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Abstract. In this paper we provide the first provably secure blind ring signature
construction that does not rely on random oracles, which solves an open problem
raised by Herranz and Laguillaumie at ISC 2006. We present different instanti-
ations all of which are round-optimal (i.e. have a two-move signing protocol),
yield sub-linear size signatures, and meet strong security requirements. In order
to realize our constructions efficiently, we construct a sub-linear size set member-
ship proof which works in the different bilinear group settings, which may be of
independent interest.

As a secondary contribution, we show how to generically combine our set
membership proof with any secure signature scheme meeting some conditions to
obtain ring signatures whose security does not rely on random oracles. All our
constructions work over the efficient prime-order bilinear group setting and yield
signatures of sub-linear size. In addition, our constructions meet strong security
requirements: namely, anonymity holds under full key exposure and unforgeabil-
ity holds against insider-corruption. Finally, we provide some example instantia-
tions of the generic construction.

1 Introduction

Background. A Ring Signature (RS), introduced by Rivest, Shamir and Tauman [45],
allows a signer to choose an arbitrary set of signers called a “ring” and anonymously
sign a message on behalf of the ring providing that the signer himself is a member of
the ring. Generating the signature does not require the cooperation of other members of
the ring and hence they need not even be aware of their inclusion in the ring.

Besides correctness, the security of ring signatures [45,8] requires anonymity and
unforgeability. Informally, anonymity requires that a signature does not reveal the iden-
tity of the ring member who produced it. On the other hand, unforgeability requires
that an adversary cannot forge new signatures on behalf of an honest ring. In [8], the
authors provide various variants of those requirements. We will prove the security of
our constructions under the strongest definitions provided in [8].

Ring signatures were originally used for anonymous leaking of authoritative secrets.
For other applications of ring signatures see, e.g. [45,39,21].

Like group blind signatures [38], blind ring signatures extend blind signatures to the
multi-signer setting. However, in contrast to the former, the latter provide more flexibil-
ity in the choice of the group as it is done in an ad hoc manner without requiring prior
cooperation or join protocols. In addition, anonymity of the signer is not revocable. Be-
sides the three security properties required from traditional ring signatures, the security
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of blind ring signatures requires blindness which informally states that members of the
ring cannot learn which message is being signed on behalf of the ring. Also, they cannot
match a signature to its signing session.

Applications of blind ring signatures include distributed e-cash systems [38], where
a client’s e-coin is signed by a member of a coalition of banks chosen in an ad hoc
manner. The choice of the coalition could be specified by either the issuing bank or the
client himself. Other applications of the primitive include multi-authority e-voting and
e-auction systems.

Related Work. BLIND RING SIGNATURES. Only a few blind ring signature schemes

[16,50,35,51] were proposed. All of those constructions are secure in the Random Ora-
cle Model (ROM) [7]. The scheme in [16] yields signatures of linear size and its security
requires both random oracles and the generic group model [48]. In [50], the authors pre-
sented a static blind ring signature scheme that requires both random oracles and the
generic group model. This scheme requires that the group (i.e. the ring) is fixed and
hence it yields signatures of constant size. The schemes in [35,51] also yield signatures
of linear size. We note here that the blindness requirement of [35] was proven using a
different game than the standard definition for blindness [37,43] where the adversary
only interacts once with the challenger and does not get to see the final signature.

RING SIGNATURES. The first construction by Rivest, Shamir and Tauman [45] is based
on trapdoor permutations and is secure in the random oracle model. Subsequently, other
constructions relying on random oracles followed [4,12,36,21,40].

A few constructions which do not rely on random oracles were proposed. Bender et
al. [8] gave a generic construction requiring generic ZAPs [22], making it inefficient.
They also gave two constructions for two-signer rings. Other constructions which do
not require random oracles include [47,17,14,46,15]. The constructions in [46,15] use
a weaker notion of unforgeability than the one we use in this paper.

All existing constructions apart from [17] (which yields sub-linear size signatures
in composite-order groups in the Common Reference String (CRS) model) and [21,40]
(which yield signatures of constant size in the ROM) yield signatures of linear size.

The Challenges. The subtlety one faces when designing blind ring signatures lies in
the dual privacy requirement: that is the dilemma of having parts of the witness of the
same proof of knowledge coming from different parties who do not trust each other.
On the one hand, the signer needs to hide his identity and parts of the signature that
could identify him (i.e. the anonymity requirement). On the other hand, the user needs
to hide the message and parts of the signature which could reveal the linkage between
a signature and its signing session (i.e. the blindness requirement). One might consider
addressing such an issue by resorting to secure multiparty computation, however, such
an approach would massively degrade the efficiency of the resulting construction.

Due to the nature of random oracles, in the random oracle model this obstacle is
easier to tackle by, for instance, using divertible proofs of knowledge e.g. [20,41]. In
the standard model, the issue is more subtle. To get around this issue, we exploit some
properties of Groth-Sahai proofs [33], namely: the randomizability of the proofs [6]
and the ability to transform some proofs without knowledge of the original witness
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[29,27]. This way we obtain the required divertibility needed to achieve the dual privacy
requirement.

The second technical challenge is that unforgeability of ring-related signatures re-
quires that the signature is bound to the ring in order to prevent the adversary from
transforming a signature by some ring into a signature by a different ring. The scenario
is more serious when the construction involves a malleable proof system such as the
Groth-Sahai proof system which we use in our constructions. This is because the mal-
leability of the proof system allows one to easily transform a proof for some statement
into another proof for a related statement.

When constructing ring signatures, one can easily bind the signature to the ring by
simply signing both the message and the ring. For instance, this could be efficiently
achieved by signing the hash of the concatenation of both the message and the ring.
Unfortunately, this approach does not work in a blind signing protocol. That is because
necessitating that the message remains hidden from the signer, one needs to prove that
such hashing was applied correctly without revealing the message, which cannot be
efficiently realized due to the complex structure of hash functions. To bind the signature
to the ring w.r.t. which it was produced, we deploy a different approach. We use a
signature scheme that simultaneously signs a pair of messages to construct a partially-
blind signature scheme where we hide the actual message from the signer but we include
the details of the ring as the public information shared between the user and the signer.

The remaining challenge which is inherent even in traditional ring signatures is the
size of the signatures. Almost all previous blind ring signatures e.g. [16,35,51] and
most existing traditional ring signatures e.g. [8,47,14] yield signatures whose size grows
linearly with the size of the ring. This limitation is usually inherited from the underlying
OR proof used to prove that the signature verifies w.r.t. a verification key contained in
the ring without revealing which one it is. In [17], the authors used some techniques
from private information retrieval applications to construct a membership proof that
has a sub-linear size. Unfortunately, their protocol is limited to the rather inefficient
composite-order bilinear group setting. As a part of our contribution, we adapt their
technique to the prime-order setting and thus we obtain a sub-linear size set membership
proof that works in the 3 different settings of prime-order bilinear groups. Although this
on its own is not a major contribution, it is of independent interest as we believe it could
have further applications beyond the scope of this paper.

Our Contribution. Our main contribution is the first blind ring signature schemes that
do not rely on idealized assumptions. This solves a problem that remained open since
2006 [35]. To realize our constructions efficiently, we instantiate the idea used for the
membership proof from [17] in the prime-order bilinear group setting. All our con-
structions yield signatures of sub-linear size and thus are shorter than those of previous
constructions. In addition, our schemes meet strong security requirements and their se-
curity is based solely on falsifiable complexity assumptions [44].

Our final contribution is a generic construction that combines our set membership
proof with any signature scheme in the standard model satisfying some conditions to
get sub-linear size ring signatures without random oracles. Again, our focus is on con-
structions in the efficient prime-order bilinear group setting.



Sub-linear Blind Ring Signatures without Random Oracles 307

Paper Organization. The rest of the paper is organized as follows: In Section 2, we
give some preliminary definitions. In Section 3, we define blind ring signatures and
present their security definitions. In Section 4, we present a new set membership proof.
In Section 5, we present our blind ring signature constructions. Finally, in Section 6 we
present our ring signature constructions.

2 Preliminaries

Notation. Given a probability distribution S, we denote by x ← S the operation of
selecting an element according to S. If A is a probabilistic machine, we denote by
A(x1, . . . , xn) the output distribution of A on inputs (x1, . . . , xn). By p.p.t., we mean
running in probabilistic polynomial time in the relevant security parameter. By [1, n],
we denote the set {1, 2, . . . , n}. A function v(.) : N→ R

+ is negligible in c if for every
polynomial p(.) and all sufficiently large values of c, it holds that v(c) < 1

p(c) .

Bilinear Groups. A bilinear group is a tuple P := (G1,G2,GT , p, G, G̃, e) where
G1,G2 and GT are groups of a prime order p and G and G̃ generate G1 and G2,
respectively. The function e : G1 × G2 −→ GT is a non-degenerate bilinear map. We
use multiplicative notation for all the groups although usually G1 and G2 are chosen to
be additive. We let G×1 := G1 \ {1G1} and G

×
2 := G2 \ {1G2}. For clarity, elements

from G2 will be accented with˜.
Following [28], we classify prime-order bilinear groups into 3 main types:

– Type-1: This is the symmetric pairing setting in which G1 = G2.
– Type-2: G1 �= G2 but there is an efficiently computable isomorphism ψ : G2 −→
G1.

– Type-3: Again G1 �= G2, but now there is no known efficiently computable iso-
morphism.

We assume that all groups are cyclic and there is an algorithm BGrpSetup that takes
a security parameter λ and a type tp ∈ {1, 2, 3} and outputs a description of bilinear
groups of Type-tp.

Complexity Assumptions. We will use the following assumptions from the literature:

CDH. For a groupG := 〈G〉 of a prime order p given (G,Ga, Gb) ∈ G
3 for a, b← Zp,

it is hard to computeGab.
DDH. For a group G := 〈G〉 of a prime order p given (G,Ga, Gb, C) ∈ G

4 for
a, b← Zp, it is hard to decide whether or not C = Gab.

Co-CDH [18]. In Type-2 bilinear groups given (G,Ga, G̃, G̃b) ∈ G
2
1 ×G

2
2 for a, b←

Zp, it is hard to compute Gab.
Co-CDH∗ [18]. In Type-3 bilinear groups given (G,Ga, Gb, G̃, G̃b) ∈ G

3
1 × G

2
2 for

a, b← Zp, it is hard to compute Gab.
SXDH. The DDH assumption holds in both groups G1 and G2.
DLIN [11]. For Type-1 bilinear groups where G1 = G2 = G andG generatesG, given

the tuple (Ga, Gb, Gra, Gsb, Gt) where a, b, r, s, t ∈ Zp are unknown, it is hard to
tell whether t = r + s or t is random.
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– Pairing Product Equation (PPE):
n∏

i=1

e(Ai, Yi) ·
m∏

i=1

n∏

j=1

e(Xi, Yj)
ki,j = tT ·

– Multi-Scalar Multiplication Equation (MSME)1:
n∏

i=1

A
yi
i

m∏

i=1

Xi
bi

m∏

i=1

n∏

j=1

Xi
ki,jyj = T ·

– Quadratic Equation (QE) in Zp:
n∑

i=1

aiyi +
m∑

i=1

xibi +
m∑

i=1

n∑

j=1

xiyj = t·

Fig. 1. Types of equations one can use Groth-Sahai proofs for

q-SDH [10]. For a groupG := 〈G〉 of a prime order p given (G,Gx, . . . , Gxq

) ∈ G
q+1

for x ← Zp, it is hard to output a pair (c,G
1

x+c ) ∈ Zp × G for an arbitrary
c ∈ Zp\{−x}.

WFCDH [26]. In Type-1 bilinear groups, given (G,Ga, Gb) ∈ G
3 for a, b← Zp, it is

hard to output a tuple (Gr, Gra, Grb, Grab) ∈ G
×4 for an arbitrary r ∈ Zp.

AWFCDH [26]. In asymmetric bilinear groups, given (G,Ga, G̃) ∈ G1
2 × G2 for

a ← Zp, it is hard to output a tuple (Gb, Gab, G̃b, G̃ab) ∈ G
×
1

2 × G
×
2

2
for an

arbitrary b ∈ Zp.
q-DHSDH [26]. In symmetric bilinear groups, given (G,H,K,Gx) ∈ G

4 for x ←
Zp, and q − 1 tuples (Wi := (K · Gui)

1
x+vi , U1,i := Gui , U2,i := Hui , V1,i :=

Gvi , V2,i := Hvi)q−1i=1 , where ui, vi ← Zp, it is hard to output a new tuple
(W ∗, U∗1 , U∗2 , V ∗1 , V ∗2 ) of this form.

q-ADHSDH [26]. In asymmetric bilinear groups, given (G,F,K,Gx, G̃, G̃x) ∈ G
4
1×

G
2
2 for x← Zp, and q−1 tuples (Wi := (K ·Gui)

1
x+vi , U1,i := Gui , Ũ2,i := G̃ui ,

V1,i := F vi , Ṽ2,i := G̃vi)q−1i=1 for ui, vi ← Zp, it is hard to output a new tuple
(W ∗, U∗1 , Ũ2

∗
, V ∗1 , Ṽ2

∗
) of this form.

Groth-Sahai (GS) Proofs. Groth and Sahai [33,34] introduced a proof system in the
CRS model that yields Non-Interactive Witness-Indistinguishable (NIWI) and Zero-
Knowledge (NIZK) proofs. The system can be instantiated in composite-order or prime-
order bilinear groups. The equations one can prove with the system are in Figure 1
where in the description X1, . . . , Xm, Y1, . . . , Yn ∈ G, x1, . . . , xm, y1, . . . , yn ∈ Zp

are secret variables (hence underlined), whereas Ai, T ∈ G, ai, bi, ki,j , t ∈ Zp, tT ∈
GT are public constants. Note that in the asymmetric setting, there are two types of
MSM equations depending on which group the elements belong to. The system is de-
fined by a tuple of algorithms

(GSSetup,GSProve,GSVerify,GSExtract,GSSimSetup,GSSimProve)·

Algorithm GSSetup takes as input the description of a bilinear group P and outputs
a soundness reference string crs and an extraction key xk. GSProve takes as input a
reference string crs, a witness and a set of equations, and outputs a proof Ω for the
satisfiability of the equations. For clarity, we will underline the elements of the witness
in the description of the equations.GSVerify takes as input a reference string crs, a proof
Ω and a set of equations, and outputs 1 if the proof is valid or 0 otherwise. In the rest
of the paper we will omit the set of equations from the input to the GSVerify algorithm.
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GSExtract takes as input a soundness reference string crs, the extraction key xk and
a valid proofΩ, and outputs the witness used in the proof. GSSimSetup takes as input a
bilinear groupP and outputs a simulation string crsSim and a trapdoor key tr that allows
to simulate proofs. GSSimProve takes as input crsSim and the simulation trapdoor tr and
produces a simulated proofΩSim.

The system works by committing to the elements of the witness (using the algorithm
GSCommit) and then producing a proof of satisfiability for each equation. If a witness
component is involved in multiple equations, the same commitment is re-used when
verifying the proofs which makes the proofs correlated.

The proofs come in two flavors: the soundness setting yields extractable proofs,
whereas the simulation setting yields simulatable proofs. The system’s security requires
that the distributions of strings crs and crsSim are indistinguishable and simulated proofs
are indistinguishable from real proofs.

The proof system has perfect completeness, perfect soundness, composable witness-
indistinguishability and composable zero-knowledge. For formal definitions of those
properties refer to [34,30].

As formalized by [6], GS proofs can be rerandomized by rerandomizing the asso-
ciated GS commitments and updating the proofs accordingly so that we obtain fresh
proofs that are unlinkable to the original ones. Rerandomizing a proof requires knowl-
edge of neither the witness nor the associated randomness used in the original GS com-
mitments. We define an algorithm GSRandomize which takes as input a CRS crs and a
proofΩ, and outputs a proofΩ′ which is a randomized version of the proofΩ.

For details of the different instantiations see [34,32].

(Partially) Blind Signatures. Blind Signatures (BS) [19] allow a user to obtain a sig-
nature on a message hidden from the signer. Partially Blind Signatures (PBS) [3] are an
extension of blind signatures where unlike blind signatures, part of the message to be
signed is shared public information info which is known to both parties.

The signing protocol 〈PBSObtain(pk,m, info),PBSSign(sk, info)〉 in these schemes
is an interactive protocol between a user who knows a message m and a signer who
possesses a secret signing key sk and both parties know the public information info. If
the protocol is completed successfully, the user obtains a signature Σ on the message
m and the information info.

The security of partially blind signatures [5] is similar to that of blind signatures
[37,43] and consists besides correctness of blindness and unforgeability. Intuitively,
blindness requires that an adversarial signer does not learn the message being signed
and he cannot match a signature to its signing session. In the game, the adversary (mod-
eling an adversarial signer) chooses two messagesm0 andm1 and common information
info and then interacts with the honest user who requests signatures on those messages
in an arbitrary order unknown to the adversary. The same information info is used in
both interactions. If completed successfully, the adversary gets the two final signatures
and wins if it tells the order in which the messages were signed with a probability that
is non-negligibly greater than 1/2.

On the other hand, unforgeability deals with an adversarial user whose goal is to
obtain k + 1 distinct message/signature pairs after only k interactions w.r.t. the public
information info with the honest signer.
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PBSSetup(1λ):

• (G1,G2,GT , p, G, G̃, e) ← BGrpSetup(1λ, 3).
• P := (G1,G2,GT , p, G, G̃, e).

• (crs, xk)← GSSetup(P).
• F,K, L, T ← G1.
• Return paramPBS := (P, crs, F,K,L, T ).

PBSKeyGen(paramPBS):

• Choose a← Zp and set A := Ga and Ã := G̃a.
• sk := a, pk := (A, Ã). Return (sk, pk).

PBSVerify(pk, (M, M̃), info, Σ):
• Parse Σ as Ωsig.
• Return 1 if GSVerify(crs, Ωsig) = 1 Else Return 0.

The signing protocol 〈PBSObtain(pk, (M, M̃), info),PBSSign(sk, info)〉
• PBSObtain→ PBSSign

− Choose s← Zp and compute S := Gs, S̃ := G̃s and C := M · T s.
− Ω ← GSProve

(
crs, (M, M̃, S, S̃),

{
e(M, G̃) = e(G, M̃) ∧ e(S, G̃) = e(G, S̃)

∧ e(M, G̃)e(T, S̃) = e(C, G̃)
})

.
− Send (C,Ω) to PBSSign.
• PBSSign→ PBSObtain

− Abort if GSVerify(crs, Ω) 	= 1.

− Choose u, v ← Zp and set U ′ := Gu, V := Fv , W := (K · Tu · C · Linfo)
1

a+v , Ũ ′ := G̃u, Ṽ := G̃v .
− Send σ := (W,U ′, Ũ ′, V, Ṽ ) to PBSObtain.
• PBSObtain

− Compute U := U ′ · S and Ũ := Ũ ′ · S̃.
− Abort if e(U, G̃) 	= e(G, Ũ), e(F, Ṽ ) 	= e(V, G̃) or e(W, Ã · Ṽ ) 	= e(K ·M · Linfo, G̃)e(T, Ũ).
− Ωsig ← GSProve

(
crs, (V, Ṽ ,W, U, Ũ),

{
e(V , G̃) = e(F, Ṽ ) ∧ e(U, G̃) = e(G, Ũ)

∧ e(W, Ã · Ṽ )e(T−1, Ũ) = e(K ·M · Linfo, G̃)
})

.
− Output Σ := Ωsig.

Fig. 2. The partially blind signature scheme (in the asymmetric setting) [26,27]

A PARTIALLY BLIND SIGNATURE SCHEME [26,27]. In [26,2], the authors gave a
blind signature based on the DLIN, WFCDH and q-DHSDH/q-ADHSDH assumptions
in the symmetric setting or the SXDH, AWFCDH and q-ADHSDH assumptions in the
asymmetric setting. The message space of the scheme isM := {(Gm, G̃m)|m ∈ Zp}.
To get a partially blind scheme, we use a variant of their blind scheme based on the
modified signature scheme from [27] whose message space isM× Zp as highlighted
in [27].

The high-level idea behind the scheme is that the user commits to his message and
sends the commitment along with GS proofs to prove that it is well-formed to the signer.
The signer uses his secret key to produce a signature on the commitment and the public
information info. When the user receives the signature, he uses the randomness he used
in the commitment to modify the signature from one on the commitment to one on
the message itself. The final signature is a set of GS proofs of knowledge of such a
signature. The blindness of the scheme is ensured by the NIWI/NIZK properties of GS
proofs and the fact that the first-round commitment is information-theoretically hiding.
The scheme in the asymmetric setting is in Figure 2.

Ring Signatures. A ring signature [45] is a tupleRS := (RSSetup,RSKeyGen,RSSign,
RSVerify) of p.p.t. algorithms. Those algorithms are defined as follows; where to aid
notation all algorithms (bar RSSetup and RSKeyGen) take as implicit input paramRS

(output by RSSetup):

– RSSetup(1λ) takes as input a security parameter λ and outputs common public
parameters paramRS.
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– RSKeyGen(paramRS) takes as input paramRS and outputs a pair (sk, pk) of se-
cret/public keys.

– RSSign(ski,m,R) takes as input a secret key ski, a message m ∈ M (whereM
is the message space) and a ring R := {pk1, . . . , pkn} with the condition that
pki ∈ R and outputs a signature Σ on the message m.

– RSVerify(m,Σ,R) takes as input a message m, a ring signature Σ and a ring R
and outputs 1 if the signature is on the message m w.r.t. ringR or 0 otherwise.

The security properties required from ring signatures are informally as follows:

– Correctness: All honestly generated signatures are accepted by the RSVerify algo-
rithm.

– Anonymity: An adversary cannot tell which ring member produced a signature.
– Unforgeability: An adversary cannot output a valid signature Σ∗ on a message
m∗ and w.r.t. an honest ring R∗ unless the adversary obtained such a signature by
querying the sign oracle on (m∗,R∗).

For detailed definitions and variants of those properties, we refer the reader to [8]. We
use the strongest variants from [8], namely: anonymity under full key exposure and
unforgeability against insider-corruption.

3 Blind Ring Signatures

Definition 1 (Blind Ring Signatures). A Blind Ring Signature (BRS) is a tuple
(BRSSetup,BRSKeyGen, 〈BRSObtain,BRSSign〉,BRSVerify) of p.p.t. algorithms.
Those algorithms are defined as follows; where to aid notation all algorithms (bar
BRSSetup and BRSKeyGen) take as implicit input paramBRS (output by BRSSetup):

– BRSSetup(1λ) takes as input a security parameter λ and outputs public parame-
ters paramBRS.

– BRSKeyGen(paramBRS) is run by a signer Signeri to generate his pair of se-
cret/public keys (sk, pk).

– 〈BRSObtain(m,R),BRSSign(ski,R)〉 is an interactive two-party protocol
between a user User and a signer in the ring R where pki ∈ R. If the protocol
completes successfully, User obtains a blind ring signature Σ on the message m.
If any of the parties abort, User outputs ⊥. This protocol is initiated by a call to
BRSObtain. The choice of the ring could be influenced by either the signer or the
user.

– BRSVerify(m,Σ,R) verifies if the blind ring signature Σ is on the message m
w.r.t. the ringR.

A tuple BRS := (BRSSetup,BRSKeyGen, 〈BRSObtain,BRSSign〉,BRSVerify) is a
secure blind ring signature if it has correctness, anonymity, unforgeability and blindness
which are defined as follows:

Definition 2 (Correctness). A blind ring signature BRS is correct if for any λ ∈ N,
any polynomialn(·), any {(pki, ski)}n(λ)i=1 output by BRSKeyGen, any messagem in the
message spaceM and any index i ∈ [1, n(λ)] ifΣ is the output of the honest interaction
〈BRSObtain(m,R),BRSSign(ski,R)〉 whereR = {pk1, . . . , pkn(λ)} then BRSVerify
accepts the signature Σ.
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ANONYMITY. We use a strong definition for anonymity where we allow the adversary
to use corrupt keys as well as obtaining the secret keys for the two challenge signers i0
and i1 and hence capturing security against full key exposure and adversarially-chosen
keys [8].

Definition 3 (Anonymity). A blind ring signature BRS satisfies anonymity if for any
λ ∈ N and polynomial n(·) the success probability of any p.p.t. adversary A in the
following game is negligibly close to 1/2:

1. The challenger generates paramBRS and key pairs {(pki, ski)}n(λ)i=1 using

BRSKeyGen(paramBRS). A is given paramBRS and S := {pki}n(λ)i=1 .
2. Throughout the game, A has access to a sign oracle OSign with which it interacts

to obtain signatures on messages and by signers in rings of its choice (providing
that the signer’s public key is in R and S). A can also ask for the secret key of any
signer to be revealed at any stage of the game.

3. A outputs two distinct indices i0 and i1 and a ring R with the only condition that
pki0 , pki1 ∈ R. It then interacts with the challenger to get a signature by signer
Signerib where b← {0, 1}.

4. A outputs a bit b′ and succeeds if b = b′.

UNFORGEABILITY. Informally, a blind ring signature is unforgeable if the adversary
cannot output a blind ring signature w.r.t. to a ring R of honest signers that was never
produced by the sign oracle. Due to the blind nature of the signing protocol and as in
standard blind signatures, we follow the (k, k + 1)-unforgeability definition [37,43].
The following definition also protects against insider corruption [8]:

Definition 4 (Unforgeability). A blind ring signature BRS is unforgeable if for any
λ ∈ N, and polynomial n(·) the success probability of any p.p.t. adversary A in the
following game is negligible:

1. The challenger generates paramBRS and key pairs {(pki, ski)}n(λ)i=1 using

BRSKeyGen(paramBRS). A is given paramBRS and S := {pki}n(λ)i=1 .
2. Throughout the game, A has access to the same oracles as in the anonymity game

(Definition 3).
3. A outputs k+1 pairs of message/signature {(mi, Σi)}k+1

i=1 , and a ringR∗.A wins
if all the following conditions hold:
(a) All k + 1 signatures verify correctly (w.r.t. ring R∗) and all the messages are

distinct.
(b) All members of the ringR∗ are honest.
(c) A engaged in at most k interactions with the sign oracle w.r.t. ringR∗.

Note that our definition above is not of strong unforgeability, i.e., we do not require that
the adversary cannot output a new signature on an old message.

BLINDNESS. Informally, a blind ring signature is blind if an adversary (modeling a dis-
honest behavior of signers in the ring) does not learn the message it is signing. More-
over, it cannot link a signature to its signing session.
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Definition 5 (Blindness). A blind ring signature BRS satisfies blindness if for any λ ∈
N and polynomialn(·) the success probability of any p.p.t. adversaryA in the following
game is negligibly close to 1/2:

1. The challenger generates paramBRS and sends it to A.
2. A outputs a ring R (the keys of which are possibly adversarially chosen) and two

messages m0 and m1.
3. The honest user interacts with the adversary concurrently to get signatures on those

two messages in an arbitrary order unknown to the adversary by choosing a bit
b ← {0, 1}. A is sent the signatures Σb, Σ1−b. If any of the interactions did not
finish or any of the signatures do not verify w.r.t. R, A is not informed about the
other signature.

4. A outputs a bit b′ and wins if b = b′.

As noted by [35], since the ring is public, it is a natural requirement that the two chal-
lenge signatures are signed w.r.t. the same ring. Otherwise, blindness can be trivially
broken if different rings were used.

Unlike the blindness definition used in [35], which does not give the final challenge
signatures to the adversary, we give the adversary the two final signatures. This is im-
portant because blindness should capture the case that a blind signature is not linkable
to its signing session. Take, for example, the e-cash application where the issuing bank
eventually gets to see the coins when they are deposited. Also, unlike [35], our defini-
tion allows the adversary to use corrupt keys of its choice which again provides a strong
definition of blindness [1,42].

4 Sub-linear Size Set Membership Proof over Prime-Order
Groups

In this section we construct a non-interactive set membership proof. The proof allows
a prover to prove that a value Xγ is contained in a set {X1, . . . , XN} ∈ G

N . Our
construction is based on the underlying idea of the proof in [17] which is specific to
the composite-order bilinear group setting and is based on the subgroup decision as-
sumption [13]. Unlike the proof in [17], our proof is more general and works in both
composite-order and prime-order bilinear groups. However, for efficiency reasons our
focus is on the prime-order setting. We provide different instantiations over the 3 main
types of the prime-order setting as summarized in Table 1. We note that it might also be
possible to use the recent techniques, e.g. [25], for translating composite-order based
protocols to the prime-order setting to obtain a variant of the original protocol in [17]
in the prime-order setting.

The idea from [17] is to represent the set by a square n×nmatrix where n = 	√N�.
If N is not square, we can repeat X1 as many times as required to obtain a set whose
size is square. As we will see, this does not affect the complexity of the proof.

The prover knows a secret valueXγ and wants to produce a non-interactive proof that
such a value is contained in a square n×nmatrix X without revealing the secret value.
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Thus, we construct a proof for the statement Ωmem := PoK{(Xγ ∈ G) : Xγ ∈ X},
where the matrix is

X =

⎛
⎜⎝
X1,1 X1,2 . . . X1,n

...
...

. . .
...

Xn,1 Xn,2 . . . Xn,n

⎞
⎟⎠

For simplicity, the proof we give here is in the symmetric setting and is based on the
DLIN assumption and can be instantiated in the asymmetric setting as summarized in
Table 1.

Let (G,GT , p, G, e) be a description of symmetric bilinear groups. We summarize
the proof in the following steps where we assume that Xγ = Xα,β (i.e. Xγ lies in row
α and column β) and crs is the reference string used for the proof system:

1. The prover chooses 2 secret binary vectors y, z ∈ {0, 1}n as follows

yi =

{
1 if i = α,
0 if i �= α

zi =

{
1 if i = β,
0 if i �= β

The vectors y, z will be used to anonymously single out the row and the column
containing the secret value, respectively. The prover first needs to prove that each
element of those vectors has a value ∈ {0, 1} which is done by the following QE
proofs

Ωyi ← GSProve
(
crs, (yi),

{
yi(yi − 1) = 0

})
,

Ωzi ← GSProve
(
crs, (zi),

{
zi(zi − 1) = 0

}) ·
Additionally, the prover needs to prove that each vector contains only a single
value of 1. This could be achieved by generating two extra proofs for the equa-
tions

∑n
i=1 yi = 1 and

∑n
i=1 zi = 1, respectively, which only adds two linear

QE proofs and no extra commitments to the complexity. Alternatively, if witness-
indistinguishability is sufficient, one can prove this for free by exploiting the ho-
momorphic property of GS commitments (which are ElGamal ciphertexts [23] in
the SXDH instantiation and Linear ciphertexts [11] in the DLIN instantiation).
Thus, by choosing the GS randomness used for committing to one of those GS
commitments to be the inverse of the sum of the corresponding randomness used
for committing to the remaining values in the vector and then by multiplying the
GS commitments to the values in each vector, the randomness cancels out and we
can recover the sum of the values in the vector which allows the verifier to ver-
ify such a claim. Let Cyi ← GSCommit(yi, τyi) and Czi ← GSCommit(zi, τzi)
be the GS commitments used in committing to yi and zi, respectively. We set
τyn := −∑n−1

i=1 τyi and τzn := −∑n−1
i=1 τzi .

Note that since the randomness τy1 , . . . , τyn−1 and τz1 , . . . , τzn−1 is chosen uni-
formly, the randomness τyn and τzn is also uniform.

The verifier can verify that indeed each vector contains only a single value of 1
by checking that

∏n
i Cyi =

∏n
i Czi = GSCommit(1, 0), i.e. the product is equal to

a trivial GS commitment to 1.
In total, this step requires 2n GS commitments and 2n QE proofs.
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Table 1. Complexity of the proof

Component/Instantiation DLIN
DDHG1 + DLING2 SXDH

G1 G2 G1 G2

GS Commitments 9n+ 3 4n 9n+ 3 4n 6n+ 2
GS proofs 21n+ 9 12n+ 4 15n + 3 12n+ 4 10n+ 2

Total 30n+ 12 16n+ 4 24n + 6 16n+ 4 16n+ 4

2. The prover anonymously singles out the row containing his secret value. To do
so, for each column j in the matrix compute Xα,j :=

∏n
i=1X

yi

i,j . Note that Xα

contains the messages in row α of the matrix X. The prover generates the following
MSME proofs to prove that each Xα,j was computed correctly

ΩXα,j ← GSProve

(
crs, (Xα,j , {yi}ni=1) ,

{
n∏

i=1

X
yi

i,j ·X−1α,j = 1

})
·

3. Finally, the prover proves that the value Xγ is contained in the secret vector Xα.
This is achieved by the following MSME proof

ΩXγ ← GSProve

(
crs, (Xγ , {Xα,i}ni=1, {zi}ni=1) ,

{
n∏

i=1

X
zi
α,i ·X−1γ = 1

})
·

The membership proof Ωmem is
((Cy,Cz,CXα , CXγ

)
,
(
Ωy, Ωz,ΩXα , ΩXγ

))
.

To verify the proof, the verifier verifies the proofs Ωyi , Ωzi , ΩXα,i for all i ∈ [1, n]
and ΩXγ , and checks that

∏n
i Cyi =

∏n
i Czi = GSCommit(1, 0).

Note that when the proof is instantiated over asymmetric bilinear groups we need to
commit to the vectors y and z in both groups G1 and G2 and provide a proof for the
equality of the commitments for each vector.

Theorem 1. The set membership proof is correct, sound and zero-knowledge.

Proof. Correctness and soundness follow from the correctness and soundness of GS
proofs and the fact that by checking that

∏n
i Cyi = GSCommit(1, 0) and

∏n
i Czi =

GSCommit(1, 0), the verifier ensures that only one non-zero value is contained in each
vector. The witness-indistinguishability of the membership proof also follows from that
of GS proofs.

When zero-knowledge is required, all the equations we prove (which are of types
QE and MSME) are simulatable at no extra cost. Simply by using trivial witnesses (i.e.
0 for exponent values and 1 for group elements), we can simulate all the proofs. Thus,
the proof is zero-knowledge.

Complexity of the Proof. We summarize in Table 1 the size (in group elements) of the
proof in the different GS instantiations. We note here that in the asymmetric setting, the
total size of the proof is irrespective of whether the set is in G

N
1 or GN

2 . Although the
size of the commitments and proofs are swapped between the two cases, the total size
remains the same.

To speed up verification, one can apply batch verification techniques [31,9] to Groth-
Sahai proofs.
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5 Blind Ring Signature Construction

Overview of the Construction. Some of the recent round-optimal blind signature con-
structions e.g. [2] are instantiations of Fischlin’s generic construction [24], and combine
the GS proof system with commitment and signature schemes that are compatible with
one another. The latter is referred to as structure-preserving signatures [2]. In Fischlin’s
construction, the user sends a commitment to the message to the signer who in turn re-
turns a signature on the commitment. The user then constructs the final blind signature
by encrypting both the signature and the commitment and providing a NIZK proof of
knowledge that the signature is valid on the commitment and that the commitment is to
the message in question.

We exploit some properties of GS proofs. First, the rerandomizability of the proofs
[6]. Second, that they are independent of the public terms in the equations being proven
[29,27], which as shown by [29], allows transforming GS NIWI proofs into new
NIWI/NIZK proofs by adding some/all of those public terms to the witness without
knowledge of the original witness. The latter property was used by [29] to construct a
group blind signature scheme.

Additionally, we require that:

1. The verification equations of the signature scheme has the form that all the mono-
mials (e.g. the pairing in the case of PPE equations) involving the message are
independent of the signing key, i.e. they involve neither the verification key nor any
signature component that depends on the signing key so that we can exploit the
second property above. An example scheme satisfying this condition is the auto-
morphic scheme from [26].

2. The signature scheme signs n + 1 group elements or n group elements and an
integer where n is the size (in group elements) of the commitment so that we bind
the signature to the ring. To this end, we require a collision-resistant hash function
H : {0, 1}∗ −→ MSIG to map the ring into the message space of the signature
scheme.

The high-level idea of our generic construction is as follows: The user sends a commit-
ment to the message to the signer. The signer signs the commitment along with the ring
information and instead of sending the signature to the user in the clear, sends a GS
proof of knowledge Ω′sig of his public key and the signature σ such that the signature
is on the public commitment to the message and that it verifies w.r.t. to the signer’s
public key. In order to reduce the communication overhead, one does not need to hide
the whole signature and it is sufficient to just hide the components which depend on the
secret key. One might additionally need to hide other parts of the signature to ensure
that the proof is in a transformable form. In addition, using the set membership proof
from Section 4, the signer generates a proof Ω′mem to prove that his public key is in the
ring. The signer sends proofs Ω′sig and Ω′mem plus any remaining public components of
the signature to the user.

If the proofs are valid, the user first rerandomizes the proofsΩ′sig andΩ′mem (and their
GS commitments) intoΩsig andΩmem, respectively. The new proofs are now unlinkable
to the original ones. Additionally, he transforms the NIWI proofΩsig into a NIZK proof
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by adding the commitment to the message and the remaining public components of the
signature (if any) to the witness of the proof. Finally, the user adds a NIZK proof Ωcom

to prove that the commitment is indeed to the message. The final blind ring signature is
a set of GS proofs (Ωsig, Ωmem, Ωcom) and their associated GS commitments. It is vital
that the proofs are correlated, i.e. proofs Ωsig and Ωmem involve the same public key,
and proofs Ωsig and Ωcom involve the same commitment. Thanks to the nature of GS
proofs, in our instantiations this correlation is directly realized by sharing the same GS
commitment for those shared components of the witness between the proofs.

Anonymity is ensured by the NIWI/NIZK properties of the proofs and the fact that
any remaining public components of the signature the user sees are independent of
the signer’s key. Blindness follows from the properties required by Fischlin’s generic
construction plus the composable rerandomizability [6] of the GS proof system. Fi-
nally, unforgeability is reduced to the unforgeability of the underlying signature scheme,
the soundness of the proofs, the binding property of the commitment scheme, and the
collision-resistant property of the hash function.

Efficient Instantiation. In order to get an efficient construction, we will base our sign-
ing protocol on a variant of the blind signing protocol from [26] using the signature
scheme from [27] which has a short public key and is capable of signing a pair of group
elements and an integer. Thus, obtaining a partially blind signing protocol as illustrated
in Figure 2. We note here that the blind signature in [26] deviates from Fischlin’s generic
construction [24] for blind signatures in that the final signature is on the message itself
rather than its commitment and it requires proofs of knowledge in the signature request
protocol.

To obtain a blind ring signature on the message (M, M̃) ∈ G1×G2, the user commits
to the message using Pedersen commitment C := M · T s for some random s ← Zp

and computes S := Gs and S̃ := G̃s. He then sends the commitment C along with GS
proofs of knowledge Ω to prove that: the commitment C is indeed to the message M
and that the message and the randomness pairs are well-formed.

The signer first verifies the proofs and if they are valid, produces a signature σ :=
(U ′, Ũ ′, V, Ṽ ,W ) on the commitment C and the public integer H(R) (for some
collision-resistant hash function H : {0, 1}∗ −→ Zp) using the variant of the auto-
morphic signature scheme [26] as in [27]. However, instead of sending the signature
in the clear, the signer sends a GS proof of knowledge Ω′sig of his public verification

key (A, Ã) and the signature σ such that the signature verifies w.r.t. his key. Since the
componentsU ′ and Ũ ′ of σ are independent of the signing key, we need not hide them.
Additionally, the signer generates a proof of membership Ω′mem to prove that his key is
in the ring. The signer’s response is (Ω′sig, Ω

′
mem, U

′, Ũ ′).
The user first verifies the GS proofs Ω′sig and Ω′mem, and that the pair (U ′, Ũ ′) is

well-formed. If they are valid, the user rerandomizes those proofs into Ωsig and Ωmem,
respectively, using the algorithm GSRandomize. The new proofs are unlinkable to the
original ones. The user then transforms the proof Ωsig by making the signature verifiy
w.r.t. to the message itself rather than its commitment: he computes U := U ′ · S and
Ũ := Ũ ′ · S̃, and transforms the last equation in Ωsig from e(W, Ã · Ṽ ) = e(K · C ·
LH(R), G̃)e(T, Ũ ′) into e(W, Ã · Ṽ )e(T−1, Ũ) = e(K ·M ·LH(R), G̃). In addition, he
hides the components (U, Ũ) by adding a proof for the equation e(U, G̃) = e(G, Ũ).
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• BRSObtain→ BRSSign

− Choose s← Zp and compute S := Gs, S̃ := G̃s and C := M · T s.
− Ω ← GSProve

(
crs, (M, M̃, S, S̃),

{
e(M, G̃) = e(G, M̃) ∧ e(S, G̃) = e(G, S̃)

∧ e(T, S̃)e(M, G̃) = e(C, G̃)
})

.
− Send (C,Ω) to BRSSign.
• BRSSign→ BRSObtain

− If GSVerify(crs, Ω) 	= 1 Then Abort().

− Choose u, v ← Zp and set U ′ := Gu, V := Fv , W := (K · Tu · C · LH(R))
1

a+v ,
Ũ ′ := G̃u, Ṽ := G̃v .

− Ω′
sig ← GSProve

(
crs, (V, Ṽ ,W, Ã),

{
e(V , G̃) = e(F, Ṽ )

∧ e(W, Ã · Ṽ ) = e(K · C · LH(R), G̃)e(T, Ũ ′)
})

.

− Compute the membership proof Ω′
mem ← GSProve

(
crs, (Ã),

{
Ã ∈ RÃ

})
. 2

− Send (Ω′
sig, Ω

′
mem, U

′, Ũ ′) to BRSObtain.
• BRSObtain

− Abort if e(U ′, G̃) 	= e(G, Ũ ′), GSVerify(crs, Ω′
sig) 	= 1 or GSVerify(crs, Ω′

mem) 	= 1.
− Compute U := U ′ · S and Ũ := Ũ ′ · S̃.
− Ωsig ← GSRandomize(crs, Ω′

sig), Ωmem ← GSRandomize(crs, Ω′
mem) and transform Ωsig as follows:

− Ωsig ← GSProve
(
crs, (V, Ṽ ,W, Ã, U, Ũ),

{
e(V , G̃) = e(F, Ṽ ) ∧ e(U, G̃) = e(G, Ũ)

∧ e(W, Ã · Ṽ )e(T−1, Ũ) = e(K ·M · LH(R), G̃)
})

.

− Output Σ := (Ωsig, Ωmem).

Fig. 3. The signing protocol

The final blind ring signature is Σ := (Ωsig, Ωmem). Again, the two proofs share the
same GS commitment to the signer’s verification key.

The detailed construction in the asymmetric setting is as follows:

– BRSSetup(1λ):
• Run P ← BGrpSetup(1λ, 3) and (crs, xk) ← GSSetup(P). Parse P as
(G1,G2,GT , p, G, G̃, e).
• Choose a suitable collision-resistant hash function H : {0, 1}∗ −→ Zp and
F,K,L, T ← G1.
• Set paramBRS := (P , crs,H, F,K, L, T ). Return paramBRS.

– BRSKeyGen(paramBRS):

• Choose a ← Zp and set A := Ga and Ã := G̃a. Set sk := a, pk := (A, Ã).
Return (sk, pk).

– The signing protocol 〈BRSObtain((M, M̃),R),BRSSign(sk,R)〉 is in Figure 3.
– BRSVerify((M, M̃), Σ,R)
• Parse Σ as (Ωsig, Ωmem).
• Return 1 if GSVerify(crs, Ωmem) = 1 and GSVerify(crs, Ωsig) = 1. Otherwise,

return 0.

We provide a proof for the following Theorem in the full version [30].

Theorem 2. The construction is a secure blind ring signature scheme.

2 We only prove membership for one component of the key. The verifier can verify that all keys
in the ring are well-formed. Alternatively, one can add a proof for the equation e(A, G̃) =
e(G, Ã). It is a matter of trade-off between communication and computation complexities.
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Table 2. Size of the blind ring signature in the different instantiations

Setting Signature Size Assumptions
Type-1 G

30n+42 DLIN, q-ADHSDH and WFCDH
Type-2 G

16n+22
1 +G

24n+30
2 DDHG1 , DLING2 , q-ADHSDH and AWFCDH

Type-3 G
16n+22
1 +G

16n+20
2 SXDH, q-ADHSDH and AWFCDH

Efficiency of the Construction. As mentioned earlier, our construction is the first real-
ization in the standard model and also the first to offer sub-linear signatures instead of
linear ones. Table 2 summarizes the size of the signature as well as the required assump-
tions for the different instantiations. Type-1 instantiation uses the DLIN instantiation of
GS proofs, Type-2 uses GS proofs based on DDH in G1 and DLIN in G2 as used in
[32], and Type-3 uses the SXDH instantiation of the proofs.

To give example concrete figures, we consider a security level equivalent to 128-bit
symmetric key security. For a ring consisting of 10,000 members, the Type-1 instan-
tiation, where the size of elements of group G is 512 bits, yields signatures of size of
approximately 190 kB. At the same security level in the asymmetric setting where ele-
ments of G1 are of size 256 bits and those of G2 are of size 512 bits, the signature size
is 203 kB and 152 kB in the Type-2 and Type-3 instantiations, respectively. Again, the
verification of the signature can be made more efficient by batch verifying Groth-Sahai
proofs [31,9].

6 Generic Construction of Ring Signatures over Prime-Order
Bilinear Groups

Here we provide a generic construction for ring signatures without random oracles by
combining the set membership proof from Section 4 with any compatible signature
scheme.

Let Sig := ([SigSetup], SigKeyGen, SigSign, SigVerify) be an existentially unforge-
able signature scheme secure against adaptive chosen-message attack that works in any
of the 3 main types (cf. Section 2) of prime-order bilinear groups. LetMSig be its mes-
sage space, (sk, pk) be its key pair and σ := (σ1, . . . , σn) be its signatures for some
positive integer n with the condition that for any i ∈ [1, n], σi is a group element if it
depends on sk. 3 Our construction is as follows:

– RSSetup(1λ): Run P ← BGrpSetup(1λ, tp) for tp ∈ [1, 3], (crs, xk) ←
GSSetup(P). Choose a collision-resistant hash function H : {0, 1}∗ −→ MSig.
The public parameters is then paramRS := (P , crs,H). Note that if Sig requires
setup, then the output of SigSetup is also added to paramRS.

– RSKeyGen(paramRS): Run SigKeyGen to obtain (sk, pk).
– RSSign(ski,m,R): To sign a message m ∈ {0, 1}∗ w.r.t. a ring R := {pk1, . . . ,
pkN} where pki ∈ R, run σ ← SigSign(ski,H(m,R)). Then generate the

3 Unlike structure-preserving signatures [2], we do not require that the messages are group ele-
ments.
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Table 3. Example instantiations of the generic ring signatures construction

Instantiation Setting Signature Size Complexity Assumptions

Waters
Type-1 G

30n+19 CDH + DLIN
Type-2 G

16n+10
1 +G

24n+13
2 Co-CDH + DDHG1 + DLING2

Type-3 G
16n+11
1 +G

16n+9
2 Co-CDH∗ + SXDH

FBB
Type-1 G

42n+39 + Z
4
p q-SDH + DLIN

Type-2 G
20n+14
1 +G

30n+21
2 + Z

4
p q-SDH + DDHG1 + DLING2

Type-3 G
20n+14
1 +G

20n+14
2 + Z

3
p q-SDH + SXDH

following two Groth-Sahai proofs where σ̄ is the subset of σ which depends on the
secret key sk.

Ωsig ← GSProve{crs, (pki, σ̄), {SigVerify(pki,H(m,R), σ) = 1}},
Ωmem ← GSProve{crs, (pki), {pki ∈ R}}.

The ring signature is then Σ := (Ωsig, Ωmem, {σ} \ {σ̄}). Again, the proofs Ωsig

and Ωmem must be correlated, i.e. they involve the same public key pki. This is
checked by ensuring that both proofs use the same GS commitment to pki when
verifying the signature.

– RSVerify(m,Σ,R): To verify that the ring signature Σ is a valid signature on the
message m w.r.t. the ringR, verify the two proofsΩmem and Ωsig.

We provide a proof for the following Theorem in the full version [30].

Theorem 3. The generic construction is a secure ring signature scheme for message
space {0, 1}∗.

In the full paper [30] we provide two example instantiations. In the first we instan-
tiate the Sig scheme using the full Boneh-Boyen signature scheme [10], whereas in the
second instantiation we use Waters signature scheme [49]. The efficiency summary of
those instantiations is provided in Table 3.

6.1 Instantiating the Construction in [17] over Prime-Order Groups

We note that by combining our set membership proof with the weakly secure Boneh-
Boyen signature scheme [10] and one-time signatures instantiated over prime-order
groups, we get efficient instantiations in prime-order groups of the composite-order
construction given in [17].
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