
Gathering and Exclusive Searching on Rings
under Minimal Assumptions�

Gianlorenzo D’Angelo1, Alfredo Navarra1, and Nicolas Nisse2

1 Dipartimento di Matematica e Informatica, Università degli Studi di Perugia, Italy
gianlorenzo.dangelo@dmi.unipg.it, alfredo.navarra@unipg.it

2 Inria and Univ. Nice Sophia Antipolis, CNRS, I3S, UMR 7271, France
nicolas.nisse@inria.fr

Abstract. Consider a set of mobile robots with minimal capabilities
placed over distinct nodes of a discrete anonymous ring. Asynchronously,
each robot takes a snapshot of the ring, determining which nodes are ei-
ther occupied by robots or empty. Based on the observed configuration,
it decides whether to move to one of its adjacent nodes or not. In the
first case, it performs the computed move, eventually. The computation
also depends on the required task. In this paper, we solve both the well-
known Gathering and Exclusive Searching tasks. In the former problem,
all robots must simultaneously occupy the same node, eventually. In the
latter problem, the aim is to clear all edges of the graph. An edge is
cleared if it is traversed by a robot or if both its endpoints are occu-
pied. We consider the exclusive searching where it must be ensured that
two robots never occupy the same node. Moreover, since the robots are
oblivious, the clearing is perpetual, i.e., the ring is cleared infinitely often.
In the literature, most contributions are restricted to a subset of initial
configurations. Here, we design two different algorithms and provide a
characterization of the initial configurations that permit the resolution
of the problems under minimal assumptions.

1 Introduction

In the field of robot-based computing systems, the study of the minimal settings
required to accomplish specific tasks represents a challenging issue. We consider
k robots initially placed on distinct nodes of a discrete ring of n nodes, and we in-
vestigate two fundamental problems requiring complex coordination: Gathering
(see, e.g., [5,10,13,26]) and Exclusive Searching (see, e.g., [2,19,20]).

We assume minimal abilities for the robots. They are oblivious (without
memory of the past), uniform (running the same deterministic algorithm), au-
tonomous (without a common coordinate system, identities or chirality), asyn-
chronous (without central coordination), without the capability to communicate.
Neither nodes nor edges are labeled and no local memory is available on nodes.
Robots are equipped with visibility sensors and motion actuators, and operate
� This work has been partially supported by the Research Grant 2010N5K7EB ‘PRIN

2010’ ARS TechnoMedia (Algoritmica per le Reti Sociali Tecno-mediate) from the
Italian Ministry of University and Research.

M. Chatterjee et al. (Eds.): ICDCN 2014, LNCS 8314, pp. 149–164, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

150 G. D’Angelo, A. Navarra, and N. Nisse

in Look -Compute-Move cycles in order to achieve a common task (see [17]). The
Look-Compute-Move model considers that in each cycle a robot takes a snapshot
of the current global configuration (Look), then, based on the perceived config-
uration, takes a decision to stay idle or to move to one of its adjacent nodes
(Compute), and in the latter case it moves to this node (Move). In other words,
each robot executes an algorithm that takes as input a snapshot or configuration,
i.e., the graph topology and the set of nodes occupied by the robots, and com-
putes the move of the robot. Cycles are performed asynchronously, i.e., the time
between Look, Compute, and Move operations is finite but unbounded, and it is
decided by an adversary for each robot. Hence, robots that cannot communicate
may move based on outdated perceptions. The adversary (scheduler) is assumed
to be fair: each robot performs its cycle within finite time and infinitely often.

The asynchronous Look-Compute-Move model, also called CORDA, has first
been defined in continuous environment [18,27]. The inaccuracy of the sensors
used by robots to scan the surrounding environment motivates its discretization.
Robots can also model software agents moving on a computer network. Many
robots coordination problems have been considered in discrete environments.
Exploration with stop has been studied in paths [16], trees [15], rings [14] and
general graphs [6]. More recently, the gathering problem (a.k.a. Rendez-vous) has
been considered in rings [9,11,25] and grids [1,7]. Exclusive perpetual exploration
has been studied in rings [3] and grids [4]. The exclusivity property states that any
node must be occupied by at most one robot. Very recently, exclusive perpetual
searching has been defined and studied in trees [2] and rings [11]. In all previous
works as well as in this paper, initial configurations are assumed to be exclusive,
that is, any node is occupied by at most one robot.

In this paper, we focus on the ring topology. The relevance of the ring topology
is motivated by its completely symmetric structure. It means that algorithms for
rings are more difficult to devise as they cannot exploit any topological structure,
assuming that all nodes look the same. In fact, our algorithms are only based
on robots’ disposal and not on topology. On rings, different types of exclusive
configurations may require different approaches. In particular, periodicity and
symmetry arguments must be carefully handled. An exclusive configuration is
called periodic if it is invariable under non-complete rotations. It is called sym-
metric if the ring has an axis of symmetry that reflects single robots into single
robots, and empty nodes into empty nodes. It is called rigid if it is aperiodic
and asymmetric. We consider the following two problems.
Gathering: The gathering problem consists in moving all the robots towards the
same node and remain there. On rings, under the Look-Compute-Move model,
the gathering is unsolvable if the robots are not empowered by the so-called
multiplicity detection capability [25], either in its global or local version. In the
former type, a robot is able to perceive whether any node of the graph is oc-
cupied by a single robot or more than one (i.e., a multiplicity occurs) without
perceiving the exact number. In the latter (and weaker) type, a robot is able
to perceive the multiplicity only if it is part of it. Using the global multiplicity
detection capability, in [25] some impossibility results have been proven. Then,

Gathering and Exclusive Searching on Rings under Minimal Assumptions 151

several algorithms have been proposed for different kinds of exclusive initial
configurations in [8,24,25]. These papers left open some cases which have been
closed in [9] where a unified strategy has been provided. With local multiplicity
detection capability, an algorithm starting from rigid configurations where the
number of robots k is strictly smaller than

⌊
n
2

⌋
has been designed in [21]. In [22],

the case where k is odd and strictly smaller than n− 3 has been solved. In [23],
the authors provide an algorithm for the case where n is odd, k is even, and
10 ≤ k ≤ n−5. Recently, the case of rigid configurations has been solved in [11].
The remaining cases are left open and the design of a unified algorithm for all
the cases is still unknown.
Exclusive Searching: Graph searching has been widely studied in centralized
and distributed settings (e.g., [19,20]). The aim is to make the robots clear all the
edges of a contaminated graph. An edge is cleared if it is traversed by a robot or
if both its endpoints are occupied. However, a cleared edge is recontaminated if
there is a path without robots from a contaminated edge to it. A graph is searched
if there exists a time when all its edges are simultaneously cleared. For instance,
in a centralized setting, two robots are sufficient to clear a ring, starting from a
node and moving in opposite directions. In a distributed setting, the task is much
harder due to symmetries and asynchronicity. Following [2,11], we also consider
an additional constraint: the so called exclusivity property, that is, no two robots
can be concurrently on the same node or cross the same edge. Moreover, as
the robots are oblivious, they cannot recognize which edges are already cleared,
therefore they must repeatedly perform the task. The searching is called perpetual
if it is accomplished infinitely many times. The study of perpetual exclusive
searching in the discrete model has been introduced in [2] for tree topologies.
Concerning rings, in [11] the case of initial rigid configurations has been tackled.
Contribution: We consider the gathering with local multiplicity detection and
the perpetual exclusive searching problems for k robots in an n-nodes ring.

For any k < n − 4, k �= 4, we fully characterize the exclusive configurations
from which the gathering problem is feasible. In particular, we design an algo-
rithm that solves the problem starting from any exclusive configuration with
k < n− 4, k �= 4, robots empowered by the local multiplicity detection, but for
the unsolvable configurations that will be specified later. Similarly to the case of
k = 4 in [9] and (n, k) = (7, 6) in [8], the cases left out from our characterization
(k = 4 and k ≥ n− 4), if gatherable, would require specific algorithms difficult
to generalize.

We then provide a characterization of any aperiodic exclusive configuration
with k �= 4, and (n, k) �∈ {(10, 5), (10, 6)} from which exclusive searching is solv-
able. That is, we design an algorithm that solves the problem starting from any
such aperiodic exclusive configurations but for the unsolvable ones. For peri-
odic configurations, we provide some impossibility results. Designing a unified
algorithm for all (periodic or not) configurations seems challenging.

The algorithms for gathering and exclusive searching (given in Sections 4
and 5, resp.) exploit a common technique (provided in Section 3) that al-
lows to achieve some special configurations suitable for the subsequent phases.

152 G. D’Angelo, A. Navarra, and N. Nisse

This result mainly relies on a non-trivial characterization of aperiodic configura-
tions in a ring that could be used for further problems. Due to space constraints,
most of the proofs and the pseudo-codes of the algorithms are reported in [12].

2 Notation and Preliminary

In this paper, we consider a ring with n ≥ 3 nodes {v0, · · · , vn−1}, where vi
is connected to vi+1 mod n for any 0 ≤ i < n. Moreover, let k ≥ 1 robots
occupy k distinct nodes of the ring. A configuration C is defined by the k
nodes occupied by robots. In what follows, any configuration is seen as a bi-
nary sequences where “0” represents an occupied node while “1” stands for an
empty node. More formally, given a configuration C, and for any i ≤ n, let
Si = (ri0, · · · , rin−1) ∈ {0, 1}n be the sequence such that rij = 0 if vi+j mod n

is occupied in C and rij = 1 otherwise, 1 ≤ j ≤ n. Intuitively, Si represents
the positions of robots, starting at vi. For any X = (x0, · · · , xr), let us denote
X = (xr , · · · , x0) and Xi = (xi mod r, . . . , xr+i mod r). A representation of C is
any sequence in SC = {Si, (Si)}i<n. Abusing the notation, we say C = S for
any S ∈ SC . Note that, for any exclusive configuration S = (s0, · · · , sn−1) ∈ SC ,∑

i<n si = n− k. A supermin of C is any representation of C that is minimum in
the lexicographical order. We denote the supermin of C as Cmin. In any supermin
(s0, · · · , sn−1), if k < n then sn−1 = 1.

We denote by xh a sequence of h ≥ 0 consecutive x, x ∈ {0, 1}. We say
that a sequence X is palindrome if X = X, it is symmetric if Xi is palindrome
or Xi = (Xi+1) for some i, and it is periodic if X = Xi, for some 0 < i <
|X | − 1. A configuration is symmetric (periodic, respectively) if at least one
of its representations is symmetric (periodic, respectively). It is known that
an aperiodic configuration admits at most one axis of symmetry [9]. Moreover,
an aperiodic configuration has either a unique supermin representation or two
symmetrical supermins [9].
Allowed Configurations: Let us summarize the known feasible and unfeasible
exclusive configurations for both gathering and graph searching. In [25], it is
shown that gathering is not solvable for k = 2, for any periodic initial configura-
tion, and for any initial configuration with an axis of symmetry passing through
two edges. In [11], it is shown that, for any exclusive configuration, it is not
possible to search a ring using k robots if n ≤ 9 or k ≤ 3, or k ≥ n− 2. Here, we
prove that exclusive searching is not feasible for any k even starting from any
configuration with an axis of symmetry passing through an empty node.

In what follows, an exclusive configuration is allowed for problem P if it is
not periodic, if it does not admit an axis of symmetry (as described above) for
which P is unsolvable, and if the number of robots does not fall in the above
defined impossibility ranges. In particular, all rigid configurations with a number
of robots out of the defined ranges are allowed. For gathering, the symmetric
allowed configurations are all aperiodic ones with the axis of symmetry not
passing through two edges and 3 ≤ k < n−4, k �= 4. For exclusive searching, the
symmetric allowed configurations are all aperiodic ones with k odd and those

Gathering and Exclusive Searching on Rings under Minimal Assumptions 153

with k even where the axis does not pass through an empty node, provided that
3 < k < n− 2 and n > 9.
Dealing with Symmetry: The core of the technique in [11] for solving the
problems from asymmetric exclusive configurations is Algorithm Asym. This
allows to achieve a particular configuration called Ca = (0k−1, 1, 0, 1n−k−1) made
of k − 1 consecutive robots, one empty node and one robot.

Lemma 1 ([11]). Let 3 ≤ k < n − 2 robots standing in an n-node ring and
forming a rigid exclusive configuration, Algorithm Asym eventually terminates
achieving configuration Ca and all intermediate configurations obtained are ex-
clusive and rigid.

Basically, Algorithm Asym ensures that, from any rigid exclusive configuration,
one robot, that can be uniquely distinguished, moves to an unoccupied neigh-
bor, achieving another rigid configuration while strictly decreasing the supermin.
Here, our main contribution is Algorithm Align that generalizes Asym by han-
dling all allowed configurations (not only rigid). Difficulties are multiple.

First, in allowed symmetric configurations, we cannot ensure that a unique
robot will move. In such a case, the algorithm may allow a robot r to move,
while r is reflected by the axis of symmetry to another robot r′. Since r and
r′ are indistinguishable and execute the same algorithm, r′ should perform the
same (symmetric) move. However, due to asynchronicity, r may move while the
corresponding move of r′ is postponed (i.e. r′ has performed the Look phase but
not yet the Move phase). The configuration reached after the move of r has a
potential so-called pending move (the one of r′ that will be executed eventually).
To deal with this problem, our algorithm ensures that reached configurations
that might have a pending move are asymmetric, distinguishable and the pending
move is unique. Therefore, in such a case, our algorithm forces the pending move.
That is, contrary to [11] where Algorithm Asym ensures to only go through rigid
configurations, the subtlety here consists in possibly going from an asymmetric
configuration to a symmetric one. To distinguish such configurations, we define
the notion of adjacent configurations. An asymmetric configuration C is adjacent
to a symmetric configuration C′ with respect to a procedure M allowed by the
algorithm if C can be obtained from C′ by applying M to only one of the robots
permitted to move by M. In other words, if C is adjacent to C′ with respect to
M, there might exist a pending move permitted by M in C. Another difficulty is
to ensure that all met configurations are allowed for the considered problem P .
Overview of Algorithm Align: Our contribution mainly relies on Algorithm
Align, described in Section 3. Such an algorithm starts from any configura-
tion that is allowed either for the gathering or the exclusive searching problems
and aims at reaching one of the configurations Ca, Cb, or Cc having supermin
(0k−1, 1, 0, 1n−k−1), (0k, 1n−k), or, (0 k

2 , 1j , 0
k
2 , 1n−k−j) for k even and j < n−k

2 ,
respectively. From such configurations, we will show how to solve the gathering
and the exclusive searching problems. Here, we describe the main principles of
Algorithm Align. Let 3 ≤ k < n − 2, k �= 4, and let us consider any allowed
configuration C for Problem P . Algorithm Align proceeds as follows:

154 G. D’Angelo, A. Navarra, and N. Nisse

– If no two robots occupy two adjacent nodes in C, we prove that only two
cases are possible. If C is symmetric, then Algorithm Align-One is executed
by two symmetric robots. In this case, if only one of them actually moves,
then the obtained configuration is asymmetric and adjacent only to C. Then,
the possible pending move is forced. Otherwise, if C is asymmetric and not
adjacent to a symmetric configuration, Algorithm Asym can be executed
without ambiguity.

– If two robots occupy two adjacent nodes in C (i.e.,the supermin represen-
tation of C starts by 02) and C is symmetric, then moving only one robot
can lead to a configuration which is symmetric or adjacent to a different
symmetric configuration. One of our main results is the characterization of
the symmetric configurations that may lead to these cases. Therefore, the
procedures performed by Algorithm Align in case of symmetric configura-
tions are designed in a way that it is possible to univocally determine the
possible pending move in the case that only one of two symmetric robots
actually moves (Algorithm Align-Two-Sym). If C is asymmetric, there are
two cases: either C is not adjacent to any symmetric configuration and Algo-
rithm Asym is executed or we force to perform the unique possible pending
move (Algorithm Align-Two-Asym).

In detail, if the initial allowed configuration is symmetric and k is even, Align

achieves either configuration Cb or Cc, and the original type of symmetry is
preserved, hence the obtained configuration is still allowed. If the configuration
is asymmetric and k is even, then any of Ca, Cb, and Cc can be achieved, if they
are allowed. If k is odd, then the configuration achieved is either Ca or Cb, if this
latter is allowed. The general strategy of the algorithm is the following.
– If the configuration is symmetric, then Align preserves the symmetry by

performing a procedure that moves two symmetric robots in a way that, if
only one of such robots actually moves, then the obtained configuration is
guaranteed to be asymmetric and not adjacent to another symmetric config-
uration with respect to any other procedure that can be possibly performed
by Align. When k is odd, the symmetry is preserved until it can be safely
broken by moving in an arbitrary direction the unique robot lying on the
axis of symmetry.

– If the configuration is asymmetric, then always only one robot is permitted
to move by Align. First, the algorithm checks whether the asymmetric con-
figuration is adjacent to some allowed symmetric configuration with respect
to some procedure possibly performed by Align. In this case, Align forces
the only possible pending move. We recall that the procedures performed
on a symmetric configuration are designed in a way that the configuration
obtained is not adjacent to any other symmetric configuration different from
the correct one. Therefore, from an asymmetric configuration adjacent to an
allowed symmetric one with respect to the procedures of Align, the robot
that has to move can be univocally determined and the original symmetry
preserved. Note that, such behavior is performed even if the initial configu-
ration is asymmetric. In this case, the configuration obtained after the move

Gathering and Exclusive Searching on Rings under Minimal Assumptions 155

is symmetric and allowed, and the algorithm proceeds like in the case that
the initial configuration was symmetric. In fact, as the robots are oblivious,
they cannot distinguish the two cases.

– If an asymmetric configuration is not adjacent to any symmetric configura-
tion with respect to any procedure of Align, then the algorithm in [11] is
performed. Such algorithm, ensures that only one move is performed and the
obtained configuration is always rigid, thus it is allowed.

We prove that Align always reduce the supermin and that only allowed config-
uration are reached.

3 Align Algorithm

In this section, we devise algorithm Align that, starting from any allowed con-
figuration, reaches one of the exclusive configurations Ca, Cb, and Cc previously
defined. Algorithm Align is based on four procedures described below. Let C
be any allowed configuration and let Cmin = (v0, v1, . . . , vn−1) be its supermin.1
Let �1 be the smallest integer such that �1 > 0, v�1 = 0 and v�1−1 = 1; let �2
be the smallest integer such that �2 > �1, v�2 = 0 and v�2−1 = 1; let �−1 be the
largest integer such that �−1 < n and v�−1 = 0. The four procedures permitted
by Align are the following:
– reduce0(C): The robot at node v0 moves to node v1;
– reduce1(C): The robot at node v�1 moves to node v�1−1;
– reduce2(C): The robot at node v�2 moves to node v�2−1;
– reduce−1(C): The robot at node v�−1 moves to node v�−1+1.
Note that in some configurations �1 and �2 might be not defined. However,

we will show that in these cases our algorithm does not perform procedures
reduce1 and reduce2, respectively.

Algorithm Align works in two phases: the first phase (Algorithm
Align-One) copes with configurations without any consecutive occupied nodes
(i.e. v1 = 1) while the second phase copes with configurations having at least two
consecutive occupied nodes (Algorithm Align-Two-Sym, if the configuration
is symmetric, and Align-Two-Asym otherwise).
Algorithm Align-One. If v1 = 1 and the configuration C is symmetric, the
general strategy is to reduce the supermin by performing reduce0. If the two
symmetric robots that should move perform their Look-Compute-Move cycles
synchronously, then the obtained configuration C′ is symmetric where the super-
min is reduced and the axis of symmetry of C is preserved. Hence, C′ is allowed.

If only one of the two symmetric robots that should move actually performs
the move (due to the asynchronous execution of their respective Look-Compute-
Move cycles), then the following lemma ensures that the configuration C′ ob-
tained is asymmetric and not adjacent to any symmetric configuration with
respect to any possible procedure that allows at most two robots to move.

1 By vi we denote both the i-th node and the i-th value of sequence Cmin.

156 G. D’Angelo, A. Navarra, and N. Nisse

Lemma 2 ([9]). Let C be an allowed configuration and let C′ be the one obtained
from C after a reduce0 performed by a single robot. Then, C′ is asymmetric
and at least two robots have to move to obtain C′ from an aperiodic symmetric
configuration different from C.

It follows that robots can recognize whether C′ has been obtained by per-
forming reduce0 from C. In the affirmative case, Align forces to perform the
possible pending move.

However, it is not always possible to perform reduce0 on a symmetric con-
figuration C. Indeed, in case that Cmin = (0, 1, 0, R), for some R = R, then
performing reduce0 would imply that two robots occupy the same node (a
multiplicity occurs but we want to avoid it in this phase). In fact, note that in
this case the node symmetric to v0 is v2 and performing reduce0 consists in
moving both robots from v0 and v2 to v1. In this case, we perform reduce−1.
In [12] (Lemma 5 for j = 1), we show that such a procedure performed by only
one robot from a configuration C such that Cmin = (0, 1, 0, R), with R = R,
does not create a symmetric configuration and the configuration obtained is not
adjacent with respect to any possible procedures performed by Align.2 There-
fore, we can again preserve the symmetry by forcing to perform the symmetric
move. Note that also in this case, performing reduce−1 results in reducing the
supermin.

If the configuration is asymmetric and it cannot be obtained by performing
reduce0 or reduce−1 from any possible allowed symmetric configuration, then
we execute the algorithm in [11] (Algorithm Asym). Lemma 1 ensures that such
algorithm always leads to rigid configurations.

Algorithm Asym ensures that each procedure permits only one robot to
change its position, and then no pending moves are possible. If by applying
Asym, we produce an asymmetric configuration which is adjacent to a symmet-
ric configuration with respect to some of the procedures permitted by Align,
then we force to perform the possible pending move.

Note that, in some symmetric configurations there exists a robot r that occu-
pies a node lying on the axis of symmetry. In these cases, reduce0 or reduce−1

may consists in moving r (in any arbitrary direction). The obtained configura-
tion is asymmetric and not adjacent to any other symmetric configuration with
respect to the procedures of Align. Then, we can safely perform Asym as there
are no pending moves.

It follows that Align-One leads to a configuration with two consecutive oc-
cupied nodes. In detail, we can obtain: (i) an asymmetric configuration with two
consecutive occupied nodes which is not adjacent to any symmetric configuration
with respect to a procedure permitted by Align-One; (ii) an asymmetric con-
figuration with two consecutive occupied nodes which is adjacent to a symmetric
configuration with respect to some procedure permitted by Align-One; (iii) a
symmetric configuration with two or three consecutive occupied nodes with the
axis of symmetry passing in their middle; (iv) a symmetric configuration with
two symmetric pairs of consecutive occupied nodes.
2 Configuration C = (0, 1, 0, 1, 1, 0, 1, 1) is the only exception, see [12].

Gathering and Exclusive Searching on Rings under Minimal Assumptions 157

Algorithm Align-Two-Sym. Once a configuration with two consecutive
occupied nodes is achieved, the second phase of Algorithm Align starts. Now it
is not possible to perform reduce0 as it would cause a multiplicity. Hence, one
procedure among reduce1, reduce2 or reduce−1 is performed.

In symmetric configurations, we perform reduce1 every time it is possible.
This occurs when the asynchronous execution of the two symmetric robots that
should perform the procedure cannot generate a symmetric configuration with
a different axis of symmetry or a configuration which is adjacent to a different
symmetric configuration with respect to any procedure permitted by Align.

If it is not possible to perform reduce1, we perform reduce2. It can be
proven that asynchronous executions cannot generate other symmetries or con-
figurations adjacent to symmetric ones potentially reachable.

There are cases when we cannot perform reduce1 and reduce2. For instance
this can happen if Cmin = (0i, 1j , 0i, R), with R = R. In fact, in this case,
Cmin = (Cmin

2i+j) and performing reduce1 corresponds to move the robot at vi+j

which is symmetric to that at vi−1. Similar instances where it is not possible to
perform reduce2 can occur. In such cases, we perform reduce−1 and show that
this cannot create any different symmetry or configuration adjacent to symmetric
ones with respect to any procedure permitted by Align.

To give more detail on the behavior of the algorithm in the case of symmetric
configurations, we define the following three sets. Let S1 be the set of symmetric
configurations with supermin (0i, 1, R), where i ≥ 2 and R contains a sequence
0i. Let S2 be the set of configurations C ∈ S1 such that Cmin = (0i, 1j, 0i, Z) for
some Z = Z and j ≥ 1. Finally, let S3 be the set of configurations C ∈ S1 such
that Cmin = (0i, 1j

′
, 0x, 1j, 0x, 1j

′
, 0i, Z) for some Z = Z, j, j′ > 0 and 1 ≤ x ≤ i

or configurations C ∈ S1 such that Cmin = (0i, 1j, 0i−1, 1, 0, R, 1), R = R, j > 0.
The sets S2 and S3 contain the configurations where it is not possible to per-

form reduce1 or reduce2, respectively. In Lemmata 6-10 of [12], we identify the
procedures that can be safely performed on the configurations in such sets. Based
on these results, Algorithm Align-Two-Sym works as follows. If C is in S2, then
reduce1 cannot be performed. However, we can safely perform reduce−1. If
C �∈ S2, then Align-Two-Sym first computes the configuration C′ that would
be obtained from C by applying reduce1 on only one robot. If C′ is symmetric,
then we know that C ∈ S1 \ S3, Cmin = (0i, 1, 0, 0, 1, 0i, (1, 0, 1, 0i)�, 1, 0, 1), or
Cmin = (0i, 1, 0i, 1, 0i, 1, 0i, (1, 0i−1, 1, 0i, 1, 0i)�, 1, 0i−1, 1), for some � > 0. In the
former case, we can safely perform reduce2 as the obtained configuration is nei-
ther symmetric nor adjacent to any other symmetric configuration. In the latter
two cases, we cannot perform reduce2 but we can safely perform reduce−1.

If C′ is asymmetric, then Align-Two-Sym checks whether it can be obtained
by applying reduce1 from a symmetric configuration C′′ different from C. To this
aim, it computes all the configurations that can possibly generate C′. As reduce1

reduces the supermin, then by performing it, the starting node of the supermin in
the obtained configuration is either the same of the previous one or it is one of the
endpoints of a sequence of consecutive occupied nodes which is generated by the
procedure itself. It follows that C′′ can be computed by increasing the supermin

158 G. D’Angelo, A. Navarra, and N. Nisse

of C′ by moving one of the robots in the endpoints of the sequence of consecutive
occupied nodes at the beginning of the supermin sequence or the possible robot
in position v�1 . In other words, if C′ = (0i, 1j , 0, R, 1) for i ≥ 2 and j ≥ 1, then
C′′ can be only one of the following configurations: Cα := (0i−1, 1, 0, 1j−1, R, 1),
Cβ := (0i−1, 1j , R, 0, 1), and, if R = (1, R′), Cγ := (0i, 1j+1, 0, R′, 1). If at least
two among Cα, Cβ, and Cγ are symmetric and the procedure from both of them
to C′ corresponds to reduce1 (i.e. two symmetric configurations are adjacent to
C′ with respect to reduce1), then at least one of them must belong to S1 \ S3.
Therefore, we can safely perform reduce2 on such configuration and reduce1

on the other one.
In any other symmetric configuration, Align-Two-Sym applies reduce1.3

Algorithm Align-Two-Asym. This algorithm works similarly to Align-

One when the configuration is asymmetric. First, it checks whether the given
configuration C has been obtained from a symmetric and allowed configuration
C′ by performing only one of the two symmetric moves. In the affirmative case,
it performs the possible pending move, otherwise it performs Algorithm Asym.
Given the procedures performed by Align-One and Align-Two-Sym, a config-
uration C with Cmin = (0i, 1j, 0x, 1j

′
, R, 1), j ≥ 1, x ≥ 1, and j′ ≥ 0 can be adja-

cent to a symmetric configuration C′ with respect to one of such procedures only
if C′ is one of the following configurations: Cα := (0i−1, 1, 0, 1j−1, 0x, 1j

′
, R, 1),

Cβ := (0i−1, 1j, 0x, 1j
′
, R, 0, 1), if j′ > 0, Cγ := (0i, 1j, 0x−1, 1, 0, 1j

′−1, R, 1), or,
if R = (0, 1, R′), Cδ := (0i, 1j , 0x, 1j

′+1, 0, R′, 1). Note that, at most one of the
above configurations can be symmetric. Let Ci be such a configuration, if by
applying Align-Two-Sym (or Align-One if Ci has no consecutive occupied
nodes) on a single robot of Ci we obtain C, then C has been possibly obtained
from Ci and then Align-Two-Asym performs the possible pending move. If
none of Ci, i ∈ {α, β, γ, δ}, is symmetric, then C has not been obtained from any
symmetric configurations and then Align-Two-Asym performs Asym. As in
the case of Align-One, if the robot leading from Ci to C is that on the axis of
symmetry of Ci, then Algorithm Asym is performed. The next theorem shows
the correctness of Align.

Theorem 1. Let 3 ≤ k < n− 2, k �= 4, robots standing in an n-node ring form-
ing an exclusive allowed configuration, Algorithm Align eventually terminates
achieving one exclusive allowed configuration among Ca, Cb, or Cc.

Proof. We model all the possible executions of Align as a directed graph where
each configuration is represented as a node and there exists an arc (u, v) if there
exist a procedure and a time schedule of the algorithm that starting from the
configuration represented by u lead to that represented by v, even with possible
pending moves. An execution of Align is represented by a path in this graph. In
what follows, we show that such paths are acyclic, are made of nodes representing
allowed configurations, and they always lead to a node representing one of the
configurations Ca, Cb, or Cc.
3 With the exception of configurations Cs1 = (0i1 , 1, 0, 1, 0x, 1, 0, 1) and Cs2 =
(0i2 , 1, 1, 0y , 1, 1) with x < i1 and y < i2, see [12].

Gathering and Exclusive Searching on Rings under Minimal Assumptions 159

We can partition the nodes into three sets representing: the symmetric config-
urations; the asymmetric configurations which are adjacent to some symmetric
configurations with respect to one of the procedures permitted by Align; and the
remaining asymmetric configurations. We denote such sets as S, AS1 and AS2,
respectively. Lemmata 1, 2 and 5-10 in [12] imply the following properties.

– A node in S representing a configuration C has either one or two outgoing
arcs. If it has exactly two outgoing arcs, then one of them is directed to
the node v′ representing the configuration C′ obtained if both the symmetric
robots permitted to move by Align perform their moves synchronously.
The other arc is directed to the node v′′ representing the configuration C′′

obtained if only one of the two symmetric robots permitted to move by
Align actually moves. In other words, the former arc models the case where
both the two symmetric robots permitted to move perform the entire cycle
Look-Compute-Move, while the latter arc models the case where only one
of them performs entirely such cycle. Note that, v′ belongs to S, while v′′

belongs to AS1. Moreover, if C is allowed, then also C′ is. If the node has
exactly one outgoing arc then the robot r moved by Align lies on the axis
of symmetry. In this case, any procedure performed by Align moves r in an
arbitrary direction. Then, the arc is directed to a node in AS1.

– A node in AS1 representing a configuration C′′ has exactly one incoming arc
from a node in S, it can have some incoming arcs from nodes in AS2, and
it has exactly one outgoing arc, directed to a node in S or in AS2. If the
outgoing arc is directed to a node in S, then one of the incoming arcs comes
from a node u in S and models the case when only one of the two symmetric
robots permitted to move by Align from the configuration C represented by
u actually moves. From [12] (Lemmata 5-10), there exists only one of such
nodes. The outgoing arc leads to the node in S representing configuration C′

which can be obtained by moving synchronously both the symmetric robots
permitted to move by Align from C. Note that both C and C′′ are allowed
configurations. If the outgoing arc is directed to a node in AS2, then C′′ has
been obtained from a configuration, corresponding to a node in S, such that
the robot moved by Align lies on the axis of symmetry. In this case, Align

performs Asym from C′′ obtaining a configuration in AS2.
– A node in AS2 has exactly one outgoing arc, directed either to another node

in AS2 or to a node in AS1 but it cannot be directed to a node in S (by
Lemma 1). It can have some arcs coming from nodes in AS1 or AS2.

It follows that any execution path performed by the algorithm is made of
nodes representing allowed configurations. Moreover, each allowed configuration
has an outgoing arc that is traversed by the execution path of the algorithm.
Moreover, any procedure performed by the algorithm reduces the supermin of
a configuration. This implies that the graph is acyclic, as we can define a topo-
logical ordering of the nodes on the basis of the ordering given by the supermin
of the corresponding configurations. The statement is then proven by observing

160 G. D’Angelo, A. Navarra, and N. Nisse

that configurations in Ca, Cb, or Cc are those with the minimum possible super-
min and hence are the only possible sinks of the graph. ��

4 Gathering in a Ring

In this section, we provide the full strategy for achieving the gathering. We
make use of procedure Align to reach one of the following configurations: Ca =
(0k−1, 1, 0, 1n−k−1), Cb = (0k, 1n−k), with k or n odd, Cc = (0

k
2 , 1j , 0

k
2 , 1n−k−j),

with k even and j or n odd.
Algorithm Align terminates when either the obtained configuration is one

of the three above, or it is one of the configurations generated by Algorithm
Gathering below.

If the initial configuration has both k and n even, then Align either reaches
configuration Ca or Cc with j odd. In the former case, Gathering leads to
Cd = (0k−1, 1, 1, 0, 1n−k−2). As k < n − 4, then Cd is asymmetric and it is not
adjacent to any possible symmetric configuration with respect to any procedure
of Gathering. From Cd, Gathering performs reduce0, hence creating a mul-
tiplicity, and still obtaining configuration Cd. This process is repeated until only
two nodes remain occupied. At this point, only one of the two occupied nodes
contains a multiplicity, while the other contains one single robot. The single
robot will be the only one permitted to move towards the other occupied node
until the gathering is accomplished. In the latter case, that is, from Cc with
j odd, Gathering leads to configuration Cc with j = 1. This is achieved by
iterating procedure compact0 as defined below. Let C = (v0, v1, . . . , vn) be a
configuration of type (0

k
2−i, 1, 0i, 1j , 0i, 1, 0

k
2−i, 1n−k−j−2) where 1 ≤ i ≤ k

2 and
j < n−k−2

2 . Note that for i = k
2 , C = Cc. Procedure compact0 moves the robot

at v k
2−i−1 towards v k

2−i. As C is symmetric, compact0 permits two robots to
move. If both move synchronously, the resulting configuration C′ is similar to C
but with i increased by one. If only one robot moves, the obtained configuration
(0

k
2−i−1, 1, 0i+1, 1j, 0i, 1, 0

k
2−i, 1n−k−j−2) is asymmetric and not adjacent to any

other symmetric configuration, and hence C′ can be easily obtained. Once Cc

with j = 1 is reached, again compact0 is applied. If both the permitted robots
move, a symmetric configuration C′′ = (0

k
2 −1, 1, 0, 1, 0

k
2−1, 1n−k−1), with v k

2
be-

ing a multiplicity, is reached. This equals to the case of symmetric configurations
with k odd that will be discussed later. If only one robot moves, configuration
(0

k
2−1, 1, 0

k
2+1, 1n−k−1) is reached. As k is even, then 4 < k < n− 4 and hence,

such a configuration is asymmetric and not adjacent to any other symmetric
configuration. Then, C′′ can be easily obtained.

If k is even and n is odd, then Align either reaches configuration Cb or Cc with
either j or n−k−j odd. In this case, Gathering behaves as above but creating
the multiplicity at the central node of the only odd sequence of consecutive empty
nodes among j and n − k − j. Eventually, Gathering achieves configuration
C′′. Again, this equals to the case of symmetric configurations with k odd. Note
that, this case is similar to the technique presented in [23] where the solved
configurations are only those with k even and n odd.

Gathering and Exclusive Searching on Rings under Minimal Assumptions 161

If k is odd, then Align always reaches configuration Cb. In this case, the
used technique is similar to that presented in [22] where the solved configura-
tions are only those with k odd. From Cb, Gathering permits robots at v k−1

2 −1

and v k−1
2 +1 to move towards v k−1

2
. If only one robot actually moves, configura-

tion (0
k′
2 −1, 1, 0

k′
2 +1, 1n−k′−1) is achieved with k′ = k − 1. By the parity of k′,

configuration C′′ is achieved subsequently. If both robots move synchronously,
again configuration C′′ is reached. From here, Gathering performs procedure
compact1 defined as follows. Let C = (v0, v1, . . . , vn) be a configuration of type
(0

k−i
2 , 1, 0i, 1, 0

k−i
2 , 1n−k−2) where 1 ≤ i ≤ k, then compact1 moves the robot

at v k−i
2 −1 towards v k−i

2
. As C is symmetric, compact1 permits two robots to

move. If both move synchronously, the resulting configuration C′ is similar to C
but with i increased by two. If only one robot moves, as before, the obtained
configuration is asymmetric and not adjacent to any other symmetric config-
uration, and C′ can be easily obtained. By iterating this process, Gathering

achieves configuration Cb with the number of occupied nodes decreased by two.
Eventually, this process terminates with only one occupied node.

Theorem 2. Let 3 ≤ k < n− 4, k �= 4 robots, forming an allowed configuration
in an n-node ring, Algorithm Gathering achieves the gathering.

5 Exclusive Searching in a Ring

In this section, we present an algorithm that allows a team of robots to exclu-
sively search a ring.

If k is even and there exists an axis of symmetry passing through an empty
node, the searching is clearly unsolvable because a synchronous execution of any
algorithm either cause a multiplicity in the node lying on the axis or does not
allow to search the edges incident to such a node. Moreover, we prove that graph
searching is impossible starting from any periodic configuration with one or two
empty nodes per period.

In [11], an algorithm is designed allowing 5 ≤ k ≤ n − 3 robots to search
exclusively a ring with n ≥ 10 nodes (but for (k, n) = (5, 10)), for rigid initial
configurations. Here, we improve over this algorithm by addressing also aperiodic
symmetric configurations. We use two sub-procedures: Algorithm Compact-

Align is used after Align to achieve configuration Cb, when Align reaches
configuration Cc, and Algorithm Break-Symmetry is used to achieve Ca in the
case that k is odd.
Algorithm Search-Ring. The algorithm first checks whether k = n − 3
or if n is odd and k is even. In the affirmative case, any allowed configuration
must be asymmetric, and therefore the algorithm of [11] can be applied and
the ring is searched. If k is odd, we first use Algorithm Break-Symmetry

to break the potential symmetry and then use the algorithm of [11]. Each of
these configurations used during the searching phase of the algorithm of [11]
are asymmetric and are not adjacent to any symmetric configuration reached

162 G. D’Angelo, A. Navarra, and N. Nisse

by Algorithm Break-Symmetry. Therefore, there is no ambiguity (no pending
move) when a robot recognizes such a configuration.

If n and k are even, we may be in allowed symmetric configurations and there-
fore the Search-Ring proceeds in two phases. Algorithm Compact-Align is
first applied until one of the configurations in A (described in [12]) is achieved.
This is guaranteed by the fact that both Ca and Cb belong to A. Then, the
algorithm proceeds to Phase 2 which actually performs the searching.

The intuitive explication of the Searching algorithm (Phase 2) is as follows.
All robots are aligned on consecutive nodes. Then, both robots r and r′ at the
ends of this segment move (one clockwise and the other anti-clockwise) to reach
the two adjacent nodes opposite to the occupied segment. Then, the two robots
q and q′ occupying the ends of the “long" occupied segment move to their empty
neighbors. These moves indicate to r and r′ that it is time to go back toward
the “long” segment, and that is what happens. Finally, when r is adjacent to q
and r′ is adjacent to q′, then q and q′ move to their empty neighbors in order to
re-build the original segment. Then, the process is repeated perpetually. Such a
sequence of performed moves actually searches the ring. Moreover, by definition
of the configurations met during the process (configurations in A), there is no
ambiguity in the choice of the robot(s) that must move. Finally, there are no
conflicts between the different phases of our procedure because any configuration
in A is not adjacent to any symmetric configuration not in A. We then get:

Theorem 3. Let 4 < k ≤ n − 3 robots, forming an allowed configuration in
an n-node ring, Algorithm Search-Ring perpetually searches the ring, but for
n = 10 and k = 5, and for symmetric configurations with n = 10 and k = 6.

References

1. Bampas, E., Czyzowicz, J., Gąsieniec, L., Ilcinkas, D., Labourel, A.: Almost opti-
mal asynchronous rendezvous in infinite multidimensional grids. In: Lynch, N.A.,
Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 297–311. Springer,
Heidelberg (2010)

2. Blin, L., Burman, J., Nisse, N.: Brief announcement: Distributed exclusive and
perpetual tree searching. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol. 7611,
pp. 403–404. Springer, Heidelberg (2012)

3. Blin, L., Milani, A., Potop-Butucaru, M., Tixeuil, S.: Exclusive perpetual ring
exploration without chirality. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010.
LNCS, vol. 6343, pp. 312–327. Springer, Heidelberg (2010)

4. Bonnet, F., Milani, A., Potop-Butucaru, M., Tixeuil, S.: Asynchronous exclusive
perpetual grid exploration without sense of direction. In: Fernàndez Anta, A.,
Lipari, G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109, pp. 251–265. Springer,
Heidelberg (2011)

5. Chalopin, J., Das, S.: Rendezvous of mobile agents without agreement on local
orientation. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide,
F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 515–526. Springer,
Heidelberg (2010)

Gathering and Exclusive Searching on Rings under Minimal Assumptions 163

6. Chalopin, J., Flocchini, P., Mans, B., Santoro, N.: Network exploration by silent
and oblivious robots. In: Thilikos, D.M. (ed.) WG 2010. LNCS, vol. 6410,
pp. 208–219. Springer, Heidelberg (2010)

7. D’Angelo, G., Di Stefano, G., Klasing, R., Navarra, A.: Gathering of robots on
anonymous grids without multiplicity detection. In: Even, G., Halldórsson, M.M.
(eds.) SIROCCO 2012. LNCS, vol. 7355, pp. 327–338. Springer, Heidelberg (2012)

8. D’Angelo, G., Di Stefano, G., Navarra, A.: Gathering of six robots on anonymous
symmetric rings. In: Kosowski, A., Yamashita, M. (eds.) SIROCCO 2011. LNCS,
vol. 6796, pp. 174–185. Springer, Heidelberg (2011)

9. D’Angelo, G., Di Stefano, G., Navarra, A.: How to gather asynchronous oblivious
robots on anonymous rings. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol. 7611,
pp. 326–340. Springer, Heidelberg (2012)

10. D’Angelo, G., Di Stefano, G., Navarra, A.: Gathering asynchronous and oblivious
robots on basic graph topologies under the look-compute-move model. In: Alpern,
S., Fokkink, R., Gąsieniec, L., Lindelauf, R., Subrahmanian, V. (eds.) Search The-
ory: A Game Theoretic Perspective, pp. 197–222. Springer (2013)

11. D’Angelo, G., Di Stefano, G., Navarra, A., Nisse, N., Suchan, K.: A unified ap-
proach for different tasks on rings in robot-based computing systems. In: Proc. of
15th IEEE IPDPS APDCM (to appear, 2013)

12. D’Angelo, G., Navarra, A., Nisse, N.: Robot Searching and Gathering on Rings
under Minimal Assumptions, Tech. Rep. RR-8250, Inria (2013)

13. Dieudonne, Y., Pelc, A., Peleg, D.: Gathering despite mischief. In: Proc. of 23rd
SODA, pp. 527–540 (2012)

14. Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: Computing without communi-
cating: Ring exploration by asynchronous oblivious robots. In: Tovar, E., Tsigas,
P., Fouchal, H. (eds.) OPODIS 2007. LNCS, vol. 4878, pp. 105–118. Springer,
Heidelberg (2007)

15. Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: Remembering without memory:
Tree exploration by asynchronous oblivious robots. Theor. Comput. Sci. 411(14-
15), 1583–1598 (2010)

16. Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: How many oblivious robots can
explore a line. Inf. Process. Lett. 111(20), 1027–1031 (2011)

17. Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by oblivious mobile
robots. Morgan and Claypool (2012)

18. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Hard tasks for weak robots:
The role of common knowledge in pattern formation by autonomous mobile robots.
In: Aggarwal, A.K., Pandu Rangan, C. (eds.) ISAAC 1999. LNCS, vol. 1741,
pp. 93–102. Springer, Heidelberg (1999)

19. Fomin, F.V., Thilikos, D.M.: An annotated bibliography on guaranteed graph
searching. Theor. Comput. Sci. 399(3), 236–245 (2008)

20. Ilcinkas, D., Nisse, N., Soguet, D.: The cost of monotonicity in distributed graph
searching. Distributed Computing 22(2), 117–127 (2009)

21. Izumi, T., Izumi, T., Kamei, S., Ooshita, F.: Mobile robots gathering algo-
rithm with local weak multiplicity in rings. In: Patt-Shamir, B., Ekim, T. (eds.)
SIROCCO 2010. LNCS, vol. 6058, pp. 101–113. Springer, Heidelberg (2010)

22. Kamei, S., Lamani, A., Ooshita, F., Tixeuil, S.: Asynchronous mobile robot gath-
ering from symmetric configurations without global multiplicity detection. In:
Kosowski, A., Yamashita, M. (eds.) SIROCCO 2011. LNCS, vol. 6796, pp. 150–161.
Springer, Heidelberg (2011)

164 G. D’Angelo, A. Navarra, and N. Nisse

23. Kamei, S., Lamani, A., Ooshita, F., Tixeuil, S.: Gathering an even number of
robots in an odd ring without global multiplicity detection. In: Rovan, B., Sassone,
V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 542–553. Springer,
Heidelberg (2012)

24. Klasing, R., Kosowski, A., Navarra, A.: Taking advantage of symmetries: Gath-
ering of many asynchronous oblivious robots on a ring. Theor. Comput. Sci. 411,
3235–3246 (2010)

25. Klasing, R., Markou, E., Pelc, A.: Gathering asynchronous oblivious mobile robots
in a ring. Theor. Comput. Sci. 390, 27–39 (2008)

26. Kranakis, E., Krizanc, D., Markou, E.: The Mobile Agent Rendezvous Problem in
the Ring. Morgan & Claypool (2010)

27. Prencipe, G.: Instantaneous actions vs. full asynchronicity: Controlling and
coordinating a set of autonomous mobile robots. In: Restivo, A., Ronchi Della
Rocca, S., Roversi, L. (eds.) ICTCS 2001. LNCS, vol. 2202, pp. 154–171. Springer,
Heidelberg (2001)

	Gathering and Exclusive Searching on Rings under Minimal Assumptions
	1 Introduction
	2 Notation and Preliminary
	3 Align Algorithm
	4 Gathering in a Ring
	5 Exclusive Searching in a Ring
	References

