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Abstract Dimensionality reduction by algebraic methods is an established tech-
nique to address a number of problems in information retrieval. In this chapter, we
introduce a new approach to dimensionality reduction for text retrieval. According
to Zipf’s law, the majority of indexing terms occurs only in a small number of doc-
uments. Our new algorithm exploits this observation to compute a dimensionality
reduction. It replaces rare terms by computing a vector which expresses their seman-
tics in terms of common terms. This process produces a projection matrix, which can
be applied to a corpus matrix and individual document and query vectors. We give
an accurate mathematical and algorithmic description of our algorithms and present
an initial experimental evaluation on two benchmark corpora. These experiments
indicate that our algorithm can deliver a substantial reduction in the number of fea-
tures, from 8,742 to 500 and from 47,236 to 392 features, while preserving or even
improving the retrieval performance.

1 Introduction

Dimensionality reduction techniques reduce the number of components of a data set
by representing the original data as accurately as possible with fewer features and/or
instances. The goal is to produce a more compact representation of the data with only
limited loss of information in order to reduce the storage and runtime requirements.
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In some applications the reduction is used to discover and account for latent depen-
dencies between features which are not reflected in the original data [1]. Here, the
lower dimensionality not only reduces the computational costs, but also improves the
retrieval performance. In the area of text retrieval, low-rank matrix approximations
have long been utilized in order to deal with polysemy and synonymy—words with
multiple meanings (e.g. bank or light) or different words with the same meaning (e.g.
drowsy and sleepy).

But the problem with information retrieval applications is that these systems
operate on tens of thousands of features and millions of documents or more. The
key issues that warrant the investigation of new dimensionality reduction techniques
are performance and scalability. While traditional methods focus on theoretic prop-
erties of the underlying mathematical method, the ultimate measure of success for
any dimensionality reduction technique is the impact on the retrieval performance.
The development of new methods for dimensionality reduction beyond the tradi-
tional, algebraic or statistical methods is therefore fair game, as long as the retrieval
performance is equal or better than on the unprocessed raw data.

Our approach is based on the fact that according to Zipf’s law, most terms occur
only in a very limited number of documents [2, 3]. This makes them interesting
candidates for any form of dimensionality reduction or compression. It is also a
well-known fact that features with a low document frequency play an important role
in the query processing. This phenomenon forms the basis of the inverse-document
frequency term weighting approach (see e.g. [4]).

Deletion of such rare terms is therefore out of the question. In our approach, we
attempt to replace rare terms with a signature feature vector, which preserves the
semantics of the rare term by expressing it in more frequent terms. This vector is
then scaled by the frequency of the rare term in this document. By forming the linear
combination of all rare term replacement vectors and adding it to the original docu-
ment vector we obtain a vector representation without the rare terms. The hypotheses
for our approach to dimensionality reduction can be stated as follows:

• Rare terms with a low document frequency can be replaced by a replacement
vector that expresses their semantics in feature vector form.

• A suitable replacement vector for a rare term can be obtained by forming the
weighted average vector of all documents containing this rare term.

• For any document, the rare terms can be eliminated by forming a linear com-
bination of the corresponding replacement vectors, scaled by the weight of the
corresponding features in the original feature vector.

• Performing such a replacement operation on the document and query vectors will
not lead to a reduction in retrieval quality.

• In agreement with Zipf’s law, eliminating rare terms will lead to a considerable
reduction in the number of features.

The rest of this chapter is structured as follows. We give a mathematical descrip-
tion of our method in Sect. 2 and discuss the algorithmic aspects in Sect. 3. The
retrieval performance on real-world data sets is discussed in Sect. 4 and we analyze
the computational performance both formally and empirically in Sect. 5. In Sect. 6
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we will briefly examine the state-of-the-art in literature and how it relates to our
approach. Lastly, we summarize our findings in Sect. 7.

2 The Vector Replacement Approach

In order to systematically devise an algorithm, we first define our approach mathe-
matically. Table 1 presents a summary of all symbols and notation used here.

We have a set D of ‖D‖ = n documents and a set F of ‖F‖ = m features. Every
document d ∈ D is represented as a feature vector d ∈ R

m to which we assign a
column index col(d) ∈ {1, ..., n}. As a convenient notation, we use d j to denote
col(d) = j . Analogously, every feature f ∈ F has a row index row( f ) ∈ {1, ..., m},
using the short form fi :⇔ row( f ) = i . Again, we use a corpus matrix C ∈ R

m×n ,
which contains the documents’ feature vectors as column vectors

C = [
d1 d2 · · · dn

] ∈ R
m×n . (1)

Since we are interested in the occurrence of features within documents we define a
function D : F → D to determine which documents contain any particular feature
fi , formally

D( fi ) := {
d j ∈ D | Ci, j �= 0

}
. (2)

We select the rare features through a function N : N → F that determines the set
of features occurring in at most t documents,

N (t) := { f ∈ F | ‖D( f )‖ ≤ t} . (3)

After choosing an elimination threshold t , which was experimentally determined to
be 1 and 3 % of all documents for our experiments, we can now define the set of
elimination features E ⊆ F as

E := N (t), (4)

which will ultimately lead to a reduced-dimensional feature space consisting of k
common terms, where

k := m − ‖E‖. (5)

The sensitivity of our method with respect to the choice of k is evaluated empirically
and discussed in Sect. 4.

Our objectives can now be formulated as follows:

1. We have a corpus matrix C ∈ R
m×n for m features and n documents, which is

sparse, i.e. C contains mostly zero components.
2 We seek to eliminate all features which occur in t or fewer documents. Formally,

this means that we seek to replace all features in the set of elimination features
E = N (t).
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Table 1 Mathematical notation

Symbol Description

m Number of features
n Number of documents
k Number of common features
t Maximum occurrences for rare features
C Corpus matrix
F Set of features
D Set of documents
E ⊆ F Elimination (rare) features
D( f ) Documents containing feature f
F (d) Features occurring in document d
N (t) Features with t or less documents
τE Vector truncation operator (eliminates indices E)
ρE ( f ) Replacement vector for feature f and rare features E
RE Replacement operator (applies replacement vectors)
RE Replacement matrix (equivalent to RE )

3. We want to replace every feature f ∈ E by a vector formed as a linear combina-
tion of common features that co-occur with f . We will refer to this replacement
vector as ρE ( f ) (rho).

4. This replacement operator should be computed in such a way, that it can be
applied to the original corpus matrix C , any new documents d and query vectors
q ∈ R

m . We therefore compute a replacement matrix R ∈ R
k×m which maps

vectors from the original to the reduced feature space.
5. Finally, we apply this replacement to the original corpus matrix C to obtain a

reduced dimensional corpus matrix C ′ = RC ∈ R
k×n .

To eliminate an index i of a vector v, we define a truncation operator τ as a formal
mechanism

τ{i}(v) := (v1, . . . , vi−1 vi + 1 . . . vm)T , (6)

and generalize it to the elimination of a set of indices with the recursive definition

τ∅(v) := v, (7)

τ{A,b}(v) := τ{b} (τA (v)) . (8)

We use a linear combination of common features to replace rare features fi ∈ E .
Formally, we will initially determine the set of documents that contain the feature
D( fi ). We will truncate all document vectors d j ∈ D( fi ), eliminate all rare features
by taking τE (d j ) and scale them by the quantification Ci, j of feature fi in document
d j . We compute the sum of these vectors and apply a scaling factor λ to normalize
the length of the resulting replacement vector. Formally, we define the function ρE

to compute the replacement vector:
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ρE ( fi ) := 1

λE ( fi )

∑

d j ∈D( fi )

Ci, j τE
(
C�, j

)
, (9)

where the scaling factor λE ( fi ) is the absolute sum of all contributions,

λE ( fi ) :=
∑

d j ∈D( fi )

|Ci, j |. (10)

If a rare feature has a high weight in a particular document, the co-occurrences in
this document have a higher impact on the replacement vector. Conversely, a low
weight would marginalize the contribution of this document.

Our next goal is to obtain a linear replacement operator RE . First, we truncate the
original document vector d j to eliminate all unwanted features fi ∈ E by computing
τE (d j ). Then we take the replacement vectors ρE ( fi ) for these features and scale
them by their relevance Ci, j in the document d j . The reduced document vector is
formed as the linear combination of the truncated source document and the scaled
replacement vectors:

RE
(
d j

) := τE
(
d j

) +
∑

fi ∈E

Ci, j ρE ( fi ) . (11)

We can extend this operator to the corpus matrix C ∈ R
m×n by applying it to the

column vectors,
RE (C) := [

RE (d1) · · · RE (dn)
]
. (12)

Since this operator is a linear function we can represent it as a matrix, and we will
indeed use this representation to implement our algorithm.

If we use the notation e1, ..., em ∈ R
m to denote the standard base vectors,

eT
i = (0, . . . , 0 1

i
0, . . . , 0), (13)

we can define replacement vectors rE , which either preserve features we do not wish
to eliminate, or perform the vector replacement on features f ∈ E ,

rE ( fi ) :=
{

ρE ( fi ) ... fi ∈ E

τE (ei ) ... fi �∈ E .
(14)

We now assemble these vectors column-wise to form a replacement matrix RE

for the elimination features E , formally

RE := [
rE ( f1) rE ( f2) · · · rE ( fm)

] ∈ R
k×m . (15)
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An improved, dimensionality-reduced corpus matrix C ′ can now be obtained by
taking

C ′ := RE C, (16)

because it is easily verified that

RE C = [RE (d1) , . . . , RE (dn)] = RE (C) . (17)

Therefore, RE is the matrix representation of the linear replacement operator RE as
defined above.

Theoretically, we must assume that some replacement vectors could be zero. Any
particular feature may co-occur exclusively with other infrequent features that are
removed during the process. For a feature f in a set of elimination candidates E it
may hold that

(∀d ∈ D( f )) (τE (d) = 0) . (18)

A consequence of this phenomenon is that the replacement vector obtained by the
approach outlined above is zero, i.e. ρE ( f ) = 0. If it occurs, we may need to retain
the affected feature(s) to avoid loosing them. However, thus far we have not observed
this behavior in practice.

Now that we can map our original corpus matrix C into the reduced dimensional
space by taking C ′ := RE C , we have to consider the on-line query processing. For
any incoming query q ∈ R

m , we compute q ′ := RE q and evaluate all similarities
on the augmented corpus C ′. For practical reasons, we will normalize the column
vectors of the augmented corpus C ′ and all query vectors q ′ to unit length prior to
query processing.

An equally important question is the maintenance of the index. New documents
must be added, existing documents modified and old documents retired and deleted.
Currently, our support for index maintenance is very crude. New documents d are
mapped to the reduced dimensional space by computing d ′ := RE d and added by
extending both the original and augmented corpus matrix with an additional column.
The projection matrix RE must be re-evaluated periodically from the sparse raw
corpus. Improved support for updates is one of our future research objectives.

During our experiments, we found that we can get a greater reduction in the number
of features with a higher retrieval performance if we apply a spectral dimensionality
reduction to the augmented corpus matrix C ′. We compute a rank-reduced principal
component analysis (PCA) with a biased covariance, i.e. we do not shift the data to
the mean. Due to the fact that C ′ is already dimensionality reduced, it is advisable to
solve the underlying eigenvalue problem using a one-sided eigensolver to compute
the first h left eigenvectors of C ′. These eigenvectors are identical to the left singular
vectors of a singular value decomposition, but the computation is more effective.
More specifically, we compute the rank-reduced factorization

C ′C ′T ≈ Ph Sh PT
h . (19)
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The choice of h is similar decision as the selection of the rank of the singular value
decomposition in a latent semantic indexing system. A practical means to determine
a cut-off threshold is to compute a larger number of singular values and plot them
on a logarithmic scale. In such a plot, the threshold is much more visible than on
a linear scale. However, as we will see in Sect. 4, the retrieval quality is relatively
stable for a range of values of h and k. Based on our current experience, we advise
to pick h according to the formula

h ≈ 0.85 k. (20)

We can compute a joint left factor matrix Q = PT
h RE ∈ R

h×m as the final
projection matrix, which we can use to map the original feature vectors into a rank
reduced feature space. In any case, it is important to note that a significant reduction in
the number of features has already been achieved before computing the factorization.

3 Implementation Details

Our mathematical definition for the construction of a replacement matrix R easily
translates into an algorithmic formulation, as given in Algorithm 1.

Input: The corpus matrix C ∈ R
m×n , the sets of documents D, the set of features F and the

threshold t ∈ N.
Data: The occurrence count N ∈ N, the elimination features E ⊆ F , the permutation

π : N → N, a floating point variable l ∈ R, the feature fi ∈ F , the document d j ∈ D
and an integer k ∈ N.

Output: The replacement matrix R ∈ R
k×m .

k := 1;
for fi ∈ F do

if ‖D( fi )‖ ≤ t then
E := E ∪ { fi };

else
π(i) := k;
k += 1;

k -= 1;
for fi ∈ E do

l := 0;
for d j ∈ D( fi ) do

R(1 : k, i) += C(i, j) ∗ τE (C(1 : m, j));
l += |Ci, j |;

if l �= 0 then
R(1 : k, i) /= l;

for fi �∈ E do
R(1 : k, i) := eπ(i);

Algorithm 1: The naive implementation proceeds feature-wise and computes
all replacement vectors individually
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The algorithm suffers a serious drawback in this form: since many documents
contain more than one rare term, most documents have to be read from main memory
more than once, leading to poor memory and cache performance. However, it is
possible to vectorize the naive version and rearrange the loops so that every document
is accessed only once. We introduce a new function F ,

F : D → F, (21)

that determines which features occur in a given document, formally

F (d j ) := {
fi ∈ F | Ci, j �= 0

}
. (22)

Using this function, Algorithm 1 describes an optimized variant of our construction
method which uses the same number of computational steps, but requires only a
single sweep over all documents in the corpus.

Input: The corpus matrix C ∈ R
m×n , the set of documents D, the set of features F and the

maximum occurrence count for rare features t ∈ N.
Data: The occurrence count vector N ∈ N

m for all features, the elimination features E ⊆ F ,
the elimination features present in a document G ⊆ F , the permutation π : N → N,
the feature fi ∈ F , the document d j ∈ D and an integer k ∈ N.

Output: The replacement matrix R ∈ R
k×m .

for d j ∈ D do
for fi ∈ F (d j ) do

N (i) += 1;

k := 1;
for fi ∈ F do

if N (i) ≤ t then
E := E ∪ { fi };

else
π(i) := k;
k += 1;

k -= 1;
for d j ∈ D do

G := E ∩ F (d j );
for fi ∈ G do

R(1 : k, i) += C(i, j) ∗ τE (C(1 : m, j));
li += |C(i, j)|;

for fi ∈ F do
if fi ∈ E then

R(1 : k, i) := (l(i))−1 ∗ R(1 : k, i);
else

R(1 : k, i) := eπ(i);

Algorithm 2: This optimized variant of the naive algorithm proceeds
document-wise and accumulates all replacement vectors simultaneously in a
single sweep over all documents. Since every document vector is read only
once, this optimization results in a more cache and memory friendly algorithm
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4 Retrieval Performance Evaluation

To test the performance of our approach in a small-scale environment with a low
number of documents, we have used the classic MEDLARS collection, see e.g. [5].
With merely 1,033 documents this collection is indeed quite small. But it also contains
30 evaluation queries, along with a hand-generated set of relevant documents for each
query, allowing us to conduct a standard precision-at-rank k retrieval performance
evaluation. The documents have been converted into (unweighted) term frequency
vectors with 8,742 features. The resulting corpus matrix C contained 57,013 non-
zero components, making this corpus matrix merely 0.63 % dense, i.e. less than one
percent of all components are non-zero.

For a larger test, we have used the Reuters Corpus Volume I in its corrected
second version (RCV1-v2) [6]. We used the pre-vectorized TF-IDF version with
47,236 features in a corpus matrix which is 0.16 % dense. Since this is a benchmark
corpus for text categorization, we used the available class labels for the 23,149
training documents to discriminate between relevant and irrelevant search results.
All documents in the official set of training documents were used as sample queries
and evaluated against all other vectors. Every sample query has been evaluated for all
of its categories, which have been counted as though they were independent queries
with the same vector.

Figures 1 and 2 depict the occurrence counts for all features in both document
collections used in our evaluation. The power distribution observed by Zipf’s law is
clearly visible in both plots, and we have included the cut-off threshold and the result-
ing division between rare and common features for a more intuitive understanding
of our reduction.

For both data sets, we have experimentally determined the threshold t and the
reduced rank k of the subsequent PCA. To compare the retrieval performance with
different parameters we used the mean average precision (MAP), the mean of the
precision-at-k averaged over all hit list ranks k ∈ {1, ..., 100}, as a measure of quality.
Figure 3 shows our experimental data for the RCV1-v2 data set. We can clearly see
that the primary choice is the threshold t , which determines the trade-off between the
retrieval quality and the number of features, i.e. the computational performance. We
observed that a combination of vector replacement and limited PCA performed best.
However, the retrieval performance decreases dramatically for a stronger spectral
dimensionality reduction.

For the MEDLARS collection, we have computed the replacement vector matrix
for all features occurring in less than 1 % of all documents on an Intel Xeon
E5520 CPU clocked at 2.27 GHz in just under 1.9 s using Algorithm 1 or 2.6 s with
Algorithm 2. As we have previously indicated, we can expect a slight performance
degradation with the single-sweep algorithm on such a small document collection
because of the overhead of the vectorized processing. Our reduction produced a
reduced corpus matrix C ′ with 1,136 features containing 750,903 non-zero features,
now being 63.99 % dense. Lastly, we computed a rank-500 dimensionality reduc-
tion of C ′ via a principal component analysis on the biased 1,136 by 1,136 feature
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Fig. 1 Feature occurrence counts for the MEDLARS corpus—depicted along with the quartiles,
the sampling mean and the cut-off threshold for rare features. The vertical line indicated by the
arrow shows the dividing line between rare and common features
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Fig. 2 Feature occurrence counts for the Reuters Corpus Volume I Version 2—depicted along
with the quartiles, the sampling mean and the cut-off threshold for rare features. The vertical line
indicated by the arrow shows the dividing line between rare and common features
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Fig. 3 Impact of the Subsequent Rank Reduction—visualized with the mean average precision
(MAP) computed for the top 100 search results on the RCV1-v2 corpus (see above). Every curve
depicts a vector replacement reduction with the threshold t given as the relative number of docu-
ments. The rightmost measurement of every curve shows the retrieval performance without a spectral
dimensionality reduction, all others include the subsequent PCA. The horizontal line indicated by
the arrow shows the performance baseline

covariance matrix, producing a third corpus matrix C ′′ with 500 features. We
conducted three runs on these three versions of the corpus: (1) retrieval using the
vector space model without term weighting on the sparse vectors in the corpus C ,
(2) on the vector replacement dimensionality reduction C ′ = RE C , and (3) on a the
rank-reduced corpus C ′′ = QC .

The data obtained during these measurements are depicted in Fig. 4. These figures
indicate that the vector replacement approach succeeds in its objective of creating a
reduced-dimensional representation which preserves or improves the retrieval perfor-
mance. Even the limited number of documents available in the MEDLARS collection
provided enough information to construct replacement vectors that stand up to a per-
formance evaluation with the raw, sparse term frequency vectors. The subsequent
rank reduction does not provide a decisive advantage in terms of retrieval perfor-
mance, but it does succeed in cutting the final number of features in half without a
significant loss in terms of accuracy.

Replacing all features which occur in less than 3 % of all documents of the RCV1-
v2 was performed on the same CPU in under 8 min using Algorithm 1 and just under
6 min with Algorithm 1. Our preliminary measurements indicate that the single-
sweep strategy does provide a speed-up for larger document collections. The reduc-
tion produced 535 features and a corpus matrix which is 99.98 % dense. We again
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Fig. 4 Precision-at-k retrieval performance evaluation on the MEDLARS benchmark corpus with
1,033 documents and 30 sample queries. The hit list rank k was sampled from 1 to 30. This mea-
surement has been conducted with (1) the raw, sparse term-frequency vectors, (2) the replacement
vector approach and (3) the replacement vector approach with subsequent rank reduction. The
data indicates that the replacement vector approach can deliver a dimensionality reduction which
succeeds to preserve or improve the retrieval effectiveness on small scale document collections

performed a subsequent rank-reduction creating 392 features as a third representation
for our evaluation.

Figure 5 illustrates our results, which provide a clear indication that our approach
succeeds in reducing the dimensionality and improving the retrieval performance on
this substantially larger data set. Here, the subsequent rank reduction manages to
both cut the number of features by 50 % and further improve the precision of the
vector replacement approach.

By replacing a rare term with a (weighted) centroid, we make a reasonably good
effort to recover said term in a nearest neighbor search. In fact, the empirical evalua-
tion shows that we make an effort which is even better—good enough to outperform
the retrieval performance of the original representation. While we cannot provide any
formal evidence to that end, our current best estimate is that the centroid replacement
strategy performs a function similar to smoothing in natural language models, i.e.
it evens out problems caused by the extreme sparsity of the raw term frequency or
TF-IDF representation and improves the recoverability of the related documents by
providing a much better placement under the cosine measure.



Dimensionality Reduction for Information Retrieval 53

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0  10  20  30  40  50  60  70  80  90  100

m
ea

n 
pr

ec
is

io
n

hit list rank

sparse TD-IDF (47,236)
vector replacement (535)

rank-reduced vector replacement (392)

Fig. 5 All-documents all-categories evaluation of the precision-at-k retrieval performance on the
23,149 training documents of the Reuters Corpus Volume I Version 2 with the topic categorization.
Queries have been conducted using every document as a query example. For all categories of the
query example, we have scanned the hit list and considered only those documents relevant that
featured the same category. The graph depicts the mean average accuracy over all documents and
categories for (1) the precomputed sparse TF-IDF vectors as available in the RCV1-v2 collection,
(2) the replacement vector approach and (3) the replacement vector approach with subsequent rank
reduction. This exhaustive measurement indicates the ability of the replacement vector approach to
preserve and improve the similarities on a large text categorization collection

5 Performance Analysis

We will now discuss the computational performance of our algorithm. We begin
with a formal analysis of the complexity, before we discuss the measurements of the
observed performance on real data.

The algorithmic complexity of this algorithm depends heavily on the distribution
of non-zero components in the corpus matrix. In general, the upper bound for the
complexity is O(m2n). But since our method has been specifically designed for text
retrieval, we can consider the specific properties of text index data, notably Zipf’s
law, and derive tighter bound for our application domain. Let c be the maximum
number of non-zero components in any document vector, i.e.

c = argmax
d∈D

‖ {
j ∈ {1, ..., m} | d j �= 0

} ‖. (23)

Then the truncation operator τ can be implemented has a complexity of O(‖E‖+ c)
by keeping the non-zero entries of the sparse vector implementation sorted by the
component index. But for text retrieval we may assume that ‖E‖ > c, and so we
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Fig. 6 Execution time for serial rare term vector replacement—the algorithm displays nearly linear
complexity on one, two and three parts of the Reuters corpus

can simplify the complexity to O(‖E‖). In order to compute a single replacement
vector, one has to process at most t documents, because if the feature occurred in
more documents it would not be eliminated. Consequently, an individual vector can
be computed in O (t‖E‖). The complexity of constructing the replacement matrix R
consists of two parts: building the replacement vectors for rare features and setting a
single feature to one for all others. This leads to a complexity of O(‖E‖2t + k). Due
to Zipf’s law, we can assume that k < ‖E‖, and so we obtain a practical complexity
of O(‖E‖2t) for text retrieval applications. Summarizing, we can state two bounds
for the algorithmic complexity of our vector replacement algorithm:

• In general, the algorithm will never peform worse than O(m2n).
• For text retrieval, we can assume that it is bounded by O(‖E‖2t).

In this serial form, our method does not necessarily provide an improvement
over the singular value decomposition in the algorithmic complexity, especially if
‖D‖ � ‖F‖. But since the replacement vectors can be computed independently of
each other, we have a great potential for parallel scalability.

The actual execution time still depends greatly on the non-zero elements in the
corpus matrix C . Since this is difficult to evaluate, we have measured the execution
time of our algorithm for 421,816, 621,392 and 804,414 documents of one, two
and three parts of the Reuters corpus. We have used an E5520 Intel Nehalem Xeon
running at 2.27 GHz with 4 cores equipped with 48 GiB of RAM with Hyperthreading
disabled. The operating system was CentOS 64 bit version 5.2, Linux kernel version
2.6.18–128.el5 using OpenMPI version 1.3.3 and the GNU Compiler Collection
version 4.1.2. The results of our measurements are depicted in Fig. 6.

Our measurements indicate that, due to the actual non-zero structure of a real-
world text collection, the actual growth in the execution time appears to be linear in
the size of the corpus. At present, we estimate that there is a dependency between the
number of elimination features and the size of the corpus matrix, which can explain
this linear behavior. Unfortunately, we cannot present any conclusive facts about this
relationship at present.



Dimensionality Reduction for Information Retrieval 55

6 Related Work

There are several well known dimensionality reduction techniques in the fields of
numerical linear algebra and statistics. The two foremost are the singular value
decomposition (SVD), see e.g. [1], and the principal component analysis (PCA),
see e.g. [7]. Both methods are strongly connected and share some theoretically desir-
able properties such as determinism and uniqueness. Furthermore, they have been
formally shown to produce the best linear approximation for any given rank, i.e. the
effective dimensionality of the data matrix, as shown in [8]. In multivariate statis-
tics, factor analysis [9] and more recently independent component analysis (ICE),
see [10], attempt to determine latent statistical factors, which can provide a linear
approximation of the original data. And indeed, the latter is again based on the PCA.
Kernel methods [11] have successfully been applied to extend the ICE to account for
non-linear data dependencies [12]. Non-negative matrix factorizations (NMF), see
e.g. [13], are a more recent development that is motivated by factor analysis, where
non-negativity may be necessary to interpret the factors. Multidimensional scaling
(MDS), see e.g. [14], determines a projection onto a lower dimensional space while
preserving pair-wise distances. Fastmap [15] is a modern technique for computing
such a projection. However, it should be noted that the SVD is an optimal variant of
MDS [16]. A classic geometric approach to the dimensionality reduction problem is
the fitting of a mesh of grid points to produce a map, onto which the individual data
points are projected. Such a map can be constructed implicitly by self-organization,
see e.g. [17], or explicitly with the ISOMAP algorithm [18] or local linear embedding
method (LLE) [19]. Moreover, clustering algorithms can also be used for dimension-
ality reduction by projecting onto the representative vectors of the clusters [20] or in
a supervised variant using the centroid vectors of category-specific centroids accord-
ing to a labeled set of examples [21]. But representatives for the projection can also
be chosen from the document collection, see e.g. [22] for an evolutionary approach
to the optimized selection.

In information retrieval, latent semantic indexing (LSI), see [23], is the straight-
forward application of the SVD to the task at hand. The PCA has also been applied
in the COV approach [24]. Factor analysis based on the SVD applied to automated
indexing has been reported as probabilistic latent semantic analysis (PLSA) in [25].
NMF methods are often used in various text classification tasks [26, 27]. The reduc-
tion by projection onto the representative vectors of a feature clustering has in fact
been developed specifically for text retrieval applications [20]. The use of kernel
methods can lead to a square increase in the number of features and is therefore
unsuitable for sparse, high-dimensional text data.

It is difficult to compare our own dimensionality reduction technique to previous
methods. It is based on an intuition about documents in the vector space model
rather than statistical, numerical or geometric properties. Due to the use of linear
combination of vectors scaled by relevance scores, the generalized vector space
model (GVSM) [28], is much more comparable to our own method than any of
the canonical methods for dimensionality reduction. In its principal form it uses
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term similarities as weights for the linear combination, but it has been modified in
a number of ways [29, 30]. However, modifications to the query processing such
as the GVSM should be considered complementary techniques that can be used in
conjunction with our dimensionality reduction method.

The index vector representation has recently gained popularity in the data mining
community due to the random index vector representation [31]. Random projections
based on random index vectors also play a role in very fast dimensionality reduc-
tion [32, 33]. The random index vector representation can also be improved with a
bag-of-concept representation [34]. Our own method is indeed an index vector repre-
sentation, but it is far from random. It is a co-occurrence index vector representation,
which is restricted to the common terms.

The rare term vector replacement strategy is also related to the random index
vector representation. Random indexing constructs a new vector representation from
random vectors based on (document-level) word co-occurrence. Analogously, the
rare term index vector representation builds new vectors based on co-occurrence
relationships, but the vectors used in the construction process are anything but ran-
dom. The basis for this synthesis is nothing less than a part of the original document
vectors, namely the common term frequency or TF-IDF scores.

If we consider rare term vector replacement as a dimensionality reduction method
for text, it is essential that we compare it to latent semantic indexing. The key to this
comparison is a concise understanding of the underlying singular value decompo-
sition. There are two ways we can interpret the factor matrices: analytically and
synthetically.

Let us first consider three analytical interpretations based on linear subspaces,
affine transformations and statistics. In terms of linear spaces, the singular vectors
are orthonormal basis vectors for the left and right subspaces spanned by the rows and
columns of C . By computing a rank-reduced representation of the original matrix,
the row and column spaces are truncated to subspaces by trimming the numerical
row and column kernel spaces of C . Theoretically, truncating the null space has no
impact on the span. But the magnitude of the singular values associated with the
basis vectors of the numerical kernel of a matrix can be far from zero. The SVD
therefore augments the span of C by truncating it to proper subspaces. If we interpret
C geometrically as a linear transformation, then U and V can be interpreted as
rotations and reflections which, together with the axis-aligned scaling matrix �, can
represent every affine transformation in a canonical manner. The sequence of the
factorization U�V T reveals the canonical three-step process: reflect / rotate, scale
along the main axes and reflect / rotate again. Thirdly, there is also the statistical
interpretation which is inherited from the principal component analysis. For data
with a non-zero mean, the left and right singular vector correspond to the principal
axes obtained by using biased, uncentered notions of covariance and correlation.
Correspondingly, a projection onto these axes yields an optimal linear reconstruction
of the distances with respect to the Frobenius norm.

The synthetic interpretations follow from the constructive principles of the algo-
rithms for computing the SVD. The geometric synthetic interpretation is based on
the Householder or Givens reflections and rotations, that can be used to compute the
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diagonalization. Synthetically, the SVD therefore corresponds to a series of reflec-
tions and rotations that are applied as left and right factors. The convergence behavior
of these algorithms tells us that these reflections and rotations will always succeed
in diagonalizing the matrix. Statistically, this means that the data can eventually be
decoupled and presented in (numerically) uncorrelated form. Thirdly, the Lanczos
algorithm allow us to interpret the SVD as a fixed point iteration with the most sig-
nificant, largest fixed point as the first singular vector, and decreasing orthogonal
complements following on the subsequent vectors.

For our method, we only have two interpretations. The first interpretation follows
immediately from the construction principle: We form the linear combination of the
centroids of the rare terms and combine them with the common terms. Alternatively,
we can also interpret the product RE E as a projection of the document vectors,
expressed as term frequencies, onto the index vectors for the common terms, which
are expressed as the rare and common terms they co-occur with.

Both of these interpretations clearly indicate that our method is substantially
different from LSI. It does not consist of reflections or rotations, and it makes no
attempt to decorrelate or whiten the data. And quite unlike an unsymmetric, general
singular value decomposition, it is based on a one-sided matrix product.

There is yet another formal argument for this difference. Rare term vector replace-
ment is based on a linear combination of existing vectors. Consequently, it does not
change the space spanned by the common terms in C . The truncated SVD eliminates
the numerical kernel space of the corpus matrix. This is a substantial difference and
makes any similarities unlikely.

A more recent technique that we need to consider in our formal, structural analysis
are non-negative matrix factorizations. Typically, the goal is to approximate a positive
matrix X using two factor matrices W and H , such that

X ≈ W H. (24)

The first observation we can make is that if we omit the subsequent spectral dimen-
sionality reduction with the PCA, then our method produces a positive augmented
corpus matrix C ′ for any positive input corpus C . With this in mind, we can make
two important assertions about RTVR and NMFs:

1. For any positive corpus matrix C we can compute a positive augmented corpus
matrix C ′ using the RTVR method, i.e. by taking

C ′ = RC. (25)

Since C ′ is positive, we can compute a non-negative factorization

C ′ ≈ W H, (26)

and use it to obtain a positive factor analysis of the augmented corpus.
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2. Since both C , R and C ′ are all positive, the equality in Statement 25 can be
relaxed to

C ′ ≈ RC, (27)

which suggests that the replacement matrix R and the original corpus matrix C
are in fact a non-negative factorization of the augmented corpus matrix C ′. We
can therefore “explain” the data in our augmented matrix based on the original
corpus matrix and the replacement vectors in R. This formal observation brings
us to a very obvious interpretation of the augmented corpus C ′, which states that
“the (i, j)-th component in the replacement matrix R states the membership of
an original feature in the j-th row of C with the associated common term in the
i-th row of C ′.”

Regarding NMFs, we can therefore state that (1) RTVR can be used in conjunction
with NMFs if the corpus matrix C is positive and if the subsequent rank reduction is
replaced by a positive factorization, and (2) that RTVR can itself be interpreted as a
particular NMF, which servers as an alternative interpretation of the formal principles
of the RTVR algorithm.

7 Summary and Conclusions

In this chapter, we have introduced a novel approach to dimensionality reduction
in text retrieval, which is based on the replacement of rare terms with linear com-
binations of their co-occurring terms. We have given a detailed description of the
mathematical formulation of the corresponding linear replacement operator. Further-
more, we have given a detailed report of the algorithmic formulation in pseudo-code.
We analyzed the algorithmic complexity, which is O(m2n) for m features and n doc-
uments in the most general case. For text retrieval applications, we can refine this
bound to O(‖E‖2t) where t is the maximum number of containing documents for a
rare feature and E the corresponding set of elimination features.

We have evaluated our approach on two standard benchmark collections, the
small MEDLARS collection with 1,033 documents and the Reuters Corpus Volume
I Version 2 with 23,149 documents. For both corpora, we eliminated all features
which occurred in less than 1 or 3 % of all documents. The MEDLARS collection
was thus reduced from 8,752 to 1,136 features using rare vector replacement and
to 500 features with a subsequent conventional rank reduction. Our experiments
show that both dimensionality reduced versions are competitive with the sparse
vector format in terms of retrieval accuracy. For the Reuters corpus we conducted
an extensive cross-evaluation using all topics as indicators for related and unrelated
results and all documents as sample queries. We reduced the original 47,236 features
to 525 features using vector replacement and to 392 terms using a subsequent rank
reduction. This transformation consistently increased the average precision for all
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result list ranks. While these experiments are still preliminary, we believe that they
do deliver an initial proof-of-concept for our reduction method.

In our future research, we plan to extend our experiments to a wider range of test
corpora, especially large-scale text collections, to improve the empirical evidence
for the utility of our method and to conduct a full-scale performance evaluation. In
addition, we will investigate how we can efficiently update an existing reduction to
account for new, changed and deleted documents as well as new features. Lastly, our
method shows great potential for parallel implementation, because the replacement
vectors can be computed independently. We hope that this will allow us to outperform
the SVD in terms of scalability in future experiments.
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