
Supporting Agile Software Development

by Natural Language Processing

Barbara Plank1, Thomas Sauer2, and Ina Schaefer3

1 University of Trento, Italy
2 rjm business solutions GmbH, Lampertheim, Germany

3 Technische Universität Braunschweig, Germany

Abstract. Agile software development puts more emphasis on working
programs than on documentation. However, this may cause complica-
tions from the management perspective when an overview of the progress
achieved within a project needs to be provided. In this paper, we outline
the potential for applying natural language processing (NLP) in order to
support agile development. We point out that using NLP, the artifacts
created during agile software development activities can be traced back
to the requirements expressed in user stories. This allows determining
how far the project has progressed in terms of realized requirements.

Keywords: Agile Software Development, Project Management, Machine
Learning, Natural Language Processing.

1 Introduction

Over the last decade, agile software development has evolved from a fiercely
debated novelty into standard practice of many organizations. When properly
applied, agile software development methodologies such as Scrum [14] help to
develop software more predictably, more reliably, and with higher overall quality.
This is mainly achieved by a iterative, incremental approach: the development
process is split into iterations, which in Scrum are also known as sprints. In each
sprint, a working increment of the system is realized. The development activities
to do so are split into manageable chunks of work, so-called tasks. Developers
are kept motivated by avoiding excessive documentation and unnecessary tools
or procedures. An overview of agile software development using Scrum is given
in Figure 1.

In Scrum, requirements are expressed as user stories, which describe a certain
system feature from the perspective of a stakeholder [4]. User stories can refer
to all sorts of requirements, including functional as well as non-functional sys-
tem properties. When starting a new sprint, i.e., a new development cycle, the
development team chooses as many user stories as they believe can be turned
into a working increment of the product.

The product owner is responsible for providing enough user stories such that
a working increment of the product can be actually implemented during an
iteration. That is, before a new sprint can start, the product owner needs to

A. Moschitti and B. Plank (Eds.): EternalS 2013, CCIS 379, pp. 91–102, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



92 B. Plank, T. Sauer, and I. Schaefer

have the user stories readily identified that are most important at the current
stage of the development. After the sprint is done, the product owner is also
responsible for deciding whether a user story has been sufficiently realized, or
whether there is work remaining.

Fig. 1. Agile Development with Scrum

This requires that the product owner has a deep understanding of what the
team has actually produced during the sprint. Especially when the product owner
has to fulfill other duties in the organization, it can be overwhelmingly complex
and time-consuming to keep up with the current status of the development. Dur-
ing a sprint, developers typically coordinate themselves in daily Scrum meetings,
personal communication, etc., but the product owner is usually only a passive
participant. For agile software development by Scrum to work, however, it is cru-
cial that the product owner has the relevant requirements and user stories for
the system to be developed and their priorities available when needed. Clearly,
the product owner is not omniscient and may sometimes not be aware of recent
development activities. Therefore, a monitoring process that can help the prod-
uct owner to take decisions can prevent taking wrong priorities and thus a waste
of resources.

In this position paper, we propose the use of natural language processing
(NLP) techniques to overcome the problem that the product owner needs to keep
track of the current status of development and the completed or non-completed
user stories. By analyzing the artifacts created by the developers, such as source
code, code comments or bug reports, connections can be established between
the user stories that are planned to be completed during the sprint and the
actual progress achieved by the development team. As the artifacts that are pro-
duced usually are not captured by some formal representation, natural language



Supporting Agile Software Development by NLP 93

processing techniques are promising in order to automatically discover these con-
nections. We propose a two step approach: in the first phase, linking, connections
between artifacts and agile practices (user stories) need to be established; we can
here build on prior work on traceability between software artifacts, e.g. [3,9] and
initial work on linking user stories to lines of code [12], to be further discussed
in Section 4. In the second phase, information aggregation, the previously con-
nected data will be used for information aggregation. The goal is to abstract
from the single information items found and advance current technologies in or-
der to support the project owner by automatically providing information on the
progress status to support agile project management decisions.

This paper is structured as follows: In Section 2, we review the background on
development artifacts produced in Scrum and on natural language processing.
In Section 3, we describe our approach. In Section 4, we discuss related work. In
Section 5, we summarize this paper with an outlook to future work.

2 Background

User stories in Scrum often follow a certain template to express the roles involved,
the goals to achieve, and the business value connected with the requirement. For
instance, [4] suggests to express user stories in the format:

“As a (role) I want (some goal) so that (benefit)”

Figure 2 shows an example user story for implementing a string processing
method. When starting a new sprint, the development team splits each user
story into smaller tasks that can be accomplished in a single day. Typical tasks
include implementation activities, writing unit tests, or reviewing code. For the
example, there could be two tasks: the first task includes the implementation of
the fancy case method and the second task concerns testing the implemented
method.

User Story 101:.
As a string manipulation library user, I want to have a

fancy case method in order to gain fancy cased strings.

- The fancy case method should print the characters of a

string alternating in upper and lower case.

- Whitespace should be ignored.

Fig. 2. Example of a user story for string manipulation taken from [8]

Many development teams prefer to store the user stories and tasks for a sprint
using physical task boards, index cards etc. But, there are numerous project
management applications that allow keeping track of the user stories, tasks and
their allocation to the different team members. For our approach, we assume
that at least the product owner uses an electronic backlog to keep track of the
user stories.



94 B. Plank, T. Sauer, and I. Schaefer

2.1 Development Artifacts

During a sprint, developers typically use a large variety of tools for their de-
velopment activities, including IDEs, code repositories, bug tracking systems,
etc. This leads to a large number of artifacts that are created besides the actual
implementation when the Sprint team works on their tasks. Some of them follow
some formal representation including a well-defined structure while others are
more ad-hoc and mainly consist of natural language text without an external
structure. The artifacts that we consider in our approach are the following. They
are listed approximately in the following order: from more to less structured in-
formation (e.g. from code comments to instant messages) and according to the
closeness to the source code. Some example artifacts for our running example
are given in Figure 3.

Code comments:
// fancy case method, alternated casing

Unit test methods:
testFancyCaseMethod()

Commit messages:
commit #123: implemented user story 101

...

commit #145: fixed bug in fancycase method

Fig. 3. Example Artifacts for the user story given in Figure 2

Code Comments: In order to obtain code that is easy to debug and to maintain,
code comments should be introduced at the relevant places to document the
functionality of single methods or classes. For instance, using JavaDoc, these
comments are placed within the actual code using special annotations from which
an external documentation can be generated. Also unfinished issues in the code
can be marked with ToDo such that these remaining issues can be tracked by the
IDE. Both code comments and todo entries are natural text which can refer to
tasks or to user stories.

Unit Test Definitions: Along the lines of test-driven development [2], the tests
are written together with the implementation or even before the actual imple-
mentation. The tests refer to methods or classes in the implementation and may
contain comments in natural language as well which state which scenarios from
user stories are tested with the defined test cases. In the Java world, these test
definitions are usually written using JUnit1 such that they can conveniently be
executed from the IDE.

Commit Messages: When a versioning system, such as Subversion or Git, is used,
each developer adds the code he has implemented to complete a task or a smaller
chunk of work, into a central repository. Each commit is usually accompanied

1 http://junit.sourceforge.net

http://junit.sourceforge.net


Supporting Agile Software Development by NLP 95

with a commit message which is usually natural language text stating which
changes or additions have been made. The commit message may for instance
refer to the addressed task.

Bug Reports: Deficiencies found while testing or reviewing the implementation
are usually stored in a bug tracking system, such as Bugzilla2. Each issue found
is commonly described with a unique identifier and a detailed description when
and how the software misbehaves. When the problem is fixed, this is also entered
into the bug tracking system, e.g., with a reference to the corresponding commit
in the versioning system.

Build Scripts and Reports: Continuous integration systems such as Hudson3 are
often used to automatically integrate and compile the different components of
a software system. Further, automatic testing can be triggered. In combination
with the results reported, the integration steps currently configured can provide
insight about the status the project is in and which parts are already finished.

Task Lists: In order to keep track of the tasks and their allocation to different
team members, project management tools such as TinyPM4 are typically used.
Furthermore, the status of each task is maintained, e.g., whether a task is still
pending, has been already started, or is already completed. Tasks can also be
associated to the user stories within such a system. Thus, a project management
system can provide the most detailed input from the management perspective,
assuming that the team members keep the status of the tasks up-to-date. This
facts needs to be validated from the other artifacts that are created during
development.

Wiki Pages: Many organizations use Wiki systems to manage the knowledge
obtained while working on a project. This may include best practices, lessons
learned or specific design decisions. Wiki pages usually consist of natural lan-
guage text that is only weakly structured by, e.g., marking section headings.

Calendar Entries: Group calendars are ubiquitous tools for most development
teams. They may store information about meetings concerning specific issues
within the development, such as decisions how to solve specific tasks. The in-
formation about the date and time of the meeting and its content, and maybe
also the according meeting minutes, can provide insights into the progress of the
project.

IM messages and social network postings: Instant messaging and social networks
can be used by developers for quick communication with colleagues about specific
issues during development, e.g., if a framework or API does not work as expected.
These messages and posting may refer to tasks or the outcome of tasks and, thus,
may be valuable in determining progress.

2 http://www.bugzilla.org
3 http://www.hudson-ci.org
4 http://www.tinypm.com

http://www.bugzilla.org
http://www.hudson-ci.org
http://www.tinypm.com


96 B. Plank, T. Sauer, and I. Schaefer

This is by far not an exhaustive list, but it shows the possible artifacts that
can we exploited for the proposed approach. As we have seen, the artifacts
contain various levels of textual information (from short descriptions to entire
Wiki pages), thereby presenting an interesting challenge for NLP, which we will
introduce next.

2.2 Natural Language Processing

Natural Language Processing (NLP) [7] is an interdisciplinary field between com-
puter science, artificial intelligence, machine learning and linguistics concerned
with the study of computational approaches to understand and/or produce hu-
man (natural) language. Building systems that are able to do so is a difficult task,
given the intrinsic properties of natural language. One of the major challenges
for NLP is the ambiguity of language, exemplified in the following sentence:
The product owner gave her user stories. Humans usually have no trouble iden-
tifying the intended meaning (that the product owner gave some user stories
to ’her’, presumably a software developer), while a computer usually identifies
many possible readings. For example, an alternative reading is that the product
owner gives some kind of stories to ’her user’, thus identifying ’her’ as possessive
pronoun and splitting the compound noun ’user story’. Ambiguity is pertaining
to all levels of linguistic processing. For instance, structural ambiguity (whether
’her’ attaches to the verb or noun) or word-level ambiguity (whether her is a
personal or a possessive pronoun).

While early approaches to NLP were mainly symbolic and rule-based, the
field has changed dramatically since the development of annotated corpora (text
collections), the introduction of machine learning and the associated growth
and availability of computational power, leading to data-driven statistical ap-
proaches for learning. Current research largely focuses on the use of data-driven
approaches to learn from annotated (supervised learning), partially labeled data
(semi-supervised) or unlabeled data (unsupervised learning/clustering).

Some of the NLP tasks include, amongst others: part-of-speech (POS) tagging
(determining the part of speech, or word-class, for each word in a sentence),
named entity recognition (NER, given a text, determine which items in the text
refer to, e.g. proper names, locations, geopolitical entities), parsing (extracting
the syntactic structure of natural language sentences), relation extraction (RE,
identify relationships between entities in text, e.g. who is working for whom),
semantic role labeling (SRL, sometimes also called shallow semantic parsing,
the detection of the semantic arguments associated with the predicate or verb
of a sentence and their classification into their specific roles, e.g. agent, patient),
Machine Translation (automatic translation between texts in different languages)
and sentiment analysis (also known as opinion mining; extracting subjective
information from text, e.g. opinion statements, overall polarity).

We here propose to use NLP to analyze the natural language-based artifacts
created during the software development process. For instance, natural language
parsing is the task of uncovering the syntactic structure of natural language
sentences, which is represented in forms of trees. For example, if we apply a



Supporting Agile Software Development by NLP 97

constituent parser (a parser that provides a hierarchical structure in which
smaller parts are combined into larger parts called phrases, e.g. a noun phrase
denoted NP) to the user story shown in Figure 2, we obtain the syntactic parse
tree shown in Figure 4.

S

VP

S

VP

VP

NP-GOAL

NN

method

JJ

fancycase

DT

a

AUX

have

TO

to

VBP

want

NP

PRP

I

PP

NP-ROLE

NN

user

NN

library

NN

manipulation

NN

string

DT

a

IN

As

Fig. 4. A syntactic parse tree for the sentence “As a string manipulation library user, I
want to have a fancycase method” from the example user story (punctuation omitted,
abbreviated for space reasons). The tree is enriched with the target entity information
(in bold face).

The same process can be applied to the artifacts: parsing the commit mes-
sages, the code comments, etc. Based on the syntactic structure, a classifier
can be trained that determines the constituents that encode ROLE, GOAL or
BENEFIT of a user story (indicated in bold face in Figure 4) and similarly
of the artifacts. This leads to a possible structured instance representation that
can be exploited, as discussed in the next section.

3 Approach

In order to establish a connection between the user stories on one side and the
artifacts on the other site, we need a mechanism to associate them based on
their similarity. In this section, we outline our proposed approach to apply NLP
to artifacts obtained during agile software development in order to support the
product owner’s decisions.

To this end, we propose a two-step approach as depicted in Figure 5: In
the first linking step, we establish connections between user stories and the
development artifacts (cf. Section 2.1). In the second information aggregation



98 B. Plank, T. Sauer, and I. Schaefer

Fig. 5. Overview of the proposed approach

step, we classify user stories according to their status (to be implemented/not
yet started, in progress, completed) based on the artifacts found. This helps the
product owner to get a better understanding of the current status of the project
at the user story level.

In the first linking step (cf. Figure 6), the information contained in the de-
velopment artifacts is analyzed in order to discover which artifacts belong to
the realization of which user story. For instance, a code comment or a commit
message can refer to the implementation of the fancy case method of the exam-
ple user story in Figure 2 allowing to link it to the first task of the user story.
Additionally, the comments of a JUnit test can reference parts of the user story
such that the test case can be associated to the second task of this user story.
The artifacts that have tight links to the code, such as code comments or com-
mit messages, can be augmented with information derived from bug reports or
development Wiki. Also other sources of information might be exploited (which
are less structured and more distant to the code, as shown in Figure 6), such as
instant messaging (IM) within the company network or social network posts.

To make the linking step technically more concrete from the NLP perspective,
we need to reason about i) possible instance representations of the artifacts and
the user stories, and ii) possible learning mechanisms able to identify similar
objects.

For the instance representation, a first attempt might consist in applying in-
formation retrieval [10] techniques: representing the information contained in
the artifact or user story in a simple bag-of-words model in the vector space (i.e.
counting how often a word appeared in a user story, possibly weighted). If we
also want to link actual source code to user stories, then it will be also nec-
essary to identify and split source code identifiers into actual words [9]. Then,
similarity between these unstructured objects (vectors) can be calculated based
on the angle between the feature vectors in the vector space (e.g. their cosine
similarity). Alternatively, deep natural language processing might be applied to
gather structured objects. For instance, the example user story could be represent
as shown in Figure 7, where natural language parsing and argument classifica-
tion has been applied. This representation could be further enriched with other
NLP tools like a semantic role labeler, a named entity recognizer, or distribu-
tional semantic techniques. Then, machine learning algorithms able to deal with



Supporting Agile Software Development by NLP 99

Fig. 6. Step 1: Linking User Stories with Artifacts

INSTANCE

DETAILS

D2

ignore whitespace

D1

print alternating

BENEFIT

VP-BENEFIT

GOAL

NP-GOAL

ROLE

NP-ROLE

Fig. 7. Possible instance representation. The roof is a compact representation to rep-
resent tree information.

structured input data, like tree-kernel based support vector machines [5,11] could
be applied to learn a similarity function in the structured space.

Once a mapping between artifacts and user stories has been established, the
second information aggregation step is performed (cf. Figure 8): a classifier is
trained to determine the status of the user story: “to be implemented/not yet
started”, ”in progress“, “completed”. The amount of artifacts found in the first
stage, as well as related meta-data (e.g. number of lines of code associated with
a commit message, amount of JUnit tests related to the user story, status of
unit tests, number of bugs fixed, etc.) could be exploited to train a system to
classify user stories into the three categories, while further giving aggregated
information on the collected artifacts. For instance, if in the example user story
(cf. Figure 2), code comments and commit messages referring to the first task
of implementing the fancy case method are found the user story is classified
as ”in progress”. If also test cases are found with a positive reporting and no
bug reports referring to the fancy case method are found, the user story can be
labeled as ”completed”.



100 B. Plank, T. Sauer, and I. Schaefer

Fig. 8. Step 2: Classifying User Stories

4 Related Work

Monitoring development activities for supporting project management has been
discussed before as software project telemetry [6]. The development environment
is instrumented by software “sensors” attached to editors, test suites or bug-
tracking databases. The sensors continuously send data to a central analysis
component, where metrics of interest such as code churn or build failures are
calculated. This enables detecting unwanted development in time. In contrast
to our approach, management roles such as product owners have to draw their
own conclusions how current activities are connected to specific requirements.

Connecting user stories with concrete agile development activities is discussed
in [12]. The authors present a tool for associating newly created or recently
modified lines of code with the individual tasks of a user story. While the initial
association has to be made manually, subsequent development activity is auto-
matically tracked by analyzing revision control usage. However, links between
user stories and higher-level development artifacts other than source code are
not supported.

For reducing the efforts required to link requirements with development re-
sults, automated traceability [3] has been suggested. By applying information
retrieval algorithms, the likelihood of connections between specific requirements
and code documents, UML diagrams, etc. is determined by, e.g., calculating the
similarity of terms. A survey of applicable techniques can be found in [15]. The
NLP approach presented in this paper augments these techniques by specifically
supporting the concept of user stories in agile software development. If we also
include actual source code, then an important preprocessing step related to this
is the work on automatically splitting source code identifiers into component
terms (e.g. drawRectangle or drawrect into draw and rectangle), as done in [9].

NLP has been already found useful for supporting specific agile techniques,
such as behavior driven development [8]. Here, product owners provide an ab-
stract test script for each user story. Using an ontology, these scripts are re-
lated with their corresponding implementation. When the development team is



Supporting Agile Software Development by NLP 101

working on a new user story and its test script, NLP techniques are applied for
extracting the nouns and verbs contained in the story. The extracted entities
enable to find similar test steps by consulting the ontology, fostering efficient
test code reuse.

5 Conclusion and Future Work

In this paper, we have presented the idea of using natural language processing
techniques for supporting agile development. By analyzing the artifacts created
during development activities, such as writing code, committing a patch, or filing
a bug report, connections are established between the user stories which repre-
sent the system requirements. This supports the roles representing the stake-
holders, such as product owners in a Scrum project, to understand what the
team has actually produced during a development cycle.

Although user stories are expressed in free-form text, they are typically not
free of form. Instead, certain templates are followed, which encode roles, goals or
organizational benefits. Similar applies to artifacts such as source code, commit
messages, or bug reports. This allows using proven NLP techniques to create
structured representations, which in turn enables finding interdependencies.

The next step and challenge is to create a suitable training set to evaluate the
presented approach. For example, an agile open source software project can be
taken as a starting point.

Acknowledgements. This research has been supported by the European Com-
munitys Seventh Framework Programme (FP7/2007-2013) under the grants
#247758 (EternalS) and #288024 (LiMoSINe).

References

1. Ambriola, V., Gervasi, V.: On the systematic analysis of natural language require-
ments with circe. Autom. Softw. Eng. 13(1), 107–167 (2006)

2. Beck, K.: Test Driven Development By Example. Addison-Wesley (2002)
3. Cleland-Huang, J., Settimi, R., Romanova, E.: Best practices for automated trace-

ability. Computer 40(6), 27–35 (2007)
4. Cohn, M.: User Stories Applied for Agile Software Development. Addison-Wesley

(2004)
5. Collins, M., Duffy, N.: Convolution kernels for natural language. In: Proceedings

of NIPS (2001)
6. Johnson, P.M., Kou, H., Paulding, M., Zhang, Q., Kagawa, A., Yamashita, T.:

Improving software development management through software project telemetry.
IEEE Software 22(4), 76–85 (2005)

7. Jurafsky, D., Martin, J.H.: Speech and Language Processing. Prentice Hall Series
in Artificial Intelligence. Prentice Hall (2008)

8. Landhäußer, M., Genaid, A.: Connecting user stories and code for test develop-
ment. In: Proc. of the 3rd International Workshop on Recommendation Systems
for Software Engineering (RSSE 2012), pp. 33–37 (2012)



102 B. Plank, T. Sauer, and I. Schaefer

9. Madani, N., Guerrouj, L., Di Penta, M., Gueheneuc, Y., Antoniol, G.: Recognizing
words from source code identifiers using speech recognition techniques. In: 2010
14th European Conference on Software Maintenance and Reengineering (CSMR),
pp. 68–77 (March 2010)

10. Manning, C., Raghavan, P., Schütze, H.: Introduction to information retrieval.
Cambridge University Press (2008)

11. Moschitti, A.: A study on convolution kernels for shallow semantic parsing. In:
Proceedings of the 42nd Meeting of the ACL, Barcelona, Spain (2004)

12. Ratanotayanon, S., Sim, S.E., Gallardo-Valencia, R.: Supporting program compre-
hension in agile with links to user stories. In: AGILE Conference, pp. 26–32. IEEE
Computer Society (2009)

13. Sawyer, P., Rayson, P., Garside, R.: Revere: Support for requirements synthesis
from documents. Information Systems Frontiers 4(3), 343–353 (2002)

14. Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Prentice Hall
(2001)

15. Winkler, S., von Pilgrim, J.: A survey of traceability in requirements engineering
and model-driven development. Software and Systems Modeling 9, 529–565 (2010)


	Supporting Agile Software Development
by Natural Language Processing

	1 Introduction
	2 Background
	2.1 Development Artifacts
	2.2 Natural Language Processing

	3 Approach
	4 Related Work
	5 Conclusion and Future Work
	References




