
Automatic Generation and Reranking

of SQL-Derived Answers to NL Questions

Alessandra Giordani and Alessandro Moschitti

Department of Computer Science and Engineering,
University of Trento, Italy

Abstract. In this paper, given a relational database, we automatically
translate a natural language question into an SQL query retrieving the
correct answer. We exploit the structure of the DB to generate a set of
candidate SQL queries, which we rerank with a SVM-ranker based on
tree kernels. In particular we use linguistic dependencies in the natu-
ral language question and the DB metadata to build a set of plausible
SELECT, WHERE and FROM clauses enriched with meaningful joins.
Then, we combine all the clauses to get the set of all possible SQL queries,
producing candidate queries to answer the question. This approach can
be recursively applied to deal with complex questions, requiring nested
queries. We sort the candidates in terms of scores of correctness using a
weighting scheme applied to the query generation rules. Then, we use a
SVM ranker trained with structural kernels to reorder the list of question
and query pairs, where both members are represented as syntactic trees.
The f-measure of our model on standard benchmarks is in line with the
best models (85% on the first question), which use external and expensive
hand-crafted resources such as the semantic interpretation. Moreover, we
can provide a set of candidate answers with a Recall of the answer of
about 92% and 96% on the first 2 and 5 candidates, respectively.

1 Introduction

In the last decade, a variety of approaches have been developed to automatically
convert natural language questions into machine-readable instructions. In the
area of databases, question answering systems are supposed to answer a natural
language question by executing a SQL query. This is obviously a complex task as
systems have to deal with the lexical gap between natural language expressions
and database structure. In this paper, we will demonstrate that it is possible
to fill such gap by relying on (i) the informative metadata embedded in all real
databases, (ii) natural language processing methods, e.g., syntactic parsing, and
(iii) advanced machine learning to build kernel-based rerankers.

When designing a database, domain experts are requested to organize en-
tities and relationships naming tables and columns in a meaningful way (i.e.
state name or capital instead of table 1 or table 2). Moreover the database
schema also specifies constraints and data types. This metadata is stored in an
underlying database that contains tables of each database. The latter, in turn,

A. Moschitti and B. Plank (Eds.): EternalS 2013, CCIS 379, pp. 59–76, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

60 A. Giordani and A. Moschitti

contain columns referring to table names and column names. Such logic orga-
nization is referred to as catalog, and in SQL systems it is stored in a database
called Information Schema (IS for brevity). A fragment sample is shown in
Figure 1. IS can be inspected as a normal database, posing SQL queries to obtain
useful fields to build a new SQL query.

Instead of using tailored dictionaries, we can enrich our knowledge based on
the metadata added by the domain expert, when designing the database. For
example, an answer for the question “Which rivers run through New York” can
be found in the GeoQuery corpus (whose structure is stored in IS as shown in
Figure 1).

While we have a simple matching for the word rivers with table river and
column river name, there isn’t a direct mapping between the word run in the
question and any of the columns in the metadata. However, the disambiguation of
the term run can be easily performed by looking at the less semantically distant
metadata entry, i.e., traverse. This matching is re-confirmed when investigating
on all possible interpretations of New York in this database (i.e. city name,
state name, etc.), by the existing reference between column traverse in table
river and column state name in table state.

However, a link between both words New and York is not so easy, since there
is no evidence of relatedness between the two words in the metadata: this means
that the whole database should be looked up for their stems. Words can be
matched with lots of values (e.g., ”New York” both as city and as state name,
but also with ”New Jersey”), as shown by Figure 2. We can generate all possible
(even ambiguous) queries exploiting related metadata information (i.e. primary
and foreign keys, constraints, datatypes, etc.) and select the most plausible one
using a re-ranker.

Last but no least, we deal with complex natural language (NL) questions,
containing subordinates, conjunctions and negations and nested SQL queries. In
particular, we designed a mapping algorithm that matches dependencies between
NL components and SQL structure that allows to build a set of possible queries
that answers a given question.

Fig. 1. A DBMS catalog containing GeoQuery and Sakila

Automatic Generation and Reranking of SQL-Derived Answers 61

Fig. 2. GeoQuery database fragment

Section 2 gives a formal description of the problem while Section 3 describes
the basic steps of our algorithm used to build clause. Section 4 shows how we
prune and weigh queries in their possible combinations to generate an ordered
set of meaningful queries among which we find the answer. Section 5 describes
tree kernels our kernel-based rerankers. Section 6 discusses the results obtained
using a reranking algorithm, while Section 7 draws some conclusions.

2 The Problem

We will begin by introducing the notion of typed dependencies and how to
obtain a collapsed list of dependencies starting from an NL sentence. Then we
will introduce the subset of Structured Query Language that our system can
deal with and, in order to formalize the problem, we will recall the notation of
corresponding operations in relational algebra.

2.1 NL Questions and Dependencies List

To represent the textual relationships of the NL sentence we use typed depen-
dency relations. The Stanford Dependencies representation [8] provides a simple
and consistent description of the binary grammar relations existing between a
governor and a dependent. As shown in the example below, each dependency is
written as abbreviated relation name (governor, dependent). The governor and
the dependent are words in the sentence associated with a number indicating
the position of the word in the sentence.

In particular we refer to collapsed representation, where dependencies involv-
ing prepositions, conjuncts, as well as information about the referent of relative
clauses are collapsed to get direct dependencies between content words.

For example, the Stanford Dependencies Collapsed (SDC) representation for
the question, q1: “What are the capitals of the states that border the most popu-
lated state?” is the following:

SDCq1 = attr(are-2, what-1), root(ROOT-0, are-2),
det(capitals-4, the-3), nsubj(are-2, capitals-4),
nsubj(border-9, states-7), rcmod(states-7, border-9),
det(states-13, the-10), advmod(populated-12, most-11),
amod(state-13, populated-12), dobj(borders-9, state-13)

62 A. Giordani and A. Moschitti

The current representation contains approximately 53 grammatical relations
but for our purposes we only use the following: adverbial and adjectival modi-
fier, agent, complement, object, subject, relative clause modifier, prepositional
modifier, and root.

2.2 SQL Queries and Relational Algebra

The general SQL query with which our system can deal has the following form:

SELECT COLUMN FROM TABLE [WHERE CONDITION] (1)

The query is interpreted starting from the relation in the FROM clause, select-
ing tuples that satisfy the condition indicated in the WHERE clause (optional)
and then projecting the attribute in the SELECT clause.

In relational algebra, selection and projection are performed by σ and π op-
erators respectively. The meaning of the SQL query above is the same as that
of the relational expression:

πCOLUMN (σCONDITION (TABLE)) (2)

It is worth noting that while relational algebra formally applies to sets of tuples
(i.e. relations), in a DBMS relations are bags so it may contain duplicate tuples
[3]. For our purposes the fact of having duplicates in the result adds nois; this is
why we always delete multiple copies of a tuple by using the keyword DISTINCT
in the COLUMN field. In our QA task we expect that questions can be answered
with a single result set (e.g. we can deal with “Cities in Texas” and “Populations
in Texas” but not with the combined query “Cities and their population in
Texas”). That is, even if in general COLUMN could be a - possibly empty -
list of attributes, in our system it just contains one attribute. We can apply
to this attribute aggregation operators that summarize it by means of SUM,
AVG, MIN, MAX and COUNT, always combined with DISTINCT keyword
(e.g. SELECT COUNT(DISTINCT state.state name)).

Instead, CONDITION is a logical expression where basic conditions, in the
form eL OP eR, with OP={<,>,LIKE,IN}, are combined with AND, OR, NOT
operators. While eL is always in the form table.column, eR could be:

– numerical value (e.g. city.population > 15000) or
– string value (e.g. city.state name LIKE "Texas") or
– nested query (e.g. city.city name IN (SELECT state. capital FROM state)

An example of a complex WHERE condition could be the following:
city.population > 15000 AND city.city name NOT IN (SELECT state.capital

FROM state)) AND NOT city.state name LIKE "Texas" (i.e. “major non-capital
cities excluding texas”).

The meaning of TABLE is more straightforward, since it should contain table
name(s) to which the other two clauses refer. This clause could just be a single
relation or a join operation, which selectively pairs tuples of two relations. We
only deal with theta-joins where we take the Cartesian product of two relations

Automatic Generation and Reranking of SQL-Derived Answers 63

and exclusively select those tuples that satisfy a condition C. The notation for

theta-joins of relations R and S based on condition C is
R��S
C . We use the SQL

keyword ON to keep this condition C separated from the other WHERE condi-
tions since it reflects a database requirement and shouldn’t match to anything
of the NL question. (e.g. city JOIN state ON city.city name = state.capital).

The complexity of generated queries is fairly high indeed, since we can deal
with questions that require nesting, aggregation and negation in addition to basic
projection, selection and joining (e.g. “How many states have major non-capital
cities excluding Texas”).

2.3 Problem Definition

The question answering task of finding an SQL query that retrieves an answer
for a given NL question reduces to the following problem.

Given a question q represented by means of one typed dependency collapsed
list SDCq, generate the three sets of clauses S,F ,W (argument of SELECT,
FROM and WHERE, respectively) such that:

∃s ∈ S, ∃f ∈ F , ∃w ∈ W s.t. πs (σw(f)) answers q (3)

The query answer πs (σw(f)) is chosen among the set of all possible queries
A ={SELECT s× FROM f× WHERE w} in a way that maximizes the proba-
bility of generating a result set answering question q.

3 Building Clauses Sets

In order to generate all possible queries for a question q we need to find their pos-
sible SELECT, FROM and WHERE clauses (S,F and W). We start from a de-
pendency list SDCq and (a) prune and stem its components, (b) add synonyms,
(c) create the set of stems used to build S and W and (d) keep only dependencies
possibly used in the recursive step to generate nested queries. Building the set
F from S and W is straightforward.

We are now going to briefly discuss some examples to introduce the objec-
tive of individual steps and clarify how the entire process is carried out. The
first question we take into account is the simplest one: “What is the capital
of Texas?”. Its answer can be retrieved executing the query: SELECT capital

FROM state WHERE state.state name=’Texas’. We can see that they share only
two stems, capital and Texas. The key of categorizing stems (Section 3.2) is to
recognize that the first stem will be used in S and the second one in W . In
particular, since the word Texas is not a value in the IS, it is used as a r-value
in the WHERE expression, while the l-value is derived from the column name
under where it appears (Section 3.4).

The fact of being respectively projection and selection oriented can be in-
ferred looking at their grammar relations, i.e. inspecting the dependency list
(e.g. root of the sentence together subject dependent are typically used for pro-
jections). This list needs to be preprocessed (section 3.1) to take into account

64 A. Giordani and A. Moschitti

only relevant relations between the stems of the question. Let us consider for
example the question: “What is the capital of the most populous state?” and
its associated answering query SELECT capital FROM state WHERE population =

(SELECT max(population) FROM state).
The matching words are capital and state, while stemming also allows to find

a mapping through popul. We can note that this stem is used both in the l-
value and in the r-value of the WHERE expression. In fact, this query requires
nesting and indeed the categorizing algorithm needs to be recursive. This stem
is classified both as a selection oriented stem for the outer query, and as a
projection oriented one for the inner query (note that it requires aggregation,
handled when generating the SELECT clause set).

Finally we will introduce one last example to clarify Section 3.5. While with
the other examples it is straightforward to compile the FROM clause, since the
other clauses refer to the same table, when we deal with columns belonging
to different tables things get complicated. Take question “What are the cap-
itals states bordering Texas?”) and its associated query SELECT capital FROM

... WHERE border = ’Texas’. How can we fill in the dots in the FROM clause?
Fields capital and border belong respectively to tables state and border info.
Form the database catalog, we learn that these two tables are connected via the
foreign key state name and so the final F will include the following join: state
JOIN border info on state.state name = border info.state name.

3.1 Optimizing the Dependency List

As introduced in Section 2.1, we don’t need all grammatical relations provided in
output by the Stanford Dependency parser. For this reason before preprocessing
the list of dependencies we need to prune the useless ones and remove from
governors and dependents the appended number (indicating the position of the
word in question q). Then, govs and deps are reduced to stems (using the Porter
stemmer1).

In order to disambiguate the sense of the stems that do not appear in metadata
but could match with it, we create a list of synonyms using off-the-shelf resources
(like Wordnet and similarity measures) combined with our internal knowledge
(represented by database constraints). Using this list we can substitute certain
stems with their stemmed synonyms.

The resulting SDCq is optimized to be processed by the next step. An example
showing SDCopt

q1 with respect to the original SDCq1 introduced in Section 2.1
can be found in Table 1.

3.2 Categorizing Stems

Before building S and W sets we need to identify those stems that are projection
and/or selection oriented. Those stems will be added respectively to Π and/or

1 http://tartarus.org/martin/PorterStemmer/

http://tartarus.org/martin/PorterStemmer/

Automatic Generation and Reranking of SQL-Derived Answers 65

Table 1. Categorizing stems into projection and/or selection oriented sets

(1)root(ROOT, are),
(2)nsubj(are, capital),
(3)prep of(capital, state),
(4)nsubj(border, state),
(5)rcmod(state, border),
(6)advmod(populat, most),
(7)amod(state, populat),
(8)dobj(border, state)

Π = {capital, state}
Σ = {are} ⇒ Σ = φ

Π ′ = {state, border}
Σ′ = {border, state}

Π ′′ = {most, populat, state}
Σ′′ = φ

Σ categories according to the following rules. For each grammatical relation
rel(gov,dep) in SDCopt

q :

1. If it is ROOT, dep is the key to populate W so add it to Σ and remove the
relation from SDCopt

q . This stem can be an auxiliary verb, e.g., is, are, has,
have and so on. It is useless to build the arguments of the queries but it
could be used transitively to add other stems2.

2. If it starts with nsubj, check if gov ∈ Σ. If not (because there isn’t any ROOT
relation) add gov to Σ. Then add dep to Π and remove rel from SDCopt

q ,
otherwise keep it, since it could be a subject related to a subordinate (we
will need it in the recursive steps).

3. If it starts with prep or it ends with obj, we used it to create conditions
(possibly involving nesting):
– check if gov ∈ Π . If not (because no ROOT or nsubj relations were

found so far) add gov to Π .
– Then add dep to Σ if there is not any table.column like 3 gov.dep. Oth-

erwise, also add dep to Π and remove rel from SDCopt
q .

4. If it ends with mod, it implies that dep is a modificator of gov, so they should
be paired together: if gov ∈ Σ add dep to Σ and if gov ∈ Π add dep to
Π and remove rel from SDCopt

q . This should be done only if dep is not a
superlative (i.e. doesn’t end with -st). The non-removed relations will be
taken into account in the recursive step, adding both dep and gov to Π .

5. If none of the above rules can be applied, iterate the algorthm recursively
building Π ′ and Σ′, Π ′′ and Σ′′ and so on, until SDCopt

q is empty.

In order to show how these steps are used to build projection and/or selec-
tion oriented sets from which we generate S and W , let us consider the list of
optimized dependencies SDCopt

q1 in Table 1.

2 Stems of 3 or less characters would introduce too much noise in retrieving matching
strings, so they will be eliminated in an additional step 6. Useful words like in, of,
not, or, and are embedded in relation abbreviations when collapsing dependencies.

3 We query metadata seeking for something similar to gov as a table and
to dep as a column, i.e. we search for table names using πtable name

(σtable name∼=dep∧column name∼=gov(IS.Columns)). For brevity we use the symbol
s1 ∼= s2 for s2 substring of s1, i.e. s1 LIKE ”%s2%”.

66 A. Giordani and A. Moschitti

At the first iteration we use ROOT to add are to Σ, then we also exploit
it to add capital and include state to Π as soon as we check that there is an
occurrence state.capital in IS. At this point these three relations have been
deleted from SDCopt

q1 obtaining SDCopt
q1

′ used in the next iteration. Note that
since are is a short stem, it should be deleted from Σ.

At the second iteration (first recursion step) we don’t have a ROOT relation
so we use nsubj to add add border to Σ′ and state to Π ′. Since with rcmod
we find an occurrence border.state name in IS, border is added also to Π . At
this point, seeking through the end of the list we discard dobj because even if
border ∈ Π ′ we do not find state.border in IS, so these other three relations
are deleted from SDCopt

q1
′ obtaining SDCopt

q1
′′ for the last iteration.

In the third iteration we have SDCopt
q1

′′ composed by two mod relations, so
we add all stems to Π ′′ and delete their associated relations from the list.

3.3 Building the SELECT Clauses Set

Once we have identified the set Π of projection-oriented stems, we can use it to
search in metadata all the fields that could match with them. The generation
process for S is described by the following generative grammar.

S → AGGR ’(’ FIELD ’)’ | FIELD
AGGR → max | min | sum | count | avg
FIELD → TAB.COL
TAB ∈

⋃x∈Π
πtable name(σtable name∼=x(IS.Tables))

COL ∈
⋃x∈Π

πcolumn name(σcolumn name∼=x(IS.Columns))

With each element of S, we also associate a weight wi, calculated according
to the procedure described in Section 4.3 (we will discuss it later). For example,
considering the IS scheme in Figure 1, the SELECT clauses originated from Π
of Table 1 are shown in Fig. 3. Note that the superscript numbers indicate the
weight associated with each statement.

Fig. 3. A subset of SELECT clauses for q1

3.4 Building the WHERE Clauses Set

Before generating WHERE clauses, the selection-oriented set of stems Σ should
be divided into two distinct sets: ΣL and ΣR.

The set ΣL contains stems that find their matching in IS and allow us to build
the set of left-hand side expressions WL → FIELDwi , where FIELD is defined
above and computed with ΣL in place of Π (wi is its associated weight).

Automatic Generation and Reranking of SQL-Derived Answers 67

For the remaining stems ΣR = Σ−ΣL we search for a match in the database:
∀col ∈ IS.Columns, ∀tab ∈ IS.T ables, generate
WR =

{
x|πcount(∗) (σcol∼=x(Geoquery.tab)) >= 0

}
.

Then, in order to build the WHERE clause set, W , ∀eL ∈ WL, ∀eR ∈ WR we
first generate basic expressions expr = eL OP R and combine them by means
of conjunctions and negations (see Section 2.2), keeping only those expressions
expr such that the execution of πcount(∗) (σexpr(table)) does not lead to an error
for at least a table in the database.

To understand how it works, let us introduce a new example question q2:
“what are the capitals of states bordering New York?”. The SDCopt

q2 is sim-
ilar to SDCopt

q1 except for the last three relations. Row (6) disappears while
rows (7) and (8) are replaced by amod(york, new) and dobj(border, york), lead-
ing to Σ′ = {border, new, york}. This set is split into Σ′

L = {border} and
Σ′

R = {new, york}.
We build W ′

L =
{
border info.border3, border info.state name2

}
and

W ′
R =

{′new york′2,′ new mexico′1,′ new jersey′1,′ newark′1
}
. Finally we gen-

erate the set of possible valid conditions and their weights:
W = {border info.border = ‘new york′5, border info.state name = ‘new york′4, ...}.

Anyway, the set ΣR could happen to be empty. For example, when the
WHERE condition requires nesting: in this case eR will be the whole subquery
(e.g. Σ′ in Table 1). It could be the case that also ΣL is empty. In fact a
query without a WHERE clause is valid (e.g. Σ′′ in Table 1). In any case,
even if there are no selection-based stems, W may not be empty (e.g. Σ in
Table 1). Taking into account all tables and columns we can get more con-
ditions: W*R = {tab.col such that tab ∈ πtable name (IS.Columns) and col ∈
πcolumn name (IS.Columns)}.

3.5 Building the FROM Clauses Set

The generation of the FROM clause F is straightforward given S and W . This
set will contain all tables to which clauses in S and W refer, enriched by pairwise
joins.

As stated before, this information can be found running SQL queries over IS ex-
ploiting metadata stored in table KEY COLUMN USAGE (in short, K; see Fig-
ure 2). This table identifies all columns in the current databases that are restricted
by some unique, primary key, or foreign key constraint. That is, for each usage
of foreign key column in the table, we can determine how many aggregate table
columns match that column usage. First, we extract tables appearing in S and
W (i.e. words ending with dot), creating a set F . At the beginning F=F . Then
∀t1, t2 ∈ F πcol name,ref col name (σtable name=t1∧ref table name=t2 (IS.K)) retrieves
c1, c2 to perform the: join t1��t2

c1=c2 . In this way F in enriched whit the two-table
join t1 join t2 on t1.c1 = t2.c2. In addition we can allow for more distant joins
by finding an intermediate table useful to link two tables that are not directly
referencing each other. This can be done performing a complex join between two
instances of Keys with multiple conditions, but due to for lack of space this can
not be illustrated here.

68 A. Giordani and A. Moschitti

With respect to our example with question q1 and its SELECT clauses shown
in Figure 3, the set of FROM clauses is:
F ′ = {state, border, state join border onstate.state name = border info.border, ...}.

Note that there are no weights associated with FROM clauses because it is
not possible to backtrack how many stems made each table appear in F .

4 Generating Queries

In the previous section we saw how to create building blocks for queries starting
from a question q. These elements should be paired together in a smart way
to generate the set of queries that possibly answer q. This pairing is obtained
by creating the Cartesian product between clauses sets from which non-valid,
redundant and meaningless clauses are deleted. We use a weighting scheme to
order the most probable correct candidate queries.

4.1 Clause Cartesian Product

In order to find possible answering queries we generate the set A = {S×F×W}
∪ {S×F}. Given that at least one such query exists there should be one pairing
〈s, f, w〉 ∈ A, such that the execution of SELECT s FROM f [WHERE w] retrieve
the correct answer. Given that each clause set contains on average up to ten
items, this product can result in a very huge set. Thus, when generating all pair-
ings some preliminary conditions are verified, e.g. tables appearing in SELECT
and WHERE clauses should appear in the FROM clause as well, otherwise the
execution of that query will fail. This avoids generating incorrect queries and
wasting time trying to execute them.

To give a simple example, we illustrate in Figure 4 some generated clauses for
the question q2 , together with possible pairings. The pairing 〈s1, f1, w1〉 is not
correct: it leads to the MySQL error Unknown table: border info.

4.2 Pruning Useless Queries

Once the set A of all valid pairings is built, we additionally prune some of them
which are not useful. For example, meaningless queries project the same field
compared to a value in the selection (e.g. the pairing 〈s3, f2, w2〉 answers the
question “Which state is New York?” and is clearly useless).

Fig. 4. Possible pairing between clauses for q2

Automatic Generation and Reranking of SQL-Derived Answers 69

Moreover there could be redundant queries that, if optimized, allow us to
remove duplicates in the set, reducing its cardinality. For example, the pairing
〈s2, f3, w1〉 requires the columns state.state name and border info.border to be
the same, so w2 would select the same rows of w′

2(i.e. state.state name=’new
york’), but this means that table border info is no longer used and this pairing
is equivalent to 〈s2, f1, w′

2〉 which, as said above, is meaningless.

4.3 Weighting Scheme

As introduced in the previous sections, we weigh each clause in S and W by
counting how many stems in the original question originated that clause.

In particular, for the SELECT clause, if there is a table that matches with
a stem, its weight is +2 while the matching with columns weighs +1 (common
stems between table and column are not valid). Superlatives matching with
aggregation operators count as +1.

For the WHERE clause, a weight is computed in the same way as for the
left-hand side of the conditions and a +1 is added for each matching value in
the right-hand side. In addition when dealing with nested queries, the WHERE
clause inherits also the weight of the nested query.

The FROM clauses are not associated with weights. However, we will take
into account how many joins are involved when ordering queries with the same
weight.

When pairing clauses the total weight is obtained just summing up the weight
of its components, and it is used to order the final set Ā of possible useful queries
from the most to the least probable.

Figure 4 highlights this probabilistic score (obtained by the heuristic one by
normalization) through the thickness of connection lines. Dashed lines illustrate
pruned queries. The final ordered set answering q2 is the following one:
Ā={〈s1, f3, w2〉7 , 〈s3, f2, w1〉6 , 〈s2, f3, w2〉6 , 〈s1, f1〉3 , 〈s2, f1〉2 ,
〈s3, f2〉1}.
From the pairing with highest weight we derive the answering query, that is:
SELECT state.capital FROM state join border on state.state name =border

info.border WHERE border info.state name=’new york’.
It is worth noting that more then a query can have the same weight. To

deal with that, we implemented a comparator that privileges queries involving
less joins and embed the most referenced table (e.g. state in the case of Geo-
Query). See, for example, the order of the second and third pairings in Ā: they
have been swapped since f3 contains a join while f2 doesn’t.

5 Kernel Methods for Ranking Question/Query Mapping

Once an initial rank of the candidate SQL queries has been derived, we can rely
on machine learning methods to improve the probability of finding the correct
answer in the top position. The need of designing suitable representations of the
question and query pairs makes this operation quite complex. For this purpose,
we rely on kernel methods.

70 A. Giordani and A. Moschitti

5.1 Kernel Methods

In kernel-based machines, both learning and classification algorithms only de-
pend on the inner product between instances. In several cases this can be effi-
ciently and implicitly computed by kernel functions by exploiting the following
dual formulation:

∑
i=1..l yiαiφ(oi)φ(o) + b = 0, where oi and o are two objects,

φ is a mapping from the objects to feature vectors xi and φ(oi)φ(o) = K(oi, o) is
a kernel function implicitly defining such mapping. In case of structural kernels,
K determines the shape of the substructures that describe the objects above.

In the following section, we are going to first propose a structural representa-
tion of the question and query pairs, then we will illustrate the Syntactic Tree
Kernel (STK) [2], which computes the number of syntactic tree fragments. In
the last subsection we will show how to engineer new kernels from them, while
the reranking kernel is presented in Sec. 5.5

Fig. 5. Question/Query Syntactic trees

5.2 Representing Question and Queries Pairs

In Data Mining and Information Retrieval the so-called bag-of-words (BOW) has
been shown to be effective to represent textual documents, e.g. [12,6]. However,
in case of questions and queries, we deal with small textual objects in which
the semantic content is expressed by means of few words and poorly reliable
probability distributions. In these conditions the use of syntactic representation
improves BOW and should be always used.

Therefore, in addition to BOW, we represent questions and queries using their
syntactic trees, as shown in Figure 5: for questions (a) we used the Charniak’s
syntactic parser [1] while for queries (b) we implemented an ad-hoc SQL parser.
The latter builds a SQL parse tree for each query following its syntactic deriva-
tion according to MySQL grammar. The grammar has been slightly modified
to accommodate the usage of the symbol • for the production of items in the
SELECT clause and in WHERE conditions. In such an SQL tree, the internal
nodes are only the SQL keywords of the query plus the special symbol • whereas
the leaves are names of tables and columns of the database, category variables
or operators. Note that, although we eliminated comma and dot from the gram-
mar, it is still possible to obtain the original SQL query, by just performing
a preorder traversal of the tree. The above structures can be represented in a
learning algorithm using the kernel described in the next section.

Automatic Generation and Reranking of SQL-Derived Answers 71

5.3 Syntactic Tree Kernels (STK)

Convolution tree kernels [2] compute the similarity between two trees T1 and
T2 by counting the common sub-trees, without enumerating the whole fragment
space. In more detail, let N1 andN2 be the set of nodes in T1 and T2, respectively.
Moreover, let Ii(n) be an indicator variable that is 1 if subtree i is rooted at n
and 0 otherwise. Then the convolution kernel K over T 1 and T 2 is computed as:

STK(T 1, T 2) =
∑

n1∈N1,n2∈N2

Δ(n1, n2) (4)

where
Δ(n1, n2) =

∑

n1∈N1

∑

n2∈N2

∑

i

Ii(n1)Ii(n2)

is computed efficiently using the following recursive definition:

– If the production rules4 at n1 and n2 are different, then Δ(n1, n2) = 0.
– If the production rules at n1 and n2 are the same and n1 and n2 are pre-

terminals, then Δ(n1, n2) = λ.
– If the production rules at n1 and n2 are the same and n1 and n2 are not

pre-terminals, then:

Δ(n1, n2) = λ

nc(n1)∏

j=1

(1 +Δ(ch(n1, j)), ch(n2, j))

where nc(n1) is the number of children of n1 in the tree and the j-th children
of node ni is denoted by ch(ni, j) (note that nc(n1) = nc(n2) since the
production rule is the same). λ (0 < λ < 1) is a decay factor to make the
kernel less variable with respect to tree-fragment sizes.

5.4 Kernel Combination for Pairs

We need to represent the members of a pair and their interdependencies. For
this purpose, given two kernel functions, k1(., .) and k2(., .), and two pairs, p1 =
〈n1,s1〉 and p2 = 〈n2,s2〉, a first approximation is given by summing the kernels
applied to the components: K(p1, p2) = k1(n1, n2) + k2(s1, s2). This kernel will
produce the union of the feature spaces of questions and queries. A more effective
kernel is the product k(n1, n2)× k(s1, s2), since it generates pairs of fragments,
which are member of the Cartesian product of kernel spaces of the questions
and queries. As additional feature and kernel engineering, we also exploit the
ability of the polynomial kernel to add feature conjunctions. By simply applying
the function (1 + K(p1, p2))

d, we can generate conjunction up to d features.
Thus, we can obtain tree fragment conjunctions and conjunctions of pairs of
tree fragments.

The next section will show how to use such kernels for an SVM-based reranker.
4 In a syntactic tree a node with its children correspond to a production rule of the
grammar that generated it.

72 A. Giordani and A. Moschitti

Fig. 6. Recall of the correct answer within different k positions of the system rank

5.5 Preference Reranker

Our reranking model consists in learning to select the best candidate from a given
candidate set. In order to use SVMs for training a reranker, we applied the Prefer-
ence Kernel Method [13]. In the Preference Kernel approach, the reranking prob-
lem – learning to pick the correct candidate h1 from a candidate set {h1, . . . , hk}
– is reduced to a binary classification problem by creating pairs : positive train-
ing instances 〈h1, h2〉, . . . , 〈h1, hk〉 and negative instances 〈h2, h1〉, . . . , 〈hk, h1〉.
This training set can then be used to train a binary classifier. At classification
time, pairs are not formed (since the correct candidate is not known), while, the
standard one-versus-all binarization method is still applied.

The kernels are then engineered to implicitly represent the differences between
the objects in the pairs. If we have a valid kernel K over the candidate space
T , we can construct a preference kernel PK over the space of pairs T × T as
follows: PK(x, y) =

PK(〈x1, x2〉, 〈y1, y2〉) = K(x1, y1)+

K(x2, y2)−K(x1, y2)−K(x2, y1),
(5)

where x, y ∈ T × T . It is easy to show that PK is also a valid Mercer’s kernel.
This makes it possible to use kernel methods to train the reranker. The several
kernels defined in the previous section can be used in place of K5 in Eq. 5.

6 The Experiments

We ran several experiments to evaluate the accuracy of our approach for auto-
matic generation and selection of correct SQL queries from NL questions. We
experimented with a well-known dataset GeoQuery developed in order to study
semantic parsing.

5 More precisely, we also multiply K for the inverse of rank position.

Automatic Generation and Reranking of SQL-Derived Answers 73

Fig. 7. Learning curve comparison between simple answer generator and the reranking
model using the STK × STK kernel

6.1 Setup

To learn the reranker, we used SVM-Light-TK6, which extends the SVM-Light
optimizer [6] with tree kernels. i.e. Syntactic Tree Kernel (STK) as described
in Section 5. We modeled many different combinations described in the next
section. We used the default parameters, i.e. the cost and trade-off parameters
= 1 (for normalized kernels) and λ = 0.4 (see Sec. 4).

To generate the set of possible SQL queries we applied our algorithm de-
scribed in Section 3 to GeoQueries7 corpus. We started from a set of 700 NL
questions8. Thanks to our generative algorithm we discovered and fixed all er-
rors and inconsistencies in SQL queries, except for 3 cases that still lead to a
MySQL error. Indeed, since we can’t test the correctness of our generated query
(without a result set to compare with) we considered a subset of 697 pairs.

6.2 Generative Results

Given a question from GeoQuery, our algorithm was able to generate a correct
SQL query in the first 25 in 95.3% of the cases. This also means that our system
cannot answer to 33 questions. This is due to (1) empty clauses set S and/or
W , for example, “How many square kilometers in the us?” does not contain
any useful stem; and (2) from mismatching nested queries, for example, “Count
the states which have elevations lower than what alabama has” contains an im-
plicit reference to a missing piece of question. In addition there are ambiguous
questions like “Which states does the colorado?” from which we retrieve an in-
complete dependency set.

For all remaining questions from which we succeed in generating an ordered
list of possible queries, we find that the query on top of the list retrieves the

6 http://disi.unitn.it/~moschitt/Tree-Kernel.htm
7 Available at http://www.cs.utexas.edu/ ml/geo.html
8 This are the first 700 questions of the 880 ones that Mooney’s group [14] paired with
logical formulas in Prolog and that Popescu et al. [10] manually converted into SQL.

http://disi.unitn.it/~moschitt/Tree-Kernel.htm

74 A. Giordani and A. Moschitti

correct result set in 82% of the cases. For the other questions, it can be found
within the first 10 generated answers for 99% of the questions (once the 33
questions above have been removed). This can be observed in Figure 6, which
plots the Recall (of the correct question) curve of the generative approach, i.e.,
the baseline. As pointed out in the graphic, the right query is found among the
first three in 93% of the cases.

6.3 Reranking Results

Figure 6 also shows the plot for different rerankers using the following kernels:
STK+STK, STK×STK and (1+STK×STK)2, which provide better rankings
(the first STK is applied to the question parse trees whereas the second STK
is applied to the query derivation tree). For example, the latter kernel retrieved
the correct answers 94% of times by only using the first two answers.

To better evaluate the results of our rerankers, we applied standard 10-fold
cross validation and measure the average Recall and Std Dev. of selecting a
query for each question. The results for different kernel models for reranking
are reported in Table 2. The first column of Table 2 lists kernel combination by
means of product and sum between pairs of basic kernels used for the question
and the query, respectively. The other columns show the percentage of questions
for which we found at least 1 correct answer in the top @X positions (average
Recall@X over 10 folds ± Std. Dev).

The results are rather exciting since they compare favorably with the state-
of-the-art. The best system on this datasets was designed in [15] and shows a
Precision of 96.3% and a Recall of 79.3%, for an f-measure of 86.9%, while our
system shows a Precision of 82.8% and a Recall of 87.2%, for an f-measure of
85.0% (when we include the 33 missing questions in the evaluation). Two main
facts should be noted:

– our system performs just 2 points less than the system designed in [15]
but it does not need any hand-crafted manual resource, i.e., the semantic
trees manually designed in [15] for each question, and it is very simple to
implement.

– unlike it has been done in previous work, we can also provide multiple ranked
answers. If we select the first n candidates, we highly increasing the Recall

Table 2. Kernel combination recall (± Std. Dev) for Geo dataset

Combination Rec@1 Rec@2 Rec@3 Rec@4 Rec@5

NO RERANKING 81.4±5.8 87.6±3.8 90.8±3.1 94.0±2.4 95.0±2.0

STK + STK 83.5±3.6 90.4±3.5 94.2±2.9 95.8±2.0 96.7±1.7

STK × STK 86.5±4.0 92.6±3.7 95.3±3.2 97.0±1.8 97.7±1.4

(1+STK2)2 87.2±3.9 94.1±3.4 95.6±2.7 97.1±1.9 97.9±1.4

BOW × STK 86.7±4.1 92.1±3.2 95.6±2.5 97.1±1.4 97.6±1.2

Automatic Generation and Reranking of SQL-Derived Answers 75

of the correct answers, e.g., within the first 2 we have a f-measure of 90%
(considering the 33 missing questions).

Other closely related work, e.g., [4], suggests that lower results than ours can
be obtained using different approaches. These rely either on semantic grammar
specified by an expert user [9], or on enriching the information contained in the
pairs [10] and implementing ad-hoc rules in a semantic parser [7,11]. Our system
instead, requires no intervention since the database metadata already contains
all the needed data.

Finally, we report the learning curve of one basic reranker in Figure 7, showing
how recall of STK×STK increases for larger training sets. The plot reveals that
as soon as we provide a reasonable percentage of training data (25% of the
available data corresponding to 9 folds of 700 questions – one fold is used for
testing) for reranking, the model improves on the baseline.

The main contribution of this research consist in the fact that given a NL
question we can generate a set of mapping SQL queries. Moreover if we can rely
on a relatively small set of correct pairs of questions and queries to train a SVM
classifier, we are able to re-rank the set of generated pairs to select the correct
one with a fairly high accuracy.

7 Conclusions and Future Work

In this paper, we have approached the question answering task of implementing
a NL interface to databases by automatically generating SQL queries based on
grammatical relations and matching metadata. To our knowledge, the underlying
idea that we have proposed to build and combine clauses sets is novelty. Addi-
tionally, we are firstly experimented with a preference reranking kernel, which is
able to boost the accuracy of our generative model.

Given the high accuracy, the simplicity and the practical usefulness of our
approach, (e.g., we can generate the correct question in the first 5 candidates in
95% of the cases), we believe that our methods can be successfully used in the
future for real-world applications.

In the future we plan to experiment with datasets in different domains (e.g.
ATIS corpus). Moreover, given that current challenges in Semantic Web tackle
similar problem [5] (scaling question answering approaches to Linked Data, i.e.
Question Answering over Linked Data), it would be interesting to apply our
algorithms to semantic search and question answering over RDF data.

References

1. Charniak, E.: A maximum-entropy-inspired parser. In: Proceedings of NAACL
2000 (2000)

2. Collins, M., Duffy, N.: New ranking algorithms for parsing and tagging: Kernels
over discrete structures, and the voted perceptron. In: Proceedings of ACL 2002
(2002)

76 A. Giordani and A. Moschitti

3. Garcia-Molina, H., Ullman, J.D., Widom, J.: Database Systems: The Complete
Book, 2nd edn. Prentice Hall Press, Upper Saddle River (2008)

4. Giordani, A., Moschitti, A.: Corpora for automatically learning to map natural
language questions into sql queries. In: Proceedings of LREC 2010, Valletta, Malta.
European Language Resources Association (ELRA) (May 2010)

5. Granberg, J., Minock, M.: A natural language interface over the musicbrainz
database. In: Proceedings of the 1st Workshop on Question Answering over Linked
Data (QALD-1): Co-located with the 8th Extended Semantic Web Conference, pp.
38–43 (2011), QC 20120413

6. Joachims, T.: Making large-scale SVM learning practical. In: Schölkopf, B., Burges,
C., Smola, A. (eds.) Advances in Kernel Methods (1999)

7. Kate, R.J., Mooney, R.J.: Using string-kernels for learning semantic parsers. In:
Proceedings of the 21st ICCL and 44th Annual Meeting of the ACL, Sydney,
Australia, pp. 913–920. Association for Computational Linguistics (July 2006)

8. MacCartney, B., de Marneffe, M.-C., Manning, C.D.: Generating typed dependency
parses from phrase structure parses. In: Proceedings LREC 2006 (2006)

9. Minock, M., Olofsson, P., Näslund, A.: Towards building robust natural language
interfaces to databases. In: Kapetanios, E., Sugumaran, V., Spiliopoulou, M. (eds.)
NLDB 2008. LNCS, vol. 5039, pp. 187–198. Springer, Heidelberg (2008)

10. Popescu, A.-M., Etzioni, O.A., Kautz, H.A.: Towards a theory of natural language
interfaces to databases. In: Proceedings of the 2003 International Conference on In-
telligent User Interfaces, Miami. Association for Computational Linguistics (2003)

11. Ruwanpura, S.: Sq-hal: Natural language to sql translator
12. Salton, G.: Recent trends in automatic information retrieval. In: Proceedings of the

9th Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR 1986, Pisa, Italy, September 8-10, pp. 1–10. ACM
(1986)

13. Shen, L., Joshi, A.K.: An SVM-based voting algorithm with application to parse
reranking. In: Proceedings of the Seventh Conference on Natural Language Learn-
ing at HLT-NAACL 2003, pp. 9–16 (2003)

14. Tang, L.R., Mooney, R.J.: Using multiple clause constructors in inductive logic
programming for semantic parsing. In: Flach, P.A., De Raedt, L. (eds.) ECML
2001. LNCS (LNAI), vol. 2167, pp. 466–477. Springer, Heidelberg (2001)

15. Zettlemoyer, L.S., Collins, M.: Learning to map sentences to logical form: Struc-
tured classification with probabilistic categorial grammars. In: UAI, pp. 658–666
(2005)

	Automatic Generation and Reranking
of SQL-Derived Answers to NL Questions

	1 Introduction
	2 TheProblem
	2.1 NL Questions and Dependencies List
	2.2 SQL Queries and Relational Algebra
	2.3 Problem Definition

	3 Building Clauses Sets
	3.1 Optimizing the Dependency List
	3.2 Categorizing Stems
	3.3 Building the SELECT Clauses Set
	3.4 Building the WHERE Clauses Set
	3.5 Building the FROM Clauses Set

	4 Generating Queries
	4.1 Clause Cartesian Product
	4.2 Pruning Useless Queries
	4.3 Weighting Scheme

	5 Kernel Methods for Ranking Question/Query Mapping
	5.1 Kernel Methods
	5.2 Representing Question and Queries Pairs
	5.3 Syntactic Tree Kernels (STK)
	5.4 Kernel Combination for Pairs
	5.5 Preference Reranker

	6 TheExperiments
	6.1 Setup
	6.2 Generative Results
	6.3 Reranking Results

	7 Conclusions and Future Work
	References

