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Abstract. In 1996, Hoffstein, Pipher and Silverman introduced an ef-
ficient lattice based encryption scheme dubbed NTRUEncrypt. Unfortu-
nately, this scheme lacks a proof of security. However, in 2011, Stehlé
and Steinfeld showed how to modify NTRUEncrypt to reduce security
to standard problems in ideal lattices. In 2012, Lépez-Alt, Tromer and
Vaikuntanathan proposed a fully homomorphic scheme based on this
modified system. However, to allow homomorphic operations and prove
security, a non-standard assumption is required. In this paper, we show
how to remove this non-standard assumption via techniques introduced
by Brakerski and construct a new fully homomorphic encryption scheme
from the Stehlé and Steinfeld version based on standard lattice assump-
tions and a circular security assumption. The scheme is scale-invariant
and therefore avoids modulus switching and the size of ciphertexts is one
ring element. Moreover, we present a practical variant of our scheme,
which is secure under stronger assumptions, along with parameter rec-
ommendations and promising implementation results. Finally, we present
an approach for encrypting larger input sizes by extending ciphertexts
to several ring elements via the CRT on the message space.

1 Introduction

Fully homomorphic encryption (FHE) is a powerful form of encryption which al-
lows an untrusted server to carry out arbitrary computation on encrypted data
on behalf of a client. Introduced in [21I] by Adleman, Dertouzos and Rivest,
the problem of constructing a scheme which can evaluate any function on en-
crypted data remained open until 2009, when Gentry constructed an FHE scheme
based on ideal lattices [I0]. Gentry’s scheme effectively laid down a blueprint
for constructing FHE schemes and paved the way for many further construc-
tions [26/34I6I52420JTT9]. The main focus of the cryptologic research commu-
nity has been on improving the efficiency of FHE and basing its security on
standard assumptions.
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Recently, Lépez-Alt et al. [16] proposed a (multi-key) FHE scheme based
on the work by Stehlé and Steinfeld [25] in which a provably secure version of
NTRUEncrypt [13] is presented with security based on standard problems in ideal
lattices. Unfortunately, the FHE scheme from [16] needs to make an additional
assumption relating to the uniformity of the public key, the so-called decisional
small polynomial ratio (DSPR) assumption, to allow homomorphic operations
and remain semantically secure. We show how to avoid this additional assump-
tion and transform the results from [25] into a fully homomorphic encryption
scheme based on standard lattice assumptions only. This is achieved by limiting
noise growth during homomorphic operations via a tensoring technique recently
introduced by Brakerski [3]. Besides this theoretical advantage, our scheme has
other attractive properties. Firstly, this new scheme is scale-invariant in the
sense of [3], i.e. it avoids the modulus-switching technique of Brakerski, Gentry
and Vaikuntanathan [4]. Secondly, we keep the property of the scheme in [16]
that a ciphertext consists of only a single ring element as opposed to the two or
more ring elements for schemes based purely on the (ring) learning with errors
(RLWE) assumption [I7]. This decreases the ciphertext size since parameters
are comparable in both settings. Finally, we present a technique to increase the
size of the input space by working with separate, small plaintext moduli in ci-
phertexts of multiple ring elements, which are later combined via the Chinese
remainder theorem into a larger plaintext modulus. For some applications, this
additional flexibility to increase the message space without changing parameters
at the cost of increasing ciphertext size can prove especially useful.

Our main contribution is an FHE scheme based on the schemes by Stehlé and
Steinfeld [25] and Lépez-Alt et al. [16] that does not need the DSPR assumption
and thus is secure under the RLWE and circular security assumptions only. The
public key in both schemes is the fraction ~ = gf ~' mod ¢ of two polynomials
f and g in a cyclotomic polynomial ring modulo an integer modulus g that are
sampled from a discrete Gaussian distribution. The DSPR assumption is the
assumption that such a fraction is indistinguishable from uniform random in
the ring modulo ¢. Stehlé and Steinfeld show that this assumption holds if the
Gaussian is wide enough. Unfortunately, the scheme by Lépez-Alt et al. can-
not use such a wide Gaussian for key generation. Since the norms of f and g
contribute to the noise growth during homomorphic multiplication, using a wide
enough Gaussian means that the scheme is not guaranteed to be capable of doing
even a single multiplication. We solve this problem by using decompositions and
Brakerski’s [3] tensoring technique. During the homomorphic multiplication pro-
cedure which includes a key switching step, we decompose the polynomial f into
its bit decomposition, i.e. into a vector of polynomials with binary coefficients.
This technique replaces the ring product of polynomials by a scalar product of
binary decomposition vectors with vectors of polynomials multiplied by powers
of 2 modulo ¢. The noise growth introduced in such a scalar product is bounded
by a polynomial in log(¢q) and the degree of f, replacing the square of the norm
of f in the bounds of the original scheme. Noise growth is much smaller now
and it is possible to sample from a wide Gaussian to ensure the Stehlé-Steinfeld
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conditions. As noted in Appendix A.1 of [I6], any FHE scheme is inherently
a multi-key scheme for a constant number of parties, but this construction is
rather inefficient. The original scheme in [I6], however, directly yields the multi-
key property for a non-constant number of parties, which is much more efficient.
Our scheme is not a multi-key scheme in that sense because decryption of a
multi-key ciphertext would require a multiplication by the product of all keys
that were involved in the generation of the ciphertext. With keys generated in
the setting of Stehlé and Steinfeld, multiplying by a product of only two keys
would already lead to a noise overflow, making it impossible to decrypt correctly.

The second part of the paper describes a more practical variant of the above
scheme, along with details on parameter selection and implementation results.
The price for obtaining security without the DSPR assumption in the above
scheme lies in a large evaluation key and a complicated key switching procedure,
both of which are a consequence of using the tensoring approach. Any possibil-
ity, which we are aware of, to avoid the tensor products, leads to an increase in
the noise bounds that makes it necessary to reintroduce the DSPR assumption.
However, if one is willing to make this assumption, there are several efficiency
advantages and possible trade-offs as shown in our more practical variant. This
variant keeps the general characteristics of the scheme, but simplifies key switch-
ing and avoids tensor products. A much shorter evaluation key can be achieved
by using base-w instead of base-2 decompositions for a w > 2, e.g. w = 232. This
increases noise growth, but ensures that the evaluation key contains only a few
ring elements. Since the key switching is the main cost in homomorphic multi-
plication, the choice of w provides an important trade-off between homomorphic
capability and multiplication efficiency. We also point out that it is possible to
weaken the DSPR assumption by allowing the polynomial g to be sampled from
a wider Gaussian than f. The proofs of most lemmas and theorems are given in
the full version of this paper [2].

2 Preliminaries

In this section, we define all basic notation that is needed in the paper. The most
important structure is the ring R. Let d be a positive integer and define R =
Z[X]/(94(X)) as the ring of polynomials with integer coefficients modulo the d-
th cyclotomic polynomial @4(X) € Z[X]. The degree of &4 is n = ¢(d), where ¢
is Euler’s totient function. The elements of R can be uniquely represented by all
polynomials in Z[X] of degree less than n. Arithmetic in R is arithmetic modulo
@4(X), which is implicit whenever we write down terms or equalities involving
elements in R. An arbitrary element a € R can be written as a = Z?;OI a; X"
with a; € Z and we identify a with its vector of coefficients (ag, a1, ...,an—1). In
particular, a can be viewed as an element of the R-vector space R™. We choose
the maximum norm on R"™ to measure the size of elements in R. The maximum
norm of a is defined as ||a||oo = max;{|a;|}.

When multiplying two elements g,h € R, the norm of their product gh ex-
pands with respect to the individual norms of g and h. The maximal norm
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expansion that can occur is § = sup {||g - hlloo/(|gllccl|Plloc) : g, R € R}, which
is a ring constant. When d is a power of 2 and thus @4(X) = X™ + 1, we have
6 = n [I0, Section 3.4]. To keep the exposition more general, we do not restrict
to this special case and work with general § in most of what follows.

Let x be a probability distribution on R. We assume that we can efficiently
sample elements from R according to x, and we use the standard notation a < x
to denote that a € R is sampled from y. The distribution x on R is called B-
bounded for some B > 0 if for all a < x we have ||a]| < B, i.e. a is B-bounded
(see [ Def. 3] and [16, Def. 3.1 and 3.2]). Let us introduce a specific exam-
ple of a distribution on R. First, define the discrete Gaussian distribution Dz
with mean 0 and standard deviation o over the integers, which assigns a prob-
ability proportional to exp(—w|x|?/o?) to each € Z. When d is a power of
2 and ¢4(X) = X™ + 1, we can take x to be the spherical discrete Gaussian
X = Dz~ o, where each coefficient of the polynomial is sampled according to the
one-dimensional distribution Dz , (see [I7] for more details and why x = Dzn »
is the right choice in that case). The distribution x is used in many fully ho-
momorphic encryption schemes based on RLWE to sample random error poly-
nomials that have small coefficients with high probability. Such polynomials are
a significant part of the noise terms used in the encryption process. To deduce
meaningful bounds on noise size and noise growth during homomorphic oper-
ations, we assume that the distribution we are working with is B-bounded for
some B. For the discrete Gaussian, this is a reasonable assumption since sam-
pled elements tend to be small with high probability. By rejecting samples with
norm larger than B, we can sample from a truncated Gaussian distribution that
is statistically close to the true discrete Gaussian if B is chosen large enough.
For example, if we take B = 60, all samples are B-bounded with very high
probability [18, Lemma 4.4].

Although the principal object of interest for our scheme is the ring R, and
all polynomials that we deal with are considered to be elements of R, we often
reduce polynomial coefficients modulo an integer modulus q. We denote the map
that reduces an integer x modulo ¢ and uniquely represents the result by an
element in the interval (—¢/2, ¢/2] by [-];- We extend this map to polynomials in
Z[X] and thus also to elements of R by applying it to their coefficients separately,
e []g: R— R, a=Y""a; X"+ Y [a;]X". Furthermore, we extend this
notation to vectors of polynomials by applying it to the entries of the vectors
separately. Sometimes we reduce an integer modulo ¢ and uniquely represent the
result by an element in [0, ¢). In this case, we write r4(z) to mean the reduction
of x into [0,¢q). A polynomial f € R is invertible modulo ¢ if there exists a
polynomial f~' € R such that ff~! = f, where f(X) = 3, ;X" with ag = 1
mod ¢ and a; = 0 mod ¢ for all j # 0. Our homomorphic encryption scheme
uses two different moduli. In addition to a modulus ¢ that is used to reduce the
coefficients of the elements that represent ciphertexts, there is a second modulus
t < ¢ that determines the message space R/tR, i.e. messages are polynomials in
R modulo t. We make frequent use of the quantity A = |¢/t] and it is readily
verified that ¢ — r4(q) = A - t.
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In [3], functions called BitDecomp and PowersOfTwo are used. We slightly
generalize these to an arbitrary base and describe our notation next. Fix a pos-
itive integer w > 1 that is used to represent integers in a radix-w system. Let
ly,q = [log,(q)] + 2, then a non-negative integer z < ¢ can be written as
Zfi‘oq_z z;w' where the z; are integers such that 0 < z; < w. If z is an inte-
ger in the interval (—q/2,¢/2], it can be written uniquely as Zfi’o‘rl zyw® with
zi € (—w/2,w/2]. With this, an element x € R with coefficients in (—q/2, ¢/2]
can be written as 2525‘71 x;w', where z; € R with coefficients in (—w/2,w/2].
Since then x; = [2;]., we write x = Zfib“fl [2;]ww® to make clear that the norm
of the coefficient polynomials x; is at most w/2. With this notation, define

Duyg:R— R, 2o ([2o)us [B1)uws- s [0 g1)w) = ([zilw)ite

this function for w = 2 is called BitDecomp in [3]. We define a second function

Pyg: R— Rwa, s ([alg, [owlg, ... fowfo 1) = ([sw']y)ig
which is called PowersOfTwo in [3] for w = 2. For any two z,y € R, we see that
the scalar product of the vectors Dy, 4(x) and Py, 4(y) is the same as the product
zy modulo g, because

luw,q—1 lu,q—

(Duw,q(), Puw,q(y)) = [%‘}w[ywi]q =y Z [xi]wwi =zy (mod q).
i=0 i=0

Note that when || f||s < B for some B < ¢, then only the £, g := |log,,(B)] +2
least significant polynomials in D, 4(f) can be non-zero. We use the tensor
product of two vectors in the usual way, i.e. for a positive integer ¢ and two
vectors a,b € R’, the tensor a @ b € R? is the concatenation of the a;b for
i € {1,2,...,¢}. We extend the functions D,, , and P, 4 to vectors. For v =
(v1,v2,...,v7) € R’ denote the vector (Dy, 4(v1),..., Dyg(ve)) € R‘wa by
Dy q(v), likewise we extend Py, 4.

Several operations in the scheme require scaling by rational numbers such
that the resulting polynomials do not necessarily belong to R but instead have
rational coefficients. In that case, a rounding procedure is applied to get back
to integer coefficients. The usual rounding of a rational number a to the nearest
integer is denoted by |a].

The Ring Learning With Errors (RLWE) Problem. Our scheme relies
on the hardness of the (decisional) ring learning with errors problem, which was
first introduced by Lyubashevsky, Peikert and Regev [17].

Definition 1 (Decision-RLWE). Given a security parameter A, let d and q be
integers depending on X, let R = Z[X|/(Pa(X)) and let Ry = R/qR. Given a
distribution x over Ry that depends on X, the Decision-RLWE, 4, problem is to
distinguish the following two distributions. The first distribution consists of pairs
(a,u), where a,u < Ry are drawn uniformly at random from R,. The second
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distribution consists of pairs of the form (a,a - s+ e). The element s < Ry is
drawn uniformly at random and is fized for all samples. For each sample, a < R,
is drawn uniformly at random, and e < x. The Decision-RLWEy 4, assumption
is that the Decision-RLWEg 4, problem is hard.

In [I7], it was shown that the hardness of RLWE can be established by a quantum
reduction to worst-case shortest vector problems in ideal lattices over the ring
R, see also [4 Thm. 2]. It is known that the search variant of RLWEy 4, in
which we are required to explicitly find the secret s given an RLWE, 4, instance,
is equivalent to the decision problem [I7]. There are a number of variants of
RLWE which are as hard as RLWE, for example we can restrict the sampling of a
and e to invertible elements only [25]. And we can also choose s from x without
incurring any loss of security [1J.

The Decisional Small Polynomial Ratio (DSPR) Problem. In [16], L6pez-
Alt, Tromer and Vaikuntanathan introduced the decisional small polynomial ra-
tio problem. They describe a multi-key fully homomorphic encryption scheme
with security based on the assumption that the DSPR problem is hard in the
ring R, where R = Z[z]/(z™ 4+ 1) for n a power of 2 and ¢ = 2. We state a more
general form of the problem for any cyclotomic ring R = Z[x]/(®4(z)) and gen-
eral 1 <t < q. Let h =tg/f (mod q) where f =1+ ¢f and f’,g < x where x
is a truncated Gaussian distribution. In [I6], the problem of distinguishing such
an element h from a uniformly random element of R, = R/qR was formalized
as the DSPR problem. Assuming the hardness of DSPR and RLWE, the scheme
in [I6] is secure. To state the problem, define the following: for a distribution y
on R, and z € R, we define x, = x + z to be the distribution shifted by z. Also,
let R be the set of all invertible elements in R,.

Definition 2 (DSPR). For security parameter X\, let d and q be integers, let
R = Z[X]/(Pa(X)) and Ry = R/qR and let x be a distribution over R, all
depending on X. Let t € R} be invertible in Ry, yi € Ry and z; = —yit™!
(mod q) for i € {1,2}. The DSPRy,q, problem is to distinguish elements of the
form h = a/b where a < y1 + 1t Xz,,b < Y2 + 1t - Xz, from uniformly random
elements of Rq. The DSPRy 4. assumption is that the DSPRy 4, problem is hard.

Theorem 4.1 in the full version of [25] shows that DSPRy 4., is hard when the
Xz; are shifted versions of a discrete Gaussian distributions x which is Dzn
restricted to R for a large enough deviation o. For convenience, we state the
theorem in the full version of this paper [2, Appendix A]. A discrete Gaussian on
Ry can be obtained from a discrete Gaussian on R, by rejecting non-invertible
elements.

3 Basic Scheme

In this section, we describe the basic public key encryption scheme that is the
foundation for the leveled schemes of the next sections. The scheme is parameter-
ized by a modulus ¢ and a plaintext modulus 1 < ¢t < g. Ciphertexts are elements
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of R = Z[X]/(®4(X)) and plaintexts are elements of R/tR (see Section[2)). Secret
keys and errors are generated from different distributions, for example Gaussian
distributions of different width. The secret key is derived from the distribution
Xkey, and errors are sampled from the distribution xerr. We use “Regev-style”
encryption as in [3] and [9]. The scheme consists of the following algorithms.

e Basic.ParamsGen(\): Given the security parameter A, fix a positive integer
d that determines R, moduli ¢ and ¢ with 1 < ¢ < ¢, and distributions
Xkey s Xerr Ol R. OUtPUt (da q, ta Xkey Xerr)~

e Basic.KeyGen(d, ¢,t, Xkey, Xerr): Sample f’, g <= Xkey and let f = [tf' +1],. If
f is not invertible modulo ¢, choose a new f’. Compute the inverse f~' € R
of f modulo ¢ and set h = [tgf~!],. Output the public and private key pair
(pk,sk) = (h, f) € R%

e Basic.Encrypt(h, m): The message space is R/tR. For a message m + tR,
choose [m]; as its representative. Sample s, € < Yerr, and output the cipher-
text ¢ = [|¢/t|Im]: + e+ hs]y € R.

e Basic.Decrypt(f, c¢): To decrypt a ciphertext ¢, compute

o sl e

In the following, we often refer to a message as an element m in the ring R
although the message space is R/tR, keeping in mind that encryption always
takes place on the representative [m]; and that by decrypting, all that can be
recovered is m modulo .

Correctness. The following lemma states conditions for a ciphertext ¢ such that
the decryption algorithm outputs the message m that was originally encrypted.

Lemma 1. Let q, t, and A = |q/t] be as above and let ¢, f,m € R. If there
exists v € R such that

fe=Am]y+v (mod q) and ||v]ec < (A —1(q))/2,
then Basic.Decrypt(f,c) = [m], i.e. ¢ decrypts correctly under the secret key f.

Of course, for any given ¢, f and m, there always exists a v € R such that
fe= Alm]; +v (mod ¢). But only a v of small norm allows one to recover [m];
from c. Since we are always free to vary v modulo ¢, i.e. to add any multiple
of ¢ to it, we choose v to be the canonical element [v] . This means that we
choose v with the smallest possible norm among all polynomials that satisfy the
equation. We call this specific v the inherent noise in ¢ with respect to m and
f. The previous lemma says that if the inherent noise in a ciphertext is small
enough, then decryption works correctly.

Inherent Noise in Initial Ciphertexts. The following lemma derives a bound
on the inherent noise in a freshly encrypted ciphertext output by Basic.Encrypt,
assuming bounds Byey, on the key and B, on the error distributions. Note that
since f/, g = Xkeywe have || f'|| oo, |¢]loc < Bkey and it follows that ||tg||ec < tBiey
and || fllec = |1 4+ ¢f'||sc < tBiey since t > 2.
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Lemma 2. Let the key and error distributions be Byey-bounded and Bey,-bounded,
respectively. Givenm € R, a public key h = [tgf~'], € R with secret key f =
1+ tf'q f's9 ¢ Xkey, and let ¢ = Basic.Encrypt(h,m). There existsv € R such
that fc = Alm]; + v (mod q) and

1
ol < 8Brey (2B + 570))

In particular, by Lemmalll, decryption works correctly if 20t Byey (2Berr + ért(q)) +
ri(q) < A.

4 Leveled Homomorphic Scheme

In this section, we state our leveled homomorphic encryption scheme YASHE
based on the Basic scheme from the previous section. We then analyze the homo-
morphic operations and deduce bounds on the noise growth that occurs during
these operations.

e YASHE.ParamsGen(\): Given the security parameter A, output the parame-
ters (d, ¢, t, Xkey, Xerr, W), Where (d, ¢, £, Xxey, Xerr) < BasicParamsGen(\) and
w > 1 is an integer.

e YASHE.KeyGen(d, ¢,t, Xkey, Xerr, w): Compute

h, f < Basic.KeyGen(d, ¢, t, Xkey, Xerr)-

3
w,q

¢
Sample e, s < Xerr?, compute

Y= [f_lpw,q(Dqu(f) ® Dy o(f)) +e+h-sl; € Rzi"q’

and output (pk, sk, evk) = (h, f, ).

YASHE .Encrypt(pk, m): Encrypt m € R by ¢ + Basic.Encrypt(pk, m) € R.
YASHE.Decrypt(sk, ¢): Output the message m < Basic.Decrypt(sk, ¢) € R.
YASHE.KeySwitch(mult, evk): Output [(Du,q(Cut), evk)], € R.
YASHE.Add(cq, ¢2): Compute the addition of ¢1 and ¢z as caga = [c1 + ¢2]q-
YASHE.Mult(cy, ¢a, evk): Compute

t
e = | Pualen) © Pugtea)] | < m
q

and output ¢y = YASHE.KeySwitch(épult, evk).

Since encryption and decryption are the same as in the Basic scheme from Sec-
tion B the correctness bound does not change and Lemmas [I] and [ hold for
YASHE as well. Next, we analyze the homomorphic operations YASHE.Add and
YASHE.Mult.

! Yet Another Somewhat Homomorphic Encryption scheme.
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Homomorphic Addition. Given two ciphertexts c1, co € R, which encrypt two
messages mq, Mo with inherent noise terms vy, ve, their sum modulo q, caqqa =
[c1+ ¢c2]q, encrypts the sum of the messages modulo ¢, [mq +msz];. Indeed, we can
write [ma]; + [me]t = [m1 + maly + traaq for some 1,94 € R with ||radalleo < 1.
Since

fler +e2lg = fer + fea = A([male + [malt) + (v1 +v2)
= A([m1 + ma]s + traga) + (v1 +v2) (mod q),

we obtain fle1 + 2]y = A[m1 + ma]e + (v1 + v2 — 14(q)Tada) (mod g) because
At = —r4(q) (mod g). This means that the size of the inherent noise vaqq of caqd
is bounded by

[vadalloo < [[01lloo + llvalloc + 72(q)- (1)

Up to the term r4(g) < t, the inherent noise terms are added during homomorphic
addition.

Homomorphic Multiplication. The homomorphic multiplication operation
is divided into two parts. The first part describes a basic procedure to obtain
an intermediate ciphertext that encrypts the product [mims]; modulo ¢ of two
messages m1 and ms. However, the intermediate ciphertext can not be decrypted
with Basic.Decrypt using the secret key f. The second part performs a proce-
dure which allows a public transformation of this intermediate ciphertext to a
ciphertext that can be decrypted with f. This latter procedure was introduced
in [6] in the form of relinearization and was later expanded in [4] into a method
called key switching, which transforms a ciphertext decryptable under one se-
cret key to one decryptable under any other secret key. For our analysis, we
assume that Xikey and Xerr are Biey- and Ber-bounded, respectively. Even if we
work with unbounded Gaussian distributions, this is a valid assumption since
elements drawn from either distribution have bounded norm for suitable bounds
with high probability. The deduction of noise bounds mostly follows the basic
multiplication section of [9], since ciphertexts and the decryption algorithm in
YASHE have a very similar structure to those in [9].

First Step. Let c¢;,co € R be ciphertexts that encrypt messages mj;, ms € R.
In the first step of the homomorphic multiplication operation, we compute

Gt = H;Pw,q(cl) ® Pw,q(cz)H

q

The following theorem shows that (Emult; Dw,q(f) Q@ Duw.q(f)) = Almama]t+Omus
(mod ¢), and it provides a bound for the size of Vyuis. Thus, émuye can be viewed
as an encryption of [myme]s under Dy, 4(f) ® Day (f) if the inherent noise term
Umuls 1S small enough.

Theorem 1 (Multiplication Noise). Let ¢1,¢2 € R be ciphertexts encrypt-
ing mi,me € R, decryptable with the secret key f. Let vi,v3 € R be the in-
herent noise terms in ci1,co and let V. > 0 such that ||villec < V < A/2,



54 J.W. Bos et al.

i € {1,2}. Let ¢mu be the intermediate ciphertext in YASHE.Mult, and let
Lo tBroy = 1084, (tBrey) |42 Then (Emutt, Duw,g(f)@Dw q(f)) = Almima]s+omu
(mod ¢) where

B 5t? 1 1
[Bmutlloo < (2 + 0w 1By W)V + ) (34 0luiBieyw) + o (0w tB,w)* + -
Starting with two ciphertexts at a given inherent noise level, the first step of
the multiplication increases the inherent noise level by a multiplicative factor of

2
roughly 52t€w,t3keyw and an additive term of 52 &Dineyw(tz + iew,tBkeyw)-

Key Switching. The second part in the homomorphic multiplication procedure
is a key switching step, which transforms the ciphertext ¢y, into a ciphertext
Cmult that is decryptable under the original secret key f. We use the evaluation
key

ek = [/ Pug(Dua(F) & Dug(£)) + e+ - 5],

3

output by YASHE.KeyGen where €, s + Xﬁ?}’q are vectors of polynomials sampled
from the error distribution xery and [-]4 is applied to each coefficient of the vector.
Note that this key is a vector of quasi-encryptions of f ™1 Py, 4(Du.q(f)® D o(f))
that depend on the secret key f, under its corresponding public key and that
it is made public because it is needed for the homomorphic multiplication oper-
ation. Therefore, we need to make a circular security assumption, namely that
the scheme is still secure even given that evk is publicly known (see Section f2]).
The following lemma deduces a bound on the noise caused by the key switch-
ing procedure and states an overall bound on the noise growth during a single
homomorphic multiplication operation.

Lemma 3. Let notation be as in Theorem [ and as above. In particular, let
Cmuly be the intermediate ciphertext in YASHE.Mult with inherent noise term
Omult- Let evk be the evaluation key and cmur = YASHE.KeySwitch(épuls, evk).
Then femue = Almimalt + vmue (mod q), where

vaultHoo < HﬂmultHoo + 62t£:3)7q"UBererey~

Theorem [1 and Lemma [ give an overall upper bound on the noise growth
during a homomorphic multiplication. This clearly dominates the noise growth
for homomorphic addition 2

4.1 Correctness

This section discusses the correctness of YASHE and shows that it is a leveled
homomorphic encryption scheme. We state correctness by giving an asymptotic
bound on the number of multiplicative levels in an arithmetic circuit that can
be correctly evaluated. For this, we concretely focus on a parameter setting such

2 As noted in [3] the number of elements in Dy, 4 (f) ® Duw,q(f) can be reduced from

meq to (é“é"l ) which correspondingly reduces the number of ring elements in evk.
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that the assumptions of the theorem by Stehlé and Steinfeld (see [2, Appendix A])
hold. This means that the DSPR problem is hard in R;. We therefore fix the
following parameters: let d be a power of 2, n = ¢(d), e € (0,1), k € (1/2,1) and
let ¢ = 2%° be a prime such that @4(X) = X™+1 splits into n irreducible factors
modulo ¢. Let xkey be a discrete Gaussian distribution on R, with deviation
Okey > d\/log(qu) -q¢*, and let Yy be an asymptotically w(\/d log(d))-bounded
Gaussian distribution on R where d tends to infinity. Finally, we fix w = 2 and
t = 2, but note that similar results hold for general w,t — this restriction is
merely for the purpose of exposition.

Theorem 2 (Correctness of YASHE). Forthe parameter choices above, YASHE
can evaluate any circuit of depth

_ (1 —Fk)log(q)
b= @<1Og(1og(q)) T log(d) )
4.2 Security

To prove security of YASHE, we need to assume that IND-CPA security can be
maintained even when an adversary has access to elements of the evaluation
key evk. Due to the way we construct evk it is not sufficient to simply replace
f by L distinct secret keys f;, as has been done in previous works — a specific
assumption is still required. This is a form of key dependent message security, for
the family of functions defining the evaluation key. Under this “circular security”
assumption, the IND-CPA security of YASHE follows from the IND-CPA security
of the scheme Basic described in Section [}l and the RLWE assumption.

Theorem 3 (Security of YASHE). The scheme YASHE is IND-CPA secure
under the RIWEy ¢ .., assumption and the assumption that the scheme remains
IND-CPA secure, even when an adversary has access to evk output by
YASHE.KeyGen(d, ¢,2, Xkeys Xerr; 2)-

Proof. Since Oxey > d\/log(8dq) - ¢* for some k > 1/2 4+ v with v > 0, the
conditions of [2, Theorem 7] (see also [25]) are satisfied. Hence the public key
is indistinguishable from a uniform element of R). It follows from [25] that
the scheme Basic is IND-CPA secure under the RLWEg 4 ., assumption in R,.
Under the circular security assumption outlined above, the IND-CPA security
of YASHE follows. O

For the proof of Theorem[3] we only need parameters that satisfy the assumptions
in [2] Theorem 7]. For the parameters outlined at the beginning of this subsection,
the RLWE assumption is believed to be hard based on standard worst-case lattice
problems.

4.3 From Leveled to Fully Homomorphic Encryption

In [10], Gentry showed how a fully homomorphic scheme can be obtained from
a leveled homomorphic scheme supporting computation of circuits of sufficient
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depth. If a scheme can evaluate its own decryption circuit and one additional mul-
tiplication, then that scheme can be converted to a fully homomorphic scheme.
The only caveat is that we have to make an additional assumption: to execute
the bootstrapping procedure, it is necessary to augment the public key with
encryptions YASHE.Encrypt(pk, sk[j]) of the bits of the secret key, under its cor-
responding public key. Similarly to the assumption on the evaluation key, we
need to make an additional assumption that including encryptions of bits of the
secret key does not affect security.

To achieve a fully homomorphic scheme, we simply view the decryption circuit
as a circuit computed on the bits of the secret key at a ciphertext ¢ we wish to
refresh. The noise in the resulting fresh ciphertext will be of fixed size depending
on the noise in the encryptions of the bits of the secret key. In the full version [2]
(Lemma 6, Theorem 8)] we show that YASHE can be bootstrapped to a fully
homomorphic scheme.

5 A More Practical Variant of the Scheme

In this section, we propose a more practical variant YASHE’ of YASHE. The dif-
ference to YASHE lies in the homomorphic multiplication procedure. In YASHE',
an intermediate ciphertext is simply a single polynomial while it is a vector of
polynomials in YASHE. This results in an evaluation key that consists of only
£y 4 polynomials instead of E’U’q for YASHE and thus in a simpler key switching
procedure. We now state the scheme and discuss the noise growth during the
simplified homomorphic multiplication operation YASHE'.Mult.

YASHE'.ParamsGen(\): Output (d, g, t, Xkey Xerr) < BasicParamsGen(\).
YASHE'.KeyGen(d, g, t, Xkey, Xerr, w): Compute

h, f < Basic.KeyGen(d, ¢, %, Xxey, Xerr)-

Sample e, s + Xﬁ‘r";«“, compute v = [Py, 4(f) +e+h-s], € Rf4. and output
(pk, sk, evk) = (h, f,7).

YASHE' .Encrypt(pk, m): Encrypt m € R as ¢ < Basic.Encrypt(pk,m) € R.
YASHE' .Decrypt(sk, ¢): Output the message m < Basic.Decrypt(sk, c) € R.
YASHE'.KeySwitch(Gmult, evk): Output the ciphertext [(Dy 4 (Cmult), evk)] -
YASHE'.Add(c1, c2): Output cgqq < YASHE.Add(c1, c2) = [c1 + ¢2]4-

YASHE' .Mult(cq, ca, evk): Output the ciphertext

t
Cmult = YASHE' .KeySwitch (e, evk), where épuie = Hqclcg—H .
q

For two ciphertexts c1, co € R that encrypt my, me € R, the intermediate cipher-
text Gmuly during homomorphic multiplication YASHE'.Mult satisfies f2ému =
Almima]t + Omus (mod ¢) as shown in the following theorem. This means that
émult 18 an encryption of [myms]; under f 2. The theorem also provides an upper
bound on the inherent noise term in the intermediate ciphertext. We assume
that the error distribution Xepr is Berr-bounded and that the key distribution
Xkey 18 Biey-bounded.



Improved Security for a Ring-Based Fully Homomorphic Encryption Scheme 57

Theorem 4 (Multiplication Noise). Let ¢1,ca € R be ciphertexts encrypting
mi,ms € R, which are decryptable with the secret key f. Let v1,v3 € R be the
inherent noise terms in ci,co and let V> 0 such that |vil]|lee < V < A/2,
i € {1,2}. Let Gyuis be the intermediate ciphertext in YASHE' .Mult.

Then f2émuy = Almimals + Omue (mod q) where

| Fmutt||oo < 6t(4 + 6t Byey )V + 6%t Brey (Biey + t).

Key Switching. The key switching algorithm now transforms such an inter-
mediate encryption into a ciphertext that can be decrypted with f itself. The
evaluation key is evk = [P, 4(f) + € + h - s];, where e, s < Xt are vectors
of polynomials sampled from the error distribution xe,.. Again, this key is a
vector of quasi-encryptions of the secret key f under its corresponding public
key. It is required for the homomorphic multiplication operation and is therefore
made public. This means, we need to make a circular security assumption as for
YASHE, namely that the scheme is still secure even given that evk is publicly

known. The following lemma gives a bound on the key switching noise.

Lemma 4. Let émuy be the intermediate ciphertext in YASHE' .Mult. Its inherent
noise term is denoted by Umuit- Let v be the evaluation key from above and cpuiy =
YASHE'.KeySwitch(mute, ¥)- Then femue = Almamals + vmue (mod q), where

H'UmultHoo < H'ﬁmultHoo + 52t€w,quererey-

5.1 Correctness and Security of YASHE’

In the following theorem, we give an explicit bound for correctness of a homo-
morphic evaluation of an arithmetic circuit in R/tR of multiplicative depth L
that is organized in a leveled tree structure of multiplications without any addi-
tions. At each level all ciphertexts are assumed to have inherent noise terms of
roughly the same size. The bounds that we obtain might be too large and could
be significantly reduced for computations that involve more additions and less
multiplications as well as multiplications of ciphertexts with imbalanced inherent
noise terms. In favor of simplicity, we restrict to the above setting.

Theorem 5 (Correctness of YASHE'). Let ¢; = 4(6tByey) . The scheme
YASHE' can correctly evaluate an arithmetic circuit consisting of L-levels of mul-
tiplications in R/tR on ciphertexts with inherent noise of size at most V that
are arranged in a binary tree of L levels of multiplications if

201+ )" 1 P Bl (1 + )tV + L(tBiey + 12 4 luw qwBerr)) < A —14(q).

Appendix K in [2] gives detailed bounds on the increase of the inherent noise
terms in ciphertexts during homomorphic addition and multiplication. One can
take these bounds to deduce overall bounds for the exact computation that is
supposed to be carried out on encrypted data. The obtained bounds can then
be used to deduce tailored parameters for the scheme to ensure correctness and
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security for that particular setting, possibly resulting in more efficient parameters
for the specific computation.

The security of YASHE’ is based on the RLWE assumption and a circular se-
curity assumption similar to the one for YASHE. The price we pay for a simpler
homomorphic multiplication operation lies in an additional security assumption.
Since YASHE' only works for a much narrower key distribution that does not sat-
isfy the requirements for applying the Stehlé and Steinfeld result ([25] Thm. 4.1]),
security also relies on the Decisional Small Polynomial Ratio (DSPR) assump-
tion, as stated in Section 2l In YASHE, this assumption could be avoided by
making the scheme work with a key distribution as demanded by [25]. Following
the same hybrid argument as in [16], one can prove that the scheme described
in this section is secure under the DSPR assumption and the RLWE assumption
(see [16, Section 3.3]). If a,b are two elements sampled from a Gaussian with
very small standard deviation or from a different distribution that yields poly-
nomials with very small coefficients only, the ratio h = a/b can clearly not be
uniform because the number of elements for a and b is too small and produces
only a small number of values for h when compared to all elements in R,. Still,
a computationally bounded adversary might not be able to distinguish such a
case from uniform randomly chosen h.

Theorem 6 (Security of YASHE'). Let d be a positive integer, ¢ and t < q
be two moduli, w be a fized positive integer, and let Xiey and Xerr be distri-
butions on R. The scheme YASHE' is IND-CPA secure under the RAIWE 4 ...
assumption, the DSPRq g y,., assumption, and the assumption that the scheme
remains IND-CPA secure even when the evaluation key evk which is output by
YASHE'.KeyGen(d, q, t, Xxey, Xerr) is known to the adversary.

Remark 1. The DSPRy 4 ., assumption can be replaced by a weaker assump-
tion DSPR4 4,y ;.x,» Where the elements f and g that are used for the public key
h = [tgf '], are sampled from distributions of different width with bounds By
and By, respectively. This new assumption can be made weaker than the original
assumption since the element g can be sampled from a much wider distribution
than f. Introducing these two distributions means that the noise bound for the
inherent noise in a fresh ciphertext is changed to §t(Be(Bs + By) +1:(q)Bf/2).
The proofs of the noise bounds for YASHE' .Mult show that the bound B, only
influences the constant Cs in Lemma 9 in the full version [2]. The contributions
of By in the noise bounds for L levels of multiplications are merely a constant
factor independent of L. Therefore, the scheme is still leveled homomorphic with
the weaker assumption.

Remark 2. For YASHE', since private keys are sampled with very small norm,
the circular security assumption can be avoided in the usual way by providing a
different public/private key pair (h;, f;) for each level i of multiplications for 0 <
i < L. The evaluation key has to be extended to L vectors v; = [Py o(f2 1) +e+
hi-s]y, 1 < i < L, such that the key switching step YASHE'.KeySwitch (Gpu1t, evk;)

2

transforms the intermediate ciphertext émuiy decryptable under f7 ; (obtained

from two ciphertexts at level ¢ — 1) into one decryptable under f; at level i.
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Table 1. Parameters that guarantee security of A = 80 bits against the distinguishing
attack with advantage e = 27%°. We fix w = 232, the key distribution is assumed to be
bounded by Biey = 1, and we use gerr = 8 and Berr = 60er:. Either for fixed sizes of g, we
give the minimal degree nmin (left part), or for fixed dimension n, we give the maximal
size 10g(gmax) (right part). For each pair (¢, n) according to the given sizes, and different
values of ¢, correctness is guaranteed for at most Lmax multiplicative levels.

[log(q)]  nmin t Lmax n 10g(gmax) t Lmax
2 3 2 4

128 3329 256 2 212 157 256 2
1024 1 1024 2

2 5 2 9

192 5018 256 3 213 312 256 6
1024 3 1024 5

2 7 2 19

256 6707 256 5 ol 622 256 13
1024 4 1024 11

2 15 2 37

512 13463 256 10 218 1243 256 25
1024 9 1024 23

2 31 2 71

1024 26974 256 21 216 2485 256 50
1024 19 1024 46

5.2 Parameters

In this section, we give suggestions for choosing concrete parameters which can
be used as a guideline to instantiate practical schemes with varying complexity.
There are multiple parameters one can adjust, so we restrict ourselves to a subset
of choices which we think are most relevant. We consider two settings. In the first,
we fix a specific size for the modulus ¢. This is interesting for instance when a fast
modular multiplication implementation (in either hard- or software) is already
available, and one prefers to use this to boost the scheme’s performance. We
fix different sizes for the modulus ¢ starting from 128 bits up to 1024 bits. The
other setting focuses on special-purpose polynomial arithmetic. Here, we fix the
degree n = o(d) to be a power of 2 between 22 and 216.

The parameters presented in Table[[lare obtained by following the security anal-
ysis of Lindner and Peikert [I5] under the assumption that the results from [15] in
the LWE setting carry over to the RLWE setting, and assuming that the assump-
tions in Section[Edlhold. This analysis is similar to the ones from [I2J9I14] and we
refer to [12] for a more complete discussion of assumptions made in deriving pa-
rameters. Note that recent results by Chen and Nguyen [7] are considered to be
more accurate for estimating the security of specific parameters using the simula-
tion of the BKZ 2.0 algorithm for assessing the runtime of lattice basis reduction.
Selecting parameters for YASHE' with this method is ongoing work at the time of
writing this paper. However, it is expected that the parameters presented in this
paper which are obtained by using the Lindner-Peikert method are more conser-
vative than those obtained with the BKZ 2.0 simulation.
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Next, we discuss in more detail the parameter selection recommendations made
in Table[Il We use Byey = 1, in other words we are assuming that even when the
polynomials f’, g have coefficients in {—1,0, 1}, the public key h = [tgf~], is in-
distinguishable from uniform. The standard deviation of the error distribution is
fixed at ¢,y = 8; this is consistent with [19]. The high probability bound on the size
of the coefficients of errors drawn from Gaussian distributions is chosen as 6o¢,..

To distinguish with an advantage of € in the RLWE problem, an adversary is
required to find vectors of length at most « - (¢/c) where a = /In(1/e)/7. In
our specific parameter examples, we use ¢ = 2780, which results in o ~ 4.201.
We refer to [I5] for a more complete description of a distinguishing attack and
the precise lattices we are required to find short vectors in. Running Schnorr-
Euchner’s BKZ [22], the best known lattice reduction algorithm in practice,
and its successor BKZ 2.0 [7] for security parameter A (following [12] we use

A = 80) one expects to find vectors of length 92/110g, () log; (Srnr) jpy time Thky =
2% where drpr is the so-called root Hermite factor. This latter quantity is the
overwhelming factor determining the quality of the basis which can be achieved
in a given time and is computed as in [I5] from

IOgQ(TBKz) = 18/ logz(éRHF) —110.

It is currently infeasible to achieve a target root Hermite factor oggr < 1.005 [7].
To guarantee security, we require that the shortest vector obtained through lat-
tice reduction is longer than a vector which could give an adversary a non-
negligible advantage € in the Ring-LWE distinguishing problem. This means
that for security we thus require

o - Q/O' < 22\/n10g2(q) 10g2(5RHF).

For fixed parameters « and dryp, this inequality provides bounds on the remain-
ing parameters ¢, Ge;r and n. FiXing g,y t00 (0err = 8 here), we get a dependency
between g and n that is expressed in the two settings discussed above as follows.
When we fix ¢, we obtain a lower bound n,;, for the dimension n to guarantee
security against the distinguishing attack. For the example values for the sizes
of g given in the first column of the left part of Table [I, we list this minimal
degree in the second column. We used the worst case bound for a modulus ¢ of
that size. Vice versa, first fixing the degree n means that we get an upper bound
Gmax for q. We display the relation between n and the size log(gmax) in the first
two columns of the right part of Table[dl

For guaranteeing correctness, we use the noise bounds derived in the previous
section. As mentioned in Section2 when d is a power of 2 and thus @4(X) = X" +1,
the expansion factoris § = n. Then, by Lemmal[lland Lemma 9 in the full version [2]
we know that our scheme can correctly evaluate a depth L circuit as long as

(1+e) ' 27 BL (1 + etV + L (t(Byey + t) + luw qwBer))

is less than (A — 7(q))/2, where ¢; = 4(m§Bkey)*1 and V = ntBiey(2Berr +
r+(q)/2) is the inherent noise of fresh ciphertexts by Lemma [2] For each row in



Improved Security for a Ring-Based Fully Homomorphic Encryption Scheme 61

either the left or the right part of Table [Tl we take the given values for ¢ and
n together with different values for ¢ and check what is the maximum number
of levels L.« for which the correctness bound still holds. Note that in the left
part, we take the minimal degree npi,. This means that when choosing a power
of 2 for the degree, the values for L.« might change. In the right part, we take
the largest possible value for ¢ with the given maximal bit size.

It is important to ensure that the security bounds as well as the correctness
bounds are both satisfied. Note that the authors of [9] failed to check their pa-
rameters presumably obtained from the correctness bound in the security bound,
too, resulting in insecure parameters of ¢ = 2'3°% and n = 21°.

5.3 Implementation

Currently there are not many known implementation results for FHE schemes.
Some of those which have been published demonstrate that the current state-
of-the-art’s performance is still rather unsatisfactory, see for example the imple-
mentations which are capable of computing AES homomorphically [12/8]. Other
people have focused on implementing relatively simple schemes that require only
a few levels of multiplications [I4]. When using the ring R = Z[X]/(X %% + 1),
t = 2'0 and a 130-bit prime g, the authors of [14] present implementation results
on an Intel Core 2 Duo running at 2.1 GHz. Encryption takes 756 ms, addition of
ciphertexts 4 ms, multiplication of ciphertexts 1590 ms (this includes the degree
reduction) and decryption 57 ms.

We have implemented the YASHE' variant proposed in Section[Hlin a C-library.
All the arithmetic has been built from scratch and we do not depend on any
external number theory library. Using almost the same parameters (we use a
127-bit prime ¢) with w = 232 we obtained the following results on an Intel Core
i7-3520M at 2893.484 MHz with hyperthreading turned off and over-clocking
(“turbo boost”) disabled. Encryption runs in 79.2 million cycles (27 ms), addition
of ciphertexts in 70 thousand cycles (0.024 ms), multiplication of ciphertexts
(including the key-switching) in 90.7 million cycles (31 ms) and decryption in
14.1 million cycles (5 ms).

This performance increase by at least one order of magnitude (for the decryp-
tion) to two orders of magnitude (for the addition of ciphertexts) can be partially
explained by the fact that we are running on a more recent processor and that
we implemented the scheme directly in C (avoiding the overhead incurred by
using a computer algebra system as in [14]). The remainder of the speed-up is
due to our newly proposed scheme, in particular due to a simpler multiplication
operation on ciphertexts that uses a more compact evaluation key consisting of
only 4 elements. These performance numbers highlight the fact that HE is much
more practical for schemes which do not require very deep circuits (like AES)
but instead only need a few (around 22 to 2°) multiplications.

5.4 Truncating Ciphertext Words

Brakerski [3, Section 4.2] first suggested for his scale-invariant LWE scheme
to discard some least significant bits of the ciphertext. Based on this idea, we
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describe an optimization to our scheme which significantly reduces both the
ciphertext length and the number of elements in the evaluation key. By aligning
the number of bits we discard with a multiple of w used in YASHE.KeySwitch,
the number of elements required to switch keys is reduced per multiplication.

Define YASHE.Discard,,(c,%) as the function which takes as input a cipher-
text and the number 0 < i < £, 4 of w-words to be truncated and outputs
¢’ = YASHE.Discardy(c,i) = |w™%c|. Then, w'c is equal to ¢ with the i least
significant w-words of ¢ being set to 0. If ¢f = Am + v (mod q), then wic' f =
Am 4" (mod gq) with [[v/[|ec < [[v]|ec + 56w | f]|oo. For a constant B > 0 such
that 2B > || f|lo/2, if we discard log,,(2B) — log,, (6] f||s) words, we incur an
additional noise term of size B, but the ciphertext can now be represented by
log,, (q/B)+1og,, (3] f]loc/2) words. This means that, with discarding, the length
of ciphertexts does not depend on the absolute value of ¢ but only on the ratio of
q to the noise in the ciphertext. Perhaps more importantly, this means that when
we consider Dy, 4(c) for a ciphertext ¢ with coefficients represented by roughly
log,,(¢/B) words, all the lowest log,,(B) words are now zero. If ¢ is a ciphertext
decryptable under f2, in the key switching step, we only need the top log,,(¢/B)
elements from the evaluation key to carry out the switch.

5.5 Encoding Input Data via the CRT

For our leveled homomorphic encryption scheme, we have given bounds on pa-
rameters and input data to ensure correctness and security. For applications
such as outsourcing of storage and computation on private data to the cloud,
it could be the case that the user requires a flexible system which allows for
additional computation, more computation than was planned for when setting
system parameters. We propose a way to extend the system to allow additional
computation without resetting the parameters. For computations on integer val-
ues, the encoding of larger integers using the Chinese Remainder theorem allows
for either greater precision of computation or larger integer inputs, using the
same underlying field size and lattice dimension but at the cost of increasing the
number of ciphertexts to be operated on.

Integer computations with results up to a bound B are done by encoding each
input as a collection of integers modulo coprime ¢; via the CRT. Computations
are then carried out on the collection and correctly reflect the integer operations
not involving any modular reductions, as long as the product of the t; is greater
than B. Each integer in the collection is encrypted as a separate ciphertext with
respect to its corresponding plain text modulus ¢; and those ciphertexts can be
processed in parallel to return encrypted collections. After they are decrypted,
the CRT is used to recover the output as an actual integer.

This approach is different than the ones introduced in [23] and [§], since in
contrast to these schemes, we do not use the CRT to pack information into
different plain text slots of a single ciphertext. Instead, we simply encrypt each
part of the CRT encoding in a separate ciphertext with respect to its plain text
modulus ¢;. This introduces a different way of flexibility. Ciphertexts now consist
of several ring elements, but can be processed in parallel. For example, this allows
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to work on integers of double bit length by keeping the same parameters, only
extending to two ciphertexts with different values for ¢ty and ¢;.

6 Conclusions

We have proposed a new fully homomorphic encryption scheme based on the
scheme by Stehlé and Steinfeld which removes the non-standard decisional small
polynomial ratio assumption needed in the homomorphic encryption scheme
by Loépez-Alt, Tromer and Vaikuntanathan. Hence, the security is solely based
on standard lattice assumptions and a circular security assumption. Our new
scheme avoids modulus switching and keeps the size of ciphertexts to a single
ring element. Furthermore, we have presented a more practical variant of our
scheme which does need the decisional small polynomial ratio assumption. For
this latter scheme we presented parameters and implementation results.
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