
Anomaly Detection in the Cloud: Detecting

Security Incidents via Machine Learning�

Matthias Gander1, Michael Felderer1, Basel Katt1, Adrian Tolbaru1,
Ruth Breu1, and Alessandro Moschitti2

1 Institute of Computer Science, University of Innsbruck, Austria
2 Information Engineering and Computer Science Department,

University of Trento, Italy

Abstract. Cloud computing is now on the verge of being embraced as a
serious usage-model. However, while outsourcing services and workflows
into the cloud provides indisputable benefits in terms of flexibility of costs
and scalability, there is little advance in security (which can influence re-
liability), transparency and incident handling. The problem of applying
the existing security tools in the cloud is twofold. First, these tools do
not consider the specific attacks and challenges of cloud environments,
e.g., cross-VM side-channel attacks. Second, these tools focus on attacks
and threats at only one layer of abstraction, e.g., the network, the ser-
vice, or the workflow layers. Thus, the semantic gap between events and
alerts at different layers is still an open issue. The aim of this paper is to
present ongoing work towards a Monitoring-as-a-Service anomaly detec-
tion framework in a hybrid or public cloud. The goal of our framework
is twofold. First it closes the gap between incidents at different layers of
cloud-sourced workflows, namely we focus both on the workflow and the
infrastracture layers. Second, our framework tackles challenges stemming
from cloud usage, like multi-tenancy. Our framework uses complex event
processing rules and machine learning, to detect populate user-specified
metrics that can be used to assess the security status of the monitored
system.

Keywords: Monitoring, Behaviour, Anomaly Detection, Clustering,
Fingerprints.

1 Introduction

Building your own monolithic IT infrastructure is slowly rendered obsolete by
cost efficient cloud solutions that promise on-demand scalability with leased

� This work is supported by QE LaB-Living Models for Open Systems (FFG 822740),
and SECTISSIMO (FWF 20388) and has been partially supported by the Eu-
ropean Community’s Seventh Framework Programme (FP7/2007-2013) under the
grants #247758: EternalS – Trustworthy Eternal Systems via Evolving Software,
Data and Knowledge, and #288024: LiMoSINe – Linguistically Motivated Semantic
aggregation engiNes.

A. Moschitti and B. Plank (Eds.): EternalS 2013, CCIS 379, pp. 103–116, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

104 M. Gander et al.

hardware, i.e. by contracting Infrastructure as a Service (IaaS) provider such as
Amazon’s “elastic compute cloud” EC2 cloud) [1, 2]. Therefore it is not surpris-
ing that corporations opt to outsource IT related computing units, such as hosts
or services, to such clouds (cloud-sourcing) to become cloud tenants. Leading
analysts forecast a dramatic increase of cloud services revenue, i.e. Gartner, Inc.
forecast Software as a Service (SaaS) to increase 17.9% from the 2011 revenue
of $12.3 billion.1 Cloud tenants though, often have to pay a price. Increased
scalability of resources demands dynamical compositions of computing machin-
ery resulting in design inherent weaknesses, for instance, tenants share the same
cloud and are potentially allowed to interact by design [3].

This results in potentially hostile machines residing within the corporate net-
work that has to be secured. Hostile machines on the network tear security holes
in multiple layers of computation. Infrastructure items, such as hosts, can be
broken into by a competing company to attain confidential information about
its users and other data that is stored on the machine. This in turn allows
workflows to be changed, i.e. by breaking in a system and patching the code-
base or the platform itself [4, 5], or simply by reverse engineering workflows and
creating rogue clients. A thusly changed workflow has semantical consequences
on its logic, for instance, bypassed checks for sufficient funds in a credit card
application, a compromised XACML (or Kerberos) infrastructure that grants
authorizational access to restricted entities.

Another problem is that attacks themselves have become sneakier. Attackers
tend to use more advanced techniques, and more persistence to eventually mask
an attack as inside job2. For example, if credentials of legitimate service users
are stolen and information is leaked gradually and persistently over a longer time
period. Such attacks usually manifest in a change of behavior of entities involved
in any given activity (e.g. behavioural changes observed in off-key working hours,
spiking access over document data etc.).

To decrease the chance of successful attacks, security monitoring was intro-
duced to analyse events committed by sensors in the corporate network. The
analysis of events usually involves signature-based methods. Features, extracted
from logged event data, are compared to features in attack signatures which in
turn are provided by experts [6, 7]. Other approaches, e.g. anomaly detection,
often make use of machine learning-based algorithms [8]. Anomalies are an unex-
pected event (or a series of unexpected events) that exhibit a significant change in
behaviour of an entity, for example, a user. If anomalous behavior can be distin-
guished from normal behavior by hard bounds that are known beforehand, then
signature-based approaches can be used to classify attacks immediately. How-
ever, when it is hard to specify all entities and their normal behaviour completely
beforehand, then statistical measures have to be used to classify deviations in
oder to detect possible attacks.

1 http://www.gartner.com/it/page.jsp?id=1963815, Accessed: July 30, 2012.
2 http://www.schneier.com/blog/archives/2011/11/advanced_persis.html, Ac-
cessed: July 30, 2012.

http://www.gartner.com/it/page.jsp?id=1963815
http://www.schneier.com/blog/archives/2011/11/advanced_persis.html

Detecting Anomalous Entities in the Cloud 105

Unfortunately, probabilities and patterns of unwanted behaviour are very hard
to procure and labeled training data for a new system is sparse [8, 9]. But it is
reasonable to assume that most activity in a network is not triggered by com-
promised machines and attacks are represented by only a tiny fraction of the
overall behaviour. Therefore, methods provided by unsupervised learning yield
outliers, which in turn may represent attacks [9–11]. Unsupervised learning can
roughly be classified in, nearest-neighbour, rule-mining, statistical, and cluster-
ing techniques. Each of which have advantages and disadvantages, depending on
how they are used, see Chandola et al. [11]. For our purpose of grouping anoma-
lous instances, clustering seems best suited. The disadvantages of clustering,
i.e. the complexity of clustering algorithms and possible misclassifications, can
be reduced by leveraging optimized algorithms, assumptions, and false-positive
reductions [9, 12].

Both methods, signature-based and anomaly-based, have strengths and weak-
nesses. The main drawback of signature-based methods is the inherent limitation
that they always have to consult the signature database to match detected fea-
tures with the information therein [9]. If a new attack is out, it is probable that
the signature database does not contain the latest attack pattern. Anomaly-
based detection techniques, on other hand, have their true potential in detecting
previously unseen patterns [8]. A common limitation both detection techniques
share is a lack of “context”. This context needs to provide information about
inherent relations among users, services they use, the hosts from which they
operate, and for which workflow they are assigned to. For instance, it is not
sufficient to know that a service has longer than average response time, the
correlation of response time and measurable changes of user and network host
behaviour offers more valuable clues.

In order to get benefits from signature- and anomaly-based monitoring we
propose to combine them into a context-based anomaly detection framework.
This framework consists of three main tiers:

i The specification of a DSL which allows to model the cloud-sourced IT land-
scape in detail such that workflows can be specified, monitoring rules can be
generated, and computing entities can be put into relation.

ii The detection of workflow aberrations, or semantic gaps, caused by attacks
via Complex Event Processing (CEP) based on monitoring rules generated
by the model. CEP is a signature-based method to analyze event streams in
a midtoupper size IT infrastructure [13]. The purpose of CEP is to derive
more meaningful events (in this case alerts).

iii The detection of abnormal entities, i.e. users, services, network hosts, and
workflows, by leveraging unsupervised machine learning, to detect unforeseen
changes in the behavior.

The application of our framework in a cloud-sourced health-care environment
provides the means necessary to unravel the following incidents:

– Semantic Gaps. A document retrieval workflow doctor accessing the database
without proof of first having received a permission token, replay attacks,
workflow aberrations through patched code.

106 M. Gander et al.

– Anomalies. An increase of service activity, service calls at unusual hours,
abnormal users, detectable by a gradually increasing number of document
requests, suspiciously active hosts, but also a change in flow behavior of
service calls and network hosts (i.e. payload analysis of web-service parame-
ters). The entities, services, users, hosts, workflows, constituting the unusual
behaviour are labeled as anomaly.

The paper will continue with a description of the framework in Section 2, in-
cluding the DSL 2.1, the usage of CEP 2.2, profiling entities 2.3 and anomaly
detection via fingerprints 2.4. Section 3 depicts the used architecture and Sec-
tions 5 and 4 discuss future work and related work respectively.

2 Framework Overview

In this section we discuss the framework in more detail. We begin with the
DSL to specify the IT infrastructure consisting of workflows, services, hosts,
users, and their relations. This in turn leads to the discussion of how CEP is
included in the framework. Afterwards our discussion will continue with details
about the profiling of entities for anomaly detection purposes, i.e. discuss the
different profiles, the features for fingerprints, the clustering method and distance
measure, and round it up with a description of the architecture.

Every monitoring system needs events to determine the actual state of the
system. Our framework expects events from the infrastructure, in form of TCP
and UDP packets sent from the machines in the network, and in form of ser-
vice calls. TCP and UDP packets are aggregated as flows that have multiple
characteristics, such as, source, destination, ports, time, among others, dura-
tion. Service events are used to derive the current state of the services, show
user behaviour (i.e. access requests), and give general information on the state
of workflows. Information that should be present is, the duration of a call, the
time, the user, and the object id that was requested.

2.1 A DSL for IT Landscapes

The use of metamodels or domain specific languages (DSL) is not uncommon [14,
15], their main use is to provide the vocabulary for experts to let them express their
knowledge to represent the system ina textual 3 (or graphical)model.Thesemodels
can later be accessed for look-ups, reasoning, and/or code generation.

Our DSL, therefore, allows the creation of a model that in turn allows harvest-
ing information of entities (i.e. traceability of deployed entities to model infor-
mation) and monitoring rule-generation. The model in Figure 1 reuses concepts
from Breu et al. [14, 15], for example the introduction of multiple conceptual
layers. The event-driven process chain paradigm [16] that is used in the model
facilitates the modeling process, since it allows to represent services through

3 xText: http://www.eclipse.org/Xtext , Accessed: July 20, 2012.

http://www.eclipse.org/Xtext

Detecting Anomalous Entities in the Cloud 107

Fig. 1. A language to describe an IT landscape

their behaviour in form of events. A workflow activity, therefore, is not modeled
via services and their call-sequence but rather as a series of events.

A model derived from the DSL contains three layers, Workflow, Service and
Infrastructure. The workflow layer contains three classes, these are WF Activity,
Role, and Actor. Activities and service events are related by arcs (Arc) which
describe the way a workflow is executed. These arcs can have different types, i.e.
AND, OR, XOR, SEQ. SEQ denotes that if said arc lies between two workflow
activities A and B, then A is followed by B. AND, OR and XOR relate events
in a boolean fashion. For instance A AND B,C denotes that after A, B and C is
executed. Roles, role is a set of responsibilities and obligations for a stakeholder,
that can influence heuristics during the analysis of events. As discussed above,
services are not modeled directly, but are modelled as ServiceEvent of various
types (EventTypeEnum). Event emitters are services, on top of hosts. Hence,
among other features provided by the service event, i.e. variable ones such as
timestamps and session ids (to identify the Actor), we assume a source and a
destination pointing to the hosts that were responsible for the event. This allows
us to connect the service layer to the infrastructure layer. Hosts (Node in the
model) can be of various types (NodeType), this makes it easier to map events
to their corresponding workflow activity during runtime.

Identifier defines the set of identifiers, i.e. all elements are connected to it via
identifiedBy, such as hosts, service events, and actors are identified by it (via
UUID and a location). The elements doing the execution are hosts from the
infrastructure, hence the (runsOn) class.

108 M. Gander et al.

2.2 Complex Event Processing

To monitor proper execution of systems, rule-based approaches tend to be used,
i.e. in form of CEP. For CEP much research has been invested in query lan-
guages to handle the stream of events in query-based languages similar to SQL4,
ESPER5, Oracle CEP6, Coral87 and Aleri8. In our case we need to listen for
events that are modelled beforehand, i.e. we need to listen for sequences that
represent a workflow. These sequences give all the information necessary to infer
who is responsible for certain actions. Part of our work focuses on the creation
of CEP rules automatically based on the model created by the expert. For CEP
rules the Esper Query Language (EQL)9 in combination with the Esper CEP
engine was chosen, since it is open source (GPL GNU Public License v2.0), has
an active community and has shown potential in several benchmarks [17]. The
translation from workflow models to query rules is straight forward, since EQL
provides the same boolean logical connectives as our model and also provides the
possibility to model sequences −−→

seq
. For instance, the formula Ev0 −−→

seq
Ev1 is

only satisfied if and only if Ev0 is emmitted before Ev1. In summary a workflow
model, as used for compliance detection, is nothing more than a series of CEP
rules that are verified by the CEP engine.

2.3 Profiling of Entities

To determine anomalies in the activity of a corporate network, the accounting
information of banks, or more general in usage behaviours, it is common to first
create a profile that describes a normal behaviour of key entities [18, 19]. The
profile types, service, user, host, and workflow, that we consider reflect the key
entities that are involved in an on-line data processing. Gartner, Inc. [20] states,
for instance, that there is the need for user profiling to monitor user behaviour
to prevent data theft. Service profiles are needed to determine, among others,
a gradual decrease of performance compared to itself or an overall different
behaviour from other services. Communication patterns among hosts also need
to be considered in form of a host profile. Outliers in each of these types of entities
have an impact on the performance/security of workflows and their activity
profile.

Assume, for instance, a compromised machine that gradually increases the
number of requests for classified object information in the name of an existing
user U over service S by using machinesM0..n. Normally, this is not easy to trace,
especially if U has permissions to query restricted information (no CEP alerts
will be generated). A time-based analysis, though, yields detectable changes

4 http://www.w3schools.com/sql/default.asp, Accessed: July 20, 2012.
5 http://esper.codehaus.org/, Accessed: July 20, 2012.
6 http://tinyurl.com/OracleCEP, Accessed: July 20, 2012.
7 http://tinyurl.com/Coral8CEP, Accessed: July 20, 2012.
8 http://tinyurl.com/AleriStreaming, Accessed: July 20, 201.2.
9 http://esper.codehaus.org/, Accessed: July 20, 2012.

http://www.w3schools.com/sql/default.asp
http://esper.codehaus.org/
http://tinyurl.com/OracleCEP
http://tinyurl.com/Coral8CEP
http://tinyurl.com/AleriStreaming
http://esper.codehaus.org/

Detecting Anomalous Entities in the Cloud 109

in the behaviour of U, S, and M0..n. These are, more queries in U ’s name, more
queries spread to machines M0..n, more queries at unusual hours for S by U , and
at the end, a detectable change of the workflow behaviour itself. The profiles are
further refined into, an immediate, hourly, and monthly track.

i To perform an on-line analysis of individual service events, CEP is used. CEP
alerts have an immediate impact on the immediate track as well as statistical
information gathered from the event itself, i.e. z-scores from parameters,
duration, and the payload.

ii An hourly track allows to aggregate some more information about hourly
deviances, for instance, the average number of calls for a service, the number
of its users, average call duration, extreme values such as maximum duration
and minimum duration, the number of alerts produced by the immediate
track during selected hours, and more.

iii To assess more subtle patterns of deviance, a longer time-period is needed.
To give an example consider the following scenario of a persistent attack. A
competing company or government managed to break into the system and
hides its activities of espionage, e.g., by leaking of sensitive documents, in
form of an insider attack. For this, the real attackers stole the credentials
of some user U to gradually query more and more documents, for instance
creating 2-3% more queries per day (hour) than was normal. The immediate
and hourly track are not built to detect such subtle aberrations and, hence,
fail to detect them. The comparison of absolute access numbers over, for
instance a monthly basis, shows a huge increase of query activity.

Information from the hourly (h) and monthly (m) track of an entity is rep-
resented by fingerprints (F e

h , F
e
m) and represent, hence, a measure of the overall

behaviour of the selected entity (e). Fingerprints are basically feature vectors
vi = (vi0, . . . , vin−1), containing continuous data. Fingerprints contain for in-
stance, the number of CEP alerts in an hour, the number of alerts raised from
immediate profiles, or z-score outliers. Our framework uses these fingerprints to
compare its behaviour to other entities’ behaviours but also to measure potential
deviances of its own behaviour over time.

2.4 Clustering Fingerprints for Anomaly Detection

To determine abnormal entities in relation to other entities of the same type it
is necessary to compare individual features of a profile and attain a sense of dis-
tance. Since individual characteristics of a profile might not change sufficiently
to determine that an entity is an anomaly, we take into consideration all of the
individual features that were collected. To take all features into consideration
clustering can be used [21]. Clustering makes use of the inherent structure of
data and groups data instances (clustering) by common attributes and a simi-
larity measure. After the outliers have been found, the model can then be used
to further link entities and detect correlations among outlying users, and, for
instance, services. Figure 2 summarizes how the layers are related.

110 M. Gander et al.

Fig. 2. Overview of connecting the layers

Although other distance measures exist, e.g., Jaccard, Dice, and Russell/Rao
[21, 22], which have their use when comparing dichotomous data, the measure
of distance which we use is the Euclidean metric, see Formula 1. It gives us the
opportunity to measure distances of continuous multi-dimensional variables, i.e.,
vi ∈ Rd.

d(vi,v
′
i) =

(
n−1∑
k=0

(vik − v′
ik)

2

) 1
2

(1)

Various clustering algorithms have been proposed, e.g. DBSCAN [23]. DB-
SCAN finds clusters based on a density measure, i.e., it finds clusters in which
data instances have only a maximal distance to each other. Hence, points near
to each other are grouped in the same cluster. This may lead to arbitrary shaped
clusters, including spherical cluster shapes. On the one hand, arbitrary shaped
clusters do not lead to any clear results, and on the other hand, clusters in our
case might have varying density values ε, which is problematic for DBSCAN. The
algorithm of our choice is fixed-width clustering [9, 24]. The algorithm, described
in Figure 3, has the benefit of a better runtime complexity, compared to other
clustering algorithms, e.g., standard k-means, since it computes clusters with
just a single passage through the data instances (fingerprints). In fixed-width
clustering, clusters have a maximal width and a cluster center, called centroid.
Data instances that are clustered based on their feature vector either surpass
the maximal width (based on the distance measure) and create a new cluster
or have a smaller distance and become part of the cluster and have a certain
distance to its centroid. The fewer data instances are inside a cluster the more
probable it is that those data instances are in fact outliers. This is basically the
assumption discussed before: normal behaviour represents the majority of data
instances whereas abnormal behaviour is represented by only few data instances
(which represent potential attacks). Hence, clusters containing fewer instances
than a user-configured threshold, represent anomalous data points. For instance

Detecting Anomalous Entities in the Cloud 111

if less than 1% of data instances are within a cluster it is labeled as anoma-
lous. We leverage the distance notation from Formula 1 to d(vi, C) to denote
the distance from a feature vector to a cluster (represented by its centroid). The
algorithm to cluster the fingerprints, as described in [24, 9], consists of 3 steps:

1. The set S of clusters is first initialized to the empty set.
2. A fingerprint vi = (vi, . . . ,vin−1) is taken from the set of fingerprints (unlabeled

set of fingerprints).
IF The set S is still empty then the fingerprint will create a new cluster C and
vi will be the centroid.
ELSE The cluster C with the smallest distance is selected arg min

C∈S
(d(vi, C))

such that the fingerprint does not surpass the maximal width. If such a cluster
is found, the fingerprint is inserted, otherwise a new cluster is generated and
vi will be the centroid.

3. The second step is repeated for all remaining fingerprints.

Fig. 3. Clustering as described in [24, 9]

Detecting Abnormal Entities and False-Positives. Clusters containing less
fingerprints than the user-specified threshold are automatically labeled as outliers.
The fingerprints within, and their entities they represent, are then also labeled
as anomalous. For each entity there are two possibilities for creating an anomaly
alert, (i) either through a change of behaviour from itself, or (ii) by being substan-
tially different from other entities of the same type. The idea behind (i) is that the
system collects fingerprints for a single entity over an amount of time, i.e., hours
or months, and clusters them. If an entity did not change its behaviour, its fin-
gerprints are in the same dense cluster c. The more changes an entity undergoes
(stored in the behavioural profile) the more the fingerprints change. Eventually
the generated fingerprint surpasses the distance to the centroid of c and results in
an anomaly alert. In case of (ii) fingerprints are used to compare entities among
each other. A user, who exhibits a significant different usage pattern, creates his
own cluster and is labeled as anomalous. In case a new user, service, or host is
introduced to the system, it can be determined automatically if said entity is ab-
normal or not, simply by comparing its fingerprint.

Through the use of the domain model, entities are put in relation to each
other, i.e., users to hosts, or services to workflows. Anomalies are, thus, put into
context and alerts propagated upwards. For instance, abnormal services, hosts,
and users, determine the security status of the assigned workflows. Vice-versa,
drilling down on an abnormal workflow (e.g., too much network traffic or too
many document queries), exposes abnormal entities, e.g., anomalous services,
users, hosts, and speeds-up root-cause analysis.

It is possible, even likely, that some clusters that are detected anomalous are
actually not anomalous. Groups of fileservers will, for instance, have different
fingerprints than mail servers or timeservers. It is therefore important to consider
various degrees of optimization to prevent false-positives. There are a couple
of options, since the clustering algorithm is parameterized by two variables,

112 M. Gander et al.

Fig. 4. Overview of the monitoring architecture

the width and the threshold for anomalies, tweaking either of them will reduce
false-positives. An increased cluster-width allows sparse clusters, exhibiting a
significant higher variance, to be normal. Rising the threshold allows to have
clusters with few instances to be normal as well. Another option is the creation
of tests to determine the true state of an entity, but that is left for future work.
If a cluster, and the ensuing entities within, are still labeled as anomalies the
framework provides to relabel them as normal.

3 Architecture

Figure 4 indicates the different components of our monitoring architecture, which
can be offered by a cloud provider as a Monitoring as a Service solution. A
tenant uses the DSL provided by the modeling component to provide a model
which describes his IT landscape. This model is aligned to the three layers we
discussed above. Based on the model, rules to detect workflow non-compliance
are created to configure the CEP engine. To customize the monitoring service,
the tenant supplies the policy engine with policies (which are rules or metrics)
to enable the cloud provider to react on alerts. Policies specify (i) the gravity of
alerts and (ii) what should happen in case they happen. By providing a policy, a
tenant bids the cloud provider to cut off a virtual host from the network, if said
host is classified as an information leaking host. This state can be mantained
until the host is classified as normal. The event processing component consists
of service and network sensors as well as a normalization feature extraction
element. The sensors act as event sinks for multiple service and network event

Detecting Anomalous Entities in the Cloud 113

emitter sources. The service sensor receives JSON10 encoded service call data,
whereas the network monitor is built as a netflow-collector. Analysis of workflow
compliance (i.e. via CEP) and outlier detection (i.e., via Clustering) is done
in the analysis component. Statistical methods, i.e., z-scores are computed by
“The Apache Commons Mathematics Library”.11 The CEP engine of choice
is ESPER12. Based on the outcome of the analysis and the severity of alerts,
the policy engine populates the dashboard and determines reactive measures for
the cloud provider (policies provided by the tenant). The dashboard displays
integral information about a tenant’s infrastructure, i.e., the infrastructure in
tabular form, important alerts, and anomalous entities.

4 Related Work

In this section we discuss related work in the areas of cloud security monitoring,
anomaly detection, and CEP. In the area of cloud security monitoring several
related papers have been published, yet among those [25] seems the most related.
Vieira et al. [25] focus on distributed architectures in grid and cloud comput-
ing and perform behavioural analysis via neural networks. [25] leverage neural
networks for behavioural analysis we use clustering. Moreover the anomalies we
find are disjoint from theirs. There has been plenty of research for anomaly de-
tection via clustering, a survey on this topic is provided by [8]. Clustering is
quite versatile as the approaches in [9, 24, 10, 12] point out. Portnoy et al. [9]
detect attacks, e.g., denial of service, in the KDD 1999 data via clustering of
network activity set.13 Gu et al. [12] use clustering for the detection of botnets
by a framework called “Botminer”. The Authors in [10] improve clustering for
NIDS by using a density-based clustering algorithm and a grid-based metric and
evaluate their efforts on the KDD 1999 data set. To measure hosts we create
profiles of their network behaviour by sampling their TCP/UDP flows based
on [26, 12]. To our knowledge, the clustering algorithm itself was first presented
in [9]. Instead of clustering individual multi-dimensional features form the KDD
training set we cluster fingerprints of various entities. The main difference from
the proposed work of Gu et al. [12] is that the former only profiles hosts for the
specific detection of botnets, whereas we only try to find outliers and assemble
outliers in a holistic profile of the infrastructure. The approach presented in [26]
is more similar to ours since it also profiles machines in the network. But we’re
not restricted to machines only, but also services, users, and workflows.

The multi-tier DSL proposed in this paper allows the definition of node hier-
archies, roles, actors, and distinguishes three layers. These design decisions are
in its core similar to [14, 15]. Breu and Innerhofer et al. provide a model-based
approach with concepts for security management. There is related work for DSLs

10 http://www.json.org/, Accessed: July 30, 2012.
11 http://commons.apache.org/math/, Accessed: July 30, 2012.
12 http://esper.codehaus.org/, Accessed: July 20, 2012.
13 http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html, Accessed: July 20,

2012.

http://www.json.org/
http://commons.apache.org/math/
http://esper.codehaus.org/
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

114 M. Gander et al.

to create service infrastructures Berre et al. [27] present the Service Oriented Ar-
chitecture Modeling Language (SoaML) and Popescu et al. provide the Service
Markup Language SML. SoaML was not desireable for our scenario, since our in-
terest was more cloud oriented than SOA-centric. Our DSL allows the definition
of event-sequences, which in turn allow to detect deviances to rules generated
by the workflow model. The paradigm of modeling services as events is simi-
lar to event-driven process chains (EPC), discussed in-depth in [28]. Workflow
compliance in SOA via CEP has been discussed by Mulo et al. [16]. A service
invocation is regarded as an event and business process activities as event-trails.
These event-trails guide the creation of queries which a CEP engine uses to
identify and monitor business activities. Anomaly detection itself has been done
frequently in many domains, though to the best of our knowledge, there is no
cloud monitoring approach that allows CEP and anomaly detection to monitor
(a) the execution of workflows for semantic gaps and (b) detect infrastructure
anomalies relative to said workflows. Due to the formal representation of “be-
haviour” of entities we’re able to pinpoint suspicious services, users, hosts, and
workflows.

5 Conclusion and Future Work

We have sketched a context-based anomaly detection framework to facilitate
real-time monitoring of cloud-sourced workflows and infrastructures. Our re-
search differs from existing monitoring work as we aim to mitigate cloud threat-
scenarios with web services and infrastructure anomaly detection, and CEP. The
framework aims to keep multiple profiles of entities on various layers and to link
detected anomalies and semantic gaps to workflows. Future work will consist of,

– An implementation and an evaluation based on a real-world scenario. The
planned evaluation will consist of a real-life healthcare scenario where ser-
vices, data, and hosts, are outsourced to an IaaS cloud. The architecture
consists of all services necessary to allow a regulated flow of action in a
hospital, e.g., image retrieval services, diagnose services, and an XACML-
Kerberos like access control infrastructure. Based on the runtime behaviour
of the system we train our machine-learning component and measure de-
viations of user- and network-activity. To measure the effectiveness of our
approach the healthcare architecture will be subject to various use cases/at-
tacks, i.e., a failed XACML architecture, leak attacks from insiders, fuzzy
security-testing of web-services from other tenants, or TCP/UDP malware
propagation across the cloud. The evaluation will show if the anomaly de-
tection can provide information about these attacks.

– Carefully evaluating other clustering methods, e.g., Entropy Maximization,
to reduce false-positives and attain a better clustering result.

– A CEP rule repository to further allow the reduction of false-positives with
domain knowledge, detect additional signature-based events to augment the
profiles for entities in general. Along the way goes the inclusion of other

Detecting Anomalous Entities in the Cloud 115

monitoring tools such as Snort14 and Ossec15 to get a more elaborate profile
for hosts.

– Finding anomalies is a good first step, but it serves a wider purpose, i.e.,
the semi-automatic labeling of clusters via supervised learning. First, normal
and anomalous clusters are labeled, then based on the fingerprints in these
clusters training data for supervised learning, e.g., Naive-Bayes, Random
Forests, is easily generated. New fingerprints can then be readily classified
as a specific form of behaviour.

References

1. Amazon, EC: Amazon elastic compute cloud (amazon ec2). Amazon Elastic Com-
pute Cloud, Amazon EC2 (2010)

2. Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G.,
Patterson, D., Rabkin, A., Stoica, I., et al.: A view of cloud computing. Commu-
nications of the ACM 53(4), 50–58 (2010)

3. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, you, get off of my cloud:
exploring information leakage in third-party compute clouds. In: Proceedings of the
16th ACM Conference on Computer and Communications Security, pp. 199–212.
ACM (2009)

4. Walker-Morgan, D.: Vsftpd backdoor discovered in source code. Website (2011),
http://h-online.com/-1272310 (visited: July 4, 2011)

5. Hoglund, G., Butler, J.: Rootkits: subverting the Windows kernel. Addison-Wesley
Professional (2006)

6. Koziol, J.: Intrusion Detection with Snort, 1st edn. Sams, Indianapolis (2003)
7. Trend Micro, Inc.: Ossec documentation, http://www.ossec.net/ (accessed: De-

cember 14, 2010)
8. Garcia-Teodoro, P., Diaz-Verdejo, J., Macia-Fernandez, G., Vazquez, E.: Anomaly-

based Network Intrusion Detection: Techniques, Systems and Challenges. Comput-
ers & Security 28(1-2), 18–28 (2009)

9. Portnoy, L., Eskin, E., Stolfo, S.: Intrusion detection with unlabeled data using
clustering. In: Proceedings of ACM CSS Workshop on Data Mining Applied to
Security (2001)

10. Leung, K., Leckie, C.: Unsupervised anomaly detection in network intrusion detec-
tion using clusters. In: Proceedings of the Twenty-eighth Australasian Conference
on Computer Science, vol. 38, pp. 333–342 (2005)

11. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. ACM Com-
puting Surveys (CSUR) 41(3), 15 (2009)

12. Gu, G., Perdisci, R., Zhang, J., Lee, W.: Botminer: clustering analysis of network
traffic for protocol-and structure-independent botnet detection. In: Proceedings of
the 17th Conference on Security Symposium, pp. 139–154 (2008)

13. Eckert, M., Bry, F.: Complex Event Processing, CEP (2009)
14. Breu, R., Innerhofer-Oberperfler, F., Yautsiukhin, A.: Quantitative assessment of

enterprise security system. In: The Third International Conference on Availability,
Reliability and Security, pp. 921–928. IEEE (2008)

14 http://www.snort.org/, Accessed: July 30, 2012.
15 http://www.ossec.net/, Accessed: July 30, 2012.

http://h-online.com/-1272310
http://www.ossec.net/
http://www.snort.org/
http://www.ossec.net/

116 M. Gander et al.

15. Innerhofer-Oberperfler, F., Breu, R., Hafner, M.: Living security collaborative se-
curity management in a changing world. In: Parallel and Distributed Computing
and Networks/720: Software Engineering. ACTA Press (2011)

16. Mulo, E., Zdun, U., Dustdar, S.: Monitoring web service event trails for business
compliance. In: 2009 IEEE International Conference on Service-Oriented Comput-
ing and Applications (SOCA), pp. 1–8. IEEE (2009)

17. Grohe, S., Schlameu, C., Sommer, R.: Performancevergleich von cep-engines. Tech-
nical report, Hochschulschriftenserver der Universitt Stuttgart, Germany (2010),
http://elib.uni-stuttgart.de/opus/oai2/oai2.php

18. Denning, D.: An intrusion-detection model. IEEE Transactions on Software Engi-
neering (2), 222–232 (1987)

19. Durgin, N.A., Zhang, P.: Profile-based adaptive anomaly detection for network
security (2005)

20. Nicolett, M., Kelly, K.: 2012 Gartner Critical Capabilities and Magic Quadrant for
SIEM (2012)

21. Tan, P., Steinbach, M., Kumar, V.: Cluster Analysis: basic concepts and algo-
rithms. In: Introduction to Data Mining. Addison-Wensley (2006)

22. Finch, H.: Comparison of distance measures in cluster analysis with dichotomous
data. Journal of Data Science 3(1), 85–100 (2005)

23. Ester, M., Kriegel, H., Sander, J., Xu, X.: A density-based algorithm for discov-
ering clusters in large spatial databases with noise. In: Proceedings of the 2nd
International Conference on Knowledge Discovery and Data Mining, vol. 1996, pp.
226–231. AAAI Press (1996)

24. Oldmeadow, J., Ravinutala, S., Leckie, C.: Adaptive clustering for network intru-
sion detection. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS
(LNAI), vol. 3056, pp. 255–259. Springer, Heidelberg (2004)

25. Vieira, K., Schulter, A., Westphall, C., Westphall, C.: Intrusion detection for grid
and cloud computing. IT Professional 12(4), 38–43 (2010)

26. Hernandez-Campos, F., Nobel, A., Smith, F., Jeffay, K.: Understanding patterns
of tcp connection usage with statistical clustering. In: 13th IEEE International
Symposium on Modeling, Analysis, and Simulation of Computer and Telecommu-
nication Systems, pp. 35–44. IEEE (2005)

27. Berre, A.: Service oriented architecture modeling language (soaml)-specification
for the uml profile and metamodel for services, upms (2008)

28. van der Aalst, W.: Formalization and verification of event-driven process chains.
Information and Software Technology 41(10), 639–650 (1999)

http://elib.uni-stuttgart.de/opus/oai2/oai2.php

	Anomaly Detection in the Cloud: DetectingSecurity Incidents via Machine Learning
	1 Introduction
	2 Framework Overview
	2.1 A DSL for IT Landscapes
	2.2 Complex Event Processing
	2.3 Profiling of Entities
	2.4 Clustering Fingerprints for Anomaly Detection

	3 Architecture
	4 Related Work
	5 Conclusion and Future Work
	References

