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Abstract. Requirement Analysis (RA) is a relevant application for Se-
mantic Technologies focused on the extraction and exploitation of knowl-
edge derived from technical documents. Language processing technologies
are useful for the automatic extraction of concepts as well as norms (e.g.
constraints on the use of devices) that play a key role in knowledge acquisi-
tion and design processes. A distributional method to train a kernel-based
learning algorithm is here proposed, as a cost-effective approach for the
validation stage in RA of Complex Systems, i.e. Naval Combat Systems.
The targeted application of Requirement Identification and Information
Extraction techniques is here discussed in the realm of robust search pro-
cesses that allows to suitably locate software functionalities within large
collections of requirements written in natural language.

1 Introduction

The objectives of Requirements Engineering (RE) include at least the identifica-
tion of the goals to be achieved by a target system, the operationalization of such
goals into services and constraints, and the assignment of responsibilities for the
resulting requirements to agents such as humans, devices and software. Different
processes are involved in RE, such as domain analysis, elicitation, specification,
assessment, negotiation, documentation and evolution. Sources of information
are mostly expressed in natural language and require manual analysis: getting
high quality requirements is difficult, critical and costly. During a novel system
design, all of these phases must be performed, and generally they are carried out
without any reuse of old analysis performed over previous systems.

In this scenario, search systems are usually required to help analysts to locate
and access the information stored in documents whereas key-word based search
may not be sufficient. As an example, when searching for “attack scenario” doc-
uments containing an expression such as (the verb) “assail” may not be found as
for the mismatch between the query and the text. A more semantic aware pro-
cess is needed to increase the benefits of automatic search in RE. Furthermore
the validation of design choices could be automatized, e.g. checking the consis-
tency of requirement pre-conditions. However, translating user requirements and
problem domain described in natural language into the consistent modeling of
the target application is still challenging. According to [1], “We are not really
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having a problem coding a solution - we are having a problem understanding what
solution to code . . . If you focus on requirements and verification and validation,
the coding will take care of itself ”. Vagueness and ambiguity are the main phe-
nomena that make the natural language used to describe user requirement a
challenging task. Consider the complexity of a sentence when it contains clauses
and phrases that describe and relate several objects, conditions, events and/or
actions.

Natural Language Processing (NLP) approaches gained much interest in the
community of Software Engineering, as recent works in this direction suggest.
In [2] a similarity measure based on linguistic information is used for clustering
correlated software artifacts. In particular, authors explore the effects of mining
lexical information about different artifact element, such as Function Names, Pa-
rameter Names or Software Comments. In [3], an automatic approach to classify
affordances of web services according to the texts describing them is presented.

Regarding Requirement Analysis, Abbot [4] proposes a technique attempting
to guide the systematic procedure that compiles design models from textual re-
quirements. While it was able to produce static analysis and design modules,
it was nonetheless requiring high levels of user involvement for decision mak-
ing. Saeki et. Al. [5] illustrates a process of incrementally constructing software
modules from object-oriented specifications as obtained by interpreting text re-
quirements. Nouns were considered as classes and their corresponding verbs as
methods. These were automatically extracted from the raw textual descriptions
but lexical ambiguity problems and hand-coding were striking limitations in the
construction of fully reusable formal specifications. In the REVERE [6] system,
a summary of requirements from a natural language text is derived. The system
makes use of a lexicon to recognize suitable word senses in the texts. However, no
attempt to model the system at the functional level is carried out. In [7] natural
language analysis is suggested as a possible approach for automatically compile
formalized control mechanisms in the requirement specifications. An expressive
semantics-based point cuts within a requirement are detected and mapped into
the RDL semi-formal description language. The authors suggest that syntac-
tic and semantic analysis of natural language expressions can be made precise
enough to support the definition of a flexible composition mechanism for re-
quirements analysis. All those systems, while exploring the applicability of NLP,
propose traditional tools for the specific RE context. Most of the traditional
limitations of NLP are thus inherited by the above works, namely costly design
and development processes, complex maintenance of the large Knowledge Bases
necessary for full NL analysis as well as poor portability across domain, systems
and scenarios.

In this work we propose statistical learning methods embedded in a large scale
natural language processing system in support of RE. The adoption of advanced
technique of NLP combined with Machine Learning capabilities, i.e. Statistical
Information Extraction, is a crucial advance to improve applicability of this
technology on a large scale. Moreover, the effectiveness of acquired information
is evaluated in a Information Retrieval scenario, where a robust search engine



46 F. Garzoli et al.

has been defined to search existing software functionalities in a specific domain
through user requirements expressed in natural language.

In the rest of the paper, Section 2 discusses the application of Human Lan-
guage Technologies in RE. Section 3 proposes the architecture of an automatic
system for Requirement Analysis. Section 4 presents the evaluation of the adopted
techniques for the Naval Combat Systems requirement analysis.

2 Language Technologies for Requirement Analysis

The robustness recently achieved by NLP technologies makes their applicability
in the support the analysis and design of system development very promising.
As an example, the reuse of existing technological components during the design
stages of new complex systems can be drastically increased whenever a seman-
tic search system from the targeted component repository is available. Such an
engine would be able to rely on conceptual notions in the user queries (e.g. func-
tions and norms), as they are originally extracted from technical specification
documents, and retrieve components suitable for the design needs and validate
them according to their compliancy or composability. The role of Human Lan-
guage Technologies (HLT) in this proactive support to the analyst is clear as
it favors the incremental design through reuse. HLT are crucial to support ro-
bust and accurate analysis of unstructured texts, and enrich them by semantic
meta-data or other kinds of information implicit in the texts. HLT allows ex-
tracting the interesting semantic phenomena and mapping them into structured
representation of a target domain. When a semantic meta-model is available,
for example in form of an existing ontology, HLT allows to locate concepts in
the text (irrespectively from the variable forms in which they appear in the free
text), mark them according to Knowledge Representation Languages (such as
RDF or OWL) thus unifying different shallow representations of the same con-
cepts. In this way semantic annotations of concepts in the text (i.e. automatic
semantic indexes) are obtained for the original document, making it more suit-
able for clustering, retrieval and browsing activities. In synthesis, HLT enables
to perform and simplify several advanced functionalities (e.g. semantic and not
keyword based search) that are possible over the text. The semantic annota-
tion task, just outlined above, has been largely studied by the NLP community
and it is known as Information Extraction (IE), i.e. “The identification and ex-
traction of instances of a particular class of events or relationships in a natural
language text and their transformation into a structured representation (e.g. a
database).” [8]. IE requires typically three stages. In the first, the target infor-
mation is abstracted and structured set of inter-related categories are designed.
These structures are called templates and the categories (roles) that need to
be filled with information are called slots. For example, if we want to extract
conceptual information about vessels from specifications, we may be interested
in the name but also in the type of ship or its maximum speed, as well as its
combat system equipment. Therefore, a Ship template can be defined as a con-
junctive combination of slots such as name, ship type, maximum speed or combat
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system equipment. Once the template is given, the text fragments containing rel-
evant information to fill the template slots (i.e. specific values associated to the
attributes of a certain Ship instance) need to be identified in a text. The recog-
nition of textual information of interest results from pattern matching against
extraction rules. Finally, in a third phase, whenever the information of interest
is identified in the text, its mapping in the suitable (e.g. Ship) template slot is
carried out. The above chain is not trivial and contemporary IE systems1 are
usually integrated with large scale knowledge bases, determining all the lexical,
syntactic and semantic constraints needed for a correct interpretation of usually
domain-specific texts. Unfortunately, the manual development of these resources
is a time-consuming task that is often highly error-prone due to the subjectivity
and intrinsic vagueness that affects the semantic modeling process. Knowledge
acquisition task is often approached through the use of Machine Learning algo-
rithms to automatically learn the domain-specific information from annotated
data [9]. Statistical learning methods [10] assume that lexical or grammatical as-
pects of training data are the basic features for modeling the different inferences.
They are then generalized into predictive patterns composing the final induced
model. A statistical language processor is assumed to be able to locate specific
instances of a template type (e.g. Ship) and their slot information in an incom-
ing text. The resulting instantiated template can be employed to populate an
existing knowledge base whose semantic schema correspond (or can be mapped)
to the template structure. Moreover, reasoning over the extracted information,
e.g. identifying relations or dependencies with respect to previous requirements,
can be better performed. For example, retrieval of developed components that
respond properly to new requirements could be realized as a form of reasoning.

3 Machine Learning for Requirement Analysis

In Requirement Analysis some NLP applications like Information Extraction
tasks could be very useful to support people to perform this task practically
and in a cost-effective way. Statistical NLP approaches provide domain specific
models of target interpretation tasks by acquiring and generalizing linguistic ob-
servations. Several Statistical Machine Learning paradigms have been defined to
provide robust models that easily adapt across different (and possibly specific)
domains. These techniques are the basis to our proposed approach and we will
discuss them hereafter. This problem is normally treated as a Statistical Classi-
fication problem, where the target is to identifying the sub-population to which
new data belong, where the identity of the sub-population is unknown (the test
data), on the basis of a training set of data containing observations whose sub-
population is known (the training data). In this scenario we may be interested
for example to induce a template slot for a candidate text. Support Vector Ma-
chine (SVM), as discussed in [11] and [12], represents one of the most known
learning paradigm for classification, based on Statistical Learning Theory. Given
training instances, each one associated with a class and a set of “features”, i.e.

1 OpenCalais: http://viewer.opencalais.com/
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the dimensions of the employed geometrical representation of each example, the
goal of SVM is to produce a model (based on the training data) which predicts
the target values of the test data given only the test data features. In a geometric
perspective, SVM classifiers learn a decision boundary between two data classes
that maximizes the minimum distance or margin from the training points in
each class to the boundary. The notion of distance used in such feature space
can be adapted to a specific classification problem to better separate examples.
This is explicitly the role of kernel functions [11] aiming to separate the learning
task from the representation through a proper although implicit mapping to a
newer space more expressive for the target problem.

Formally, the SVMmulticlass schema described in [13] is applied2 to implicitly
compare all class and select the most likely one, using the multi-class formulation
described in [14]. The algorithm thus acquires a specific function fy(x) for each
class y ∈ Y, with |Y| = k. Given a feature vectors x ∈ X representing a novel
requisite, SVMmulticlass allows to predict a specific class y∗ ∈ Y by applying the
discriminant function y∗ = argmaxy∈Y fy(xi), where fy(x) = wy · x is a linear
classifier associated to each y.

3.1 A General Adaptive Architecture for Advanced RA

In this section we present the architecture of a requirement analysis system. It
handles Requisite Documents and automatically extracts the information needed
in the generic requirement management phase. In the next session, we will dis-
cuss how this system can be employed in a real use case as the underlying
requirement management phase of a Combat Management System (CMS) is
presented. This system processes semi-structured documents, i.e. written in nat-
ural language, and enriches texts with linguistic information employed by other
modules. Then, all sentences expressing one or more requisites are retrieved and
the target information is extracted. Interesting slots of the templates modeling
different concepts in the requirement analysis are filled. These template instances
are used to populate the Requirement Repository that can be later easily accessed
by the analyst. Moreover, the system also analyzes the extracted information in
order to recognize/acquire existing dependencies among different requisites.

In Figure 1, the overall architecture is shown and the interaction between
the different functions that contribute to the main workflow, as well as their
interactions and dependencies are reported. On the top of the architecture, the
basic Natural Language Processing (NLP) chain is foreseen. This module carries
out different NL steps needed to analyze a document, extracting all linguis-
tic information useful to later modules in the chain. This includes steps such
as a Sentence Splitter, a Part-of-Speech tagger, a Name Entity recognizer, a
Word Sense Disambiguation module and a Syntactic Parser. These modules are
based on different knowledge bases, modeling different aspects of the overall RA
process:

2 http://svmlight.joachims.org/svm multiclass.html
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Fig. 1. Requisite Analysis System Architecture

– Domain specific Lexicon: it contains the specific domain dictionaries provid-
ing lexical information about the application domain, e.g. involved entities
and acronyms.

– Domain ontology: it provides an ontological model of the application do-
main, as well as an abstraction of the requirements (i.e. the template for the
Information Extraction activity). Moreover it provides the relations among
different requirements, e.g. dependency rules among pre-conditions and post-
conditions that enable the reasoning.

– Template Definition: it represents the repository of different templates in-
volved in the IE activity, that are domain specific (as the ontology), but
possibly more specific than the concepts or relations in the domain ontology.

According to our machine learning perspective, each module performs the corre-
sponding task according to a model of the domain that has been automatically
previously acquired from real data. These are requirement documents that have
been previously annotated by the analysts, with the same information the IE
system is expected to precisely detect in future texts. The general architecture is
thus divided in different main blocks to distinguish models directly employed in
the (on-line, i.e. interactive) Requirement Analysis Application workflow from
the ones employed in the (off-line) Learning workflow. In the Application Block
the following modules process requirement as follows:

– Requirement Identification Module: This module performs the analysis of
documents that are enriched with linguistic information in order to suit-
ably locate sentences containing concepts (and relations) of interest in the
requirements analysis domain.

– Information Extraction (IE) System: Once a specific requisite is found, the
extraction of its relevant information is carried out as a slot-filling process
over the existing templates. Once a template is filled, it is made available
(i.e. it populates) the Requirement Repository for the analysis.

In a machine learning perspective, each module performs the corresponding
task according to a model of the domain that must be automatically acquired
from annotated data. In this view, the second block in the architecture of Figure
1, i.e. the Learning block, is dedicated to the acquisition of the individual IE
models. Finally, the Presentation block is responsible for the interaction with
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the analysts in (1) accessing the extracted information as well as (2) in providing
feedback to the system in form of acceptance or rejection of some of its decisions.

4 Semantic Technologies in a Real Application Scenario

New Generation Naval Combat Systems are very complex systems based on a sw
component able to manage all the Combat System Equipment (CSE) in different
mission scenarios: the Combat Management System (CMS) as in [15]. The main
objective of the CMS is to enable the Command Team to manage the ships CSE
to conduct the missions in the scenarios. The CMS is mainly composed of a real
time component (C2S) which provides the Combat System with facilities for
the management of short term activities (Conduct of action); and a Command
Support System (CSS), which provides the Combat System with facilities for the
management of medium and long term activities in the conduct of operational
tasks. From the functional point of view the C2S is decomposed into application
segments that allow the system to perform the following functions:

1. global tactical picture compilation,
2. warfare missions conduction in different domains (Air, Surface, Submarine,

Land) at platform and force level,
3. Tactical Data Link exchange data functions.

Each functional requirement of CMS is allocated to Computer Software Con-
figuration Items (CSCI). CSCIs communicate exchanging data over the ship
network through a common application layer. The communication principles are
different according to the relationships among the components that communi-
cate each other. Independently of the communication model the strategy is that
each sw component shares data with the other system components to enable
them, i.e. allow them to carry out their own functionalities. A key aspect for
managing the overall CMS complexity is the design and description of CSCI
interactions in terms of data each component has to publish for the benefit of
the users. A system like the CMS has a large number of users, a large number of
connections to CSE and heavy requirement on the processing applications that
must be executed in real-time. Further constraints are given by the demanding
performances, security requirements and by the incorporation of Off-The-Shelf
software. It is clear how this class of systems needs clear requirement descrip-
tion and management throughout its entire system life cycle. The introduction
of Semantic Technologies such as IE (as described in previous sections) in the
Requirement Analysis process of naval CMS is bringing significant benefits in
different phases of project life cycle. In particular, the application of Machine
Learning techniques in the initial phase of the project has allowed filling the gap
between the contractual technical specifications and system design description.
Thanks to the machine learning method, the tool illustrated in this paper auto-
mates the process of recognition of several inferences about system components
directly from the texts that characterize them, i.e. the requirements.
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4.1 Experimental Evaluation

Machine-learning techniques for requirement analysis described in the previous
Sections have been implemented in a Requirement Analysis System, according
to the Architecture shown in Figure 1. The resulting adaptive system has been
applied to a real scenario, i.e. the requirement analysis of a Naval Combat Sys-
tems, focusing on the SW system, namely the Combat Management System
(CMS). This Section provides the empirical evaluation of system functionalities,
such as the Requirement Identification (RI) and Information Extraction (IE)
as applied to the CMS requirement analysis. Requisites here refer to different
aspects of the CMS, such as Functional Requirements (FNC) or Performance
requirements (PRF). The dataset adopted in our tests is made of 4,727 anno-
tated requirements, related to three different scenarios, called EAU, FREMM
and NUM. Each requisite has been labeled according to one of the five requisite
types, which are specific aspects of the resulting system, such as FNC or PRF,
as shown in Table 1.

Table 1. Requisite Types

ABBR Type Number
NFC Non-Functional Requirements 74
DCC Design and Construction Constraints 288
OPR Operator requirements 2,587
PRF Performance Requirements 249
FNC Functional requirements 1,529
Total 4,727

The Requirement Identification system of Figure 1 has been trained to recog-
nize and characterize requirements. The module applies Support Vector Machine
classification to associate each requirement its suitable specific class, reflected
into the corresponding type. Different models of observable text properties al-
lowed to investigate different linguistic information and to identify the most
informative representations for the learning algorithm:

– The Bag-of-Word (BoW ) model mainly accounts for the lexical information:
requisites are mapped into sets of words, neglecting word order, i.e. syntactic
information.

– The N-gram of Words (N-Words) model provides a first form of grammatical
information, by mapping short word sequences into n-grams of words.

– A Bag-of-Word and N-gram of Part-of-Speech (N-POS ) introduces gram-
matical information as it attaches part-of-speech to n-grams, by further
generalizing the sequences of words in the textual requisite.

– The Comprehensive (BoW + N-Words + N-POS ) model accounts for all
the previous information, i.e. as it includes Bag-of-Words, n-grams of Words
and n-grams of Part-of-Speeches.

The objective of the experiments is also to measure and compare the adap-
tion capabilities of SVM classifiers to different scenarios: the idea is that SVMs
should be able to induce meaningful classification models from the data avail-
able in a specific scenario, i.e. the in-domain scenario, but also provide accurate
predictions even when applied to different, i.e. out-of-domain, scenarios.
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Fig. 2. Requisite Classification Results

Figure 2 reports the classification results, in terms of accuracy, i.e. the percent-
age of correctly classified requisites. Different colors reflect the different adopted
feature models. The first three histograms provide results when classifiers are
trained over requisite from one single scenario (i.e. EAU, NUM and FREMM
respectively) and applied to the other remaining scenarios. The second group
of histograms shows results when classifiers are trained over two scenarios (i.e.
(EAU-NUM), (EAU-FREMM) and (FREMM-NUM)) and applied to requisites
in the single remaining scenario. Finally, the last group shows results from an
in-domain setting, when the 80% of requisites from all scenarios are used to
train classifiers, while the remaining 20% are used as test set. In all experi-
ments, SVM parameters are estimated over an held-out 20% of the training
data. Results, especially when lexical and grammatical features are considered,
i.e. the BoW + N-words + N-POS model, are very good and an accuracy higher
of 93% is achieved. Moreover, the system robustness is very promising, as ac-
curacy higher than 85% is reached even in out-of-domain tests. Errors refer to
reasonable and genuinely ambiguous cases. For example, the system labels as
FNC both requisites “The CMS shall display the progress of each engagement.”
and “The CMS shall display single manoeuvre request within . . . ”, although this
latter is associated to OPR. Once a specific requisite is located, the Informa-
tion Extraction (IE) System (Fig. 1) carries out the extraction of its relevant
information, as a slot-filling process over the reference templates. Templates are
automatically generated from the analysis of a Domain Ontology, which pro-
vided a model of the application domain as well as an abstraction of individual
requirement types. These types ontologically determine different capabilities, i.e.
desired characteristics of a target system. Moreover, the ontology provides hi-
erarchies that group capabilities according to their semantics and the expected
grain of analysis. Coarse grained capabilities refer to high level system charac-
teristics, such as such Resource Management, that in turn groups together
several fine-grained capabilities. These latter specialize the considered aspects,
e.g. Navigation Radar(NAV), that specializes the notion of Resource Man-
agement in Navigation Radar systems. The IE system is asked to associate a req-
uisite like “The CMS shall monitor information transmitted by the Navigation
Radar” to the NAV template, recognizing its finer-grained aspect. The database
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of Templates, defined by the ontology, includes 65 templates that correspond to
the range of the function mapping each requisite to its corresponding template.
The high number of target class makes this task very challenging with respect
to the previous requisite identification problem.

SVM classifiers have been employed even in this task: parameter estimation
has not been employed, to prove the low dependence of the learning algorithm
from external parameters; instead, results are reported as mean accuracy and
(negligible) standard deviation in parenthesis. Requisites are here represented
similarly to the previous task, thus employing the BoW model, that consider
only lexical information, and the BoW + N-Words model that consider also the
shallow syntactic information of the requisites. In term of percentage of requisite
correctly covered by a template we have a classification results 87,61% (1,16%)
with Bow models and 88,5% (1,46%) with BoW + N-Words model. Even
in this evaluation, results show an accuracy of 88% proving the IE system as a
largely applicable process.

4.2 Retrieval in Large Repositories of Software Documentation

In this section the contribution of the proposed approach for Requirements Anal-
ysis (RA) is investigated in an Information Retrieval scenario to improve the
software reusability. In order to retrieve a piece of software or any other existing
functionality that satisfies a specific user requirement, a Requirement Analyst
usually retrieves existing documentation through a search engine through spe-
cific term-based queries. In a Ad-hoc Retrieval scenario [12], the quality of the
retrieved material is strictly dependent from the expressed query that reflects
user needs. In this section we instead define a robust search engine to enable
the Requirement Analyst the retrieval of existing software functionalities by ex-
pressing software requirements in natural language.

The contribution of the proposed architecture is shown here to enable a more
conceptual kind of search. The idea is that requirements determine complex
queries can be processed by our RA software and used to retrieve existing soft-
ware compatible with the functionalities expressed by the user requirements.
More formally, the user express a requisite ri ∈ R in order to retrieve one
of the specific functionalities f i

1, . . . , f
i
ni

satisfying ri. We denote the set of all
{f i

j |j = 1, ..., ni} as Fi and ni = |Fi|. As an example, given a requisite r “The CS
shall provide facilities for Human Computer Interface presentation”, we would
like to retrieve the implemented functionalities satisfying the specific need, such
as the functionality f “The CMS shall provide the following facilities at CMS
consoles : screens, pointing device, keyboards, MFKA, service settings.”. In fact,
in this case, the requisite r is satisfied by f , because it expresses the avail-
able facilities to interact with the software system. We collected all the pairs
RF = {〈ri, Fi〉}, where ri is a system requirement and Fi is the set of the
corresponding functionalities satisfying ri, denoted by {f i

1, f i
2, ... , f i

ni
}.

To associate a generic f to a given r, we first exploit the vector representation
described in Section 4.1 that reflects the generic notion of semantic text similarity
[16,17]. This is a geometric representation of textual meaning based on the the
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set of lexical and grammatical features expressed in the resulting weighted vector
that establishes a variety of latent semantic relations between requirements: the
closer two requirements are in the representation space, the stronger is their
semantic relation.

Fig. 3. Conceptual Graph employed to evaluate the semantic similarity function

A first use of this representation is the Graphical User Interface (GUI) to
the database, that allows to analyze complex semantic relationships between
individual requisites, such as the redundancy. As shown in Figure 3, individual
requisites are represented through a conceptual graph where edges between ver-
tices express weighted semantic similarity relationship between two instances.
In Figure 3 the graph of requisites closer to the requisite CMS-OPR-3333,
i.e. “The CMS shall monitor the equipment Status through reception, extraction
and display of the information that is periodically transmitted by the surveillance
radar . . . ” is shown. Notice how the most similar text is CMS-OPR-33355:
“The CMS shall monitor the Health Status through reception, extraction and
display of the information that is periodically transmitted by the surveillance
radar.”. This confirms that the captured notion of similarity well reflects rich se-
mantic relations. This relationship instance is in fact a form of textual entailment
[18], i.e. the directional relationship between a text pair 〈T,H〉, made by T , i.e.
the entailing “Text”, and H , i.e. the entailed “Hypothesis”. It is usually stated
that T entails H if a human that reads T (assuming it to be true) would accept
that H is most likely true. This definition is somewhat informal but model an
underlying useful form of commonsense knowledge for human expert.

The way a graph is built depends on the distance metrics established within
the underlying vector space. Given a requisite ri, the short texts describing
functionalities fj can be ranked according to their semantic similarity with the
specific ri, modeled through the cosine similarity sim between the corresponding

vectors −→ri and
−→
fj : sim(ri, fj) =

−→ri ·−→fj
||−→ri ||·||−→fj||
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In this evaluation, we considered a set of 290 requisites and 1,474 functionali-
ties of the Combat Management System (CMS). The mean number of function-
alities for each r was 5, with a standard deviation of about 3.5. For each ri, the
set Fi specifies all functionalities realizing ri: these are the gold standard, i.e.
the set of texts expected to be retrieved by the analyst querying by ri. As they
are short texts, individual ri as well as fj are modeled according to the Com-
prehensive model, i.e. the BoW + N-POS + N-Words vector representation, as
it achieves the best results in the RA discussed in Section 4.1.

The information acquired during the RA phase is here exploited in order to
define a Re-ranking phase: the ranking provided by the semantic similarity func-
tion is thus adjusted to filter out all those functionalities that do not share the
same characterization of the target requirement ri, i.e. the same type and capa-
bility, as discussed in Section 4.1. Four different retrieval strategies are applied,
giving rise to four IR systems:

– NoFilter: for each ri, the most similar fj are retrieved and ranked according
to sim: no filter is applied.

– Type: the ranking provided by sim is grouped in two lists: the first, ranked
higher, is made by functionalities sharing the same type of ri and a second list
including the remaining fj whose type is different. In this way functionalities
fj of the same type of ri are always ranked first than the other ones.

– Capability: the two lists are created as before with respect to the capability
assigned to the target ri, so that functionalities with the same capabilities
of ri are ranked first;

– Type+Capability: the ranking provided by sim is modified as before ac-
cording to the sharing the both type and capability of ri.

Different strategies are evaluated according to standard IR evaluation metrics:
Precision (P ), Recall (R), F-measure (F1) andMean Average Precision (MAP ).
Precision is expressed as P = tp

tp+fp , where tp is the number of the relevant
functionalities retrieved, and fp is the number of the not relevant functionalities
retrieved. Recall is expressed as R = tp

tp+fn , where fn is the number of the
relevant functionalities not retrieved. While Precision estimates the capacity to
retrieve correct functionalities, Recall is more interesting in this scenario as it
measures system capacity to retrieve all existing functionalities; in many cases,
it is more important to retrieve all existing software instead of spending more
time reading useless documentation. F-measure consider both aspects as it is
estimated as the harmonic mean of Precision and Recall: F1 = 2·P ·R

P+R
Finally, MAP provides a single accuracy measure across different recall levels.

MAP is based on the oracle given by RF={〈ri, Fi〉} that are pairs of a requisite
ri and a functionality set Fi. Every requisite ri also corresponds to a ranked list
of retrieved functionalities, ordered according to the similarity function sim. Let
F k
i be the list of retrieved functionalities f i

j from the top result (i.e. f i
1, ranked

as the closest by the system) to the f i
k that corresponds to the position where

k-th members of the functionalities in Fi results all returned. In this way, the
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Fig. 4. System Recall

number of true positive functionalities for a requirement is exactly k. Then, the
Mean Average Precision at level k of recall is denoted as:

MAP@k =
1

|RF |
|RF |∑

i=1

1

|F k
i |

|Fk
i |∑

k=1

P (F k
i )

where |F k
i | obviously denotes the number of relevant functionalities for a given

requisite ri that varies with i, and P (F k
i ) expresses the precision against the first

k true positives for ri. The results in terms of Recall with respect to increasing
number of retrieved functionalities are shown in Figure 4 for different retrieval
strategies. Moreover, Table 2 report evaluation figures for varying size of the
retrieved document lists.

Table 2. Accuracy for different IR strategies and sizes of returned functionalities

1 5 10 15 20 25 30 35 40 45 50
P 0,158 0,036 0,021 0,016 0,014 0,012 0,011 0,010 0,010 0,009 0,008

No filter R 0,092 0,093 0,102 0,107 0,122 0,124 0,128 0,142 0,147 0,152 0,160
F1 0,116 0,052 0,035 0,028 0,026 0,022 0,020 0,019 0,018 0,017 0,016
P 0,175 0,046 0,029 0,024 0,022 0,020 0,018 0,017 0,016 0,015 0,015

Type R 0,097 0,112 0,126 0,141 0,157 0,178 0,196 0,211 0,219 0,226 0,242
F1 0,125 0,065 0,047 0,042 0,038 0,036 0,033 0,032 0,030 0,029 0,028
P 0,407 0,151 0,106 0,085 0,073 0,065 0,060 0,056 0,052 0,051 0,049

Capability R 0,176 0,255 0,363 0,415 0,484 0,525 0,553 0,588 0,615 0,659 0,680
F1 0,246 0,189 0,165 0,141 0,127 0,116 0,108 0,102 0,097 0,094 0,091
P 0,488 0,167 0,113 0,089 0,073 0,066 0,060 0,055 0,050 0,047 0,044

Type+Capability R 0,196 0,296 0,430 0,497 0,538 0,553 0,561 0,585 0,661 0,677 0,683
F1 0,280 0,214 0,179 0,150 0,128 0,118 0,109 0,101 0,093 0,088 0,083

Moreover, in Table 3 the results of MAP are reported: rows correspond to
different strategies while columns report different MAP values obtained when
k is fixed to 1, 2 and 5, respectively. When no filter is applied, results are quite
low, especially in term of Recall: when 50 functionalities are retrieved only 20%
are usually relevant for the user. The high-level filter, represented by the Type
strategy, improves results even if the difference is not very relevant. The Capa-
bility information produces a considerable improvement: when 50 functionalities
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are retrieved, more than 70% of them are relevant for the user. The filter that
considers both type and capability is quite effective when few items are retrieved,
as confirmed by the highest value of MAP achieved for lower levels of k.

Table 3. Mean Average Precision

Filter MAP@1 MAP@2 MAP@5
No filter 0.139 0.126 0.117
Type 0.149 0.142 0.135
Capability 0.305 0.284 0.273
Type+Capability 0.368 0.354 0.347

Finally, a qualitative analysis of the retrieval accuracy can be carried out by
studying some examples of returned functionalities. We queried the IR service
by a system requirement r such as “The CS shall provide facilities for Human
Computer Interface presentation”. Table 4 shows the retrieved functionalities
obtained by applying the combined filter (type and capability) to the input r.
It is clear that the returned functionalities have a quite good relevance for the
queries requisite, as the first hits in the Table show. Moreover, the quality of the
relevance decrease along with the ranking: the third returned hit is much less
relevant than the first two, despite properly respond to the requirement.

Table 4. Example of retrieved functionalities

r The CS shall provide facilities for Human Computer Interface presentation

fr
1 The CMS shall provide similar controls and means of interaction with all

displays, i.e. they should be the same where possible and consistent otherwise.
fr
2 The CMS shall provide the following facilities at CMS consoles : screens,

pointing device, keyboards, MFKA, service settings.
fr
3 The CMS shall display alerts on primary view area

5 Conclusions

While Semantic Technologies show a large set of promises in the Defense Sys-
tem Engineering domain, they are usually very demanding from the point of
view of complexity in design, optimization and maintenance. Traditional (i.e.
Knowledge-based) HLTs approaches are in this class of technologies. The results
achieved in Statistical Natural Language Processing by the adoption of robust
and accurate Machine Learning algorithms allowed to increase the applicability
of these methods in several domain, from Business Analysis, Web Communica-
tion as well Security. In this paper, a general architecture for large scale and
adaptive Requirement Analysis has been presented. Its application to Require-
ment Analysis in the specific Defense System Engineering domain is evaluated
and discussed. The main idea is to combine requirement classification and IE
for automation of most of the validation stages related to system behaviors. The
system is currently experimented in a specific scenario of Combat System Equip-
ment, applied to the management of the design and description of the Computer
Software Configuration Items interactions. The application of semantic technolo-
gies in the Defense System Engineering domain has shown its potentials in the
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Requirement Analysis process. In particular it can support significant cost reduc-
tion, products’ quality enhancement as well as the improvement of Engineering
processes.
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