
A TimeStamp Based Multi-version STM Algorithm

Priyanka Kumar1,�, Sathya Peri1, and K. Vidyasankar2

1 CSE Dept, Indian Institute of Technology Patna, India
{priyanka,sathya}@iitp.ac.in

2 CS Dept, Memorial University, St John’s, Canada
vidya@mun.ca

Abstract. Software Transactional Memory Systems (STM) are a promising al-
ternative for concurrency control in shared memory systems. Multiversion STM
systems maintain multiple versions for each t-object. The advantage of storing
multiple versions is that it facilitates successful execution of higher number of read
operations than otherwise. Multi-Version permissiveness (mv-permissiveness) is
a progress condition for multi-version STMs that states that a read-only trans-
action never aborts. Recently a STM system was proposed that maintains only
a single version but is mv-permissive. This raises a natural question: how much
concurrency can be achieved by multi-version STM. We show that fewer trans-
actions are aborted in multi-version STMs than single-version systems. We also
show that any STM system that is permissive w.r.t opacity must maintain at least
as many versions as the number of live transactions. A direct implication of this
result is that no single-version STM can be permissive w.r.t opacity.

In this paper we present a time-stamp based multiversion STM system that
satisfies opacity and is easy to implement. We formally prove the correctness of
the proposed STM system. Although many multi-version STM systems have been
proposed in literature that satisfy opacity, to the best of our knowledge none of
them has been formally proved to be opaque. We also present garbage collection
procedure which deletes unwanted versions of the transaction objects. We show
that with garbage collection the number of versions maintained is bounded by
number of live transactions.

1 Introduction

In recent years, Software Transactional Memory systems (STMs) [10, 21] have gar-
nered significant interest as an elegant alternative for addressing concurrency issues in
memory. STM systems take optimistic approach. Multiple transactions are allowed to
execute concurrently. On completion, each transaction is validated and if any inconsis-
tency is observed it is aborted. Otherwise it is allowed to commit.

An important requirement of STM systems is to precisely identify the criterion as to
when a transaction should be aborted/committed. A commonly accepted correctness-
criterion for STM systems is opacity proposed by Guerraoui, and Kapalka [8]. Opacity
requires all the transactions including aborted one to appear to execute sequentially

� The author was awarded most promising researcher at the Ph.D forum of ICDCN-13 where a
premiminary version of this work was presented.

M. Chatterjee et al. (Eds.): ICDCN 2014, LNCS 8314, pp. 212–226, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

A TimeStamp Based Multi-version STM Algorithm 213

in an order that agrees with the order of non-overlapping transactions. Opacity un-
like traditional serializability [16] ensures that even aborted transactions read consistent
values.

Another important requirement of STM system is to ensure that transactions do not
abort unnecessarily. This referred to as the progress condition. It would be ideal to abort
a transaction only when it does not violate correctness requirement (such as opacity).
However it was observed in [1] that many STM systems developed so far spuriously
abort transactions even when not required. A permissive STM [7] does not abort a
transaction unless committing it violates the correctness-criterion.

With increase in concurrency, more transactions may conflict and abort, especially in
presence of many long-running transactions. This can have a very bad impact on perfor-
mance [2]. Perelman et al [18] observe that read-only transactions play a significant role
in various types of applications. But long read-only transactions could be aborted mul-
tiple times in many of the current STM systems [11, 5]. In fact Perelman et al [18] show
that many STM systems waste 80% their time in aborts due to read-only transactions.

It was observed that by storing multiple versions of each object, multi-version STMs
can ensure that more read operations do not abort than otherwise. History H1 illustrates
this idea. H1 : r1(x, 0)w2(x, 10)w2(y, 10)c2r1(y, 0)c1. In this history the read on y by
T1 returns 0 but not the previous closest write of 10 by T2. This is possible by storing
multiple versions for y. As a result, this history is opaque with the equivalent correct
execution being T1T2. Had there not been multiple versions, r2(y) would have been
forced to read the only available version which is 10. This value would make the read
r2(y) to not be consistent (opaque) and hence abort.

r1(y, 0)
C1

w2(y, 10)

T1 r1(x, 0)

C2
w2(x, 10)

T2

Fig. 1. Pictorial representation of a History H1

Maintaining multiple versions was first successfully employed in databases. Since
then, many STM systems have been developed that store multiple version of objects
[4, 6, 15, 18, 19, 20]. The progress condition relating to multi-version STMs is multi-
version permissiveness or mv-permissiveness [19]. A mv-permissive STM system never
aborts a read-only transaction; it aborts an update transaction (i.e transaction that also
writes) when it conflicts with other update transactions. Unlike permissiveness, mv-
permissiveness is not defined w.r.t any correctness-criterion.

Interestingly, Attiya and Hillel [1] proposed a single-version STM system that is
mv-permissive. This raises an interesting question: what is the the advantage of hav-
ing multiple versions if mv-permissiveness can be achieved by single vesion STMs. In
this paper, we address this issue by formally proving that by storing multiple versions
greater concurrency can be obtained. We then show that any STM system that is permis-
sive w.r.t opacity must maintain at least L versions where L is the maximum number of

214 P. Kumar, S. Peri, and K. Vidyasankar

live transactions in the system. The number of live transactions represents the concur-
rency in a STM system and hence can be unbounded. Thus, an implication of this result
is that no single-version or for that matter any bounded-version STM can be permissive
w.r.t opacity.

We then propose a multi-version STM system based on timestamp ordering called
as multi-version timestamp ordering algorithm or MVTO. We formally prove that our
algorithm satisfies opacity. In order to prove correctness we use a graph characterization
of opacity for sequential histories which is based on the characterization developed by
Guerraoui and Kapalka [9]. We believe that our algorithm is very intuitive and easy
to implement. By storing multiple versions, the algorithms ensures that no read-only
transaction aborts.

Although many multi-version STM systems have been proposed in literature that
satisfy opacity, none of them have been formally proved. To the best of our knowledge,
this is the first work that formally proves a multi-version STM to be opaque.

Another nice feature of MVTO algorithm proposed is that it does not require transac-
tions to be annotated as read-only before the start of their execution unlike for instance
in [15]. This can be very useful for transactions that have multiple control paths, where
some of the paths are read-only whereas the others are not and it is not known in ad-
vance which path might be chosen.

An important issue that arises with multi-version STMs is that over time, some ver-
sions will no longer be required. So multi-version STMs must have mechanisms of
deleting unwanted versions. It is necessary to regularly delete unused versions which
otherwise could use a lot of memory. Some multi-version STMs solve this issue by hav-
ing only fixed number of versions. Other systems have garbage collection procedures
running alongside that delete older versions. In [19], Perelman et al outline principles
for garbage collection.

Finally, we give an algorithm for garbage collection to delete unwanted versions in
MVTO and prove its correctness. We then show that the number of versions maintained
by the garbage collection algorithm is bounded by the total number of live transactions
in the system.

Roadmap. The paper is organized as follows. We describe our system model in Sec-
tion 2. In Section 3, we formally show that higher concurrency can be achieved by
storing multiple versions. In Section 4 we formally define the graph characterization
for implementing opacity. In Section 5, we describe the working principle of MVTO
protocol and its algorithm. In Section 6 we are give the outline of the garbage collec-
tion algorithm. Finally we conclude in Section 7. Due to space constraints, we have
only outlined the main idea. The full details can be found in [12].

2 System Model and Preliminaries

The notions and definitions described in this section follow the definitions of [13].
We assume a system of n processes, p1, . . . , pn that access a collection of objects via
atomic transactions. The processes are provided with four transactional operations: the
write(x, v) operation that updates object x with value v, the read(x) operation that re-
turns a value read in x, tryC() that tries to commit the transaction and returns commit

A TimeStamp Based Multi-version STM Algorithm 215

(C for short) or abort (A for short), and tryA() that aborts the transaction and returns A.
Some STM systems also provide for a begin transaction function. The objects accessed
by the read and write operations are called as t-objects. For the sake of simplicity, we
assume that the values written by all the transactions are unique.

Operations write, read and tryC() may return A, in which case we say that the oper-
ations forcefully abort. Otherwise, we say that the operation has successfully executed.
Each operation is equipped with a unique transaction identifier. A transaction Ti starts
with the first operation and completes when any of its operations returns a or c. Abort
and commit operations are called terminal operations.

For a transaction Tk, we denote all its read operations as Rset(Tk) and write op-
erations Wset(Tk). Collectively, we denote all the operations of a transaction Ti as
evts(Tk).

Histories. A history is a sequence of events, i.e., a sequence of invocations and re-
sponses of transactional operations. The collection of events is denoted as evts(H).
For simplicity, we only consider sequential histories here: the invocation of each trans-
actional operation is immediately followed by a matching response. Therefore, we treat
each transactional operation as one atomic event, and let <H denote the total order
on the transactional operations incurred by H . With this assumption the only relevant
events of a transaction Tk are of the types: rk(x, v), rk(x,A), wk(x, v), wk(x, v,A),
tryCk(C) (or ck for short), tryCk(A), tryAk(A) (or ak for short). We identify a his-
tory H as tuple 〈evts(H), <H〉.

Let H |T denote the history consisting of events of T in H , and H |pi denote the
history consisting of events of pi in H . We only consider well-formed histories here,
i.e., (1) each H |T consists of a read-only prefix (consisting of read operations only),
followed by a write-only part (consisting of write operations only), possibly completed
with a tryC or tryA operation1, and (2) each H |pi consists of a sequence of transac-
tions, where no new transaction begins before the last transaction completes (commits
or a aborts).

We assume that every history has an initial committed transaction T0 that initial-
izes all the data-objects with 0. The set of transactions that appear in H is denoted
by txns(H). The set of committed (resp., aborted) transactions in H is denoted by
committed(H) (resp., aborted(H)). The set of live (or incomplete) transactions in H
is denoted by live(H) (live(H) = txns(H)− committed(H)− aborted(H)). For a his-
tory H , we construct the completion of H , denoted H , by inserting ak immediately
after the last event of every transaction Tk ∈ live(H).

Transaction orders. For two transactions Tk, Tm ∈ txns(H), we say that Tk precedes
Tm in the real-time order of H , denote Tk ≺RT

H Tm, if Tk is complete in H and the last
event of Tk precedes the first event of Tm in H . If neither Tk ≺RT

H Tm nor Tm ≺RT
H Tk,

then Tk and Tm overlap in H . A history H is t-sequential if there are no overlapping
transactions in H , i.e., every two transactions are related by the real-time order.

Valid and legal Histories. Let H be a history and rk(x, v) be a successful read operation
(i.e v �= A) in H . Then rk(x, v), is said to be valid if there is a transaction Tj in H that
commits before rK and wj(x, v) is in evts(Tj) (Tj can also be T0). Formally, 〈rk(x, v)

1 This restriction brings no loss of generality [14].

216 P. Kumar, S. Peri, and K. Vidyasankar

is valid ⇒ ∃Tj : (cj <H rk(x, v)) ∧ (wj(x, v) ∈ evts(Tj)) ∧ (v �= A)〉. Since we
assume that all the writes are unique there exists only one transaction Tj that writes of
v to x. We say that the commit operation cj is rk’s valWrite and formally denote it as
H.valWrite(rk). The history H is valid if all its successful read operations are valid.

We define rk(x, v)’s lastWrite as the latest commit event cj such that cj precedes
rk(x, v) in H and x ∈ Wset(Ti). Formally, we denote it as H.lastWrite(rk). A suc-
cessful read operation rk(x, v) (i.e v �= A), is said to be legal if transaction Tj (which
contains rk’s lastWrite) also writes v onto x. Formally, 〈rk(x, v) is legal ⇒ (v �=
A) ∧ (H.lastWrite(rk(x, v)) = ci) ∧ (wi(x, v) ∈ evts(Ti))〉. The history H is legal
if all its successful read operations are legal. Thus from the definitions we get that if H
is legal then it is also valid.

It can be seen that inH1, c0 = H1.valWrite(r1(x, 0)) = H1.lastWrite(r1(x, 0)).
Hence, r1(x, 0) is legal. But c0 = H1.valWrite(r1(y, 0)) �= c1 =
H1.lastWrite(r1(y, 0)). Thus, r1(y, 0) is valid but not legal.

Correctness Criteria and Opacity. A correctness-criterion is a set of histories. We say
that two histories H and H ′ are equivalent if they have the same set of events.

A history H is said to be opaque [8, 9] if H is valid and there exists a t-sequential le-
gal history S such that (1) S is equivalent to H and (2) S respects ≺RT

H , i.e ≺RT
H ⊆≺RT

S .
We denote the set of all opaque histories as opacity. Thus, opacity is a correctness-
criterion. By requiring S being equivalent to H , opacity treats all the live transactions
as aborted.

Implementations and Linearizations. A STM implementation provides the processes
with functions for implementing read, write, tryC (and possibly tryA) functions. We
denote the set of histories generated by a STM implementation I as gen(I). We say
that an implementation I is correct w.r.t to a correctness-criterion C if all the histories
generated by I are in P i.e. gen(I) ⊆ P .

The histories generated by an STM implementations are normally not sequential,
i.e., they may have overlapping transactional operations. Since our correctness defini-
tions are proposed for sequential histories, to reason about correctness of an imple-
mentation, we order the events in a non-sequential history to obtain an equivalent se-
quential history. The implementation that we propose has enough information about
ordering of the overlapping operations. We denote this total ordering on the events as
linearization.

Progress Conditions. Let C be a correctness-criterion with H in it. Let Ta be an aborted
transaction in H . We say that a history H is permissive w.r.t C if committing Ta, by
replacing the abort value returned by an operation in Ta with some non-abort value,
would cause H to violate C. In other words, if Ta is committed then H will no longer be
in C. We denote the set of histories permissive w.r.t C as Perm(C). We say that STM
implementation I is permissive [7] w.r.t some correctness-criterion C (such as opacity)
if every history H generated by I is permissive w.r.t C, i.e., gen(I) ⊆ Perm(C).

A STM implementation is mv-permissive if it forcibly aborts an update transaction
that conflicts with another update transaction. A mv-permissive STM implementation
does not abort read-only transactions.

A TimeStamp Based Multi-version STM Algorithm 217

3 Concurrency Provided by Multi-version Systems

It has been observed that by storing multiple versions, more concurrency can be gained.
History H1 is an example of this. Normally, multi-version STM systems, help read
operations to read consistent values. By allowing the read operation to read the appro-
priate version (if one exists), they ensure that read operations do not read inconsistent
values and abort. To capture this notion precisely, Perelman et al [19] defined the notion
of mv-permissiveness which (among other things) says that a read operations always
succeed.

Although Perelman et al defined mv-permissiveness in the context of multi-version
STMs, recently Attiya and Hillel [1] proposed a single-version STM system that is mv-
permissive. In their implementation, Attiya and Hillel maintain only a single-version
for each t-object, but ensure that no read-only transaction aborts. As a result, their im-
plementation achieves mv-permissiveness. Thus, if single-version STMs can achieve
mv-permissiveness, a natural question that arises is how much extra concurrency can
be achieved by multi-version STMs?

To address this question, we were inspired by the theory developed for multi-versions
in databases by Kanellakis and Papadimitriou [17]. They showed that the concurrency
achievable by multi-version databases schedulers is greater than single-version sched-
ulers. More specifically they showed that the greater the number of versions stored,
the higher the concurrency. For showing this, they used view-serializability (vsr), the
correctness-criterion for databases. They defined a classes of histories: 1-vsr, 2-vsr, ...
n-vsr, etc., where k-vsr is the class of histories that maintain k versions and are serial-
izable. They showed that 1-vsr ⊂ 2-vsr ⊂ ... ⊂ n-vsr.

We extend their idea to STMs by generalizing the concept of legality. Consider a read
ri(x, v) in a history H . Let ri’s valWrite be cj . Let n − 1 other transactions commit
between cj and ri that have also written to x in H , i.e., cj <H ck1 <H ck2 <H ... <H

c(n−1) <H ri. Thus, n versions have been created before ri. Suppose ri reads from the
version created by cj . Then, we say that ri is n-legal. Kanellakis and Papadimitriou [17]
denote n as width of x. Extending this idea further, we say that a history H is m-legal
if each of its read operation is n-legal for some n ≤ m. Thus by this definition, if a
history is n-legal then it is also m-legal for n ≤ m but not he vice-versa. If the history
H is 1-legal, we denote it as single-versioned.

Extending this idea of legality to opacity, we say that a history H is m-opaque if
H is n-legal and opaque, where n ≤ m. Thus, if a history is n-opaque then it is also
m-opaque for n ≤ m. We denote the set of histories that are m-opaque as m-opacity.
Clearly, opacity =

⋃

m≥1

m-opacity. From this, we get the following theorem.

Theorem 1. For any k > 0, k-opacity ⊂ (k + 1)-opacity.

This theorem shows that there exists an infinite hierarchy of classes of opacity. This
further shows that even though single-version STMs can achieve mv-permissiveness,
these systems by definition can only satisfy 1-opacity. On the other hand, multi-version
STMs storing k version (for k > 1) are a subset of k-opacity. Hence, higher concur-
rency can be achieved by these systems.

218 P. Kumar, S. Peri, and K. Vidyasankar

Next, we show that any multi-version STM must store as many versions as maxi-
mum possible live transactions for each t-object for achieving mv-permissiveness. For
showing this, we define the notion of maxLiveSet for a history H as is the maximum
number of live transactions present in any prefix of H . Formally, maxLiveSet(H) =
(max
H′∈prefixSet(H)

{|live(H ′)|}) where prefixSet(H) is the set of all prefixes of H . We

say that an implementation I maintains k versions if during its execution, it creates k
versions. We now have the following theorem,

Theorem 2. Consider a multi-version implementation I that is permissive w.r.t opacity
and let H be a history generated by it. Then, I must maintain at least maxLiveSet(H)
versions.

Although, we have assumed sequential histories in our model, these results also gen-
eralize to non-sequential histories as well since sequential histories can be viewed as a
restriction over non-sequential histories. The number of live transactions represents the
concurrency in a STM system and hence can be unbounded. Thus, an implication of
Theorem 2 is that no single-version or any fixed-version STM can be permissive w.r.t
opacity.

Having proved a few theoretical properties of multi-version STMs, in the follow-
ing sections we give an implementation of a multi-version STM and we prove it to
be opaque. Motivated by Theorem 1 and Theorem 2, the proposed multi-version STM
does not keep any bound on the number of versions to maximize concurrency but uses
garbage collection to delete unwanted versions. In the following sections, we only con-
sider opacity and not k-opacity any more.

4 Graph Characterization of Opacity

To prove that a STM system satisfies opacity, it is useful to consider graph characteri-
zation of histories. In this section, we describe the graph characterisation of Guerraoui
and Kapalka [9] modified for sequential histories. It is similar to the characterization
by Bernstein and Goodman [3] which is also for sequential histories but developed for
databases transactions.

Consider a history H which consists of multiple version for each t-object. The graph
characterisation uses the notion of version order. Given H and a t-object x, we define a
version order for x as any (non-reflexive) total order on all the versions of x ever created
by committed transactions in H . It must be noted that the version order may or may not
be the same as the actual order in which the version of x are generated in H . A version
order of H , denoted as H is the union of the version orders of all the t-objects in H .

Consider the history H4 : r1(x, 0)r2(x, 0)r1(y, 0)r3(z, 0)w1(x, 5)w3(y, 15)
w2(y, 10)w1(z, 10)c1c2r4(x, 5)r4(y, 10)w3(z, 15)c3r4(z, 10). Using the notation that
a committed transaction Ti writing to x creates a version xi, a possible version order
for H4H4 is: 〈x0 x1〉, 〈y0 y2 y3〉, 〈z0 z1 z3〉.

We define the graph characterisation based on a given version order. Consider a
history H and a version order . We then define a graph (called opacity graph) on
H using , denoted as OPG(H,) = (V,E). The vertex set V consists of a vertex

A TimeStamp Based Multi-version STM Algorithm 219

for each transaction Ti in H . The edges of the graph are of three kinds and are defined
as follows:

1. rt(real-time) edges: If Ti commits before Tj starts in H , then there is an edge from
vi to vj . This set of edges are referred to as rt(H).

2. rf (reads-from) edges: If Tj reads x from Ti in H , then there is an edge from vi to
vj . Note that in order for this to happen, Ti must have committed before Tj and
ci <H rj(x). This set of edges are referred to as rf(H).

3. mv(multiversion) edges: The mv edges capture the multiversion relations and is
based on the version order. Consider a successful read operation rk(x, v) and the
write operationwj(x, v) belonging to transaction Tj such that rk(x, v) reads x from
wj(x, v) (it must be noted Tj is a committed transaction and cj <H rk). Consider
a committed transaction Ti which writes to x, wi(x, u) where u �= v. Thus the
versions created xi, xj are related by . Then, if xi xj we add an edge from vi
to vj . Otherwise (xj xi), we add an edge from vk to vi. This set of edges are
referred to as mv(H,).

We now show that if a version order exists for a history H such that it is acyclic,
then H is opaque.

Theorem 3. A valid history H is opaque iff there exists a version order H such that
OPG(H,H) is acyclic.

5 Multiversion Timestamp Ordering (MVTO) Algorithm

We describe a timestamp based algorithm for multi-version STM systems, multiver-
sion timestamp ordering (MVTO) algorithm. We then prove that our algorithm satisfies
opacity [9, 8] using the graph characterization developed in the previous section.

5.1 The Working Principle

In our algorithm, each transaction, Ti is assigned a unique timestamp, i, when it is
initially invoked by a thread. We denote i to be the id as well as the timestamp of the
transaction Ti. Intuitively, the timestamp tells the “time” at which the transaction began.
It is a monotonically increasing number assigned to each transaction and is numerically
greater than the timestamps of all the transactions invoked so far. All read and write
operations carry the timestamp of the transaction that issued it. When an update trans-
action Ti commits, the algorithm creates new version of all the t-objects it writes to. All
these versions have the timestamp i.

Now we describe the main idea behind read, write and tryC operations executed
by a transaction Ti. These ideas are based on the read and write steps for timestamp
algorithm developed for databases by Bernstein and Goodman [3]:

1. read rule: Ti on invoking ri(x) reads the value v, where v is the value written by
a transaction Tj that commits before ri(x) and j is the largest timestamp ≤ i.

2. write rule: Ti writes into local memory.

220 P. Kumar, S. Peri, and K. Vidyasankar

3. commit rule: Ti on invoking tryC operation checks for each t-object x, in its Wset:
(a) If a transaction Tk has read x from Tj , i.e. rk(x, v) ∈ evts(Tk) and wj(x, v) ∈

evts(Tj) and j < i < k, then tryCi returns abort,
(b) otherwise, the transaction is allowed to commit.

5.2 Data Structures and Pseudocode

The algorithm maintains the following data structures. For each transaction Ti:

– Ti.RS(read set): It is a list of data tuples (d tuples) of the form 〈x, v〉, where x is
the t-object and v is the value read from the transaction Ti.

– Ti.WS(write set): It is a list of (d tuples) of the form 〈x, v〉, where x is the t-object
to which transaction Ti writes the value v.

For each transaction object (t object) x:

– x.vl(version list): It is a list consisting of version tuples (v tuple) of the form
〈ts, v, rl〉 where ts is the timestamp of the committed transaction that writes the
value v to x. The list rl is the read list consisting of a set of transactions that have
read the value v (described below). Informally the version list consists of all the
committed transaction that have ever written to this t-object and the set of corre-
sponding transactions that have read each of those values.

– rl(read list): This list contains all the read transaction tuples (rt tuples) of the form
〈j〉, where j is the timestamp of the reading transaction. The read list rl is stored
in each tuple of the version list described above.

X

6 7 8 9 12 13 15111 2 3

0 5 10v0 v5 v10rl rlrl

VL(Version List)

RL(Read List)

Fig. 2. Data Structures for Maintaining Versions

Figure 2 illustrates how the version list and read list are managed. In addition, the
algorithm maintains two global data-structures:

A TimeStamp Based Multi-version STM Algorithm 221

– tCounter: This counter is used to generate the ids/timestamp for a newly invoked
transaction. This is incremented everytime a new transaction is invoked.

– liveList: This list keeps track of all the transactions that are currently incomplete or
live. When a transaction begins, its id is added to this list. When it terminates (by
abort or commit), the id is deleted from this list.

The STM system consists of the following operations/functions. These are executed
whenever a transaction begins, reads, write or tries to commit:

initialize() : This operation initializes the STM system. It is assumed that the STM
system knows all the t-objects ever accessed. All these t-objects are initialized with
value 0 by the initial transaction T0 in this operation. A version tuple 〈0, 0, nil〉 is
inserted into all the version list of all the t-objects.

begin tran() : A thread invokes a transaction by executing this operation. It returns
an unique transaction identifier which is also its timestamp. The id is used in all other
operations exported by the STM system. The id is further stored in the liveList.

readi(x) : This operation is invoked when transaction Ti wants to read a t-object x.
First, the t-object x is locked. Then the version list of x is searched to identify the
correct version tuple (i.e the version created by a writing transaction). The tuple with
the largest timestamp less than i, say 〈j, v〉 is identified from the version-list. Then, i is
added to the read list of j’s version tuple. Finally, the value v written by transaction j,
is returned.

find lts(i, x) : This function is invoked by readi(x) and finds the tuple 〈j, v, rl〉 hav-
ing the largest timestamp value j smaller than i (denoted as lts).

writei(x, v) : Here write is performed onto the local memory by transaction Ti. This
operation appends the data tuple 〈x, v〉 into the WS of transaction Ti.

tryCi() : This operation is invoked when a transaction Ti has completed all its oper-
ations and wants to commit. This operation first checks whether Ti is read-only trans-
action or not. If it is read-only then it returns commit. Otherwise, for each t-object x
(accessed in a predefined order) in Ti’s write set, the following check is performed: if
timestamp of Ti, i, lies between the timestamps of the Tj and Tk, where transaction Tk

reads x from transaction Tj , i.e j < i < k, then the transaction Ti is aborted.
If this check succeeds for all the t-objects written by Ti, then the version tuples

are appended to the version lists and the transaction Ti is committed. Before returning
either commit or abort, the transaction id i is removed from liveList.

The system orders all the t-objects ever accessed as x1, x2,, xn by any transaction
(assuming that the system accesses a total of n t-objects). In this operation, each trans-
action locks and access t-objects in this increasing order which ensures that the system
does not deadlock.

check versions(i, x) : This function checks the version list of x. For all version tuples
〈j, v, rl〉 in x.vl and for all transactions Tk in rl, it checks if the timestamp of Ti is
between the timestamp of the Tj and Tk, i.e j < i < k. If so, it returns false else true.

Theorem 4. The history generated by MVTO algorithm is opaque.

Theorem 5. Assuming that no transaction fails and all the locks are starvation-free,
every operation of MVTO algorithm eventually returns.

222 P. Kumar, S. Peri, and K. Vidyasankar

Algorithm 1. STM initialize(): Invoked at the start of the STM system. Initializes all
the t-objects used by the STM System
1: for all x used by the STM System do
2: /* T0 is initializing x */
3: add 〈0, 0, nil〉 to x.vl;
4: end for;

Algorithm 2. STM begin tran(): Invoked by a thread to being a new transaction Ti

1: lock liveList;
2: // Store the latest value of tCounter in i.
3: i = tCounter;
4: tCounter = tCounter + 1;
5: add i to liveList;
6: unlock liveList;
7: return i;

Algorithm 3. STM readi(x): A Transaction Ti reads t-object x
1: lock x;
2: // From x.vls, identify the right version tuple.
3: 〈j, v, rl〉 = find lts(i, x);
4: Append i into rl; // Add i into j’s rl.
5: unlock x;
6: return (v); // v is the value returned

Algorithm 4. find lts(i, x): Finds the tuple 〈j, v, rl〉 created by the transaction Tj with
the largest timestamp smaller than i

1: // Initialize closest tuple
2: closest tuple = 〈0, 0, nil〉;
3: for all 〈k, v, rl〉 ∈ x.vl do
4: if (k < i) and (closest tuple.ts < k) then
5: closest tuple = 〈k, v, rl〉;
6: end if;
7: end for;
8: return (closest tuple);

Algorithm 5. STM writei(x, v): A Transaction Ti writes into local memory
1: Append the d tuple〈x, v〉 to Ti.WS.
2: return ok;

A TimeStamp Based Multi-version STM Algorithm 223

Algorithm 6. STM tryC(): Returns ok on commit else return Abort
1: if (Ti.WS == NULL) then
2: removeId(i);
3: return ok; // A read-only transaction.
4: end if;
5: for all d tuple(x, v) in Ti ·WS do
6: /* Lock the t-objects in a predefined order to avoid deadlocks */
7: Lock x;
8: if (check versions(i, x) == false) then
9: removeId(i);

10: unlock all the variables locked so far;
11: return Abort;
12: end if;
13: end for;
14: /* Successfully checked for all the write variables and not yet aborted. So the new write

versions can be inserted. */
15: for all d tuples〈x, v〉 in Ti.WS do
16: insert v tuple〈i, v, nil〉 into x.vl in the increasing order;
17: end for;
18: removeId(i);
19: unlock all the variables;
20: return ok;

Algorithm 7. check versions(i, x):Checks the version list; it returns True or false
1: for all v tuples〈j, v, rl〉 in x · vl do
2: for all Tk in rl do
3: /* Tk has already read the version created by Tj */
4: if (j < i < k) then
5: return false;
6: end if;
7: end for;
8: end for;
9: return true;

Algorithm 8. removeId(i):Removes transaction id i from the liveList
1: lock liveList;
2: remove i from liveList;
3: unlock liveList;

224 P. Kumar, S. Peri, and K. Vidyasankar

On mv-permissiveness of MVTO: It can be seen that MVTO algorithm does not abort
read-only transactions. It also has the nice property that it does not require transactions
to be annotated as read-only before execution. Interestingly this implementation satis-
fies the definition of mv-permissiveness as defined by Perelman et al [19]: an update
transaction aborts only when it conflicts with another update transaction.

But intuitively by mv-permissiveness, Perelman et al meant “read-only transactions
do not cause update transactions to abort” as stated by them in [19, section 4]. But this
property is not true for MVTO. For instance, consider the following history generated
by the MVTO algorithm: H5 : w1(x, 1)w1(y, 1)c1r4(x, 1)w2(x, 2)w1(y, 2)a2. Here,
when T2 tries to commit after writing to x, the MVTO algorithm will abort it. Thus, it
can be argued that the read-only transaction T4 has caused the update transaction T2 to
abort.

6 Garbage Collection

As one can see with multi-version STMs, multiple versions are created. But storing
multiple versions can unnecessarily waste memory. Hence, it is important to perform
garbage collection by deleting unwanted versions of t-objects. Some of the earlier STM
systems solve this problem by maintaining a fixed number of versions for each t-object.
We on the other hand, do not restrict the number of versions. The STM system will
detect versions that will never again be used (i.e. have become garbage) and delete
them. The garbage collection routine will be invoked from the tryC function whenever
the number of versions of a t-object has become greater than a predefined threshold.
If required, the threshold can be decided dynamically by the application invoking the
STM system based on the current memory requirements. If the threshold is set to 0, then
the garbage collection routine will be invoked every time an update transaction invokes
tryC and commits.

The STM system will delete a version of a t-object x created by transaction Ti when
the following conditions are satisfied: (1) At least one another version of x has been
created by Tk and i < k; (2) Let Tk be the transaction that has the smallest timestamp
larger than i and has created a version of x. Then for every j such that i < j < k, Tj

has terminated (either committed or aborted).
The reason for having condition 1 is to ensure that there exists at least one version

in every state. This rule also ensures that the version created by the transaction with the
largest timestamp is never deleted. Now in condition 2, if all the transactions between
Ti and Tk have committed then no other transaction will ever read from Ti. Hence, the
version of Ti can be deleted.

The complete details of the algorithm is mentioned in [12]. The garbage collection
algorithm maintains the read and write rules (described in SubSection 5.1). Hence, its
correctness is preserved and the histories generated are opaque. Further, it can be shown
that the garbage collection algorithm has the nice property that the number of versions
maintained by MVTO is bounded by the total number of live transactions.

A TimeStamp Based Multi-version STM Algorithm 225

7 Discussion and Conclusion

There are many applications that require long running read-only transactions. Many STM
systems can cause such transactions to abort. Multi-version STM system ensure that a
read-only transactions does not need to abort by maintaining sufficient versions. To cap-
ture this notion precisely, Perelman et al [19] defined the notion of mv-permissiveness
which (among other things) says that read operations always succeed.

Recently Attiya and Hillel [1] proposed a single-version STM system that is mv-
permissive. Thus, if single-version STMs can achieve mv-permissiveness, a natural
question that arises is how much extra concurrency can be achieved by multi-version
STMs. To address this issue, we have formally shown that with multiple versions, higher
concurrency can possibly be achieved. We then show that any STM system that is per-
missive w.r.t opacity must maintain at least L versions where L is the maximum number
of live transactions in the system. The number of live transactions represents the con-
currency in a STM system and hence can be unbounded. Thus, an implication of this
result is that no single-version or any bounded-version STM can be permissive w.r.t
opacity.

We then presented a timestamp based multiversion STM system (MVTO) that satis-
fies opacity and ensures that no read-only transaction aborts. We believe that the pro-
posed algorithm is very intuitive and easy to implement. Our algorithm is similar in
spirit to Lu and Scott’s multiversion STM system [15]. Like their algorithm, even our
algorithm uses timestamps to decide which version to read from. But unlike their algo-
rithm, it does not need transactions to be annotated as read-only prior to the start of the
execution. We also presented an algorithm for garbage collection that deletes version
that will never be used. The garbage collection algorithm ensures that on being invoked,
reduces the number of versions to less than or equal to the number of live transactions
in the history (if number of live transactions is greater than 0).

Although several multi-version STM systems have been proposed that are opaque, to
the best of our knowledge none of them have formally been proved to be opaque. In fact,
Perelman et al [19] formally prove that their algorithm satisfies strict-serializability.
Even though they claim that their algorithm can be easily proved to satisfy opacity, it is
not clear how.

As a part of future work, we would like to modify our algorithm to ensure that it
satisfies mv-permissiveness. We also plan to implement this algorithm and test its per-
formance on various benchmarks. As a part of the implementation, we would like to
compare the performance of our algorithm with Attiya and Hillel’s algorithm. We would
to see how much benefit do multiple versions offer in practice and the cost required to
achieve this.

References

[1] Attiya, H., Hillel, E.: A Single-Version STM that is Multi-Versioned Permissive. Theory
Comput. Syst. 51(4), 425–446 (2012)

[2] Aydonat, U., Abdelrahman, T.: Serializability of Transactions in Software Transactional
Memory. In: TRANSACT 2008: 3rd Workshop on Transactional Computing (February
2008)

226 P. Kumar, S. Peri, and K. Vidyasankar

[3] Bernstein, P.A., Goodman, N.: Multiversion Concurrency Control: Theory and Algorithms.
ACM Trans. Database Syst. 8(4), 465–483 (1983)

[4] Cachopo, J., Rito-Silva, A.: Versioned Boxes as the basis for Memory Transactions. Science
of Computer Programming 63(2), 172–185 (2006)

[5] Dice, D., Shalev, O., Shavit, N.: Transactional locking II. In: Dolev, S. (ed.) DISC 2006.
LNCS, vol. 4167, pp. 194–208. Springer, Heidelberg (2006)

[6] Fernandes, S.M., Cachopo, J.: Lock-free and Scalable Multi-version Software Transactional
Memory. In: Proceedings of the 16th ACM Symposium on Principles and Practice of Par-
allel Programming, PPoPP 2011, pp. 179–188. ACM, New York (2011)

[7] Guerraoui, R., Henzinger, T.A., Singh, V.: Permissiveness in Transactional Memories. In:
Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 305–319. Springer, Heidelberg
(2008)

[8] Guerraoui, R., Kapalka, M.: On the Correctness of Transactional Memory. In: PPoPP 2008:
Proceedings of the 13th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pp. 175–184. ACM, New York (2008)

[9] Guerraoui, R., Kapalka, M.: Principles of Transactional Memory, Synthesis Lectures on
Distributed Computing Theory. Morgan and Claypool (2010)

[10] Herlihy, M., Moss, J.E.B.: Transactional memory: Architectural Support for Lock-Free Data
Structures. SIGARCH Comput. Archit. News 21(2), 289–300 (1993)

[11] Herlihy, M., Luchangco, V., Moir, M., Scherer III, W.N.: Software transactional memory for
dynamic-sized data structures. In: PODC 2003: Proc. 22nd ACM Symposium on Principles
of Distributed Computing, pp. 92–101 (July 2003)

[12] Kumar, P., Peri, S.: A timestamp based multi-version stm protocol that satisfies opacity.
CoRR, abs/1305.6624 (2013)

[13] Kuznetsov, P., Peri, S.: On non-interference of transactions. CoRR, abs/1211.6315 (2012)
[14] Kuznetsov, P., Ravi, S.: On the cost of concurrency in transactional memory. In: Fernàndez

Anta, A., Lipari, G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109, pp. 112–127. Springer,
Heidelberg (2011)

[15] Lu, L., Scott, M.L.: Unmanaged Multiversion STM. Transact (2012)
[16] Papadimitriou, C.H.: The serializability of concurrent database updates. J. ACM 26(4),

631–653 (1979)
[17] Papadimitriou, C.H., Kanellakis, P.C.: On Concurrency Control by Multiple Versions. ACM

Trans. Database Syst. 9(1), 89–99 (1984)
[18] Perelman, D., Byshevsky, A., Litmanovich, O., Keidar, I.: SMV: Selective Multi-Versioning

STM. In: Peleg, D. (ed.) Distributed Computing. LNCS, vol. 6950, pp. 125–140. Springer,
Heidelberg (2011)

[19] Perelman, D., Fan, R., Keidar, I.: On Maintaining Multiple Versions in STM. In: PODC, pp.
16–25 (2010)

[20] Riegel, T., Felber, P., Fetzer, C.: A Lazy Snapshot Algorithm with Eager Validation. In:
Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 284–298. Springer, Heidelberg (2006)

[21] Shavit, N., Touitou, D.: Software Transactional Memory. In: PODC 1995: Proceedings of the
Fourteenth Annual ACM Symposium on Principles of Distributed Computing, pp. 204–213.
ACM, New York (1995)

	A TimeStamp Based Multi-version STM Algorithm
	1 Introduction
	2 System Model and Preliminaries
	3 Concurrency Provided by Multi-version Systems
	4 Graph Characterization of Opacity
	5 Multiversion Timestamp Ordering (MVTO) Algorithm
	5.1 The Working Principle
	5.2 Data Structures and Pseudocode

	6 Garbage Collection
	7 Discussion and Conclusion
	References

