
Learning Hidden Markov Models Using
Probabilistic Matrix Factorization

Ashutosh Tewari and Michael J. Giering

Abstract Hidden Markov Models (HMM) provide an excellent tool for building
probabilistic graphical models to describe a sequence of observable entities. The
parameters of a HMM are estimated using the Baum–Welch algorithm, which scales
linearly with the sequence length and quadratically with the number of hidden states.
In this chapter, we propose a significantly faster algorithm for HMM parameter
estimation. The crux of the algorithm is the probabilistic factorization of a 2Dmatrix,
in which the (i, j)th element represents the number of times the j th symbol is found
right after the i th symbol in the observed sequence. We compare the Baum–Welch
with the proposed algorithm in various experimental settings and present empirical
evidences of the benefits of the proposed method in regards to the reduced time
complexity and increased robustness.

1 Introduction

Hidden Markov Model (HMM) is a graphical model that can be used to describe a
sequence of observed events/symbols. HMMs are most commonly applied in speech
recognition, computational linguistics, cryptanalysis and bio-informatics [3, 7, 11].
An Expectation–Maximization (EM) algorithm proposed by Baum et al. [1], is fre-
quently used for HMM parameter estimation. This algorithm locally maximizes the
likelihood of observing the symbol sequence given the parameter estimates.

The motivation for this work arises from situations where application of HMM is
ideal but impractical because of the excessive demands on computational resources.
For example, Ref. [6] points out the high computational cost of HMM training in the

A. Tewari (B) · M. J. Giering
United Technologies Research Center, East Hartford, CT 06108, USA
e-mail: tewaria@utrc.utc.com

M. J. Giering
e-mail: gierinmj@utrc.utc.com

K. Yada (ed.), Data Mining for Service, Studies in Big Data 3, 27
DOI: 10.1007/978-3-642-45252-9_3, © Springer-Verlag Berlin Heidelberg 2014



28 A. Tewari and M. J. Giering

context of intrusion detection because of long sequence lengths. The reason for this
computational complexity comes from the way the Baum–Welch algorithm repeat-
edly performs computation at every time step of the sequence. In this chapter, we
propose an alternate method to estimate HMM parameters, in which the informa-
tion content of the observed sequence is condensed into a 2D matrix. Thereafter, the
algorithm operates on this matrix, thus eliminating the need of computation at every
time step of the sequence in each iteration. We propose a generative model to explain
the information contained in the count matrix and show how the HMM parameters
can be derived from the proposed generative model. It should be noted that unlike
the Baum–Welch algorithm, the parameters estimated by the proposed algorithm
can be suboptimal in the sense of the observing entire symbol sequence. In a closely
related but concurrent and independent work [9], the author proposes non-negative
matrix factorization [10] based estimation of the HMM parameters (NNMF–HMM).
Therefore, we benchmark our results not just with the Baum–Welch but also with the
NNMF–HMM algorithm and demonstrate several orders of magnitude speed gains
using synthetic and real life datasets. We refer to our algorithm as PMF–HMM,
where PMF stands for probabilistic matrix factorization.

The paper is organized as follows. In Sect. 2, we present some background on
HMM and set the notations to be used in the rest of the paper. We formulate the
problem of HMM parameter estimation using the PMF–HMM algorithm in Sect. 3.
The experimental results are provided in Sect. 4, followed by concluding remarks in
Sect. 5.

2 Hidden Markov Model

In a HMM, an observed symbol sequence of length T , O = o1o2 . . . oT , is assumed
to be generated by a hidden state sequence of the same length, (Q = q1q2 . . . qT ),
as shown in Fig. 1. The hidden states and the observed symbols can take val-
ues from finite sets S = {S1, S2, . . . , SN } and V = {V1, V2, . . . , VM }, respec-
tively. At each time step, the current state emits a symbol before transitioning to
the next state and the process is repeated at every time step. Typically, the num-
ber of hidden states (N ) is smaller than the number of observed symbols (M).
The probability of transitioning from kth to lth hidden state, in successive time
steps, is denoted as P(q(t+1) = Sl |qt = Sk) or simply P(Sl |Sk). The proba-
bility of emitting the j th observed symbol from the kth hidden state is given by
P(ot = Vj |qt = Sk) or P(Vj |Sk). The combined parameter set can be represented
as λ = {

P(Sl , Sk), P(Vj |Sk)
}
. Essentially, any probabilistic model with parameters

λ that satisfy the properties that
∑N

l=1 P(Sl |Sk) = 1 and
∑M

j=1 P(Vj |Sk) = 1, can
be interpreted as a HMM [2]. Rabiner [12] in a comprehensive review on HMMs,
points at three basic problems of interest in HMMs:

1. How to efficiently compute the probability of observed symbol sequence,
P(O|λ), given the model parameters, λ?



Learning Hidden Markov Models 29

Fig. 1 Generative process of
a Hidden Markov Model. The
grey andwhite nodes represent
the observed symbols and
hidden states, respectively

2. Given an observed symbol sequence, O , and the model parameters, λ, how do
we choose a hidden state sequence which is optimal with respect to somemetric?

3. Given observed symbol sequence, O , how do we estimate the parameters, λ,
such that P(O|λ) is maximized?

The third problem of HMM parameter estimation is more challenging than the other
two as finding the global optimum is computationally intractable. The Baum–Welch
algorithm solves this problem and guarantees attainment of a local optimum of the
observed sequence likelihood. In this chapter, we propose a faster method to esti-
mate the HMM parameters, which also provides a locally optimal solution but for a
different objective function. In Sect. 3, we provide the mathematical formulation of
the PMF–HMM algorithm.

3 PMF–HMM Algorithm

3.1 Problem Formulation

Let P(Vi , Vj ) represent the bivariate mass function of observing the symbol pair
〈Vi , Vj 〉 in an HMM process. The empirical estimate, P̂(Vi , Vj ), of this bivariate
mass function can be derived from the observed symbol sequence using Eq. (1).

P̂(Vi , Vj ) = 1

(T − 1)

T −1∑

t=1

IVi (qt ) × IVj (qt+1) (1)

where the indicator function, IVi (qt ), is a binary function which outputs 1 only when
the observed symbol at time t is Vi . The square matrix P̂(Vi , Vj ), which is the
maximum likelihood estimate of the bivariate mass function P(Vi , Vj ), contains the
normalized frequency with which different symbol pairs appear in the sequence O .
Consider a process that can generate such pairs of symbols.

• The current observed symbol Vi , at some arbitrary time, makes a transitions to the
hidden state Sk with a probability P̂(Sk |Vi ).

• In the next time step, the kth hidden state emits the observed symbol Vj with a
probability P̂(Vj |Sk).



30 A. Tewari and M. J. Giering

Fig. 2 The proposed graphical model that governs the generation of the pairs of symbols in the
observed sequence. The grey and white nodes represent the observed symbols and hidden states,
respectively. M is the total number of observed symbols and n(Vi ) is the number of times symbol
Vi appears in the sequence

This process of generating all pairs of observed symbols is depicted as a graphical
model in Fig. 2. It should be noted that this process is fundamentally different from the
generation process of observed symbols in a HMM (Fig. 1). Based on the graphical
model in Eq. (2), P̂

(
Vi , Vj

)
can be factorized as:

P̂
(
Vi , Vj

) ≈ P̂(Vi )

N∑

k=1

P̂(Sk |Vi )P̂(Vj |Sk) (2)

where, P̂(Vi ) is the marginal distribution of observed symbols, which can be esti-
mated empirically as P̂(Vi ) = ∑

j P̂(Vi , Vj ). In Sect. 3.2, we demonstrate how
a fairly popular algorithm in the field of text-mining can be used to perform this
factorization to estimate the remaining two parameters P̂(Sk |Vi ) and P̂(Vj |Sk).

3.2 Probabilistic Factorization of Count Matrix

Hofmann proposed an EM algorithm for the probabilistic factorization of word count
matrices in the field of text mining [4, 5]. In his seminal work, a count matrix was
defined on a text corpus (a collection of documents) such that the entries represented
the frequencies of the occurrence of different words (from a finite dictionary) in dif-
ferent documents present in the corpus. Hofmann’s model, known as Probabilistic
Latent Semantic Analysis (PLSA), is a widely used method to perform automated
document indexing. Although PLSAwas proposed to factorize theword-countmatri-
ces, it is applicable to any matrix having the co-occurrence information about two
discrete random variables. The key assumption in PLSA is the conditional indepen-
dence of a word and a document given the latent/hidden topic. The generative model
shown in Fig. 2, has the same assumption i.e. a pair of observed symbols occur in
a sequence, independently, given the in-between hidden state. As a result, the EM
algorithm, proposed by Hofmann, renders itself available to perform the factoriza-
tion shown in Eq. (2). The algorithm is implemented iteratively to estimate the model
parameters P̂(Vj |Sk) and P̂(Sk |Vi ) using the following steps:



Learning Hidden Markov Models 31

E Step: In this step, the probability distribution of the hidden states is estimated
for every pair of observed symbols given the current parameter estimates.

P̂(Sk |Vi , Vj ) = P̂(Sk |Vi )P̂(Vj |Sk)

N∑

k=1
P̂(Sk |Vi )P̂(Vj |Sk)

(3)

M Step: In this step, the model parameters are updated from the probabilities
estimated in the E step.

P̂(Vj |Sk) =

M∑

i=1
P̂(Vi , Vj ) × P̂(Sk |Vi , Vj )

M∑

i=1

M∑

j=1
P̂(Vi , Vj ) × P̂(Sk |Vi , Vj )

(4)

P̂(Sk |Vi ) =

M∑

j=1
P̂(Vi , Vj ) × P̂(Sk |Vi , Vj )

M∑

j=1
P̂(Vi , Vj )

(5)

This EM process converges, after several iterations, to a local optimum that maxi-
mizes the log-likelihood function given by Eq. (6).

� =
M∑

i=1

M∑

j=1

P̂(Vi , Vj )

(

P̂(Vi )

N∑

k=1

P̂(Sk |Vi )P̂(Vj |Sk)

)

(6)

where, P̂(Vi , Vj ) is the empirical estimate of the bivariate mass function of a pair of
observed symbol given by Eq. (1), while, the term in the bracket is the same bivariate
mass function but estimated assuming the generative model shown in Fig. 2. It can
be shown that the maximization of the log-likelihood function (Eq. (6)) amounts to
the minimization of Kullback–Leibler distance between the two joint mass functions

i.e. DK L

(
P̂(Vi , Vj )||P̂(Vi )

∑N
k=1 P̂(Sk |Vi )P̂(Vj , Sk)

)
.

3.3 Estimation of HMM Parameters

TheHMMparameters consists of the emission probabilities, P(Vj |Sk), and transition
probabilities, P(Sl |Sk). The emission probabilities, P(Vj |Sk), are directly estimated
in the M Step (Eq. 4) of the EM algorithm. However, the transition probabilities do



32 A. Tewari and M. J. Giering

not get estimated in the proposed generative model. Nevertheless, these probabilities
can be obtained using a simple trick. To get the transition probability from kth to lth
hidden states, we can enumerate all the possible paths between these two states (via
all observed symbols) and aggregate the probabilities of all such paths, as shown in
Eq. (7).

P(Sl |Sk) =
M∑

i=1

P(Vi |Sk)P(Sl |Vi ) (7)

Here we list four key differences between the Baum–Welch algorithm and the
PMF–HMM algorithm for the HMM parameter estimation.

• Baum–Welch operates on the entire symbol sequence, while the later operates on
the count matrix derived from the symbol sequence.

• The number of parameters that are estimated in the PMF–HMM algorithm is 2MN
while the Baum–Welch estimates N (M + N ) parameters.

• Baum–Welch maximizes the likelihood of the entire observed sequence given the
model parameters i.e. P(O|λ) as opposed to Eq. (6), which is maximized by the
PMF–HMM algorithm.

• The time complexity of PMF–HMM is, O(T ) + O(I M2N ) ≈ O(T ), for very
long sequences, while for Baum–Welch algorithm the complexity is O(I N 2T ).
The symbol I denotes the number of iterations of the respective EM algorithms.

In Sect. 4, we experimentally show that despite having these differences, the PMF–
HMM algorithm estimates the HMM parameters fairly well.

3.4 Non-Degenerate Observations

In a HMM, an observed symbol can be expressed as a degenerate probability mass
function supported on the symbol set. At any arbitrary time, the mass will be concen-
trated on the symbol that is being observed. Consider a scenario when there exists
some ambiguity about the symbol being observed. This ambiguity can cause the prob-
ability mass to diffuse from one symbol to others resulting in a non-degenerate mass
function. Such a situation can arise during the discretization of a system with contin-
uous observations. The proposed algorithm, which operates on the count matrix, is
inherently capable of handling this typeof uncertain information. Figure 3, juxtaposes
the scenarios when the observations are degenerate and non-degenerate respectively,
for a system with six observed symbols. For the former case, the system makes a
clean transition from 3rd to 4th symbol. The outer product of the two probability
mass functions in successive time steps results in a 6 × 6 matrix with a single non-
zero entry at (3, 4)th position. To obtain the count matrix for the entire sequence of
length T , the outer products in successive time steps can be aggregated as shown in
Eq. (8), which is equivalent to Eq. (1).



Learning Hidden Markov Models 33

Fig. 3 a Generation of a count matrix by degenerate observations. The count value is localized at
a single position in the matrix. b Generation of a count matrix by non-degenerate observations. The
count value gets distributed in a neighborhood

P̂(Vi , Vj ) = 1

T − 1

N−1∑

t=1

Ot ⊗ Ot+1 (8)

For the non-degenerate case, the count value simply gets diffused from the (3, 4)th
position to the neighboring positions as shown in Fig. 3b. Nevertheless, Eq. (8) can
still be used to compute the count matrix. Once the count matrix is obtained, the
PMF–HMM algorithm can be applied to estimate the parameters.

4 Experiments

In this section, we present some empirical evidence of the speed gains of the PMF–
HMM over the Baum–Welch algorithm, using synthetic and real-life datasets.

4.1 Synthetic Data

Wekept the experimental setup identical to the oneproposed inRef. [9]. This provided
uswith a platform to benchmark our algorithmnot just with theBaum–Welch but also
with NNMF–HMM algorithm. The experiments were carried out in the MATLAB’s
programming environment. For the implementation of the Baum–Welch algorithm,



34 A. Tewari and M. J. Giering

Fig. 4 Plot of the run times of the PMF–HMM algorithm versus the sequence lengths. The total
time is split into its two components (1) time spent in computing the count matrix (2) time spent in
the probabilistic factorization of the count matrix

we used the Statistical toolbox of MATLAB. The observed symbol sequences were
generated using a hidden Markov process with the transition probabilities as shown
in Eq. (9).

P(Sk |Sl) =
⎛

⎝
0 0.9 0.1
0 0 1
1 0 0

⎞

⎠ (9)

The first and second hidden states randomly generated numbers from Gaussian dis-
tributionsφ(11, 2) and φ(16, 3) respectively, while the third state generated numbers
by uniformly sampling from the interval (16, 26). These emission probabilities are
listed in Eq. (10).

P(Vj |Sk) =

⎧
⎪⎨

⎪⎩

φ(11, 2) if k = 1,

φ(16, 3) if k = 2,

U (16, 26) if k = 3.

(10)

The continuous observations were rounded to nearest integer to form a discrete sym-
bol sequence. Seven different sequence lengths, T = 103+0.5x ; x = 0, 1, . . . , 6,
were chosen for the experiments. For each sequence length, the HMM parameters
were estimated with the PMF–HMM algorithm. Figure 4 plots the run times of the
algorithm at different sequence length. The total runtime is split into its two con-
stituent times 1) the time taken for populating the count matrix 2) the time taken
to factorize the count matrix. As expected, the time taken for populating the count
matrix varies linearly with the sequence length as indicated by the unit slope of the



Learning Hidden Markov Models 35

Fig. 5 Comparison of the true and the estimated emission probabilities (from PMF–HMM
algorithm) at different sequence lengths (T ). For short sequence (a) the estimates were poor and
showed high variance. For longer sequences (b and c) the estimated parameters matched the true
parameters quite well with high confidence

log–log plot. However, the time spent in matrix factorization remained almost con-
stant because of its insensitivity to the sequence length (complexity is O(M2N )).
Hence, at smaller sequence length, matrix factorization dominated the total run time
but its contribution quickly faded away as the sequences grew longer. Figure 5 plots
the estimated emission probabilities of the three hidden states along with the true
emission probabilities as given in Eq. (10). The error bars represent the 95% con-
fidence interval of the estimated value as a result of 20 runs of each experiment.
Clearly, as the sequence length was increased, the estimated emission probabilities
converged to the true values and the error bars shrank.



36 A. Tewari and M. J. Giering

Fig. 6 Comparison of different characteristics of PMF–HMM, NNMF–HMM and Baum–Welch
algorithms on the synthetic data at different sequence lengths. Algorithms runtimes, likelihood
values of the sequence, post training, P(O|λ) and Hellinger distances are compared (a, b and c)

In Ref. [9], the author compares different characteristics of NNMF–HMM algo-
rithmwith that of Baum–Welch algorithm.We add the characteristics of PMF–HMM
algorithm, to these published results, so as to have a common ground to compare the
three algorithms. In Fig. 6b, the likelihood values of observing the symbol sequence
given the estimatedHMMparameters, P(O|λ), is plotted versus the sequence length.
It is remarkable that despite having a different generative model, both the PMF–
HMM and NNMF–HMM algorithms resulted in likelihood values that were at par
with that of Baum–Welch algorithm. In Fig. 6c, the Hellinger distance between the
estimated and true emission probabilities is plotted versus the sequence length for
the three algorithms. As the sequences grew longer, the estimated emission proba-
bilities converged to the true values, which is indicated by the drop in the distance
values. Overall, the Hellinger distance of PMF–HMM algorithm was higher than the
other two algorithms, which can also explain its marginally lower likelihood values
plotted in Fig. 6(b). However, the main difference was observed in the run times of
the three algorithms, where the PMF–HMM algorithm was better than the other two
by a significant margin (Fig. 6a).

In Sect. 3.4, we discussed the ability of the PMF–HMM algorithm to handle
non-degenerate observations. Here, we demonstrate the advantage of this ability for
estimating the HMM parameter. In the previous experiment, the continuous observa-
tion values were rounded to the nearest integer to yield a discrete symbol sequence.
This discretization came with a cost of some information loss. As an alternative, a
soft discretization scheme can be employed, which assigns a real valued observa-
tion to multiple symbols with different memberships. One such soft discretization
scheme is shown in Fig. 7, which involves defining a Gaussian kernel centered at
the observation (8.35 in this case). As every symbol is bounded on both sides, the
degree of membership of the real observation to a symbol can be obtained by com-
puting the area under the Gaussian kernel between the symbol’s boundaries (refer
Fig. 7). Because of the use of a probability density function (the Gaussian kernel),
the membership values have the desired addition to unity property. We used this soft
discretization scheme to obtain non-degenerate observation vectors and computed
the count matrix using Eq. (8). The standard deviation of the Gaussian kernel was



Learning Hidden Markov Models 37

Fig. 7 Illustration of a scheme for generating non-degenerate observation vector from a continuous
value. Instead of assigning the observation a specific symbol value, its membership to different
symbol can be obtained by computing the area under a Gaussian Kernel centered at that value

Fig. 8 Comparison of the true and estimated emission probabilities (by PMF–HMM algorithm) at
the sequence length, T = 1000. The count matrix was obtained using the non-degenerate obser-
vations. The quality of estimated parameters is much better in comparison to case when discrete
observations were used to obtain the count matrix (Fig. 5a)

fixed at 1.0 (equal to the interval width). The remaining steps for computing the
HMM parameter were identical to the case of discrete symbol sequence. Figure 8
shows the estimated emission probabilities, at the sequence length of 1000, along
with the true emission probabilities. This figure can be compared with the Fig. 5a,
where the hard discretization scheme was employed for obtaining the count matrix.
The estimated emission probabilities, resulting from soft discretization, were not just
closer to the true ones but also had tighter confidence interval.



38 A. Tewari and M. J. Giering

Table 1 Comparison of the time spent in building HMM classifiers by the Baum-Welch and the
proposed algorithm on key stroke dynamics data. Cohen’s kappa values on the test dataset are also
listed for the two classifiers

Training time Cohen’s kappa (κ)

PMF–HMM 0.47s 0.32
PMF–HMM (non-degenerate) 1.98 s 0.35
Baum–Welch 4.3h 0.38

4.2 Key Stroke Dynamics Data

This dataset was generated, in a study at CMU, for the analysis of typing rhythms
to discriminate among users [8]. The purpose was to model the typing rhythms
for separating imposters from actual users. In the study, 51 subjects were asked to
type the same password 400 times over a period of few weeks. The password had
eleven characters (including the enter key) and was identical for all the subjects. The
recorded data consisted of the hold time (the length of time a key was pressed) and
transition time (the time taken in moving from one key to the next). Therefore for
every typed password, the data had 21 time entries (11 keys and 10 transitions). We
used this dataset to perform a HMM based classification of a typed password into
the most probable subject. The idea is to first learn a HMM for each subject from
the passwords in the training set. Thereafter, classify the passwords in the test set
using the Maximum A-Posteriori (MAP) criterion. The training and test sets were
obtained after splitting the original dataset in half. As the first step, we discretized the
continuous time values into 32 equi-spaced bins. Therefore, the subsequent HMMs
were comprised 32 observed symbols and 21 hidden states.

Table 1 compares the Baum–Welch and the PMF–HMM algorithm for their run-
time and classification accuracy. We used both degenerate and non-degenerate vari-
ants of the PMF–HMM algorithm. The classification accuracy is quantified using
Cohen’s kappa(κ) statistics, which is a measure of inter-rater agreement for categor-
ical items [13]. The kappa statistics takes into account the agreements occurring by
chance and hence usually gives a conservative estimate of a classifier’s performance.
It turns out that the Baum–Welch algorithm took almost 10000X more time than
the proposed algorithm for the same job. Moreover, the longer time taken by the
Baum–Welch algorithm was not reflected on its classification performance on the
test dataset. The kappa value, κ = 0.38, of the classifier trained by the Baum–Welch
algorithmwas only slightly better than that of the PMF–HMMalgorithm (κ = 0.32).
Moreover, the PMF–HMM’s classification performance was further improved with
the use of non-degenerate observations (κ = 0.35) without a impacting the training
time significantly.



Learning Hidden Markov Models 39

5 Conclusion

In this chapter we proposed a probabilistic matrix factorization based algorithm
for the parameter estimation of a Hidden Markov Model. The 2D matrix, which
is factorized, contains the information about the number of times different pairs
of symbols occur in an observed sequence. A model is proposed that governs the
generation process of these symbol pairs. Thereafter, an EM algorithm is used to
estimate the HMM parameters assuming this generative model. The time required
for the parameter estimation with the proposed algorithm can be orders of magnitude
shorter than the Baum–Welch algorithm, thus making it attractive for time critical
problems. We also discussed the ability of the proposed algorithm to handle non-
degenerate observations and demonstrated the resulting improvement in the quality
of HMM parameter estimates.

References

1. Baum, L., Petrie, T., Soules, G., Weiss, N.: A maximization technique occuring in statistical
analysis of probabilistic function of Markov chains. Ann. Math. Stat. 41, 164–171 (1970)

2. Eddy, S.: What is a hidden Markov model? Nat. Biotechnol. 22, 1315–1316 (2004)
3. Fonzo, V., Pentini, F., Parisi, V.: Hidden Markov models in bioinformatics. Curr. Bioin-

form. 2(1), 49–61 (2007). http://www.ingentaconnect.com/content/ben/cbio/2007/00000002/
00000001/art00005

4. Hofmann, T.: Probabilistic latent semantic analysis. In: Proceedings of Uncertainty in Artifi-
cial Intelligence,UAI. Stockholm (1999). http://citeseer.csail.mit.edu/hofmann99probabilistic.
html

5. Hofmann, T.: Probabilistic latent semantic indexing. In: Proceedings of the 22nd Annual Inter-
national ACM SIGIR Conference on Research and Development in Information Retrieval,
SIGIR’ 99, ACM,NewYork, NY, USA, pp. 50–57 (1999). http://doi.acm.org/10.1145/312624.
312649

6. Hu, J., Yu, X., Qiu, D., Chen, H.: A simple and efficient hiddenMarkovmodel scheme for host-
based anomaly intrusion detection. Netw. Mag. Glob. Internetwkg. 23, 42–47 (2009). http://
dx.doi.org/10.1109/MNET.2009.4804323

7. Juang, B.: On the hidden Markov model and dynamic time wraping for speech recognition—a
unified view. AT&T Tech. J. 63, 1212–1243 (1984)

8. Killourhy, K., Maxion, R.: Comparing anomaly-detection algorithms for keystroke dynamics.
In: 39th International Conference on Dependable Systems and Networks. Lisbon, Portugal
(2009)

9. Lakshminarayanan, B., Raich, R.: Non-negative matrix factorization for parameter estima-
tion in hidden Markov models. In: Proceedings of IEEE International Workshop on Machine
Learning for Signal Processing. IEEE, Kittila, Finland (2010)

10. Lee, D., Seung, H.: Learning the parts of objects by non-negative matrix factorization. Nature
401(6755), 788–791 (1999). doi:10.1038/44565

11. Levinson, S., Rabiner, L., Sondhi, M.: An introduction to the application of probabilistic func-
tions of Markov process to automatic speech recognition. Bell Syst. Tech. J. 62, 1035–1074
(1983)

12. Rabiner, L.R.: Readings in speech recognition. Chap. A tutorial on hidden Markov models and
selected applications in speech recognition., pp. 267–296. Morgan Kaufmann Publishers Inc.,
San Francisco (1990). http://dl.acm.org/citation.cfm?id=108235.108253

13. Uebersax, J.: Diversity of decision-making models and the measurement of interrater agree-
ment. Psychol. Bull. 101, 140–146 (1987)

http://www.ingentaconnect.com/content/ben/cbio/2007/00000002/00000001/art00005
http://www.ingentaconnect.com/content/ben/cbio/2007/00000002/00000001/art00005
http://citeseer.csail.mit.edu/hofmann99probabilistic.html
http://citeseer.csail.mit.edu/hofmann99probabilistic.html
http://doi.acm.org/10.1145/312624.312649
http://doi.acm.org/10.1145/312624.312649
http://dx.doi.org/10.1109/MNET.2009.4804323
http://dx.doi.org/10.1109/MNET.2009.4804323
http://dx.doi.org/10.1038/44565
http://dl.acm.org/citation.cfm?id=108235.108253

	3 Learning Hidden Markov Models Using Probabilistic Matrix Factorization
	1 Introduction
	2 Hidden Markov Model
	3 PMF--HMM Algorithm
	3.1 Problem Formulation
	3.2 Probabilistic Factorization of Count Matrix
	3.3 Estimation of HMM Parameters
	3.4 Non-Degenerate Observations

	4 Experiments
	4.1 Synthetic Data
	4.2 Key Stroke Dynamics Data

	5 Conclusion
	References


