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Abstract. The global transactional property of a Transactional Com-
posite Web Service (TCWS) allows recovery processes if a Web Service
(WS) fails during the execution process. The following actions can be
performed if a WS fails: retry the faulty WS, substitute the faulty WS,
or compensate the executed WSs. In consequence, these fault-tolerance
mechanisms ensure the atomicity property of a TCWS with an all-
or-nothing endeavor. In this paper, we present a formal definition of
a checkpointing approach based in Colored Petri-Nets (CPNs) proper-
ties, in which the execution process and the actions performed in case
of failures rely on unrolling processes of CPNs. Our checkpointing ap-
proach allows to relax the atomic transactional property of a TCWS

in case of failures. The all-or-nothing transactional property becomes to
the something-to-all property. A snapshot of the most possible advanced
partial result is taken in case of failures and it is returned to the user
(user gets something), providing the possibility of restarting the TCWS

from an advanced execution state to complete the result (user gets all
later), without affecting its original transactional property. We present
the execution algorithms with the additionally capacity of taking snap-
shot in case of failures and experimental results to show the reception of
partial outputs due to the relaxation of the all-or-nothing property.

1 Introduction

Web Service (WS) technology has gained popularity in both research and com-
mercial sectors, based on the Semantic Web approach which makes part of the
Web 3.0. With machine intelligence, users can resolve complex problems that
require the interaction among different tasks. One of the major goals of the Web
3.0 is to support automatic and transparent WS composition and execution
allowing a complex user request to be satisfied by a Composite Web Service
(CWS), in which several WSs work together to resolve the complex query [2].

Automatic selection, composition, and execution of CWSs are issues that
have been extensively treated in the literature by guaranteeing functional re-
quirements (i.e., the set of input attributes provided in the query and the at-
tributes that will be returned as output) and QoS criteria (e.g., response time
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and price) [3–5, 11–13, 16, 20]. In some cases, transactional properties (e.g.,
atomic, compensable or not) are also considered to ensure fault-tolerant exe-
cution with Transactional Composite Web Services (TCWSs) [6, 7, 10, 14]. In
a TCWS all its component WSs have transactional properties, which in turn
could define an aggregated transactional property.

Because WSs can be created and updated on-the-fly, the execution system
needs to dynamically detect changes during run-time, and adapt execution to the
availability of the existing WSs. In this sense, TCWS becomes a key mechanism
to cope with challenges of open software in dynamic changing environments to
ensure that the whole system remains in a consistent state even in presence of
failures [23].

Even if all component WSs of a Composite WS are transactional, the com-
position itself could be not transactional (e.g., a WS with an atomic but non-
compensable transactional property, cannot be followed by another WS whose
transactional property does not ensure a successful execution; if the second one
fails, the first one cannot be compensated). Thus, to ensure the transactional
property of a TCWS, the WSs selection process is made according to their
transactional properties and their execution order. In this context, failures dur-
ing the execution of a TCWS can be repaired by backward or forward recovery
processes. Backward recovery implies to undo the work done until the failure and
go back to the initial consistent state (before the execution started), by rollback
and compensation techniques. Forward recovery tries to repair the failure and
continues the execution; retry and substitution are some techniques used.

In both backward and forward recovery processes, the atomic (all-or-nothing)
transactional property is comply to ensure system consistency. However, back-
ward recovery means that users do not get the desired answer to their queries
and forward recovery could imply long waiting time, because of the invested
time to repair failures, for users to finally get the response. For some queries,
partial responses may have sense for users; thus, they need alternative recovery
strategies that provide this facility in case of failures.

In previous works, we provided the definition of backward recovery (compen-
sation process) and forward recovery (retry and substitution) approaches [8, 9]
based on Colored Petri Nets (CPNs) formalism. In CPNs, transitions represent
WSs, places represent input/output WS attributes, and colors are used to rep-
resent transactional properties of transitions and types of values in places. In [8]
unrolling algorithms of CPNs to control the execution and backward recovery
were presented. This work was extended in [9] to consider forward recovery based
on WS replacement; formal definitions for WSs substitution process, in case of
failures, were presented. In [9], we also proposed an Executor architecture,
independent of its implementation, to execute a TCWS following our proposed
fault-tolerant execution approach. In [1, 18], we have presented implementa-
tions of our fault-tolerant approaches. In [1], we present FaCETa, a framework
which implements the backward and forward recovery proposed in [8, 9]. In [18],
we present the framework FaCETa*, an extension of FaCETa, in which the
fault-tolerant approach is extended with checkpoints, i.e., in case of failures,
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the execution state of a TCWS is checkpointed and the execution flow goes on
as much as it is possible, therefore users can have partial responses and later
restart the execution of the TCWS.

The contribution of this paper is focused in formally defining the checkpoint-
ing approach, based also in CPN properties, as a way to relax the atomic trans-
actional property (all-or-nothing) of a TCWS in case of failures. It means that,
instead of all-or-nothing, users can have a something-to-all. If a failure occurs,
a snapshot that contains the execution state of the most possible advanced par-
tial result is taken and it is returned to the user (user gets something). The
checkpointed TCWS can be re-started from an advanced point of execution
(snapshot) to complete the desired result (user gets all later), without affect-
ing its aggregated transactional property. We also present the execution algo-
rithms with the additionally capacity of taking snapshot in case of failures, the
extended framework incorporating checkpointing facilities, and experimental re-
sults to show the results of the prototype implementation of the checkpointing
mechanism.

This paper is organized as follows. Section 2 recalls some important concepts
and formal definitions necessary for the understanding of this work, such as Web
Service composition and their properties and execution. Section 3 introduces an
alternative fault-tolerance approach as a way to relax the all-or-nothing trans-
actional property to a something-to-all property. Section 4 presents the formal
definitions to allow the execution of the checkpointing mechanism in case of fail-
ure. Section 5 presents the overall architecture of our extended framework and
some results showing the reception of partial results in case of failure. Section 6
discusses related work in the field of checkpointing for TCWSs. Finally, Section
7 presents our conclusions.

2 Preliminaries

This Section recalls some important concepts and formal definitions about Web
Service composition and their properties and execution.

2.1 Web Service

AWeb Service, ws, consists of a finite set of operations, denoted as ws = {opi, i =
1..n}, with opi = (Ii, Oi, Qi, Ti), where Ii = {Ii1, Ii2, ..} is a set of input at-
tributes of opi, Oi = {Oi1, Oi2, ..} is a set of output attributes whose values are
produced by opi, Qi = {Qi1, Qi2, ...} is a set of QoS values of opi for a set of
QoS criteria {q1, q2, ...}, and Ti ∈ {p, a, c, cr, pr, ar} is the transactional property
of opi (transactional properties are defined in Section 2.3). In this work, without
loss of generality, we consider that ws has only one opi and we use the term ws
to denote the op of ws.

2.2 Composite Web Service

A Composite Web Service, described as CWS = {wsi, i = 1..m}, is a combina-
tion of severalWSs to produce more complex services that satisfy more complex
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user requests. It concerns which and how WSs are combined to obtain the de-
sired results. A CWS can be represented in structures such as workflows, graphs,
or Petri Nets indicating, for example, the control flow, data flow, WSs execution
order, and/or WSs behavior. The structure representing a CWS can be man-
ually or automatically generated. Users can manually specify how functionality
of WSs are combined or a Composer can automatically decide which and how
WSs are combined, according the desired query. In both cases, the execution of
a CWS is carried out by an Executor, that decides which WSs comply each
functionality manually specified by users and invokes them, or invokes the WSs

automatically decided by the Composer. In this paper, we represent a CWS

by a colored Petri Net as it is established in Definition 1 and suppose that it
was generated automatically by a Composer [6].

2.3 Transactional Properties

The transactional property (TP ) of a WS allows to recover the system in case of
failures during the execution. A single WS is transactional (denoted as TWS),
if when it fails, it has no effect at all. The most basic transactional property
that implements this characteristic is pivot (p): A TWS is called pivot (p)
WS, if its effects remain forever and cannot be semantically undone once it has
completed successfully. For a CWS, it is transactional, named Transactional
Composite WS (TCWS), if when it fails, its partial effects can be semantically
undone. In this case, the basic transactional property is called atomic (a): a
TCWS is atomic (a), if the effects of the TCWS remain forever and cannot be
semantically undone once it has completed successfully. There exist other trans-
actional properties for TWS and TCWS, which complement transactionality.
A TCWS or TWS can be associated with another TCWS or TWS which can
semantically undo its successfully execution; in this case, the TCWS or TWS

is called compensatable (c). A TCWS or TWS can be combined with a retri-
able property, which guarantees a successfully termination after a finite number
of invocations. In this case, we obtain pivot retriable (pr), atomic retriable
(ar), and compensatable retriable (cr) WSs. WSs that provide transactional
properties are useful to guarantee reliable TCWSs execution and to ensure the
whole system consistent state even in presence of failures. Failures during the
execution of a TCWS can be supported according to the TP of its component
WSs by a forward recovery process, in which the failure is repaired to allow the
failed WS to continue its execution or by a backward recovery process, wherein
its partial effects are semantically undone.

2.4 User Query

We define a query in terms of functional conditions, expressed as input and
output attributes; QoS constraints, expressed as weights over criteria; and the
required global TP as follows. A query Q is a 4-tuple Q = (IQ, OQ,WQ, TQ),
where:

– IQ is a set of input attributes whose values are provided by the user,
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– OQ is a set of output attributes whose values have to be produced by the
system,

– WQ = {(wi, qi) | wi ∈ [0, 1] with
∑

i wi = 1 and qi is a QoS criterion}, and
– TQ is the required transactional property: TQ ∈ {T0, T1}; If TQ = T0, the

system guarantees that a semantic recovery can be done by the user. If
TQ = T1, the system does not guarantee that the result can be compensated.
In any case, if the execution is not successful, nothing is changed on the
system and its state is consistent.

2.5 Execution Control

A TCWS, which answers and satisfies a query Q, is modeled as an acyclic
marked CPN, denoted CPN-EPQ, as following.

Definition 1 Transactional Composite Web Service. A TCWS is a 4-
tuple (A,S, F, ξ), where:

– A is a finite non-empty set of places, corresponding to input and output
attributes of the WSs;

– S is a finite set of transitions corresponding to the set of WSs ∈ TCWS ;
– F : (A×S)∪(S×A) → {0, 1} is a dataflow relation indicating the presence (1)

or the absence (0) of arcs between places and transitions defined as follows:
∀s ∈ S, (∃a ∈ A | F (a, s) = 1) ⇔ (a is an input place of s) and ∀s ∈ S,
(∃a ∈ A | F (s, a) = 1) ⇔ (a is an output place of s);

– ξ is a color function such that ξ : S → ΣS, with ΣS = {p, pr,a,ar, c, cr}
representing the TP of s ∈ S.

According to CPN notation, we have that for each x ∈ (A ∪ S), (•x) = {y ∈
A∪S : F (y, x) = 1} is the set of its predecessors, and (x•) = {y ∈ A∪S : F (x, y) = 1}
is the set of its successors.

We suppose that a TCWS is well constructed, i.e., its componentWSs satisfy
the transactional rules presented in Table 1. Let us illustrate the rules in Table
1 with the following examples. If the TP of a wsi is p or a, another wsj , whose
TP is pr, ar, or cr can be executed after wsi (sequential execution, rule 1); wsi
can be executed in parallel with a wsk with TP cr (rule 2). This rules guaran-
teeing that the resulting TCWS satisfies the transactional properties presented
in section 2.3 [10] .

Definition 2 Marked CPN-EPQ. Amarked CPN-EPQ is a pair (TCWS,M),
where TCWS=(A,S, F, ξ) and M is a function which assigns tokens (values) to
places such that ∀a ∈ A, M(a) ∈ N .

Given a user queryQ = (IQ, OQ,WQ, TQ), amarkedCPN-EPQ = ((A,S, F, ξ),
M) satisfiesQ if:

– ∀x ∈ IQ, ∃a ∈ A such that a is an input place.
– ∀x ∈ OQ, ∃a ∈ A such that a is an output place.
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Table 1. Transactional rules of [10]

Transactional property Sequential Parallel
of a WS compatibility compatibility

p, a pr ∪ ar ∪ cr (rule 1) cr (rule 2)

pr, ar pr ∪ ar ∪ cr (rule 3) pr ∪ ar ∪ cr (rule 4)

c ΣS (rule 5) cr (rule 6)

cr ΣS (rule 7) ΣS (rule 8)

– let MQ = {∀a ∈ (A ∩ IQ), M(a) = 1 and ∀a ∈ (A − IQ), M(a) = 0}
and MF = {∀a ∈ (A ∩ OQ), M(a) ≥ 1}, the initial and final marking,
respectively; there exist a firing sequence σ, such that: MQ

σ→ MF and
such that transitions of σ represent a TCWS whose components satisfy the
transactional rules, locally optimize the QoS and ∀si ∈ σ | ξQ(s) ∈ {c, cr} if
TQ =′ compensatable′, and ∀si ∈ σ | ξQ(s) ∈ {pr, ar, cr} if TQ =′ retriable′.

The marking of a CPN-EPQ represents the current values of attributes that
have been produced either for some component WSs or by the user, and that
can be used for others component WSs to be invoked. A Marked CPN denotes
which transitions can be fired.

In order to finally resolve the query Q, the given TCWS has to be executed
by invoking its component WSs according to the execution flow depicted by the
CPN representing the TCWS(i.e. CPN-EPQ). In fact, during the execution,
CPN-EPQ represents the execution plan of TCWS. As the composition process
presented in [9], the execution process is controlled by an unrolling algorithm
over CPN-EPQ.

Definition 3 Fireable Transition. A marking M enables a transition s (to
invoke the ws it represents) iff all its input places contain tokens such that ∀x ∈
(•s), M(x) ≥ card(•x).

To start the execution algorithm, the CPN-EPQ is marked with the Initial
Marking and some transitions become fireable. When a transition is fireable,
it can be fired according to the firing rules (see definition 4). The firing of a
transition of a CPN-EPQ corresponds to the execution of a WS, let us say s,
which participates in the composition.When s finishes, other transitions become
fireable, and so on.

Definition 4 CPN-EPQ Firing Rules. The firing of a fireable transition s
for a marking M defines a new marking M ′, such that: all tokens are deleted
from its input places (∀x ∈ •s, M(x) = 0) and the WS s is invoked. These actions
are atomically executed. After WS s finishes correctly, tokens are added to its
output places (∀x ∈ (s•), M(x) = M(x) + 1).

Note that during the execution, in CPN-EPQ a transition is fireable (its cor-
responding WS can be invoked) only if all its predecessor transitions have been
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fired (each input place has as many tokens as WSs produce them or one token
if the user provides them) and several transitions can be fireable at the same
time. In this way, the execution control, followed according CPN-EPQ, respect
sequential and parallel executions, which in turn keeps the global transactional
property.

Once a WS is executed, its input places are unmarked and its output places
(if any) are marked. We illustrate these definitions with the example shown in
Figure 1, where Q =(IQ, OQ,WQ, TQ) with IQ ={a1, a2} and OQ={a5, a6, a7}.
Note that ws3 needs two tokens in a3 to be invoked; this data flow dependency
indicates that it has to be executed in sequential order with ws1 and ws2, and
can be executed in parallel with ws4. Note that a3 is produced by ws1 and
ws2, ws1 was already executed and it produced a token on a3, and ws2 is still
running. Even if ws3 could be invoked with the values produced by ws1, if ws3 is
fired, it will be executed in parallel with ws2; however, it could be possible that
transactional properties of ws2 and ws3 dictate that they have to be executed
in sequential order as the data flow indicates. Then, ws3 has to wait for all its
predecessors transitions to finish in order to be invoked. Once ws2 finishes, ws3
and ws4 can be executed in parallel.

Fig. 1. Example of Fireable Transitions

2.6 Fault Tolerant Execution Control

The global TP of a TCWS allows recovery processes if a WS s fails during the
execution process. In previous works, we have presented a recovery mechanism
[9] based on TP properties of its component WSs. In these works, if a WS s
fails, the following actions are executed:

– if TP (s) is retriable (pr, ar, cr), s is re-invoked until it successfully finishes
(forward recovery);

– otherwise, another Transactional substitute WS, s∗, is selected to replace s
and the unrolling algorithm goes on (trying a forward recovery);

– if there not exists any substitute s∗, a backward recovery is needed, i.e.,
all executed WSs must be compensated in the inverse order they were exe-
cuted; for parallel executed WSs, the order does not matter. The compen-
sation flow is represented by a backward recovery CPN (BRCPN-TCWSQ),
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which depicts the inverse order of the execution flow. The corresponding
BRCPN-TCWSQ for a TCWS can be automatically generated by the same
Composer that built the TCWS.

These actions guarantee the atomicity (all-or-nothing) property of a TCWS.
In the next section we present a checkpointing mechanism allowing to relax this
property by returning something in case of failures. Then, a re-execution from
an advanced execution state is possible to finally get the final desired response
(user finally gets all).

3 Relaxing All-or-Nothing Transactional Properties by
Checkpointing Mechanisms

Approaches previously presented in [8, 9] provide fault-tolerant mechanisms
relying on WSs replacement, on a compensation protocol, and on unrolling pro-
cesses of CPNs. Although these recovery processes ensure system consistency,
they represent an “all-or-nothing” approach, since users either receive full an-
swer to their queries or they do not get any answer (in case of failure, partial
answers, if any, are undone). In this section we present an alternative fault-
tolerant approach as a way to relax this transactional property to a something-
to-all property. In case of failures, the unrolling process of the CPN controlling
the execution of a TCWS is checkpointed and the execution flow continues as
much as possible. In consequence, users can receive partial responses (something)
as soon as they are produced and resubmit the checkpointed CPN to restart its
execution from an advanced point of execution and finish the TCWS (to get
all), without affecting the original transactional property.

For this purpose, when a WS associated to a fireable transition t fails, the
execution control, instead of executing backward recovery, it saves the subnet of
CPN-EPQ that could not be executed. For that, the inputs and output places,
and valid attributes (attributes already produced) of transition t are saved, and
the same attributes are saved recursively for any other transition that depends
on t.

The checkpointing mechanism is illustrated in the following. The marked
CPN-EPQ depicted in Figure 2 is the state when ws4 fails and the unrolling
of the CPN-EPQ continues to allow the execution of all the WSs not affected
by the failure of ws4. The only WSs affected by this failure are ws7 and ws8;
therefore, assuming that there will not be more failures, the output attribute
corresponding to a10 will be obtained.

Figure 3 shows the execution state when all the WSs not affected by the
failure were executed and the a10 value was received. Red places and transitions
in Figure 3 represent the part of the marked CPN-EPQ involved in the execution
restart process, called CPN-checkQ′ , (the associated WSs of these transitions
were not executed because they need values produced by the failed WS or any
other that depend of it). The red tokens in Figure 3 represent the values already
produced during the normal execution (these tokens will be the initial marking
of the CPN-checkQ′).
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Fig. 2. Marked CPN-TCWSQ when ws4 fails

Fig. 3. Marked CPN-TCWSQ just before checkpointing

Figure 4 represents the CPN-checkQ′ . Note that the initial marking contains
tokens representing values produced during the CPN-EPQ execution, whilst a11
and a12 are the only output attributes expected as a result of the CPN-checkQ′

execution. Note that ws8 has to wait only for one of its two inputs, since it had
already received a9 before the execution was restarted.

4 Modeling Checkpointing Based on Petri-Net Formalism

We extend the CPN-EPQ unrolling execution process to take into account check-
points in case of failure by modifying definitions 1, 2, 3, and 4; additionally, new
definitions regarding to the checkpointing mechanism are presented. In a general
way, these definitions express the idea presented in the following paragraph.

If a WS fails, its corresponding transition informs its successors about the
failure, thus they know they are not going to receive the values corresponding
to the outputs of the failed WS. If one transition is notified that one or more of
its predecessor transitions will not be able to produce its output values, it still
waits until all its predecessor transitions have finished. Therefore, it is possible
for transitions to receive their required input values partially. Then, it informs its
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Fig. 4. Marked CPN-checkQ′

successor transitions about its inability to invoke its corresponding WS. When
the unrolling process has finished, one or more OQ attributes will have faulty
values, whilst the rest will have correct values. At this point, a snapshot rep-
resenting the non-successfully executed part of the CPN-EPQ is saved. User is
provided with the possibility to restart the execution later, executing only the
previously failed WSs and the WSs that were never fired for execution. Note
that it is possible that none of the OQ attributes has a correct value, however
at least the snapshot represents an advanced execution state.

Using CPNs, information can be modeled by tokens and the type of informa-
tion can be modeled by the color of those tokens. We define the following colors
associated to places in order to model the unrolling process for checkpointing.

– Valid (v): if a token belonging to a place has color v, it means that the WS

that produced its value was executed successfully.
– Invalid (i): if a token belonging to a place has color i, it means that the WS

that produces its value was not executed successfully; i.e., the WS supposed
to produce its value failed or it was not executed because one of its WSs

predecessors failed.

The following definitions allow the execution of the checkpointing mechanism
in case of failure.

Definition 5 Transactional Composite Web Service. A TCWS is a 4-
tuple (A,S, F, ξ), where:

– A is a finite non-empty set of places, corresponding to input and output
attributes of the WSs;

– S is a finite set of transitions corresponding to the set of WSs ∈ TCWS ;

– ∀s ∈ S, (∃a ∈ A | F (a, s) = 1) ⇔ (a is an input place of s) and ∀s ∈ S,
(∃a ∈ A | F (s, a) = 1) ⇔ (a is an output place of s);

– ξ is a color function such that ξ: CA∪CS with CA: A→∑
A, a color function

such that
∑

A = {v, i} representing, for a ∈ A, either the success or failure
of its predecessor transitions, and CS : S → ∑

S, a color function such that
∑

S = {p, pr,a,ar, c, cr} represents the TP of s ∈ S (TP (s)).
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Definition 6 Marked Executable CPN-EPQ. A marked CPN-EPQ=(A, S,
F , ξ) is a pair (CPN-EPQ,M), where M is a function which assigns tokens (val-
ues) to places such that ∀a ∈ A, M(a) ⊆ {∅, Bag(

∑
A)}, where Bag corresponds

to a set which can contain several occurrences of the same element. The marking
of a CPN represents the current state of the system, i.e., the set of attributes
produced correctly by the system and/or signals indicating failures.

A transition s is fireable when all its predecessor transitions have added a
token to their output places (input places of s). If all of them are valid tokens
we said that s is fireable for execution, otherwise (i.e., at least one of them is an
invalid token) we said that s is fireable for checkpointing. During the unrolling
process for the execution of a TCWS all the predecessor places of s will have the
required tokens for the invocation of s. In case of failures, some of these tokens
will be invalid, as it is shown in the following definition.

Definition 7 Fireable Transition. A marking M enables a transition s for
execution iff all its input places contain tokens such that ∀x ∈ (•s), card(M(x)) ≥
card(•x) ∧ M(x) ⊆ Bag({v}). A marking M enables a transition s for check-
pointing iff all its input places contain tokens such that (∀x ∈ (•s), card(M(x)) ≥
card(•x)) ∧ (∃x ∈ (•s), {i} ∈M(x)).

Definition 8 CPN-EPQ Firing Rules. The firing for execution of a fireable
transition s for a marking M defines a new marking M ′, such that: all tokens
are deleted from its input places (∀x ∈ •s, M(x) = 0) and the WS s is invoked.
These actions are atomically executed. After WS s finishes, tokens are added to
its output places (∀x ∈ (s•), (M(x) ← M(x) ∪ {v})). The firing for checkpointing
of a fireable transition s for a marking M , defines a new marking M ′, such that:
s, its inputs and outputs places, and its valid input attributes are saved; and
tokens are added to its output places (∀x ∈ (s•), (M(x)←M(x) ∪ {i})). These
actions are also atomically executed.

Definition 9 Local Snapshot. A Local Snapshot is the set of data representing
the state of a transition in a CPN. It contains:

– Inputs ws represents the information about input attributes required by s
to become fireable. For each predecessor place of s it contains a set of pairs
token-value, where token contains either v or i depending on whether the
attribute was generated correctly or not, and value contains the actual re-
ceived value iff the attribute was generated correctly (value will be empty iff
the token value is i). Inputs ws will be empty if the transition did not con-
sume the value of any of its predecessor places, or it can contain the value
consumed prior to the checkpointing. If s was executed unsuccessfully, then
InputsNeeded ws will contain all the input values required by s;

– Resultsws represents the output attributes of s iff s was executed successfully.

Definition 10 Global Snapshot. A Global Snapshot (GS) is the set of data
necessary to restart the execution of a TCWS. A GS contains the union of all
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local snapshots, which is the CPN-checkQ′ containing the information of the part
of the TCWS to be restarted, the user query Q, and the I ′Q necessary to restart
the execution.

5 Framework Architecture

In [1], we presented a framework which implements the backward and forward
recovery proposed in [8, 9]. In [18], we present a proposal to extend our frame-
work for considering checkpointing mechanisms. In this section, we first present
a deeper description of the overall architecture of our extended framework and a
detailed explanation of the fault-tolerance algorithms incorporated to the frame-
work. Finally, we present some results showing the reception of partial results in
case of failure, which relaxes the all-or-nothing property to something-or-nothing.

During the TCWS execution there exist two basic variants of execution sce-
narios for component WSs. In sequential scenario, WSs work on the result of
previous services and cannot be invoked until previous services have finished. In
parallel scenario, several services can be invoked simultaneously because they do
not have data flow dependencies. The global TP of TCWSs is affected by the
execution scenarios. Hence, it is mandatory to follow the same CPN unrolling al-
gorithm taken by the Composer in order to ensure that sequential and parallel
execution satisfies the global TP .

The execution of a TCWS in our framework (referenced as Executor) is
managed by an Execution Engine and a collection of software components
called Engine Threads, organized in a three-level architecture. Figure 5 de-
picts the overall architecture of our Executor. In the first level, the Execution
Engine receives the TCWS and its corresponding BRCPN (the compensation
order), both represented by CPNs automatically generated by the Composer.
It launches, in the second layer, an Engine Thread for eachWS in the TCWS.
Each Engine Thread is responsible for the execution control of its WS. They
receive WS inputs, invoke their respective WS, and forward their results to
their peers to continue the execution flow. Hence, the Execution Engine is re-
sponsible for initiating the Engine Threads and the unrolling algorithm, while
Engine Threads are responsible for the actual invocation of WSs monitoring
its execution, and forwarding results to its peers to continue the execution flow.
In case of failure, all of them participate in the recovery process.

By distributing the responsibility of executing a TCWS across several En-
gine Threads, the logical model of our Executor enables distributed execu-
tion and it is independent of its implementation; i.e., this model can be imple-
mented in a distributed memory environment supported by message passing or
in a shared memory platform, e.g., supported by a distributed shared memory
or tuplespace system. The idea is to place the Executor in different physical
nodes (e.g., a high available and reliable computer cluster) from those where ac-
tual WSs are placed. Engine Threads remotely invoke the actual component
WSs. The Execution Engine needs to have access to the WSs Registry, which
contains the WSDL and OWL-S documents. The knowledge required at runtime
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by each Engine Thread (e.g., WS semantic and ontological descriptions, WSs

predecessors and successors, and execution flow control) can be directly extracted
from the CPNs in a shared memory implementation or sent by the Execution

Engine in a distributed implementation.

Fig. 5. Executor Architecture

Typically, WSs are distinguished in atomic and composite WSs. An atomic
WS is one that solely invokes local operations that it consist of (e.g., WSDL
and OWL-S documents define atomic WSs as a collection of operations together
with abstract descriptions of the data being exchanged). A composite WS is one
that additionally accesses other WSs or invokes operations of other WSs. We
consider that transitions in the CPN, representing the TCWS to be executed,
could be atomic WSs or TCWSs. Atomic WSs have its corresponding WSDL
and OWL-S documents. TCWSs can be encapsulated into an Executor; in
this case, the Execution Engine has its corresponding WSDL and OWL-S
documents. Hence, TCWSs may themselves become a WS, making the TCWS

execution a recursive operation, as it is shown in Figure 5.

5.1 Checkpointing Algorithms

This section explains how the fault-tolerant execution control was extended in
order to incorporate the checkpointing mechanism. The whole execution pro-
cess is divided in several phases, in which the Execution Engine and Engine

Threads can participate.

Initial Phase: Whenever an Execution Engine receives a CPN-EPQ and
its corresponding BRCPN-EPQ, it starts an Engine Thread responsible for
each transition in CPN-EPQ, indicating to each one its predecessor and successor
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transitions according to the CPN-EPQ structure; this step means that the Ex-

ecution Engine sends the part of the CPN-EPQ that each Engine Thread

concerns on; then it sends values of attributes in IQ to Engine Threads in
charge of WSs who receive them. In Algorithm 4, lines 1 to 14 describe these
steps.

WS Invocation Phase: Once each Engine Thread is started, it waits un-
til its inputs are produced. When an Engine Thread receives all the needed
inputs, it invokes its corresponding WS. When a WS finishes successfully, the
Engine Thread sends values of WS outputs to Engine Threads representing
successors of its WS. This step emulates the firing rules in the CPN. Note that
all fireable transitions can be invoked in parallel. If a WS fails during the exe-
cution, the Checkpointing phase is executed, in this case the Engine Thread

sends faulty values to its successors to initiate the checkpointing process. When
an Engine Thread receives at least one faulty value among its needed inputs,
the Checkpointing phase is executed. Algorithm 3, lines 1 to 7 and Algorithm 4,
line 17 to 18 describe these steps for Engine Thread and the Execution En-

gine, respectively.

Final Phase: This phase is carried out by both Execution Engine and En-

gine Threads. If the TCWS was successfully executed, the Execution En-

gine notifies all Engine Threads by sending the finish message, recalculates
the Quality of TCWS in case some WSs were replaced, and returns the values
of attributes in OQ to the user. When an Engine Threads receives the finish
message, it exits. In case that compensation is needed, the Execution Engine

receives a compensate message, the process of executing the TCWS is stopped,
and the compensation process is started by sending a compensate message to
all Engine Threads. If an Engine Thread receives a compensate message, it
launches the compensation protocol. If an Execution Engine receives a faulty
value in at least one of the OQ attributes, it executes the Checkpointing phase.
Algorithm 3, lines 8 to 10, describe these steps for Engine Threads, and Al-
gorithm 4, lines 15 to 21 describe these steps for Execution Engine.

Replacing Phase: This phase is carried out by an Engine Thread when a
failure occurs during the execution of its WS. The Engine Thread tries to re-
place the faulty WS by a substitute and from candidates, it selects the best one
according a quality function. According to the transactional property of TCWS,
this phase should be executed until success or can be executed for a maximum
number of times (MAXTries).

Compensation Phase: This phase, carried out by both Execution Engine

and Engine Threads, is executed if a failure occurs in order to leave the sys-
tem in a consistent state. The Engine Thread responsible of the faulty WS

informs Execution Engine about this failure. The Execution Engine sends
a message compensate to all Engine Threads and starts the compensation
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process following a unrolling algorithm over BRCPN-TCWSQ. Once the rest of
Engine Threads receive the message compensate, they apply the firing rules
in BRCPN-TCWSQ to follow the compensation process.

Checkpointing Phase: This phase is carried out by the Execution Engine

and the Engine Threads who cannot invoke their correspondingWSs, because
they are in the path of a failure. The Engine Thread sends faulty values to its
successors, saves its state (snapshot), and sends it to the Execution Engine.
The snapshot consists of values of input attributes (correct and faulty), the name
of its WS, and successors. The correct values obtained in the input attributes
of the failed transitions will be the I ′Q required to restart the execution of the
TCWS. The Execution Engine saves the correct values of OQ attributes,
collects the snapshots of Engine Threads and return this partial response to
the user along with the global snapshot, which is the part of CPN-EPQ that
could no be executed (PARTIAL-CPN-EPQ). Algorithm 1 shows this phase for
the Execution Engine and Engine Threads.

Restart Phase: This phase is carried out by the Execution Engine. First,
all the required data is obtained from the previously saved global snapshot.
Similar to the Initial phase, the Execution Engine starts an Engine Thread

responsible for each transition in PARTIAL-CPN-EPQ, it removes the valid
tokens and values from failed transitions and builds I ′Q with those values, sends
the I ′Q to the corresponding Engine Thread and the unrolling algorithm over
PARTIAL-CPN-EPQ is started by executing Invocation phase and Final phase.
Algorithm 2 describes this phase for the Execution Engine; whilst the Engine
Threads do not take any special action for this phase.

Algorithms for the Replacing and Compensation phases are not shown here
for space reasons. They can be found in [8]. Figure 7 depicts the flow diagrams
showing the phases previously described for the Execution Engine and En-

gine Threads, respectively.

5.2 Experimental Results

We developed a prototype of our proposed approach using Java 6 and MPJ
Express 0.38 library to allow the execution in distributed memory environments.
The deployment was made in a cluster of PCs: one node for the Execution

Engine and one node for each Engine Thread needed to execute the TCWS.
All PCs have the same configuration: Intel Pentium 3.4GHz CPU, 1GB RAM,
Debian GNU/Linux 6.0, and Java 6. They are connected through a 100Mbps
Ethernet interface.

We generated 80 TCWSs of sizes from 3 to 10 WSs. All those TCWSs were
automatically generated by a composition process [6], from synthetic datasets
comprised by 800 WSs with 7 replicas each, for a total of 6400 WSs. Replicas
of WSs have different response times.

The OWLS-API 3.0 was used to parse the WS definitions and to deal with
the OWL classification process.
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Algorithm 1. Checkpointing
begin

Execution Engine:
begin

Save received right values of OQ;
Collect Snapshots from Engine Threads
(ETWSws);
I′
Q ← correctvaluesfromallSnapshots;
Build PARTIAL-CPN-EPQ;
Save PARTIAL-CPN-EPQ as globalsnapshot;
Return GlobalSnapshot reference;

end

Engine Threads:
begin

Send faulty values to Sucessors ETWSws;
Snapshot ETWSws ← received right values and
Sucessors ETWSws;
Send Snapshot ETWSws to Execution Engine;
Return /* the Engine Thread finishes */;

end

end

Algorithm 2. Execution Engine Restart
Input: GS: a reference to a Global Snapshot

begin
Execution Engine:
begin

Load Q, PARTIAL-CPN-EPQ, BRCPN-EPQ,
OWS (Ontology of WSs), OVQ (list of values of
o | o ∈ OQ), I′

Q, InputsNeeded from GS;

/*I′
Q represents the correct values obtained before

failure */

end
repeat

Instantiate an ETWSws;
Send Predecessors ETWSws ←• (•ws);
Send Successors ETWSws ← (ws•)•;
Send InputsNeeded ETWSws; /*Inputs already
received by the ETWSws*/
/* each Engine Thread keeps the part of CPN-EPQ

and BRCPN-EPQ which it concerns on*/

until
∀ws ∈ S | (ws �= wsEEi

) ∧ (ws �= wsEEf
) ∧ ¬(∀a ∈

InputsNeeded ETWSws,M(a) = card(•a));
Send values of I′

Q to ETWSws receiving them ;
Execute Final phase;

end

Fig. 6. Checkpointing & Restart Algorithms

In order to test the checkpointing mechanism, a randomly selected WS fails
during the execution of each TCWS allowing to continue the Petri Net unrolling
and receive all the outputs that were not affected by the failure. We executed
TCWSs comprised of 3, 4, 5, 6, 7, 8, 9, and 10 WSs. Each TCWS was executed
100 times, for a total of 8000 executions. Table 2 shows the different percentages
of outputs received in presence of failures during the 100 executions and the
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Algorithm 3. Engine Thread Algorithm
Input: Predecessors ETWSws, predecessors WSs of ws

Input: Successors ETWSws, successors WSs of ws

Input: WSDLws, OWLSws, semantic web documents

Input: MAXTries: Max number of tries to replace a faulty WS

1 Invocation phase:
begin

InputsNeeded ETWSws ← getInputs(WSDLws, OWLSws);
2 repeat

Wait Result from (Predecessors ETWSws);
Set values to InputsNeeded ETWSws;

until ∀a ∈ InputsNeeded ETWSws,M(a) = card(•a);
/* all the predecessor transitions have finished */
if ∃a ∈ InputsNeeded ETWSws |M(a) ∈ Bag({e}) then

/*one or more predecessors transitions have finished unsuccessfully
Execute Checkpointing phase;

3 success← false;
cantry ← true;
tries← 0;
equivalents ← getEquivalents(WSDLws , OWLSws);

4 ζ(ws′)← R;
5 repeat

Invoke ws;
if (ws fails) then

if TP (ws) ∈ {pr, ar, cr} then

6 Re-invoke WS;

else
Execute Replacing phase;

/*forward recovery*/

else
Wait Result from ws;
ζ(ws′)← E;
Remove tokens from inputs of ws;
Send Results to Successors ETWSws;
success← true;

until (success) ∨ (¬cantry);
7 if ¬success then

if checkpointing is enabled then
Execute Checkpointing phase;

else
Send compensate to Execution Engine;
ζ(ws′)← C ;
Execute Compensation phase;

/*backward recovery*/

else
Execute Final phase;

end
8 Final phase:

begin

9 Wait message;
if message is Finish then

Send Finish message to Predecessors ETWSws;
Return;

else
if message is Snapshot then

Send ETWSws snapshot message to Execution Engine;
10 Return;

else
Execute Compensation phase;

end
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Algorithm 4. Execution Engine Algorithm
Input: Q = (IQ, OQ,WQ, TQ), the user query

Input: CPN-EPQ = (A,S, F, ξ), a CPN representing a TCWS

Input: BRCPN-EPQ = (A′, S′, F−1, ζ), a CPN representing the compensation flow of the
TCWS

Input: OWS: Ontology of WSs

Output: OVQ: List of values of o | o ∈ OQ

Output: QualityQ: quality obtained after executing CPN-EPQ

1 Initial phase:
begin

2 Insert wsEEi
in CPN-EPQ | ((wsEEi

)• = IQ) ∧ ((•wsEEi
) = ∅);

3 Insert ws′EEi
in BRCPN-EPQ | (•ws′EEi

= {a′ ∈ A′ | (a′)• = ∅})∧ ((ws′EEi
)• = ∅);

4 Insert wsEEf
in CPN-EPQ | ((wsEEf

)• = ∅) ∧ ((•wsEEf
) = OQ);

5 Insert ws′EEf
in BRCPN-EPQ | (•ws′EEf

= ∅) ∧ ((ws′EEf
)• = {a′ ∈ A′ | •a′ = ∅});

6 ∀a ∈ (A ∩ IQ), M(a) = 1 ∧ ∀a ∈ (A− IQ), M(a) = 0;
/* Marks the CPN-EPQ with the Initial Marking*/

7 ∀s′ ∈ S′, ζ(s′)← I;
/* the state of all transitions in BRCPN-EPQ is inicial */

8 repeat

9 Instantiate an ETWSws;
10 Send Predecessors ETWSws ←• (•ws);
11 Send Successors ETWSws ← (ws•)•;
12 Send WSDLws, OWLSws; /* documentos semánticos */

/* each Engine Thread keeps the part of CPN-EPQ and BRCPN-EPQ which it
concerns on*/

until ∀ws ∈ S | (ws �= wsEEi
) ∧ (ws �= wsEEf

);

13 Send values of IQ to (wsEEi
)•;

14 Execute Final phase;

end
15 Final phase:

begin

16 repeat
Wait Result from (•(•wsEEf

));

if message compensate is received then
Execute Compensation phase; /*this phase is shown in [8]*/ Exit Final
phase;

else
Set values to OVQ;

until (∀o ∈ OQ,M(o) = card(•o);
/*o has a value an all predecessor transitions have finished*/

17 if ∃a ∈ OVQ |M(o) ∈ Bag({e}) then
/*one or more predecessors transitions of wsEEf

have finished unsuccessfully*/

18 Execute Checkpointing phase;

else

19 Send Finish message to •(•wsEEf
);

20 QualityQ ← recalculate Quality(S);/* Quality is recalculated in case some WSs

were replaced */
21 Return OVQ,QualityQ;

end
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Fig. 7. Execution Engine & Engine Thread flow diagrams

number of WSs that will take part on the execution restart in order to get the
100% of the outputs. For example, for the TCWS of size 10, there was obtained
the 91%, 86%, or 81% of the outputs during different executions, and there was
not possible to execute a maximum of 3 WSs out of 10.

The all-or-nothing property is then relaxed to something-to-all, since it is
possible to generate partial results and deliver them to the user, whilst the
rest of the execution can be performed later; of course, it is up to the user to
determine the usefulness of the partial results.

6 Related Work

Related work in the field of checkpointing for TCWSs is scarce. Prior works can
be classified into two broad categories: works that require the user to specify the
exact checkpointing location [15, 19, 21] and works that perform checkpointing
in an automatic fashion[17, 22].
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Table 2. Partial Outputs Results

TCWS size Output received (%) WSs not executed after the failure

03 72 - 58 - 43 1 - 2

04 78 - 67 - 56 1 - 2

05 82 - 73 - 64 1 - 2

06 85 - 77 - 70 1 - 2

07 87 - 80 - 74 - 60 1 - 2 - 3

08 88 - 82 - 77 1 - 2

09 90 - 85 - 79 1 - 2

10 91 - 86 - 81 1 - 2 - 3

The problem addressed in [15] is the strong mobility of CWSs; which is
defined as the ability to migrate a running WS-BPEL process from a host to
another to be resumed from a previous execution state. The proposed solution
uses Aspect-Oriented Programming (AOP) in order to enable dynamic capture
and recovery of a WS-BPEL process state. In [21] authors present a check-
pointing approach based on Assurance Points (APs) and the use of integration
rules. An AP is a combined logical and physical checkpoint, which during nor-
mal execution, stores execution state and invokes integration rules that check
pre-conditions, post-conditions, and other application rule conditions. APs are
also used as rollback points. Integration rules can invoke backward recovery to
specific APs using compensation as well as forward recovery through rechecking
preconditions before retry attempts or through execution of contingencies and
alternative execution paths. APs together with integration rules provide an in-
creased level of consistency checking as well as backward and forward recovery
actions. This work does not specify the use of APs to restart the execution of
the CWS later, or in another system. The goal of [19] is to provide a check-
pointing scheme as the foundation for a recovery strategy for interorganizational
information exchange. The authors adopt concepts from the mobile computing
literature to decompose workflows into mobile agent-driven processes that will
prospectively attach to web services-based organizational docking stations. This
decomposition is extended in order to define logical points, within the dynamics
of the entire workflow execution, that provide for locating accurate and consis-
tent states of the system for recovery in case of a failure.

In contrast with works presented in [15, 19, 21], our checkpointing strategy is
transparent to users and WS developers. They only have to ask for that facility,
when a TCWS is submitted to be executed. As these works do, our strategy
can be combined with backward and forward recovery techniques.

Recently research has been done in contrast to the checkpointing techniques
wherein users have to specify the checkpointing location. In [22] authors pro-
pose a checkpointing policy which specifies that when a WS calls another WS,
the calling WS has to save its state. The proposed checkpointing policy uses
Predicted Execution Time (PET) and Mean Time Between Failures (MTBF),
to decide on each WS invocation whether a checkpoint has to be taken or not.



Modeling Snapshot of Composite WS Execution by Colored Petri Nets 43

For example, is a WS with PET < MTBF is called, then it is known that it will
complete its execution within its MTBF and there is no need for checkpointing.
In [17] the idea of checkpoints is rather to keep the execution history containing
all successful operations, and at resume time, the system starts the workflow
from the beginning but skips all operations that succeeded earlier.

As our approach, works described in [17, 22], proceed with checkpoints, with-
out user intervention. In contrast, in our strategy, checkpoints are taken only in
case of failures, so we do not increase the overhead while the execution is free of
failures.

7 Conclusions and Future Work

In this work, we have presented a formal definition based on CPN properties for
our checkpointing approach, providing an alternative to the previously presented
all-or-nothing fault-tolerance mechanisms of WS retry, WS substitution, and
compensation. The checkpointing mechanism defined in this paper allows to
relax the all-or-nothing property to a something-to-all property. The idea is to
execute a TCWS as much as possible (in the presence of failures) and then,
taking a snapshot of that state. This mechanism allows users to receive partial
answers as soon as they are produced (something) and provides the option of
restarting the TCWS (to get all later) without losing the work previously done
and without affecting the original transactional property. The formal definition
was done by extending definitions of the CPN unrolling execution process and
introducing new ones specific to checkpointing. We are currently working on
an implementation comprising all our proposed fault-tolerance mechanisms in
order to study and compare the performance among them and to provide a fully
working real-world implementation.
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