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Abstract Nonnegative matrix factorization based methods provide one of the
simplest and most effective approaches to text mining. However, their applicabil-
ity is mainly limited to analyzing a single data source. In this chapter, we propose a
novel joint matrix factorization framework which can jointly analyze multiple data
sources by exploiting their shared and individual structures. The proposed framework
is flexible to handle any arbitrary sharing configurations encountered in real world
data. We derive an efficient algorithm for learning the factorization and show that its
convergence is theoretically guaranteed.We demonstrate the utility and effectiveness
of the proposed framework in two real-world applications—improving social media
retrieval using auxiliary sources and cross-social media retrieval. Representing each
social media source using their textual tags, for both applications, we show that
retrieval performance exceeds the existing state-of-the-art techniques. The proposed
solution provides a generic framework and can be applicable to a wider context in
data mining wherever one needs to exploit mutual and individual knowledge present
across multiple data sources.
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1 Introduction

Feeding our insatiable appetite for content, multiple data sources surround us. Data
from a single source is often not rich enough and users look for information across
multiple sources andmodalities. The research community has focused on datamining
and analysis from single data source, but limited work addresses issues arising from
the joint analysis of multiple data sources. This has created open opportunities to
develop formal frameworks for analyzing multiple data sources, exploiting common
properties to strengthen data analysis and mining. Discovering patterns from multi-
ple data sources often provides information such as commonalities and differences,
otherwise not possible with isolated analysis. This information is valuable for various
data mining and representation tasks.

As an example, consider social media. Entirely new genres of media have been
created around the idea of participation, including wikis (e.g. Wikipedia), social net-
works (e.g. Facebook), media communities (e.g. YouTube), news aggregators (e.g.
Digg), blogs and micro-blogs (e.g. Blogspot, Twitter). These applications are signifi-
cant because they are often ranked highest by traffic volume and attention. Modeling
collective data across semantically similar yet disparate sources is critical for social
mediamining and retrieval tasks. Open questions are: how canwe effectively analyze
such disparate data sources together exploiting their mutual strengths for improving
data mining tasks? Can we establish the correspondence or similarity of items in one
data source with items in other data sources?

This chapter attempts to address these questions and develops a framework to
model multiple data sources jointly by exploiting their mutual strengths while retain-
ing their individual knowledge. To analyze multiple disparate data sources jointly, a
unified piece of meta data—textual tags—are used. Although we use textual tags in
this work, any other feature unifying the disparate data sources can be used. Textual
tags are rich in semantics [5, 15] as they are meant to provide higher level description
to the data, and are freely available for disparate data types e.g. images, videos, blogs,
news etc. However, these tags cannot be used directly to build useful applications
due to their noisy characteristics. The lack of constraints during their creation are
part of their appeal, but consequently they become ambiguous, incomplete and sub-
jective [5, 15], leading to poor performance in data mining tasks. Work on tagging
systems has been mainly aimed at refining tags by determining their relevance and
recommending additional tags [15, 18] to reduce the ambiguity. But the performance
of these techniques is bounded by the information content and noise characteristics
of the tagging source in question, which can vary wildly depending on many factors,
including the design of the tagging system and the uses to which it is being put by
its users. To reduce tag ambiguity, the use of auxiliary data sources along with the
domain of interest is suggested in Ref. [10]. The intuition behind the joint analy-
sis of multiple data sources is that the combined tagging knowledge tend to reduce
the subjectivity of tags [7] as multiple related sources often provide complementary
knowledge and strengthen one another.
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Fig. 1 Some possible sharing configurations for n = 3 datasets. In this chapter, we consider
a Chain sharing, b Pairwise sharing and c General sharing

Departing from single data source based methods, we formulate a novel frame-
work to leverage tags as the unifyingmetadata acrossmultiple disparate data sources.
The key idea is to model the data subspaces that allows flexibility in representing the
commonalities whilst retaining their individual differences. Retaining the individual
differences of each data source is crucial when dealing with heterogeneous multiple
data sources as ignoring this aspect may lead to negative knowledge transfer [6]. Our
proposed framework is based on nonnegative matrix factorization (NMF) [11] and
provides shared and individual basis vectors wherein tags of eachmedia object can be
represented by linear combination of shared and individual topics. We extend NMF
to enable joint modeling of multiple data sources deriving common and individual
subspaces.

Pairwise analysis using two data sources has been considered in our previous
works [7, 8]. However, these works are limited and unusable for many real-world
applications where one needs to include several auxiliary sources to achieve more
meaningful improvement in performance as shown in this chapter. Furthermore,
extension to multiple data sources requires efficient learning of arbitrarily shared
subspaces which is nontrivial and fundamentally different from Refs. [7, 8]. For
example, consider three sources D1, D2 and D3; jointly modeling (D1, D2, D3) is
different from pairwise modeling (D1, D2) or (D2, D3). Figure 1 depicts an exam-
ple of the possible sharing configurations (refer Sect. 3) for three data sources. We
note that the frameworks considered in Refs. [7, 8] can not handle the sharing con-
figuration of Fig. 1c. To demonstrate the effectiveness of our approach, we apply
the proposed model on two real world tasks—improving social media retrieval using
auxiliary sources and cross-socialmedia retrieval—using three disparate data sources
(Flickr, YouTube and Blogspot). Our main contributions are :

• A jointmatrix factorization framework alongwith an efficient algorithm for extrac-
tion of shared and individual subspaces across an arbitrary number of data sources.
We provide complexity analysis of the learning algorithm and show that its con-
vergence is guaranteed via a proof of convergence (in Sect. 3 and Appendix).

• We further develop algorithms for social media retrieval in a multi-task learning
setting and cross-social media retrieval (in Sect. 4).



154 S. K. Gupta et al.

• Two real world demonstrations of the proposed framework using three repre-
sentative social media sources–blogs (Blogspot.com), photos (Flickr) and videos
(YouTube) (in Sect. 5).

By permitting differential amounts of sharing in the subspaces, our framework can
transfer knowledge across multiple data sources and thus, can be applied to a much
wider context—it is appropriate wherever one needs to exploit the knowledge across
multiple related data sources avoiding negative knowledge transfer. Speaking in
social media context, it provides efficient means to mine multimedia data, and partly
transcend the semantic gap by exploiting the diversity of rich tag metadata from
many media domains.

2 Related Background

Previous works on shared subspace learning are mainly focused on supervised or
semi-supervised learning. Ando and Zhang [1] propose structure learning to dis-
cover predictive structures shared by the multiple classification problems to improve
performance on the target data source in transfer learning settings. Yan et al. [20]
propose a multi-label learning algorithm called model-shared subspace boosting to
reduce information redundancy in learning by combining a number of base models
across multiple labels. Ji et al. [9] learn a common subspace shared among multiple
labels to extract shared structures for multi-label classification task. In a transfer
learning work [6], Gu and Zhou propose a framework for multi-task clustering by
learning a common subspace among all tasks and use it for transductive transfer clas-
sification. A limitation of their framework is that it learns a single shared subspace
for each task which often violates data faithfulness in many real world scenarios.
Si et al. [17] propose a family of transfer subspace learning algorithms based on a
regularization which minimizes Bregman divergence between the distributions of
the training and test samples. Though, this approach, fairly generic for domain adap-
tation setting, is not directly applicable for multi-task learning and does not model
multiple data sources. In contrast to the above works, our proposed framework not
only provides varying levels of sharing but is flexible to support arbitrary sharing
configurations for any combination of multiple data sources (tasks).

Our proposed shared subspace learningmethod is formulated under the framework
of NMF. NMF is chosen to model the tags (as tags are basically textual keywords)
due to its success in text mining applications [3, 16, 19]. An important characteristic
of NMF is that it yields parts based representation of the data.

Previous approaches taken for cross-media retrieval [21, 22] use the concept of a
Multimedia Document (MMD), which is a set of co-occurring multimedia objects
that are of different modalities carrying the same semantics. The two multimedia
objects can be regarded as context for each other if they are in the same MMD, and
thus the combination of content and context is used to overcome the semantic gap.
However, this line of research depends on co-occurring multimedia objects, which
may not be available.
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3 Multiple Shared Subspace Learning

3.1 Problem Formulation

In this section, we describe a framework for learning individual as well as arbitrarily
shared subspaces of multiple data sources. Let X1, . . . , Xn represent the feature
matrices constructed from a set of n data sources where X1, . . . , Xn can be, for
example, user-item rating matrices (where each row corresponds to a user, each col-
umn corresponds to an item and the features are user ratings) in case of collaborative
filtering application or term-document matrices for tag based social media retrieval
application (where each row corresponds to a tag, each column corresponds to an
item and features are usual tf-idf weights [2]) and so on. Given X1, . . . , Xn , we
decompose each data matrix Xi as a product of two matrices Xi = Wi · Hi such
that the subspace spanned by the columns of matrix Wi explicitly represents arbi-
trary sharing among n data sources through shared subspaces and individual data
by preserving their individual subspaces. For example, when n = 2, we create three
subspaces: a shared subspace spanned by matrix W12 and two individual subspaces
spanned by matrices W1, W2. Formally,

X1 = [W12 | W1]
︸ ︷︷ ︸

W1

⎡

⎣

H1,12

H1,1

⎤

⎦

︸ ︷︷ ︸

H1

= W12 · H1,12 + W1 · H1,1 (1)

X2 = [W12 | W2]
︸ ︷︷ ︸

W2

⎡

⎣

H2,12

H2,2

⎤

⎦

︸ ︷︷ ︸

H2

= W12 · H2,12 + W2 · H2,2 (2)

Notationwise, we use bold capital letters W, H to denote the decomposition at the
data source level and normal capital letters W , H to denote the subspaces partly. In
the above expressions, the shared basis vectors are contained in W12 while individual
basis vectors are captured in W1 and W2 respectively, hence giving rise to the full
subspace representation W1 = [W12 | W1] and W2 = [W12 | W2] for the two data
sources. However, note that the encoding coefficients of each data source in the
shared subspace corresponding to W12 are different, and thus, an extra subscript is
used to make it explicit as H1,12 and H2,12.

To generalize these expressions for arbitrary n datasets, we continue with this
example (n = 2) and consider the power set over {1, 2} given as

S (2) = {∅, {1} , {2} , {1, 2}}

We can use the power set S (2) to create an index set for the subscripts ‘1’, ‘2’ and
‘12’ used in matrices of Eqs. (1) and (2). This helps in writing the factorization
conveniently using a summation. We further use S (2, i) to denote the subset of S (2)
in which only elements involving i are retained, i.e.
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S (2, 1) = {{1}, {1, 2}} and S (2, 2) = {{2}, {1, 2}}

With a little sacrifice of perfection over the set notation, we rewrite them as S (2, 1) =
{1, 12} and S (2, 2) = {2, 12}. Now, using these sets, Eqs. (1) and (2) can be
re-written as

X1 =
∑

ν∈{1,12}
Wν · H1,ν and X2 =

∑

ν∈{2,12}
Wν · H2,ν

For an arbitrary set of n datasets, let S (n) denote the power set of {1, 2, . . . , n} and
for each i = 1, . . . , n, let the index set associated with the i-th data source be defined
as S (n, i) = {ν ∈ S (n) | i ∈ ν}. Our proposed joint matrix factorization for n data
sources can then be written as

Xi = Wi · Hi =
∑

ν∈S(n,i)

Wν · Hi,ν (3)

Our above expression is in its most generic form considering all possible sharing
opportunities that can be formulated. In fact, the total number of subspaces equates
to 2n − 1 which is the cardinality of the power set S (n) minus the empty set ∅.
We consider this generic form in this paper. However, our framework is directly
applicable where we can customize the index set S (n, i) to tailor any combination
of sharing one wish to model. Figure 1 illustrates some of the possible scenarios
when there are three data sources (n = 3)

If we explicitly list the elements of S (n, i) as S (n, i) = {ν1, ν2, . . . , νZ } then
Wi and Hi are

Wi = [

Wν1 | Wν2 | . . . | WνZ

]

, Hi =
⎡

⎢

⎣

Hi,ν1
...

Hi,νZ

⎤

⎥

⎦ (4)

3.2 Learning and Optimization

Our goal is to achieve sparse part-based representation of the subspaces and therefore,
we impose nonnegative constraints on {Wi , Hi }n

i=1. We formulate an optimization
problem to minimize the Frobenius norm of joint decomposition error. The objective
function accumulating normalized decomposition error across all data matrices is
given as
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J (W, H) = 1

2

{

n
∑

i=1

λi ‖Xi − Wi · Hi‖2F
}

= 1

2

⎧

⎪
⎨

⎪
⎩

n
∑

i=1

λi

∥

∥

∥

∥

∥

∥

Xi −
∑

ν∈S(n,i)

Wν · Hi,ν

∥

∥

∥

∥

∥

∥

2

F

⎫

⎪
⎬

⎪
⎭

(5)

where ‖.‖F is the Frobenius norm and λi � ‖Xi‖−2
F is the normalizing factor for

data Xi . Thus, the final optimization is given as

minimize J (W, H) subject to Wν, Hi,ν ≥ 0 for all 1 ≤ i ≤ n and ν ∈ S (n, i) (6)

where J (W, H) is defined as in Eq. (5). A few directions are available to solve
this nonnegatively constrained optimization problem, such as gradient-descent based
multiplicative updates [11] or projected gradient [12]. We found that optimization of
J (W, H) using multiplicative updates provides a good trade off between automat-
ically selecting gradient-descent step size and fast convergence for both synthetic
and real datasets, and therefore, will be used in this chapter. Expressing the objec-
tive function element-wise, we shall show that multiplicative update equations for
Wν and Hi,ν can be formulated efficiently as in the standard NMF [11]. Since the
cost function of Eq. (5) is non-convex jointly for all Wν and Hi,ν , the multiplicative
updates lead to a local minima solution. However, unlike NMF, this problem is less
ill-posed due to the constraints of common matrices in the joint factorization. The
gradient of the cost function in Eq. (5) w.r.t. Wν is given by

∇Wν J (W, H) =
∑

i∈ν

λi

[

−Xi HT
i,ν + X(t)

i HT
i,ν

]

where X(t)
i is defined as

X(t)
i =

∑

ν∈S(n,i)

Wν · Hi,ν (7)

Using Gradient-Descent optimization, we update matrix Wν as the following

(Wν)
t+1
lk ← (Wν)

t
lk + η(Wν )t

lk

(

−∇(Wν )t
lk

J (W, H)
)

(8)

where η(Wν )t
lk
is the optimization step-size and given by

η(Wν )t
lk

= (Wν)
t
lk

∑

i∈ν

λi

(

X(t)
i HT

i,ν

)t

lk

(9)
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In Appendix, we prove that the updates in Eq. (8) when combined with step-size of
Eq. (9), converge to provide a locally optimum solution of the optimization problem
(6). Plugging the value of η(Wν )t

lk
from Eq. (9) in Eq. (8), we obtain the following

multiplicative update equation for Wν

(Wν)lk ← (Wν)lk

(

∑

i∈ν

λi Xi · HT
i,ν

)

lk
(

∑

i∈ν

λi X
(t)
i · HT

i,ν

)

lk

(10)

Multiplicative updates for Hi,ν can be obtained similarly and given by

(

Hi,ν
)

km ← (

Hi,ν
)

km

(

W T
ν · Xi

)

km
(

W T
ν · X(t)

i

)

km

(11)

As an example, for the case of n = 2 data sources mentioned earlier, the update
equations for the shared subspace W12 (corresponding to ν = {1, 2}) reduce to

(W12)lk ← (W12)lk

(

λ1X1 · HT
1,12 + λ2X2 · HT

2,12

)

lk
(

λ1X(t)
1 · HT

1,12 + λ2X(t)
2 · HT

2,12

)

lk

(12)

and the update equations for the individual subspaces W1 (when ν = {1}) and W2
(when ν = {2}) become:

(W1)lk ← (W1)lk

(

X1 · HT
1,1

)

lk
(

X(t)
1 · HT

1,1

)

lk

(13)

(W2)lk ← (W2)lk

(

X2 · HT
1,2

)

lk
(

X(t)
2 · HT

1,2

)

lk

(14)

We note the intuition carried in these update equations. First, it can be verified by
inspection that at the ideal convergence point when Xi = X(t)

i , the multiplicative
factors (second term on the RHS) in these equations become unity, thus no more
updates are necessary. Secondly, updating a particular shared subspace Wν involves
only relevant data sources for that share (sum over its index set i ∈ ν, cf. Eq. (10)).
For example updating W12 in Eq. (12) involves both X1 and X2 but updating W1 in
Eq. (13) involves onlyX1; the next iteration takes into account the joint decomposition
effect and regularize the parameter via Eq. (7). From this point onwards, we refer to
our framework as Multiple Shared Nonnegative Matrix Factorization (MS-NMF).
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3.3 Subspace Dimensionality and Complexity Analysis

Let M be the number of rows for each Xi (although Xi ’s usually have different
vocabularies but they can be merged together to construct a common vocabulary that
has M words) and Ni be the number of columns. Then, the dimensions for Wi and
Hi are M × Ri and Ri × Ni respectively using Ri as reduced dimension. Since each
Wi is an augmentation of individual and shared subspace matrices Wν , we further
use Kν to denote the number of columns in Wν . Next, from Eq. (4), it implies that
∑

ν∈S(n,i) Kν = Ri . The value of Kv depends upon the sharing level among the
involved data sources. A rule of thumb is to use Kν ≈ √

Mν/2 according to Ref.
[14] where Mν is equal to the number of features common in data configuration
specified by ν. For example, if ν = {1, 2}, Mν is equal to the number of common
tags between source-1 and source-2.

Given above notation, the computational complexity for MS-NMF algorithm is
O (M × Nmax × Rmax) per iteration where Nmax = maxi∈[1,n] {Ni } and Rmax =
maxi∈[1,n]{Ri }. The standard NMF algorithm [11] when applied on each matrix Xi

with parameter Ri will have a complexity ofO (M × Ni × Ri ) and total complexity
ofO (M × Nmax × Rmax) per iteration. Therefore, computational complexity ofMS-
NMF remains equal to that of standard NMF.

4 Applications

Focusing on the social media domain, we show the usefulness of MS-NMF frame-
work through two applications:

1. Improving social media retrieval in one medium (target) with the help of other
auxiliary social media sources.

2. Retrieving items across multiple social media sources.

Our key intuition in the first application is to use MS-NMF to improve retrieval by
leveraging statistical strengths of tag co-occurrences through shared subspace learn-
ing while retaining the knowledge of the target medium. Intuitively, improvement is
expected when auxiliary sources share underlying structures with the target medium.
These auxiliary sources can be readily found from theWeb. For cross-media retrieval,
the shared subspace among multiple media provides a common representation for
each medium and enables us to compute cross-media similarity between items of
different media.

4.1 Improving Social Media Retrieval with Auxiliary Sources

Let the target medium for which retrieval is to be performed be Xk . Further, let
us assume that we have other auxiliary media sources X j , j �= k, which share
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some underlying structures with the target medium. We use these auxiliary sources
to improve the retrieval precision from the target medium. Given a set of query
keywords SQ , a vector q of length M (vocabulary size) is constructed by putting
tf-idf values at each index where vocabulary contains a word from the keywords set
or else putting zero. Next, we follow Algorithm 1 for retrieval using MS-NMF.

Algorithm 1 Social Media Retrieval using MS-NMF.
1: Input: target Xk , auxiliary X j (∀ j �= k), query q, number of items to be retrieved N .
2: learn Xk = WkHk using Eqs. (10–11).
3: set ε = 10−2, project q onto Wk to get h by an initialization then looping as below
4: while

(‖Wkh − q‖2 ≥ ε
)

do
5: (h)a ← (h)a

(

WT
k q

)

a /
(

WT
k Wkh

)

a
6: end while
7: for each media item (indexed by r ) in Xk , with representation hr = r -th column of Hk , compute

its similarity with query projection h as following

sim(h, hr ) = hThr

‖h‖2 ‖hr ‖2
8: Output: return the top N items in decreasing order of similarities.

4.2 Cross-Social Media Retrieval and Correspondence

Social media users assign tags to their content (blog, images and videos) to retrieve
them later and share them with other users. Often these user generated content are
associated with real world events, e.g., travel, sports, wedding receptions, etc. In such
a scenario, when users search for items from one medium, they are also interested in
semantically similar items fromothermedia to obtainmore information. For example,
one might be interested in retrieving ‘olympics’ related blogs, images and videos at
the same time (cross-media retrieval) as together they service the user information
need better.

A naïve method of cross-media retrieval is to match the query keywords with the
tag lists of items of different media. Performance of this method is usually poor due
to poor semantic indexing caused by noisy tags, polysemy and synonymy. Subspace
methods such as LSI or NMF, although robust against these problems, do not support
cross-media retrieval in their standard form. Interestingly, MS-NMF provides solu-
tions to both the problems. First, being a subspace based method, it is less affected
by the problems caused by noisy tags, ‘polysemy’ and ‘synonymy’ and second, it is
appropriate for cross-media retrieval as it represents items from each medium in a
common subspace enabling to define a similarity for cross-media retrieval.

To relate items from medium i and j , we use the common subspace spanned
by Wi j . As an example, W12 = [W12 | W123], W23 = [W23 | W123] and W13 =
[W13 | W123] for three data source case, illustrated in Fig. 1c. More generally, if
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S (n, i, j) is the set of all subsets in S (n) involving both i and j , i.e. S (n, i, j) �
{ν ∈ S (n) | i, j ∈ ν}, the common subspace between i th and j th medium Wi j is
then given by horizontally augmenting all Wν such that ν ∈ S (n, i, j). Similarly,
representation of Xi (or X j ) in this common subspace, i.e. Hi,i j (or H j,i j ), is given
by vertically augmenting all Hi,ν (or Hj,ν) such that ν ∈ S (n, i, j). For n = 3,

HT
1,12 =

[

HT
1,12|HT

1,123

]

, HT
2,12 =

[

HT
2,12|HT

2,123

]

and so on.

Given the set of query keywords SQ , we prepare the query vector q as described
in Sect. 4.1. Given query vector q, we wish not only to retrieve relevant items from
i th domain, but also from j th domain. In the language ofMS-NMF, this is performed
by projecting q onto the common subspace matrix Wi j to get its representation h in
the common subspace. Next, we compute similarity between h and the columns of
matrix Hi,i j and H j,i j (the representation of media items in the common subspace)
to find out similar items from medium i and j respectively and the results are ranked
based on these similarity scores either individually or jointly (see Algorithm 2).

Algorithm 2 Cross-Social Media Retrieval using MS-NMF.

1: Input: data X1, . . . , Xn , query q, number of items to be retrieved from medium i, j as N i and
N j .

2: learn Xi = Wi Hi for every i using Eqs. (10–11).
3: set ε = 10−2, project q onto Wi j to get h by an initialization then looping as below
4: while

(∥

∥Wi j h − q
∥

∥

2 ≥ ε
)

do

5: (h)a ← (h)a

(

WT
i j q

)

a
/
(

WT
i j Wi j h

)

a
6: end while
7: for each item (indexed by r ) inmedium i with the representation in shared subspace asHi,i j (:, r),

compute its similarity with query projection h as

sim
(

h, Hi,i j (:, r)
) = hTHi,i j (:, r)

‖h‖2
∥

∥Hi,i j (:, r)
∥

∥

2

8: for each item (indexed by r ) in medium j , compute sim
(

h, H j,i j (:, r)
)

similar to step 7.
9: Output: return the top N i and N j items in decreasing order of similarities from medium i and

j respectively.

5 Experiments

5.1 Datasets

We conduct our experiments on a cross-social media dataset consisting of the textual
tags of three disparate media genres: text, image and video. To create the dataset,
three popular social media websites namely, Blogspot,1 Flickr2 and YouTube,3 were

1 http://www.blogger.com/
2 http://www.flickr.com/services/api/
3 http://code.google.com/apis/youtube/overview.html

http://www.blogger.com/
http://www.flickr.com/services/api/
http://code.google.com/apis/youtube/overview.html
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Table 1 Description of Blogspot, Flickr and YouTube data sets

Dataset Concepts used for creating dataset Avg-tags/item
size (rounded)

Blogspot 10,000 ‘Academy Awards’, ‘Australian Open’,
‘Olympic Games’, ‘US Election’, ‘Cricket
World Cup’, ‘Christmas’, ‘Earthquake’

6

Flickr 20,000 ‘Academy Awards’, ‘Australian Open’,
‘Olympic Games’, ‘US Election’, ‘Holi’,
‘Terror Attacks’, ‘Christmas’

8

YouTube 7,000 ‘Academy Awards’, ‘Australian Open’,
‘Olympic Games’, ‘US Election’, ‘Global
Warming’, ‘Terror Attacks’, ‘Earthquake’

7

used. To obtain the data, we first queried all threewebsites using common concepts—
‘Academy Awards’, ‘Australian Open’, ‘Olympic Games’, ‘US Election’. To have
pairwise sharing in the data,we additionally queriedBlogspot andFlickrwith concept
‘Christmas’, YouTube and Flickr with concept ‘Terror Attacks’ and Blogspot and
YouTube with concept ‘Earthquake’. Lastly, to have some individual data of each
medium, we queried Blogspot, Flickr and YouTube with concepts ‘Cricket World
Cup’, ‘Holi’ and ‘Global Warming’ respectively. Total number of unique tags (M)
combined from the three datasets were 3,740. Further details of the three datasets
are provided in Table 1.

5.2 Parameter Setting

We denote YouTube, Flickr and Blogspot tf-idf weighted [2] tag-itemmatrices (sim-
ilar to widely known term-document matrices generated from the tag-lists) by X1,
X2 and X3 respectively. For learning MS-NMF factorization, recall the notation Kν

which is dimensionality of the subspace spanned by Wν ; following this notation,
we use the individual subspace dimensions as K1 = 6, K2 = 8, K3 = 8, pair-wise
shared subspace dimension as K12 = 15, K23 = 18, K13 = 12 and all sharing sub-
space dimension as K123 = 25. To learn these parameters, we first initialize them
using the heuristic described in Sect. 3.3 based on the number of common and indi-
vidual tags and then do cross-validation based on retrieval precision performance.

5.3 Experiment 1: Improving Social Media Retrieval
Using Auxiliary Sources

To demonstrate the usefulness of MS-NMF for social media retrieval application,
we carry out our experiments in a multi-task learning setting. Focusing on YouTube
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video retrieval task, we choose YouTube as target dataset while Blogspot and Flickr
as auxiliary datasets. To perform retrieval using MS-NMF, we follow Algorithm 1.

Baseline Methods and Evaluation Measures

• The first baseline performs retrieval by matching the query with the tag-lists of
videos (using vector-space model) without learning any subspace.

• The second baseline is the retrieval based on standardNMF.The retrieval algorithm
using NMF remains similar to the retrieval usingMS-NMF as it becomes a special
case of MS-NMF when there is no sharing, i.e. W1 = W1, H1 = H1,1 and
R1 = 56.

• The third baseline is the recently proposed JS-NMF [7] which learns shared and
individual subspaces but allows only one auxiliary source at a time. Therefore,
we use two instances of JS-NMF (1) with Blogspot as auxiliary source (2) with
Flickr as auxiliary source. Following [7], we obtained the best performance with
parameters setting : RY = 56, RF = 65, RB = 62 and KY B = 37, KY F =
40, K B F = 43where RY , RF , RB are total subspace dimensionalities ofYouTube,
Flickr and Blogspot respectively and KY B, KY F , K B F are the shared subspace
dimensionalities.

To compare above baselines with the proposed MS-NMF, we use precision-scope
(P@N), mean average precision (MAP) and 11-point interpolated precision-recall
[2]. The performance of MS-NMF is compared with the baselines by averaging the
retrieval results over a query set of 20 concepts given by Q = {‘beach’, ‘america’,
‘bomb’, ‘animal’, ‘bank’, ‘movie’, ‘river’, ‘cable’, ‘climate’, ‘federer’, ‘disaster’,
‘elephant’, ‘europe’, ‘fire’, ‘festival’, ‘ice’, ‘obama’, ‘phone’, ‘santa’, ‘tsunami’}.

Experimental Results

Figure 2 compares the retrieval performance of MS-NMF with the three baselines
in terms of evaluation criteria mentioned above. It can be seen from Fig. 2 that
MS-NMF clearly outperforms the baselines in terms of all three evaluation criteria.
Since tag based matching method does not learn any subspaces, its performance
suffers from the ‘polysemy’ and ‘synonymy’ problems prevalent in tag space. NMF,
being a subspace learningmethod, performs better than tag basedmethod but does not
perform better than shared subspace methods (JS-NMF andMS-NMF) as it is unable
to exploit the knowledge from auxiliary sources.When comparing JS-NMFwithMS-
NMF, we see that MS-NMF clearly outperforms both the settings of JS-NMF. This
is due to the fact that JS-NMF is limited to work with only one auxiliary source and
can not exploit the knowledge available in multiple data sources. Although, JS-NMF,
using one auxiliary source at a time, improves the performance over NMF but real
strength of the three media sources is exploited byMS-NMFwhich performs the best
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Fig. 2 YouTube retrieval results with Flickr and Blogspot as auxiliary sources a Precision-Scope
and MAP b 11-point interpolated Precision-Recall; for tag-based matching (baseline 1), standard
NMF (baseline 2), JS-NMF [7] with Blogspot (baseline 3a); with Flickr (baseline 3b) and proposed
MS-NMF

among all methods. Better performance achieved by MS-NMF can be attributed to
the shared subspace model finding better term co-occurrences and reducing the tag
subjectivity by exploiting knowledge across three data sources. Further insight into
the improvement is provided through entropy and impurity results given in Sect. 5.5.

5.4 Experiment 2: Cross-Social Media Retrieval

For cross-media retrieval experiments, we use the same dataset as used in our first
experiment but choose more appropriate baselines and evaluation measures. Sub-
space learning using MS-NMF remains same, as the factorization is carried out on
the same dataset using the same parameter setting. We follow Algorithm 2 which
utilizes MS-NMF framework to return the ranked list of cross-media items.

Baseline Methods and Evaluation Measures

To see the effectiveness of MS-NMF for cross-media retrieval, the first baseline is
tag-based matching performed in a typical vector-space model setting. The second
baseline is the framework in Ref. [13] where a subspace is fully shared among three
media without retaining any individual subspace. We shall denote this baseline as
LIN_ETAL09.We present cross-media results for both pair-wise and across all three
media.When presenting pair-wise results, we choose JS-NMF [7] (subspace learning
remains same as in the first experiment) as a third baseline by applying it on themedia
pairs.
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To evaluate our cross-media algorithm, we again use P@N, MAP and 11-point
interpolated precision-recall measures. To explicitly state these measures for cross-
media retrieval, we define precision and recall in cross-media scenario. Consider a
query term q ∈ Q, let its ground truth set be Gi for i th medium. If a retrieval method
used with query q results in an answer set Ai from i th medium, the precision and
recall measures across n media are defined as

Precision =

n
∑

i=1
|Ai ∩ Gi |
n
∑

i=1
|Ai |

, Recall =

n
∑

i=1
|Ai ∩ Gi |
n
∑

i=1
|Gi |

(15)

Experimental Results

Cross-media retrieval results across media pairs are shown in Fig. 3 whereas those
from across all three media (Blogspot, Flickr and YouTube) are shown in Fig. 4.
To generate the graphs, we average the retrieval results over the same query set Q
as defined for YouTube retrieval task in Sect. 4.1. It can be seen from Fig. 3 that
MS-NMF significantly outperforms all baselines including JS-NMF on cross-media
retrieval task for each media-pair. This performance improvement is consistent in
terms of all three evaluation measures. Note that, to learn the subspaces, MS-NMF
uses all three media data whereas JS-NMF uses the data only from the media pair
being considered. The ability to exploit knowledge from multiple media helps MS-
NMFachievingbetter performance.When retrieval precision and recall are calculated
across all three media domains, MS-NMF still performs better than the tag-based
matching as well as LIN_ETAL09. Note that JS-NMF can not be applied on three
media simultaneously.

5.5 Topical Analysis

To provide further insights into the benefits achieved by MS-NMF, we examine the
results at the topical level. Every basis vector of the subspace (when normalized to
sum one) can be interpreted as a topic. We define a metric for measuring the impurity
of a topic as

P (T ) = 1

L (L − 1)

∑

x,y
x �=y

NGD
(

tx , ty
)

(16)

where L denotes the number of tags in a topic T for which corresponding basis vector
element greater than a threshold4 and NGD

(

tx , ty
)

is Normalized Google Distance
[4] between tags tx and ty .

4 fixed at 0.05 for selecting the tags with more than 5% weight in a topic.



166 S. K. Gupta et al.

P@10 P@20 P@50 MAP
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
A

ve
ra

g
e 

P
re

ci
si

o
n

Tag−based method
LIN_ETAL09
JSNMF
MS−NMF

0 0.2 0.4 0.6 0.8 1
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Recall

A
ve

ar
g

e 
P

re
ci

si
o

n

Tag−based method
LIN_ETAL09
JSNMF
MS−NMF

P@10 P@20 P@50 MAP
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
ve

ra
g

e 
P

re
ci

si
o

n

Tag−based method
LIN_ETAL09
JSNMF
MS−NMF

0 0.2 0.4 0.6 0.8 1
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Recall

A
ve

ar
g

e 
P

re
ci

si
o

n

P@10 P@20 P@50 MAP
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
ve

ra
g

e 
P

re
ci

si
o

n

Tag−based method
LIN_ETAL09
JSNMF
MS−NMF

0 0.2 0.4 0.6 0.8 1
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Recall

A
ve

ar
g

e 
P

re
ci

si
o

n

Tag−based method
LIN_ETAL09
JSNMF
MS−NMF

(a) (b)

(c) (d)

(e) (f)

Tag−based method
LIN_ETAL09
JSNMF
MS−NMF

Fig. 3 Pairwise cross-media retrieval results: Blogspot–Flickr (first row)(a, b), Blogspot–YouTube
(second row) (c, d) and Flickr–YouTube (third row) (e, f); for tag-based matching (baseline 1),
LIN_ETAL09 [13] (baseline 2), JS-NMF [7] (baseline 3) and MS-NMF

We compute the entropy and impurity for each subspace basis and plot their
distributions in Fig. 5 using the box-plots. It can be seen from the figure that topics
learnt by MS-NMF have on average lesser entropy and impurity than their NMF
and LIN_ETAL09 counterparts for all three datasets. Although, LIN_ETAL09 can
model multiple data sources but it uses a single subspace to model each source
without retaining their differences. As a consequence of this, the variabilities of the
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Fig. 4 Cross-media retrieval results plotted across all three data sources (Blogspot, Flickr and
YouTube) for tag-based matching (baseline 1), LIN_ETAL09 [13] (baseline 2) and MS-NMF.
a Precision–scope/MAP, b 11-point precision–recall curve
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Fig. 5 A comparison of MS-NMF with NMF and LIN_ETAL09 [13] in terms of entropy and
impurity distributions. a Entropy distribution, b Impurity distribution

three sources get averaged out and thereby increase the entropy and impurity of
the resulting topics. In contrast, MS-NMF having the flexibility of partial sharing,
averages the commonalities of three data sources only up to their true sharing extent
and thus results in purer and compact (less entropy) topics.

6 Conclusion and Future Works

We have presented a matrix factorization framework to learn individual and shared
subspaces from multiple data sources (MS-NMF) and demonstrated its application
to two social media problems: improving social media retrieval by leveraging related
data from auxiliary sources and cross-media retrieval. We provided an efficient
algorithm to learn the joint factorization and proved its convergence. Our first appli-
cation has demonstrated that MS-NMF can help improving retrieval in YouTube
by transferring knowledge from the tags of Flickr and Blogspot. Outperforming



168 S. K. Gupta et al.

JS-NMF [7], it justifies the need for a framework which can simultaneously model
multiple data sources with any arbitrary sharing. The second application shows the
utility of MS-NMF for cross-media retrieval by demonstrating its superiority over
existing methods using Blogspot, Flickr and YouTube dataset. The proposed frame-
work is quite generic and has potentially wider applicability in cross-domain data
mining e.g. cross-domain collaborative filtering, cross-domain sentiment analysis,
etc. In current form, MS-NMF requires the shared and individual subspace dimen-
sionalities to be obtained using cross-validation. As a future work, we shall formulate
the joint factorization probabilistically by appealing to Bayesian nonparametric the-
ory and infer these parameters automatically from the data.

Appendix

Proof of Convergence

We prove the convergence of multiplicative updates given by Eqs. (10) and (11). We
avoid lengthy derivations and only provide a sketch of the proof. Following Ref. [11],
the auxiliary function G(w,wt ) is defined as an upper bound function for J (wt ).
For our MS-NMF case, we prove the following lemma extended from Ref. [11]:

Lemma. If (Wν)p is pth row of matrix Wν , ν ∈ S (n, i) and C
(

(Wν)p
)

is the
diagonal matrix with its (l, k)th element

Clk
(

(Wν)p
) = 1l,k

(

∑

i∈ν

λi Hi,ν

(

∑

u∈S(n,i)
HT

i,u (Wu)p

))

l

(Wν)pl

then

G
(

(Wν)p , (Wν)
t
p

)

= J
(

(Wν)
t
p

)

+
(

(Wν)p − (Wν)
t
p

)T ∇(Wν )t
p

J
(

(Wν)
t
p

)

+ 1

2

(

(Wν)p − (Wν)
t
p

)T
C

(

(Wν)
t
p

) (

(Wν)
t
p − (Wν)

t
p

)

is an auxiliary function for J
(

(Wν)
t
p

)

, cost function defined for pth row of the data.

Proof. The second derivative of J
(

(Wν)
t
p

)

i.e. ∇2
(Wν )t

p
J
(

(Wν)
t
p

)

= ∑

i∈ν λi Hi,ν

HT
i,ν . Comparing the expression of G

(

(Wν)p , (Wν)
t
p

)

in the lemma with the Taylor

series expansion of G
(

(Wν)p , (Wν)
t
p

)

at (Wν)
t
p, it can be seen that all we need to

prove is the following
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(

(Wν)p − (Wν)
t
p

)T
TWν

(

(Wν)
t
p − (Wν)

t
p

)

≥ 0

whereTWν � C
(

(Wν)
t
p

)

−∑

i∈ν λi Hi,ν HT
i,ν . Similar toRef. [11], insteadof showing

it directly, we show the positive definiteness of matrix E with elements

Elk

(

(Wν)
t
p

)

=
(

(Wν)p − (Wν)
t
p

)T

l

(

TWν

)

lk

(

(Wν)
t
p − (Wν)

t
p

)

k

For positive definiteness of matrix E , for every nonzero z, we have to show that
zT Mz is positive. To avoid lengthy derivation, we only show main step here :

zT Mz =
∑

l,k

zl (Wν)
t
pl

(

TWν

)

lk (Wν)
t
pk zk

=
∑

l,k

z2l (Wν)
t
pl

⎛

⎝

∑

u∈S(n,i),u �=ν

HT
i,u (Wu)p

⎞

⎠

l

+ λ
∑

l,k

(Wν)
t
pl

(

∑

i∈ν

λi

(

Hi,ν HT
i,ν

)

lk

)

(Wν)
t
pk

(zl − zk)
2

2
≥ 0

�

At the local minimum of G
(

(Wν)p , (Wν)
t
p

)

for iteration (t), by comparing

∇(Wν )t
p
G

(

(Wν)p , (Wν)
t
p

)

with gradient-descent update of Eq. (8), we get the step

size η(Wν )t
lk
as in Eq. (9).
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