
Semantic and Algorithmic Recognition Support

to Porting Software Applications to Cloud

Beniamino Di Martino and Giuseppina Cretella

Second University of Naples - Dept. of Industrial and Information Engineering, Italy
beniamino.dimartino@unina.it, giuseppina.cretella@gmail.com

Abstract. This paper presents a methodology, a technique and an ongo-
ing implementation, aimed at supporting software porting (i.e. to adapt
the software to be used in different execution environments), from ob-
ject oriented domain towards Cloud Computing. The technique is based
on semantic representation of Cloud Application Programming Inter-
faces, and on automated algorithmic concept recognition in source code,
integrated by structural based matchmaking techniques. In particular
the following techniques are composed and integrated: automatic recog-
nition of the algorithms and algorithmic concepts implemented in the
source code and the calls to libraries and APIs performing actions and
functionalities relevant to the target environment; comparison through
matchmaking of the recognized concepts and APIs with those present in
the functional ontology which describes the target API; mapping of the
source code excerpts and the source calls to APIs to the target API calls
and elements.

Keywords: Semantic Discovery, Cloud APIs, Cloud Resources, Algo-
rithmic Recognition.

1 Introduction

Software porting over different domains is an important issue, mainly in the re-
cent years, where porting operation are needed not only for the reingeenerization
of old applications, but mostly to port applications over different technologies,
like Cloud Computing.

In the last years Cloud Computing has emerged as a prominent model to
provide online access to computational resources, thanks to its characteristics
of scalability, elasticity, reduced cost, easiness of use, simple maintenance. The
concept of cloud computing is clearly expressed by the NIST definition: ”Cloud
computing is a model for enabling ubiquitous, convenient, on-demand network
access to a shared pool of configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can be rapidly provisioned and
released with minimal management effort or service provider interaction.[...]”

One of the issues related to the adoption of the cloud computing paradigm
is the lackness of a common programming model and open standard interfaces.
Many cloud providers offer different cloud services, but each of their offerings is

A. Moschitti and B. Plank (Eds.): EternalS 2013, CCIS 379, pp. 1–15, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 B. Di Martino and G. Cretella

based on proprietary Application Programming Interfaces (APIs). This situation
complicates the already challenging task of building up applications from inter-
operable services provided by different cloud providers; and the specific APIs,
kind of resources and services provided by a given cloud provider make future mi-
grations costly and difficult (Cloud Vendor Lock in). Portability of code towards
a Cloud providers’ environment and among Cloud providers’ environments is a
severe issue today.

The application of semantic techniques to reverse engineering can enable the
automation or automated support of activities such as porting. Understanding
the functionalities exposed by software artifacts represents an essential support
for a large range of software reengineering activities such as maintenance, de-
bugging, reuse, modernization, and porting.

This paper presents a methodology, a technique and the ongoing implementa-
tion, aimed at supporting software porting towards Cloud Computing environ-
ments. The technique is based on semantic representation of Cloud Application
Programming Interfaces, and on automated Algorithmic Concept Recognition
in source code, integrated by structural based matchmaking techniques.

We combine techniques such as graph based source code representation, first-
order-logic rules for algorithmic recognition and semantic based algorithmic and
codes (APIs) knowledge representation.

Objectives of the described work relate porting of applications towards Cloud
through the extraction of knowledge from the Application Programming Inter-
faces, and the association of semantic description identifying the concepts they
implement. The described technique anyway can target a wide range of applica-
tions, from code reuse to advanced code searching.

The paper is organized as follows. In Section 2 we will present an overview of
works related to reverse engineering solution for program comprehension, with
particular attention to the works that use ontologies and graph based represen-
tations for code and software artifacts. In Section 3 we will present the port-
ing methodology, based on an automatic analysis and representation of code
at higher level of abstraction than the syntactical and structural one. Section
4 presents the main components of the architecture and the workflow of the
methodology presented in the previous section. Conclusions and future works
are drawn in Section 5.

2 Background and Related Work

Reverse engineering is the process of system analysis to identify the compo-
nents and their interrelationships and create representations at a higher level of
abstraction. Therefore it’s an activity that allows getting specific information
about the design of a system from its code, through extraction and abstraction
of system information. Reverse engineering may require a thorough understand-
ing of systems (white-box approach) or may be limited to only the external
interfaces (software reengineering of black-box). The white-box approach sup-
ports reverse engineering with a deep understanding of individual modules and

Semantic and Algorithmic Recognition Support 3

conversion activities. The black-box approach is limited to the study of the
external interfaces of systems and activities of encapsulation (wrapping). In re-
verse engineering various software artifacts can be analysed. A software artifact
is any tangible product created during software development. Some artifacts
(e.g. use cases, class diagrams and other UML models, requirements and design
documents) are useful to describe functions, architecture and software design.
Others involve the development process itself, such as project plans, business
cases and risk assignment. The code, the released executable and the associated
documentation are artifact too. There are two different directions in program
comprehension research: the first strives for understanding the cognitive pro-
cesses that programmers use when they understand programs and use empirical
information to produce a variety of theories that provide explanations of how
programmers understand programs, and can provide advice on how program
comprehension tools and methods may be improved; the second aims at devel-
oping semi-automated tool support to improve program comprehension. Some
of the more prominent approaches include textual, lexical and syntactic analysis
(focus on the source code and its representations), execution and testing (based
on observing program behaviour, including actual execution and inspection walk-
throughs), graphic methods (including earlier approaches such as graphing the
control flow of the program, the data flow of the program, and producing the
program dependence graphs), domain knowledge based analysis (focus on re-
covering the domain semantics of programs by combining domain knowledge
representation and source code analysis). The problem of associating concepts
to code is not a problem amenable to be solved in its general formulation because
the human-oriented concepts are inherently ambiguous, and their recognition is
based on a priori knowledge of a particular domain. The problem can instead be
solved under specific constraints and limitations, such as limiting the range of
recognition at the algorithmic level [10]. A different approach is to understand
the code through the analysis of the documentation associated with it, with
text mining techniques that capture the concepts described in the documenta-
tion and connect them with the appropriate portions of code that implement
[2]. The approach in [2] represents various software artifacts, including source
code and documents as formal ontologies. The ontological reasoning services al-
low programmers not only to reason about properties of the software systems,
but also to actively acquire and construct new concepts based on their current
understanding; and introducing an ontology-based comprehension model and
a supporting comprehension methodologies that characterize program compre-
hension as an iterative process of concept recognition and relationship discovery.
Application developers often reuse code already developed for several reasons.
The most common situation is accessing libraries of reusable components or
putting them in the application framework. Unfortunately, many libraries and
frameworks are not very intuitive to use, and libraries often lack a comprehen-
sive API documentation and code examples that illustrate a particular feature
or functionality. It is therefore useful to provide advanced tools for code search
and suggestion. This issue is addressed generally representing code in a form

4 B. Di Martino and G. Cretella

suitable to perform computation and reasoning, as shown in [3], where the code
is represented through an ontology to perform query that can be used to provide
suggestion for library usage. The ontology formalism is used to represent soft-
ware assets by building a knowledge base that is automatically populated with
instances representing source-code artifacts. This approach uses this knowledge
base to identify and retrieve relevant code snippets. To add formal semantic
annotations, it’s necessary to have a formal knowledge description processable
and to an appropriate level of abstraction. This is not always available, so it
would be useful to have tools that can extract this knowledge automatically or
semi automatically from the sources of information. One of the major structured
sources of knowledge are the public interfaces of libraries of a specific domain.
However, a single API contains only a view of the particular domain and it’s
not generally sufficient to obtain a complete model of the domain. In addition,
the APIs contain a significant amount of noise due to implementation details
that combine with the representation of knowledge in the domain interfaces.
In order to overcome these problems it’s possible to base the extraction of do-
main knowledge on multiple APIs that cover the same domain. This issue is
addressed in [4], where it is proposed an approach to extract domain knowledge
capturing the commonalities among multiple API; the extraction is based on
the frequency matching of given elements. In [5] an approach to learning domain
ontologies from multiple sources associated with the software project, i.e., soft-
ware code, user guide, and discussion forums is proposed. This technique do not
simply deal with these different types of sources, but it goes one step further
and exploits the redundancy of information to obtain better results. In [6] and
[7] it is proposed a method for domain ontology building by extracting ontolog-
ical knowledge from UML models of existing systems, by comparing the UML
model elements with the OWL ones and derive transformation rules between the
corresponding model elements. The aim of the process is to reduce the cost and
time for building domain ontologies with the reuse of existing UML models.

3 The Methodology

The porting methodology we are presenting is based on an automatic analysis
and representation of code at higher level of abstraction than the syntactical and
structural one: namely the algorithmic or functional level.

The methodology assumes that the porting procedure can be realized by re-
structuring the code to be ported to a target environment (e.g. Cloud) with
suitable calls to functionalities of a given target Application Programming In-
terface, implementing all functionalities needed to deploy and run the code on
the environment.

The target API is assumed to be (manually) semantically described at the
algorithmic and functional level, and annotated, with concepts described by
means of an OWL based functional ontology.

Semantic and Algorithmic Recognition Support 5

It is also assumed that the code to be ported includes implementations of
algorithms and functionalities included in the functional ontology, and calls or
libraries and APIs, which do not (necessarily) correspond to the target API.

The main idea underlying the methodology is the following: to automatically
recognize the algorithms and algorithmic concepts implemented in the source
code and the calls to libraries and APIs performing actions and functionalities
relevant to the target environment, compare through matchmaking the recog-
nized concepts and APIs with those present in the functional ontology which
describes the target API and semantically annotates its elements and calls, and
by means of this matching, eventually map the source code excerpts and the
source calls to APIs to the target API calls and elements.

The methodology represents the following components in a uniform, graph
based, representation, the knowledge base:

– the Target API ;
– the Grounding Ontology;
– the Functional Ontology;
– the source code Call Graph;
– the source code API Graph;
– the Candidate API Ontology Graph;
– the source code Program Dependence Graph;
– the source code Abstract Program Representation Graph.

The Target API is the Application Programming Interface towards which
the porting activity is addressed. Examples are the APIs exposed by the Cloud
providers, offering Cloud resources and services at Infrastructure, Platform and
Application levels. The methodology assumes that this API is (manually) se-
mantically annotated with concepts of the Functional Ontology.

The Grounding Ontology is a syntactical representation on an API. It rep-
resents a base to build semantic annotations of the grounding concepts (the
syntactical elements of the API) with the Functional Ontology concepts.

The Functional Ontology represents a collection of concepts from the domain
of Programming Algorithms and Data Structures [8], general purpose function-
alities offered by libraries related to a given domain, such as Cloud Computing,
and Design Patterns [9].

The Call Graph represents the calling relationships between the source codes
procedures.

The Candidate API Ontology is an ontology automatically derived from an
API by applying a set of graph transformation patterns, as for instance illus-
trated in [1].

The Program Dependence Graph is a structural level representation of a pro-
gram, which represents dependence relationships (control and data) among the
program statements. In our methodology we use a PDG representation slightly
augmented with syntactical control and data dependence information.

6 B. Di Martino and G. Cretella

The Abstract Program Representation represents the recognized algorithmic
concepts in the source code and their structure, the relationships among them,
and groundings within the source code.

The above defined knowledge base components can be grouped in three differ-
ent levels for both the source and the target porting environments, as sketched
in (Fig. 1). In the first level, the grounding level, there are the basic information
extracted by parsing the source code to port, which are the Source API Graph
(in the scenario we have an API to map over another API), the Call Graph and
the Program Dependence Graph (in the scenario we have a source code to port)
in the source environment and the Target API Graph in the target environment.
In the Functional and Algorithmic Concept Level we have on the source side the
Abstract Program Representation Graph and the Candidate API Ontology Graph
witch represent the high level information derived respectively from the Program
Dependence Graph and the Source API Graph. On the source side at functional
and algorithm level we have the graph representation of the Functional Ontol-
ogy. In the Application Level we have concepts related to the application domain
which can be linked with functional and algorithmic concepts.

Fig. 1. Knowledge base levels

The source code is represented using two graph structures: the Program De-
pendence Graph suitable for algorithm recognition, discussed in Section 4.1, and
another based on the Call Graph with one node for each call in the source code.

Given these representations, the methodology tries to find an equivalence of
source code components and target API components, through graphical match-
making of their graph based semantic representations. These are the Abstract
Program representation and the Candidate API Ontology of the source code, and
the functional ontology with which the target API components are represented
and annotated.

The same approach can be used to find equivalent implementations of the
same functionalities among different API. If the two APIs (source and target)
are both semantically described and annotated with the functional ontology the
equivalence is quite straightforward to find because the two annotations will
refer to the same functional ontology concept; while if one of the two APIs is
not annotated, we can produce the Candidate API ontology Graph and match
it with the functional ontology, used to annotate the other API.

Semantic and Algorithmic Recognition Support 7

4 Design of the Architecture and Ongoing
Implementation of the Porting Support Procedure

The architecture implementing the methodology described in the previous sec-
tion, is illustrated in Fig. 2 with the workflow and interactions among the com-
ponents, while Fig. 3 illustrates the workflow for the API annotation process.

Fig. 2. Workflow of the porting procedure

The architecture is composed of the following four modules.
The ALCOR (ALgorithmic COncept Recognizer) module [10] recognizes algo-

rithmic concepts in the code, producing the Abstract Program Representation.
The API Ontology Builder extracts the graph by parsing source code and from

the graph representing the code produces the API grounding ontology which
represent the base where to ground the semantic annotations. This ontology
enables the annotation of the API elements in a simple way, by adding relation
between grounding elements and high level abstraction concept. Additionally
the API Ontology Builder produces the Candidate API ontology graph applying
graph transformation patterns defined for the specific programming language or
model.

The Schema Matcher module [14] accepts two graph based representations
and performs the matching between the two graphs, by applying several algo-
rithm including structural-based algorithms and syntactical ones.

The Annotator allows the user to semantically annotate the target API with
concepts from the functional ontology.

8 B. Di Martino and G. Cretella

Fig. 3. API Semantic Annotation workflow

As illustrated in Fig. 2, the inputs to the procedure are, on one side the
source code to be ported, together with APIs utilized, or directly the APIs; on
the other side the target API, semantically described and annotated with the
Functional Ontology (expressed in OWL language). The output of the procedure
is a mapping between the source API components and source code excerpts, and
target API components which are equivalent (functional equivalence) to the
source elements and code, and which represent the candidates to replace the
source elements during the porting activity.

The input components (source code and APIs) are statically analysed with
use of a static code analyser, and the components of uniform the knowledge
representation, the Program Dependence Graph, the Call Graph and the API
Graph, are produced. On the other hand an OWL parser produces the OWL
graph representation of the functional ontology. The ALCOR module detects,
from the Program Dependence Graph, the algorithmic concepts implemented
within the source code, and produces the Abstract Program Representation,
represented as a graph in the uniform knowledge base, which represents the rec-
ognized concepts and their hierarchical and control/data dependences, and their
grounding (implementation) within the source code. Details on the recognition
procedure and the concepts representation are provided in sec. 4.1.

The API Ontology Builder module, on the other hand, analyzes the APIs used
by the source code, represented by the API graph, and produces the Candidate
API ontology graph, by applying graph transformation rule patterns defined
for the specific programming language or model. This Ontology represents the
semantics of the components of the API under analysis, and their semantic rela-
tionships. Details on the transformation rules and on the module implementation
are provided in sec. 4.3.

Once produced the uniform Knowledge base with the components described,
the Matcher performs the matching between the source and target elements,

Semantic and Algorithmic Recognition Support 9

producing a set of mapping elements specifying the matching elements together
with a similarity value between 0 (strong dissimilarity) and 1 (identity) indicat-
ing the plausibility of their correspondence.

The implementation of the porting support procedure is ongoing work, and it
is mainly consisting of (a) the development of the API Ontology builder and API
annotator; (b) the development of the source code analysis front end (starting
from a previous implementation realized within the ROSE compiler construc-
tion toolkit; (c) the integration of the already developed modules ALCOR and
Schema Matcher; (d) the implementation of a Graphical User Interface, provid-
ing the user with the matching results in a form graphically relating the source
code excerpts with suggested target API elements, in order to perform a suitable
and effective support to the porting activity.

In the following sections we describe in more details the working principles
and the ongoing implementation and integration of the Algorithmic Concepts
Recognition module (sec. 4.1), of the Schema Matcher module (sec. 4.2) and of
the API Ontology Builder module (sec. 4.3).

4.1 Algorithmic Concepts Recognition

The Algorithmic Concept Recognizer, previously designed and developed [10,11]
implements a technique for automated algorithmic concepts recognition in source
code [12], where the definition of parallelizable algorithmic concept and the tech-
nique to describe and detect the algorithmic concepts by using an attributed
grammar were presented, and which is briefly resumed here.

The Algorithmic Concepts Recognition is a Program Comprehension tech-
nique to recognize in source code the instances of known algorithms. The recogni-
tion strategy is based on a hierarchical parsing of algorithmic concepts. Starting
from an intermediate representation of code, Basic Concepts are recognized first.
Subsequently they become components of Structured Concepts in a hierarchical
and / or recursive way. This abstraction process, can be modeled as a hierar-
chical parsing, by using Concept Recognition Rules that act on a description of
concept instances found in the code.

Basic concepts. The building blocks of the hierarchical abstraction process are
the Basic Concepts. They are chosen among the elements of the intermediate
code representation at the structural level. A slightly modified version of the Pro-
gram Dependence Graph is used: it is augmented with syntactical information
(e.g. trees structures representing expressions for each statement node), control
and data dependence information (e.g. control branches, data dependence level,
variables, . . . are added).

Concept Recognition Rules. The Concept Recognition Rules are the production
rules of the parsing: they describe the set of characteristics and properties to
permit the identification of an algorithmic concept instance in the code.

Each recognition rule related to an algorithmic concept specifies how sub-
concepts, formed by set of statements and variables linked by a functionality,

10 B. Di Martino and G. Cretella

are related and organized within a specific abstract control structure. Each rule
describes the concept in a recursive way by using:

– A composition hierarchy: this is specified by the set of sub-concepts directly
composing the concept and their own composition hierarchies.

– A set of constraints and conditions to be satisfied by the composing sub-
concepts, and all the relationships among them and with the sub-concepts
of the hierarchy.

A formalism for the specification of the recognition rules is given by Attributed
Grammars [13] for their expressiveness regarding the specification of the hierar-
chy, the constraints and relationships, as is well-known for the specification of
programming languages.

A production rule of the grammar specifies: a set sub-concept of terminal
and non-terminal symbols which represent the set of sub-concepts forming the
concept represented by the lhs symbol concept.

The set condition represent the relationships and constraints that must be
fulfilled by the sub-concepts forming the concept, in order to be recognized as a
valid instance.

The set AttributionRule of the production assigns values to the attributes
of the recognized concept utilizing the values of attributes of the composing
sub-concepts.

The syntax of a production rule is as follows:

Rule =
rule concept →

composition
{ subconcept }

condition
[local LocalAttributes]
{ Condition }

attribution
{ AttributionRule }

LocalAttributes =
attribute : Type { attribute : Type }

concept ∈ N
subconcept ∈ N ∪ T
attribute ∈ A
Condition ∈ C
AttributionRule ∈ R

The Recognition Process. The PDG information, together with syntactical in-
formation can be produced as a set of Prolog facts representing the Abstract
Program Representation. The hierarchical parsing process that do the recogni-
tion, is performed by an Inferential Engine that applies the production rules of

Semantic and Algorithmic Recognition Support 11

the parsing (expressed as Prolog clauses) to the set of terminals, non-terminals
and relationships of the Abstract Program Representation.

An overall Abstract Program Representation is generated during the recogni-
tion process. An example is illustrated in Fig. 4.

Fig. 4. Abstract Program Representation

It has the structure of a Hierarchical PDG (HPDG), reflecting the hierarchical
strategy of the recognition process. As long as the parsing process proceeds and
more and more abstract concepts are recognized, they are represented as nodes
in increasingly higher layers of the HDPG. The nodes of this graph are connected
by two kind of edges. The hierarchy edges connect each node representing a con-
cept to the lower layer nodes representing its subconcepts. The graph structure
determined by this kind of edges represents the hierarchy of abstraction; this
structure is generally a tree, excepted in the case of shared concepts, i.e. when
a concept instance is subconcept of more than one concept. The dependence
edges link together nodes that have abstract control and data dependence rela-
tionships between them. Note that, during the recognition process, dependence
edges for the newly created abstract concept nodes are inherited from those of
the composing subconcept nodes in a way that is characteristic of each concept.

4.2 Schema Matcher

A fundamental operation in the manipulation of ontologies is match, which takes
two ontologies as input and produces a mapping between elements of the two
ontologies that correspond semantically. Match plays a central role in numerous

12 B. Di Martino and G. Cretella

applications, such as web-oriented data integration, electronic commerce, schema
integration, schema evolution and migration, application evolution, data ware-
housing, database design, web site creation and management, and component-
based development. A mapping is defined as a set of mapping elements, each of
which indicates that certain elements of schema S1 are mapped to certain ele-
ments in S2. Furthermore, each mapping element can have a mapping expression
which specifies how the S1 and S2 elements are related. The mapping expression
may be directional, for example, a certain function from the S1 elements refer-
enced by the mapping element to the S2 elements referenced by the mapping
element, or it may be non-directional, that is, a relation between a combination
of elements of S1 and S2.

The Schema Matcher, previously designed and developed [14], implements a
technique based on syntactic and structural schema matching, among two or
more input ontologies.

The matching procedure takes as input two schemas and determines a map-
ping indicating which elements of the input schemas logically correspond to each
other. The match result is a set of mapping elements specifying the matching
schema elements together with a similarity value between 0 (strong dissimilar-
ity) and 1 (identity) indicating the plausibility of their correspondence. Our
matching procedure combines and integrates a number of matching algorithms,
adopting two of the above described approaches: the structural approach, based
on the application of the following algorithms: Children Matcher [15], Leaves
Matcher, Graph and SubGraph Isomorphism [16]; the linguistic or syntactic ap-
proach, based on application of: Edit Distance (Levenshtein Distance) [17] and
Synonym Matcher (through WordNet [18] synonyms thesaurus).

4.3 API Ontology Builder

The production of the Candidate API Ontology Graph from the source code is
performed by the API Ontology Builder module by applying graph transfor-
mation patterns defined for the specific programming language or model. We
have defined a series of transformation rules for object oriented model aimed to
extract and transform proper language elements in ontological relation. In [1]
similar set of rules are described. Some of the defined rules are illustrated in the
following:

– (APIClassNodeA) → (OwlNodeA)
A node representing a class A in the API graph becomes an OWL class A
in the candidate ontology graph.

– (APIClassMethodNodeA) → (OwlNodeA)
A node representing a method A in the API graph becomes a class A in the
candidate ontology graph.

– (APIParameterNodeA) → (OwlNodeA)
A node representing a parameter A in the API graph becomes a class A in
the candidate ontology graph.

Semantic and Algorithmic Recognition Support 13

– (APIClassNodeA ihneritsEdge APIClassNodeB) → (OwlNodeB subclassOf
OwlNodeA)
If a class A inherits a class B in the API graph, the relation becomes a
subclassOf relation between the correspondent classes of the OWL graph.

– (APIClassNodeA hasAttributeEdge APIClassNodeB) → (OwlNodeA Ob-
jectProperty: hasProperty OwlNodeB)
If a class A has an attribute B in the API graph, the relation becomes
an Object Property with label ”hasProperyy” between the correspondent
classes of the OWL graph.

– (APIClassNodeA hasMethodEdge APIClassMethodNodeB) → (OwlNodeA
ObjectProperty: isDoer OwlNodeB)
If a class A has a method B in the API graph, the relation becomes an
Object Property with label ”isDoer” between the correspondent elements of
the OWL graph.

– (APIClassMethodNodeA hasMethod APIClassMethodNodeConstructorB
andAPIClassMethodNodeConstructorBhasInputParameterAPIParameterN-
odeC)→ (OwlNodeClassA ObjectProperty: hasProperty OwlClassC)
If a class A has a constructor with some input parameters, in the owl graph
there are Object Properties with label ”hasProperty” between the corre-
spondent elements.

– (APIClassMethodNodeA hasInputParameterEdge APIParameterNodeB)→
(OwlNodeA ObjectProperty: actsOn OwlNodeB)
If a method A has some input parameter, there are Object Properties with
label ”actsOn” between the correspondent elements on the OWL graph.

– (APIClassMethodNodeA hasReturnTypeEdge APIClassNodeB) → (OwlN-
odeA ObjectProperty: produce OwlNodeB)
If a method A has a return type B there is an Object Property with label
”produce” between the correspondent elements in the OWL graph.

5 Conclusion

In this paper we have proposed an approach to perform automatically, or with
automated support, operations like the alignment and mapping of software which
will be useful to perform software modernization and migration. The method-
ology is based on an automatic analysis and representation of code at higher
level of abstraction than the syntactical and structural one that enables auto-
matic recognition of the algorithms and algorithmic concepts implemented in
the source code. Based on matchmaking techniques, the concepts recognized are
compared with functional concepts represented by the ontologies and the results
provide useful information to perform porting of source code excerpts and API
calls to the target cloud programming environment. The architecture support-
ing this methodology is composed of four components: the Algorithmic COncept
Recognizer, which recognizes algorithmic concepts in the code, the API Ontology
Builder, which extracts the graph by parsing source code and produces an ontol-
ogy graph applying graph transformation patterns, the Schema Matcher which

14 B. Di Martino and G. Cretella

performs the matching among graphs and finally the Annotator which allows the
user to semantically annotate the target API with concepts from the functional
ontology. This work represents a contribute to facilitate software development in
cloud scenario, since in cloud computing environment there are many APIs and
services offered by different providers and big efforts are needed both to port
applications in the cloud and to migrate from one provider to another. Future
work planned includes the introduction of reasoning to extract additional knowl-
edge based on inferential rules running on the acquired knowledge base and on
optimization of the adopted graph matching algorithms for the specific graph
representations of API components. Natural Language Processing techniques
for ontology extraction, already developed by one of the authors [19], [20] are
planned to be integrated, in order to deal with entire software artifacts which in-
clude natural language components (specification requirements, documentation,
etc.).

Acknowledgements. The research leading to these results has received funding
from the European Community’s Seventh Framework Programme (FP7/2007-
2013) under grant agreement n 256910 (mOSAIC Project), and by the Italian
Ministry of University and Research, PRIN programme (project Cloud@Home).
We would like to thank Manuela Serrao (Second University of Naples) who has
implemented part of the Matchmaking algorithms.

References

1. Ratiu, D., Feilkas, M., Jurjens, J.: Extracting Domain Ontologies from Domain
Specific APIs. In: Proc. of the 12th European Conf. on Software Maintenance and
Reengineering, pp. 203–212. IEEE Computer Society (2008)

2. Zhang, Y., Rilling, J., Haarslev, V.: An Ontology-Based Approach to Software
Comprehension - Reasoning about Security Concerns. In: 30th Annual Interna-
tional Computer Software and Applications Conference, COMPSAC 2006, vol. 1,
pp. 333–342 (2006)

3. Alnusair, A., Zhao, T., Bodden, E.: Effective API navigation and reuse. In: Infor-
mation Reuse and Integration, IEEE IRI, pp. 7–12 (2010)

4. Eberhart, A., Argawal, S.: SmartAPI - Associating Ontologies and APIs for Rapid
Application Development. In: Ontologien in der und für die Softwaretechnik Work-
shop Anlsslich der Modellierung 2004. Marburg/Lahn (2004)

5. Bontcheva, K., Sabou, M.: Learning Ontologies from Software Artifacts: Exploring
and Combining Multiple Sources. In: Workshop on Semantic Web Enabled Software
Engineering, GA, USA (2006)

6. Na, H.-S., Choi, O.-H., Lim, J.-E.: A Metamodel-Based Approach for Extracting
Ontological Semantics from UML Models. In: Aberer, K., Peng, Z., Rundensteiner,
E.A., Zhang, Y., Li, X. (eds.) WISE 2006. LNCS, vol. 4255, pp. 411–422. Springer,
Heidelberg (2006)

7. Na, H.S., Choi, O.H., Lim, J.E.: A Method for Building Domain Ontologies based
on the Transformation of UML Models. In: Fourth International Conference on
Software Engineering Research, Management and Applications, August 9-11, pp.
332–338 (2006)

Semantic and Algorithmic Recognition Support 15

8. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: Data Structures and Algorithms. Addison-
Wesley (1983)

9. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-oriented Software. Addison-Wesley, Reading (1995)

10. Di Martino, B.: Algorithmic Concept Recognition to support High Performance
Code Reengineering. Special Issue on Hardware/Software Support for High Perfor-
mance Scientific and Engineering Computing of IEICE Transaction on Information
and Systems E87-D(7), 1743–1750 (2004)

11. Di Martino, B., Kessler, C.W.: Two Program Comprehension Tools for Automatic
Parallelization. IEEE Concurrency 8(1), 37–47 (2000)

12. Di Martino, B., Zima, H.P.: Support of Automatic Parallelization With Concept
Comprehension. Journal of Systems Architecture 45(6-7), 427–439 (1999)

13. Knuth, D.E.: Semantics of context-free languages. Math. Syst. Theory 2(2), 127–
145 (1968)

14. Di Martino, B.: Semantic Web Services Discovery based on Structural Ontology
Matching. International Journal of Web and Grid Services (IJWGS) 5(1), 46–65
(2009)

15. Do, H.H., Rahm, E.: COMA: System for Flexible Combination of Schema Matching
Approach. In: VLDB (2002)

16. Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: Performance evaluation of the
VF graph matching algorithm. In: Proc. of the 10th ICIAP, pp. 1172–1177. IEEE
Computer Society Press (1999)

17. Gilleland, M.: Levenshtein Distance algorithm, Merriam Park Software (2000),
http://www.merriampark.com/ld.html

18. Princeton University. Wordnet a lexical database for the English language (2006),
http://wordnet.princeton.edu

19. Di Martino, B.: An Approach to Semantic Information Retrieval based on Natural
Language Query Understanding. In: Daniel, F., Facca, F.M. (eds.) ICWE 2010.
LNCS, vol. 6385, pp. 211–222. Springer, Heidelberg (2010)

20. Di Martino, B.: Ontology Querying and Matching for Semantic Based Retrieval of
Semantically Annotated Documents. In: Proc. of IADIS International Conference
on Applied Computing, Rome, November 19-21, pp. 227–232 (2009) ISBN 978-972-
8924-97-3

http://www.merriampark.com/ld.html
http://wordnet.princeton.edu

	Semantic and Algorithmic Recognition Supportto Porting Software Applications to Cloud
	1 Introduction
	2 Background and Related Work
	3 The Methodology
	4 Design of the Architecture and Ongoing Implementation of the Porting Support Procedure
	4.1 Algorithmic Concepts Recognition
	4.2 Schema Matcher
	4.3 API Ontology Builder

	5 Conclusion
	References

