

Motif Matching Using Gapped Patterns 451

gq-matcher-preprocess (P, T)
1. (δ, root,B, fo)← AC(P)
2. G← ∅
3. m ← k-len(P)
4. I ← 0m,M ← 0m

5. for g = 0, . . . , gmax(P) do C(g) ← 0m

6. l ← 0
7. for S1 · j1 · S2 · . . . · j�−1 · S� ∈ P do
8. I ← I | 1� l
9. for k = 1, . . . , � do

10. if k = � then
11. M ← M | 1� l
12. else g ← jk + |Sk+1| − 1
13. C(g) ← C(g) | 1� l
14. G← G ∪ {g}
15. l ← l+ 1

gq-matcher-search (P, T)
1. q ← root
2. for i = 0, . . . , |T | − 1 do
3. q ← δ(q, T [i]),H← 0m

4. for g ∈ G do
5. H← H | (Di−1−g & C(g))
6. Di ← ((H � 1) | I) & B(fo(q))
7. H ← Di & M
8. report(H)

report(H)

1. while H �= 0m do
2. k ← �log2(H)�
3. report(k)
4. H ← H & ∼(1� k)

Fig. 1. The gq-matcher algorithm for the string matching problem with gapped pat-
terns

for each g ∈ G. Then the corresponding set Hi is equal to⋃
g∈G

{(k, l) | (k, l) ∈ Di−1−g ∧ j̄kl = g} .

Let q−1 = root and qi = δ(qi−1, T [i]) be the state of the AC automaton after
reading symbol T [i]. It is not hard to see that B(fo(qi)) encodes the set T̄i. The
bit-vector Di can then be computed using the following bitwise operations:

Di ← ((Hi 1 1) | I) & B(fo(qi))

which correspond to the relation

{(k, l) | (l = 1 ∨ (k, l − 1) ∈ Hi) ∧ (k, l) ∈ B(fo(qi))} .

To report all the patterns that match at position i it is enough to iterate over all
the bits set in Di & M. The algorithm, named gq-matcher, is given in Figure 1.

The bit-vector Hi can be constructed in time O(gw-span�k-len(P)/w�), 1 ≤
gw-span ≤ w, as follows: we compute Equation 1 for each word of the bit-vector
separately, starting from the least significant one. For a given word with index
j, we have to compute equation 1 only for each g ∈ G such that the j-th word
of C(g) has at least one bit set. Each position in the bit-vector is spanned by
exactly one gap, so the number of such g is at most w. Hence, if we maintain,
for each word index j, the list Gj of all the distinct gap lengths that span the

corresponding positions, we can compute Hi in time
∑�k-len(P)/w�

j=1 |Gj |, which
yields the advertised bound by replacing |Gj | with gw-span = maxj |Gj |.

The time complexity of the searching phase of the algorithm is then
O(n(log σ+gw-span�k-len(P)/w�)+occ), while the space complexity is O(len(P)+
(gmax(P) + k-len(P))�k-len(P)/w�).

452 E. Giaquinta et al.

The gq-matcher algorithm is preferable only when gw-span 1 w. We now
show how to improve the time complexity in the worst-case by constructing an
equivalent set of patterns with O(log gsize(P)) distinct gap lengths. W.l.o.g. we
assume that gmin(P) and gmax(P) are a power of two (if they are not we round
them down and up, respectively, to the nearest power of two). Let lsb(n) be the
bit position of the least significant bit set in the binary encoding of n, for n ≥ 1.
Observe that, for any positive g ∈ G, the minimum and maximum value for lsb(g)
are log gmin(P) and log gmax(P), respectively, and the number of bits set in the
binary encoding of g is O(log gsize(P)). Let also G′ = {0} ∪ {2i | log gmin(P) ≤
i ≤ log gmax(P)} . We augment the alphabet Σ with a wildcard symbol ∗ that
matches any symbol of the original alphabet and define by recursion the function

φ(g) =

{
g if g ∈ G′

(2lsb(g) − 1) · ∗ · φ(g − 2lsb(g)) otherwise

that maps a gap length g onto a concatenation of l gap lengths and l−1 wildcard
symbols, where l is the number of bits set in the binary encoding of g if g is posi-
tive or 1 otherwise. By definition, all the gaps in the resulting sequence belong to
the set G′′ = G′∪{2i−1 | log gmin(P) ≤ i < log gmax(P)} . We generate a new set
of patterns P ′ from P , by transforming each pattern S̄1 · j̄1 · S̄2 · . . . · j̄�−1 · S̄� in P
into the equivalent pattern S̄1 ·φ(j̄1) · S̄2 · . . . ·φ(j̄�−1) · S̄� . Observe that extending
the algorithm presented above to handle wildcard symbols is straightforward. By
definition of φ we have that k-len(P ′) < log gsize(P)k-len(P), since the number of
gaps that are split is at most k-len(P)−|P| and the number of wildcard symbols
that are added per gap is at most log gsize(P). The number of words needed for
a bit-vector is then < �log gsize(P)k-len(P)/w� ≤ log gsize(P)�k-len(P)/w�. In
this way we obtain an equivalent set of patterns such that the set G of distinct
gap lengths is contained in G′′ and so its cardinality is O(log gsize(P)).

References

1. Aho, A.V., Corasick, M.J.: Efficient string matching: An aid to bibliographic search.
Commun. ACM 18(6), 333–340 (1975)

2. Bille, P., Gørtz, I.L., Vildhøj, H.W., Wind, D.K.: String matching with variable
length gaps. Theor. Comput. Sci. 443, 25–34 (2012)

3. Bille, P., Thorup, M.: Regular expression matching with multi-strings and intervals.
In: Charikar, M. (ed.) SODA, pp. 1297–1308. SIAM (2010)

4. Giaquinta, E., Fredriksson, K., Grabowski, S., Tomescu, A.I., Ukkonen, E.: Motif
matching using gapped patterns. CoRR abs/1306.2483 (2013)

5. Giaquinta, E., Grabowski, S., Ukkonen, E.: Fast matching of transcription factor
motifs using generalized position weight matrix models. Journal of Computational
Biology 20(9), 1–10 (2013)

6. Haapasalo, T., Silvasti, P., Sippu, S., Soisalon-Soininen, E.: Online dictionary match-
ing with variable-length gaps. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011.
LNCS, vol. 6630, pp. 76–87. Springer, Heidelberg (2011)

7. Sippu, S., Soisalon-Soininen, E.: Online matching of multiple regular patterns with
gaps and character classes. In: Dediu, A.-H., Mart́ın-Vide, C., Truthe, B. (eds.)
LATA 2013. LNCS, vol. 7810, pp. 523–534. Springer, Heidelberg (2013)

Domino Graphs and the Decipherability

of Directed Figure Codes

W�lodzimierz Moczurad�

Institute of Computer Science, Faculty of Mathematics and Computer Science,
Jagiellonian University; �Lojasiewicza 6, 30-348 Kraków, Poland

wkm@ii.uj.edu.pl

Abstract. We consider several kinds of decipherability of directed fig-
ure codes, where directed figures are defined as labelled polyominoes
with designated start and end points, equipped with catenation that
may use a merging function for overlapping regions. This setting extends
decipherability questions from words to 2D structures. In this paper we
develop a (variant of) domino graph that will allow us to decide some of
the decipherability kinds by searching the graph for specific paths. Thus
the main result characterizes directed figure decipherability by graph
properties.

1 Introduction

The term unique decipherability refers to a property of a set of words X where
every message composed from these words can be uniquely decoded, i.e. an
exact sequence of words is recovered. The set X is then called a uniquely de-
cipherable (UD) code. However, in some applications it might be sufficient to
decode the message with respect to a feature weaker than the exact sequence of
codewords—like the multiset, the set or just the number of codewords—giving
rise to three kinds of decipherability, known as multiset (MSD), set (SD) and
numeric decipherability (ND), respectively.

In [3] we introduced directed figures defined as labelled polyominoes with
designated start and end points, equipped with catenation operation that uses a
merging function for overlapping regions. We proved that verification whether a
given finite set of directed figures is a UD code is decidable. On the other hand,
a directed figure model with no merging function, where catenation of figures is
only possible when they do not overlap, has again undecidable UD testing [2].
In [4] we extended the previous results by considering not just UD codes, but
also MSD, SD and ND codes over directed figures.

In the present paper we define a variant of domino graphs that allows us
to decide some of the decipherability kinds by searching the graph for specific
paths. Thus the main result characterizes directed figure decipherability by graph
properties.

� Supported by National Science Centre (NCN) grant no. 2011/03/B/ST6/00418. This
is an extended abstract of a paper submitted to Schedae Informaticae.

T. Lecroq and L. Mouchard (Eds.): IWOCA 2013, LNCS 8288, pp. 453–457, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

454 W. Moczurad

2 Preliminaries

Let Σ be a finite, non-empty alphabet. A translation by vector u ∈ Z2 is denoted
by tru.

Definition 1 (Directed figure, [3]). Let D ⊆ Z2 be finite and non-empty,
b, e ∈ Z2 and l : D → Σ. A quadruple f = (D, b, e, l) is a directed fig-
ure (over Σ) with domain dom(f) = D, start point begin(f) = b, end point
end(f) = e, labelling function label(f) = l. The translation vector of f is de-
fined as tran(f) = end(f) − begin(f). Additionally, the empty directed figure
ε is defined as (∅, (0, 0), (0, 0), {}), where {} denotes a function with an empty
domain. The set of all directed figures over Σ is denoted by Σ�.

Definition 2 (Catenation, [2]). Let x = (Dx, bx, ex, lx) and y =
(Dy, by, ey, ly) be directed figures. If Dx ∩ trex−by (Dy) = ∅, a catenation of x
and y is defined as x ◦ y = (Dx ∪ trex−by (Dy), bx, trex−by (ey), l), where

l(z) =

{
lx(z) for z ∈ Dx,
trex−by (ly)(z) for z ∈ trex−by (Dy).

If Dx ∩ trex−by (Dy) 	= ∅, catenation of x and y is not defined.

Definition 3 (m-catenation, [3]). Let x = (Dx, bx, ex, lx) and y =
(Dy, by, ey, ly) be directed figures. An m-catenation of x and y with respect
to a merging function m : Σ × Σ → Σ is defined as x ◦m y = (Dx ∪
trex−by (Dy), bx, trex−by (ey), l), where

l(z) =

⎧⎨
⎩

lx(z) for z ∈ Dx \ trex−by (Dy),
trex−by (ly)(z) for z ∈ trex−by (Dy) \Dx,
m(lx(z), trex−by (ly)(z)) for z ∈ Dx ∩ trex−by (Dy).

3 Codes

Note that by a code (over Σ, with no further attributes) we mean any finite
non-empty subset of Σ� \ {ε}. The symbol • is used instead of ◦ and ◦m where
context makes it clear which catenation type applies.

Definition 4 (UD, MSD, SD and ND codes, [4]). A code X over Σ is
a UD (resp. MSD, SD or ND) code, if for any x1, . . . , xk, y1, . . . , yl ∈ X the
equality x1 ◦ · · · ◦ xk = y1 ◦ · · · ◦ yl implies that (x1, . . . , xk) and (y1, . . . , yl) are
equal as sequences (resp. {{x1, . . . , xk}} and {{y1, . . . , yl}} are equal as multisets,
{x1, . . . , xk} and {y1, . . . , yl} are equal as sets or k = l). UD, MSD, SD and ND
m-codes are defined similarly, by replacing ◦ with ◦m.

Definition 5 (Two-sided and one-sided codes, [4]). Let X = {x1, . . . , xn}
be a code over Σ. If there exist α1, . . . , αn ∈ N, not all equal to zero, such
that

∑n
i=1 αitran(xi) = (0, 0), then X is called two-sided. Otherwise it is called

one-sided.

Theorem 1 ([4]). Let X be a one-sided code over Σ. It is decidable whether X
is a {UD, MSD, SD or ND} {code or m-code}.

Domino Graphs and the Decipherability of Directed Figure Codes 455

4 Domino Graphs for Decipherability Testing

We now develop a variant of the domino graph as introduced by [1]. It will allow
us to decide some of the decipherability types by searching the graph for specific
paths.

Throughout this section we fix a “merging type” (i.e. either a merging func-
tion m, or no merging function) and use it for all catenations. Note that reduced
configurations, and hence the domino graph, depend on it. We also assume that
all codes are one-sided, since reduced configurations are not defined for two-
sided codes. Definitions of a configuration and reduced configuration come from
the proof of Theorem 1 and can be found in [4].

Let rc(C) denote the reduced configuration associated with a configura-
tion C. Given a figure z ∈ X we define an extension of a reduced con-
figuration rc((x1, . . . , xk), (y1, . . . , yl)) by (z, ε) as a new reduced configu-
ration rc((x1, . . . , xk, z), (y1, . . . , yl)). It is clear that the extension is well-
defined, since rc((x1, . . . , xk), (y1, . . . , yl)) = rc((x′1, . . . , x

′
k′), (y′1, . . . , y

′
l′)) im-

plies rc((x1, . . . , xk, z), (y1, . . . , yl)) = rc((x′1, . . . , x′k′ , z), (y′1, . . . , y′l′)). Extension
by (ε, z) is defined similarly. Note that in the non-merging case a particular ex-
tension may be undefined.

A reduced configuration, as defined in Theorem 1, is a pair ((eL, lL), (eR, lR))
with end points eL, eR ∈ Z2 and labellings lL, lR which are partial mappings
Z2 → Σ. Informally, the extension of ((eL, lL), (eR, lR)) by (z, ε) is the reduced
configuration ((e′L, l

′
L), (eR, lR)), where e′L = eL + tran(z) and l′L is obtained by

“catenating” lL with z and constraining the domain appropriately.
A reduced configuration is called final, if it is of the form ((e, l), (e, l)), i.e. its

left and right components are equal. Note that rc(C) is final iff L•(C) = R•(C).
Let RC(X) be the set of all reduced configurations over X which satisfy the

RC criteria, i.e. RC(X) = {rc((xi), (yj)) | (xi), (yj)}, with (xi) and (yj) ranging
over all finite, non-empty sequences of elements of X satisfying the RC criteria.
By Theorem 1, RC(X) is finite for every one-sided code X .

Definition 6 (Domino graph). Let X be a one-sided code over Σ. A domino
graph of X is the directed graph (V,E) with V = RC(X)∪{0} and E = E0∪E1,
where

– E0 contains all edges (0, v) such that v ∈ RC(X) and v = rc((x), (y)) for
some x, y ∈ X, x 	= y,

– E1 contains all edges (v1, v2) such that v1, v2 ∈ RC(X), v1 is not final and
v2 is an extension of v1 by (z, ε) or (ε, z), for some z ∈ X.

Additionally, we define a domino function d : E → ℘((X ∪ {ε}) × (X ∪ {ε}))
that associates labels to the edges:

d(0, v) = {(x, y) ∈ X ×X | v = rc((x), (y))}
d(v1, v2) = {(x, y) ∈ (X × {ε}) ∪ ({ε} ×X) | v2 is an extension of v1 by (x, y)}.

Observe that for an edge (v1, v2) with v1 	= 0, d(v1, v2) either contains pairs
of the form (z, ε), or (ε, z), but not both. Moreover, if for instance (z, ε) and

456 W. Moczurad

(z′, ε) ∈ d(v1, v2) then tran(z) = tran(z′) 	= (0, 0), since X is one-sided and two
reduced configurations v1 and v2 determine a unique translation vector required
to extend v1 to v2. Hence, d(0, v) are the only values of d that contain pairs with
both figures non-empty.

The domino function can be extended to paths in a domino graph G: given a
path p = (e1, e2, . . . , en), where ei’s are edges in G, define

d(p) = d(e1) • d(e2) • · · · • d(en),

with • denoting the obvious extension of figure catenation to sets of figure pairs.
Given a path p = (e1, e2, . . . , en), we also define a realization of p to be any

sequence of figure pairs ((x1, y1), (x2, y2), . . . , (xn, yn)) such that (xi, yi) ∈ d(ei).
Note that xi, yi ∈ X ∪ {ε}.

For a path p starting in the vertex 0, d(p) describes an attempt at constructing
two distinct factorizations of some figure. If p can be made to reach a final vertex,
this is indeed accomplished (p is “successful”) and we know that X is not a UD
(m-)code. To check for other decipherability kinds, all successful paths have
to be checked for specific properties, similar to the conditions in the proof of
Theorem 1. This is reflected in the following theorem:

Theorem 2. Let X be a one-sided code over Σ.

1. X is not a UD (m-)code iff the domino graph of X contains a path from 0
to a final vertex.

2. X is not an MSD (m-)code iff the domino graph of X contains a path
p from 0 to a final vertex such that there exists a realization of p,
((x1, y1), (x2, y2), . . . , (xn, yn)), with {{x1, . . . , xn}} and {{y1, . . . , yn}} being
different as multisets.

3. X is not an SD (m-)code iff the domino graph of X contains a path
p from 0 to a final vertex such that there exists a realization of p,
((x1, y1), (x2, y2), . . . , (xn, yn)), with {x1, . . . , xn} and {y1, . . . , yn} being dif-
ferent as sets.

4. X is not an ND (m-)code iff the domino graph of X contains a path
p from 0 to a final vertex such that there exists a realization of p,
((x1, y1), (x2, y2), . . . , (xn, yn)), with the number of non-empty xi’s different
from the number of non-empty yi’s.

The following example shows a domino graph for a non-decipherable code.
Assume Σ = {a} and m = {(a, a) �→ a}. Edge labels denote values of the
domino function d; note that |d(e)| = 1 for all edges. For the sake of brevity, the
notation of reduced configurations omits inner parentheses and commas. Final
vertices are underlined.

Example 1. Consider X = {w = a�a
�

, x = a�a�, y = a�
a�

, z =
a�

a
�
} and

set τE = (1, 1), τW = (− 1
2 ,−

1
2), τS = (0,−1), τN = (− 1

2 , 0). We omit pairs that
can be obtained from another pair by exchanging the elements; this does not
prevent us from discovering any of the properties characterized by Theorem 2.

Domino Graphs and the Decipherability of Directed Figure Codes 457

Note that the graph contains two successful paths, 0 → rc(w, y) → rc(wx, y) →
rc(wx, yz) and 0 → rc(w, y) → rc(wz, y) → rc(wz, yz) → rc(wzz, yz). The
former disproves UD, MSD and SD decipherability of X (but not ND); the
latter disproves all four decipherability kinds.

� �(w, x)
rc(w, x)

(w, y)

rc(w, y)

(w, ε)

(x, ε)

(z, ε)

rc(ww, y) rc(wx, y) rc(wz, y)

(ε, z)

(ε, z)

(ε, z)

rc(ww, yz) rc(wx, yz) rc(wz, yz)

(x, ε)

(z, ε)

rc(wzx, yz) rc(wzz, yz)

(ε, x)

rc(wzx, yzx)

(x, ε)

rc(wzxx, yzx)

�

(ε, x)

References

1. Head, T., Weber, A.: Deciding multiset decipherability. IEEE Transactions on In-
formation Theory 41(1), 291–297 (1995)

2. Kolarz, M.: The code problem for directed figures. Theoretical Informatics and Ap-
plications RAIRO 44(4), 489–506 (2010)

3. Kolarz, M., Moczurad, W.: Directed figure codes are decidable. Discrete Mathemat-
ics and Theoretical Computer Science 11(2), 1–14 (2009)

4. Kolarz, M., Moczurad, W.: Multiset, set and numerically decipherable codes over
directed figures. In: Arumugam, S., Smyth, B. (eds.) IWOCA 2012. LNCS, vol. 7643,
pp. 224–235. Springer, Heidelberg (2012)

A Pretty Complete Combinatorial Algorithm

for the Threshold Synthesis Problem

Christian Schilling1, Jan-Georg Smaus2, and Fabian Wenzelmann1

1 Institut für Informatik, Universität Freiburg, Germany
2 IRIT, Université de Toulouse, France

smaus@irit.fr

1 Introduction

A linear pseudo-Boolean constraint (LPB) [1,4,5] is an expression of the form
a1�1+ . . .+ am�m ≥ d. Here each �i is a literal of the form xi or 1−xi. An LPB
can be used to represent a Boolean function; e.g. 2x1 + x2 + x3 ≥ 2 represents
the same function as the propositional formula x1 ∨ (x2 ∧ x3).

Functions that can be represented by a single LPB are called threshold func-
tions. The problem of finding the LPB for a threshold function given as disjunc-
tive normal form (DNF) is called threshold synthesis problem. The reference on
Boolean functions [4] formulates the research challenge of recognising threshold
functions through an entirely combinatorial procedure. In fact, such a procedure
had been proposed in [3,2] and was later reinvented by us [7]. In this paper,
we report on an implementation of this procedure for which we have run ex-
periments for up to m = 22. It can solve the biggest problems in a couple of
seconds.

There is another procedure solving this problem using linear programming
[4], which we also implemented and compared to the combinatorial one.

2 Preliminaries

An m-dimensional Boolean function f is a function Boolm → Bool . A linear
pseudo-Boolean constraint (LPB) is an inequality of the form

a1�1 + . . . + am�m ≥ d ai ∈ N, d ∈ Z, �i ∈ {xi, 1− xi}. (1)

We call the ai coefficients and d the threshold. A DNF is a formula of the
form c1 ∨ . . . ∨ cn where each clause cj is a conjunction of literals.

It is easy to see that an LPB can only represent monotone functions, i.e.,
functions represented by a DNF where each variable occurs in only one polarity.
Without loss of generality, we assume that this polarity is positive.

3 The Combinatorial Algorithm

For space reasons, we do not give a general definition of our algorithm but rather
illustrate it using a running example: φ ≡
(x1 ∧x2)∨ (x1 ∧x3)∨ (x1 ∧x4)∨ (x1 ∧x5)∨ (x2 ∧x3)∨ (x2 ∧x4)∨ (x3 ∧x4 ∧x5).

T. Lecroq and L. Mouchard (Eds.): IWOCA 2013, LNCS 8288, pp. 458–462, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Pretty Complete Combinatorial Algorithm 459

false false

x3 ∧ x4 ∧ x5
false false false

(x2 ∧ x3)∨ x4 ∧ x5 x5
false

(x2 ∧ x4)∨ true
(x1 ∧ x2) ∨ (x1 ∧ x3) (x3 ∧ x4 ∧ x5) x4

false
∨(x1 ∧ x4) ∨ (x1 ∧ x5) x3 ∨ x4 true true
∨(x2 ∧ x3) ∨ (x2 ∧ x4) true

∨(x3 ∧ x4 ∧ x5) x5
false

x4 ∨ x5 true true
x2 ∨ x3 ∨ x4 ∨ x5

x3 ∨ x4 ∨ x5 true true true
true true true true

true

Fig. 1. The recursive subproblems for φ

Before we start, it should be noted that the basic procedure we describe here
is not complete. The issue of completeness is very complicated, and [3] devote
23 pages to it! In our implementation, we have realised an extension of the basic
procedure that implements some of the ideas described by [3] but still does not
achieve full completeness. As it stands, for up to m = 7, our procedure always
succeeds; up to m = 14, it fails on less than 1% of the threshold functions, while
this rate rises up to 18.3% for m = 22.

For some DNFs, it is possible to establish a complete order , on the variables
which has the following meaning: xi , xj iff starting from any given input tuple
X∗ ∈ Boolm, setting x∗i to true is more likely to make the DNF true than setting
x∗j to true. There is a lemma stating that , must be respected by any LPB (if
there is one!) representing the DNF, i.e., xi , xj implies ai ≥ aj . For φ, it is the
case that x1 , . . . , x5 and so if we find a solution, then a1 ≥ . . . ≥ a5.

Now there is a theorem stating that the problem can be tackled using a special
kind of recursion. In φ, we can distinguish the clauses that contain x1 and the
ones that do not. This is illustrated in Figure 1. In the leftmost column (column
0), we have φ. In column 1, we have two smaller DNFs: on top the clauses of
φ that do not contain x1, and on bottom the clauses of φ that contain x1, but
with those occurrences of x1 removed. We say that we split away x1 from φ, and
we call the two formulae we obtain the upper and lower successor of φ. We thus
have two smaller subproblems, and the theorem says that we must find solutions
to these subproblems that agree on the coefficients a2, . . . , a5 (but differ on the
threshold, of course).

Similarly, we can split away x2 from each DNF in column 1, giving the four
formulae of column 2. Observe that the only clause in x2∨x3∨x4∨x5 containing
x2 is x2, and if we remove x2 from it, we are left with the empty conjunction
which is true; hence we have true as lowermost formula in column 2.

We continue by splitting away x3 from the DNFs in column 2. From now on,
it is no more the case that the number of DNFs doubles in each step. In fact,

460 C. Schilling, J-G. Smaus, and F. Wenzelmann

thanks to the symmetry of the variables in x2 ∨ x3 ∨ x4 ∨ x5, it happens that
the lower successor of x3 ∨ x4 ∨ x5 coincides with the upper successor of true,
namely true. Due to this fact, Figure 1 is not quite a tree, as some nodes are
shared.

Reducing the size of the datastructure by exploiting symmetries within the
DNF is obviously good for the space complexity of our procedure, and is an
advantage of [7] compared to [3,2]. In fact, [2] does consider symmetries but
only at the global level: in φ, the variables x3 and x4 are symmetric, but in the
subproblems, there are more symmetries.

Observe also that x3 ∧ x4 ∧ x5 has no clause not containing x3, and thus we
get the empty DNF (= false) as upper successor.

This process is continued until we finally obtain the “tree” in Figure 1. As
leaves, it has 12 (rather than 25 = 32 as a construction not exploiting any
symmetries would give) occurrences of true or false .

We now generalise LPBs by recording to what extent thresholds can be shifted
without changing the meaning.

Definition 1. Given an LPB I ≡
∑m

i=1 aixi ≥ d, we call s the minimum
threshold of I if s is the smallest number (possibly −∞) such that for any
s′ ∈ (s, d], the LPB

∑m
i=1 aixi ≥ s′ represents the same function as I. We call

b the maximum threshold if b is the biggest number (possibly ∞) such that∑m
i=1 aixi ≥ b represents the same function as I. We denote by

∑m
i=1 aixi ≥ (s, b]

any LPB with minimum threshold s and maximum threshold b.

Now that we have constructed the “tree” containing trivial subproblems as
leaves, we must work back from the right to the left: we first find LPBs for the
formulae in the rightmost column, which have 0 variables and hence we must
determine 0 coefficients. Next to the left, we have formulae that contain (at
most) x5, and we determine LPBs representing these, where we use the same a5
for all formulae! Then we determine a4, and so forth.

Instead of giving the according theorem, we stick to our example: Figure 2 is
arranged in correspondence to Figure 1 and shows LPBs for all subproblems. In
the top line we give the l.h.s. of the LPBs, which is the same for each LPB in a
column. In the actual “tree”, we list the minimum and maximum threshold of
each formula. We show how to construct this “tree”.

Observe first that
∑5

i=6 aixi ≥ (−∞, 0] and
∑5

i=6 aixi ≥ (0,∞] are LPB
representations (with empty sum as l.h.s.) for true and false, respectively. This
explains the entries in column 5.

Next observe that column 5 has three blocks sepa-
rated by horizontal lines, two of which are non-empty.
Consider the uppermost block consisting of four inter-
vals, and within it, the northwest-southeast diagonals,
as illustrated by the dashed shapes in the figure to the
right. Each diagonal joins two numbers, and we compute
the difference between the upper left and the lower right
number for each diagonal, i.e., 0−∞, 0−∞, and 0− 0,
which give −∞, −∞, and 0, respectively. Our theorem

(0, ∞]

(0, ∞]

(0, ∞]

(−∞, 0]

Fig. 3. A block

A Pretty Complete Combinatorial Algorithm 461

4x1 + 3x2+ 3x2+

2x3 + 2x4+ 2x3 + 2x4+ 2x3 + 2x4+ 2x4+
∑5

i=6 aixi

x5 ≥ . . . x5 ≥ . . . x5 ≥ . . . x5 ≥ . . . x5 ≥ . . . ≥ . . .

(1,∞] (0,∞]
(3,∞] (1,∞] (0,∞]

(4, 5] (2, 3] (0, 1] (0,∞]
(4, 5] (−∞, 0]

(1, 2] (1,∞]
(1, 2] (−∞, 0] (−∞, 0]

(4, 5] (−∞, 0]

(0, 1] (0,∞]
(0, 1] (−∞, 0] (−∞, 0]

(0, 1] (0, 1] (−∞, 0] (−∞, 0] (−∞, 0]
(−∞, 0] (−∞, 0] (−∞, 0] (−∞, 0]

(−∞, 0]

Fig. 2. LPBs for φ and its subproblems

states that a5 must be chosen greater than any of those numbers, and thus in
particular greater than 0. The theorem also states that a5 must be chosen less
than any of the differences obtained by taking the northeast-southwest diago-
nals, i.e. ∞− 0,∞− 0,∞−−∞, which however only says that a5 < ∞. In the
same way, constraints on a5 can be collected from the lowermost block, in any
case just stating that a5 > 0. We simply choose a5 = 1.

Now, each node in column 4 with upper successor (su, bu] and lower successor
(sl, bl], is filled by the thresholds (max{su, sl + a5},min{bu, bl + a5}]. E.g., the
topmost (1,∞] is (max{0, 0 + a5},min{∞,∞+ a5}].

In the next step, we have to choose a4 so that

max{1−∞, 1− 1, 1− 0,−∞− 0, 0− 0,−∞− 0,−∞− 0} < a4 <
min{∞− 1,∞− 0, ∞−−∞, 0−−∞, 1−−∞, 0−−∞, 0−−∞}.

Choosing a4 = 2 will do. Note that the bound 1− 0 < a4 comes from the middle
block of column 4 and thus ultimately from x3∨x4. Our algorithm enforces that
a4 > a5, which must hold for an LPB representing x3 ∨ x4.

In the next step, a3 can also be chosen to be any number > 1 so we choose
2 again. In the next step, 2 < a2 < 4 must hold so we choose a2 = 3. Finally,
3 < a1 < 5 must hold so we choose a1 = 4. As result we obtain the LPB
4x1 + 3x2 + 2x3 + 2x4 + x5 ≥ (4, 5].

4 Experiments

Both algorithms were implemented in C++ based on a previous implementation
in Java [6,8]. For evaluation we used more than 300,000 randomly generated
DNFs known to be threshold functions, for m ≤ 22.

462 C. Schilling, J-G. Smaus, and F. Wenzelmann

Figure 4 shows the run-
time per problem for both
algorithms in ms, as well as
the problem size. The x-axis
shows m. The y-axis is in
logarithmic scale. We observe
that the combinatorial algo-
rithm could solve problems
up to m = 22 in a cou-
ple of seconds, while the LP
algorithm appears to scale
worse and needs around 30
seconds for the biggest prob-
lems. Second, the runtime
seems to be exponential in
m. Let us now discuss the

5 10 15 20

10−2

100

102

104

106 Comb. alg.
LP alg.

Input size

Fig. 4. Runtime

problem size. Note that the input to our procedure is a DNF. The combina-
torics wants it that the size of the DNFs grows exponentially in m. The size,
around 243,000 for m = 22, is shown in the figure. The fact that the curve is
almost a perfect straight line and appears to be parallel to the curve for the
runtime of the combinatorial algorithm shows that the input size increases at
the same rate as that runtime, which means that the algorithm appears to run
in time linear to the input, whereas the LP algorithm performs worse.

References

1. Chai, D., Kuehlmann, A.: A fast pseudo-Boolean constraint solver. In: Proceedings
of the 40th Design Automation Conference, pp. 830–835. ACM (2003)

2. Coates, C.L., Kirchner, R.B., Lewis II, P.M.: A simplified procedure for the real-
ization of linearly-separable switching functions. IRE Transactions on Electronic
Computers (1962)

3. Coates, C.L., Lewis II, P.M.: Linearly-separable switching functions. Journal of
Franklin Institute 272, 366–410 (1961); Also in an expanded version, GE Research
Laboratory, Schenectady, N.Y., Technical Report No.61-RL-2764E

4. Crama, Y., Hammer, P.L.: Boolean Functions: Theory, Algorithms, and Applica-
tions. Encyclopedia of Mathematics and its Applications. Cambridge University
Press (May 2011)

5. Dixon, H.E., Ginsberg, M.L.: Combining satisfiability techniques from AI and OR.
The Knowledge Engineering Review 15, 31–45 (2000)

6. Schilling, C.: Solving the Threshold Synthesis Problem of Boolean Functions by
Translation to Linear Programming. Bachelor thesis, Universität Freiburg (2011)

7. Smaus, J.-G.: On boolean functions encodable as a single linear pseudo-Boolean con-
straint. In: Van Hentenryck, P., Wolsey, L.A. (eds.) CPAIOR 2007. LNCS, vol. 4510,
pp. 288–302. Springer, Heidelberg (2007)

8. Wenzelmann, F.: Solving the Threshold Synthesis Problem of Boolean Functions by
a Combinatorial Algorithm. Bachelor thesis, Universität Freiburg (2011)

Conjunctive Hierarchical Secret Sharing Scheme

Based on MDS Codes

Appala Naidu Tentu1, Prabal Paul2, and China Venkaiah Vadlamudi3

1 CR Rao AIMSCS, University of Hyderabad Campus, Hyderabad-500046, India
2 BITS, Pilani, Goa Campus, GOA-403726, India

3 SCIS, University of Hyderabad, Hyderabad-500046, India
{naidunit,prabal.paul}@gmail.com, venkaiah@hotmail.com

Abstract. An ideal conjunctive hierarchical secret sharing scheme, con-
structed based on the Maximum Distance Separable (MDS) codes, is
proposed in this paper. The scheme, what we call, is computationally
perfect. By computationally perfect, we mean, an authorized set can
always reconstruct the secret in polynomial time whereas for an unau-
thorized set this is computationally hard. Also, in our scheme, the size
of the ground field is independent of the parameters of the access struc-
ture. Further, it is efficient and requires O(n3), where n is the number
of participants.

Keywords: Computationally perfect, Ideal, Conjunctive hierarchical ac-
cess structure, MDS code.

1 Introduction

Secret sharing is a cryptographic primitive, which is used to distribute a secret
among participants in such a way that an authorized subset of participants can
uniquely reconstruct the secret and an unauthorized subset can get no informa-
tion about the secret in the information theoretic sense. A secret sharing scheme
is called ideal if the maximal length of shares and the length of the secret are
identical. Secret sharing was first proposed independently by Blakley [2] and
Shamir [14]. The family of authorized subsets is known as the access structure.
An access structure is said to be monotone if a set is qualified then its superset
must also be qualified. Several access structures are proposed in the literature.
They include the (t, n)-threshold access structure, the Generalized access struc-
ture and the Multipartite access structure. Let U be the set of n participants and
let 2U be its power set. In multipartite access structures, the set of players U is
partitioned into m disjoint entities U1,U2, · · · ,Um, called levels and all players
in each level play exactly the same role inside the access structure.

Conjunctive hierarchical access structure is a multipartite access structure in
which each level Ui is assigned with a threshold ti for 1 ≤ i ≤ m, and the secret
can be reconstructed when, for every i, there are at least ti shareholders who all
belong to levels smaller than or equal to Ui. Formally,

T. Lecroq and L. Mouchard (Eds.): IWOCA 2013, LNCS 8288, pp. 463–467, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

464 A. Naidu Tentu, P. Paul, and V.Ch. Venkaiah

Γ = {V ⊆ U : |V ∩ (

i⋃
j=1

Uj)| ≥ ti, for all i ∈ {1, 2, · · · ,m}}.

A secret sharing scheme is a perfect realization of Γ if for all A ∈ Γ , the users
in A can always reconstruct the secret and for all B not in Γ , the users in B collec-
tively cannot learn anything about the secret, in the information theoretic sense.

The motivation for this study is to come up with an hierarchical scheme
that is ideal, efficient, that does not require the ground field to be extremely
large, and that offers no restrictions in assigning identities to the users. The
proposed scheme is computationally perfect. By computationally perfect, we
mean, an authorized set can always reconstruct the secret in polynomial time
whereas for an unauthorized set this is computationally hard. This is in contrast
to the majority of the schemes found in the literature, which are perfect in a
probabilistic manner. A scheme is perfect in a probabilistic manner if either an
authorized set may not be able to reconstruct the secret or an unauthorized set
may be able to reconstruct the secret with some probability [10].

An [n, k, d] block code over Fq is called Maximum Distance Separable (MDS)
code if distance d = n− k + 1. Two important properties, namely,

– Any k columns of a generator matrix are linearly independent and

– Any k symbols of a codeword may be taken as message symbols, of MDS
codes,

have been exploited in the construction of our scheme.

Related Work: Shamir [14] pointed out that a hierarchical variant of threshold
secret sharing scheme can be introduced simply by assigning larger number of
shares to higher level participants. However, such a solution can be easily seen
to be not ideal. Kothari [9] introduced a scheme that is a generalization of
schemes of Blakley, Shamir, Bloom, and Karnin et al. [2,14,8]. This generalized
scheme is used to arrive at a hierarchical scheme, which provides different levels
of shares [9]. Brickell [4] offered two schemes for the disjunctive case, both ideal
but inefficient. The multilevel threshold scheme by Ghodosi et al. [6] work only
for small number of shareholders [11,1].

Tassa [15] and Tassa and Dyn [16] proposed ideal secret sharing schemes,
based on Birkhoff interpolation and bivariate interpolation respectively, for sev-
eral families of multipartite access structures that contain the multilevel and
compartmented ones. The problem of secret sharing in hierarchical (or mul-
tilevel) structures, was studied under different assumptions also in [1,5]. Lin-
ear codes have been used earlier in some constructions of threshold schemes
[7,13,8,12]. Blakley and Kabatianski [3] have established that ideal perfect thresh-
old secret sharing schemes and MDS codes are equivalent.

Our Results: In this paper, we propose an ideal secret sharing scheme for con-
junctive access structure. This scheme, what we call, is computationally perfect
and relies on the following hardness assumption. The construction of this scheme
is based on the maximum distance separable (MDS) codes.

Conjunctive Hierarchical Secret Sharing Scheme Based on MDS Codes 465

Assumption: Let a ∈ Fq and fi : Fq −→ Fq, 1 ≤ i ≤ m, be a set of distinct
one way functions. Also, let fi(a) = bi for 1 ≤ i ≤ m. Then the computation of
a from the knowledge of bi, i ∈ S, where S ⊆ {1, 2, · · · ,m} is computationally
hard.

2 Conjunctive Hierarchical Secret Sharing Scheme

Let U =
⋃m

i=1 Ui be the set of participants partitioned into m disjoint sets
Ui, 1 ≤ i ≤ m. Also, let |Ui| = ni, for i ∈ {1, 2, · · · ,m}. Further, let t1, t2, · · · ,
tm−1 and tm be m positive integers such that ti < ti+1 for 1 ≤ i ≤ m−1. Denote∑m

i=1 ni + 1 by N and 2N − tm by n. Let s ∈ Fq be the secret to be shared.
Also, let fi : Fq −→ Fq, 1 ≤ i ≤ m, be a set of m distinct one way functions.

Overview of the Scheme
Here the secret s to be shared is split as s = s1 + s2 + · · · + sm mod q. The
dealer then selects an [n,N, n−N +1] MDS code, m distinct one way functions
fi, 1 ≤ i ≤ m, and chooses m codewords of the selected MDS code. The choice
of the ith, 1 ≤ i ≤ m, codeword is such that the first component of the codeword
is si, next n1 components of the codeword are the images of the shares of the
first level participants under the one way function fi, next n2 components of the
codeword are the images of the shares of the second level participants under the
same one way function fi, and so on it goes upto the images of the shares of
the ith level participants under the same one way function fi. The rest of the
components of the codeword are chosen arbitrarily.

N − ti of these arbitrarily chosen components of the ith codeword are made
public so that if any ti participants from the first i levels cooperate they can,
with the help of the N − ti public shares, reconstruct the ith codeword uniquely
and hence can recover the first component, si, of this codeword, which is a term
in the sum of the partial secrets.

Remark: Except the first component, all the components corresponding to the
first i levels of the ith codeword are the images of the shares under the ith one-
way function. Since the chosen one-way functions are all distinct, it follows that
the knowledge of the components of one of the codeword does not imply the
knowledge of the corresponding components in other codewords.

Setup and Distribution Phase:
Following steps constitute this phase.

1. Select an [n,N, n−N + 1] MDS code over Fq.
2. Choose arbitrarily si ∈ Fq, 1 ≤ i ≤ m, such that s = s1 + s2 + · · ·+ sm.
3. Choose vi,j , 1 ≤ i ≤ m, 1 ≤ j ≤ ni, from the elements of Fq. Compute vki,j

= fk(vi,j), 1 ≤ i ≤ m, 1 ≤ j ≤ ni, i ≤ k ≤ m. Distribute vi,j , 1 ≤ i ≤ m, 1 ≤
j ≤ ni, to the jth player in the ith compartment.

4. Choose m codewords

Ci = (si, v
i
1,1, v

i
1,2, · · · , vi1,n1

, vi2,1, · · · , vi2,n2
, · · · , vii,1, vii,2, · · · , vii,ni

,
ui,

∑
i
j=1 nj+2, ui,

∑
i
j=1 nj+3, · · · , ui,

∑
m
j=1 nj+

∑
m
j=1 (nj)−tm+2), 1 ≤ i ≤ m,

466 A. Naidu Tentu, P. Paul, and V.Ch. Venkaiah

of the above mentioned MDS code, where Ci = m.Ri.G, m is the vector of
length N , chosen by dealer, having first coordinate as partial secret si fol-
lowed by images of the private shares of first i levels vi1,1, v

i
1,2, · · · , vi1,n1

, vi2,1,

· · · , vi2,n2
, · · · , vii,1, vii,2, · · · , vii,ni

and rest of them are chosen arbitrarily. G is
a generator matrix of the code and Ri is the matrix which when multiplied
with G reduces the jth column of G to ej , 1 ≤ j ≤ 1 +

∑i
k=1 nk, where

ej = (0, 0, · · · , 0, 1, 0, · · · , 0)T with 1 in the jth position.
5. Publish fi, 1 ≤ i ≤ m.
6. Publish ui,j , j ∈ Si, as public shares corresponding to the codeword Ci,

1 ≤ i ≤ m, where Si ⊆ {� :
∑i

j=1 nj + 2 ≤ � ≤ n} and | Si |= N − ti.
7. Also publish the generator matrix of the MDS code.

Recovery Phase:
If at least ti players from the first i levels cooperate they will be able to recon-
struct the codeword Ci, 1 ≤ i ≤ m, and hence its first component si, which
is a term in the sum of the secret s. So, if at least ti players participate for
every i, 1 ≤ i ≤ m, they will be able to recover all the terms of the sum and
hence the secret. Assume that jr, 1 ≤ r ≤ m, such that

∑k
r=1 jr ≥ tk for every

k, 1 ≤ k ≤ m, players participate from the rth level in the recovery phase. Also,
assume that l1,r, l2,r, · · · , ljr ,r, be the corresponding indices of the cooperating
players of the rth, 1 ≤ r ≤ m, level. Then the recovery phase consists of the
following steps:

1. Fix i such that 1 ≤ i ≤ m. Select arbitrarily N−
∑i

k=1 jk public shares to re-
cover the codewordCi. Let the indices of these public shares be l1,m+1, l2,m+1,
· · · , l(N−∑

i
k=1 jk),m+1.

2. Reduce, using the elementary row operations, the generator matrix to an-
other matrix that has the following structure:
a) (lt,1 + 1)th, 1 ≤ t ≤ j1, column of the generator matrix has 1 in the tth

row and zeros elsewhere,
b)(

∑k−1
j=1 nj + lt,k + 1)th, 2 ≤ k ≤ i, 1 ≤ t ≤ jk, column of the generator

matrix has 1 in the (
∑k−1

r=1 jr + t)th row and zeros elsewhere,

c) (
∑i

j=1 nj + lt,m+1 + 1)th, 1 ≤ t ≤
∑m

k=1 nk + 1−
∑i

k=1 jk, column of the

generator matrix has 1 in the (
∑i

r=1 jr + t)th row and zeros elsewhere.
3. Cooperating participant computes fi(vk,ltk) = vik,ltk , 1 ≤ k ≤ i, 1 ≤ t ≤ jk,

and sends it as the participant’s share in the recovery of the codeword Ci.
4. Form the message vector as

(vi
1,l11

, vi
1,l21

, · · · , vi
1,lj11

, vi
2,l12

, vi
2,l22

, · · · , vi
2,lj22

, · · · vi
i,l1i

, vi
i,l2i

, · · · , vi
i,ljii

,

u
i,
∑i

j=1
(nj)+1+l1,m+1

, u
i,
∑i

j=1
(nj)+1+l2,m+1

, · · · , u
i,
∑i

j=1
(nj)+1+l

(
∑m

k=1
nk+1−∑i

k=1
jk),m+1

).

5. Multiply the reduced generator matrix computed in step 2 by the message
vector formed in step 4 to arrive at a codeword. First component of the
resulting codeword is the ith component (i.e.,si) in the sum of the secret to
be recovered, which is s.

6. Do steps 1 to 5 to recover si, 1 ≤ i ≤ m.
7. Recover the secret s =

∑m
i=1 si.

Conjunctive Hierarchical Secret Sharing Scheme Based on MDS Codes 467

Due to space constraint, the following theorems are stated without proof. Inter-
ested reader can approach the authors for a proof.

Theorem 1. The secret can be recovered by the recovery phase described above
if and only if the set of participants recovering the secret is an authorized set
and the hardness assumption stated earlier is fulfilled.

Theorem 2. The Proposed scheme is ideal.

Theorem 3. The probability that an unauthorized set being able to recover the
secret is equal to that of the exhaustive search, which is 1/q.

Acknowledgement. V Ch Venkaiah would like to acknowledge the support re-
ceived by theDST,Govt. of India, NewDelhi under ProjectNo. SR/s4/MS:516/07
dated 21st April 2008 during his tenure at CR Rao AIMSCS, Hyderabad.

References

1. Belenkiy, M.: Disjunctive multi-level secret sharing.document,
http://eprint.iacr.org/2008/018

2. Blakley, G.R.: Safeguarding cryptographic keys. In: AFIPS Conference Proceed-
ings, vol. 48, pp. 313–317 (1979)

3. Blakley, G.R., Kabatianski, G.A.: Ideal perfect threshold schemes and MDS codes.
In: IEEE Conf. Proc., Int. Symp. Information Theory, ISIT 1995, p. 488 (1995)

4. Brickell, E.F.: Some ideal secret sharing schemes. J. Comb. Math. Comb. Com-
put. 9, 105–113 (1989)

5. Farras, O., Padro, C.: Ideal hierarchical secret sharing schemes. IEEE Trans. Inf.
Theory (January 2012)

6. Ghodosi, H., Pieprzyk, J., Safavi-Naini, R.: Secret sharing in multilevel and com-
partmented groups. In: Boyd, C., Dawson, E. (eds.) ACISP 1998. LNCS, vol. 1438,
pp. 367–378. Springer, Heidelberg (1998)

7. Pieprzyk, J., Zhang, X.-M.: Ideal Threshold Schemes from MDS Codes. In: Lee,
P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp. 253–263. Springer, Hei-
delberg (2003)

8. Karnin, E.D., Greene, J.W., Hellman, M.E.: On secret sharing systems. IEEE
Trans. Inf. Theory 29, 35–41 (1983)

9. Kothari, S.C.: Generalized linear threshold scheme. In: Blakely, G.R., Chaum, D.
(eds.) CRYPTO 1984. LNCS, vol. 196, pp. 231–241. Springer, Heidelberg (1985)

10. Kaskaloglu, K., Ozbudak, F.: On hierarchical threshold access structures. IST panel
symposium, Tallinn, Estonia, Nov.document (2010)

11. Lin, C., Harn, L.: Ideal perfect multilevel threshold secret sharing scheme. In: Proc.
Fifth Intl. Conf. Inf. Assur. and Security, pp. 118–121 (2009)

12. Massey, J.L.: Minimal codewords and secret sharing. In: Proc. 6th Joint Swedish -
Russian Workshop on Inform. Theory, pp. 269–279 (1993)

13. McEliece, R.J., Sarwate, D.V.: On sharing secrets and Reed Solomon codes. Comm.
of ACM 24, 583–584 (1981)

14. Shamir, A.: How to share a secret. Comm. ACM 22, 612–613 (1979)
15. Tassa, T.: Hierarchical Threshold Secret Sharing. Journal of Cryptology, 237-264

(2007)
16. Tassa, T., Dyn, N.: Multipartite Secret Sharing by Bivariate Interpolation. Journal

of Cryptology 22, 227–258 (2009)

http://eprint.iacr.org/2008/018

An FPT Certifying Algorithm

for the Vertex-Deletion Problem

Haiko Müller and Samuel Wilson�

University of Leeds, School of Computing
Leeds, LS2 9JT, United Kingdom
{scshm,scsswi}@leeds.ac.uk

Abstract. We provide a fixed-parameter certifying algorithm for the
Vertex-deletion problem. An upper bound for the size of the forbidden
set for C+kv is shown demonstrating that, for all hereditary classes C
characterised by a finite forbidden set, the class C+kv is characterised
by a finite forbidden set.

The certifying algorithm runs in time O(f(k) ·nc) and can be verified
in O(nc) in the affirmative case and O(f(k)) in the negative case. This
is the first known fixed-parameter certifying algorithm, as far as the
authors are aware.

1 Introduction

A recognition algorithm is an algorithm that decides if some input belongs to
a set where all elements of the set share a specific property. In the context of
graph theory a recognition algorithm takes as input a graph and decides if the
graph has the property which defines a graph class.

Here we consider the parameterized graph class C+kv where C is a hereditary
graph class. We present a fixed-parameter certifying algorithm for recognising
the class C+kv. In the case of the algorithm returning an affirmative output the
certificate consists of a set of at most k vertices, in the negative case the algorithm
outputs a minimal forbidden graph. The algorithm runs in time O(f(k) · nc)
matching that of the best known non-certifying algorithm, the verifier runs in
polynomial time.

In Section 2.3 we provide an explicit bound for the maximum order of a graph
in Forb(C+kv) where Forb(C) is finite. We build on this in Section 4 by presenting
a fixed-parameter certifying algorithm for the vertex-deletion problem.

2 Preliminaries

All graphs we consider are finite, undirected and simple. For a graph G = (V,E)
let V (G) = V , E(G) = E, n = |V (G)| and m = |E(G)|. Two graphs G and

� The research presented in this paper is work towards the Ph.D of the second author,
who is funded by EPSRC Doctoral Training Grant.

T. Lecroq and L. Mouchard (Eds.): IWOCA 2013, LNCS 8288, pp. 468–472, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

An FPT Certifying Algorithm for the Vertex-Deletion Problem 469

H are isomorphic, denoted as G - H , if there is an edge-preserving bijection
between V (G) and V (H). We do not distinguish between isomorphic graphs.

Let � be a binary relation on the class G of all graphs that is reflexive,
transitive and antisymmetric and let < be the corresponding binary relation
that is irreflexive, transitive and asymmetric. Both variants we call a partial
order. Incomparability with respect to � is denoted by ‖.

A graph H is contained within a graph G with respect to the partial order �
if H � G. A class C is closed under � if H � G and G ∈ C implies H ∈ C. Each
such class C can be characterised by forbidding certain sets of graphs. The set
of minimal forbidden graphs is Forb(C) = {H | ∀H,H ′ /∈ C (H ′ 	< H)}. That
is, a graph class C which is closed under � consists of all graphs G that do not
contain a member of Forb(C).

The graph H is an induced subgraph of G if V (H) ⊆ V (G) and E(H) = {uv |
u, v ∈ V (H)∧uv ∈ E(G)}. The induced subgraph relation defines a partial order
on the set of all graphs. A class C is hereditary if the class is closed under the
induced subgraph relation. By G−U , or G−u if U = {u}, we refer to the graph
G[V (G) \ U].

For every class C of graphs and every integer k ≥ 0 we define the class C+kv
by

C+kv = {G | ∃ U ⊆ V (G) (|U | ≤ k ∧ G− U ∈ C)} .

2.1 Certifying Algorithms

The study of certifying algorithms is motivated by software reliability and bug-
free implementations, the adoption of certifying algorithms is becoming wide
spread as the knowledge required to understand the technical details of an algo-
rithm increases past that of the end user. A certifying algorithm gives the end
user confidence that the algorithm is correct and that the implementation is free
of bugs. The end user is not required to understand the technical details of the
algorithm, only that the certificate justifies the correctness of the algorithm and
that the verifying algorithm implementation is free of bugs.

A certifying algorithm consists of a prover and a verifier. The prover solves the
problem and computes a certificate, which provides justification for its output.
The certificate is evidence that the output is correct for the input. The verifier
takes as input

– the problem instance, which is also the input of the prover,
– the solution computed by the prover, and
– the certificate provided by the prover,

and decides if the triple is valid, that is, the certificate verifies the correctness of
the output. A theory of certifying algorithms is presented in [6].

2.2 Fixed-Parameter Tractability

Fixed-parameter tractable (FPT) algorithms have an important role in provid-
ing efficient algorithms for NP-complete problems. An FPT algorithm aims to

470 H. Müller and S. Wilson

separate the intractable part of the problem and bound it by some value k such
that the remainder of the algorithm runs in polynomial time. Formally a prob-
lem is FPT if there exists a parameter k such that the problem can be computed
in O(f(k) ·nc) where c is some constant independent of k and f is a computable
function depending only on k.

Here we give an FPT certifying recognition algorithm for the classes C+kv for
all k ≥ 0 where C is closed under induced subgraphs and is characterised by a
finite set of minimal forbidden subgraphs. The prover runs in time O(f(k) · nc)
where c is the order of the largest minimal forbidden graph for C. The verifier has
a running time of O(f(k)) in the case of non-membership and O(nc) otherwise.

By fixed-parameter tractable certifying algorithm we mean that the certifying
algorithm runs in time f(k) · nO(1) where k is the parameter and the verifying
algorithm also runs in f ′(k)·nO(1) time. The concept of what constitutes a strong
certificate directly translates into the context of fixed-parameter tractable certi-
fying algorithms, a certificate is strong if the verification algorithm has running
time equal to or better than the running time of the certifying algorithm on the
original problem.

2.3 Outline

Certifying recognition algorithms for graph classes are desirable especially when
the certificate for non-membership is a minimal forbidden graph, this is the ap-
proach used in [5,2]. We adopt the same technique for certifying non-membership
of the class C+kv by finding a minimal forbidden graph. In order to achieve
this we first prove the finiteness of the minimal forbidden set via a hypergraph
transversal argument. The bound obtained from the hypergraph transversal ar-
gument is then used in a modified version of the algorithm presented in [1]. The
resulting algorithm returns in the case of membership a set of k vertices whose
removal from the input graph yields a graph in the class C, or in the case of non-
membership finds a minimal forbidden graph. We assume that the recognition
of graphs in C is trivial or that a certifying algorithm for this task exists.

3 Bounding Forb(C+kv)

Theorem 1. For each hereditary class C of graphs with a finite set Forb(C) and
all integers k ≥ 0 the set Forb(C+kv) is finite. More precisely, we have for all
H ∈ Forb(C+kv),

|H | ≤
{

k + 1 s = 1(
(k+1)+s−2

s−2
)
(k + 1) + (k + 1)s−1 s ≥ 2

where s = max{|V (H)| | H ∈ Forb(C)}.

Theorem 1 builds on the bounds published in [4,3]

An FPT Certifying Algorithm for the Vertex-Deletion Problem 471

4 The Algorithm

The algorithm we give in this section is a certifying algorithm for recognising the
class C+kv where C has a finite forbidden set and k ≥ 0. The input is a graph
G and an integer k ≥ 0. The prover decides if G ∈ C+kv. In the affirmative case
the prover provides a set U ⊆ V (G), where |U | ≤ k such that G−U ∈ C, as the
certificate. This certificate can be verified in O(nc). For the negative case, that
is, G /∈ C+kv, the prover provides a minimal forbidden graph of C+kv embedded
in G. We show that this certificate can be verified in time O(f(k)).

4.1 Prover

Every hereditary class C of graphs with |V (H)| ≤ c for all H ∈ Forb(C) can be
recognised in O(nc) by exhaustively checking each subset on up to c-element of
the input graph. For some graph classes more efficient recognition algorithms are
known which could be used in the place of the previously mentioned brute force
technique. The exhaustive search finds a graph in Forb(C) in the input graph if
there is one.

The recognition of a graph in the class C+kv has been shown to be FPT by Cai
[1], the approach used is a recursive algorithm which constructs a search tree. The
FPT time bound is proved by establishing the maximum size of the search tree.
The algorithm presented in [1] can easily be extended to return a set of k vertices
such that the removal of these vertices yields a graph in C. Additionally the
algorithm can be extended to find a minimal forbidden graph in time independent
of the input size. The prover generates the minimal forbidden graphs for C+kv,
in the same order as the verifier would, and checks for an isomorphism with
the minimal forbidden graph found in the input. The algorithm outputs the
number of graphs generated before the algorithm finds a graph isomorphic to the
minimal forbidden graph in the input graph and the injective function mapping
the forbidden graph into the input graph.

Theorem 2. The prover, given the input G = (V,E) and an integer k ≥ 0,
returns either a set U of at most k vertices such that (G − U) ∈ C or an index
of a minimal forbidden graph H ∈ Forb(C+kv) in an ordered set and a function
f : V (H) → V (G) in O(f(k) · nc) time.

4.2 Verifier

The verifier confirms that the certificate is valid for the input, this is achieved
by either checking that when the set of up to k vertices are removed the input
graph is a member of C, or that the embedding of a forbidden graph into the
input graph is valid. In the negative case the verifier takes as input a number
x and an injective function between the vertices of the xth generated graph in
the forbidden set for C+kv and the vertices of the input graph, and checks if
the injection maps the forbidden graph into the input graph. The affirmative

472 H. Müller and S. Wilson

certificate can be checked trivially in O(nc) time and the negative certificate can
be checked in constant time.

The forbidden set for C+kv can be generated in constant time for each C and
k. From Theorem 1 we have that the order of a graph in Forb(C+kv) is bounded,
let N be the bound. For a fixed C we can generate the set of all graphs on up to
N vertices in time dependent only on k. Let X be the ordered set of all graphs
on up N vertices, and assume X is ordered however the generating algorithms
outputs the graphs. It is possible to find a minimal forbidden graph in FPT
time therefore by removing elements from X that are not minimal forbidden for
C+kv we obtain the set of minimal forbidden graphs. The overall run time of
this procedure is dependent only on k, i.e. generating the minimal forbidden set
can be achieved in O(f(k)) time.

To verify the negative certificate the verifier is required to generate the set
of minimal forbidden graphs up to the index provided by the prover then verify
that the injection is a valid mapping between a minimal forbidden graph and a
subgraph of the input graph.

5 Conclusion

In this paper we have presented an upper bound on the size of the forbidden
set for C+kv where C is characterised by a finite forbidden set and k ≥ 0. This
result leads to a general technique for constructing FPT certifying algorithms
for testing the membership of a graph in the class C+kv. This extends the result
of Cai [1] into the domain of certifying algorithms. We comment that the algo-
rithm presented here works in the most general case and improvements can be
made when the class of graphs is restricted. For instance, consider split graphs:
there exists a linear time recognition algorithm which would vastly improve the
running time of the verifier from O(n5) obtained by the general construction to
O(n) [5]. Additionally the bound for the maximum size of a forbidden graph for
C+kv is very general and improvements may be possible for particular classes.

References

1. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary
properties. Information Processing Letters 58(4), 171–176 (1996)

2. Chang, M.-S., Kloks, T., Kratsch, D., Liu, J., Peng, S.-L.: On the recognition of
probe graphs of some self-complementary classes of perfect graphs. In: Wang, L.
(ed.) COCOON 2005. LNCS, vol. 3595, pp. 808–817. Springer, Heidelberg (2005)

3. Erdős, P., Gallai, T.: On the minimal number of vertices representing the edges of
a graph. Magyar Tud. Akad. Mat. Kutató Int. Közl 6, 181–203 (1961)

4. Gyárfás, A., Lehel, J., Tuza, Z.: Upper bound on the order of τ -critical hypergraphs.
Journal of Combinatorial Theory, Series B 33(2), 161–165 (1982)

5. Heggernes, P., Kratsch, D.: Linear-time certifying recognition algorithms and for-
bidden induced subgraphs. Nordic Journal of Computing 14(1), 87–108 (2007)

6. McConnell, R.M., Mehlhorn, K., Näher, S., Schweitzer, P.: Certifying algorithms.
Computer Science Review 5(2) (2011)

Author Index

Aloupis, Greg 349

Bachmaier, Christian 14
Baskoro, Edy Tri 327
Blanchet-Sadri, Francine 28
Bland, Widmer 41
Böckenhauer, Hans-Joachim 54
Borradaile, Glencora 67, 423
Brandenburg, Franz Josef 14

Chao, Kun-Mao 412
Chapelle, Mathieu 81
Charalambous, George 94
Charpentier, Clément 106
Chauve, Cedric 428
Chen, Chiuyuan 115
Chiu, Well Y. 115
Cochefert, Manfred 81
Couturier, Jean-François 81
Crochemore, Maxime 337

Damaschke, Peter 433
Delbot, François 438
de Panafieu, Élie 127

Edelkamp, Stefan 1
Elmasry, Amr 1
El Ouali, Mourad 443
Erickson, Alejandro 140

Flouri, Tomáš 269
Foucaud, Florent 150
Fredriksson, Kimmo 448

Ganian, Robert 164
Gavruskin, Alexander 178
Giaquinta, Emanuele 448
Gleißner, Andreas 14
Golovach, Petr A. 192
Grabowski, Szymon 448
Grigoryan, Hayk 206

Harutyunyan, Anna 67, 423
Harutyunyan, Hovhannes A. 206
Hasunuma, Toru 216

Heggernes, Pinar 230
Hoffmann, Michael 94
Hofmeier, Andreas 14
Holub, Jan 337

Iliopoulos, Costas S. 337
Islam, A.S.M. Shohidull 244

Jäger, Gerold 258

Katajainen, Jyrki 1
Keller, Lucia 54
Khoussainov, Bakhadyr 178
Klasing, Ralf 7
Kobert, Kassian 269
Kokho, Mikhail 178
Kratsch, Dieter 81
Kucherov, Gregory 41

Laforest, Christian 438
Lee, Sang Hyuk 283
Liedloff, Mathieu 81
Lin, Wei-Yin 412
Lin, Yuqing 297
Liu, Jiamou 178
López, Nacho 303
Lozin, Vadim 314
Lu, Hongliang 297

Milanič, Martin 230
Miller, Mirka 327, 376
Moczurad, W�lodzimierz 453
Monnot, Jérôme 314
Mouchard, Laurent 337
Müller, Haiko 468
Munteanu, Sinziana 28

Na, Joong Chae 337

Obdržálek, Jan 164

Park, Heejin 337
Park, Kunsoo 337
Patterson, Murray 428
Paul, Prabal 463

474 Author Index

Paulusma, Daniël 192
Perez, Anthony 81
Pérez-Rosés, Hebert 349
Phan, Raksmey 438
Phanalasy, Oudone 376
Pineda-Villavicencio, Guillermo 349
Pinter, Ron Y. 362
Pissis, Solon P. 269

Radzik, Tomasz 283
Rahman, M. Sohel 244
Rajaraman, Ashok 428
Ries, Bernard 314
Ruskey, Frank 140
Ryan, Joe 327, 376
Rylands, Leanne 376

Sauerland, Volkmar 443
Sawada, Joe 388
Schilling, Christian 458
Sebé, Francesc 303
Slamin 327
Smaus, Jan-Georg 458

Smyth, W.F. 41
Soltys, Michael 402
Sopena, Éric 106
Stamatakis, Alexandros 269
Stewart, Iain 192

Taslakian, Perouz 349
Tentu, Appala Naidu 463
Trinchet-Almaguer, Dannier 349

Ukkonen, Esko 448

Vadlamudi, China Venkaiah 463
van ’t Hof, Pim 230

Wang, Hung-Lung 412
Weiß, Armin 1
Wenzelmann, Fabian 458
Williams, Aaron 388
Wilson, Samuel 468
Wong, Dennis 388
Wu, Yen-Wei 412

Zehavi, Meirav 362

	Preface
	Organization
	Table of Contents
	Invited Talks
	Weak Heaps and Friends: Recent Developments
	1 Weak Heaps
	2 Constant-Factor-Optimal Sorting
	3 Relaxed Weak Heaps and Relaxed Weak Queues
	4 Heap Construction and Optimal In-Place Heaps
	References

	Efficient Exploration of Anonymous Undirected Graphs
	1 Introduction
	2 Locally Fair Exploration Strategies
	3 The Multi-agent Rotor-Router
	4 Conclusion and Future Work
	References

	Regular Papers
	On Maximum Rank Aggregation Problems
	1 Introduction
	2 Preliminaries
	3 Efficient Algorithms
	4 Intractability Results
	5 Approximability
	6 Fixed-Parameter Tractability
	7 Conclusion
	References

	Deciding Representability of Sets of Words of Equal Length in Polynomial Time
	1 Introduction
	2 Graph Theoretical Approach to REP
	3 Generating the Factor Sets and Their Extensions
	4 Deciding Rep in Polynomial Time
	5 Conclusion
	References

	Prefix Table Construction and Conversion
	1 Introduction
	2 Construction of the Prefix Table
	3 Conversion between Prefix Table and Border Array
	4 Test Results
	5 Future Directions
	References

	On the Approximability of Splitting-SAT in 2-CNF Horn Formulas
	1 Introduction
	2 Basic Definitions
	3 Splitting in 2-CNF Horn Formulas
	4 Maximum Assignment in 2-CNF Horn Formulas
	5 Maximum Assignment in Exact-2-CNF Formulas
	6 Conclusion
	References

	Boundary-to-Boundary Flows in Planar Graphs
	1 Introduction
	1.1 Definitions

	2 Leftmost Maximum Flows and Shortest Paths
	2.1 st-Planar Flow via Biased Search

	3 Algorithm
	3.1 Invariants
	3.2 Unusability Structures
	3.3 Reusing Queues for an Efficient Implementation

	References

	Exact Algorithms for Weak Roman Domination
	1 Introduction
	2 Preliminaries and Notations
	3 Structure of a Weak Roman Domination Function
	4 Exact Algorithms for Weak Roman Domination
	4.1 Using Exponential Space
	4.2 Using Polynomial Space

	References

	Verification Problem of Maximal Points under Uncertainty
	1 Introduction
	2 Preliminaries
	3 MP-Construction
	4 Relating Update Solutions to Covers
	5 NP-Hardness Proof
	References

	Incidence Coloring Game and Arboricity of Graphs
	1 Introduction
	2 Alice’s Strategy
	3 Proof of Theorem 2
	References

	Linear-Time Self-stabilizing Algorithms for Minimal Domination in Graphs
	1 Introduction
	2 Preliminary
	2.1 Self-stabilizing
	2.2 Previous Results

	3 MainResult
	3.1 The First Algorithm
	3.2 Correctness and Convergence

	4 An MDS-Silent Algorithm
	4.1 MDS-Silent Algorithms in Distance-1 Information Systems
	4.2 Message Passing Model of Distance-2 Information Systems
	4.3 An MDS-Silent Algorithm in Distance-2 Information Systems

	5 Concluding Remarks
	References

	Phase Transition of Random Non-uniform Hypergraphs
	1 Introduction
	2 Definitions
	3 Hypergraphs with n Vertices and Excess k
	4 Birth of the Complex Component
	5 Kernels
	6 Hypergraphs with Complex Components of Fixed Excess
	7 Future Directions
	References

	Domino Tatami Covering Is NP-Complete
	1 Introduction
	2 Preliminaries
	3 Gadgets
	4 Layout
	5 SAT-Solver
	6 Variations and Future Work
	References

	The Complexity of the Identifying Code Problem in Restricted Graph Classes
	1 Introduction
	1.1 Related Work
	1.2 Our Contribution and Structure of the Paper

	2 Bipartite, Co-bipartite and Split Graphs
	2.1 Useful Bounds and Constructions
	2.2 Bipartite Graphs
	2.3 Split Graphs and Co-bipartite Graphs

	3 Reductions for (Planar) Bipartite Graphs of Bounded Maximum Degree and Chordal Bipartite Graphs
	3.1 (Planar) Bipartite Graphs of Maximum Degree 3
	3.2 Chordal Bipartite Graphs

	4 Further Classes of Graphs for Which the Complexities of Min Dominating Set, and Min Id Code Differ
	5 OpenProblems
	References

	Expanding the Expressive Power of Monadic Second-Order Logic on Restricted Graph Classes
	1 Introduction
	2 Preliminaries and Definitions
	2.1 Vertex Cover and Types
	2.2 MSO1 and Its Cardinality Extensions
	2.3 ILP Programming

	3 cardMSO1 Model Checking
	4 Applications
	4.1 Equitable Problems
	4.2 Solution Size as Input
	4.3 c-Balanced Partitioning

	5 MSO Partitioning
	6 Concluding Notes
	References

	Dynamising Interval Scheduling: The Monotonic Case
	1 Introduction
	2 Preliminaries
	3 Compatibility Forest Data Structure (CF)
	4 Linearised Tree Data Structure (LT)
	5 Extending Functionality of CF and LT Data Structures
	6 Experiments
	7 Conclusions and Open Problems
	References

	Graph Editing to a Fixed Target
	1 Introduction
	2 Preliminaries
	3 Complexity Results
	3.1 General Input Graphs
	3.2 Input Graphs Restricted to Some Nontrivial Graph Class
	3.3 Parameterized Complexity

	4 Conclusions
	References

	Tight Bound on the Diameter of the Kn¨odel Graph
	1 Introduction
	2 Paths in the Kn¨odel Graph
	3 Upper Bound on Diameter
	4 Tightness of the Upper Bound
	5 Summary
	References

	Structural Properties of Subdivided-Line Graphs
	1 Introduction
	2 Preliminaries
	3 The Subdivided-Line Graph Operation and Iterated Subdivided-Line Graphs
	4 Structural Properties of Subdivided-Line Graphs and Sierpinski-Like Graphs
	4.1 Edge-Disjoint Hamilton Cycles
	4.2 Hub Sets and Connected Dominating Sets
	4.3 Completely Independent Spanning Trees

	5 Concluding Remarks
	References

	Induced Subtrees in Interval Graphs
	1 Introduction and Background
	2 Definitions and Notation
	3 Induced Subtree Isomorphism on Interval Graphs
	4 Subtree Isomorphism on Interval Graphs
	5 Concluding Remarks
	References

	Protein Folding in 2D-Triangular Lattice Revisited(Extended Abstract)
	1 Introduction
	2 Our Contribution
	3 Roadmap
	4 Preliminaries
	5 Our Approach
	6 Expected Approximation Ratio
	7 Conclusion
	References

	SAT and IP Based Algorithms for Magic Labeling with Applications
	1 Introduction
	2 Algorithms for Magic Labelings
	2.1 IP Based Algorithm
	2.2 SAT Based Algorithm

	3 Experimental Results
	4 Applications to the Theory of Magic Labelings
	4.1 Research Problem 2.4
	4.2 Research Problem 2.5a)
	4.3 Research Problem 2.9
	4.4 Research Problem 2.16
	4.5 Research Problem 3.3

	5 Future Work
	References

	An Optimal Algorithm for Computing All Subtree Repeats in Trees
	1 Introduction
	2 Preliminaries
	2.1 Basic Definitions
	2.2 Subtree Repeats

	3 Algorithm
	3.1 The Forward/Non-overlapping Stage
	3.2 The Backward/Overlapping Stage

	4 FinalRemarks
	References

	Approximation Bounds on the Number of Mixedcast Rounds in Wireless Ad-HocNetworks
	1 Introduction
	1.1 Previous Work
	1.2 Our Contribution

	2 Notation and Preliminaries
	3 Decision Versions of the MNL Problems
	4 Mixedcast Problems
	5 Conclusions
	References

	Maximum Spectral Radius of Graphs with Connectivity at Most k and MinimumDegree at Least δ
	1 Introduction
	2 MainResults
	References

	Degree Sequences of PageRank Uniform Graphs and Digraphs with Prime Outdegrees
	1 Introduction
	1.1 Applications to Privacy Preserving Release of Social Network Data

	2 Preliminaries
	2.1 Terminology and Notation
	2.2 The PageRank Vector of a Digraph

	3 Characterization of PageRank Uniform Graphs
	4 PageRank Uniformity and Degree Sequences
	4.1 PageRank Uniform Graphical Sequences
	4.2 PageRank Uniform Outdigraphical Sequences Composed of Prime Numbers

	References

	On the Maximum Independent Set Problem in Subclasses of Subcubic Graphs
	1 Introduction
	2 Preliminary Results
	2.1 Graph Reductions

	3 Solving the Problem
	4 Conclusion
	References

	Construction Techniques for Digraphs with Minimum Diameter
	1 Introduction
	2 Construction Techniques
	2.1 Generalised deBruijn Digraphs
	2.2 Generalised Kautz Digraphs
	2.3 Line Digraphs
	2.4 Digon Reduction
	2.5 Vertex Deletion Scheme
	2.6 Voltage Assignments

	3 Characterisation and Classification
	References

	Suffix Tree of Alignment: An Efficient Index for Similar Data
	1 Introduction
	2 Preliminaries
	2.1 Suffix Trees
	2.2 Alignments

	3 Suffix Tree of Simple Alignments
	3.1 Definitions
	3.2 Construction

	4 Suffix Tree of General Alignments
	References

	Fitting Voronoi Diagrams to Planar Tesselations
	1 Introduction
	2 The Algorithm
	3 Implementation
	4 Experimental Analysis
	5 Conclusions and Open Problems
	References

	Partial Information Network Queries
	1 Introduction
	1.1 Problem Statement
	1.2 Related Work
	1.3 Our Contribution

	2 AQ-Alg: An Algorithm for AQ
	2.1 Overview
	2.2 Preliminaries
	2.3 The Algorithm

	3 PIQ-Alg: An Algorithm for PIQ
	3.1 Overview
	3.2 Preliminaries
	3.3 The Algorithm

	References

	An Application of Completely Separating Systems to Graph Labeling
	1 Introduction
	2 Relationship between Completely Separating Systems and Labeling of Graphs
	3 Modification of Completely Separating Systems
	3.1 Edge Deletion with No Isolated Vertex
	3.2 Edge Switching
	3.3 Splitting of Roberts’ Construction
	3.4 Antimagic Graphs with Degrees k and k − 1

	References

	Universal Cycles for Weight-Range Binary Strings
	1 Introduction
	2 Universal Cycle Existence for Bcd(n)
	3 Gluing Universal Cycles
	4 Universal Cycle Construction for Bdc(n)
	4.1 Preliminary Definitions and Notations
	4.2 EvenWeight-Range
	4.3 Incrementing theWeight-Range (Odd Weight-Range)

	5 Implementation
	5.1 A Simple Algorithm: SimpleIncrement()
	5.2 Extending SimpleIncrement() to CAT

	6 Other Applications of the Gluing Lemma
	6.1 Passwords
	6.2 Labeled Graphs

	References

	Circuit Complexity of Shuffle
	1 Introduction
	2 Background on Complexity
	3 Upper Bound
	4 Lower Bound
	5 Conclusion
	6 OpenProblems
	References

	An Optimal Algorithm for the Popular Condensation Problem
	1 Introduction
	1.1 Motivation
	1.2 Related Works
	1.3 Problem Definition

	2 Preliminaries
	3 Popular Condensations
	4 Concluding Remarks
	References

	Posters
	Maximum st-Flow in Directed Planar Graphsvia Shortest Paths
	1 Introduction
	2 Maximum Flow, Shortest Paths Equivalences
	2.1 The Finite Cover
	2.2 Value of the Maximum Flow
	2.3 Maximum Flow
	2.4 Discussion

	References

	Hypergraph Covering Problems Motivated by Genome Assembly Questions
	1 Introduction
	2 Preliminaries
	3 NewResults
	References

	Cluster Editing with Locally Bounded Modifications Revisited
	1 Introduction
	2 Faster Kernelization
	3 Sufficient Conditions for Edit-Optimal Clusters
	References

	New Approximation Algorithms for the Vertex Cover Problem
	1 Introduction
	2 Lower Bound
	3 A New Approximation Algorithm:
	3.1 Algorithm
	3.2 An Algorithm to Construct Any Minimal Clique Partition:

	4 A Refinement of CP for the Vertex Cover
	4.1 Vertex Cover by Clique Partition (VCCP)

	References

	Improved Approximation Algorithm for theNumber of Queries Necessary to Identify aPermutation
	1 Introduction
	1.1 Mastermind Variants and Related Works
	1.2 Our Contribution

	2 A Strategy for Permutation Master Mind
	2.1 Phase 1 Queries
	2.2 Phase 2 Queries

	References

	Motif Matching Using Gapped Patterns
	1 Introduction and Basic Definitions
	2 Online Algorithm for Matching a Set of Gapped Patterns
	References

	Domino Graphs and the Decipherability of Directed Figure Codes
	1 Introduction
	2 Preliminaries
	3 Codes
	4 Domino Graphs for Decipherability Testing
	References

	A Pretty Complete Combinatorial Algorithm for the Threshold Synthesis Problem
	1 Introduction
	2 Preliminaries
	3 The Combinatorial Algorithm
	4 Experiments
	References

	Conjunctive Hierarchical Secret Sharing Scheme Based on MDS Codes
	1 Introduction
	2 Conjunctive Hierarchical Secret Sharing Scheme
	References

	An FPT Certifying Algorithm for the Vertex-Deletion Problem
	1 Introduction
	2 Preliminaries
	2.1 Certifying Algorithms
	2.2 Fixed-Parameter Tractability
	2.3 Outline

	3 Bounding Forb(C+kv)
	4 The Algorithm
	4.1 Prover
	4.2 Verifier

	5 Conclusion
	References

	Author Index

