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Abstract. The difference between the speed of the actions of different
processes is typically considered as an obstacle that makes the achieve-
ment of cooperative goals more difficult. In this work, we aim to highlight
potential benefits of such asynchrony phenomena to tasks involving sym-
metry breaking. Specifically, in this paper, identical (except for their
speeds) mobile agents are placed at arbitrary locations on a (continuous)
cycle of length n and use their speed difference in order to rendezvous
fast. We normalize the speed of the slower agent to be 1, and fix the
speed of the faster agent to be some c > 1. (An agent does not know
whether it is the slower agent or the faster one.) The straightforward
distributed-race (DR) algorithm is the one in which both agents simply
start walking until rendezvous is achieved. It is easy to show that, in
the worst case, the rendezvous time of DR is n/(c − 1). Note that in the
interesting case, where c is very close to 1 (e.g., c = 1+1/nk), this bound
becomes huge. Our first result is a lower bound showing that, up to a
multiplicative factor of 2, this bound is unavoidable, even in a model that
allows agents to leave arbitrary marks (the white board model), even as-
suming sense of direction, and even assuming n and c are known to agents.
That is, we show that under such assumptions, the rendezvous time of
any algorithm is at least n

2(c−1) if c � 3 and slightly larger (specifically,
n

c+1 ) if c > 3. We then manage to construct an algorithm that precisely
matches the lower bound for the case c � 2, and almost matches it when
c > 2. Moreover, our algorithm performs under weaker assumptions than
those stated above, as it does not assume sense of direction, and it allows
agents to leave only a single mark (a pebble) and only at the place where
they start the execution. Finally, we investigate the setting in which no
marks can be used at all, and show tight bounds for c � 2, and almost
tight bounds for c > 2.
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1 Introduction

1.1 Background and Motivation

The difference between the speed of the actions of different entities is typically
considered disruptive in real computing systems. In this paper, we illustrate
some advantages of such phenomena in cases where the difference remains fixed
throughout the execution1. We demonstrate the usefulness of this manifestation
of asynchrony to tasks involving symmetry breaking. More specifically, we show
how two mobile agents, identical in every aspect save their speed, can lever their
speed difference in order to achieve fast rendezvous.

Symmetry breaking is a major issue in distributed computing that is com-
pletely absent from traditional sequential computing. Symmetry can often pre-
vent different processes from reaching a common goal. Well known examples
include leader election [3], mutual exclusion [14], agreement [4,25] and renaming
[6]. To address this issue, various differences between processes are exploited. For
example, solutions for leader election often rely on unique identifiers assumed
to be associated with each entity (e.g., a process) [3]. Another example of a
difference is the location of the entities in a network graph. Entities located in
different parts of a non-symmetric graph can use this knowledge in order to
behave differently; in such a case, a leader can be elected even without using
unique identifiers [26]. If no differences exist, breaking symmetry deterministi-
cally is often impossible (see, e.g., [3,27]) and one must resort to randomized
algorithms, assuming that different entities can draw different random bits [19].

We consider mobile agents aiming to rendezvous. See, e.g., [7,13,22,23,24,27].
As is the case with other symmetry breaking problems, it is well known that if the
agents are completely identical then rendezvous is, in some cases, impossible. In
fact, a large portion of the research about rendezvous dealt with identifying the
conditions under which rendezvous was possible, as a result of some asymetries.
Here, the fact that agents have different speeds implies that the mere feasibility of
rendezvous is trivial, and our main concern is therefore the time complexity, that
is, the time to reach a rendezvous. More specifically, we study the case where the
agents are identical except for the fact that they have different speeds of motion.
Moreover, to isolate the issue of the speed difference, we remove other possible
differences between the agents. For example, the agents, as well as the graph
over which the agents walk, are assumed to be anonymous. To avoid solutions
of the kind of [26], we consider a symmetric graph, that is, specifically, a cycle
topology. Further symmetry is obtained by hiding the graph features. That is,
an agent views the graph as a continuous cycle of length n, and cannot even
distinguish between the state it is at a node and the state it is walking over an
edge.

1 Advantages can also be exploited in cases where the difference in speed follows some
stochastic distribution, however, in this initial study, we focus on the simpler fully
deterministic case. That is, we assume a speed heterogeneity that is arbitrary but
fixed throughout the execution.
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1.2 The Model and the Problem

The problem of rendezvous on a cycle: Consider two identical deterministic
agents placed on a cycle of length n (in some distance units). To ease the descrip-
tion, we name these agents A and B but these names are not known to the agents.
Each agent is initially placed in some location on the cycle by an adversary and
both agents start the execution of the algorithm simultaneously. An agent can
move on the cycle at any direction. Specifically, at any given point in time, an
agent can decide to either start moving, continue in the same direction, stop,
or change its direction. The agents’ goal is to rendezvous, namely, to get to be
co-located somewhere on the cycle2. We consider continuous movement, so this
rendezvous can occur at any location along the cycle. An agent can detect the
presence of another agent at its location and hence detect a rendezvous. When
agents detect a rendezvous, the rendezvous task is considered completed.

Orientation issues: We distinguish between two models regarding orientation.
The first assumes that agents have the sense of direction [8], that is, we assume
that the agents can distinguish clockwise from the anti-clockwise. In the second
model, we do not assume this orientation assumption. Instead, each agent has
its own perception of which direction is clockwise and which is anti-clockwise,
but there is no guarantee that these perceptions are globally consistent. (Hence,
e.g., in this model, if both agents start walking in their own clockwise direction,
they may happen to walk in opposite directions, i.e., towards each other).

The pebble and the white board models: Although the agents do not hold any
direct means of communication, in some cases we do assume that an agent can
leave marks in its current location on the cycle, to be read later by itself and by
the other agent. In the pebble model, an agent can mark its location by dropping
a pebble [10,11]. Both dropping and detecting a pebble are local acts taking
place only on the location occupied by the agent. We note that in the case where
pebbles can be dropped, our upper bound employs agents that drop a pebble
only once and only at their initial location [1,9,24]. On the other hand, our
corresponding lower bound holds for any mechanism of (local) pebble dropping.
Moreover, this lower bound holds also for the seemingly stronger ’white board
model, in which an agent can change a memory associated with its current
location such that it could later be read and further manipulated by itself or the
other agent [20,16,17].

Speed: Each agent moves at the same fixed speed at all times; the speed of
an agent A, denoted s(A), is the inverse of the time tα it takes agent A to

2 In some sense, this rendezvous problem reminds also the cow-path problem, see,
e.g., [5]. Here, the agents (the cow and the treasure she seeks to find) are both
mobile (in the cow-path problem only one agent, namely, the cow, is mobile). It was
shown in [5] that if the cow is initially located at distance D from the treasure on
the infinite line then the time to find the treasure can be 9D, and that 9 is the best
multiplicative constant (up to lower order terms in D).
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traverse one unit of length. For agent B, the time tβ and speed s(B) are defined
analogously. Without loss of generality, we assume that agent A is faster, i.e.,
s(A) > s(B) but emphasize that this is unknown to the agents themselves.
Furthermore, for simplicity of presentation, we normalize the speed of the slower
agent B to one, that is, s(B) = 1 and denote s(A) = c where c > 1. We stress
that the more interesting cases are when c is a function of n and arbitrarily close
to 1 (e.g., c = 1 + 1/nk, for some constant k). We assume that each agent has
a pedometer that enables it to measure the distance it travels. Specifically, a
(local) step of an agent is a movement of one unit of distance (not necessarily
all in the same direction, e.g., in one step, an agent can move half a step in one
direction and the other half in the other direction). Using the pedometer, agents
can count the number of steps they took (which is a real number at any given
time). In some cases, agents are assumed to posses some knowledge regarding n
and c; whenever used, this assumption will be mentioned explicitly.

Time complexity: The rendezvous time of an algorithm is defined as the worst
case time bound until rendezvous, taken over all pairs of initial placements of
the two agents on the cycle. Note, a lower bound for the rendezvous time that is
established assuming sense of direction holds trivially for the case where no sense
of direction is assumed. All our lower bounds hold assuming sense of direction.

The Distributed Race (DR) algorithm: Let us consider a trivial algorithm, called
Distributed Race (DR), in which an agent starts moving in an arbitrary direction,
and continues to walk in that direction until reaching rendezvous. Note that
this algorithm does not assume knowledge of n and c, does not assume sense
of direction and does not leave marks on the cycle. The worst case for this
algorithm is that both agents happen to walk on the same direction. Without loss
of generality, assume this direction is clockwise. Let d denote the the clockwise
distance from the initial location of A to that of B. The rendezvous time t thus
satisfies t · s(A) = t · s(B) + d. Hence, we obtain the following.

Observation 1. The rendezvous time of DR is d/(c − 1) < n/(c − 1).

Note that in the cases where c is very close to 1, e.g., c = 1 + 1/nk, for some
constant k, the bound on the rendezvous time of DR is very large.

1.3 Our Results

Our first result is a lower bound showing that, up to a multiplicative approxi-
mation factor of 2, the bound of DR mentioned in Observation 1 is unavoidable,
even in the white board model, even assuming sense of direction, and even assum-
ing n and c are known to agents. That is, we show that under such assumptions,
the rendezvous time of any algorithm is at least n

2(c−1) if c � 3 and slightly
larger (specifically, n

c+1 ) if c > 3. We then manage to construct an algorithm
that matches the lower bound precisely for the case c � 2, and almost matches
it when c > 2. Specifically, when c � 2, our algorithm runs in time n

2(c−1) and
when c > 2, the rendezvous time is n/c (yielding a (2 − 2

c )-approximation when
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2 < c � 3, and a ( c+1
c )-approximation when c > 3). Moreover, our algorithm

performs under weaker assumptions than those stated above, as it does not as-
sume sense of direction, and allows agents to leave only a single mark (a pebble)
and only at the place where they start the execution.

Finally, we investigate the setting in which no marks can be used at all, and
show tight bounds for c � 2, and almost tight bounds for c > 2. Specifically, for
this case, we establish a tight bound of cn

c2−1 for the rendezvous time, in case
agents have sense of direction. With the absence of sense of direction, the same
lower bound of cn

c2−1 holds, and we obtain an algorithm matching this bound for
the case c � 2, and rather efficient algorithms for the case c > 2. Specifically, the
rendezvous time for the case c � 2 is cn

c2−1 , for the case 2 < c � 3, the rendezvous
time is 2n

c+1 , and for the case c > 3, the rendezvous time is n
c−1 .

2 Lower Bound for the White Board Model

The following lower bound implies that DR is a 2-approximation algorithm, and
it becomes close to optimal when c goes to infinity.

Theorem 1. Any rendezvous algorithm in the white board model requires at least
max{ n

2(c−1) , n
c+1} time, even assuming sense of direction and even assuming n

and c are known to the agents.

Proof. We assume that agents have sense of direction; hence, both agents start
walking at the same direction. We first show that any algorithm in the white
board model requires n

2(c−1) time. Consider the case that the adversary locates
the agents at symmetric locations of the cycle, i.e., they are at distance n/2
apart. Now consider any algorithm used by the agents. Let us fix any c′ such
that 1 < c′ < c, and define the (continuous) interval

I :=
[
0,

nc′

2(c − 1)

]
.

For every (real) i ∈ I, let us define the following (imaginary) scenario Si. In
scenario Si, each agent executes the algorithm for i steps and terminates3. We
claim that for every i ∈ I, the situation at the end of scenario Si is completely
symmetric: that is, the white board at symmetric locations contain the same
information and the two agents are at symmetric locations. We prove this claim
by induction. The basis of the induction, the case i = 0, is immediate. Let us
assume that the claim holds for scenario Si, for (real) i ∈ I, and consider scenario
Si+ε, for any positive ε such that ε < n

4 (1 − c′
c ). Our goal is to show that the

claim holds for scenario Si+ε
4.

3 We can think of this scenario as if each agent executes another algorithm B, in
which it simulates precisely i steps of the original algorithm and then terminates.

4 Note that for some i ∈ I and some ε < n
4 (1 − c′

c
), we may have that i + ε /∈ I . Our

proof will show that the claim for Si+ε holds also in such cases. However, since we
wish to show that the claim holds for Sj , where j ∈ I , we are not really interested
in those cases, and are concerned only with the cases where i + ε ∈ I and i ∈ I .
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Consider scenario Si+ε. During the time interval [0, i
c), both agents perform

the same actions as they do in the corresponding time interval in scenario Si. Let
a denote the location of agent A at time i/c. Now, during the time period [ i

c , i+ε
c ],

agent A performs some movement all of which is done at distance at most ε from
a (during this movement it may write information at various locations it visits);
then, at time i+ε

c , agent A terminates.
Let us focus on agent B (in scenario Si+ε) during the time period [ i

c , i]. We
claim that during this time period, agent B is always at distance at least ε from
a. Indeed, as long as it is true that agent B is at distance at least ε from a, it
performs the same actions as it does in scenario Si (because it is unaware of
any action made by agent A in scenario Si+ε, during the time period [ i

c , i+ε
c ]).

Therefore, if at some time t′ ∈ [ i
c , i], agent B is (in scenario Si+ε) at distance less

than ε from a then the same is true also for scenario Si. However, in scenario Si,
by the induction hypothesis, agent B was at time i at ā, the symmetric location
of a, that is, at distance n/2 from a. Thus, to get from a distance less than ε
from a to ā, agent B needs to travel a distance of n/2 − ε, which takes n/2 − ε
time. This is impossible since

i − i/c � nc′

2c
<

n

2
− ε,

where the first inequality follows from the definition of I and the second follows
from the definition of ε. It follows that during the time period from [ i

c , i), agent
B behaves (in scenario Si+ε) the same as it does in the corresponding time
period in scenario Si. Therefore, according to the induction hypothesis, at the
corresponding i’th steps in scenario Si+ε, agent B is at distance n/2 from where
agent A is at its i’th step (recall, agent A is at a at its i’th step), and the cycle
configuration (including the white boards) is completely symmetric. Now, since
ε < n/4, during the time period [i, i + ε], agent B is still at a distance more than
ε from a and remains unaware of any action made by agent A, during the time
period [ i

c , i+ε
c ]. (Similarly, agent A, during the time period [ i

c , i+ε
c ], is unaware

of any action made by agent B during this time period.) Hence, at each time
i′ ∈ [i, i + ε], agent B takes the same action as agent A in the corresponding
time i′/c. This establishes the induction proof. To sum up, we have just shown
that for any i ∈ I, the cycle configuration at the end of scenario Si is completely
symmetric.

Now assume by contradiction that the rendezvous time t is less than the
claimed one, that is, t < n

2(c−1) . At time t, both agents meet at some location
u. Since t ∈ I, the above claim holds for St. Hence, at time t/c, agent A is at ū,
the symmetric location of u. Since rendezvous happened at time t, this means
that agent A traveled from ū to u (i.e., a distance of n/2) during the time period
[ t

c , t]. Therefore t(1 − 1
c )c � n/2, contradicting the assumption that t < n

2(c−1) .
This establishes that any algorithm requires n

2(c−1) time.
We now show the simpler part of the theorem, namely, that the rendezvous

time of any algorithm in the white board model is at least n
c+1 . Let us represent

the cycle as the reals modulo n, that is, we view the cycle as the continuous
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collection of reals [0, n], where n coincides with 0. Assume that the starting
point of agent A is 0. Consider the time period T = [0, n

c+1 − ε], for some small
positive ε. In this time period, agent A moves a total length of less than nc

c+1 .
Let r (and �, correspondingly) be the furthest point from 0 on the cycle that A
reached while going clockwise (or anti-clockwise, correspondingly), during that
time period. Note that there is a gap of length larger than n− nc

c+1 = n
c+1 between

� and r. This gap corresponds to an arc not visited by agent A during this time
period. On the other hand, agent B walks a total distance of less than n

c+1 during
the time period T . Hence, the adversary can locate agent B initially at some
point in the gap between r and �, such that during the whole time period T ,
agent B remains in this gap. This establishes the n

c+1 time lower bound, and
concludes the proof of the theorem.

3 Upper Bound for the Pebble Model
Note that the assumptions of the pebble model are weaker than the white board
model. Hence, in view of Theorem 1, the following theorem establishes a tight
bound for the case where c � 2, a (2 − 2

c )-approximation for the case 2 < c � 3,
and a (c + 1)/c-approximation for the case c > 3.

Theorem 2. There exists an algorithm that in the pebble model whose ren-
dezvous time is max{ n

2(c−1) , n
c }. Moreover, this algorithm does not assume sense

of direction, uses only one pebble and drops it only once: at the initial position of
the agent. The algorithm assumes that agents know n and whether or not c > 2.
Proof. Consider the following algorithm. Each agent (1) leaves a pebble at its
initial position and then starts walking in an arbitrary direction while counting
the distance travelled. If (2) an agent reaches a location with a pebble for the
first time and (3) the distance it walked is strictly less than τ := min{n/2, n/c},
then (4) the agent turns around and walks continuously in the other direction.

First note that if both agents happen to start walking in opposite directions
(due to lack of sense of direction), then they walk until they meet. In this simple
case, their relative speed is c + 1, hence rendezvous happens in time at most

n
c+1 < max{ n

2(c−1) , n
c }. For the remaining of the proof, we consider the case

that both agents start walking at the same direction, which is without loss of
generality, the clockwise direction. Let d be the initial clockwise distance from
A to B. Consider three cases.
1. d = τ .

Here, no agent turns around. In other words, they behave exactly as in
DR. If d = n/2, Observation 1 implies that the rendezvous time is n

2(c−1) .
Otherwise, c > 2 and d = n/c. By Observation 1, the rendezvous is reached
earlier, specifically, by time d

c−1 = n
c(c−1) .

2. d < τ .
In this case, Agent A will reach B’s starting point vB, at time d/c, before
B reaches A’s starting point vA. Moreover, agent B does not turn, since its
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initial distance to A’s starting point is at least τ . At time d/c, agent B is at
distance d/c clockwise from vB. By the algorithm, Agent A then turns and
walks anti-clockwise. The anti-clockwise distance from A to B is then n−d/c.
Their relative speed is c + 1. Hence, they will rendezvous in an additional
time of n−d/c

1+c , since no agent may turn around after time d/c. Hence, the
total time for reaching rendezvous is at most

d/c + n − d/c

1 + c
= d + n

1 + c
.

This function is maximized when d = τ where it is τ+n
1+c . Now, if c � 2, we

have τ = n/2 and the rendezvous time is therefore 3n
2(1+c) . Since c � 2, the

later bound is at most n
2(c−1) . On the other hand, if c > 2, we have τ = n/c

and the rendezvous time is n/c.
3. d > τ .

In this case, A doesn’t turn when it hits B’s initial position. Consider the
following sub-cases.
(a) The agents meet before B reaches A’s initial position.

In this case, the rendezvous time (as in DR) is d/(c − 1). On the other
hand, the rendezvous time is at most n − d since B did not reach A’s
initial position. So d/(c − 1) � n − d. A simple calculation now implies
that the rendezvous time d/(c − 1) is at most n/c.

(b) Agent B reaches A’s initial position before rendezvous.
In this case, Agent B walks for d′ = n − d time to first reach A’s initial
position. We first claim that d′ < τ . One case is that c � 2, and thus,
τ = n/2. Since d > τ , we have d′ < n/2 = τ . The other case is that
c > 2, so τ = n/c. We claim that also in this case, we have d′ < τ .
Otherwise, we would have had d′ � n/c, which would have meant that
the faster agent A would have had, at least, n/c time before B reached
the initial position of A. So much time would have allowed it to cover the
whole cycle. This contradicts the assumption that B reached A’s initial
position before rendezvous. This establishes the fact that, regardless of
the value of c, we have d′ < τ . This fact implies that when agent B
reaches A’s initial position, it turns around and both agents go towards
each other. By the time B turns around, A has walked a distance of cd′.
Hence, at that point in time, they are n − cd′ apart. This implies to the
following rendezvous time:

d′ + n − cd′

1 + c
= 2n − d

1 + c
.

Now recall that we are in the case that agent B reaches A’s initial position
before they rendezvous. This implies that n−d < n/c. Hence, the running
time is at most

2n − d

1 + c
<

n + n
c

1 + c
= n

c
.
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4 Rendezvous without Communication

In this section, we consider the case that agents cannot use are marks (e.g., peb-
bles) to mark their location. More generally, the agents cannot communicate in
any way (before rendezvous).

Theorem 3. Consider the setting in which no communication is allowed, and
assume both n and c are known to the agents.

1. The rendezvous time of any algorithm is, at least, cn
c2−1 , even assuming sense

of direction.
2. Assuming sense of direction, there exists an algorithm whose rendezvous time

cn
c2−1 .

3. Without assuming sense of direction, there exists an algorithm whose ren-
dezvous time is:

– cn
c2−1 , for c � 2,

– 2n
c+1 , for 2 < c � 3,

– n
c−1 , for c > 3.

Proof. Let us first show the first part of the theorem, namely, the lower bound.

Proof of Part 1: Given an algorithm, let t̂ denote the rendezvous time of
the algorithm, that is, the maximum time (over all initial placements and all
cycles of length n) for the agents (executing this algorithm) to reach rendezvous.
Recall, in this part of the theorem, we assume that agents have sense of direction.
Without loss of generality, we assume that the direction an agent starts walking
is clockwise.

Consider, first, two identical cycles CA and CB of length n each. Let us mark a
location v ∈ CA and a location u ∈ CB. Let us examine the (imaginary) scenario
in which agent A (respectively, B) is placed on the cycle CA (respectively, CB)
alone, that is, the other agent is not on the cycle. Furthermore, assume that
agent A is placed at v and agent B is placed at u. In this imaginary scenario,
agents A and B start executing the protocol at the same time, separately, on
each of the corresponding cycles. Viewing u as homologous to v, a homologous
location h(x) ∈ CB can be defined for each location in x ∈ CA in a natural way
(in particular, h(v) = u).

For each time t ∈ [0, t̂], let d(t) denote the clockwise distance between the
location bt ∈ CB of the slower agent B at time t and the homologous location
h(at) ∈ CB of the location at ∈ CA of the faster agent A at time t. Note that
d(t) is a real value in [0, n). Initially, we assume that all reals in [0, n) are colored
white. As time passes, we color the corresponding distances by black, that is, at
every time t, we color the distance d(t) ∈ [0, n) by black. Note that the size of
the set of black distances is monotonously non-decreasing with time.

We first claim that, by time t̂, the whole range [0, n) is colored black. To prove
by contradiction, assume that there is a real d ∈ [0, n) that remains white. Now,
consider the execution on a single cycle of length n, where agent A is initially
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placed at anti-clockwise distance d from agent B. In such a case, rendezvous is
not reached by time t̂, contrary to the assumption that it is. This implies that
the time T it takes until all reals in [0, n) are colored black in the imaginary
scenario, is a lower bound on the rendezvous time, that is, T � t̂. It is left to
analyze the time T .

With time, the change in the distance d(t) has to follow two rules:

– R1. After one time unit, the distance can change by at most 1 + c (the sum
of the agents’ speeds).

– R2. At time x, the distance, in absolute value is, at most, x(c − 1).

To see why Rule R2 holds, recall that the programs of the agents are identical.
Hence, if agent A is at some point a ∈ CA, at A’s kth step, then agent B is at
point b = h(a) at its own kth step. This happens for agent B at time k and for
agent A at time k/c. Since A’s speed is c, the maximum it can get away from
point a during the time period from k/c until c is c(k − k/c) = k(c − 1).

Consider the path P := d(t) covering the range [0, n) in T time. First, note
that this path P may go several times through the zero point (i.e., when d(t) = 0).
At a given time s, we say that the path is on the right side, if the last time it
left the zero point before time s was while going towards 1. Similarly, the path
is on the left, if the last time it left the zero point before time s was while going
towards n − 1. Let x denote the largest point on the range [0, n) reached by the
path while the path was on the right side. Let y = n − x. By time T , path P
had to go left to distance y from the zero point. Assume, w.l.o.g. that x < y. (In
particular, x may be zero.) The fastest way to color these two points (and all
the rest of the points, since those lie between them), would be to go from zero
to the right till reaching x, then return to zero and go to distance y on the left.
Hence, T will be at least: T � x

c−1 + n
c+1 . Indeed, Rule R2, applied to the time

of reaching distance x, implies the first term above. The second term uses Rule
R1 to capture the time that starts with the distance reaching x, proceeds with
the distance reaching the zero point and ends when the distance reaches y when
going left. Since c > 1, we obtain

x �
(

T − n

c + 1

)
(c − 1). (1)

On the other hand, applying Rule R2 to the final destination y, we have T (c −
1) � y = n − x. This implies that:

x � n − T (c − 1). (2)

Combining Equations 1 and 2, we get T � cn
c2−1 . This establishes the first part of

the theorem. We now prove the second and third parts of the theorem, namely,
the upper bounds.

Proof of Parts 2 and 3: Note that the DR algorithm does not assume sense
of direction, and its complexity is the one required by the third part of the
theorem for the case c > 3. We now revise DR and consider an algorithm, called
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Turn(k), which consists of two stages. At the first stage, the agent walks over its
own clockwise direction for k steps. Subsequently (if rendezvous hasn’t occurred
yet), the agent executes the second stage of the algorithm: it turns around and
goes in the other direction until rendezvous.

Let us now concentrate on proving the second part of the theorem, and as-
sume that agents have sense of direction. Here we consider Algorithm Turn(k),
with parameter k = cn

c2−1 . Since we assume sense of direction, both agents walk
initially in the same direction (clockwise). Assume by contradiction that ren-
dezvous hasn’t occurred by time k. By that time, agent B took k steps. Agent
A took those k steps by time k/c. At that time, agent A turns. (However, agent
B will turn only at time k). Hence, between those two turning times, there is a
time duration k(1 − 1

c ) where the two agents walk towards each other. Hence,
at each time unit they shorten the distance between them by 1 + c. Let d′ de-
note the maximum distance between the agents at time k/c. It follows that
d′ > k(1 − 1

c )(1 + c) = n. A contradiction. This establishes the second part of
the theorem.

We now prove the third part of the theorem, which focuses on the case where
no sense of direction is assumed. Let us first consider the case c � 2. Here we
apply the same algorithm above, namely Algorithm Turn(k), with parameter
k = cn

c2−1 . As proved before, if the two agents happen to start at the same
direction then rendezvous occurs by time cn

c2−1 . Hence, let us consider the case
that both agents walk initially at opposite directions. Assume by contradiction,
that rendezvous hasn’t occurred by time k/c. In this case, by time k/c the
faster agent A walked k steps toward B, and the slower agent B walked k/c
steps towards A. Hence, the initial distance between them must be greater than
k(1 + 1/c) = n/(c − 1) > n, a contradiction. This proves the first item in Part 3
of the Theorem.

Note that Algorithm DR establishes the third item in Part 3 of the Theorem.
Hence, it is left to prove the second item in Part 3, namely, the case 2 < c � 3.
For this case, we apply Algorithm Turn(k), with parameter k = cn

c+1 . First note,
if the two agents happen to start walking towards each other they continue to
do that until time k/c = n

c+1 , hence they would meet by this time. Therefor, we
may assume that initially, both agents start in the same direction. In this case, if
rendezvous haven’t occurred by time k/c, then at this time agent A turns around,
and both agents walk towards each other for at least k(1 − 1/c) more time (the
time when agent B is supposed to turn). Since c > 2, we have k(1 − 1/c) > k/c,
and hence, from the time agent A turns, both agents walk towards each other
for at least k

c = n
c+1 time, which means they must meet by this time. Altogether,

the time to rendezvous is 2k
c = 2n

c+1 , as desired.

5 Discussion and Future Work
We show how some form of asynchrony could be useful for solving a symmetry
breaking problem efficiently. Our study could be considered as a first attempt
to harness the (unknown) heterogeneity between individuals in a cooperative
population towards more efficient functionality.
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There are many natural ways of further exploring this idea in future work.
First, we have studied the exploitation of asynchrony for a specific kind of prob-
lems. It seems that it can be useful for other symmetry breaking problems as well.
Another generalization: the “level” of asynchrony considered in this paper is very
limited: the ratio c between the speeds of the agents is the same throughout the
execution, and is known to the agents. Exploiting a higher level of asynchrony
should also be studied, for example, the case that the speed difference is stochas-
tic and changes through time.

Our main interest was the exploitation of asymmetry, rather than the specific
problem of rendezvous. Still, even for the rendezvous problem, this current study
leaves many open questions. First, even for the limited case we study, not all our
bounds are completely tight, and it would be interesting to close the remaining
gaps between our lower and upper bounds (these gaps hold for some cases when
c > 2). In addition, it would be interesting to study further the uniform case [21],
in which n and c are not known to agents. Another direction is to generalize the
study to multiple agents (more than two, see, e.g., [15,18]) and to other graph
classes. This would also allow one to study interactions between various means
of breaking symmetry (such as different speeds together with different locations
on a graph).
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