
Machine Learning for Emergent Middleware

Amel Bennaceur1, Valérie Issarny1, Daniel Sykes1,
Falk Howar2, Malte Isberner2, Bernhard Steffen2,
Richard Johansson3, and Alessandro Moschitti3

1 Inria, Paris-Rocquencourt, France
2 Technical University of Dortmund, Germany

3 University of Trento, Italy

Abstract. Highly dynamic and heterogeneous distributed systems
are challenging today’s middleware technologies. Existing middleware
paradigms are unable to deliver on their most central promise, which
is offering interoperability. In this paper, we argue for the need to dy-
namically synthesise distributed system infrastructures according to the
current operating environment, thereby generating “Emergent Middle-
ware” to mediate interactions among heterogeneous networked systems
that interact in an ad hoc way. The paper outlines the overall archi-
tecture of Enablers underlying Emergent Middleware, and in particular
focuses on the key role of learning in supporting such a process, spanning
statistical learning to infer the semantics of networked system functions
and automata learning to extract the related behaviours of networked
systems.

Keywords: Machine learning, Natural language processing, Automata
learning, Interoperability, Automated Mediation.

1 Introduction

Interoperability is a fundamental property in distributed systems, referring to
the ability for two or more systems, potentially developed by different manufac-
turers, to work together. Interoperability has always been a challenging problem
in distributed systems, and one that has been tackled in the past through a com-
bination of middleware technologies and associated bridging solutions. However,
the scope and level of ambition of distributed systems continue to expand and
we now see a significant rise in complexity in the services and applications that
we seek to support.

Extreme distributed systems challenge the middleware paradigm that needs
to face on-the-fly connection of highly heterogeneous systems that have been
developed and deployed independently of each other. In previous work, we have
introduced the concept of Emergent Middleware to tackle the extreme levels of
heterogeneity and dynamism foreseen for tomorrow’s distributed systems [13,4].

Emergent Middleware is an approach whereby the necessary middleware to
achieve interoperability is not a static entity but rather is generated dynamically
as required by the current context. This provides a very different perspective on

A. Moschitti and B. Plank (Eds.): EternalS 2013, CCIS 379, pp. 16–29, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Machine Learning for Emergent Middleware 17

middleware engineering and, in particular requires an approach that create and
maintain the models of the current networked systems and exploit them to reason
about the interaction of these networked systems and synthesise the appropriate
artefact, i.e., the emergent middleware, that enable them to interoperate. How-
ever, although the specification of system capabilities and behaviours have been
acknowledged as fundamental elements of system composition in open networks
(especially in the context of the Web [8,16]), it is rather the exception than the
norm to have such rich system descriptions available on the network.

This paper focuses on the pivotal role of learning technologies in supporting
Emergent Middleware, including in building the necessary semantic run-time
models to support the synthesis process and also in dealing with dynamism by
constantly re-evaluating the current environment and context. While learning
technologies have been deployed effectively in a range of domains, including in
Robotics [26], Natural Language Processing [20], Software Categorisation [25],
Model-checking [22], Testing [12], and Interface Synthesis [2], and Web service
matchmaking [15], this is the first attempt to apply learning technologies in
middleware addressing the core problem of interoperability.

This work is part of a greater effort within the Connect project1 on the
synthesis of Emergent Middleware for GMES-based systems that are represen-
tative of Systems of Systems. GMES2 (Global Monitoring for Environment and
Security) is the European Programme for the establishment of a European ca-
pacity for Earth Observation started in 1998. The services provided by GMES
address six main thematic areas: land monitoring, marine environment moni-
toring, atmosphere monitoring, emergency management, security and climate
change. The emergency management service directs efforts towards a wide range
of emergency situations; in particular, it covers different catastrophic circum-
stances: Floods, Forest fires, Landslides, Earthquakes and volcanic eruptions,
Humanitarian crises.

For our experiments, we concentrate on joint forest-fire operation that involves
different European organisations due to, e.g., the cross-boarder location or crit-
icality of the fire. The target GMES system involves highly heterogeneous NSs,
which are connected on the fly as mobile NSs join the scene. Emergent Middle-
ware then need to be synthesised to support such connections when they occur.
In the following, we more specifically concentrate on the connection with the
Weather Station NS, which may have various concrete instances, ranging from
mobile stations to Internet-connected weather service. In addition, Weather Sta-
tion NSs may be accessed from heterogeneous NSs, including mobile handheld
devices of the various people on site and Command and Control —C2— centres
(see Figure 1). We show how the learning techniques can serve complement-
ing the base interface description of the NS with appropriate functional and
behavioural semantics. It is in particular shown that the process may be fully
automated, which is a key requirement of the Emergent Middleware concept.

1 http://connect-forever.eu/
2 http://www.gmes.info

http://connect-forever.eu/
http://www.gmes.info


18 A. Bennaceur et al.

Fig. 1. Heterogeneous Connections with Weather Station NSs

2 Emergent Middleware

Emergent Middleware is synthesised in order to overcome the interoperability
issue arising from two independently-developed Networked Systems (NSs). Given
two Networked Systems where one implements the functionality required by the
other, an Emergent Middleware that mediates application- and middleware-layer
protocols implemented by the two NSs is deployed in the networked environment,
based on the run-time models of the two NSs and provided that a protocol
mediator can indeed be computed. The following section defines the NS model
we use to represent the networked systems and reason about their interoperation.
Then we present the by Enablers, i.e., active software entities that collaborate
to realise the Emergent Middleware ensuring their interoperation.

2.1 Networked System Model

The definition of NS models takes inspiration from system models elaborated
by the Semantic Web community toward application-layer interoperability. As
depicted on Figure 2.(a), the NS model then decomposes into:

– Interface: The NS interface provides a microscopic view of the system by
specifying fine-grained actions (or methods) that can be performed by (i.e.,
external action required by NS in the environment for proper functioning)
and on (i.e., actions provided by the given NS in the networked environment)
NS.
There exist many interface definition languages and actually as many lan-
guages as middleware solutions. In our approach, we use a SAWSDL-like3

XML schema. In particular, a major requirement is for interfaces to be an-
notated with ontology concepts so that the semantics of embedded actions
and related parameters can be reasoned about.

3 http://www.w3.org/2002/ws/sawsdl/spec/

http://www.w3.org/2002/ws/sawsdl/spec/


Machine Learning for Emergent Middleware 19

Networked 
System

Affordance

Interface

OutputInputFunctionality
Kind

Req/Prov

Behaviour

1

1 1 0..n 0..n

0..n

1

Fig. 2. The Networked System (NS) Model

– Affordances : The affordances (a.k.a. capabilities in OWL-S [16]) describe the
high-level roles an NS plays, e.g., weather station, which are implemented as
protocols over the system’s observable actions (i.e., actions specified in the
NS interface). The specification of an affordance decomposes into:
• The ontology-based semantic characterisation of the high level Func-
tionality implemented by the affordance, which is given in terms of the
ontology concepts defining the given functionality and of the associated
Input and Output. An affordance is further either requested or provided
by the NS in the networked environment. In the former case, the NS
needs to access a remote NS providing the affordance for correct oper-
ation; in the latter, the NS may be accessed for the implementation of
the given affordance by a remote NS.

• The affordance’s behaviour describes how the actions of the interface
are co-ordinated to achieve the system’s given affordance. Precisely, the
affordance behaviour is specified as a process over actions defined in the
interface, and is represented as a Labelled Transition System (LTS).

2.2 Emergent Middleware Enablers

In order to produce an Emergent Middleware solution, an architecture of En-
ablers is required that executes the Emergent Middleware lifecycle. An Enabler
is a software component that executes a phase of the Emergent Middleware,
co-ordinating with other Enablers during the process.

The Emergent Middleware Enablers are informed by domain ontologies that
formalise the concepts associated with the application domains (i.e., the vo-
cabulary of the application domains and their relationship) of interest. Three
challenging Enablers must then be comprehensively elaborated to fully realise
Emergent Middleware:

1. The Discovery Enabler is in charge of discovering the NSs operating in a
given environment. The Discovery Enabler receives both the advertisement
messages and lookup request messages that are sent within the network



20 A. Bennaceur et al.

environment by the NSs using legacy discovery protocols (e.g., SLP4) thereby
allowing the extraction of basic NS models based on the information exposed
by NSs, i.e., identification of the NS interface together with middleware used
for remote interactions. However, semantic knowledge about the NS must be
learned as it is not commonly exposed by NSs directly.

2. The Learning Enabler specifically enhances the model of discovered NSs with
the necessary functional and behavioural semantic knowledge. The Learning
Enabler uses advanced learning algorithms to dynamically infer the ontology-
based semantics of NSs’ affordances and actions, as well as to determine the
interaction behaviour of an NS, given the interface description exposed by
the NS though some legacy discovery protocol. As detailed in subsequent
sections, the Learning Enabler implements both statistical and automata
learning to feed NS models with adequate semantic knowledge, i.e., func-
tional and behavioural semantics.

Discovery
Enabler

NS1 NS2

Learning
Enabler

Synthesis
Enabler

 Networked System 1

NS1 NS2

Partial NS Models

NS Models

 Networked System 2
Emergent

Middleware

Monitoring
Enabler

α β

ɣ
δ

ωλρ
ρ

Fig. 3. The Enablers supporting Emergent Middleware

3. The Synthesis Enabler dynamically generates the software (i.e., Emergent
Middleware) that mediates interactions between two legacy NS protocols to
allow them to interoperate. In more detail, once NS models are complete,
initial semantic matching of two affordances, that are respectively provided
and required by two given NSs, may be performed to determine whether the
two NSs are candidates to have an Emergent Middleware generated between
them. The semantic matching of affordances is based on the subsumption
relationship possibly holding between the concepts defining the functional
semantics of the compared affordances.

Given a functional semantic match of two affordances, the affordances’ be-
haviour may be further analysed to ultimately generate a mediator in case
of behavioural mismatch. It is the role of the Synthesis Enabler to analyse
the behaviour of the two affordances and then synthesise—if applicable—the
mediator component that is employed by the Emergent Middleware to en-
able the NSs to coordinate properly to realise the given affordance. For this,

4 http://www.openslp.org/

http://www.openslp.org/


Machine Learning for Emergent Middleware 21

the Synthesis Enabler performs automated behavioural matching and map-
ping of the two models. This uses the ontology-based semantics of actions
to say where two sequences of actions in the two behaviours are seman-
tically equivalent; based upon this, the matching and mapping algorithms
determine a LTS model that represents the mediator. In few words, for both
affordance protocols, the mediator LTS defines the sequences of actions that
serve to translate actions from one protocol to the other, further including
the possible re-ordering of actions.

The Learning phase is a continuous process where the knowledge about NSs is
enriched over time, thereby implying that Emergent Middleware possibly needs
to adapt as the knowledge evolves. In particular, the synthesised Emergent Mid-
dleware is equipped with monitoring probes that gather information on actual
interaction between connected systems. This observed Monitoring Data is de-
livered to the Learning Enabler, where the learned hypotheses about the NSs’
behaviour are compared to the observed interactions. Whenever an observation is
made by the monitoring probes that is not contained in the learned behavioural
models, another iteration of learning is triggered, yielding refined behavioural
models. These models are then used to synthesise and deploy an evolved Emer-
gent Middleware.

3 Machine Learning: A Brief Taxonomy

Machine learning is the discipline that studies methods for automatically in-
ducing functions (or system of functions) from data. This broad definition of
course covers an endless variety of subproblems, ranging from the least-squares
linear regression methods typically taught at undergraduate level [20] to ad-
vanced structured output methods that learn to associate complex objects in
the input [18] with objects in the output [14] or methods that infer whole com-
putational structures [10]. To better understand the broad range of machine
learning, one must first understand the conceptual differences between learning
setups in terms of their prerequisites:

– Supervised learning is the most archetypical problem setting in machine
learning. In this setting, the learning mechanism is provided with a (typ-
ically finite) set of labelled examples: a set of pairs T = {(x, y)}. The goal is
to make use of the example set T to induce a function f , such that f(x) = y,
for future unseen instances of (x, y) pairs (see for example [20]). A major hur-
dle in applying supervised learning is the often enormous effort of labelling
the examples.

– Unsupervised learning lowers the entry hurdle for application by requiring
only unlabelled example sets, i.e., T = {x}. In order to be able to come up
with anything useful when no supervision is provided, the learning mech-
anism needs a bias that guides the learning process. The most well-known
example of unsupervised learning is probably k-means clustering, where the
learner learns to categorise objects into broad categories even though the



22 A. Bennaceur et al.

categories were not given a priori. Obviously, the results of unsupervised
learning cannot compete with those of supervised learning.

– Semi-supervised learning is a pragmatic compromise. It allows one to use
a combination of a small labelled example set Ts = {(x, y)} together with
a larger unlabelled example set Tu = {x} in order to improve on both the
plain supervised learner making use of Ts only and the unsupervised learner
using all available examples.

– Active learning puts the supervisor in a feedback loop: whenever the (active)
learner detects a situation where the available test set is inconclusive, the
learner actively constructs complementing examples and asks the supervisor
for the corresponding labelling. This learning discipline allows a much more
targeted learning process, since the active learner can focus on the impor-
tant/difficult cases (see for example [5]). The more structured the intended
learning output is, the more successful active learning will be, as the required
structural constraints are a good guide for the active construction of exam-
ples [3]. It has been successfully used in practice for inferring computational
models via testing [11,10].

Learning technology has applicability in many domains. The next sections con-
centrate on the learning-based techniques that we are developing to enable the
automated inference of semantic knowledge about Networked Systems, both
functional and behavioural. The former relies on statistical learning while the
latter is based on automata learning.

4 Statistical Learning for Inferring NS Functional
Semantics

As discussed in Section 2.2, the first step in deciding whether two NSs will be
able to interoperate consists in checking the compatibility of their affordances
based on their functional semantics (i.e., ontology concepts characterising the
purpose of the affordance). Then, in the successful cases, behavioural matching
is performed so as to synthesise required mediator. This process highlights the
central role of the functional matching of affordances in reducing the overall com-
putation by acting as a kind of filter for the subsequent behavioural matching.
Unfortunately, legacy applications do not normally provide affordance descrip-
tions. We must therefore rely upon an engineer to provide them manually, or
find some automated means to extract the probable affordance from the interface
description. Note that it is not strictly necessary to have an absolutely correct
affordance since falsely-identified matches will be caught in the subsequent de-
tailed checks.

Since the interface is typically described by textual documentation, e.g., XML
documents, we can capitalise on the long tradition of research in text categorisa-
tion. This studies approaches for automatically enriching text documents with
semantic information. The latter is typically expressed by topic categories: thus
text categorisation proposes methods to assign documents (in our case, interface



Machine Learning for Emergent Middleware 23

descriptions) to one or more categories. The main tool for implementing mod-
ern systems for automatic document classification is machine learning based on
vector space document representations.

In order to be able to apply standard machine learning methods for building
categorizers, we need to represent the objects we want to classify by extracting
informative features. Such features are used as indications that an object belongs
to a certain category. For categorisation of documents, the standard representa-
tion of features maps every document into a vector space using the bag-of-words
approach [24]. In this method, every word in the vocabulary is associated with
a dimension of the vector space, allowing the document to be mapped into the
vector space simply by computing the occurrence frequencies of each word. For
example, a document consisting of the string “get Weather, get Station” could
be represented as the vector (2, 1, 1, . . .) where, e.g., 2 in the first dimension is
the frequency of the “get” token. The bag-of-words representation is considered
the standard representation underlying most document classification approaches.
In contrast, attempts to incorporate more complex structural information have
mostly been unsuccessful for the task of categorisation of single documents [21]
although they have been successful for complex relational classification tasks [19].

However, the task of classifying interface descriptions is different from classify-
ing raw textual documents. Indeed, the interface descriptions are semi-structured
rather than unstructured, and the representation method clearly needs to take
this fact into account, for instance, by separating the vector space representation
into regions for the respective parts of the interface description. In addition to
the text, various semi-structured identifiers should be included in the feature
representation, e.g., the names of the method and input parameters defined by
the interface. The inclusion of identifiers is important since: (i) the textual con-
tent of the identifiers is often highly informative of the functionality provided by
the respective methods; and (ii) the free text documentation is not mandatory
and may not always be present.

For example, if the functionality of the interface are described by an XML
file written in WSDL, we would have tags and structures, as illustrated by the
text fragment below, which relates to a NS implementing a weather station and
is part of the GMES scenario detailed in the next section on experiments:

<wsdl : message name=”GetWeatherByZipCodeSoapIn”>
<wsdl : part name=”parameters ”

element=”tns : GetWeatherByZipCode ” />
</wsdl : message>
<wsdl : message name=”GetWeatherByZipCodeSoapOut”>

<wsdl : part name=”parameters ”
element=”tns : GetWeatherByZipCodeResponse ”/>

</wsdl : message>

It is clear that splitting the CamelCase identifier GetWeatherStation into
the tokens get, weather, and station, would provide more meaningful and
generalised concepts, which the learning algorithm can use as features. Indeed,
to extract useful word tokens from the identifiers, we split them into pieces based



24 A. Bennaceur et al.

on the presence of underscores or CamelCase; all tokens are then normalised to
lowercase.

Once the feature representation is available, we use it to learn several classi-
fiers, each of them specialised to recognise if the WSDL expresses some target se-
mantic properties. The latter can also be concepts of an ontology. Consequently,
our algorithm may be used to learn classifiers that automatically assign ontol-
ogy concepts to actions defined in NS interfaces. Of course, the additional use of
domain (but at the same time general) ontologies facilitates the learning process
by providing effective features for the interface representation. In other words,
WSDL, domain ontologies and any other information contribute to defining the
vector representation used for training the concept classifiers.

5 Automata Learning for Inferring NS Behavioural
Semantics

Automata learning can be considered as a key technology for dealing with black
box systems, i.e., systems that can be observed, but for which no or little knowl-
edge about the internal structure or even their intent is available. Active Learn-
ing (a.k.a regular extrapolation) attempts to construct a deterministic finite
automaton that matches the behaviour of a given target system on the ba-
sis of test-based interaction with the system. The popular L∗ algorithm infers
Deterministic Finite Automata (DFAs) by means of membership queries that
test whether certain strings (potential runs) are contained in the target sys-
tem’s language (its set of runs), and equivalence queries that compare intermedi-
ately constructed hypothesis automata for language equivalence with the target
system.

In its basic form, L∗ starts with a hypothesis automaton that treats all se-
quences of considered input actions alike, i.e., it has one single state, and refines
this automaton on the basis of query results, iterating two main steps: (1) refining
intermediate hypothesis automata using membership queries until a certain level
of “consistency” is achieved (test-based modelling), and (2) testing hypothesis
automata for equivalence with the target system via equivalence queries (model-
based testing). This procedure successively produces state-minimal deterministic
(hypothesis) automata consistent with all the encountered query results [3]. This
basic pattern has been extended beyond the domain of learning DFAs to classes
of automata better suited for modelling reactive systems in practice. On the basis
of active learning algorithms for Mealy machines, inference algorithms for I/O-
automata [1], timed automata [7], Petri Nets [6], and Register Automata [10],
i.e., restricted flow graphs, have been developed.

While usually models produced by active learning are used in model-based
verification or some other domain that requires complete models of the system
under test (e.g., to prove absence of faults), here the inferred models serve as
a basis for the interaction with the system for Emergent Middleware synthesis.
This special focus poses unique requirements on the inferred models (discussed
in detail in [9]), which become apparent in the following prototypical example.



Machine Learning for Emergent Middleware 25

�������								
�����

���

���������������			����� �!"�#!$�%��&��'�����#�(�	���

						���
						���������
������)��������

						���

�����
������

����

			����
� �!"

�#!$�%
��&��'

�����
#��*!

���

					���

					�%�
��%!�+

,'-	�*
����)%

���%!�

				���

�

+

.

�

/

.

0�#!$�%	=	
				 �!"�#!$�%��&��'���1�������2

%���%!3
�����								+,'-	�*���			

���

/

 �!"�#!$�%��&��'����
				�4	1�������	55	6
�����62	7															
								%�!*%�	��0	8�������1%��3
����29
			:
			;%�#<9

0�#!$�%

Fig. 4. Communicating Components

Figure 4 shows a typical interoperability scenario where two NSs are actual
implementations of their specified interfaces. The NS on the right implements
a weather service that provides weather forecasts for regions identified by ZIP
codes. The NS on the left is a matching client. The two NSs communicate via
SOAP protocol messages (1), (5), and together realise some protocol, which
comprises a control part (2), and a data part (3) at both NSes. The data parts
may be best described as a set of local variables or registers. The control part can
be modelled as a labeled transition system with actual blocks of code labelling
the transitions (4). Each code block of Fig. 4 would consist of an entry point for
one interface method (e.g., GetWeatherByZipCode), conditions over parameters
and local variables (e.g., comparing ZIP codes), assignments and operations on
local variables (e.g., storing returned weather data), and a return statement.

To infer the behaviour of one NS (say, the right one from Fig. 4), the role of
the other NS has to be undertaken by a learning algorithm, which is aware of the
interface alphabet of the NS whose affordance’s behaviour is to be learned. This
interface alphabet is derived automatically from the interface description of the
NS under scrutiny. A test-driver is then instantiated by the Learning Enabler,
translating the alphabet symbols to remote invocations of the NS to be learned.

Now, to capture the interaction of the two NSs faithfully, two phenomena
have to be made explicit in the inferred models:

– Preconditions of Primitives: Usually real systems operate on communication
primitives that contain data values relevant to the communication context
and have a direct impact on the exposed behaviour. Consider as an exam-
ple session identifiers or sequence numbers that are negotiated between the
communication participants and included in every message. The models have
to make explicit causal relations between data parameters that are used in
the communication (e.g, the exact session identifier that is returned when
opening a new session has to be used in subsequent calls).

– Effects of Primitives: The learned models will only be useful for Emer-
gent Middleware (mediator) synthesis within a given semantic context. Most
NSs have well-defined purposes as characterised by affordances (e.g., getting



26 A. Bennaceur et al.

localised weather information). A subset of the offered communication prim-
itives, when certain preconditions are met, will lead to successful conclusion
of this purpose. This usually will not be deducible from the communication
with a system: an automata learning algorithm in general cannot tell error
messages and regular messages (e.g., weather information) apart. In such
cases, information about effects of primitives rather has to be provided as
an additional (semantic) input to the learning algorithm (e.g., in terms of
ontologies [4]), as supported by the semantically annotated interface descrip-
tions of NSes.

Summarizing, in the context of Emergent Middleware, especially dealing with
parameters and value domains, and providing semantic information on the effect
of communication primitives, are aspects that have to be addressed with care. We
have reaffirmed this analysis in a series of experiments on actual implementations
of NSs.

The automata learning technique is provided by LearnLib [17,23], a
component-based framework for automata learning. In the produced model, each
transition consists of two parts, separated by a forward-slash symbol: on the left

Fig. 5. Behavioural Model of the Weather Station Sensor Network Service – Starting
State is s0



Machine Learning for Emergent Middleware 27

hand side an abstract parameterised symbol is denoted, while on the right hand
side the named variable storing the invocation result is specified. Figure 5 de-
picts the behavioural description of the weather station, which was learned in
31 seconds on a portable computer, using 258 MQs.

The model correctly reflects the steps necessary, e.g., to read sensor data:
createProperties, createSession, getWeatherStation, authenticate and
getSensor have to be invoked before getSensorData can be called successfully.
Additionally, the actual realisation of authentication, which cannot be deduced
from the interface specification alone, is revealed in the inferred model. When
simply looking at the parameter types, the action getSensor should be invocable
directly after the getWeatherStation primitive. However, in reality getSensor

is guarded by an authentication mechanism, meaning that authenticate has to
be successfully invoked beforehand. Also, from the model, it is easily deducible
that the authenticate action will indeed merely affect the provided station
data object (and not, e.g., the whole session): requesting a new station data
object will always necessitate another authentication step before getSensor can
be invoked again, as that action requires an authenticated station data object.

6 Conclusion

This paper has presented the central role of learning in supporting the concept
of Emergent Middleware, which revisits the middleware paradigm to sustain in-
teroperability in increasingly heterogeneous and dynamic complex distributed
systems. The production of Emergent Middleware raises numerous challenges,
among which dealing with the a priori minimal knowledge about networked
systems that is available to the generation process. Indeed, semantic knowledge
about the interaction protocols run by the Networked Systems is needed to be
able to reason and compose protocols in a way that enable NSs to collabo-
rate properly. While making such knowledge available is increasingly common
in Internet-worked environments (e.g., see effort in the Web service domain), it
remains absent from the vast majority of descriptions exposed for the Networked
Systems that are made available over the Internet. This paper has specifically
outlined how powerful learning techniques that are being developed by the scien-
tific community can be successfully applied to the Emergent Middleware context,
thereby enabling the automated learning of both functional and behavioural se-
mantics of NSs. In more detail, this paper has detailed how statistical and au-
tomata learning can be exploited to enable on-the-fly inference of functional and
behavioural semantics of NSs, respectively.

Our experiments so far show great promise with respect to the effectiveness
and efficiency of machine learning techniques applied to realistic distributed
systems such as in the GMES case. Our short-term future work focuses on the fine
tuning of machine learning algorithms according to the specifics of the networked
systems as well as enhancing the learnt models with data representations and
non-functional properties, which can result in considerable gains in terms of
accuracy and performance. In the mid-term, we will work on the realisation of



28 A. Bennaceur et al.

a continuous feedback loop from real-execution observations of the networked
systems to update the learnt models dynamically as new knowledge becomes
available and to improve the synthesised emergent middleware accordingly.

Acknowledgments. This research has been supported by the EU FP7 projects:
Connect – Emergent Connectors for Eternal Software Intensive Networking
Systems (project number FP7 231167), EternalS – “Trustworthy Eternal Sys-
tems via Evolving Software, Data and Knowledge” (project number FP7 247758)
and by the EC Project, LiMoSINe – Linguistically Motivated Semantic aggre-
gation engiNes (project number FP7 288024).

References

1. Aarts, F., Vaandrager, F.: Learning I/O Automata. In: Gastin, P., Laroussinie, F.
(eds.) CONCUR 2010. LNCS, vol. 6269, pp. 71–85. Springer, Heidelberg (2010),
http://dx.doi.org/10.1007/978-3-642-15375-4_6

2. Alur, R., Cerny, P., Madhusudan, P., Nam, W.: Synthesis of interface specifications
for Java classes. In: Proc. POPL 2005 (2005)

3. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Com-
put. 75(2), 87–106 (1987)

4. Blair, G.S., Bennaceur, A., Georgantas, N., Grace, P., Issarny, V., Nundloll, V.,
Paolucci, M.: The Role of Ontologies in Emergent Middleware: Supporting Inter-
operability in Complex Distributed Systems. In: Kon, F., Kermarrec, A.-M. (eds.)
Middleware 2011. LNCS, vol. 7049, pp. 410–430. Springer, Heidelberg (2011)

5. Cohn, D.A., Ghahramani, Z., Jordan, M.I.: Active learning with statistical models.
J. Artif. Intell. Res. (JAIR) 4, 129–145 (1996)

6. Esparza, J., Leucker, M., Schlund, M.: Learning workflow petri nets 113, 205–228
(2011)

7. Grinchtein, O., Jonsson, B., Pettersson, P.: Inference of Event-Recording Automata
Using Timed Decision Trees. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006.
LNCS, vol. 4137, pp. 435–449. Springer, Heidelberg (2006)

8. Heß, A., Kushmerick, N.: Learning to attach semantic metadata to web services.
In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp.
258–273. Springer, Heidelberg (2003)

9. Howar, F., Jonsson, B., Merten, M., Steffen, B., Cassel, S.: On handling data in
automata learning - considerations from the connect perspective. In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2010, Part II. LNCS, vol. 6416, pp. 221–235. Springer,
Heidelberg (2010)

10. Howar, F., Steffen, B., Jonsson, B., Cassel, S.: Inferring canonical register au-
tomata. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148,
pp. 251–266. Springer, Heidelberg (2012)

11. Howar, F., Steffen, B., Merten, M.: Automata learning with automated alphabet
abstraction refinement. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS,
vol. 6538, pp. 263–277. Springer, Heidelberg (2011)

12. Hungar, H., Margaria, T., Steffen, B.: Test-based model generation for legacy sys-
tems. In: Proceedings of the International Test Conference, ITC 2003, September
30-October 2, vol. 1, pp. 971–980 (2003)

http://dx.doi.org/10.1007/978-3-642-15375-4_6


Machine Learning for Emergent Middleware 29

13. Issarny, V., Steffen, B., Jonsson, B., Blair, G., Grace, P., Kwiatkowska, M., Cali-
nescu, R., Inverardi, P., Tivoli, M., Bertolino, A., Sabetta, A.: CONNECT Chal-
lenges: Towards Emergent Connectors for Eternal Networked Systems. In: 14th
IEEE International Conference on Engineering of Complex Computer Systems
(2009)

14. Joachims, T., Hofmann, T., Yue, Y., Yu, C.N.J.: Predicting structured objects with
support vector machines. Commun. ACM 52(11), 97–104 (2009)

15. Katakis, I., Meditskos, G., Tsoumakas, G., Bassiliades, N., Vlahavas, I.P.: On the
combination of textual and semantic descriptions for automated semantic web ser-
vice classification. In: Iliadis, L., Vlahavas, I., Bramer, M. (eds.) Artificial Intelli-
gence Applications and Innovations III. IFIP, vol. 296, pp. 95–104. Springer, Boston
(2009)

16. Martin, D.L., Burstein, M.H., McDermott, D.V., McIlraith, S.A., Paolucci, M.,
Sycara, K.P., McGuinness, D.L., Sirin, E., Srinivasan, N.: Bringing semantics to
web services with OWL-S. In: World Wide Web, pp. 243–277 (2007)

17. Merten, M., Steffen, B., Howar, F., Margaria, T.: Next generation learnLib. In:
Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 220–223.
Springer, Heidelberg (2011)

18. Moschitti, A.: Efficient convolution kernels for dependency and constituent syn-
tactic trees. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006.
LNCS (LNAI), vol. 4212, pp. 318–329. Springer, Heidelberg (2006)

19. Moschitti, A.: Kernel methods, syntax and semantics for relational text catego-
rization. In: Proceedings of ACM 17th Conference on Information and Knowledge
Management, CIKM, Napa Valley, United States (2008)

20. Moschitti, A.: Kernel-based machines for abstract and easy modeling of automatic
learning. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659, pp.
458–503. Springer, Heidelberg (2011)

21. Moschitti, A., Basili, R.: Complex linguistic features for text classification: A com-
prehensive study. In: McDonald, S., Tait, J.I. (eds.) ECIR 2004. LNCS, vol. 2997,
pp. 181–196. Springer, Heidelberg (2004)

22. Peled, D., Vardi, M.Y., Yannakakis, M.: Black box checking. In: Wu, J., Chanson,
S.T., Gao, Q. (eds.) Formal Methods for Protocol Engineering and Distributed
Systems. IFIP AICT, vol. 28, pp. 225–240. Springer, Heidelberg (1999)

23. Raffelt, H., Steffen, B., Berg, T., Margaria, T.: LearnLib: a framework for extrap-
olating behavioral models. Int. J. Softw. Tools Technol. Transf. 11(5), 393–407
(2009)

24. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing.
Tech. Rep. TR74-218, Department of Computer Science, Cornell University, Ithaca,
New York (1974)

25. Selby, R., Porter, A.: Learning from examples: generation and evaluation of decision
trees for software resource analysis. IEEE Transactions on Software Engineering
14(12) (1988)

26. Stone, P., Veloso, M.: Multiagent systems: A survey from a machine learning per-
spective. Autonomous Robots 8 (2000)


	Machine Learning for Emergent Middleware
	1 Introduction
	2 Emergent Middleware
	2.1 Networked System Model
	2.2 Emergent Middleware Enablers

	3 Machine Learning: A Brief Taxonomy
	4 Statistical Learning for Inferring NS Functional Semantics
	5 Automata Learning for Inferring NS Behavioural Semantics
	6 Conclusion
	References




