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Abstract. Dynamic Programming (DP) is an efficient technique to
solve combinatorial search and optimization problems. There have been
many research efforts towards parallelizing dynamic programs. In this
paper, we study the parallelization of the Polynomial Time Approxi-
mation Scheme (PTAS) DP for the classical bin-packing problem. This
problem is challenging due to the fact that the number of dimensions of
the DP table is not known a priori and is dependent on the input and
the accuracy desired by the user. We present optimization techniques
for parallelizing the DP for this problem, which include diagonalization,
blocking and optimizing dependency lookups. We perform a comprehen-
sive evaluation of our parallel DP on a multicore platform and show that
the parallel DP scales well and that our proposed optimizations lead to
further substantial improvement in performance.

1 Introduction

Dynamic programming (DP) is a classical technique used to solve a large vari-
ety of combinatorial optimization problems in the areas of scheduling, inventory
management, VLSI design, bioinformatics, etc [9,14]. The main idea behind dy-
namic programming is to solve complex problems by breaking them into simpler
subproblems. It is applicable to problems exhibiting the optimal substructure
and overlapping subproblems properties:

– Optimal substructure implies that the solution to a given optimization prob-
lem can be obtained by combining optimal solutions to its subproblems.

– Overlapping subproblemsmeans that the space of subproblems must be small.
While a recursive algorithm solving the problem would solve the same sub-
problems over and over again, a dynamic program solves each subproblem
only once and stores the solution to be reused thereafter.

Dynamic Programming can also be applied to obtain approximation algo-
rithms for many problems, e.g. 0-1 knapsack, bin-packing and minimum
makespan scheduling[17,18]. As a matter of fact, Polynomial Time Approxi-
mation Schemes (PTAS) can be designed for many of these problems based on
dynamic programming, wherein, we can obtain a solution having cost within a
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factor of 1 + ε of the optimal solution for any ε provided by the user. Thus, a
DP can be designed to produce a solution S, such that

Cost(S) ≤ (1 + ε) · Cost(Opt)

where Opt is an optimal solution to the problem. While such accuracy is de-
sirable in many applications, the running time of such dynamic programs can
be prohibitively large, typically exponential in 1/ε. The storage requirements
can also be very high. This makes parallel processing an attractive approach to
implement such dynamic programs.

Many parallel applications of dynamic programming have been described in
research literature; they have been generally designed for very specific prob-
lems and only run on special parallel architectures (torus, hypercube, etc.)
[10,7,19,4,8,3,12,13,11,5]. Most of these problems deal with dynamic programs
having fixed (generally 2) number of dimensions.

In this paper, we study the parallelization of the PTAS dynamic program for
the classical bin-packing problem. The bin-packing problem is a fundamental
problem in combinatorial optimization that is used as a kernel for many other
optimization problems, such as minimum makespan scheduling on parallel ma-
chines. What makes this problem more challenging is the fact that the number
of dimensions of the dynamic programming table is variable – it is dependent on
the characteristics (weights) of the the input set of items to be packed and also on
the desired accuracy (ε parameter specified by the user). Thus, computation of
an entry of the DP table is dependent on a variable number of entries (not known
a priori). These distinguishing characteristics make the problem more challeng-
ing and it is unclear if known and tried optimizations apply to this problem or
not. In this paper, we make the following contributions:

(1) We show that the approach of filling the DP table by traversing the entries
along the diagonals is well suited for parallelism. We also show that the
degree of parallelism increases with increasing number of dimensions.

(2) We next show that the blocking (tiling) approach also works well in our
scenario. The main reason is that due to the particular structure of the
dependencies in the bin-packing problem, while filling an entry of the DP
table, we require to look up a lot of entries that are packed close together.
Therefore, blocking (tiling) improves cache-efficiency due to data-locality.

(3) Lastly, we propose an optimization for the bin-packing problem that takes
advantage of the relationship amongst the dependencies in order to avoid
some of the dependency lookups. For this, we partition the dependencies
into two sets, called the primary dependencies and the secondary dependen-
cies. While filling an entry of the DP table, we first process the primary
dependencies and if all the primary dependencies are valid, we do not need
to process the secondary dependencies. This reduces the random memory
accesses thereby improving the running-time. We show that this can lead to
up to 20% improvement in performance.

(4) We do a comprehensive study of the parallelization of the bin-packing dy-
namic program and report our observations.
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2 Related Work

Parallel processing is an efficient approach for solving large-scale DP problems
and is the subject of extensive research. Grama et. al.[9] presented a classifica-
tion of dynamic programming formulations in order to characterize the kind of
parallel programming techniques that can be applied in each case. Specifically,
they categorize dynamic programs along two directions: (a) the first based on
the proximity of dependent sub-problems that make up the overall multistage
problem , (b) the second based on the multiplicity of terms in the recurrence
that determines the solution to the optimization problem. A dynamic program
is considered serial if the subproblems at all levels depend only on the results
of the immediately preceding levels and non-serial otherwise. It is considered
monadic if the recurrence relation contains a single recursive term and polyadic
otherwise. Based on this classification, one can define four classes of DP formu-
lations: serial monadic (e.g., single source shortest path problem, 0/1 knapsack
problem), serial polyadic (e.g., Floyd all pairs shortest paths algorithm), non-
serial monadic (e.g., longest common subsequence problem, Smith-Waterman
algorithm) and nonserial polyadic (e.g., optimal matrix parenthesization prob-
lem and Zuker algorithm). Note that not all DP problems can be categorized
into the above classes. The classical bin-packing problem is one such problem
that does not fall into any of the above classifications discussed by Grama et.
al.[9]. It is closest to the nonserial polyadic class. However, the fact that the
number of terms in the recurrence is not determined a priori and is dependent
on the input makes the problem stand apart from other DP problems and also
makes the parallelization a challenge.

In the past, there has been some work on parallelization of nonserial polyadic
and related DP programs. However, most of the existing work generally pertains
to very specific problems and is applicable to special parallel architectures (torus,
hypercube, etc.) [10,7,19,4,8,3,12,13,11]. In particular, Tan and Gao[15,16] study
the parallel performance of nonserial polyadic DP algorithms in the context of
the RNA secondary structure prediction problem on a specific multi-core archi-
tecture. They propose parallel processing of independent triangular tiles that lie
along the diagonal. Elkihel and Baz[2,6] presented parallel algorithms for the
closely related 0-1 knapsack problem using a novel load-balancing strategy for
distributing the workload. Alves et. al.[1] presented parallel dynamic program-
ming algorithms for the string editing problem based on dynamic scheduling of
blocks to the processors. They recursively divide the blocks into smaller blocks
that are then scheduled for processing.

An important aspect that makes our problem very different from previously
studied parallel dynamic programs is the number of dimensions of the dynamic
programming table – while previous literature deals with two dimensional dy-
namic programs, the number of dimensions in our problem can be very large
depending on the number of distinct item weights and the desired accuracy pa-
rameter. While our approach to parallelization via diagonalization and blocking
is similar to those proposed in the past[15,16,1], we study these approaches for
multi-dimensional dynamic programs for the first time. Another distinguishing
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factor in our problem is the large number of terms that appear in the DP re-
currence. This calls for different kind of optimizations than previously known in
the research literature.

3 The Bin-Packing Problem

In the bin-packing problem, we are given a set A = {a1, a2, . . . , an} of n items
where each item, ai, has a weight 0 < w(ai) ≤ 1 associated with it. The goal is
to find the minimum number of bins, each of unit capacity, required to store the
items so that the total weight of the items stored in any bin does not exceed its
capacity, 1. This problem is known to be NP-hard1.

We now discuss the dynamic programming based PTAS for the Bin-packing
problem[17,18]. This algorithm reduces the bin-packing problem to a special
instance wherein there are only a constant number of item weights. In this spe-
cialization, called the restricted bin-packing problem, the weights of all the items
are sampled from a fixed set W = {w1, w2, . . . , wk} of k weights, where k is a
constant. That is w(ai) ∈ W for all ai ∈ A. This special version can be solved
optimally in polynomial time using dynamic programing (c.f. Section 3.1).

The pseudocode for the PTAS is presented in Figure 1. The algorithm can be
divided into three phases. In the first phase we reduce the bin-packing problem
to an instance of the restricted bin-packing problem after removing some items
and rounding the weights of the remaining items. In the second phase, we solve
the restricted bin-packing problem optimally using a dynamic program. Finally
in the third phase, we augment the solution of the restricted bin-packing problem
with the earlier removed items to form a feasible solution to the original bin-
packing instance.

First Phase: We first remove all the items having weight less than ε. Let Aε

be the set of removed items and A′ be the resulting set of items. We partition
the set A′ into r = �log(1+ε)

1
ε � groups A1, A2, . . . , Ar where for 1 ≤ i ≤ r, Ai is

the set of all the items having weight in the range [ε(1 + ε)i−1, ε(1 + ε)i). Next,
for each 1 ≤ i ≤ r, we round down the weight of all the items in the group
Ai to ε(1 + ε)i−1. Note that the instance determined by the items A′ with the
modified weights is an instance of the restricted bin packing problem with at
most r different weights.

Second Phase: In this phase we solve the restricted bin-packing problem op-
timally on the instance A′ with the modified weights. The dynamic program for
achieving this is formally described in Section 3.1. Let the solution thus obtained
be S′, i.e., S′ is a partition of the items of A′ into sets R1, R2, . . . , Rt where Rj

specifies the set of items packed into bin j.
Third Phase: In the third phase we augment the solution returned by the

restricted bin-packing problem to a solution for the original instance of the bin-
packing problem. This is achieved by introducing back the items removed in
phase 1 using the first-fit algorithm. For this, we consider the items of Aε in an

1 The Bin-packing problem is weakly NP-hard; it is solvable in polynomial time when
the input is in unary.
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Input: Item Set, A; weight function, w; and approximation parameter, ε

Phase 1:
Let Aε be the set of items having weight < ε, i.e., Aε = {a ∈ A : w(a) < ε}
Let A′ be the remaining set of items, i.e., A′ = A \Aε

For i = 1 to �log(1+ε)
1
ε
�

Let Ai = {a ∈ A′ : ε(1 + ε)i−1 ≤ w(a) < ε(1 + ε)i}
For all a ∈ Ai, define w′(a) = ε(1 + ε)i−1

Phase 2:
Let S′ = {R1, R2, . . . , Rt} be the solution obtained on invoking

Restricted-Bin-Packing( A′, w′, k )

Phase 3:
Initialize S = S′

For each a ∈ Aε

If ∃R ∈ S, such that
∑

a′∈R w(a′) + w(a) ≤ 1
add a to R

else
create a new bin R|S|+1 and add a to R|S|+1

Return S

Fig. 1. PTAS for the bin-packing problem

arbitrary order. For each item, we find the first bin in which it fits using the
original weights. If we find such a bin, the item is added to that bin. If no such
bin exists, we create a new bin and add the item to this new bin.

3.1 Restricted Bin-Packing Problem

We now discuss a dynamic program that solves the restricted bin-packing prob-
lem optimally in polynomial time. Let A′ be the set of all the items. We fix an
ordering on the item weights say w′

1, w
′
2, . . . w

′
k. Let ni be the number of items

of weight w′
i for 1 ≤ i ≤ k. Note that an instance, I, of the packing problem can

be defined by a k-tuple (p1, p2, . . . , pk) specifying the number of items for each
weight. We set up a k-dimensional table BINS of size (n1+1, n2+1, . . . , nk+1).
BINS(p1, p2, . . . , pk) denotes the minimum number of bins required to pack the
items of I = (p1, p2, . . . , pk), i.e., p1 items of weight w′

1, p2 items of weight
w′

2, . . ., pk items of weight w′
k. Note that the total weight for an instance,

I = (p1, p2, . . . , pk), is given by
∑k

i=1 pi · w′
i. We first compute the set Q of

all instances for which the total weight is at most 1 – clearly only one bin is
required to fit these items. Thus
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Input: Item Set, A′; weight function, w′; number of distinct item weights, k

For i = 1 to k
Let A′

i = {a ∈ A′ : w(a) = w′
i}

Let ni = |A′
i|

Let U = {(p1, . . . , pk) : 0 ≤ pi ≤ ni ∀ 1 ≤ i ≤ k} be the set of all valid k-tuples

Let Q = {(p1, . . . , pk) : 0 ≤ pi ≤ ni ∀ 1 ≤ i ≤ k and
∑k

i=1 pi · wi ≤ 1}

For all (q1, q2, . . . , qk) ∈ Q
set BINS(q1, q2, . . . , qk) = 1
set QBINS(q1, q2, . . . , qk) = (q1, q2, . . . , qk)

For all (p1, p2, . . . , pk) ∈ U \ Q
Let (q̂1, q̂2, . . . , q̂k) =

argmin(q1,q2,...,qk)∈Q:qi≤pi∀iBINS(p1 − q1, p2 − q2, . . . , pk − qk)
set BINS(p1, p2, . . . , pk) = 1 + BINS(q̂1, q̂2, . . . , q̂k)
set QBINS(p1, p2, . . . , pk) = (q̂1, q̂2, . . . , q̂k)

Initialize solution S′ = φ.
Let (p1, p2, . . . , pk) = (n1, n2, . . . , nk)
While (p1, p2, . . . , pk) �= (0, 0, . . . , 0)

Let (q̂1, q̂2, . . . , q̂k) = QBINS(p1, p2, . . . , pk)
Let R be a subset of A′ such that R ∩A′

i = q̂i ∀1 ≤ i ≤ k
Add R to S′ and update A′ = A′ \ R
Update (p1, p2, . . . , pk) = (p1 − q̂1, p2 − q̂2, . . . , pk − q̂k)

Return S′

Fig. 2. Restricted bin-packing problem

Q = {(p1, p2, . . . , pk) : 0 ≤ pi ≤ ni ∀ 1 ≤ i ≤ k and

k∑

i=1

pi · w′
i ≤ 1}

For all instances (q1, q2, . . . , qk) ∈ Q, we initialize BINS(q1, q2, . . . , qk) = 1.
Now we can use the following recurrence for computing the remaining entries:

BINS(p1, p2, . . . , pk) = 1 + min
(q1,q2,...,qk)∈Q:

qi≤pi ∀i
BINS(p1 − q1, p2 − q2, . . . , pk − qk)

In order to trace back the optimal solution, we maintain another
k-dimensional table QBINS of size (n1 + 1, n2 + 1, . . . , nk + 1). For an entry
BINS(p1, p2, . . . , pk), we store in QBINS(p1, p2, . . . , pk) the corresponding en-
try of Q that yields the optimal solution for this entry of BINS.

Once the DP table is completely filled, we can trace back and retrieve the
optimal solution as follows. The entry BINS(n1, n2, . . . , nk) tells us the optimal



Multicore Parallelization of the PTAS Dynamic Program 87

number of bins required. The entryQBINS(n1, n2, . . . , nk) tells us the contents of
one bin of this optimal solution, i.e., the number of items of each weight that fit
in one bin in the optimal solution. Let QBINS(n1, n2, . . . , nk) be (q̂1, q̂2, . . . , q̂k).
Thus we can now create one bin of the optimal solution by selecting any q̂1
items of weight w′

1, q̂2 items of weight w′
2, . . ., q̂k items of weight w′

k from A′.
We add this bin to the solution and then remove these items fromA′ so that they
are not considered for any further bins. We then process BINS(n1 − q̂1, n2 −
q̂2, . . . , nk − q̂k) in a similar manner. We proceed recursively like this, adding
bins to the solution until no more items remain.

To analyze the complexity of the dynamic program, we see that comput-
ing each entry takes O(nk) time. Thus, the entire table can be computed in
O(n2k) time as Q is of size O(nk). The final solution is obtained in the entry
BINS(n1, n2, . . . , nk).

4 Multicore Parallelization and Optimization

In this section, we discuss our strategies for parallelizing the dynamic program
for the bin-packing problem efficiently on multicore platforms.

4.1 Parallelization via Diagonalization

The maximum time in the dynamic program is spent in computing the entries
of the k-dimensional table BINS. Recall that the dynamic program recurrence
is given by

BINS(p1, p2, . . . , pk) = 1 + min
(q1,q2,...,qk)∈Q:

qi≤pi ∀i
BINS(p1 − q1, p2 − q2, . . . , pk − qk)

We note that we cannot parallelize the computation of any two entries that
lie along the same dimension, this is because the entries of Q may have 0’s in
some of their entries implying that the entries of BINS lying along the same
dimension may be dependent on each other.

Consider the sum function, Z, that maps the k-tuple index of each entry of
the BINS array to the sum of the indices in the k-tuple, i.e., for any index

(p1, p2, . . . , pk) of the BINS array, Z((p1, p2, . . . , pk)) =
∑k

i=1 pi. An important
observation from the recurrence above is that the set of entries that a particular
entry of BINS depends on, all have a smaller value of Z associated with them;
this is because Z((q1, q2, . . . , qk)) > 0 for all entries (q1, q2, . . . , qk) ∈ Q. This
suggests that we can process the entries of the table BINS in increasing order
of their Z values. That allows us to process all the entries of BINS that have the
same Z value in parallel. Thus we process the entries of BINS = in n1+n2+. . .+
nk iterations; in iteration i, we process all the entries for which the associated Z
value is i. This is the same as processing the entries of BINS diagonally as the
sum of the indices of all the entries lying along the same diagonal is the same.
(see Figure 5 (a) for an illustration in 2 dimensions).
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For i = 1 to n1 + n2 + . . .+ nk

# pragma omp parallel for ...
For j = 1 to size(Zptrlist[i])

Retrieve index of BINS entry pointed to by Zptrlist[i][j]
Compute DP entry for this index using the DP recurrence

Fig. 3. OpenMP parallelization using diagonalization

Fig. 4. Dependencies of entries within blocks

Before getting into the dynamic program, we preprocess and create some addi-
tional data structures to allow diagonal parallelization of the dynamic program.
We create n1 + n2 + . . . + nk lists (arrays), Zptrlist[i], one for each possible
value that the function Z can take. In list i, we store pointers to all the entries
of BINS for which Z(·) = i. The DP can now be updated using two loops; the
outer loop runs over all the possible values that Z can take in increasing order
and the inner loop runs over all the entries of BINS having the corresponding
Z value and process them as specified by the DP. The inner loop can now be
parallelized using OpenMP (See Figure 3).

4.2 Block Decomposition for Cache Efficiency

Blocking is a well-known technique that has been used in optimization of numer-
ical linear algebra implementations on high performance computing platforms.
Instead of operating on entire rows or columns of a matrix, blocked algorithms
operate on submatrices (called blocks). Operating on blocks leads to improved
data locality as the blocks loaded into the faster levels of memory hierarchy re-
sult in better data reuse in comparison to the data loaded in case of operations
performed on entire rows or columns.

In this section, we present a blocking optimization for our dynamic pro-
gram and illustrate how it can benefit the performance of the DP. Consider the
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(a) (b)

Fig. 5. Processing of (a) entries and (b) blocks having same sum of indices in parallel

restricted bin-packing problem with 2 weights. Thus, the BINS array in this
case is a 2-dimensional array. Suppose that theQ array contains the entries (4, 4),
(4, 3), (3, 4) and (3, 3). Now consider the dependencies for entries (6, 6), (6, 7),
(7, 6) and (7, 7). These are illustrated in Figure 4. Entry (6, 6) depends on all
the four entries (2, 2), (2, 3),(3, 2) and (3, 3); entry (6, 7) depends on the entries
(2, 3) and (3, 3); entry (7, 6) depends on the entries (3, 2) and (3, 3); entry (7, 7)
depends on the entry (3, 3). Thus if we create blocks of 2 × 2 in this example,
we see that we can benefit from data locality of the entries of BINS that are
fetched; this is because the Q array has entries that are packed close together.
More precisely, whenever (q1, q2, . . . , qk) ∈ Q, then all the entries dominated by
this entry also belong to Q. For instance in 2 dimensions, if (4, 4) ∈ Q, then
(4, 3), (3, 4), (3, 3) ∈ Q as well.

We next discuss how blocks can be used in conjunction with the diagonaliza-
tion optimization discussed in the previous section. Consider the case of BINS
array being 2-dimensional. Figure 5 (b) illustrates the BINS array divided into
blocks of size 2× 2. We can number the blocks in 2-dimensions as illustrated in
the figure. We note that the entries for which the indices of the block numbers
are the same are independent of each other. Thus, we can process all the blocks
having the same sum of indices in parallel. This is the same as before, except
that the sum of indices is now computed over the blocks instead of the elements.
However, note that the entries within a block are not independent. Therefore,
we need to process them in increasing order of the sum of indices as before.

Note that since in the bin-packing problem the DP can have large number
of dimensions, the blocks are themselves multi-dimensional and hence large. For
instance, even with a modest value of k = 6 (unique item weights), a block size
of 2× . . .× 2 has 26 = 64 elements. Thus we shall use small block sizes for our
DP so that the blocks fit in the L1 cache.

4.3 Optimizing Dependency Lookups

Recall that the dynamic program recurrence is given by

BINS(p1, p2, . . . , pk) = 1 + min
(q1,q2,...,qk)∈Q:

qi≤pi ∀i
BINS(p1 − q1, p2 − q2, . . . , pk − qk)
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This typically requires random memory accesses that can be very costly. The
size of the Q array can be very large and therefore this operation is very time
consuming. In this section, we discuss how we can possibly filter out some of the
Q entries in order to reduce the number of memory accesses.

We say that a vector (p1, p2, . . . , pk) dominates another vector (p′1, p
′
2, . . . , p

′
k)

if p′i ≤ pi ∀ 1 ≤ i ≤ k. We first make a simple observation: if x bins are required
to pack (p1, p2, . . . , pk) items, then we require no more than x bins to pack
(p′1, p

′
2, . . . , p

′
k) items, where p′i ≤ pi ∀ i. Note that whenever (q1, q2, . . . , qk) ∈ Q,

then every entry dominated by this entry is also in Q, i.e. (q′1, q
′
2, . . . , q

′
k) ∈ Q

for all entries such that q′i ≤ qi ∀ i. This follows because, if q1 items of weight
w1, q2 items of weight w2, . . ., qk items of weight wk can fit in a bin, then so can
any subset of these items. Now, if while computing an entry (p1, p2, . . . , pk) of
BINS, the entry (p1−q1, p2−q2, . . . , pk−qk) is valid, i.e., pi−qi ≥ 0 ∀1 ≤ i ≤ k,
then we do not need to lookup the entries (p1 − q′1, p2 − q′2, . . . , pk − q′k), where
(q′1, q

′
2, . . . , q

′
k) ∈ Q is dominated by (q1, q2, . . . , qk). This is because the number

of bins required to pack (p1 − q′1, p2 − q′2, . . . , pk − q′k) items cannot be anymore
than required to pack (p1 − q1, p2 − q2, . . . , pk − qk) items. Thus, while updating
an entry of BINS, if the lookup for some entry of Q results in a valid entry
of BINS, then we do not need to perform lookup for the entries of Q that
are dominated by this entry (however, we cannot throw away all the dominated
entries as lookups for the dominating entry may be an invalid entry of BINS).

In order to address this problem, we divide the entries of Q into two parts,
called the primary and the secondary entries of Q. The primary entries corre-
spond to entries that are not dominated by any other entry of Q. The secondary
entries correspond to entires of Q that are dominated by some entry of Q. We
can now filter the entries of Q as follows. We first determine the minimum by
looking up all the primary entries of Q. In case any of these is invalid, then we
also lookup the minimum using the secondary entries of Q. If all the primary
entries of Q are valid, then there is no need to lookup any secondary entry of Q.
The pseudocode for this procedure is illustrated in Figure 6. Note that it may
seem that we can design more optimal algorithms for optimizing on all the de-
pendencies amongst the Q entries; however, we emphasize here that what we are
trying to save by avoiding one lookup is a single memory access – a more compli-
cated scheme will require maintaining additional information that will also need
to be looked up from the memory and result in additional memory accesses.
Therefore, we choose to implement a simple strategy that does not require any
additional data structures to be maintained.

5 Experimental Evaluation

In this section, we describe experimental evaluation of the proposed paralleliza-
tion and optimization strategies.

5.1 Experimental Setup

Data. The characteristics of a restricted bin packing problem instance are largely
controlled by three properties: (a) number of distinct weights, (b) item-weight
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Let numP = number of primary entries of Q
Let numS = number of secondary entries of Q

For i = 1 to numP
Let (q1, q2, . . . , qk) be the ith primary entry of Q
If (p1 − q1, p2 − q2, . . . , pk − qk) ≥ (0, 0, . . . , 0)

Increment numAccessed
Let X = BINS(p1 − q1, p2 − q2, . . . , pk − qk) + 1
If X < BINS(p1, p2, . . . , pk)

BINS(p1, p2, . . . , pk) = X

If ( numAccessed �= numP )
For i = 1 to numS

Let (q1, q2, . . . , qk) be the ith secondary entry of Q
If (p1 − q1, p2 − q2, . . . , pk − qk) ≥ (0, 0, . . . , 0)

Let X = BINS(p1 − q1, p2 − q2, . . . , pk − qk) + 1
If X < BINS(p1, p2, . . . , pk)

BINS(p1, p2, . . . , pk) = X

Fig. 6. Dependency lookup optimization of the Q array in the DP

generating distribution, (c) number of items. For the current study, we evaluated
the different DP variants on synthetic problem instances with varying number of
distinct weights (2, 3, 4, 5, 6, 7, 8) and varying number of items (50, 100, 200, 300).
We also considered two different distributions (uniform and Zipf) for generating
item weights. The weights were chosen to be contiguous.

Hardware Configuration. The experiments were performed on a Dell Preci-
sion T7600 system with a 8 core Intel Xeon processor running 64 bit Ubuntu
12.04 LTS. This machine has 20MB cache for all the 2GHz processor cores,
supports hyper-threading, and has 256 GB DDR3 RAM. The bin packing code
was compiled using GNU gcc compiler with -O3 optimization and openMP was
used for shared memory parallelization. To study the benefits of paralleliza-
tion, each problem instance was solved using varying number of parallel threads
(1, 2, 4, 8, 16).

5.2 Results and Discussion

Parallel Speedup with Increasing Number of Distinct Weights. Figure 7
shows the speedup relative to the single thread implementation for problem in-
stances with a fixed (=100) number of items and varying number of
distinct weights (4, 6, 8) for both uniform and Zipf distributions. The performance
times in this case correspond to the parallelizationwithout any optimizations. The
range for the number of distinct weights was chosen so that the problem sizes are
large enough to benefit from parallelization. We observe that a larger number of
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Fig. 7. Speedup with increasing number of distinct weights for a fixed(=100) number
of items

distinct weights results in higher speedups for both the distributions. In particu-
lar, for the case of 8 distinct weights with uniform distribution, we obtain speedups
of around 7.5× with 16 threads. This increased speed-up is to be expected as the
problem size becomes exponentially large as we go to higher number of distinct
weights. Specifically, when k is the number of distinct weights, the size of paral-
lelizable work, (i.e., the number of blocks in the intersection of the “diagonal” hy-
perplane of the form p1+· · ·+pk = r and the k-dimensional cuboid to be explored)
increases exponentially with k allowing more opportunity for parallelization.

Parallel Speedup with Increasing Number of Items. Figure 8 shows the
speedup relative to the sequential case for a fixed (=5) number of distinct weights
with varying number of items (100, 200, 300) and two distributions (uniform and
Zipf). As in the previous case, the performance times correspond to paralleliza-
tion without additional optimizations. We observe that relative to the previous
case with varying number of distinct weights, there is only a modest increase
in speedup with increasing number of items. For instance, in case of uniform
distribution, with 16 threads and 5 distinct weights , there is a jump in speedup
from 4.2× to 4.8× when the number of items goes from 100 to 200. On the other
hand as we observed in Figure 7, with 16 threads and 100 items generated using
uniform distribution, there is a jump in speedup from 5.8× to nearly 7.8× when
the number of distinct weights goes from 6 to 8. The increase in speedup is also
much more pronounced in case of uniform distribution than Zipf distribution.
This behavior can be explained by the fact that the size of parallelizable work
(i.e., the number of blocks in the intersection of the “diagonal” hyperplanes
and the k-dimensional cuboid to be explored) increases polynomially with the
number of items n in case of uniform distribution. However, in case of Zipf dis-
tribution, the cuboid is very skewed in a few dimensions so that the size of the
intersection with the diagonal hyperplanes is much smaller as a result of which
there is barely any increase in the speedup.

Effect of Optimizations: Next, we study the effect of the proposed optimiza-
tions on the performance of the parallel DP. We consider four different variants
of the code:
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Fig. 8. Speedup with increasing number of items for a fixed(=5) number of distinct
weights

(i) NOOPT: This is the base code without any optimizations, i.e., the block sizes
are 1× . . .× 1 and all the dependencies from the Q array are looked up;

(ii) BLK2: This is the code with the blocking optimization wherein the block
sizes are 2 × . . . × 2 and all the dependencies from the Q array are looked
up;

(iii) DEP: This is the code with the optimization wherein the dependencies are
split into primary and secondary and the block sizes are 1× . . .× 1;

(iv) DEP-BLK2: This is the code with both the optimizations, i.e., block sizes are
2× . . .× 2 and the dependencies are split into primary and secondary.

Figure 9 shows the performance improvement of the optimized versions rel-
ative to NOOPT with varying number of threads and a fixed (=100) number of
items. The different plots correspond to two different choices (6, 8) for the number
of distinct weights and two different (uniform and Zipf) item-weight generating
distributions.

In all the four cases, we observe that for a fixed block size, splitting up de-
pendencies into primary and secondary results in a performance improvement,
i.e., DEP-BLK2 is superior to BLK2 and DEP is superior to NOOPT. For uniform
distribution and 6 distinct weights, DEP and DEP-BLK2 provide roughly 10−20%
improvement over NOOPT and BLK2 respectively. The relative improvement seems
to be similar for both uniform and Zipf distribution.

From the plots, we also observe the blocking optimization is beneficial to
some extent in all the four cases. However, the relative improvement depends on
the problem size and the number of parallel threads and even the choice of the
distribution. On an average, there is substantial increase in the improvement
as the number of distinct weights goes up. For instance, with uniform distri-
bution and 16 threads, we observe a 10% improvement with 6 distinct weights,
but nearly 30% improvement with 8 distinct weights. In case of Zipf distribution,
the improvements for equivalent scenarios are much smaller, but the trend holds.
For a fixed choice of distribution and problem size, we also notice a decrease in
improvement due to larger block size as the number of threads increase. This be-
havior can be readily explained by the fact that larger block sizes result in fewer
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Fig. 9. Performance improvement with the proposed optimizations – blocking and
secondary Q array

opportunities for parallelization resulting in poorer performance with increasing
number of threads.

Overall, we notice that combining the blocking optimization and dependency
partitioning can result in a substantial improvement. For instance, in case of
uniform distribution with 8 distinct weights, we observe that DEP-BLK2 provides
up to 65% improvement over NOOPT algorithm.

6 Conclusions

We presented a study on shared-memory parallelization of the PTAS dynamic
program for the classical bin-packing problem, one of the fundamental problems
in combinatorial optimization. Parallelizing multi-dimensional DP where each
entry in the DP table depends on variable and potentially large number of other
entries is highly challenging. To the best of our knowledge, this paper is the first
work that attempts to address this problem for the scenario where the num-
ber of dimensions is greater than two. We demonstrated that certain tried and
tested techniques such as diagonal traversal and blocking (tiling) perform well.
We also propose a novel technique to optimize dependency lookups that arise
in the bin-packing problem by partitioning them into two categories- primary
and secondary, with the latter ones required only when at least one of the pri-
mary lookups is not valid. Experimental evaluation on synthetic data indicates
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significant performance gains due to the proposed optimizations (up to 65 % in
certain cases). There is scope for much more improvement in optimizing these
dependency lookups especially in case of distributed memory systems.
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