
Assessment of Software Testing and Quality

Assurance in Natural Language Processing
Applications and a Linguistically Inspired

Approach to Improving It

K. Bretonnel Cohen�, Lawrence E. Hunter, and Martha Palmer

Computational Bioscience Program,
University of Colorado School of Medicine,

Aurora, Colorado, USA
Department of Linguistics,

University of Colorado at Boulder,
Boulder, Colorado, USA

Abstract. Significant progress has been made in addressing the scien-
tific challenges of biomedical text mining. However, the transition from a
demonstration of scientific progress to the production of tools on which
a broader community can rely requires that fundamental software en-
gineering requirements be addressed. In this paper we characterize the
state of biomedical text mining software with respect to software testing
and quality assurance. Biomedical natural language processing software
was chosen because it frequently specifically claims to offer production-
quality services, rather than just research prototypes.

We examined twenty web sites offering a variety of text mining ser-
vices. On each web site, we performed the most basic software test known
to us and classified the results. Seven out of twenty web sites returned
either bad results or the worst class of results in response to this sim-
ple test. We conclude that biomedical natural language processing tools
require greater attention to software quality.

We suggest a linguistically motivated approach to granular evaluation
of natural language processing applications, and show how it can be used
to detect performance errors of several systems and to predict overall
performance on specific equivalence classes of inputs.

We also assess the ability of linguistically-motivated test suites to
provide good software testing, as compared to large corpora of naturally-
occurring data. We measure code coverage and find that it is considerably
higher when even small structured test suites are utilized than when large
corpora are used.

1 Introduction

Biomedical natural language processing tools and data generated by their appli-
cation are beginning to gain widespread use in biomedical research. Significant

� Corresponding author.

A. Moschitti and B. Plank (Eds.): EternalS 2013, CCIS 379, pp. 77–90, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



78 K.B. Cohen, L.E. Hunter, and M. Palmer

progress has been made recently in addressing the scientific challenges of cre-
ating computer programs that can properly handle the complexities of human
language. However, the transition from a demonstration of scientific progress
to the production of tools on which a broader community can depend requires
that fundamental software engineering requirements be addressed. Software for
medical devices has the benefit of explicit quality assurance requirements per
Section 201(h) of the Federal Food, Drug, and Cosmetic Act; Title 21 of the
Code of Federal Regulations Part 820; and 61 Federal Register 52602 [8] (p.
7). However, unless it is embedded in a medical device, biomedical natural lan-
guage processing software is not currently subject to federal quality assurance
requirements.

This paper represents the first attempt to characterize the state of one portion
of the diverse world of computational bioscience software, specifically biomed-
ical natural language processing applications, with respect to software testing
and quality assurance. We assay a broad range of biomedical natural language
processing services that are made available via web sites for evidence of quality
assurance processes. Our findings suggest that at the current time, software test-
ing and quality assurance are lacking in the community that produces biomedi-
cal natural language processing tools. For the tool consumer, this finding should
come as a note of caution.

2 Approach to Assessing the State of Natural Language
Processing Applications with Respect to Software
Testing and Quality Assurance

We looked at twenty web sites offering a variety of text-mining-related services.
In the body of this work, we never identify them by name: following the tradition
in natural language processing, we do not want to punish people for making their
work freely available. Our purpose is not to point fingers—indeed, one of our own
services is every bit as lacking in most or all of the measures that we describe
below as any. Rather, our goal is to allow the community to make a realistic
assessment of the state of the art with respect to software testing and quality
assurance for biomedical natural language processing systems, with the hope of
stimulating a healthy change.

The claim to have produced a useful tool is a commonplace in the biomedi-
cal natural language processing literature. The explicitly stated motivation for
much work in the field is to assist in the understanding of disease or of life, not
to advance the state of computer science or of understanding of natural (i.e.,
human) language. (In this, the biomedical natural language processing commu-
nity differs from the mainstream NLP community, which at least in theory is
motivated by a desire to investigate hypotheses about NLP or about natural
language, not to produce tools.) Software is widely known to be characterized
by “bugs,” or undesired behaviors—[15] reviews a wide range of studies that
suggest an industry average of error rates of 1 to 25 bugs per thousand lines of



Assessment of Software Testing and Quality Assurance in NLP 79

code in a wide variety of types of software, and a Food and Drug Administra-
tion analysis of 3,140 medical device recalls in the 1990s concluded that 7.7%
of them (242/3,140) were due to software errors [8] (p. 7). Given the stated
intent to provide “mission-critical” tools to doctors and researchers, one might
expect due diligence with regard to the quality of software artifacts to be a
commonplace in the biomedical natural language processing community and an
established subfield of its research milieu. Surprisingly, that is not the case: on
the widest imaginable definition of quality assurance, there are fewer than a
dozen published studies on quality assurance for biomedical natural language
processing software, despite the high (and rapidly growing) level of activity in
the biomedical natural language processing area reported in [24] and reviewed
in work such as [25]. Given the apparently urgent need for biomedical natural
language processing tools that many papers claim in an introductory paragraph
citing the latest count of papers in PubMed/MEDLINE, it seems plausible that
although researchers in the area are exercising due diligence with respect to the
artifacts that they produce, they simply are not taking the time to do research
on quality assurance per se. We assayed the extent to which this might be the
case, and report the results here.

3 Methods and Results for Assessing Natural Language
Processing Applications with Respect to Software
Testing and Quality Assurance

Our methodology was simple. We examined 20 web sites that either provide
some form of text mining service (e.g. gene name identification or protein-protein
interaction extraction) or provide access to the output of text mining (e.g. a text-
mining-produced database). On each web site, we tried the most basic software
test imaginable. This test, which our experience suggests is probably the first
action performed by a typical professional software tester presented with any
new application to test, consists of passing the application an empty input. For
many web sites, the test consisted of simply hitting the “Submit” button or its
equivalent. For some web sites, this was first preceded by clearing sample input
from a text box. This is indeed the simplest and most basic software test of which
we are aware. We make the following (undoubtedly simplified) assumption: if the
system builders paid any attention to software testing and quality assurance at
all, they will have run this test; evidence that they tried the test will be that the
system responds to a blank input by prompting the user to populate the empty
field.

What constitutes an appropriate response to an empty input? We propose that
the best response to an empty input where a non-empty input was expected is
to give the user helpful feedack—to prompt the user to provide an input. For a
GUI-based application, the next-best response is probably Google’s strategy—to
do nothing, and present the user with the exact same input screen. (For an API,
the second-best response may well be to throw an uncaught exception—this has



80 K.B. Cohen, L.E. Hunter, and M. Palmer

the advantage of making it clear to the programmer that something is amiss.)
This second-best response is not necessarily bad.

A bad response would be to return something. For example, we found that
in response to an empty input, many systems will return something along the
lines of “0 results found”. This is bad in that it does not allow the user (or
the calling routine) to differentiate between the situation where no results were
found because the input is empty and the situation where no results were found
because there truly should not have been any results—the user is given no in-
dication whatsoever that anything was amiss with the input in the former case.
(A less common phenomenon that we observed was that a system might return
results that are clearly invalid if examined by a human. For example, one system
returned a table full of SQL error messages when passed an empty input. This
may not be a problem when called from a GUI, but if called by an API, the
results might not be noticed until much later in the processing pipeline, if at all,
and are likely to be difficult to track down to their origin.) Finally, the worst
possible response is to return something that looks like a legitimate response. For
example, one application that we examined returns a perfectly valid-looking list
of disease-associated quantitative trait loci (multiple gene locations that con-
tribute to a single physical manifestation) when passed an empty input. This
program may seriously mislead an application that calls it.

In total, we examined 23 web sites, selecting them in alphabetical order from
a web page that lists biomedical natural language processing applications1. Two
of them were down completely, and one of them crashed every time that we at-
tempted to use it, whether or not the input field was empty. Table 1 summarizes
the results: of the 20 that were operative and did not crash, a full 7/20 returned
either the “bad” or the “worst” type of results, and one of those seven returned
the worst.

This test assesses the user interface, not the underlying functionality. However,
we suspect that the testing applied to the interface that authors use to showcase
their work to the world may be better than the testing applied to their underlying
application. And, it is certainly the case that this test can reveal real problems
with the underlying application, as in the system described above which returned
a table of SQL error messages in response to the test.

As a reviewer pointed out, the test is not repeatable—web sites go down, their
functionality is changed, and their authors sometimes respond to bug reports.
However, the survey captures a snapshot of the state of the biomedical natural
language processing world at one point in time, and the general approach is
applicable to any application.

4 A Linguistically Motivated Approach to Testing
Natural Language Processing Applications

Although the natural language processing community has a long tradition of global
evaluation of applications in terms of global metrics like precision, recall, and

1 http://biocreative.sourceforge.net/ bionlp tools links.html



Assessment of Software Testing and Quality Assurance in NLP 81

Table 1. Summary of behaviors. 7 of 20 sites returned the “bad” or “worst” type of
results.

Response type Sites

Good (prompt or input screen displayed) 13
Bad (invalid-appearing or false 0 returned) 6
Worst (valid-appearing data returned) 1

F-measure, there has been much less work on granular evaluation of the perfor-
mance of such applications. (In the remainder of the paper, there is a deliberate
blurring or mixing of metaphors between what Palmer and Finin have called
glass-box evaluation (which I refer to as granular evaluation), or fine-grained
evaluation of specific linguistic features [18]; and finding errors in performance,
or bugs. As will be seen, it is fruitful to blur this distinction.) There has been
correspondingly little research on methods for doing so. We describe here a
methodology for granular evaluation of the performance of natural language
processing applications using techniques from traditional software testing and
from linguistics. Software testing conventionally makes use of test suites. A test
suite is a set of test inputs with known desired outputs that is structured so as
to explore the feature space of a specified type of input. Test cases are built by
determining the set of features that a type of input might have and the contexts
in which those features might be found. For a simple example, a function that
takes numbers as inputs might be tested with a test suite that includes integers,
real numbers, positive numbers, negative numbers, and zero. Good testing also
includes a suite of “dirty” or unexpected inputs—for example, the function that
takes numbers as inputs might be passed a null variable, a non-null but empty
variable, and letters.

There is a theoretical background for test suite construction. It turns out to
be overwhelmingly similar to the formal foundations of linguistics. Indeed, if
one examines the table of contents of a book on the theory of software testing
(see several listed below) and Partee et al.’s textbook on the formal founda-
tions of linguistics [19], one finds very similar chapters. The table of contents of
[19] includes chapters on basic concepts of set theory, relations and functions,
properties of relations, basic concepts of logic and formal systems, statement
logic, predicate logic, finite automata, formal languages, and Type 3 grammars.
Similarly, if we look at the contents of a good book on software testing, we
see coverage of set theory [2], graphs and relations [3], logic [2], and automata
[2,3,14].

The theoretical similarities between software testing and linguistics turn out
to translate into practical methodologies, as well. In particular, the techniques of
software testing have much in common with the techniques of descriptive or field
linguistics—the specialty of determining the structures and functioning of an un-
known language. In the case of software testing, an application is approached
by determining the features of inputs and combinations of inputs (both “clean”



82 K.B. Cohen, L.E. Hunter, and M. Palmer

and “dirty”) that an application might be presented with, and constructing test
suites to explore this feature space. In field linguistics, an unknown language is
approached by constructing questions to be answered about the language that
allow us to determine the elements of the language on all levels—phonemic and
phonetic (sounds), morphological (word formation), lexicon (words), syntactic
(phrasal structure)—and the ways in which they can combine. These questions
are formulated in sets called schedules that are assembled to elucidate specific
aspects of the language, in a procedure known as scheduled elicitation. The soft-
ware tester’s test suites have a clear analogue in the “schedules” of the field
linguist. Like test suites, schedules include “dirty” data, as well—for example,
in studying the syntax of a language, the linguist will test the acceptability of
sentences that his or her theory of the language predicts to be ungrammati-
cal. Thus, even though there has not been extensive research into the field of
software testing of natural language processing applications, we already have a
well-developed methodology available to us for doing so, provided by the tech-
niques of descriptive linguistics.

An example of how the techniques of software testing and descriptive lin-
guistics can be merged in this way is provided in [6]. This paper looked at the
problem of testing named entity recognition systems. Named entity recognition
is the task of finding mentions of items of a specific semantic type in text. Com-
monly addressed semantic types have been human names, company names, and
locations (hence the term “named entity” recognition). [6] looked at the appli-
cation of named entity recognition to gene names. They constructed a test suite
based on analyzing the linguistic characteristics of gene names and the contexts
in which they can appear in a sentence. Linguistic characteristics of gene names
included orthographic and typographic features on the level of individual char-
acters, such as letter case, the presence or absence of punctuation marks (gene
names may contain hyphens, parentheses, and apostrophes), and the presence or
absence of numerals. (Gene names and symbols often contain numbers or letters
that indicate individual members of a family of genes. For example, the HSP
family of genes contains the genes HSP1, HSP2, HSP3, and HSP4.) Morphosyn-
tactic features addressed characteristics of the morpheme or word, such as the
presence or absence of participles, the presence or absence of genitives, and the
presence or absence of function words. The contextual features included whether
or not a gene name was an element of a list, its position in the sentence, and
whether or not it was part of an appositive construction. (Gene names can have
a dizzying variety of forms, as they may reflect the physical or behavioral char-
acteristics of an organism in which they are mutated, the normal function of the
gene when it is not mutated, or conditions with which they are associated. Thus,
we see gene names like pizza (reflecting the appearance of a fly’s brain when the
gene is mutated), heat shock protein 60 (reflecting the function of the gene), and
muscular dystrophy (reflecting a disease with which the gene is associated). This
high range of variability adds greatly to the difficulty of gene name recognition.)

Five different gene name recognition systems were then examined. These fea-
tures of gene names and features of contexts were sufficient to find errors in



Assessment of Software Testing and Quality Assurance in NLP 83

every system. One system missed every one-word gene name. One system missed
lower-case-initial gene names when they occurred in sentence-initial position.
(Sentences in genomics articles can begin with a lower-case letter if they begin
with the name of a gene and the mutant form of the gene, commonly named
with a lower-case-initial name, is being discussed.) One system only found multi-
word gene names if every word of the name was upper-case-initial. One system
only found multi-word names if they ended with an alphanumeric modifier (e.g.
the gene names alcohol dehydrogenase 6 or spindle A). One system missed all
numerals at the right edge of gene names (see preceding example). One system
missed names, but not symbols, containing hyphens (catching symbols like Nat-
1 but missing names like the corresponding N-acetyltransferase 1 ). One system
missed names containing apostrophes just in the case where they were genitives
(catching names like 5’ nucleotidase precursor but missing names like corneal
dystrophy of Bowman’s layer type II (Thiel-Behnke)). Two systems had failures
related to the format of Greek letters. One system performed well on symbols
but did not recognize any names at all. (Genes typically have both a name, such
as white or N-acetyltransferase 1, and a “symbol,” similar to an abbreviation,
such as w for white and Nat-1 for N-acetyltransferase.)

Test suites are effective for granular evaluation of performance, but should
not be able to predict global measures such as precision, recall, and F-measure,
since the proportions of named entity types in the test suite do not reflect the
distribution of those types in naturally occurring data. (In fact, this is one of
their advantages—as pointed out by [17], an advantage of test suites is that
they limit the redundancy of common entity types and address the scarcity of
rare entity types that are observed in naturally occurring data.) However, it was
hypothesized that test suites might be able to predict performance on specific
equivalence classes of inputs (where an equivalence class is a set of inputs that
are all expected to test the same functionality and reveal the same bugs; they
are similar to what linguists call natural classes). To test this hypothesis, the
authors built a number of simple test suites, varying only the length of the gene
name, letter case, hyphenation, and sentence position. They then ran a single
gene name recognition system on all of these test suites. Based on the results
obtained from the test suites, they made the following predictions:

1. Recall should be poor for gene names with initial numerals, such as 12-LOX
and 18-wheeler.

2. Recall should be poor for gene names that contain function words, such as
Pray for elves and ken and barbie.

3. Recall should be poor for upper-case-initial gene names in sentence-medial
position.

4. Recall should be poor for 3-character-long symbols.
5. Recall should be good for numeral-final gene names such as yeast heat shock

protein 60.

The system was then used to process two corpora containing gene names—
the BioCreative I corpus [23] and the PMC corpus [22]. Overall performance



84 K.B. Cohen, L.E. Hunter, and M. Palmer

for the BioCreative I corpus was a precision of 0.65 and recall of 0.68. Overall
performance for the PMC corpus was a precision of 0.71 and recall of 0.62.

The performance of the system for the various equivalence classes was as
shown in Table 2.

Table 2. Performance on two corpora for the predictable categories [6]

Prediction BioCreative

TP FP FN P R

1 12 57 17 0.17 0.41
2 0 1 38 0.0 0.0
4 556 278 512 0.67 0.52
5 284 251 72 0.53 0.80

PubMed Central

TP FP FN P R

1 8 10 0 0.44 1.0
2 1 0 2 1.0 0.33
4 163 64 188 0.72 0.46
5 108 54 46 0.67 0.70

The predictions based on the test suites were almost entirely supported. The
single anomaly was the high recall observed on the PMC corpus for prediction 1,
where low recall was predicted. In all other cases, the predictions were correct—
recall for the equivalence class was predicted to be low for 1, 2, and 4 and it
was lower than the recall for the corpus as a whole for these equivalence classes;
recall was predicted to be high for 5, and it was higher than the recall for the
corpus as a whole for this equivalence class.

It will be noted that there are no results given for prediction 3. This is because
it concerns letter case, and letter case had been normalized to lower case in the
corpora. This points out again an advantage of test suites—we know that such
gene names exist in the literature, but they were not represented in these corpora
at all, making the corpora unsuitable for assessing the performance of a system
on this type of name.

It should be noted that these findings are significant (in the non-statistical
sense of that term) because of the small numbers of items in some of the cells,
not in spite of it. These details of performance would likely be lost in an evalu-
ation that only assessed precision, recall, and F-measure, and are the difference
between finding or missing elusive statements that are of crucial interest to the
biologist, perhaps precisely because of their rarity.

5 An Engineering Perspective on the Use of Test Suites
versus Corpora

To the extent that testing is considered in the natural language processing com-
munity, there is an implicit assumption that the way to test an application is



Assessment of Software Testing and Quality Assurance in NLP 85

Fig. 1. Increase in percentage of line coverage as increasing amounts of the corpus are
processed. The left y axis is the percent coverage. The right y axis is the number of
rule matches [7].

by running it on a large corpus. We tested this assumption by measuring code
coverage when a natural language processing application was run with a large
corpus as its input and with a small structured test suite as its input. The natu-
ral language processing application was a semantic parser known as OpenDMAP
[11]. It allows free mixing of terminals and non-terminals, and semantically typed
phrasal constituents, such as “gene phrases.” It has been applied to a variety of
information extraction tasks in the biomedical domain and has achieved winning
results in two shared tasks [1,9].

Code coverage is a measure of the percentage of code in an application that is
executed during the running of a test suite. The goal is to maximize coverage—
bugs in code will not be found if the code is not executed. Various kinds of
coverage can be measured. Line coverage is the percentage of lines of code that
have been executed. It is the weakest indicator of code coverage. Branch coverage
is the percentage of branches within conditionals that have been traversed. It is
more informative than line coverage.

The corpus that we employed was the largest biomedical corpus available at
the time. It consisted of 3,947,200 words. The test suite that we used was much
smaller. It contained altogether 278 test cases constructed by the application
developer. He did not monitor code coverage while designing the test suite.

Table 3 (next page) shows the results of running the application on the cor-
pus and on the test suite. As can be seen, the small test suite yielded higher
code coverage for every component of the system and every measure of code



86 K.B. Cohen, L.E. Hunter, and M. Palmer

Table 3. Application- and package-level coverage statistics using the test suite, the
full corpus with the full set of rules, and the full corpus with two reduced sets of rules.
The highest value in a row is bolded. The last three columns are intentionally identical
[7].

Metric Functional tests Corpus, all rules nominal rules verbal rules

Overall line coverage 56% 41% 41% 41%
Overall branch coverage 41% 28% 28% 28%
Parser line coverage 55% 41% 41% 41%
Parser branch coverage 57% 29% 29% 29%
Rules line coverage 63% 42% 42% 42%
Rules branch coverage 71% 24% 24% 24%
Parser class coverage 88% (22/25) 80% (20/25)
Rules class coverage 100% (20/20) 90% (18/20)

coverage—sometimes much higher coverage, as in the case of branch coverage
for the rules components, where the corpus achieved 24% code coverage and the
test suite achieved 71% code coverage. The last three columns show the results
of an experiment in which we varied the size of the rule set. As can be seen
from the fact that the coverage for the entire rule set, a partition of the rule
set that only covered nominals, and a partition of the rule set that covered only
verbs, are all equal, the number of rules processed was not a determiner of code
coverage.

In a further experiment, we examined how code coverage is affected by vari-
ations in the size of the corpus. We monitored coverage as increasingly larger
portions of the the corpus were processed. The results for line coverage are shown
in Figure 1. (The results for branch coverage are very similar and are not shown.)
The x axis shows the number of sentences processed. The thick solid line indi-
cates line coverage for the entire application. The thin solid line indicates line
coverage for the rules package. The broken line and the right y axis indicate the
number of pattern matches.

As the figure shows quite clearly, increasing the size of the corpus does not lead
to increasing code coverage. It is 39% when a single sentence has been processed,
40% when 51 sentences have been processed, and 41%—the highest value that
it will reach—when 1,000 sentences have been processed. The coverage after
processing 191,478 sentences—the entire corpus of almost 4,000,000 words—is no
higher than it was at 1,000 sentences, and is barely higher than after processing
a single sentence.

Thus, we see that the “naturally occurring data assumption” does not hold—
from an engineering perspective, there is a clear advantage to using structured
test suites.

This should not be taken as a claim that running an application against a
large corpus is bad. In fact, we routinely do this, and have found bugs that were
not uncovered in other ways. However, testing with a structured test suite should
remain a primary element of natural language processing software testing.



Assessment of Software Testing and Quality Assurance in NLP 87

It will be noted that even with the structured test suite, our code coverage
was less than 60% overall, as predicted by Wieger’s work, which shows that
when software is developed without monitoring code coverage, typically only
50-60% of the code is executed by test suites [15] (p. 526). However, as soon as
we tried to increase our code coverage, we almost immediately uncovered two
“showstopper” bugs.

6 Discussion

Although our assay of the software testing status of biomedical natural language
processing applications was crude, the findings are consistent with the claim that
7/20 biomedical natural language processing web sites have not been subjected
to even the lowest, most superficial level of software testing. For the rest, we
cannot conclude that they have been adequately tested—only that they appear
to have benefited from at least the lowest, most superficial level of testing.

This absence of software testing and quality assurance comes despite the fact
that like the mainstream NLP community, the biomedical natural language pro-
cessing community has paid considerable attention to software evaluation. Some
clarification of terminology is useful here. [10] distinguish between gold-standard-
based evaluation and feature-based evaluation. This is completely analogous to
the distinction between what we are referring to as evaluating software with
respect to some metric (gold-standard-based evaluation) and what we are re-
ferring to as testing it, or attempting to find bugs (feature-based evaluation).
The biomedical natural language processing community has participated enthu-
siastically in software evaluation via shared tasks—agreed-upon task definitions
used to evaluate systems against a shared data set using centralized, third-party
evaluation with a corpus (or a document collection) as input and with an agreed-
upon implementation of a scoring metric. However, the community’s investment
in testing its products has apparently been much smaller. It has been suggested
[20] that biomedical natural language processing applications are ready for use
by working bioscientists. If this is the case, we argue that there is a moral obli-
gation on the part of biomedical natural language processing practitioners to
exercise due diligence and ensure that their applications do not just perform
well against arbitrary metrics, but also behave as intended.

We showed in our experiments with building linguistically motivated test
suites that such test suites, informed by the techniques of descriptive linguistics,
are effective at granular characterization of performance across a wide variety of
named entity recognition systems. We also demonstrated the surprising finding
that such test suites could be used to predict global performance scores such
as precision, recall, and F-measure (although only recall was predicted in our
experiment) for specific equivalence classes (or, as linguists call them, natural
classes) of inputs.

Drawing directly on a software engineering technique, we used a test suite
to test the commonly held, if tacit, assumption that large corpora are the best
testing material for natural language processing applications. We demonstrated



88 K.B. Cohen, L.E. Hunter, and M. Palmer

that in fact even a small test suite can achieve much better code coverage than
a very large corpus.

As a reviewer pointed out, most linguistic phenomena are Zipfian in nature.
How far must we go in evaluating and handling the phenomena in the Zipfian
tail? Steedman has an insightful observation on this question:

We have come to believe that the linguists have forgotten Zipf’s law,
which says that most of the variance in linguistic behavior can be cap-
tured by a small part of the system.
The linguists, on the other hand, think that it is we who have forgot-
ten Zipf’s law, which also says that most of the information about the
language system as a whole is in the Long Tail.
It is we who are at fault here, because the machine learning techniques
that we rely on are actually very bad at inducing systems for which the
crucial information is in rare events. . .
One day. . . the Long Tail will come back to haunt us.

[21]

Even for work whose goal is not application-building but basic research, the
costs of failing to attend to basic software testing and quality assurance issues
can be quite severe. As Rob Knight has put it, “For scientific work, bugs don’t
just mean unhappy users who you’ll never actually meet: they mean retracted
publications and ended careers. It is critical that your code be fully tested before
you draw conclusions from the results it produces.” The recent case of Geoffrey
Chang (see [16] for a succinct discussion) is illustrative. In 2006, he was a star
of the protein crystallography world. That year he discovered a simple software
error in his code which led to a reversal of the sign (positive versus negative)
of two columns of numbers in his output. This led to a reversed prediction of
handedness in the ABC transporter gene MsbA. This error had implications for
the work of many other scientists in addition to his own. The story is an ob-
ject lesson in the potential consequences of failure to attend to basic software
testing and quality assurance issues, although his principled response to the sit-
uation suggests that in his case, those consequences will be limited to retracted
publications and will not be career-ending (see [5] for the retractions). For the
sorts of standard software testing techniques that we looked for in the work re-
ported here, a considerable amount of good material is available, ranging from
cookbook-like how-to manuals (e.g. [13]) to theoretical work [3,14,4]. Language
processing presents a number of specific testing issues related to unique char-
acteristics of the input data, and the literature on it is quite limited (but see
[6,12,7] for some attempts to address this topic in the biomedical natural lan-
guage processing domain, specifically). No non-trivial application is ever likely
to be completely free of bugs, but that does not free us of the obligation to test
for them. As we have shown here, approaches to doing so that are inspired by
linguistic techniques are effective at granular characterization of performance,
finding bugs, and achieving high code coverage.



Assessment of Software Testing and Quality Assurance in NLP 89

Acknowledgements. We would like to thank our co-authors on some of the
work cited in this paper. Lynette Hirschman (The MITRE Corporation) and
Bob Carpenter (Alias-I) have discussed the general issues of software testing
and quality assurance with us extensively. Martin Krallinger’s web page at

biocreative.sourceforge.net

listing web-based biomedical NLP services was invaluable in performing the work
reported here. Jonathan M. Cohen (Monterey County Public Defender’s Office)
and John Pestian (Cincinnati Children’s Hospital Medical Center) helped us
understand regulatory issues regarding medical software. This work was funded
in part by grants NIH 5 R01 LM009254-06, NIH 5 R01 LM008111-07, NIH 5
R01 GM083649-04, and NIH 5 R01 LM009254-03 to Lawrence E. Hunter.

References

1. Baumgartner Jr., W.A., Lu, Z., Johnson, H.L., Gregory Caporaso, J., Paquette, J.,
Lindemann, A., White, E.K., Medvedeva, O., Bretonnel Cohen, K., Hunter, L.E.:
Concept recognition for extraction protein interaction relations from biomedical
text. Genome Biology 9(suppl. 2), S9 (2008)

2. Beizer, B.: Software testing techniques, 2nd edn. International Thomson Computer
Press (1990)

3. Beizer, B.: Black-box testing: Techniques for functional testing of software and
systems. Wiley (1995)

4. Binder, R.V.: Testing object-oriented systems: models, patterns, and tools.
Addison-Wesley Professional (1999)

5. Chang, G., Roth, C.R., Reyes, C.L., Pornillos, O., Chen, Y.-J., Chen, A.P.: Letters:
Retraction. Science 314, 1875 (2006)

6. Bretonnel Cohen, K., Tanabe, L., Kinoshita, S., Hunter, L.: A resource for con-
structing customized test suites for molecular biology entity identification systems.
In: BioLINK 2004: Linking Biological Literature, Ontologies, and Databases: Tools
for Users, pp. 1–8. Association for Computational Linguistics (2004)

7. Bretonnel Cohen, K., Baumgartner Jr., W.A., Hunter, L.: Software testing and the
naturally occurring data assumption in natural language processing. In: Software
Engineering, Testing, and Quality Assurance for Natural Language Processing, pp.
23–30. Association for Computational Linguistics (2008)

8. Food and Drug Administration, US Department of Health and Human Services,
General principles of software validation: Final guidance for industry and FDA
staff (2002)

9. Hakenberg, J., Leaman, R., Vo, N.H., Jonnalagadda, S., Sullivan, R., Miller, C.,
Tari, L., Baral, C., Gonzalez, G.: Efficient extraction of protein-protein interactions
from full-text articles. IEEE/ACM Transactions on Computational Biology and
Bioinformatics (July 2010)

10. Hirschman, L., Mani, I.: Evaluation. In: Mitkov, R. (ed.) The Oxford Handbook
of Computational Linguistics, ch. 23. Oxford University Press (2003)

11. Hunter, L.E., Lu, Z., Firby, J., Baumgartner Jr., W.A., Johnson, H.L., Ogren, P.V.,
Bretonnel Cohen, K.: OpenDMAP: An open-source, ontology driven concept anal-
ysis engine, with applications to capturing knowledge regarding protein transport,
protein interactions and cell-specific gene expression. BMC Bioinformatics 9(78)
(2008)



90 K.B. Cohen, L.E. Hunter, and M. Palmer

12. Johnson, H.L., Bretonnel Cohen, K., Hunter, L.: A fault model for ontology map-
ping, alignment, and linking systems. In: Pacific Symposium on Biocomputing
2007, pp. 233–244. World Scientific Publishing (2007)

13. Kaner, C., Nguyen, H.Q., Falk, J.: Testing computer software, 2nd edn. John Wiley
and Sons (1999)

14. Marick, B.: The craft of software testing: subsystem testing including object-based
and object-oriented testing. Prentice Hall (1997)

15. McConnell, S.: Code complete, 2nd edn. Microsoft Press (2004)
16. Miller, G.: A scientist’s nightmare: software problem leads to five retractions. Sci-

ence 314, 1856–1857 (2006)
17. Oepen, S., Netter, K., Klein, J.: TSNLP – test suites for natural language process-

ing. In: Nerbonne, J. (ed.) Linguistic Databases, ch. 2, pp. 13–36. CSLI Publications
(1998)

18. Palmer, M., Finin, T.: Workshop on the evaluation of natural language processing
systems. Computational Linguistics 16(3), 175–181 (1990)

19. Partee, B.H., ter Meulen, A., Wall, R.E.: Mathematical methods in linguistics.
Springer (1990)

20. Rebholz-Schuhmann, D., Kirsch, H., Couto, F.: Facts from text—is text mining
ready to deliver? PLoS Biology 3(2), 188–191 (2005)

21. Steedman, M.: On becoming a discipline. Computational Linguistics 34(1), 137–144
(2008)

22. Tanabe, L., John Wilbur, W.: Tagging gene and protein names in biomedical text.
Bioinformatics 18(8), 1124–1132 (2002)

23. Tanabe, L., Xie, N., Thom, L.H., Matten, W., John Wilbur, W.: GENETAG: a
tagged corpus for gene/protein name recognition. BMC Bioinformatics 6(suppl. 1),
S4 (2005)

24. Verspoor, K., Bretonnel Cohen, K., Mani, I., Goertzel, B.: Introduction to BioNLP
2006. In: Linking Natural Language Processing and Biology: Towards Deeper Bi-
ological Literature Analysis, pp. iii–iv. Association for Computational Linguistics
(2006)

25. Zweigenbaum, P., Demner-Fushman, D., Yu, H., Bretonnel Cohen, K.: Frontiers for
biomedical text mining: current progress. Briefings in Bioinformatics 8(5) (2007)


	Assessment of Software Testing and QualityAssurance in Natural Language ProcessingApplications and a Linguistically InspiredApproach to Improving It
	1 Introduction
	2 Approach to Assessing the State of Natural Language Processing Applications with Respect to Software Testing and Quality Assurance
	3 Methods and Results for Assessing Natural Language Processing Applications with Respect to Software Testing and Quality Assurance
	4 A Linguistically Motivated Approach to Testing Natural Language Processing Applications
	5 An Engineering Perspective on the Use of Test Suites versus Corpora
	6 Discussion
	References




