
Martijn Stam (Ed.)

 123

LN
CS

 8
30

8

14th IMA International Conference, IMACC 2013
Oxford, UK, December 2013
Proceedings

Cryptography
and Coding

Lecture Notes in Computer Science 8308
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Martijn Stam (Ed.)

Cryptography
and Coding
14th IMA International Conference, IMACC 2013
Oxford, UK, December 17-19, 2013
Proceedings

13

Volume Editor

Martijn Stam
University of Bristol
Dept. of Computer Science
Woodland Road, Bristol, BS8 1UB, UK
E-mail: martijn.stam@bristol.ac.uk

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-45238-3 e-ISBN 978-3-642-45239-0
DOI 10.1007/978-3-642-45239-0
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013954847

CR Subject Classification (1998): E.3, D.4.6, K.6.5, G.1.3, J.1, G.2

LNCS Sublibrary: SL 4 – Security and Cryptology

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The 14th IMA Conference on Cryptography and Coding took place at St. Anne’s
College in Oxford during December 17–19, 2013. The official abbreviation of the
biennially held IMA Conference on Cryptography and Coding is IMACC, but to
many it is better known under its colloquial epithet “Cirencester,” referring to
the many past editions that were held at the Agricultural College at Cirencester.
However, this year’s edition followed in the 13th edition’s footsteps by being
based in Oxford (UK) instead. This historical location with its rich academic
tradition provided a suitably inspirational backdrop for a successful conference.

The academic program was spread out over three days and included a diverse
range of activities and topics. The main part of the program, and all of these
proceedings, were contributed talks. In July 2013 a wide variety of submissions
were received. These were subsequently subjected to a rigorous review process
and only the best submissions in the eyes of the Program Committee were se-
lected for presentation at the conference. Overall, 20 contributed papers were
accepted for inclusion in these proceedings. These contributions cover a wide
range of topics, including cryptology, coding theory, and their interface. The au-
thors come from the UK, continental Europe, the USA, and Asia and represent
both academia and industry.

The Program Committee consisted of a mixture of coding theorists and cryp-
tologists, both from the UK and from abroad, helping maintain an international
quality level. I would like to take this opportunity to thank the Program Com-
mittee and the external reviewers for their dedicated work. We used IACR’s
WebSubRev system to aid with the selection of the program and preparation of
the proceedings. We are indebted to the IACR, and Shai Halevi in particular,
for providing us with this support.

On Wednesday there was an invited talk; many thanks to Patrick Solé for
delivering a talk that was entertaining and enriching at the same time. Thanks to
our generous sponsor GCHQ we were able to organize a tutorial on the first day
of the conference. This tutorial was tailored toward introducing the wonderful
world of coding-based cryptography to a wider audience. Many thanks to the
invited speakers Vadim Lyubashevsky, Christiane Peters, Peter Schwabe, Jacob
Schuldt, Nicolas Sendrier, and Henk van Tilborg for making the tutorial such a
worthwile experience.

On Wednesday a fascinating panel took place on the role of cryptologic edu-
cation in the wider context of cybersecurity. While history has shown that cryp-
tology can be a great enabler of increased security, it has also taught us that
cryptology is only a very small cog in the development of secure IT systems and
that it is very hard to get right in practice. The panel discussed what is expected
of cryptologic education in building the cybersecurity leaders of tomorrow.

VI Preface

Finally, a word of thanks to those who kindly contributed toward the success
of the conference. Firstly, Nigel Smart, Kenny Paterson, and Liqun Chen (all
members of the IMACC Steering Committee) for their invaluable advice. Sec-
ondly, the people at Springer, in particular Alfred Hofmann and Anna Kramer,
for their professionalism when preparing this LNCS volume. Thirdly, Richard
Pinch from GCHQ whose input was instrumental in organizing the tutorial ses-
sion on Tuesday. Finally, and certainly not least, many, many thanks to Lizzi
Lake and her team from the IMA for taking care of what one would normally
refer to as the “general chair” role.

December 2013 Martijn Stam

14th IMA International Conference on

Cryptography and Coding

St. Anne’s College, University of Oxford, Oxford, UK
December 17–19, 2013

Sponsored by GCHQ

Program Chair

Martijn Stam University of Bristol, UK

Steering Committee

Liqun Chen Hewlett-Packard Laboratories, UK
Bahram Honary University of Lancaster, UK
Chris Mitchell Royal Holloway, University of London, UK
Matthew G. Parker University of Bergen, Norway
Kenneth G. Paterson Royal Holloway, University of London, UK
Fred Piper Royal Holloway, University of London, UK
Nigel Smart University of Bristol, UK
Mike Walker King’s College London, UK

Program Committee

Mohamed Benaissa University of Sheffield, UK
Joppe Bos Microsoft Research, USA
Peter Beelen DTU, Denmark
Colin Boyd Queensland University of Technology,

Australia, and NTNU, Norway
Pascale Charpin Inria Paris-Rocquencourt, France
Liqun Chen Hewlett-Packard Laboratories, UK
Ashish Choudhary University of Bristol, UK
Carlos Cid Royal Holloway, University of London, UK
James Davenport University of Bath, UK
Marten van Dijk University of Connecticut, USA
Mathieu Finiasz CryptoExperts, France
Nicolas Gama Université de Versailles,

Saint-Quentin-en-Yveline, France
Dieter Gollmann TUHH, Germany

VIII 14th IMA International Conference on Cryptography and Coding

Dimitar Jetchev EPFL, Switzerland
Jon-Lark Kim Sogang University, Seoul, Korea
Gohar Kyureghyan University of Magdeburg, Germany
David Naccache Ecole Normale Supérieure, France
Siaw-Lynn Ng Royal Holloway, University of London, UK
Matthew G. Parker University of Bergen, Norway
Raphael C.-W. Phan Multimedia University, Malaysia
Maŕıa Naya-Plasencia Inria Paris-Rocquencourt, France
Joachim Rosenthal Universität Zurich, Switzerland
Ana Salagean Loughborough University, UK
Hans Georg Schaathun Aalesund University College, Norway
Dominique Schroeder Saarland University, Germany
Ben Smith Inria LIX, France
John Steinberger Tsinghua University, China
Stefano Tessaro UCSB, USA and MIT, USA
Gilles Van Assche STMicroelectronics, Belgium
Frederik Vercauteren K.U. Leuven, Belgium
Andreas Winter Universitat Autònoma de Barcelona , Spain
Xing Chaoping Nanyang Technological University, Singapore
Kyeongcheol Yang Pohang University of Science and Technology

(POSTECH), Korea

External Reviewers

Anja Becker
Ayç a Çeşmelioğlu
Jean-Philippe Aumasson
Donghoon Chang
Baudoin Collard
Robert Fitzpatrick

Nils Fleischhacker
Felix Fontein
Dimitar Jetchev
Khoongming Khoo
Allison Lewko
Michael Naehrig

Yannis Rouselakis
Jacob Schuldt
Valentin Suder
Jaechul Sung

Table of Contents

Bits and Booleans

Semi-bent Functions from Oval Polynomials . 1
Sihem Mesnager

Efficient Generation of Elementary Sequences . 16
David Gardner, Ana Sălăgean, and Raphael C.-W. Phan

Homomorphic Encryption

On the Homomorphic Computation of Symmetric Cryptographic
Primitives . 28

Silvia Mella and Ruggero Susella

Improved Security for a Ring-Based Fully Homomorphic Encryption
Scheme . 45

Joppe W. Bos, Kristin Lauter, Jake Loftus, and Michael Naehrig

On the Relationship between Functional Encryption, Obfuscation, and
Fully Homomorphic Encryption . 65

Joël Alwen, Manuel Barbosa, Pooya Farshim, Rosario Gennaro,
S. Dov Gordon, Stefano Tessaro, and David A. Wilson

Codes and Applications

On Minimal and Quasi-minimal Linear Codes . 85
Gérard D. Cohen, Sihem Mesnager, and Alain Patey

A Code-Based Undeniable Signature Scheme . 99
Carlos Aguilar-Melchor, Slim Bettaieb, Philippe Gaborit, and
Julien Schrek

Cryptanalysis

Filtered Nonlinear Cryptanalysis of Reduced-Round Serpent, and the
Wrong-Key Randomization Hypothesis . 120

James McLaughlin and John A. Clark

X Table of Contents

Differential Cryptanalysis of Keccak Variants . 141
Stefan Kölbl, Florian Mendel, Tomislav Nad, and Martin Schläffer

Recovering Private Keys Generated with Weak PRNGs 158
Pierre-Alain Fouque, Mehdi Tibouchi, and
Jean-Christophe Zapalowicz

Protecting against Leakage

A Leakage-Resilient Pairing-Based Variant of the Schnorr Signature
Scheme . 173

David Galindo and Srinivas Vivek

High-Order Masking by Using Coding Theory and Its Application
to AES . 193

Guilhem Castagnos, Soline Renner, and Gilles Zémor

Hash Functions

Hashing Mode Using a Lightweight Blockcipher . 213
Hidenori Kuwakado and Shoichi Hirose

Indifferentiability of Double Length Compression Functions 232
Bart Mennink

Security Amplification against Meet-in-the-Middle Attacks Using
Whitening . 252

Pierre-Alain Fouque and Pierre Karpman

Key Issues

Secure Key Management in the Cloud . 270
Ivan Damg̊ard, Thomas P. Jakobsen, Jesper Buus Nielsen, and
Jakob I. Pagter

Estimating Key Sizes for High Dimensional Lattice-Based Systems 290
Joop van de Pol and Nigel P. Smart

Public Key Primitives

Sub-linear Blind Ring Signatures without Random Oracles 304
Essam M. Ghadafi

Table of Contents XI

Constructions of Signcryption in the Multi-user Setting
from Identity-Based Encryption . 324

Rintaro Nakano and Junji Shikata

Anonymous Constant-Size Ciphertext HIBE from Asymmetric
Pairings . 344

Somindu C. Ramanna and Palash Sarkar

Author Index . 365

Semi-bent Functions from Oval Polynomials

Sihem Mesnager

LAGA (Laboratoire Analyse, Géometrie et Applications), UMR 7539, CNRS,
Department of Mathematics, University of Paris XIII and University of Paris VIII,

Sorbonne Paris Cité, France
smesnager@univ-paris8.fr

Abstract. Although there are strong links between finite geometry and
coding theory (it has been proved since the 1960’s that all these connec-
tions between the two areas are important from a theoretical point of
view and for applications), the connections between finite geometry and
cryptography remain little studied. In 2011, Carlet and Mesnager have
showed that projective finite geometry can also be useful in constructing
significant cryptographic primitives such as plateaued Boolean functions.
Two important classes of plateaued Boolean functions are those of bent
functions and of semi-bent functions, due to their algebraic and combi-
natorial properties. In this paper, we show that oval polynomials (which
are closely related to the hyperovals of the projective plane) give rise to
several new constructions of infinite classes of semi-bent Boolean func-
tions in even dimension.

The following diagram gives an indication of the main topics and
interconnections arising in this paper.

semi-bent functions bent functions

o-polynomials

Keywords: Boolean functions, Polynomial form, Walsh transform,
Bent functions, Semi-bent functions, Oval polynomials, Hyperovals.

1 Introduction

Few connections between cryptography and projective finite geometry have been
settled in the literature1. Very recently, it has been shown how finite geometry
1 For some applications of finite geometry in cryptography, the reader can see the

recent paper of Klein and Storme [12].

M. Stam (Ed.): IMACC 2013, LNCS 8308, pp. 1–15, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 S. Mesnager

can contribute to the theory of Boolean and vectorial functions and its applica-
tion in symmetric cryptography. Boolean functions, that is, F2-valued functions
defined on the vector space F

n
2 (all binary words of a given length n) or the

Galois field F2n of order 2n, are used in symmetric cryptosystems (more pre-
cisely, in the S-boxes of block ciphers and in the pseudo-random generators of
stream ciphers). They play a critical role in their security. The class of plateaued
functions over F2n (or r-plateaued functions, 0 < r < n) has been introduced
in 2001 and studied actively in several papers as good candidates for designing
cryptographic functions. Two important classes of plateaued Boolean functions
are those of bent functions (0-plateaued functions) and of semi-bent functions (2-
plateaued functions), due to their algebraic and combinatorial properties. Bent
functions are maximally nonlinear Boolean functions with an even number of
variables. They were introduced and firstly studied by Dillon [7] in 1974 and
Rothaus [11] in 1976. For their own sake as interesting combinatorial objects,
but also because of their relations to coding theory (Reed-Muller codes) and
applications in cryptography (design of stream ciphers), they have attracted a
lot of research, especially in the last 20 years. Semi-bent functions have been in-
troduced by Chee, Lee and Kim [6] and previously investigated under the name
of three-valued almost optimal Boolean functions [1]. Very recently, the notion
of semi-bentness has been actively studied by many authors and the develop-
ment of the theory of semi-bent functions has increased. The motivation of their
study is firstly related for their use in cryptography. Indeed, unlike bent func-
tions, semi-bent functions can also be balanced and resilient. They also possess
various desirable characteristics such as a low Hadamard transform (which pro-
vides protection against fast correlation attacks [9] and linear cryptanalysis [8]),
have low auto-correlation, satisfy the propagation criteria and have high alge-
braic degree. Secondly, besides their practical use in cryptography, they are also
widely used in code division multiple access (CDMA) communication systems
for sequence design. In even dimension, constructions of families of quadratic
semi-bent functions have been provided by Charpin et al. [5] and families of
semi-bent functions with optimal algebraic degree have been presented in [10]
and in [4].
In this paper, we focus our attention on significant cryptographic functions
built via oval-polynomials (o-polynomials, for short). The notion of o-polynomial
comes from finite projective geometry and is closely related to the hyperovals of
the projective space PG2(q) of dimension 2 (finite projective plane) over the
Galois field Fq. We establish connections between semi-bent functions and o-
polynomials in characteristic 2 and show how these o-polynomials give rise to
primary constructions and secondary-like constructions of infinite classes of semi-
bent functions. The paper is organized as follows. We start with presenting in
Section 2 the needed basic background on Boolean functions (Subsection 2.1)
and introduce briefly some theoretical background related to finite geometry
(Subsection 2.2). In Section 3, we begin with presenting a construction of semi-
bent functions derived from [4] (Theorem 7) as sums of two bent functions (one
of them lies in the well known class of partial spreads). Next, we present two

Semi-bent Functions from Oval Polynomials 3

new infinite families of semi-bent functions (Theorem 8 and Theorem 13). Both
families lie in the class of Maiorana-McFarland. Another important feature of
the first family function is that its elements are sums of two bent functions.
In [3], we have shown that the set of o-polynomials is invariant under some
transformations that we have explicited. We therefore investigate the question
whether these transformations lead to semi-bent functions that are extended
affine-equivalent to semi-bent functions of the form stated in Theorem 8 or not.
We next show that the constructions presented in Theorem 8 and Theorem 13
can be generalized (Theorem 14 and Theorem 16). That allows us to exhibit a
third new family of semi-bent functions (Theorem 15). Finally, we show that
the indirect sum introduced in [2] (initially introduced to construct new bent
functions from bent functions) can be used to construct further semi-bent func-
tions from those of Theorem 8 and the bent functions of the class introduced in
[3] (Theorem 17). The particularity of the bent and semi-bent functions used in
that construction is that they are all defined from o-polynomials.

2 Notation and Preliminaries

For any set E, E� = E \ {0} and #E will denote the cardinality of E. In the
paper, Fq denotes the finite field of order q.

2.1 Background on Theory of Boolean Functions and Basic
Definitions.

Boolean Functions on F2n and Trace Representation
A Boolean function f can be considered as an F2-valued function on the Galois
field F2n of order 2n. The Hamming weight of f is defined as wt(f) := #{x ∈
F2n | f(x) = 1}. For any positive integer k dividing n, the field trace from F2n to
F2k , denoted by Trnk , can be explicitly defined as Trnk (x) =

∑n
k−1
i=0 x2

ik

. In partic-
ular, we denote the absolute trace of an element x ∈ F2n by Trn1 (x) =

∑n−1
i=0 x

2i .
The bivariate representation of Boolean functions is defined as follows: we iden-
tify F2n with F2m × F2m (where n = 2m) and we consider then the input to
f as an ordered pair (x, y) of elements of F2m . There exists a unique bivariate
polynomial over F2m : f(x, y) =

∑
0≤i,j≤2m−1 ai,jx

iyj such that f is the bivari-
ate polynomial function over F2m associated to it. The algebraic degree of f is
equal to the maximum 2-weight w2(i) + w2(j) for which ai,j �= 0, where the
2-weight w2(j) of an integer j is equal to the number of 1’s in its binary expan-
sion. f being Boolean, its bivariate representation can be written in the form
f(x, y) = Trm1 (P (x, y)) where P (x, y) is some polynomial over F2m .

Walsh–Hadamard Transform, Bentness and Semi-bentness.
We denote by χ : x ∈ F2 �→ (−1)x ∈ {−1, 1} the additive character of F2 . The
Walsh–Hadamard transform of f is the discrete Fourier transform of χf = χ ◦ f ,
whose value at ω ∈ F2n is defined as

4 S. Mesnager

χ̂f (ω) =
∑

x∈F2n

χ (f(x) + Trn1 (ωx)) , ω ∈ F2n .

The notion of bentness plays an important role for Boolean functions in cryp-
tography. It is related to the notion of nonlinearity. Bent functions are maximally
non-linear Boolean functions. They can be defined in terms of the values of their
Hadamard Walsh transform as follows.

Definition 1. Let n be an even integer. An n-variable Boolean function f is
bent if and only if its Walsh transform satisfies χ̂f (a) = ±2n

2 for all a ∈ F2n.

Semi-bent functions on F2n exist for n even or n odd. When n is even, such
functions are defined as follows in terms of the values of its Hadamard Walsh
transform.

Definition 2 (Semi-bent function). A Boolean function f : F2n → F2 (n
even) is said to be semi-bent if χ̂f (ω) ∈ {0,±2n+2

2 }, for all ω ∈ F2n .

2.2 Some Background on Finite Geometry and Basic Definitions

Let Fq be a finite field of q elements. Consider the equivalence classes of the
elements of Fn+1

q \ {0} given by the following relation:

x ∼ y ⇐⇒ ∃λ ∈ F
�
q : λ(x0, · · ·xn) = (y0, · · · , yn)

for x, y ∈ F
n+1
q \ {0}. The aforementioned equivalence relation divides the el-

ements of Fn+1
q \ {0} into qn+1−1

q−1 equivalence classes, called points. The set of
equivalence classes together with the incidence relation (which is reflexive and
symmetric) is called n-dimensional projective space over Fq, and is denoted by
PGn(q). The one-dimensional subspaces of F

n+1
q are then the points and the

two-dimensional subspaces of F
n+1
q are called the lines. In the paper, we are

only dealing with finite fields Fq with q = 2n, where n is a positive integer. A
hyperoval in PG2(2

n) can be defined as follows.

Definition 3 (Hyperoval). A hyperoval in PG2(2
n) is a set of 2n + 2 points,

no three points of them are collinear (that is, lie in a line2).

A certain type of polynomials on F2n give rise to hyperovals in PG2(2
n):

Definition 4. an oval polynomial on F2nis a polynomial G on F2n such that the
set of points {(1, t, G(t)), t ∈ F

n
2}∪{(0, 0, 1), (0, 1, 0)} (denoted by D(G)) forms a

hyperoval of PG2(2
n)(for short, an o-polynomial).

There is a close connection between the hyperovals and the o-polynomials
since a hyperoval of PG2(2

n) can be represented by D(G) where G is an o-
polynomial on F2n . In fact, there exists a necessary and sufficient condition for a
mapping over F2n to give a hyperoval of PG2(2

n). This leads to a reformulation
of the definition of an o-polynomial given as follows.
2 We say a point p = (x0, · · · , xn) is on a line L[y0, · · · , yn] if and only if x0y0+x1y1+
· · ·xnyn = 0.

Semi-bent Functions from Oval Polynomials 5

Definition 5. A permutation polynomial G over F2n is an o-polynomial if, for
every γ ∈ F2n , the function

z ∈ F2n �→
{
G(z+γ)+G(γ)

z if z �= 0

0 if z = 0

is a permutation of F2n .

Remark 6. Let us indicate that, if G is an o-polynomial over F2n then, z ∈ F2n �→
G(z) + αz is 2-to-1 for every α ∈ F

�
2n . We shall use this property in Section 3

and notably to establish Theorem 7, Theorem 8, Theorem 13 and Theorem 14.

We give in Table 1 the list, up to equivalence, of the known o-polynomials
on F2m .

Table 1. List of o-polynomials G on F2m and their inverse G−1

Expression of the o-polynomial
G

Conditions Expression of the o-polynomial
G−1

G(z) = z6 m odd. G−1(z) = z1/6

G(z) = z3·2
k+4 m odd, k = m+1

2
. G−1(z) = z3·2

k−1−2

G(z) = z2
k+22k k = m+1

4
, m ≡ 3

(mod 4).
G−1(z) = z1−23k−1+22k−2k

G(z) = z2
2k+1+23k+1

k = m−1
4

,
m ≡ 1 (mod 4).

G−1(z) = z1−23k+1+22k+1−2k

G(z) = z2
k

+ z2
k+2 + z3·2

k+4 k = m+1
2

, m odd. G−1(z) =

z
(
z2

k+1 + z3 + z
)2k−1−1

G(z) = z
1
6 + z

1
2 + z

5
6 m odd (D 1

5
(z))6

G(z) =
δ2(z4+z)+δ2(1+δ+δ2)(z3+z2)

z4+δ2z2+1
+

z1/2

Trm1 (1/δ) = 1,
δ �∈ F4 if m ≡ 2 [mod
4]

Unknown

G(z) = 1
Trnm(v)

[Trnm(vr)(z + 1)

+Trnm

[
(vz + v2

m

)r
]

×
(
z + Trnm(v)z1/2 + 1

)1−r
]
+

z1/2

m even, r = ± 2m−1
3

,
v ∈ F22m ,
v2

m+1 = 1 and v �= 1.

Unknown

In Table 1, D 1
5

stands for the Dickson polynomial of index 1
5

where 1
5

is the inverse of
5 modulo 22m − 1.

3 Explicit Constructions of Classes of Semi-bent
Functions from o-polynomials

In this section we show how one can construct several infinite classes of semi-
bent functions from o-polynomials. Firstly, it has been showed in [4] that the

6 S. Mesnager

o-polynomials provide constructions of semi-bent functions in bivariate represen-
tation from the class of bent functions introduced in [3] and the class of partial
spreads [7]. For completeness, we include the proof.

Theorem 7. Let G be an o-polynomial on F2m , g be Boolean function on F2m

such that g(0) = 0 and wt(g) = 2m−1 (that is, g is balanced on F2m). Let
μ ∈ F2m . Define over F2m × F2m the Boolean function f by:

f(x, y) = Trm1 (μy + xG(yx2
m−2)) + g(yx2

m−2), (x, y) ∈ F2m × F2m

Then f is semi-bent.

Proof. The function f is the sum of two functions f1 and f2 defined as f1(x) =
Trm1 (μy + xG(yx2

m−2)) and f2(x) = g(yx2
m−2). Recall that a m-spread of F2n

(n = 2m) is a collection of pairwise supplementary m-dimensional subspaces of
F2n whose union equals F2n . Denote by S the m-spread in F2n ≈ F2m × F2m ,
formed by {Ea, E∞} where Ea := {(x, ax) ; x ∈ F2m} and E∞ := {(0, y) ; y ∈
F2m}. On one hand, according to [3], f1 is a bent function such that its restriction
to the m-spread S of F2m ×F2m is linear since G is an o-polynomial on F2m . On
the other hand, according to [7], f2 is a bent function such that its restriction to
the m-spread S is constant since g is balanced vanishing at 0.The result follows
from Theorem 1 in [4]. �

Next, we show that the o-polynomials lead to further constructions of semi-bent
functions in bivariate representation in the spirit of the well known construction
of bent functions due to Maiorana and McFarland [7]. Recall that the Maiorana-
McFarland class is the set of all the Boolean functions on F2m × F2m , of the
form f(x, y) = Trm1 (π(x)y) + h(x) where π is any mapping on F2m and h is any
Boolean function on F2m . That construction has been studied because one can
construct bent functions this way by choosing for π a permutation on F2m . The
reader notices that using the Maiorana-McFarland method, any permutation
leads to the construction of bent functions and any mapping 2-to-1 leads to the
construction of semi-bent functions (in even dimension). An important point is
that the notion of oval polynomial over F2m appears to be suitable to build 2-to-
1 mappings on F2m . Such a property is intensely used in the paper to construct
infinite classes of semi-bent functions.

Theorem 8. Let α be a primitive element of F2m and j a positive integer in the
range [0, 2m− 2]. Let G be an o-polynomial on F2m and g a Boolean function on
F2m . Define over F2m × F2m a Boolean function f by:

f(x, y) = Trm1 (xG(y) + αjxy) + g(y), (x, y) ∈ F2m × F2m .

Then f is semi-bent.

Proof. We have to prove that f is semi-bent, that is, its Walsh transform takes
only the values 0, 2m+1 and −2m+1. Compute the Walsh transform of f . For

Semi-bent Functions from Oval Polynomials 7

every (a, b) ∈ F2m × F2m , we have:

χ̂f (a, b) =
∑

x∈F2m

∑

y∈F2m

χ
(
Trm1 (xG(y) + αjxy) + g(y) + Trm1 (ax) + Trm1 (by)

)

=
∑

y∈F2m

χ
(
g(y) + Trm1 (by)

)∑

x∈F2m

χ
(
Trm1 (xG(y) + αjxy) + Trm1 (ax)

)

=
∑

y∈F2m

χ
(
g(y) + Trm1 (by)

) ∑

x∈F2m

χ
(
Trm1 ((G(y) + αjy + a)x)

)

= 2m
∑

y∈F2m |G(y)+αjy=a

χ
(
g(y) + Trm1 (by)

)
.

Now, note that (see [3]) since G is an o-polynomial on F2m , then the mapping
y ∈ F2m �→ G(y) + αjy is 2-to-1 for every j ∈ [0, 2m − 2] that is, #{y ∈ F2m |
G(y) + αjy = a} ∈ {0, 2}. Therefore,

χ̂f (a, b) ∈ {0,±2m+1}
which completes the proof. �
Example 9. Consider the regular hyperoval Γ of projective plane PG2(2

m) (see
Figure 1) corresponding to the Frobenius mapping t �→ t2 over F2m . The points
of the form

〈
(t2, t, 1)

〉
for t ∈ F2m together with the point at infinity 〈(1, 0, 0)〉 are

the points of the conic with equation XZ = Y 2; the point (0, 1, 0) is the nucleus.
In this example, we treat the simpler case where m = 2. The 6 points of the
regular hyperoval Γ in PG2(4) are : 〈(1, 0, 0)〉, 〈(0, 1, 0)〉, 〈(0, 0, 1)〉, 〈(1, 1, 1)〉,〈
(α, α2, 1)

〉
,
〈
(α2, α, 1)

〉
where α is a root of the irreducible polynomial P (X) =

X2 + X + 1 over F4 . The diagonal line is the "line at infinity" with equation
Z = 0. The 4× 4 grid represents the 16 points of the affine plane Z �= 0. Notice
that not every line in the projective space is shown in the figure 1. The horizontal
lines should extend to the point 〈(1, 0, 0)〉 and the vertical lines should meet in
〈(0, 1, 0)〉. In addition, there should be 4 additional lines through any of the
remaining points at infinity. The affine points have coordinates 〈(x, y, 1)〉 for
(x, y) in F

2
4 . More precisely, the intersection point of the vertical line through

〈(x, 0, 1)〉 and the horizontal line through 〈(0, y, 1)〉 has the coordinates 〈(x, y, 1)〉.
Now, the regular hyperoval in PG2(4) related to the Frobenius o-polynomial over
F4 give rise to semi-bent functions g0, g1 and g2 defined in bivariate on F4 × F4

where gj(x, y) = Tr21(xy
2+αjxy)+h(y) for j ∈ {0, 1, 2} where h be any Boolean

function over F4.

Let us now indicate that semi-bent functions obtained by Theorem 8 share a
very particular feature.

Proposition 10. Any semi-bent function of Theorem 8 is the sum of two bent
functions in the class of Maiorana-McFarland.

Proof. Indeed, an o-polynomial being a permutation, the Boolean function
(x, y) ∈ F2m × F2m �→ Trm1 (xG(y)) + g(y) is bent. On the other hand, the

8 S. Mesnager

〈(0,0,1)〉

〈(0,1,1)〉

〈(0,α,1)〉

〈(0,α2,1)〉

〈(1,0,1)〉 〈(α,0,1)〉 〈(α2,0,1)〉

〈(0,1,0)〉

〈(1,0,0)〉

Fig. 1. The regular hyperoval Γ in PG2(4)

Boolean function (x, y) ∈ F2m × F2m �→ Trm1 (αjyx) is bent too and lies in the
class of Maiorana-McFarland (the map y ∈ F2m �→ αky is a permutation of F2m).
It suffices then to note that the addition of the two preceding functions leads to
the expression of semi-bent functions stated in Theorem 8.

Therefore, we have obtained semi-bent functions that can be decomposed in
the sum of two bent functions. Clearly, if we take at random two bent functions,
even in the class of Mairoana-McFarland, their addition would not be probably
semi-bent in most cases (the reader should notice that semi-bent functions of
Theorem 7 can also be decomposed in the sum of two bent functions). A quite
natural question arises then from knowing a similar result can be obtained with
other permutations than oval polynomials. Note then that the key point in the
proof of Theorem 8 is that y �→ G(y) + αjy is 2-to-1. Now, to our knowledge,
we do not know whether other permutations than oval polynomials have that
property.

Another fascinating fact is that there is a relation between semi-bent functions
of Theorem 7 and Theorem 8. That relation is described in the below Lemma.

Lemma 11. Let f1(x, y) = Trm1 (αjy+xG(yx2
m−2))+g(yx2

m−2) and f2(x, y) =
Trm1 (xG(y) + αjxy) + g(y). Then f1(x, xy) = Trm1 (αjxy + xG(yx2

m−1)) +
g(yx2

m−1) = f2(x, y), for every (x, y) ∈ F
�
2m × F2m .

Let us now focus our attention to another fact. Recall that the set of all
o-polynomials is invariant under the transformations (see [3]):

Semi-bent Functions from Oval Polynomials 9

T1: G �→ G′ where G′ : z ∈ F2m �→ G′(z) := G(λz + μ) with λ ∈ F
�
2m and

μ ∈ F2m ;
T2: G �→ G′ where G′ : z ∈ F2m �→ G′(z) := λG(z) + μ with λ ∈ F

�
2m and

μ ∈ F2m ;
T3: G �→ G′ where G′ : z ∈ F2m �→ G′(z) := G(z2

l

)2
m−l

where l ∈ N.
T4: G �→ G′ where G′ : z ∈ F2m �→ G′(z) := zG(z2

m−2) (with G(0) = 0);
T5: G �→ G−1.

A quite natural question arises from knowing whether there is a relation be-
tween two semi-bent functions constructed from o-polynomials linked by one
of the relations T1 to T5 defined above. Recall the notion of extended affine
equivalence (in brief, EA-equivalence) between two Boolean functions.

Definition 12. Two Boolean functions f and f ′ defined on F2n are called ex-
tended affine equivalent (EA-equivalent) if f ′ = f ◦ φ +
 where the mapping φ
is an affine automorphism on F2n and
 is an affine Boolean function (affine
functions are those whose algebraic degree is at most 1).

To this end, we shall begin with considering the transformation T1 and semi-
bent functions given by Theorem 8 :

f ′(x, y) = Trm1 ((G′(y) + αjy)x) + g(y)

= Trm1 ((G(λy + μ) + αjy)x) + g(y)

= Trm1 ((λG(λy + μ) + αj(λy + μ))(λ−1x))
+Trm1 (μλ−1αjx) + g(λ−1(λy + μ) + μλ−1).

Set f(x, y) = Trm1 ((λG(y) + αjy)x) + g(λ−1y + μλ−1). Then, f ′ is EA-
equivalent to f .

Considering the second transformation T2 :

f ′(x, y) = Trm1 ((G′(y) + αjy)x) + g(y) = Trm1 ((λG(y) + μ+ αjy)x) + g(y)

= Trm1 ((G(y) + αjλ−1y)(λx)) + Trm1 (μx) + g(y).

Hence f ′ is EA-equivalent to f defined as f(x, y) = Trm1 ((G(y) + αjλ−1y)x) +
g(y).

For the third transformation T3 :

f ′(x, y) = Trm1 ((G′(y) + αjy)x) + g(y) = Trm1 ((G2m−l

(y2
l

) + αjy)x) + g(y)

= Trm1 ((G(y2
l

) + α2ljy2
l

)x2
l

) + g(y).

Hence, f ′ is EA-equivalent to f defined as f(x, y) = Trm1 ((G(y) + α2ljy)x) +

g(y2
m−l

).
Therefore, the three transformations T1, T2 and T3 lead to EA-equivalent

Boolean semi-bent functions covered by Theorem 8. Let us now investigate the

10 S. Mesnager

two last transformations T4 and T5. If G′ and G are linked by transformation
T4 then

f ′(x, y) = Trm1 ((G′(y) + αjy)x) + g(y) = Trm1 ((yG(y2
m−2) + αjy)x) + g(y)

= Trm1 ((G(y2
m−2) + αj)xy) + g(y).

On the other hand, for the fifth transformation T5, one has

f ′(x, y) = Trm1 ((G′(y) + αjy)x) + g(y) = Trm1 ((G−1(y) + αjy)x) + g(y)

= Trm1 ((G−1(y) + αjG(G−1(y))x) + g(y) = f(x,G−1(y))

with
f(x, y) = Trm1 ((αjG(y) + y)x) + g(G(y)).

Thus, the two transformations T4 and T5 can lead to potential new semi-bent
functions that are not EA-equivalent to semi-bent functions covered by Theorem
8.

We next provide another construction of semi-bent function in bivariate rep-
resentation.

Theorem 13. Let m be a positive integer. Assume m = 2m1 + 1 odd. Let G be
an o-polynomial on F2m and g be a Boolean function on F2m . Define a Boolean
function f in bivariate representation as:

f(x, y) = Trm1

(
xG2m1+1+1(y) + xyG2m1+1

(y) + xG3(y) + xyG2(y)
)

+ Trm1

(
(xy2

m1+1

+ xy2 + x)G(y) + xy2
m1+1+1 + xy + xy3

)

+ g(y), (x, y) ∈ F2m × F2m . .

Then f is semi-bent on F2m × F2m .

Proof. Let (a, b) ∈ F2m × F2m . A routine computation of the Walsh transform
of f at (a, b) gives:

χ̂f (a, b) =
∑

(x,y)∈F2m×F2m

χ
(
Trm1

[
xG2m1+1+1(y) + xyG2m1+1

(y) +G3(y)

+xyG2(y) + (xy2
m1+1

+ xy2 + x)G(y) + xy2
m1+1+1 + xy + xy3

]

+g(y) + Trm1 (ax+ by)
)

=
∑

x∈F2m

∑

y∈F2m

χ
(
Trm1

[(
G2m1+1+1(y) + yG2m1+1

(y)

+G3(y) + yG2(y) + (y2
m1+1

+ y2 + 1)G(y) + y2
m1+1+1 + y3 + y + a

)])
χ(g(y)

+Trm1 (by))

Semi-bent Functions from Oval Polynomials 11

=
∑

y∈F2m

χ(g(y) + Trm1 (by))
∑

x∈F2m

χ
(
Trm1

[(
G2m1+1+1(y) + yG2m1+1

(y)

+G3(y) + yG2(y) + (y2
m1+1

+ y2 + 1)G(y) + y2
m1+1+1 + y + y3 + a

)
x
])

= 2m
∑

y∈F2m |Ψ(y)=a

χ(g(y) + Trm1 (by))

where Ψ : F2m �→ F2m defined as

Ψ(y) := G2m1+1+1(y) + yG2m1+1

(y) +G3(y) + yG2(y)

+ (y2
m1+1

+ y2 + 1)G(y) + y2
m1+1+1 + y3 + y.

Note then that Ψ = Φ ◦ φ where Φ and φ are two mappings on F2m defined as:
∀y ∈ F2m , Φ(y) := y2

m1+1+1+y3+y and φ(y) := G(y)+y. According to Dobbertin
[13], Φ is a permutation polynomial on F2m . Moreover, since G is an o-polynomial
on F2m then, the equation φ(y) = a admits 0 or 2 solutions in F2m , that is, the
polynomial G(y) + y defines a 2-to-1 mapping on F2m . Consequently, #{y ∈
F2m | Ψ(y) = a} ∈ {0, 2}. Therefore, χ̂f (a, b) ∈ {0,±2m+1}. This completes the
proof. �

Theorem 8 and Theorem 13 can be generalized. Indeed, other semi-bent
functions of the form Trm1 (x(π1(y) + π2(y))) + g(y) can be obtained from o-
polynomials.

Theorem 14. Let π1 and π2 be two permutations of F2m whose composition
π1 ◦ π−12 is an o-polynomial on F2m . Let g be a Boolean function over F2m . Let
f be the Boolean function defined on F2m × F2m by

(x, y) ∈ F2m × F2m , f(x, y) = Trm1 (x(π1(y) + π2(y))) + g(y).

Then f is semi-bent.

Proof. One can repeat the first calculation at the beginning of the proof of
Theorem 8 and get that

χ̂f (a, b) = 2m
∑

y∈F2m |π1(y)+π2(y)=a

χ
(
g(y) + Trm1 (by)

)
.

Now let us note that

π1(y) + π2(y) = a ⇐⇒ π1 ◦ π−12 (π2(y)) + π2(y) = a.

We have supposed that π1 ◦ π−12 is an oval polynomial. Therefore, the equation
π1 ◦ π−12 (z) + z = a has zero or two solutions for every a ∈ F2m . The map π2
being a permutation, the equation π1 ◦ π−12 (π2(y)) + π2(y) = a has the same
number of solutions as π1 ◦ π−12 (z) + z = a for every a ∈ F2m . That implies that
χ̂f (a, b) ∈ {0,±2m+1} for every (a, b) ∈ F2m × F2m proving that f is semi-bent.

�

12 S. Mesnager

If we set G = π1 ◦ π−12 , then the Boolean function f defined in Theorem
14 can be rewritten as f(x, y) = f ′(x, π2(y)) where f ′(x, y) = Trm1 (xG(y) +
xy) + g′(y) where g′ = g ◦ π−12 . Now f ′ is a semi-bent function according to
Theorem 8. Therefore, semi-bent functions of Theorem 14 are obtained from
those of Theorem 8 by applying a permutation, not necessarily linear, to the
second coordinate. Clearly, that feature strongly relies on the fact that G is an
oval polynomial. Indeed, semi-bentness property is generally lost if we apply a
nonlinear tranformation to the coordinates of a semi-bent function.

As an application of the previous theorem, we provide below another con-
struction of semi-bent functions.

Theorem 15. Let m be an odd positive integer. Define the Boolean function f
on F2m × F2m as

(x, y) ∈ F2m × F2m , f(x, y) = Trm1
(
(y6 + y5 + y3 + y)x

)
+ g(y)

where g is any Boolean function over F2m . Then f is semi-bent.

Proof. Set π1(y) = y6 and π2(y) = y5 + y3 + y = D5(y) where D5 stands for the
fifth Dickson polynomial. Recall that 5 and 22m− 1 are coprime when m is odd.
That implies that D5 is a permutation polynomial of F2m . On the other hand,
2m − 1 is coprime with 6 when m is odd yielding that y �→ y6 is a permutation
of F2m . Next note that π1 ◦ π−12 (y) =

(
D1/5(y)

)6 which is an o-polynomial on
F2m (see Table 1). Therefore, according to Theorem 14, f is semi-bent. �

Theorem 13 can also be generalized as follows (the proof being a straightfor-
ward adaptation of the proof of Theorem 8, we omit it)

Theorem 16. Let π be a permutation of F2m . Let α be a primitive element of
F2m and j a nonnegative integer. Let G be an o-polynomial and g a Boolean
function over F2m . Define

∀(x, y) ∈ F2m × F2m , f(x, y) = Trm1 (π(G(y) + αjy)x) + g(y).

Then f is semi-bent.

Another infinite class of semi-bent functions can be obtained by combining
functions (via the secondary construction of bent functions given in [2]) from
the semi-bent functions provided by Theorem 16 and the bent functions from
the o-polynomials ([3]).

Theorem 17. Let G1, G2 be two o-polynomial on F2s and G̃1, G̃2 two o-
polynomials on F2r . Let h1 and h2 be two Boolean functions on F2s . Let μ1

and μ2 be two elements of F2r and α a primitive element of F2s . Set F
�
2s =

{αj , 0 ≤ j ≤ 2s − 2}. We define four Boolean functions f1, f2 (both are de-
fined in bivariate representation over F2s × F2s), g1 and g2 (both are defined in
bivariate representation over F2r × F2r) as follows.

fk(x, y) := Trs1(xGk(y) + αjxy) + hk(y), k ∈ {1, 2};

Semi-bent Functions from Oval Polynomials 13

gk(z, t) := Trr1(μkt+ zG̃k(tz
2r−2)), k ∈ {1, 2}.

Set
∀(x, y, z, t) ∈ F2s × F2s × F2r × F2r ,

f(x, y, z, t) := f1(x, y) + g1(z, t) + (f1(x, y) + f2(x, y))(g1(z, t) + g2(z, t).

Then f is semi-bent.

Proof. Compute the Walsh transform of f . For every (a, b, c, d) ∈ F2s × F2s ×
F2r × F2r , we have:

χ̂f (a, b, c, d) =
∑

(x,y,z,t)∈F2
2s
×F2

2r

χ
(
f1(x, y) + g1(z, t)

+ (f1(x, y) + f2(x, y))(g1(z, t) + g2(z, t))

+ Trs1(ax) + Trs1(by) + Trr1(cz) + Trr1(dt)
)
.

Now, one can split the sum depending on the value of g1(z, t) + g2(z, t) :

χ̂f (a, b, c, d) =
∑

(x,y)∈F2
2s

∑

(z,t)∈F2
2r
|g1(z,t)+g2(z,t)=1

χ
(
f2(x, y) + g1(z, t)

+Trs1(ax+ by) + Trr1(cz + dt)
)

+
∑

(x,y)∈F2
2s

∑

(z,t)∈F2
2r
|g1(z,t)+g2(z,t)=0

χ
(
f1(x, y) + g1(z, t) +

Trs1(ax+ by) + Trr1(cz + dt)
)
.

Given a set E, denote by δE the indicator of E (δE(u) equals 1 if u ∈ E and
0 otherwise). Note that we have δ{(z,t)∈F2

2r
|g1(z,t)+g2(z,t)=1} =

1−χ(g1(z,t)+g2(z,t))
2 .

Similarly, one has δ{(z,t)∈F2
2r
|g1(z,t)+g2(z,t)=0} =

1+χ(g1(z,t)+g2(z,t))
2 .

Hence,

χ̂f (a, b, c, d) =
∑

(x,y)∈F2
2s

χ
(
f2(x, y) + Trs1(ax) + Trs1(by)

)

∑

(z,t)∈F2
2r

χ
(
g1(z, t) + Trr1(cz) + Trr1(dt)

)(1− χ(g1(z, t) + g2(z, t))

2

)

+
∑

(x,y)∈F2
2s

χ
(
f1(x, y) + Trs1(ax) + Trs1(by)

)

∑

(z,t)∈F2
2r

χ
(
g1(z, t) + Trr1(cz) + Trr1(dt)

)(1 + χ(g1(z, t) + g2(z, t))

2

)
.

14 S. Mesnager

After expanding, this gives

χ̂f (a, b, c, d) = χ̂f2(a, b)
∑

(z,t)∈F2
2r

(1

2
χ
(
g1(z, t) + Trr1(cz) + Trr1(dt)

)

−1

2
χ
(
g1(z, t) + Trr1(cz) + Trr1(dt) + g1(z, t)) + g2(z, t)

))

+χ̂f1(a, b)
∑

(z,t)∈F2
2r

(1

2
χ
(
g1(z, t) + Trr1(cz) + Trr1(dt)

)

+
1

2
χ
(
g1(z, t) + Trr1(cz) + Trr1(dt) + g1(z, t) + g2(z, t)

))
.

Therefore,

χ̂f (a, b, c, d) = χ̂f2(a, b)δ(c, d) + χ̂f1(a, b)γ(c, d)

by setting δ(c, d) := χ̂g1 (c,d)−χ̂g2(c,d)

2 and γ(c, d) := χ̂g1 (c,d)+χ̂g2(c,d)

2 .
According to [3], since G̃1 (resp. G̃2) is an o-polynomial, the function g1 (resp.

g2) is bent, that is, χ̂g1(c, d) ∈ {±2r} (resp. χ̂g1(c, d) ∈ {±2r}) for every (c, d) ∈
F
2
2r . Therefore, δ(c, d)γ(c, d) = 0. Thus only the two following possibilities can

occur:
δ(c, d) = 0 and γ(c, d) = ±2r

or
δ(c, d) = ±2r and γ(c, d) = 0.

Now, according to Theorem 8, f1 and f2 being semi-bent. Hence χ̂f1(a, b) ∈
{0,±2s+1} and χ̂f2(a, b) ∈ {0,±2s+1}. Therefore χ̂f (a, b, c, d) ∈ {0,±2s+r+1}
proving that f is semi-bent. �

4 Conclusion

In this paper we show how finite geometry can contribute to construct cryp-
tographic Boolean functions. In [3], it has been shown how to construct bent
functions from oval polynomials. That result has revealed a link between oval
polynomials, that are important objects in finite geometry, and Niho bent func-
tions. Other connections between bent vectorial functions and oval polynomials
have been highlighted in [14]. In this paper, we push further the link initiated
in [3] and obtain several new infinite families of semi-bent functions from oval
polynomials.

Acknowledgement. The author would like to thank anonymous referees and
Pascale Charpin for valuable suggestions that considerably improve the paper.

Semi-bent Functions from Oval Polynomials 15

References

1. Canteaut, A., Carlet, C., Charpin, P., Fontaine, C.: On cryptographic properties
of the cosets of R(1,m). IEEE Transactions on Information Theory 47, 1494–1513
(2001)

2. Carlet, C.: On the secondary constructions of resilient and bent functions. In:
Proceedings of the Workshop on Coding, Cryptography and Combinatorics 2003,
pp. 3–28. Birkhäuser Verlag (2004)

3. Carlet, C., Mesnager, S.: On Dillon’s class H of bent functions, niho bent functions
and O-polynomials. Journal of Combinatorial Theory, Series A 118(8), 2392–2410
(2011)

4. Carlet, C., Mesnager, S.: On Semi-bent Boolean Functions. IEEE Transactions on
Information Theory-IT 58(5), 3287–3292 (2012)

5. Charpin, P., Pasalic, E., Tavernier, C.: On bent and semi-bent quadratic Boolean
functions. IEEE Transactions on Information Theory 51(12), 4286–4298 (2005)

6. Chee, S., Lee, S., Kim, K.: Semi-bent Functions. In: Safavi-Naini, R., Pieprzyk,
J.P. (eds.) ASIACRYPT 1994. LNCS, vol. 917, pp. 107–118. Springer, Heidelberg
(1995)

7. Dillon, J.: Elementary Hadamard difference sets. In PhD dissertation, University
of Maryland

8. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

9. Meier, W., Staffelbach, O.: Fast correlation attacks on stream ciphers. In: Günther,
C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 301–314. Springer, Heidelberg
(1988)

10. Mesnager, S.: Semi-bent functions from Dillon and Niho exponents, Klooster-
man sums and Dickson polynomials. IEEE Transactions on Information Theory-
IT 57(11), 7443–7458 (2011)

11. Rothaus, O.S.: On “bent" functions. J. Combin. Theory Ser. A 20, 300–305 (1976)
12. Klein, A., Storme, L.: Applications of finite geometry in coding theory and cryp-

tography. In: Information Security, Coding Theory and Related Combinatorics, pp.
38–58 (2011)

13. Dobbertin, H.: Almost Perfect Nonlinear power functions on GF (2n): The Welch
case. IEEE Transactions on Information Theory 45(4), 1271–1275 (1999)

14. Mesnager, S.: Bent vectorial functions and linear codes from o-polynomials
(preprint, 2013)

Efficient Generation of Elementary Sequences

David Gardner1, Ana Sălăgean1, and Raphael C.-W. Phan2

1 Department of Computer Science, Loughborough University, UK
{D.Gardner2,A.M.Salagean}@lboro.ac.uk

2 Faculty of Engineering, Multimedia University, Malaysia
raphael@mmu.edu.my

Abstract. Given an irreducible non-primitive polynomial g of degree n
over F2[x] we aim to compute in parallel all the elementary sequences
with minimal polynomial g (i.e. one sequence from each class of equiva-
lence under cyclic shifts). Moreover, they need to each be in a suitable
phase such that interleaving them will produce an m-sequence with lin-
ear complexity deg(g); this m-sequence is therefore produced at the rate
of q = (2n − 1)/ord(g) bits per clock cycle. A naive method would use
q LFSRs so our aim is to use considerably fewer. We explore two ap-
proaches: running a small number of Galois LFSRs with suitable seeds
and using certain registers, possibly with a small amount of buffering;
alternatively using only one (Galois or Fibonacci) LFSR and computing
certain linear combinations of its registers. We ran experiments for all
irreducible polynomials of degree n up to 14 and for each n we found
that efficient methods exist for at least one m-sequence. A combination
of the two approaches above is also described.

Keywords: Fibonacci LFSR, Galois LFSR, m-sequences, interleaving,
elementary sequences.

1 Introduction

The linear feedback shift register (LFSR) has become a standard way to gen-
erate linearly recurrent sequences and in particular m-sequences, i.e. sequences
which have the maximum period given the length of the LFSR. m-sequences are
commonly used as good approximations of random binary sequences, so called
pseudo-random or pseudo-noise sequences. Sequences with such properties are
invaluable in symmetric key cryptographic systems implemented both in hard-
ware and software. Hence rapid generation of m-sequences without excessive
memory requirements is desirable. There are many other areas of applications
for m-sequences.

Some authors have explored various ways to artificially increase the rate of
output of such cryptographic systems; Robshaw[6] described a method of inter-
leaving a number of phases of the desired m-sequence, all these phases being
generated synchronously by separate LFSRs (see also [3]). Blackburn[1] then ex-
tended this idea by using a smaller number of Galois LFSR in order to produce
the required synchronous sequences exploiting the fact that a Galois LFSR with

M. Stam (Ed.): IMACC 2013, LNCS 8308, pp. 16–27, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Efficient Generation of Elementary Sequences 17

a primitive feedback polynomial can produce a greater spread of phases of a
single m-sequence than an equivalent Fibonacci LFSR. The main difficulty in [1]
lies in identifying a primitive feedback polynomial that will produce sequences
in the required phases.

Surböch and Weinrichter[8] explored interleaving “elementary sequences” in-
stead of m-sequences. In the present paper we are further developing this ap-
proach. An elementary sequence is one whose minimal polynomial g is irreducible
but not necessarily primitive. For a fixed non-primitive g, there are several such
sequences, not all of which are cyclic shifts of one another. More precisely, with
equivalence given by cyclic shifts, there are exactly q = (2n − 1)/ord(g) classes,
each having ord(g) elements.

Given an m-sequence s of length 2n− 1 it is known that for any proper factor
q of 2n − 1, the (improper) decimations of s by q are elementary sequences, all
having the same irreducible minimal polynomial g.

Taking the reverse approach, we can interleave q elementary sequences in
order to obtain an m-sequence. Not every arbitrary collection of q elementary
sequences with the same irreducible minimal polynomial will produce an m-
sequence by interleaving. The sequences need to satisfy further conditions: to be
inequivalent under cyclic shifts, and to be in a certain phase, see Theorem 4.
Our aim is to obtain in an efficient way exactly such a collection of sequences.

Our general approach is to use a certain number (less than q) of Galois or Fi-
bonacci LFSRs, and then extract from different registers the sequences we need,
by possibly using additional buffering or XORs. We look then at two particular
cases of this approach. In the first case, we use a small number of Galois LFSRs
and possibly some small amount of buffering, but no additional XORs. We ex-
ploit the fact that, unlike a Fibonacci LFSR, each register of a Galois LFSR can
produce elementary sequences from different equivalence classes. In the second
particular case we consider, we only run a single (Galois or Fibonacci) LFSR
and obtain all the required sequences by doing further XOR operations between
different registers. We exploit the fact that the n sequences obtained from the
n registers form a basis in the vector space of all elementary sequences with
fixed minimal polynomial g. We ran experiments for all irreducible polynomials
of degree n up to 14, where 2n − 1 is not prime.

While our construction of elementary sequences was targeted at fast genera-
tion of m-sequences, there are other possible applications of this construction. In
coding theory, elementary sequences are the codewords of minimal cyclic codes
(also known as irreducible cyclic codes), hence our construction will produce the
non-equivalent codewords of such a code. In cryptography, one could use the
elementary sequences as inputs to a non-linear function in order to construct a
filtering generator for a stream cipher.

2 Preliminaries

Throughout the paper all the fields are finite fields. We define linear recurring
sequences as usual and note elementary sequences and m-sequences as special
cases:

18 D. Gardner, A. Sălăgean, and R.C.-W. Phan

Definition 1. An infinite sequence s = s0, s1, . . . with elements in a field K is
called a homogeneous linear recurring sequence if there exists a homogeneous
linear recurrence relation of the form si+n = cn−1si+n−1+ · · ·+ c1si+1+ c0si for
all i = 0, 1, . . ., where c0, c1, . . . , cn−1 ∈ K are constants. We associate to it a
characteristic polynomial f(x) = xn+ cn−1xn−1+ · · ·+ c1x+ c0. If n is minimal
for the given sequence we call n the linear complexity of s and f the minimal
polynomial of s.

An elementary sequence is a sequence that has an irreducible minimal polyno-
mial. If the minimal polynomial is moreover primitive, the the sequence is called
m-sequence.

Recall that an m-sequence with linear complexity n has period |K|n−1, so binary
m-sequences have period 2n − 1. More generally, a sequence with irreducible
minimal polynomial f has period equal to ord(f), where ord(f) denotes the
order of f , i.e. the minimum integer k > 0 such that f |xk − 1. We have that
ord(f) is a factor of |K|deg(f) − 1 with ord(f) = |K|deg(f) − 1 achieved iff f is
primitive.

Decimation and its inverse, interleaving, will play an important role in our
constructions:

Definition 2. Given a sequence s = s0, s1, . . ., its q-decimation starting at po-
sition j is the sequence u such that ui = sj+iq. If j is not specified, it is by
default j = 0.

Note that if s has period N then any q-decimation of s has (not necessarily
minimal) period N/ gcd(N, q).

Definition 3. The interleaving of q sequences u(0), u(1), . . . , u(q−1) is the se-

quence s defined as sj+iq = u
(j)
i .

Note that if all the sequences u(0), u(1), . . . , u(q−1) have (not necessarily minimal)
period d, then their interleaving will have (not necessarily minimal) period dq.

For the rest of this paper we will restrict to binary sequences. Some of these
constructions could be applicable to other fields, but this will be a subject for
further research. We will denote by F2n the finite field with 2n elements.

Any linear recurrent sequence can be represented using the trace transforma-
tion. We are interested in elementary sequences:

Theorem 1. [4, Theorem 6.24] Let s0, s1, . . . be a linear recurring sequence in
F2 whose characteristic polynomial g is irreducible over F2 and has degree n.
Let β be a root of g in the extension field F2n . Then there exists a uniquely

determined a ∈ F2n such that si = Tr(aβi) =
n−1∑

k=0

a2
k

(β2k)i, i = 0, 1,

We introduce the following short hand notation to refer to elementary se-
quences in terms of their trace representation:

Definition 4. We define Seqβ(a) as the sequence s whose i-th element is rep-

resented by si = Tr(aβi).

Efficient Generation of Elementary Sequences 19

We note that Seq is linear: for any a1, a2 ∈ F2n and c1, c2 ∈ F2 we have

c1Seqβ(a1) + c2Seqβ(a2) = Seqβ(c1a1 + c2a2)

For elements β, x in a finite field we will denote by logβ(x) the discrete log-
arithm of x in the base β, i.e. the smallest positive integer i with the property
βi = x, if such an integer exists. When β is not a primitive element of the fields
we must remember that logβ will not always be defined.

Given s = s0, s1, . . . we denote by (s � k) the sequence obtained by shifting
s by k positions to the left, i.e. the sequence sk, sk+1, If s is periodic with
period N we denote by s� k the sequence obtained by cyclicly shifting s by k
positions to the right, i.e. sN−k, sN−k+1, . . . , sN−1, s0, s1. Note that (s � k) =
(s� (N − k)).

If two sequences of period N are such that one can be obtained from the other
by a (cyclic) shift, then we say the two sequences are equivalent (under cyclic
shifts). The different cyclic shifts of a sequence are sometimes called “phases”,
especially in engineering contexts.

Shifting relates to the Seq() notation as follows:

Lemma 1. Let b, b1, b2 ∈ F
∗
2n , and h ∈ Z.

(Seqβ(b)� h) = Seqβ(bβ
−h)

(Seqβ(b)� h) = Seqβ(bβ
h)

(Seqβ(b1)� h) = Seqβ(b2)⇔ h = logβ(b1b
−1
2).

Proof. The proof is similar to [7, Lemma 1], as it does not depend on whether
the minimal polynomial of β is primitive or not.

3 Fibonacci and Galois LFSRs

We recall the definition of both the Fibonacci and Galois Linear Feedback Shift
Registers (LFSRs) and establish the notations that we will use later. As there
are some variations in the literature, we will define everything explicitly.

Fig. 1. Fibonacci LFSR

A Fibonacci LFSR is depicted in Fig. 1. We will denote the n registers
Q(0), Q(1), . . . , Q(n−1). At time t = 0, 1, . . . the content of register Q(j) will be

20 D. Gardner, A. Sălăgean, and R.C.-W. Phan

denoted q
(j)
t , so the contents of the register Q(j) over time forms the sequence

q(j) = q
(j)
0 , q

(j)
1 , The contents of all the registers at time t, i.e. the n-tuple

(q
(0)
t , . . . , q

(n−1)
t), is known as the state of the LFSR at time t. The initial state

of the LFSR is the state at time 0. The content of the registers will be updated
at each clock interval i according to the following

q
(j)
i+1 =

{
cn−1q

(n−1)
i + · · ·+ c1q

(1)
i + c0q

(0)
i if j = n− 1

q
(j+1)
i otherwise.

(1)

Fig. 2. Galois LFSR

The Galois LFSR, shown in Figure 2, will produce from each register R(j),

j = 0, 1, . . . , n − 1 a sequence denoted r(j) = r
(j)
0 , r

(j)
1 , These values are

updated at each clock interval i according to the following

r
(j)
i+1 =

{
c0r

(n−1)
i if j = 0

r
(j−1)
i + cjr

(n−1)
i otherwise.

(2)

There are two related polynomials associated to the (Fibonacci or Galois)
LFSR, namely the feedback polynomial c0x

n + c1x
n−1 + · · ·+ cn−1x+ 1 and the

characteristic polynomial f(x) = xn + cn−1xn−1 + · · ·+ c1x+ c0. The feedback
polynomial is the reciprocal of the characteristic polynomial, so if one of these
polynomials is irreducible/primitive, so is the other.

Both the Fibonacci and the Galois LFSR produce as their output q(0), respec-
tively r(n−1) a sequence with characteristic polynomial f . The initial states are in
a one-to-one correspondence with the sequences with characteristic polynomial
f .

Given the initial state of a Fibonacci LFSR, a Galois LFSR that produces
exactly the same output sequence will need to have initial state given by

r
(j)
0 = q

(n−1−j)
0 + cn−1q

(n−1−j−1)
0 + . . .+ cj+1q

(0)
0

for j = 0, 1, . . . , n− 1.
Conversely, given the initial state of a Galois LFSR, a Fibonacci LFSR that

produces exactly the same output sequence will need to have initial state

q
(n−1−j)
0 = r

(j)
0 + cn−1q

(n−1−j−1)
0 + . . .+ cj+1q

(0)
0

for j = n− 1, n− 2, . . . , 0.

Efficient Generation of Elementary Sequences 21

4 Efficient Generation of Elementary Sequences for
Interleaving

We first need to recall the number of (inequivalent) elementary sequences and
their connection to m-sequences. The following two theorems are known results,
but we make them more precise, as needed for our purposes.

Theorem 2. Given an irreducible polynomial g of degree n and order d, there
are exactly 2n − 1 distinct non-zero elementary sequences with minimal polyno-
mial g. There are q = (2n − 1)/d classes of equivalence (under cyclic shifts),
each having d elements.

If β is a root of g and α is a primitive element of F2n such that β = αq then
each of the classes above is of the form {Seqβ(αi+jq)|j = 0, 1, . . . , d − 1} for
i = 0, 1, . . . , q − 1.

Proof. The sequences can be written as Seqβ(a) with each of the 2n−1 elements
a ∈ F

∗
2n uniquely identifying a sequence. By Lemma 1, two sequences Seqβ(b1)

and Seqβ(b2) are equivalent under cyclic shifts iff there is an integer h such that

b1 = b2β
h.

Theorem 3. (cf. [8] and [5, Theorem 11, Ch. 8, §4]) Let s = s0, s1, . . . be an
m-sequence with composite period 2n−1 = dq. Let α be a root of the minimal poly-
nomial of s and let a ∈ F2n be such that s = Seqα(a). Then the q-decimation of
s (staring at positions 0, 1, . . . q− 1) will result in the q sequences s(0), . . . , s(q−1)

such that s(j) = Seqβ(aα
j) for j = 0, 1, . . . q − 1 and β = αq.

Proof. The i-th element of s(j) is s
(j)
i = sj+iq = Tr(aαj+iq) = Tr(aαj(αq)i) =

Tr(aαj(β)i), which is exactly the i-th element of the sequence Seqβ(aα
j).

The result above and its proof immediately lead to the following generalisation:

Theorem 4. Let s be an m-sequence of linear complexity n and minimal polyno-
mial f . Assume 2n−1 = dq is a non-trivial factorisation. Let g be an irreducible
polynomial of order d, degree n and let β be a root of g. Let u(0), . . . , u(q−1) be
elementary sequences with minimal polynomial g.

We have the following equivalence: s can be obtained by interleaving
u(0), . . . , u(q−1) if and only if there is a primitive root α of f such that β = αq,
and there is an a ∈ F2n such that s = Seqα(a) and u(j) = Seqβ(aα

j) for
j = 0, 1, . . . , q − 1.

Note that if we start from an irreducible non-primitive polynomial g of degree n
and order d and construct the finite field F2n as the algebraic extension by β, a
root of g, then there are several primitive elements α ∈ F2n which are solutions
for β = αq (with q = (2n − 1)/d). Moreover these α need not all have the same
minimal polynomial.

22 D. Gardner, A. Sălăgean, and R.C.-W. Phan

Our goal is, given g, to produce one elementary sequence from each of the q
equivalence classes; moreover these sequences should be in the correct phase rela-
tive to each other (as described by Theorem 4) such that they may be interleaved
to generate an m-sequence.

A first, straightforward approach would be to generate these sequences using q
(Galois or Fibonacci) LFSRs with suitably chosen initial states. Let us examine
in more detail how to compute the initial states. Assume we are given n initial
terms of the target m-sequence s.

The initial states of the q Fibonacci LFSRs can be obtained by computing a
further (q− 1)n terms of s (to give us a total of qn terms) and q-decimating the
qn terms to obtain the q initial states.

The initial states of the q Galois LFSRs can be obtained by computing first
the initial states of the Fibonacci LFSRs, and then transforming them into the
equivalent initial states of Galois LFSRs as described at the end of Section 3.
An alternative efficient way of computing the Galois initial states is described
in [9] and [2].

However, we are interested in obtaining the desired sequences from less than
q LFSRs. To this end, we will examine closer what sequences we can obtain from
each of the registers of an LFSR, rather than just from the output register.

Theorem 5. Let g = xn + cn−1xn−1 + · · · + c1x + c0 be an irreducible non-
primitive polynomial with root β.

Consider a Fibonacci and a Galois LFSR, both with characteristic polynomial
g and initial states chosen such that they both produce the same output Seqβ(a)
for some given a ∈ F2n .

The register Q(j) of the Fibonacci LFSR will produce the sequence q(j) =
Seqβ(aβ

j) = (Seqβ(a)� j), for j = 0, 1, . . . , n− 1.

The register R(j) of the Galois LFSR will produce the sequence r(j) =
Seqβ(avj) where vj = cj+1 + cj+2β + · · · + cn−1βn−j−2 + βn−j−1, for j =
0, 1, . . . , n − 1. Moreover, if α is a primitive element of F2n such that β = αq,
where q = (2n − 1)/ord(g), then r(j) = Seqβ(aα

hj) = (Seqβ(aα
kj) � lj) where

hj = logα vj = kj + ljq and 0 ≤ kj < q.

Proof. For the Fibonacci LFSR the result is immediate and well known. For the
Galois LFSR, (2) can be rewritten as r(0) = (r(n−1) � 1) and r(j) = ((r(j−1) +
cjr

(n−1)) � 1) for 1 ≤ j ≤ n− 1. By induction, and using Lemma 1 we obtain
the required expression, similar to [7, Theorem 2].

This result tells us that for Fibonacci LFSRs all registers contain the same se-
quence, shifted by 1, 2, . . . , n−1 positions, so we cannot hope to obtain sequences
from different equivalence classes. The situation is more interesting for Galois
LFSRs. Here, depending on the characteristic polynomial, we may obtain se-
quences from several classes. It all depends on the values of hj = logα vj . If hj
is not a multiple of q (or equivalently vj �∈ 〈β〉) then the sequence produced in
the register R(j) is inequivalent to (i.e. not a cyclic shift of) the output of the
LFSR. Moreover if hj and hk are not congruent modulo q then the sequences in
registers j and k are inequivalent. So we can hope to obtain several inequivalent

Efficient Generation of Elementary Sequences 23

elementary sequences from the same Galois LFSR, and thus obtain from less
than q LFSRs all the q elementary sequences needed for interleaving. Of course
we also need to examine the relative shifts of the sequences, given by the integer
quotients lj in the Theorem above. Experimental data using this approach is
described in Section 4.1.

An alternative approach to obtaining more than one elementary sequence
from one LFSR is the following. It is well known that the set of sequences with
given minimal polynomial g forms a vector space over F2. Therefore, if we have
a basis we can obtain any other sequence as a linear combination.

Theorem 6. Let a0, a1, . . . , an−1 ∈ F2n . We have the following equivalence:
a0, a1, . . . , an−1 is a basis of F2n (viewed as an n-dimensional vector space over
F2) if and only if Seqβ(a0), Seqβ(a1), . . . , Seqβ(an−1) is a basis of the set of
sequences with minimal polynomial g (viewed as an n-dimensional vector space
over F2).

Proof. Let a ∈ F2n . a0, a1, . . . , an−1 is a basis of F2n iff there are unique
c0, c1, . . . , cn−1 ∈ F2 such that a =

∑n−1
i=0 ciai iff there are unique

c0, c1, . . . , cn−1 ∈ F2 such that Seqβ(a) = Seqβ(
∑n−1

i=0 ciai) =
∑n−1
i=0 ciSeqβ(ai)

iff Seqβ(a0), Seqβ(a1), . . . , Seqβ(an−1) is a basis.

Corollary 1. With the notations of Theorem 5, each of the sets of sequences
{q(j)|j = 0, 1, . . . , n − 1} and {r(j)|j = 0, 1, . . . , n − 1} form a basis for the set
of sequences with minimal polynomial g (viewed as a n-dimensional vector space
over F2).

Hence it turns out that the sequences from the n LFSR registers do form a basis
(regardless whether Fibonacci or Galois LFSR) so any other sequence can be
obtained as a linear combination of the registers. Examples of this approach are
discussed in Section 4.2.

More generally we can combine the two approaches above. Namely, for speed-
ing up the computation of the desired set of sequences A = {Seqβ(aαj)|j =
0, . . . , q − 1} we will use the following general method: we employ several (but
less that q) Galois or Fibonacci LFSRs. We consider the set B of sequences
generated in each register of each of the LFSRs. This set B will contain some
of the sequences in A. Any remaining sequences in A can be obtained from the
sequences in B by either buffering (if the sequence exists in B but is in the wrong
phase) or by computing a linear combination of sequences in B. Experimental
results using this combined method are a subject of further research.

4.1 Using Several Galois LFSRs

For given irreducible characteristic polynomials g we examine the Galois LFSR,
computing the equivalence class and the relative shift for each register, see The-
orem 5. We then identify suitable registers that produce sequences from different
classes, preferably in the same phase or with a small difference of phase. We then
determine the number of Galois LFSRs we need to produce all the elementary

24 D. Gardner, A. Sălăgean, and R.C.-W. Phan

sequences we need for interleaving. It suffices to run the experiments for only
one initial state, as the classes and the shifts are computed relative to the output
sequence.

We ran experiments for all irreducible polynomials g of degree n up to 14,
where 2n − 1 is not prime. For each g we computed all the possible values of
α and their minimal polynomial f (which will also be the minimal polynomial
of the interleaved sequence). Table 1 shows a few examples of constructions
yielding an elementary sequence in the correct phase from each equivalence
class. The “Classes” and “Shifts” n-tuples display the values (kn−1, . . . , k0) and
(ln−1, . . . , l0), with the notations from Theorem 5. The list “Interleave” specifies
which registers we need to interleave, with a triple of the form (R(j), aαi, lj)
signifying that we have to use a buffer of lj terms for register R(j) of a Galois
LFSR initialised such that the LFSR output is Seqβ(aα

i). Finally, the LFSRs
value indicates the total number of Galois LFSRs we need.

For all lengths in our experiment we were able to determine at least one
efficient construction, in the sense that the number of LFSRs needed for the
construction is less than q, the total number of sequences required. For each n
there is at least one g which will produce 2 of the required sequences, for most
n at least 3 sequences can be acquired from one LFSR. If we allow q to increase,
such that the elementary sequences become shorter, we generally see that we can
obtain elementary sequences from more equivalence classes from a single LFSR,
thus lowering the total number of LFSRs needed for the full construction.

4.2 Using One LFSR and Linear Combinations of Its Registers

We wish to produce the required elementary sequences using only one LFSR,
either Fibonacci or Galois, but allow ourselves to linearly combine the output of
the registers to produce our sequences. This is possible according to Corollary 1.
Let a be such that the output of our LFSR is Seqβ(a).

To obtain a particular desired sequence Seqβ(aα
j) for j = 1, . . . , q − 1 as

a linear combination of the registers it suffices to represent αj in the basis
1, β, . . . , βn−1 for a Fibonacci LFSR, or in basis v0, v1, . . . , vn−1 for a Galois
one. Alternatively we can consider the first n terms of the sequence Seqβ(aα

j),
viewed as an element in the vector space Fn2 and write them in the basis consist-
ing of the first n elements of each of the sequences corresponding to the registers
of the LFSR. Any of these approaches will amount to solving an n × n system
of linear equations over F2, which is extremely fast. In our experiments we set
up the LFSRs so as to generate the m-sequence in its “impulse response” form,
i.e. starting with initial terms 00. . . 01.

Again we ran experiments for all irreducible polynomials g of degree n up
to 14, where 2n − 1 is not prime. We computed, for both Fibonacci and Galois
LFSRs, the linear combinations of registers needed to produce the required se-
quences needed for interleaving. Tables 3 and 2 show a few examples of possible
constructions using Fibonacci and Galois LFSRs respectively. The tables display
which registers need to be XORed in order to produce the sequences required.

Efficient Generation of Elementary Sequences 25

Table 1. Generating m-Sequences by Interleaving Registers of Several Galois LFSRs

n = 4 g = 11111 d = 5 q = 3 α = 1110 f = 10011
Classes: (0, 1, 1, 0) Shifts: (4, 4, 1, 0) LFSRs: 2

Interleave: (R(0), a, 0), (R(1), a, 1), (R(0), aα, 0)

n = 6 g = 1010111 d = 21 q = 3 α = 101 f = 1100001
Classes: (0, 2, 1, 1, 0, 0) Shifts: (20, 8, 1, 0, 1, 0) LFSRs: 2

Interleave: (R(0), a, 0), (R(2), a, 0), (R(2), aα, 0)

n = 8 g = 111010111 d = 17 q = 15 α = 10011100 f =
Classes = (0, 3, 13, 13, 13, 13, 3, 0) Shifts = (16, 0, 13, 12, 0, 16, 2, 0) LFSRs: 6

Interleave: (R(0), a, 0), (R(0), aα, 0), (R(0), aα2, 0), (R(7), a, 0), (R(7), aα, 0), (R(7), aα2, 0),

(R(3), aα8, 0), (R(3), aα9, 0), (R(0), aα8, 0), (R(0), aα9, 0), (R(0), aα10, 0), (R(7), aα8, 0),

(R(7), aα9, 0), (R(3), a, 0), (R(3), aα, 0)

n = 9 g = 1001100101 d = 73 q = 7 α = 111011111 f = 1001101111
Classes: (0, 0, 5, 5, 5, 4, 0, 0, 0) Shifts: (72, 71, 0, 72, 71, 63, 2, 1, 0) LFSRs: 4

Interleave: (R(0), a, 0), (R(0), aα, 0), (R(6), aα4, 0), (R(6), aα5, 0), (R(0), aα4, 0), (R(6), a, 0), (R(6), aα, 0)

n = 10 g = 10000001111 d = 341 q = 3 α = 1010000110 f = 10010000001
Classes: (0, 1, 2, 0, 0, 0, 0, 0, 0, 0) Shifts: (340, 1, 101, 6, 5, 4, 3, 2, 1, 0) LFSRs: 2

Interleave: (R(0), a, 0), (R(8), a, 1), (R(0), aα2, 0)

Table 2. Generating m-Sequences by XORing and Interleaving the Registers of one
Galois LFSR

n = 4 g = 11111 d = 5 q = 3 α = 1010 f = 10011
Classes: (0, 2, 2, 0) Shifts: (4, 2, 4, 0) XORs: 2

Interleave: R(1) ⊕R(2) ⊕R(3), R(2), R(3)

n = 6 g = 1010111 d = 21 q = 3 α = 101 f = 1000011
Classes: (0, 2, 1, 1, 0, 0) Shifts: (20, 8, 1, 0, 1, 0) XORs: 2

Interleave: R(5), R(3), R(1) ⊕R(3) ⊕R(5)

n = 8 g = 101111011 d = 85 q = 3 α = 100101 f = 101011111
Classes: (0, 0, 0, 2, 2, 0, 0, 0) Shifts: (84, 14, 13, 45, 49, 32, 1, 0) XORs: 4

Interleave: R(3) ⊕R(4) ⊕R(6), R(2) ⊕R(5) ⊕R(7), R(4)

n = 8 g = 110100011 d = 85 q = 3 α = 10010000 f = 110001101
Classes: (0, 1, 1, 1, 1, 1, 1, 0) Shifts: (84, 67, 66, 65, 64, 70, 69, 0) XORs: 4

Interleave: R(3) ⊕R(5) ⊕R(6), (R(2) ⊕R(3)), (R(2) ⊕R(3))⊕R(6)

n = 10 g = 10010011001 d = 341 q = 3 α = 1110011010 f = 10000100111
Classes: (0, 0, 0, 1, 1, 1, 1, 0, 0, 0) Shifts: (340, 339, 338, 85, 91, 90, 89, 2, 1, 0) XORs: 5

Interleave: R(3) ⊕R(6) ⊕R(8), R(8) ⊕R(9), R(4) ⊕R(5) ⊕R(9)

n = 10 g = 10010011001 d = 341 q = 3 α = 1111100010 f = 10001100101
Classes: (0, 0, 0, 2, 2, 2, 2, 0, 0, 0) Shifts: (340, 339, 338, 312, 318, 317, 316, 2, 1, 0) XORs: 5

Interleave: R(3) ⊕ (R(7) ⊕R(8)), R(4) ⊕ (R(7) ⊕R(8)), R(4) ⊕R(7) ⊕R(9)

n = 10 g = 10000001111 d = 341 q = 3 α = 1010000110 f = 10000001001
Classes: (0, 1, 2, 0, 0, 0, 0, 0, 0, 0) Shifts: (340, 1, 101, 6, 5, 4, 3, 2, 1, 0) XORs: 2

Interleave: R(3), R(5) ⊕R(6), R(7) ⊕R(9)

Interleaving these sequences in order yields the m-sequence with minimal poly-
nomial f as shown in the table. Some optimisations are denoted by brackets, for
example in Table 2 the fourth example shows that the computation (R(2)⊕R(3))
can then be reused for computing (R(2) ⊕R(3))⊕R(6) with only one additional
⊕. A full optimisation is outside the scope of this paper. For all lengths in our

26 D. Gardner, A. Sălăgean, and R.C.-W. Phan

Table 3. Generating m-Sequences by XORing and Interleaving the Registers of one
Fibonacci LFSR

n = 4 g = 11111 d = 5 q = 3 α = 1010 f = 10011 XORs: 2

Interleave: Q(2) ⊕Q(0), Q(1) ⊕Q(0), Q(0)

n = 6 g = 1010111 d = 21 q = 3 α = 101 f = 1000011 XORs: 2

Interleave: Q(0), Q(2) ⊕Q(0), Q(4) ⊕Q(0)

n = 6 g = 1010111 d = 21 q = 3 α = 111000 f = 1101101 XORs: 4

Interleave: Q(3) ⊕Q(0), Q(3) ⊕Q(1), Q(4) ⊕Q(2) ⊕Q(0)

n = 8 g = 101110111 d = 85 q = 3 α = 1100011 f = 100011101 XORs: 4

Interleave: Q(3) ⊕Q(1) ⊕Q(0), Q(5) ⊕Q(2), Q(4) ⊕Q(0)

n = 8 g = 110001011 d = 85 q = 3 α = 11101011 f = 101101001 XORs: 4

Interleave: Q(4) ⊕Q(1), Q(5) ⊕Q(3), Q(4) ⊕Q(2) ⊕Q(0)

n = 8 g = 111011101 d = 85 q = 3 α = 1111110 f = 101110001 XORs: 4

Interleave: Q(4) ⊕Q(3) ⊕Q(1), Q(5) ⊕Q(1), Q(3) ⊕Q(0)

n = 8 g = 100111111 d = 85 q = 3 α = 1111100 f = 110101001 XORs: 5

Interleave: Q(4) ⊕Q(3) ⊕Q(1), Q(5) ⊕Q(2), (Q(5) ⊕Q(2))⊕Q(4) ⊕Q(0)

n = 10 g = 10000001111 d = 341 q = 3 α = 11000110 f = 11100011101 XORs: 5

Interleave: Q(6) ⊕Q(5) ⊕Q(1) ⊕Q(0), (Q(6) ⊕Q(5))⊕Q(3) ⊕Q(2), Q(0)

n = 10 g = 10000001111 d = 341 q = 3 α = 1010000110 f = 10000001001 XORs: 2

Interleave: Q(6), Q(4) ⊕Q(3), Q(2) ⊕Q(0)

experiment we were able to determine at least one efficient construction, in the
sense that for obtaining each of the required sequences the maximum number of
XORs was �(n+ 3)/2�, but for most n this value was as low as �(n+ 1)/2�.

5 Conclusion

We developed a general framework for efficiently producing several elementary
sequences (i.e. linearly recurrent sequences with an irreducible characteristic
polynomial) such that they are inequivalent under cyclic shifts and if needed are,
moreover, in suitable phases so that interleaving them produces an m-sequence.
Experimental data identified irreducible polynomials particularly suited for this
purpose. Future work will aim to further improve the efficiency of the method
by analysing in more depth the gate complexity of the different constructions,
combining the different approaches, and improving the efficiency of determining
the initial states.

References

1. Blackburn, S.R.: Increasing the Rate of Output of m-Sequences. Information Pro-
cessing Letters 51(2), 73–77 (1994)

2. Kagaris, D.: Multiple-Seed TPG Structures. IEEE Transactions on Comput-
ers 52(12), 1633–1639 (2003)

Efficient Generation of Elementary Sequences 27

3. Lempel, A., Eastman, W.L.: High speed generation of maximum length sequences.
IEEE Transactions on Computers 20(2), 227–229 (1971)

4. Lidl, R., Niederreiter, H.: Introduction to Finite Fields and Their Applications.
Cambridge University Press (1994)

5. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-
Holland (1978)

6. Robshaw, M.J.B.: Increasing the Rate of Output for m Sequences. Electronics Let-
ters 27(19), 1710–1712 (1991)

7. Sălăgean, A., Gardner, D., Phan, R.: Index Tables of Finite Fields and Modular
Golomb Rulers. In: Helleseth, T., Jedwab, J. (eds.) SETA 2012. LNCS, vol. 7280,
pp. 136–147. Springer, Heidelberg (2012)

8. Surböck, F., Weinrichter, H.: Interlacing Properties of Shift-Register Sequences with
Generator Polynomials Irreducible Over GF(p). IEEE Transactions on Information
Theory 24(3), 386–389 (1978)

9. Udar, S., Kagaris, D.: LFSR Reseeding with Irreducible Polynomials. In: On-Line
Testing Symposium, pp. 293–298 (2007)

On the Homomorphic Computation

of Symmetric Cryptographic Primitives

Silvia Mella and Ruggero Susella

STMicroelectronics, Agrate Brianza (MB), Italy

Abstract. We present an analysis on the homomorphic computability
of different symmetric cryptographic primitives, with the goal of un-
derstanding their characteristics with respect to the homomorphic eval-
uation according to the BGV scheme. Specifically, we start from the
framework presented by Gentry, Halevi and Smart for evaluating AES.
We provide an improvement of it, then we perform a detailed evaluation
on the homomorphic computation of cryptographic algorithms of differ-
ent families (Salsa20 stream cipher, SHA-256 hash function and Keccak
sponge function). After the analysis, we report the performance results
of the primitives we have implemented using the recently released HElib.
In the conclusions we discuss our findings for the different primitives we
have analyzed to draw a general conclusion on the homomorphic evalu-
ation of symmetric cryptographic primitives.

Keywords: homomorphic encryption, cryptographic primitives, AES,
SHA-256, keccak, Salsa20, HElib.

1 Introduction

Fully homomorphic encryption (FHE) allows to perform arbitrary computations
on encrypted data, without ever decrypting them. The concept was introduced
by Rivest, Adleman and Dertouzos shortly after the presentation of RSA [1], but
it took 30 years before the first plausible candidate for FHE was presented. This
result is due to Gentry [2] and since his work a number of FHE schemes have been
presented [3,4,5,6,7]. Unfortunately, all of these schemes are practical only for a
limited number of operations. Of particular interest is the BGV cryptosystem due
to Brakerski, Gentry and Vaikuntanathan [8], which presents a good compromise
among efficiency, practicability and allowed operations.

In [9], Gentry, Halevi and Smart use the BGV cryptosystem to homomorphi-
cally evaluate AES circuit. That is, to compute an AES encryption with message
and secret key encrypted under the homomorphic scheme.

Following their framework, we analyze the evaluation of different families of
symmetric cryptographic primitives. Specifically, we focus on the SHA-256 hash
function, the Salsa20 stream cipher and the Keccak sponge function (which has
been selected as the new standard SHA-3). For each algorithm we highlight the
characteristics that have an impact on the homomorphic evaluation. We describe
the possible state encoding techniques, underlining the different features they

M. Stam (Ed.): IMACC 2013, LNCS 8308, pp. 28–44, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

On the Homomorphic Computation of Symmetric Cryptographic Primitives 29

provide for the evaluation of basic operations, such as logical XOR, logical AND
and integer additions, showing also how the choice of the encoding impacts on
the required number of levels. Then, for each practically computable primitive,
we present the performance results of our implementations together with the
selected values for the BGV parameters.

Our implementations focus on optimizing the execution time of single evalu-
ations and leverages on the recently released HElib by Halevi and Shoup [10],
a publicly available library which implements the BGV cryptosystem. Apart
from providing the first public results on the homomorphic evaluation of cryp-
tographic primitives different than AES, we also present an improvement in the
evaluation of AES, which allows to lower the required number of levels and thus
provides the best results publicly available in literature.

In section 2 we briefly introduce the BGV cryptosystem and its properties. In
sections 3, 4, 5 and 6, we describe the main block of each primitive and show how
to homomorphically evaluate it, providing costs estimations. Finally, in section
7 we give some execution results, obtained using HElib.

2 The BGV Scheme

In this section we briefly describe the main charachteristics of the BGV cryp-
tosystem due to Gentry, Halevi and Smart. For more details on the scheme’s
initialization and working principles, we remind to the original paper [8] and
consecutive optimizations [11,9].

The plaintext space is defined as R2 = Z2[x]/Φm(x), where Φm denotes the
m-th cyclotomic polynomial. A ciphertext is of the form (c0, c1) ∈ Rqt × Rqt =
Zqt [x]/Φm(x)×Zqt [x]/Φm(x), for some integer qt in the chain of moduli qL−1 >
. . . > q1 > q0. We call the qt’s the “levels” of the scheme.

The decryption function is defined as [[c0 − c1 · s] mod qt] mod 2 and the term
[c0 − c1 · s] mod qt is called the noise in the ciphertext c. Performing addition
and multiplication, the noise at most doubles and squares respectively. The con-
dition for correct decryption is that the norm of the noise is sufficiently small to
not wrap around qt during operations.

A modulus switching technique can be exploited to keep the noise magnitude
essentially constant. This technique simply consists of transforming a ciphertext
c w.r.t. modulus qt into a ciphertext c′ w.r.t. modulus qt−1, while preserving
correctness (namely, [[c′0 − c′1 · s] mod qt−1] mod 2 = [[c0 − c1 · s] mod qt] mod
2).

In particular, the modulus switching is really necessary just before multipli-
cation, namely when the noise magnitude is going to be squared. We say that
homomorphic multiplication “consumes a level” of the scheme. During other op-
erations it is acceptable to keep higher noise, until the noise estimate indicates
that a modulus switching must be performed.

An a priori estimate of required levels is needed to set the moduli chain of
the scheme.

30 S. Mella and R. Susella

SIMD Operations and Automorphisms. Smart and Vercauteren observed
[12,13] that the algebraic structure of the plaintext space allows SIMD opera-
tions. Specifically, setting m odd, the plaintext space R2 is isomorphic to the
direct sum of � copies of GF(2d). It follows that a plaintext can be viewed as a �-
vector of elements in GF(2d) and vice-versa. Moreover, arithmetic over plaintexts
correspond to element-wise arithmetic over �-vectors. Elements of this �-vector
are usually referred to as slots.

In [13] it is shown how to move the content of a slot in another one, using
automorphisms over R2. Recall that for any i ∈ Z

∗
m the automorphism κi over

R2 is defined as κi : a(x) �→ a(xi) (mod Φm(x)). Up to a reordering of factors Fi,
there exists an integer h such that if a ∈ R encodes the �-vector (a0, . . . , a�−1),
then κh(a) encodes the �-vector (a�−1, a0, . . . , a�−2). Thus, applying the auto-
morphism κh results in a cyclic rotation of slots to the right. Whereas, applying
κh−1 results in a cyclic rotation to the left. These automorphisms belong to the
group H = Z

∗
m/ < 2 > (see [11], Appendix C.2 for more details).

An arbitrary permutation of slots can be implemented combining the action
of κh (and κh−1) with addition and select operation [11]. The select operation
simply consists of multiplication by constant selection vector, which consumes
0.5 levels [9] (Section 3.4).

Of particular interest are also the Frobenius automorphisms, which have the
form κ2j . This automorphisms act on each slot separately. That is, the content
of each slot is elevated to 2j in the field GF(2d).

Notice that, if c encrypts the plaintext a under the key s, the map κi computed
on each component of c gives an encryption of κi(a) with respect to key κi(s).
It is then possible to transform κi(c) into a ciphertext that encrypts κi(a) with
respect to the original key s, using a key-switching procedure [9] (Appendix B.3).
The computation of automorphisms has no influence on the noise magnitude,
but the key-switching procedure increase it somewhat [11] (Appendix D.2).

3 Homomorphic Evaluation of AES-128

The Advanced Encryption Standard [14] is a block cipher standardized by NIST
in 2001. It is based on the Rijndael cipher [15], developed by Daemen and Rijmen
and based on the substitution-permutation network design.

For the evaluation of AES-128, we follow the framework of Gentry, Halevi and
Smart [9].

Recall on AES-128. AES-128 encryption function consists of a sequence of 10
identical rounds (except for the last one) operating on a 128-bit state, which is
organized as an array of 4×4 bytes. Bytes are considered as elements of GF(28),
defined by the Rindael’s polynomial x8 + x4 + x3 + x + 1. Each round consists
of the following operations, the only exception being the last round which does
not compute the MixColumns.

– AddRoundKey simply xor the state with a 128-bit round key derived from
the secret key.

On the Homomorphic Computation of Symmetric Cryptographic Primitives 31

– SubBytes computes on each byte the inversion in GF(28) followed by an
affine transformation over GF(2).

– ShiftRows right rotates the i-th row of the state matrix by i positions.

– MixColumns multiplies the state matrix by a fixed matrix of the same
dimension.

3.1 Evaluation of AES-128 Encryption Function

We now describe the three implementations of AES-128 encryption function
presented in [9]. In particular, we show an improvement of the MixColumns
computation for the packed implementation. Note that for all implementations,
each round key is precomputed and encrypted with the homomorphic scheme.

Packed Implementation. First of all, the polynomial Φm is chosen such that
it factors modulo 2 into at least 16 irreducible polynomials of degree d with
8|d. It means that each slot can hold a byte of the state, that is an element of
GF(28) embedded in GF(2d). Notice that, because of parameters setting, the
number of available slots could exceed the needed one. We can thus pad with
zero the exceeding slots, or we can encode more states in the same ciphertext,
obtaining parallel executions.

– AddRoundKey simply consists in the sum of ciphertext encrypting the
state with the ciphertext encrypting the RoundKey.

– SubBytes is computed into 2 steps. Inversion is obtained with three Frobe-
nius automorphisms and a depth-3 circuit of multiplications. The affine
transformation is computed using seven Frobenius automorphisms and a
linear combination with precomputed coefficients. The cost estimate for this
operation is 3.5 levels: 3 for inversion, due to multiplication, and 0.5 for affine
transformation, due to multiplication by constant.

– ShiftRows and MixColumns are computed as a single linear transforma-
tion over GF(28)16, combining four permutations of the state (π0 through
π3) via a linear operation: 2 · π0 + 3 · π1 + π2 + π3.

In [9] the permutations πi are computed combining automorphisms and se-
lect operations. Then, the linear combination with coefficients 1, x and x+1
is computed. In our implementation, we compute select operations and mul-
tiplications by x and x + 1 simultaneously. The constant selection vectors
used to compute π0 and π1 are actually set in order to have x and x + 1
(instead of 1) in the appropriate slots. This trick allows to save a constant
multiplication per round, which results in a smaller amount of consumed
levels for the global evaluation and thus a faster execution. In particular,
this operation requires 0.5 levels, instead of 1 level as in [9]

In conclusion, we estimate a consumption of 4 levels for one round and hence
of 40 levels for the whole AES function.

32 S. Mella and R. Susella

Byte-Sliced Implementation. This implementation uses sixteen ciphertexts,
each encoding a byte of the state. As above, we need the polynomial Φm to factor
modulo 2 into irreducible polynomial of degree d. However, in this case, we are
not interested in the number of factors, since we need just a slot for ciphertext.

The operations are almost the same as in the packed implementation, the
only difference being for ShiftRows and MixColumns. Actually, we do not need
to compute permutation of slots, but just the multiplications by constant. Hence,
we need again 4 levels per round: 3.5 for SubBytes and 0.5 for the multiplications
by constant during MixColumns. Since the last round of AES does not perform
MixColumns, we need a total of 39.5 levels.

Bit-Sliced Implementation. This implementation uses 128 ciphertexts (one
per bit) and computes the AES function as a binary circuit. In particular, the
SubBytes operation is computed using the Boyar and Peralta circuit [16], which
consumes 4 levels. The other operations of AES are essentially linear. Hence, we
get an estimate of 4 levels per round.

4 Homomorphic Evaluation of SHA-256

SHA-256 is an hash function developed by the NSA and published by NIST in
2001 [17], it is based on the Merkle-Damg̊ard construction [18].

Recall on SHA-256. The hash function SHA-256 computes on 32-bit variables,
combining XOR, AND, rotations and addition modulo 232.

A message schedule extends the 512-bit message, considered as 32-bit words
w[0], . . . , w[15], into other 32-bit words w[16], . . . , w[63] as follows:

- s0 = (w[i − 15] ≫ 7)⊕ (w[i − 15] ≫ 18)⊕ (w[i − 15]� 3)
- s1 = (w[i − 2] ≫ 17)⊕ (w[i − 2] ≫ 19)⊕ (w[i − 2]� 10)
- w[i] = w[i − 16] + s0 + w[i − 7] + s1

The 64 words are then compressed applying the following loop, for i from 0
to 63, which uses 8 working variables, a through h, that have been initialized
out of the function:

- s1 = (e≫ 6)⊕ (e≫ 11)⊕ (e≫ 25)
- ch = (e ∧ f)⊕ (¬e ∧ g)
- temp1 = h+ s1 + ch+ k[i] + w[i]
- s0 = (a≫ 2)⊕ (a≫ 13)⊕ (a≫ 22)
- maj = (a ∧ b)⊕ (a ∧ c)⊕ (b ∧ c)
- temp2 = s0 +maj
- h = g, g = f, f = e, e = d+ temp1, d = c, c = b, b = a, a = temp1 + temp2

The compressed message is then added to the intermediate state h0, . . . , h7:

- h0 = h0 + a;h1 = h1 + b;h2 = h2 + c;h3 = h3 + d;h4 = h4 + e;h5 =
h5 + f ;h6 = h6 + g;h7 = h7 + h;

On the Homomorphic Computation of Symmetric Cryptographic Primitives 33

4.1 Encoding Choice and Carry-lookahead Adders

The main problem in the homomorphic evaluation of SHA-256 is the evalua-
tion of operations in different algebraic structures, that is XOR and AND over
GF(232) and integer addition over Z232 .

There are three main encoding techniques that we have considered, but only
the last one allows to perform all operations.

– Words in plaintext coefficients: the modulus of the plaintext space is set
as t > 2 (this is allowed by the BGV scheme). Each integer is broken into
its binary representation and encoded in Rt as a polynomial with a bit per
coefficient. Addition of two integers is simply obtained by homomorphically
adding ciphertexts. The resulting plaintext will indeed give the correct result
when evaluated in x = 2. The modulus t allows to sum up at most t − 1
integers, then there will be a loss of information caused by the modulo t
reduction. However, this encoding choice does not allow to compute XOR
and AND operations.

– Words in slots: the parameters of the scheme are set such that SIMD
operations are allowed. In particular, we encode each word in a slot as an
element of GF(232) . This encoding choice allows to perform binary XOR by
simply adding ciphertexts. However, it does not allow evaluation of binary
AND, since it is not equivalent to any operation over GF(232). Moreover,
this encoding choice does not even allow to compute integer additions.

– Bit in slots: the parameter of the scheme are again set to get SIMD op-
erations and each slot of the ciphertext contains a bit. With this encoding
choice, XOR and AND can be computed by simply adding and multiplying
ciphertexts. Moreover, it allows also the evaluation of integer additions as in
carry adders, as shown below.

We chose to use the last encoding technique, which also presents the advantage
that the field GF(2d) contains GF(2) for any d. It means that there are no
constraints on the choice of m, as for AES evaluation.

Carry-lookahead Adder. To compute integer addition, we implement a carry-
lookahead adder. Considering two 32-bit integers x = x31 . . . x0 and y = y31 . . . y0,
sum and carry bits are defined respectively as:

– si = xi ⊕ yi ⊕ ci,
– ci+1 = Gi ∨ (ci ∧ Pi) with Gi = xi ∧ yi and Pi = xi ⊕ yi.
For simplicity, consider the case where x and y are encoded in two different

ciphertexts, say Cx and Cy. Specifically, the LSB is contained in slot 0 and the
MSB in slot 31. We want to compute a ciphertext C, which contains carry ci
in slot i, so that the integer sum of x and y can be computed homomorphically
adding C, CX and CY .

We first compute two ciphertexts encoding Pi and Gi in their slots, say CP
and CG. These ciphertexts can be computed by simply adding and multiplying

34 S. Mella and R. Susella

Cx and Cy. Each carry ci can now be computed using rotation, addition and
mutliplication of CP and CG.

We focus on the computation of carry c31, which is the most expensive in
terms of operations and consumed levels. For other carries, the computation is
analogous. Substituting ci into ci+1, for any i, we get c31 = G30 ∨ (G29 ∧ P30)∨
· · · ∨ (G0 ∧ P1 ∧ · · · ∧ P30).

We first create copies of CG and GP and, applying automorphisms, we move
the desired values in slot 31. The most expensive term of c31 is the last one,
consisting of tirthy AND operations, which can be computed using a depth-5
circuit of homomorphic multiplications. The other terms can be computed using
from 1 to 5 levels. Then, to evaluate the OR operation, we apply the De Morgan
law: A ∨ B = ¬(¬A ∧ ¬B). Hence, we can compute the tirthy OR operations,
using additions (to get NOT) and a depth-5 circuit of multiplications. Finally,
we select slot 31 form the resulting ciphertext. Thus, we estimate a total amount
of 10.5 consumed levels.

Analogously, we compute ciphertexts encrypting other carries and homomor-
phically add them to get C.

Notice that in a bit-sliced implementation, rotations and select are not needed.
Thus, 10 levels are consumed.

4.2 Evaluation of SHA-256 Function

We present here three possible implementation variants for SHA-256, providing
an estimate of the number of consumed levels.

Word-Sliced Implementation. We start analyzing the message schedule,
which extends sixteen 32-bit words into other forty-eight.

- The computation of s0 and s1 requires rotation of slots (obtained combining
automorphisms and select operations) and addition of ciphertexts. Namely,
it consumes just 0.5 levels.

- The computation of w[i] requires four integer additions that can be imple-
mented using a depth-2 circuit of integer additions, which requires 2 · 10.5
levels of multiplications.

Notice that the computation of w[i] uses w[i − 2]. It follows that for i ≥ 18
the homomorphic computation involves a variable which has already been scaled
down by a number of levels. Specifically, w[i] is at level L−1−(

⌊
i−16
2

⌋
+1) ·21.5.

We now analyze the evaluation of the compression function:

- The homomorphic computation of s1 and s0 requires rotations of slots and
addition of plaintexts. Hence, it requires only 0.5 levels. Since these variables
will be involved in operations with variables computed in the next point, they
have to be scaled down by other 0.5 levels.

- The computation of ch and maj requires one level, since a binary AND of
slots must be calculated.

On the Homomorphic Computation of Symmetric Cryptographic Primitives 35

- temp1 and temp2 are computed using integer addition. In particular, the
computation of temp2 requires 10.5 levels, as it consists of a single addition.
The computation of temp1 is the most expensive. It can be implemented
using a depth-3 circuit of integer additions, which requires 3 · 10.5 = 31.5
levels of homomorphic multiplications.

- In the last step, there is a reassignment of variables, which includes the
computation of integer additions for e = d + temp1 and for a = temp1 +
temp2. That is, additional 10.5 levels are required.

In conclusion, 43 levels are required for each round. Hence, a total of 64 ·43 =
2752 levels. Finally, additional 10.5 levels are required for the addition with the
intermediate state.

Notice that, for each i, variable w[i] is involved in the main loop when the
computation level is already smaller than its own. It follows that the estimation
of the number of required levels is given just by the estimation of the compression
function and the final additions. Hence, it is 64 · 43 + 10.5 = 2762.5.

Packed Implementation. All 32-bit variables are encoded in just one cipher-
text. This means that we need 80 · 32 slots.

The evaluation of the message schedule requires the same number of levels to
compute s0 and s1, since we rotate words consuming 0.5 levels and contemporary
move them in the desired position. On the other hand, the computation of w[i]
requires additional rotations in order to move words in the same slots before
computing integer additions.

As in the word-sliced implementation, w[i] is at level L−1−(⌊ i−162

⌋
+1)·21.5,

which means that w[63] is at level L− 1− 516.
The homomorphic evaluation of the compression function is essentially the

same as in the word-sliced implementation, with some additional rotations to
move words in the same slots before computing. In particular, in the last step
we consume additional 0.5 levels to compute the reassignment of variables. In
conclusion, 43.5 levels are required for each round.

In this implementation, when we evaluate the compression function, the ci-
phertext has already been scaled down by 516 levels. Hence, the total amount
of consumed levels is 516 + 64 · 43.5 + 10.5 = 3310.5.

Bit-Sliced Implementation. This implementation uses a ciphertext for each
bit, hence a total of 80 · 32 ciphertexts. The main advantage is that we avoid
automorphisms and select operations, saving a number of levels.

The message schedule requires a total of 20 levels for the computation of w[i].
Hence, ciphertexts encoding bits of w[i] are at level L−1−(

⌊
i−16
2

⌋
+1) ·20. That

means that w[63] is at level L − 1 − 480. The compression function requires a
total of 41 levels per round and additional 10 levels for the integer addition with
the intermediate state. As in the word-sliced implementation, the estimation of
the number of required levels is given just by the estimation of the compression
function and the final additions, since variable w[i] is involved in the main loop

36 S. Mella and R. Susella

when the computation level is already smaller than its own. Hence, the total
consumption is of 64 · 41 + 10 = 2634 levels.

5 Homomorphic Evaluation of Salsa20

Salsa20 [19] is a stream cipher designed by Bernstein and selected as part of
the eSTREAM portfolio. It provides 64 bytes of output after 10 simple rounds,
thus performing very fast in software implementations. For details about the
specification please refer to [20].

Recall on Salsa20. Salsa20 operates on a state that can be seen as a 4x4 matrix
with elements in 232. It is based on a simple function named quarter-round, which
is applied in parallel to each column and then to each row of the state matrix, for
a total of 10 rounds. This function operates on four 32-bit values. In particular,
if y = (y0, y1, y2, y3) then quarter-round(y) = (z0, z1, z2, z3) where

– z1 = y1 ⊕ ((y0 + y3) ≪ 7)
– z2 = y2 ⊕ ((z1 + y0) ≪ 9)
– z3 = y3 ⊕ ((z2 + z1) ≪ 13)
– z0 = y0 ⊕ ((z3 + z2) ≪ 18)

5.1 Evaluation of Salsa20

Since Salsa20 requires to combine a logical operation (XOR) and addition mod-
ulo 232, the only possible encoding choice is to have a bit in each slot, as for
the evaluation of SHA-256. We present here three different implementations for
Salsa20, estimating the number of required levels.

Word-Sliced Implementation. The word-sliced implementation is the most
intuitive one due to Salsa20 structure of applying quarter-round first to columns
and then to rows, since each element of the state matrix is accessed through
a pointer. The first element to be computed in quarter-round is z1, and its
computation requires an integer addition and a rotation, which means 10.5 levels
due to the adder and half level due to the select used in the rotation, for a total
of 11 levels. Then, since all the sequent elements computed by quarter-round
recursively depend on each other, the last value to be computed (z0) will require
11×4 = 44 levels. This result can be applied to the other half round in the same
way. This results in 44 × 2 consumed levels for each round, for a total of 880
levels.

Packed Implementation. In the packed implementation the state is encoded
in a single ciphertext, thus requiring 512 slots. The quarter-round function is
applied in parallel, this means that in the first step all the additions of the first
and last elements of each column (or row) are performed together. However, to
write the result back to the ciphertext we need to select only the column (or
row) on which we operated, therefore each quarter-round must be followed by a
select, resulting in 92 levels per round or 920 total levels.

On the Homomorphic Computation of Symmetric Cryptographic Primitives 37

Bit-Sliced Implementation. In the bit-sliced implementation we require 512
ciphertexts but we remove any cost due to the rotations of words, therefore
quarter-round will cost 10 × 4 just due to additions and the total execution
would require 800 levels.

6 Homomorphic Evaluation of Keccak

Keccak [21,22] is a cryptographic primitive, based on the sponge contruction
[23], which allows the construction of hash functions, symmetric encryption and
authentication functions, reseedable pseudo-random bit generator, etc. It has
been recently selected by NIST as the winner of the SHA-3 competition.

Recall on Keccak. The main block of Keccak is the Keccak-f [b] per-
mutation, which consists in a sequence of identical rounds operating on a b-
bit state. A state A is organized as an array of 5 × 5 lanes each of length
w ∈ {1, 2, 4, 8, 16, 32, 64}. Hence the size of the state is b = 25w, i.e. b ∈
{25, 50, 100, 200, 400, 800, 1600}.

The number of rounds nr depends on the state size and is given by nr = 12+2�
where � = log2 w. A round consists of a sequence of invertible steps on the state
A[x][y][z]:

– θ step is a linear map and can be divided into three steps:
C[x] = A[x, 0]⊕A[x, 1]⊕A[x, 2]⊕A[x, 3]⊕A[x, 4] for x = 0, . . . , 4
D[x] = C[x − 1]⊕ (C[x+ 1] ≫ 1) for x = 0, . . . , 4
A[x, y] = A[x, y]⊕D[x] for x, y = 0, . . . , 4

– ρ step consists in a bitwise cyclic shift operation within the lanes.
– π step is a transposition of the lanes.
– χ step is the only non-linear map of the round, defined as:

A[x, y] = B[x, y]⊕ (¬B[x + 1, y] ∧B[x+ 2, y]) for x, y = 0, . . . , 4
– ι step consists in a single bitwise XOR between the lane A[0, 0] and a con-

stant lane RC defined for each round.

6.1 Evaluation of Keccak-f

We describe here three different implementations.
As we have explained in Section 4.1, the binary AND operation does not allow

to encode multiple bits in the same slot. For this reason, in all implementations
each slot contains a bit.

Packed Implementation. The whole state A is encoded in a single plaintext
a, using the map A[x][y][z] �→ a[wx + 5wy + z].

– θ step consists of rotations of slots and addition of ciphertexts. To compute
C[x] for each column, we need to move lanes corresponding to the same
column in the same slots. Hence, we need to perform four left-rotations (no

38 S. Mella and R. Susella

select operation is needed) and additions. Notice that we are interested only
in the content of slots 0 through 5w but we do not select them now in order to
save one level of multiplications. By performing again rotations (with select),
we get C[x − 1] and C[x + 1] ≫ 1. At this point, we contemporary select
slots 0 through 5w, which are the ones we are interested in. A homomorphic
addition is then performed to obtain D. Finally, four right-rotations are
computed to copy D[x] in slots corresponding to all lanes of column x and a
final addition is performed. The main level cost of θ lies in select operations.
Hence, 0.5 levels are required.

– ρ and π steps are simultaneously computed as a big permutation of slots,
using automorphisms and select operations. The total cost for the steps is
0.5 levels, due to constant multiplication of select operations.

– χ step is the only operation which requires multiplication of ciphertexts. To
get B[x + 1, y] and B[x + 2, y] rotations are computed as usual. The NOT
operation is obtained by addition with a constant vector encoding a 1 in
each slot, whereas the AND by multiplication of ciphertexts. Then, a final
homomorphic addition is computed

– ι step consists of a single addition with a constant. In particular, the con-
stant RC is precomputed encoding it in the first w slots of a ciphertext.

The estimated number of levels needed by the round function is 2.5, therefore
Keccak-f [b] should require 2.5(12 + 2�) levels.

Lane-Sliced Implementation. In this implementation, we use 25 different
ciphertexts, each encrypting a lane. In particular the slot z contains the bit
A[·][·][z].
– θ step requires a smaller number of rotations than the packed implementa-

tion. Computation of C[x] for each column simply consists in homomorphic
addition of ciphertexts corresponding to different rows of the same column.
Then, we compute D[x] by performing lane rotations (to get C[x+1] ≫ 1)
and homomorphic additions. Finally, we loop on each ciphertext homomor-
phically adding the relative D[x]. The level cost of this step is again 0.5, due
to lane rotations.

– ρ step is obtained performing rotations over each ciphertext. The level cost
is 0.5.

– π step is performed without any homomorphic computation, in fact we just
reassign a vector of pointers to our ciphertexts.

– χ step does not require rotation as in packed implementation. We perform
addition of ciphertexts with constant vectors to obtain the NOT. Then, we
need multiplications to compute the AND and a final addition to get the
result. Hence, this step consumes 1 level.

– ι step consists of a single addition with a constant.

This implementation requires a smaller number of rotations with respect to
the packed implementation. In particular, the π step is for free. The total number
of required levels is estimated to be 2 for each round. Hence, the evaluation of
Keccak-f [b] should consume 2(12 + 2�).

On the Homomorphic Computation of Symmetric Cryptographic Primitives 39

Bit-Sliced Implementation. In this implementation, we use b different ci-
phertexts, each encrypting a bit of the state. This implementation requires no
rotations, but just additions and multiplications of ciphertexts. All ≫ opera-
tions, as ρ and π steps, can actually be computed by reassigning a vector of
pointers to our ciphertexts. The only step which consumes 1 level is χ. Hence,
the evaluation of the whole Keccak-f [b] permutation should consume 12 + 2�.

7 Implementation Results Using HElib

For our implementations we used the recently released HElib by Halevi and
Shoup [10].

HElib is a NTL-based C++ library, distributed under the GPL license, and
it is the first publicly available library to implements the BGV homomorphic
encryption scheme. It provides all the necessary functionalities to perform our
computations, as additions and multiplications of ciphertexts, automorphisms,
additions and multiplications by constant values. Moreover, HElib sets the mod-
uli chain of the scheme, given the number of levels and the security level. We set
the security level equal to 80 bits, which translates to a security level matching
that of AES-128 [24].

For all implementations, we focus on obtaining a fast execution for a single
evaluation. It means that we set the polynomial Φm as small as possible to
support a single evaluation. As stated in [9], Φm could be chosen larger in order
to allow parallel evaluations. This will amortizes the time for single blocks, but
the global execution will require a larger amount of time. In particular, we choose
m as the smaller one satisfying the following conditions:

– φ(m) ≥ N where N is a lower bound on the degree of Φm, depending mainly
on the security level and the number of required levels. In particular N >
(L(logN +23)− 8.5)(k+ 110)/7.2. For details on the computation of N, we
remind to [9] (Appendix C);

– � equal to or greater than the the number of slots we need;
– the groupH = Z

∗
m of automorphisms, used for rotations of slots, has at most

one generator.

The last constraint is strictly related to HElib implementation. We can briefly
say that with two or more generators, the automorphism computation implies
multiplications by constants [25]. Due to the large number of performed auto-
morphisms (to compute rotations of slots), this property results in a significant
increase of the number of required levels.

We tested our implementations using the HElib on a server with an Intel Xeon
X5675 running at 3GHz.

7.1 AES-128

We have implemented packed and byte-sliced variants, since the bit-sliced im-
plementation is less attractive in terms of time and memory requirements [9].

40 S. Mella and R. Susella

Recall that the packed implementation uses just one ciphertext to encode the
whole state. Since each slot contains a byte of the state, we need at least 16
slots. In addition, we need d to be a multiple of 8. The estimate for the number
of required levels is 4 per round.

On the other hand, the byte-sliced implementaion uses sixteen ciphertexts, one
for each byte. The number of required levels is again 4 per round and 39.5 for
the whole execution, since the last round of AES does not perform MixColumns.

Table 1. Parameters and execution costs for the evaluation of AES encryption function

N m φ(m) log2 qL−1 L � Timings Ctxt size # Ctxts

packed 26482 30977 30976 928.76 40 16 22m 7.2MB 1
byte-sliced 26482 26497 26496 939.59 40 12 2h47m 6.2MB 16

In Tab. 1 we provide the dimensions of the scheme and the execution costs
of the evaluation. In particular, we first give the actual number L of consumed
levels, which exactly corresponds to the theoretical estimate we made in section
3 (note that half levels are not supported). Then, we give the smaller value of m
which satisfies our conditions, together with the degree of Φm and its lower bound
N . Then, the dimension of the larger modulo of the scheme qL−1 is provided.

In the last columns, we give execution time and ciphertexts size. The cipher-
text size is estimated according to the formula: 2 · ϕ(m) · log2 qL−1.

Both implementations require a number of levels equal to 40. For the packed
implementation we need to set m larger than for the byte-sliced implementation,
because we need at least sixteen slots per cipherext. However, the byte-sliced
implementation has larger execution time and memory requirements, since we
need to manipulate sixteen ciphertexts. In fact, we need to compute sixteen
different evaluations of SubBytes and AddRounfKey per round, one for each
ciphertext, and this results in a significant slow down of the execution.

7.2 SHA-256 and Salsa20

Both SHA-256 and Salsa20 make use of integer addition, which is the main
limitation in their homomorphic evaluation. In fact, recall that each integer
addition, computed through carry-lookahead adders, requires 10.5 levels (10 in
the bit-sliced variant).

The total amount of required levels is very high for both algorithms and
parameters should therefore be set very large, as shown in Tab. 2 and Tab. 3. In
other words, we need to manipulate polynomials two orders of magnitude greater
than the ones used for AES evaluation. This would make an implementation very
inefficient.

We don’t expect our server to be able to compute it in any reasonable amount
of time. For this reason, we did not concretely implement the evaluation of SHA-
256 and Salsa20.

On the Homomorphic Computation of Symmetric Cryptographic Primitives 41

Table 2. Parameter settings for the
evaluation of SHA-256

L N m �

packed 3311 2098115 2099863 48834
word-sliced 2763 1751048 1751689 72
bit-sliced 2634 1669348 1669351 6

Table 3. Parameter settings for the
evaluation of Salsa20

L N m �

packed 920 583815 586697 682
word-sliced 880 558482 558757 83
bit-sliced 800 507815 507821 1

7.3 Keccak

Recall that each implementation has no requirement on d, since each slot contains
a bit.

In the packed implementation, the number of necessary slots is given by the
state size b ∈ {25, 50, 100, 200, 400, 800, 1600}. In the lane-sliced it corresponds
to the lane length w ∈ {1, 2, 4, 8, 16, 32, 64}, whereas in the bit-sliced implemen-
tation it is always 1.

Recall that the packed implementation has an estimate of 2.5 levels per round,
whereas lane-sliced of 2 levels (the only exception being Keccak-f [25] which
requires 1 level per round) and bit-sliced of just 1 level.

Table 4. Parameters and execution costs for the evaluation of Keccak-f permutation

b N m φ(m) log2 qL−1 L � Timings Ctxt size # Ctxts

packed 25 16982 17467 17466 563.36 25 41 27m 2,5MB 1
50 19515 20191 19800 661.80 29 330 1h1m 3,3MB 1
100 22048 22111 22110 743.10 33 110 1h30m 4,1MB 1
200 24582 25351 25000 860.81 37 250 2h8m 5,4MB 1
400 27115 32377 32376 958.18 41 568 2h45m 7,8MB 1
800 29648 43691 43690 1069.48 45 1285 5h9m 11,7MB 1
1600 32182 49981 49500 1198.11 49 1650 13h53m 14,8MB 1

lane-sliced 25 9382 9391 9390 282.16 13 2 3m 0,7MB 25
50 19515 19543 19542 642.93 29 2 31m 3.1MB 25
100 22048 22051 22050 753.35 33 25 50m 4.2MB 25
200 24582 24931 24592 854.88 37 25 1h39m 53.MB 25
400 27115 27409 27408 971.03 41 48 1h54m 6.7MB 25
800 29648 30269 30268 1054.86 45 84 2h44m 8MB 25
1600 32182 32377 32376 1153.97 49 568 4h 9.3MB 25

bit-sliced 25 9382 9391 9390 282.16 13 2 3m 0,7MB 25
50 10648 10651 10650 330.67 15 3 10m 0.9MB 50
100 11915 11923 11922 375.13 17 3 25m 1.1MB 100
200 13182 13183 13182 411.54 19 1 1h10m 1.4MB 200
400 14448 14461 14460 462.90 21 1 2h36m 1.7MB 400
800 15715 15727 15726 514.51 23 6 7h17m 2MB 800
1600 16982 16987 16986 562.31 25 3 21h59m 2.4MB 1600

In Tab. 4 we provide parameter settings and execution costs for each im-
plementation. In particular, the actual number of required levels in the packed

42 S. Mella and R. Susella

implementation is smaller than the estimated one. Whereas, for the other im-
plementations it is the estimated number plus 1. This can be explained by the
fact that theoretical estimation considers only mltiplications and multiplication
by constant, whereas also the other operations (as additions, key switching and
modulo switching) increase the noise magnitude somewhat.

Analyzing execution timings, the packed implementation results the slower
one except for Keccak-f [800] and Keccak-f [1600] where the bit-sliced im-
plementation requires a very large amount of time, due to the large number of
ciphertexts we manipulate.

However, the packed implementation is the one with the smallest memory
requirements, from 2.5MB for Keccak-f [25] to 14.8MB for
Keccak-f [1600]. In fact, the other implementations operate on multiple cipher-
texts. In particular, the lane-sliced implementation requires from 17.5MB for
Keccak-f [25] to 232.5MB for Keccak-f [1600] and the bit-sliced implementa-
tion requires from 17.5MB for Keccak-f [25] to 3.8GB for Keccak-f [1600].

8 Conclusions

After summarizing the BGV homomorphic encryption scheme, we performed
detailed analysis of the homomorphic evaluation of cryptographic primitives of
different families: AES as a substitution permutation network based block cipher,
SHA-256 as an hash function, Salsa20 as a stream cipher, and Keccak as a
sponge function.

This analysis showed how certain characteristics of the primitives have an
impact on their homomorphic implementation. Specifically we saw in sections 4
and 5 that the evaluation of SHA-256 and Salsa20 requires a number of levels
which is too large to allow an efficient implementation. In both cases the issue
relies on the requirement to compute addition modulo 2n together with logical
operations. As shown in section 4.1, the only feasible way of implementation is by
using an encoding in GF(2) and performing addition through carry adders, but
this results in a tremendous increment in the number of levels. This result can
be easily extended to all ARX based cryptographic primitives such as (among
others): MD5 [26], SHA-1 [17], Threefish [27], HC-128 [28] and BLAKE [29].

Also in section 4.1 we showed that although there are several possible ways
to encode the state of a primitive, the choice might be constrained due to need
of computing the logical AND operation, which can be computed only when a
slot encodes a single bit while all other logical operations can be computed when
slots are element of GF(2n) allowing for a more advantageous encoding.

For all computable primitives we showed how the different encoding of the
state would impact the memory, in terms of number of ciphertexts, and level
requirements. The result of this analysis is that AES is best suited to be imple-
mented homomorphically not only due to its low number of rounds, but especially
on the fact that it requires neither integer operations nor logical ANDs, allowing
for a better packed encoding. Another algorithm which can be quite efficiently
implemented homomorphically is Keccak due the simplicity of its round that
requires only logical operations.

On the Homomorphic Computation of Symmetric Cryptographic Primitives 43

For these two primitives, the ones that are practically computable, we suc-
cessfully tested our implementations using the recently release HElib. We have
carefully chosen the BGV parameters to improve the execution times, by us-
ing the lowest possible number of levels and cyclotomic polynomials as small
as possible and with group H with at most one generator. Finally, in section 7
we showed the performance results of our implementations, including the first
available performance data of a homomorphic implementation of Keccak , and
the best result to date for a homomorphic computation of AES.

References

1. Rivest, R., Adleman, L., Dertouzos, M.: On data banks and privacy homomor-
phisms, pp. 169–177. Academic Press (1978)

2. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) STOC, pp. 169–178. ACM (2009)

3. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24–43. Springer, Heidelberg (2010)

4. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) lwe. In: Ostrovsky, R. (ed.) FOCS, pp. 97–106. IEEE (2011)

5. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE
and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011)

6. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. IACR Cryptology ePrint
Archive

7. Brakerski, Z.: Fully homomorphic encryption without modulus switching from
classical gapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 868–886. Springer, Heidelberg (2012)

8. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic en-
cryption without bootstrapping. In: Goldwasser, S. (ed.) ITCS, pp. 309–325. ACM
(2012)

9. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the aes circuit.
IACR Cryptology ePrint Archive

10. Halevi, S., Shoup, V.: HElib (2013), http://github.com/shaih/HElib
11. Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog

overhead. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 465–482. Springer, Heidelberg (2012)

12. Smart, N.P., Vercauteren, F.: Fully homomorphic encryption with relatively small
key and ciphertext sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS,
vol. 6056, pp. 420–443. Springer, Heidelberg (2010)

13. Smart, N., Vercauteren, F.: Fully homomorphic simd operations. IACR Cryptology
ePrint Archive

14. National Institute for Science, Technology (NIST): Advanced Encryption Standard
(FIPS PUB 197) (November 2001),
http://www.csrc.nist.gov/publications/fips/fips197/fips-197.pdf

15. Daemen, J., Rijmen, V.: The block cipher rijndael. In: Schneier, B., Quisquater,
J.-J. (eds.) CARDIS 1998. LNCS, vol. 1820, pp. 277–284. Springer, Heidelberg
(2000)

http://github.com/shaih/HElib
http://www.csrc.nist.gov/publications/fips/fips197/fips-197.pdf

44 S. Mella and R. Susella

16. Boyar, J., Peralta, R.: A depth-16 circuit for the aes s-box. IACR Cryptology ePrint
Archive

17. National Institute for Science, Technology (NIST): Secure hash standard (shs) (fips
pub 180-4) (March 2012), http://csrc.nist.gov/publications/PubsFIPS.html

18. Merkle, R.: Secrecy, authentication, and public key systems. PhD thesis, Stanford
University (1979)

19. Bernstein, D.J.: The salsa20 family of stream ciphers. In: Robshaw, M., Billet, O.
(eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 84–97. Springer, Heidel-
berg (2008)

20. Bernstein, D.J.: Salsa20 specification (2005), http://cr.yp.to/snuffle/spec.pdf
21. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: The Keccak reference (2011),

http://keccak.noekeon.org

22. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V., Keer, R.V.: Keccak imple-
mentation overview (2012), http://keccak.noekeon.org

23. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Cryptographic sponge func-
tions (2011), http://keccak.noekeon.org

24. Lenstra, A.K., Verheul, E.R.: Selecting cryptographic key sizes. J. Cryptol-
ogy 14(4), 255–293 (2001)

25. Halevi, S., Shoup, V.: HElib (2013), http://github.com/shaih/HElib/blob/

master/doc/designDocument/HElibrary.pdf

26. Rivest, R.: Rfc 1321: The md5 message-digest algorithm (1992),
http://tools.ietf.org/html/rfc1321

27. Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas,
J., Walker, J.: The skein hash function family (2010),
http://www.skein-hash.info/sites/default/files/skein1.3.pdf

28. Wu, H.: The stream cipher hc-128 (2004),
http://www.ecrypt.eu.org/stream/p3ciphers/hc/hc128_p3.pdf

29. Aumasson, J.P., Henzen, L., Meier, W., Phan, R.C.: Sha-3 proposal blake (2010),
https://131002.net/blake/blake.pdf

http://csrc.nist.gov/publications/PubsFIPS.html
http://cr.yp.to/snuffle/spec.pdf
http://keccak.noekeon.org
http://keccak.noekeon.org
http://keccak.noekeon.org
http://github.com/shaih/HElib/blob/master/doc/designDocument/HElibrary.pdf
http://github.com/shaih/HElib/blob/master/doc/designDocument/HElibrary.pdf
http://tools.ietf.org/html/rfc1321
http://www.skein-hash.info/sites/default/files/skein1.3.pdf
http://www.ecrypt.eu.org/stream/p3ciphers/hc/hc128_p3.pdf
https://131002.net/blake/blake.pdf

Improved Security for a Ring-Based Fully

Homomorphic Encryption Scheme�

Joppe W. Bos1, Kristin Lauter1, Jake Loftus2, and Michael Naehrig1

1 Microsoft Research
{jbos,klauter,mnaehrig}@microsoft.com

2 University of Bristol
loftus@cs.bris.ac.uk

Abstract. In 1996, Hoffstein, Pipher and Silverman introduced an ef-
ficient lattice based encryption scheme dubbed NTRUEncrypt. Unfortu-
nately, this scheme lacks a proof of security. However, in 2011, Stehlé
and Steinfeld showed how to modify NTRUEncrypt to reduce security
to standard problems in ideal lattices. In 2012, López-Alt, Tromer and
Vaikuntanathan proposed a fully homomorphic scheme based on this
modified system. However, to allow homomorphic operations and prove
security, a non-standard assumption is required. In this paper, we show
how to remove this non-standard assumption via techniques introduced
by Brakerski and construct a new fully homomorphic encryption scheme
from the Stehlé and Steinfeld version based on standard lattice assump-
tions and a circular security assumption. The scheme is scale-invariant
and therefore avoids modulus switching and the size of ciphertexts is one
ring element. Moreover, we present a practical variant of our scheme,
which is secure under stronger assumptions, along with parameter rec-
ommendations and promising implementation results. Finally, we present
an approach for encrypting larger input sizes by extending ciphertexts
to several ring elements via the CRT on the message space.

1 Introduction

Fully homomorphic encryption (FHE) is a powerful form of encryption which al-
lows an untrusted server to carry out arbitrary computation on encrypted data
on behalf of a client. Introduced in [21] by Adleman, Dertouzos and Rivest,
the problem of constructing a scheme which can evaluate any function on en-
crypted data remained open until 2009, when Gentry constructed an FHE scheme
based on ideal lattices [10]. Gentry’s scheme effectively laid down a blueprint
for constructing FHE schemes and paved the way for many further construc-
tions [26,3,4,6,5,24,20,11,9]. The main focus of the cryptologic research commu-
nity has been on improving the efficiency of FHE and basing its security on
standard assumptions.

� Most of this work was done while the third author was an intern in the Cryptography
Research group at Microsoft Research.

M. Stam (Ed.): IMACC 2013, LNCS 8308, pp. 45–64, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

46 J.W. Bos et al.

Recently, López-Alt et al. [16] proposed a (multi-key) FHE scheme based
on the work by Stehlé and Steinfeld [25] in which a provably secure version of
NTRUEncrypt [13] is presented with security based on standard problems in ideal
lattices. Unfortunately, the FHE scheme from [16] needs to make an additional
assumption relating to the uniformity of the public key, the so-called decisional
small polynomial ratio (DSPR) assumption, to allow homomorphic operations
and remain semantically secure. We show how to avoid this additional assump-
tion and transform the results from [25] into a fully homomorphic encryption
scheme based on standard lattice assumptions only. This is achieved by limiting
noise growth during homomorphic operations via a tensoring technique recently
introduced by Brakerski [3]. Besides this theoretical advantage, our scheme has
other attractive properties. Firstly, this new scheme is scale-invariant in the
sense of [3], i.e. it avoids the modulus-switching technique of Brakerski, Gentry
and Vaikuntanathan [4]. Secondly, we keep the property of the scheme in [16]
that a ciphertext consists of only a single ring element as opposed to the two or
more ring elements for schemes based purely on the (ring) learning with errors
(RLWE) assumption [17]. This decreases the ciphertext size since parameters
are comparable in both settings. Finally, we present a technique to increase the
size of the input space by working with separate, small plaintext moduli in ci-
phertexts of multiple ring elements, which are later combined via the Chinese
remainder theorem into a larger plaintext modulus. For some applications, this
additional flexibility to increase the message space without changing parameters
at the cost of increasing ciphertext size can prove especially useful.

Our main contribution is an FHE scheme based on the schemes by Stehlé and
Steinfeld [25] and López-Alt et al. [16] that does not need the DSPR assumption
and thus is secure under the RLWE and circular security assumptions only. The
public key in both schemes is the fraction h = gf−1 mod q of two polynomials
f and g in a cyclotomic polynomial ring modulo an integer modulus q that are
sampled from a discrete Gaussian distribution. The DSPR assumption is the
assumption that such a fraction is indistinguishable from uniform random in
the ring modulo q. Stehlé and Steinfeld show that this assumption holds if the
Gaussian is wide enough. Unfortunately, the scheme by López-Alt et al. can-
not use such a wide Gaussian for key generation. Since the norms of f and g
contribute to the noise growth during homomorphic multiplication, using a wide
enough Gaussian means that the scheme is not guaranteed to be capable of doing
even a single multiplication. We solve this problem by using decompositions and
Brakerski’s [3] tensoring technique. During the homomorphic multiplication pro-
cedure which includes a key switching step, we decompose the polynomial f into
its bit decomposition, i.e. into a vector of polynomials with binary coefficients.
This technique replaces the ring product of polynomials by a scalar product of
binary decomposition vectors with vectors of polynomials multiplied by powers
of 2 modulo q. The noise growth introduced in such a scalar product is bounded
by a polynomial in log(q) and the degree of f , replacing the square of the norm
of f in the bounds of the original scheme. Noise growth is much smaller now
and it is possible to sample from a wide Gaussian to ensure the Stehlé-Steinfeld

Improved Security for a Ring-Based Fully Homomorphic Encryption Scheme 47

conditions. As noted in Appendix A.1 of [16], any FHE scheme is inherently
a multi-key scheme for a constant number of parties, but this construction is
rather inefficient. The original scheme in [16], however, directly yields the multi-
key property for a non-constant number of parties, which is much more efficient.
Our scheme is not a multi-key scheme in that sense because decryption of a
multi-key ciphertext would require a multiplication by the product of all keys
that were involved in the generation of the ciphertext. With keys generated in
the setting of Stehlé and Steinfeld, multiplying by a product of only two keys
would already lead to a noise overflow, making it impossible to decrypt correctly.

The second part of the paper describes a more practical variant of the above
scheme, along with details on parameter selection and implementation results.
The price for obtaining security without the DSPR assumption in the above
scheme lies in a large evaluation key and a complicated key switching procedure,
both of which are a consequence of using the tensoring approach. Any possibil-
ity, which we are aware of, to avoid the tensor products, leads to an increase in
the noise bounds that makes it necessary to reintroduce the DSPR assumption.
However, if one is willing to make this assumption, there are several efficiency
advantages and possible trade-offs as shown in our more practical variant. This
variant keeps the general characteristics of the scheme, but simplifies key switch-
ing and avoids tensor products. A much shorter evaluation key can be achieved
by using base-w instead of base-2 decompositions for a w > 2, e.g. w = 232. This
increases noise growth, but ensures that the evaluation key contains only a few
ring elements. Since the key switching is the main cost in homomorphic multi-
plication, the choice of w provides an important trade-off between homomorphic
capability and multiplication efficiency. We also point out that it is possible to
weaken the DSPR assumption by allowing the polynomial g to be sampled from
a wider Gaussian than f . The proofs of most lemmas and theorems are given in
the full version of this paper [2].

2 Preliminaries

In this section, we define all basic notation that is needed in the paper. The most
important structure is the ring R. Let d be a positive integer and define R =
Z[X]/(Φd(X)) as the ring of polynomials with integer coefficients modulo the d-
th cyclotomic polynomial Φd(X) ∈ Z[X]. The degree of Φd is n = ϕ(d), where ϕ
is Euler’s totient function. The elements of R can be uniquely represented by all
polynomials in Z[X] of degree less than n. Arithmetic in R is arithmetic modulo
Φd(X), which is implicit whenever we write down terms or equalities involving

elements in R. An arbitrary element a ∈ R can be written as a =
∑n−1
i=0 aiX

i

with ai ∈ Z and we identify a with its vector of coefficients (a0, a1, . . . , an−1). In
particular, a can be viewed as an element of the R-vector space R

n. We choose
the maximum norm on R

n to measure the size of elements in R. The maximum
norm of a is defined as ‖a‖∞ = maxi{|ai|}.

When multiplying two elements g, h ∈ R, the norm of their product gh ex-
pands with respect to the individual norms of g and h. The maximal norm

48 J.W. Bos et al.

expansion that can occur is δ = sup {‖g · h‖∞/(‖g‖∞‖h‖∞) : g, h ∈ R}, which
is a ring constant. When d is a power of 2 and thus Φd(X) = Xn + 1, we have
δ = n [10, Section 3.4]. To keep the exposition more general, we do not restrict
to this special case and work with general δ in most of what follows.

Let χ be a probability distribution on R. We assume that we can efficiently
sample elements from R according to χ, and we use the standard notation a← χ
to denote that a ∈ R is sampled from χ. The distribution χ on R is called B-
bounded for some B > 0 if for all a← χ we have ‖a‖∞ < B, i.e. a is B-bounded
(see [4, Def. 3] and [16, Def. 3.1 and 3.2]). Let us introduce a specific exam-
ple of a distribution on R. First, define the discrete Gaussian distribution DZ,σ

with mean 0 and standard deviation σ over the integers, which assigns a prob-
ability proportional to exp(−π|x|2/σ2) to each x ∈ Z. When d is a power of
2 and Φd(X) = Xn + 1, we can take χ to be the spherical discrete Gaussian
χ = DZn,σ, where each coefficient of the polynomial is sampled according to the
one-dimensional distribution DZ,σ (see [17] for more details and why χ = DZn,σ

is the right choice in that case). The distribution χ is used in many fully ho-
momorphic encryption schemes based on RLWE to sample random error poly-
nomials that have small coefficients with high probability. Such polynomials are
a significant part of the noise terms used in the encryption process. To deduce
meaningful bounds on noise size and noise growth during homomorphic oper-
ations, we assume that the distribution we are working with is B-bounded for
some B. For the discrete Gaussian, this is a reasonable assumption since sam-
pled elements tend to be small with high probability. By rejecting samples with
norm larger than B, we can sample from a truncated Gaussian distribution that
is statistically close to the true discrete Gaussian if B is chosen large enough.
For example, if we take B = 6σ, all samples are B-bounded with very high
probability [18, Lemma 4.4].

Although the principal object of interest for our scheme is the ring R, and
all polynomials that we deal with are considered to be elements of R, we often
reduce polynomial coefficients modulo an integer modulus q. We denote the map
that reduces an integer x modulo q and uniquely represents the result by an
element in the interval (−q/2, q/2] by [·]q. We extend this map to polynomials in
Z[X] and thus also to elements of R by applying it to their coefficients separately,

i.e. [·]q : R→ R, a =
∑n−1

i=0 aiX
i �→∑n−1

i=0 [ai]qX
i. Furthermore, we extend this

notation to vectors of polynomials by applying it to the entries of the vectors
separately. Sometimes we reduce an integer modulo q and uniquely represent the
result by an element in [0, q). In this case, we write rq(x) to mean the reduction
of x into [0, q). A polynomial f ∈ R is invertible modulo q if there exists a
polynomial f−1 ∈ R such that ff−1 = f̃ , where f̃(X) =

∑
i aiX

i with a0 = 1
mod q and aj = 0 mod q for all j �= 0. Our homomorphic encryption scheme
uses two different moduli. In addition to a modulus q that is used to reduce the
coefficients of the elements that represent ciphertexts, there is a second modulus
t < q that determines the message space R/tR, i.e. messages are polynomials in
R modulo t. We make frequent use of the quantity Δ = �q/t	 and it is readily
verified that q − rt(q) = Δ · t.

Improved Security for a Ring-Based Fully Homomorphic Encryption Scheme 49

In [3], functions called BitDecomp and PowersOfTwo are used. We slightly
generalize these to an arbitrary base and describe our notation next. Fix a pos-
itive integer w > 1 that is used to represent integers in a radix-w system. Let
	w,q = �logw(q)	 + 2, then a non-negative integer z < q can be written as
∑�w,q−2

i=0 ziw
i where the zi are integers such that 0 ≤ zi < w. If z is an inte-

ger in the interval (−q/2, q/2], it can be written uniquely as
∑�w,q−1
i=0 ziw

i with
zi ∈ (−w/2, w/2]. With this, an element x ∈ R with coefficients in (−q/2, q/2]
can be written as

∑�w,q−1
i=0 xiw

i, where xi ∈ R with coefficients in (−w/2, w/2].
Since then xi = [xi]w, we write x =

∑�w,q−1
i=0 [xi]ww

i to make clear that the norm
of the coefficient polynomials xi is at most w/2. With this notation, define

Dw,q : R→ R�w,q , x �→ ([x0]w, [x1]w, . . . , [x�w,q−1]w) = ([xi]w)
�w,q−1
i=0 ,

this function for w = 2 is called BitDecomp in [3]. We define a second function

Pw,q : R→ R�w,q , x �→ ([x]q , [xw]q, . . . , [xw
�w,q−1]q) = ([xwi]q)

�w,q−1
i=0 ,

which is called PowersOfTwo in [3] for w = 2. For any two x, y ∈ R, we see that
the scalar product of the vectors Dw,q(x) and Pw,q(y) is the same as the product
xy modulo q, because

〈Dw,q(x), Pw,q(y)〉 =
�w,q−1∑

i=0

[xi]w[yw
i]q ≡ y

�w,q−1∑

i=0

[xi]ww
i ≡ xy (mod q).

Note that when ‖f‖∞ < B for some B < q, then only the 	w,B := �logw(B)	+2
least significant polynomials in Dw,q(f) can be non-zero. We use the tensor
product of two vectors in the usual way, i.e. for a positive integer 	 and two
vectors a, b ∈ R�, the tensor a ⊗ b ∈ R�

2

is the concatenation of the aib for
i ∈ {1, 2, . . . , 	}. We extend the functions Dw,q and Pw,q to vectors. For v =
(v1, v2, . . . , v�) ∈ R� denote the vector (Dw,q(v1), . . . , Dw,q(v�)) ∈ R�·�w,q by
Dw,q(v), likewise we extend Pw,q.

Several operations in the scheme require scaling by rational numbers such
that the resulting polynomials do not necessarily belong to R but instead have
rational coefficients. In that case, a rounding procedure is applied to get back
to integer coefficients. The usual rounding of a rational number a to the nearest
integer is denoted by �a�.
The Ring Learning With Errors (RLWE) Problem. Our scheme relies
on the hardness of the (decisional) ring learning with errors problem, which was
first introduced by Lyubashevsky, Peikert and Regev [17].

Definition 1 (Decision-RLWE). Given a security parameter λ, let d and q be
integers depending on λ, let R = Z[X]/(Φd(X)) and let Rq = R/qR. Given a
distribution χ over Rq that depends on λ, the Decision-RLWEd,q,χ problem is to
distinguish the following two distributions. The first distribution consists of pairs
(a, u), where a, u ← Rq are drawn uniformly at random from Rq. The second

50 J.W. Bos et al.

distribution consists of pairs of the form (a, a · s + e). The element s ← Rq is
drawn uniformly at random and is fixed for all samples. For each sample, a← Rq
is drawn uniformly at random, and e← χ. The Decision-RLWEd,q,χ assumption
is that the Decision-RLWEd,q,χ problem is hard.

In [17], it was shown that the hardness of RLWE can be established by a quantum
reduction to worst-case shortest vector problems in ideal lattices over the ring
R, see also [4, Thm. 2]. It is known that the search variant of RLWEd,q,χ, in
which we are required to explicitly find the secret s given an RLWEd,q,χ instance,
is equivalent to the decision problem [17]. There are a number of variants of
RLWE which are as hard as RLWE, for example we can restrict the sampling of a
and e to invertible elements only [25]. And we can also choose s from χ without
incurring any loss of security [1].

The Decisional Small Polynomial Ratio (DSPR) Problem. In [16], López-
Alt, Tromer and Vaikuntanathan introduced the decisional small polynomial ra-
tio problem. They describe a multi-key fully homomorphic encryption scheme
with security based on the assumption that the DSPR problem is hard in the
ring Rq where R = Z[x]/(xn + 1) for n a power of 2 and t = 2. We state a more
general form of the problem for any cyclotomic ring R = Z[x]/(Φd(x)) and gen-
eral 1 < t < q. Let h = tg/f (mod q) where f = 1 + tf ′ and f ′, g ← χ where χ
is a truncated Gaussian distribution. In [16], the problem of distinguishing such
an element h from a uniformly random element of Rq = R/qR was formalized
as the DSPR problem. Assuming the hardness of DSPR and RLWE, the scheme
in [16] is secure. To state the problem, define the following: for a distribution χ
on Rq and z ∈ Rq we define χz = χ+ z to be the distribution shifted by z. Also,
let R×q be the set of all invertible elements in Rq.

Definition 2 (DSPR). For security parameter λ, let d and q be integers, let
R = Z[X]/(Φd(X)) and Rq = R/qR and let χ be a distribution over Rq, all
depending on λ. Let t ∈ R×q be invertible in Rq, yi ∈ Rq and zi = −yit−1
(mod q) for i ∈ {1, 2}. The DSPRd,q,χ problem is to distinguish elements of the
form h = a/b where a ← y1 + t · χz1 , b ← y2 + t · χz2 from uniformly random
elements of Rq. The DSPRd,q,χ assumption is that the DSPRd,q,χ problem is hard.

Theorem 4.1 in the full version of [25] shows that DSPRd,q,χ is hard when the
χzi are shifted versions of a discrete Gaussian distributions χ which is DZn,σ

restricted to R×q for a large enough deviation σ. For convenience, we state the
theorem in the full version of this paper [2, Appendix A]. A discrete Gaussian on
R×q can be obtained from a discrete Gaussian on Rq by rejecting non-invertible
elements.

3 Basic Scheme

In this section, we describe the basic public key encryption scheme that is the
foundation for the leveled schemes of the next sections. The scheme is parameter-
ized by a modulus q and a plaintext modulus 1 < t < q. Ciphertexts are elements

Improved Security for a Ring-Based Fully Homomorphic Encryption Scheme 51

of R = Z[X]/(Φd(X)) and plaintexts are elements of R/tR (see Section 2). Secret
keys and errors are generated from different distributions, for example Gaussian
distributions of different width. The secret key is derived from the distribution
χkey, and errors are sampled from the distribution χerr. We use “Regev-style”
encryption as in [3] and [9]. The scheme consists of the following algorithms.

• Basic.ParamsGen(λ): Given the security parameter λ, fix a positive integer
d that determines R, moduli q and t with 1 < t < q, and distributions
χkey, χerr on R. Output (d, q, t, χkey , χerr).
• Basic.KeyGen(d, q, t, χkey, χerr): Sample f ′, g ← χkey and let f = [tf ′+1]q. If
f is not invertible modulo q, choose a new f ′. Compute the inverse f−1 ∈ R
of f modulo q and set h = [tgf−1]q. Output the public and private key pair
(pk, sk) = (h, f) ∈ R2.
• Basic.Encrypt(h,m): The message space is R/tR. For a message m + tR,
choose [m]t as its representative. Sample s, e← χerr, and output the cipher-
text c = [�q/t	[m]t + e + hs]q ∈ R.
• Basic.Decrypt(f, c): To decrypt a ciphertext c, compute

m =

[⌊
t

q
· [fc]q

⌉]

t

∈ R.

In the following, we often refer to a message as an element m in the ring R
although the message space is R/tR, keeping in mind that encryption always
takes place on the representative [m]t and that by decrypting, all that can be
recovered is m modulo t.

Correctness. The following lemma states conditions for a ciphertext c such that
the decryption algorithm outputs the message m that was originally encrypted.

Lemma 1. Let q, t, and Δ = �q/t	 be as above and let c, f,m ∈ R. If there
exists v ∈ R such that

fc = Δ[m]t + v (mod q) and ‖v‖∞ < (Δ− rt(q))/2,
then Basic.Decrypt(f, c) = [m]t, i.e. c decrypts correctly under the secret key f .

Of course, for any given c, f and m, there always exists a v ∈ R such that
fc = Δ[m]t + v (mod q). But only a v of small norm allows one to recover [m]t
from c. Since we are always free to vary v modulo q, i.e. to add any multiple
of q to it, we choose v to be the canonical element [v]q. This means that we
choose v with the smallest possible norm among all polynomials that satisfy the
equation. We call this specific v the inherent noise in c with respect to m and
f . The previous lemma says that if the inherent noise in a ciphertext is small
enough, then decryption works correctly.

Inherent Noise in Initial Ciphertexts. The following lemma derives a bound
on the inherent noise in a freshly encrypted ciphertext output by Basic.Encrypt,
assuming bounds Bkey on the key and Berr on the error distributions. Note that
since f ′, g ← χkeywe have ‖f ′‖∞, ‖g‖∞ < Bkey and it follows that ‖tg‖∞ < tBkey

and ‖f‖∞ = ‖1 + tf ′‖∞ < tBkey since t ≥ 2.

52 J.W. Bos et al.

Lemma 2. Let the key and error distributions beBkey-bounded andBerr-bounded,
respectively. Given m ∈ R, a public key h = [tgf−1]q ∈ R with secret key f =
[1 + tf ′]q, f ′, g ← χkey, and let c = Basic.Encrypt(h,m). There exists v ∈ R such
that fc = Δ[m]t + v (mod q) and

‖v‖∞ < δtBkey

(

2Berr +
1

2
rt(q)

)

.

In particular, by Lemma 1, decryption works correctly if 2δtBkey(2Berr+
1
2rt(q))+

rt(q) < Δ.

4 Leveled Homomorphic Scheme

In this section, we state our leveled homomorphic encryption scheme YASHE1

based on the Basic scheme from the previous section. We then analyze the homo-
morphic operations and deduce bounds on the noise growth that occurs during
these operations.

• YASHE.ParamsGen(λ): Given the security parameter λ, output the parame-
ters (d, q, t, χkey, χerr, w), where (d, q, t, χkey, χerr)← BasicParamsGen(λ) and
w > 1 is an integer.
• YASHE.KeyGen(d, q, t, χkey, χerr, w): Compute

h, f ← Basic.KeyGen(d, q, t, χkey, χerr).

Sample e, s← χ
�3w,q
err , compute

γ = [f−1Pw,q(Dw,q(f)⊗Dw,q(f)) + e+ h · s]q ∈ R�3w,q ,

and output (pk, sk, evk) = (h, f,γ).
• YASHE.Encrypt(pk,m): Encrypt m ∈ R by c← Basic.Encrypt(pk,m) ∈ R.
• YASHE.Decrypt(sk, c): Output the message m← Basic.Decrypt(sk, c) ∈ R.
• YASHE.KeySwitch(c̃mult, evk): Output [〈Dw,q(c̃mult), evk〉]q ∈ R.
• YASHE.Add(c1, c2): Compute the addition of c1 and c2 as cadd = [c1 + c2]q.
• YASHE.Mult(c1, c2, evk): Compute

c̃mult =

[⌊
t

q
Pw,q(c1)⊗ Pw,q(c2)

⌉]

q

∈ R�2w,q ,

and output cmult = YASHE.KeySwitch(c̃mult, evk).

Since encryption and decryption are the same as in the Basic scheme from Sec-
tion 3, the correctness bound does not change and Lemmas 1 and 2 hold for
YASHE as well. Next, we analyze the homomorphic operations YASHE.Add and
YASHE.Mult.

1 Yet Another Somewhat Homomorphic Encryption scheme.

Improved Security for a Ring-Based Fully Homomorphic Encryption Scheme 53

Homomorphic Addition. Given two ciphertexts c1, c2 ∈ R, which encrypt two
messages m1,m2 with inherent noise terms v1, v2, their sum modulo q, cadd =
[c1+c2]q, encrypts the sum of the messages modulo t, [m1+m2]t. Indeed, we can
write [m1]t + [m2]t = [m1 +m2]t + tradd for some radd ∈ R with ‖radd‖∞ ≤ 1.
Since

f [c1 + c2]q = fc1 + fc2 = Δ([m1]t + [m2]t) + (v1 + v2)

= Δ([m1 +m2]t + tradd) + (v1 + v2) (mod q),

we obtain f [c1 + c2]q = Δ[m1 +m2]t + (v1 + v2 − rt(q)radd) (mod q) because
Δt ≡ −rt(q) (mod q). This means that the size of the inherent noise vadd of cadd
is bounded by

‖vadd‖∞ ≤ ‖v1‖∞ + ‖v2‖∞ + rt(q). (1)

Up to the term rt(q) < t, the inherent noise terms are added during homomorphic
addition.

Homomorphic Multiplication. The homomorphic multiplication operation
is divided into two parts. The first part describes a basic procedure to obtain
an intermediate ciphertext that encrypts the product [m1m2]t modulo t of two
messagesm1 andm2. However, the intermediate ciphertext can not be decrypted
with Basic.Decrypt using the secret key f . The second part performs a proce-
dure which allows a public transformation of this intermediate ciphertext to a
ciphertext that can be decrypted with f . This latter procedure was introduced
in [6] in the form of relinearization and was later expanded in [4] into a method
called key switching, which transforms a ciphertext decryptable under one se-
cret key to one decryptable under any other secret key. For our analysis, we
assume that χkey and χerr are Bkey- and Berr-bounded, respectively. Even if we
work with unbounded Gaussian distributions, this is a valid assumption since
elements drawn from either distribution have bounded norm for suitable bounds
with high probability. The deduction of noise bounds mostly follows the basic
multiplication section of [9], since ciphertexts and the decryption algorithm in
YASHE have a very similar structure to those in [9].

First Step. Let c1, c2 ∈ R be ciphertexts that encrypt messages m1,m2 ∈ R.
In the first step of the homomorphic multiplication operation, we compute

c̃mult =

[⌊
t

q
Pw,q(c1)⊗ Pw,q(c2)

⌉]

q

.

The following theorem shows that 〈c̃mult, Dw,q(f)⊗Dw,q(f)〉 = Δ[m1m2]t+ṽmult

(mod q), and it provides a bound for the size of ṽmult. Thus, c̃mult can be viewed
as an encryption of [m1m2]t under Dw,q(f)⊗Dw,q(f) if the inherent noise term
ṽmult is small enough.

Theorem 1 (Multiplication Noise). Let c1, c2 ∈ R be ciphertexts encrypt-
ing m1,m2 ∈ R, decryptable with the secret key f . Let v1, v2 ∈ R be the in-
herent noise terms in c1, c2 and let V > 0 such that ‖vi‖∞ ≤ V < Δ/2,

54 J.W. Bos et al.

i ∈ {1, 2}. Let c̃mult be the intermediate ciphertext in YASHE.Mult, and let
	w,tBkey

= �logw(tBkey)	+2. Then 〈c̃mult, Dw,q(f)⊗Dw,q(f)〉 = Δ[m1m2]t+ṽmult

(mod q) where

‖ṽmult‖∞ < δt(2 + δ	w,tBkey
w)V +

δt2

2
(3 + δ	w,tBkey

w) +
1

8
(δ	w,tBkey

w)2 +
1

2
.

Starting with two ciphertexts at a given inherent noise level, the first step of
the multiplication increases the inherent noise level by a multiplicative factor of

roughly δ2t	w,tBkey
w and an additive term of δ

2

2 	w,tBkey
w(t2 + 1

4	w,tBkey
w).

Key Switching. The second part in the homomorphic multiplication procedure
is a key switching step, which transforms the ciphertext c̃mult into a ciphertext
cmult that is decryptable under the original secret key f . We use the evaluation
key

evk = [f−1Pw,q(Dw,q(f)⊗Dw,q(f)) + e+ h · s]q,

output by YASHE.KeyGen where e, s← χ
�3w,q
err are vectors of polynomials sampled

from the error distribution χerr and [·]q is applied to each coefficient of the vector.
Note that this key is a vector of quasi-encryptions of f−1Pw,q(Dw,q(f)⊗Dw,q(f))
that depend on the secret key f , under its corresponding public key and that
it is made public because it is needed for the homomorphic multiplication oper-
ation. Therefore, we need to make a circular security assumption, namely that
the scheme is still secure even given that evk is publicly known (see Section 4.2).
The following lemma deduces a bound on the noise caused by the key switch-
ing procedure and states an overall bound on the noise growth during a single
homomorphic multiplication operation.

Lemma 3. Let notation be as in Theorem 1 and as above. In particular, let
c̃mult be the intermediate ciphertext in YASHE.Mult with inherent noise term
ṽmult. Let evk be the evaluation key and cmult = YASHE.KeySwitch(c̃mult, evk).
Then fcmult = Δ[m1m2]t + vmult (mod q), where

‖vmult‖∞ < ‖ṽmult‖∞ + δ2t	3w,qwBerrBkey.

Theorem 1 and Lemma 3 give an overall upper bound on the noise growth
during a homomorphic multiplication. This clearly dominates the noise growth
for homomorphic addition.2

4.1 Correctness

This section discusses the correctness of YASHE and shows that it is a leveled
homomorphic encryption scheme. We state correctness by giving an asymptotic
bound on the number of multiplicative levels in an arithmetic circuit that can
be correctly evaluated. For this, we concretely focus on a parameter setting such

2 As noted in [3] the number of elements in Dw,q(f) ⊗ Dw,q(f) can be reduced from
�2w,q to

(
�w,q
2

)
which correspondingly reduces the number of ring elements in evk.

Improved Security for a Ring-Based Fully Homomorphic Encryption Scheme 55

that the assumptions of the theorem by Stehlé and Steinfeld (see [2, Appendix A])
hold. This means that the DSPR problem is hard in Rq. We therefore fix the
following parameters: let d be a power of 2, n = ϕ(d), ε ∈ (0, 1), k ∈ (1/2, 1) and
let q = 2d

ε

be a prime such that Φd(X) = Xn+1 splits into n irreducible factors
modulo q. Let χkey be a discrete Gaussian distribution on Rq with deviation

σkey ≥ d
√
log(8dq) · qk, and let χerr be an asymptotically ω(

√
d log(d))-bounded

Gaussian distribution on R where d tends to infinity. Finally, we fix w = 2 and
t = 2, but note that similar results hold for general w, t – this restriction is
merely for the purpose of exposition.

Theorem 2 (Correctness of YASHE). For the parameter choices above,YASHE
can evaluate any circuit of depth

L = O
(

(1− k) log(q)
log(log(q)) + log(d)

)

.

4.2 Security

To prove security of YASHE, we need to assume that IND-CPA security can be
maintained even when an adversary has access to elements of the evaluation
key evk. Due to the way we construct evk it is not sufficient to simply replace
f by L distinct secret keys fi, as has been done in previous works – a specific
assumption is still required. This is a form of key dependent message security, for
the family of functions defining the evaluation key. Under this “circular security”
assumption, the IND-CPA security of YASHE follows from the IND-CPA security
of the scheme Basic described in Section 3 and the RLWE assumption.

Theorem 3 (Security of YASHE). The scheme YASHE is IND-CPA secure
under the RLWEd,q,χerr assumption and the assumption that the scheme remains
IND-CPA secure, even when an adversary has access to evk output by
YASHE.KeyGen(d, q, 2, χkey, χerr, 2).

Proof. Since σkey ≥ d
√
log(8dq) · qk for some k > 1/2 + ν with ν > 0, the

conditions of [2, Theorem 7] (see also [25]) are satisfied. Hence the public key
is indistinguishable from a uniform element of R×q . It follows from [25] that
the scheme Basic is IND-CPA secure under the RLWEd,q,χerr assumption in Rq.
Under the circular security assumption outlined above, the IND-CPA security
of YASHE follows. ��
For the proof of Theorem 3, we only need parameters that satisfy the assumptions
in [2, Theorem 7]. For the parameters outlined at the beginning of this subsection,
the RLWE assumption is believed to be hard based on standard worst-case lattice
problems.

4.3 From Leveled to Fully Homomorphic Encryption

In [10], Gentry showed how a fully homomorphic scheme can be obtained from
a leveled homomorphic scheme supporting computation of circuits of sufficient

56 J.W. Bos et al.

depth. If a scheme can evaluate its own decryption circuit and one additional mul-
tiplication, then that scheme can be converted to a fully homomorphic scheme.
The only caveat is that we have to make an additional assumption: to execute
the bootstrapping procedure, it is necessary to augment the public key with
encryptions YASHE.Encrypt(pk, sk[j]) of the bits of the secret key, under its cor-
responding public key. Similarly to the assumption on the evaluation key, we
need to make an additional assumption that including encryptions of bits of the
secret key does not affect security.

To achieve a fully homomorphic scheme, we simply view the decryption circuit
as a circuit computed on the bits of the secret key at a ciphertext c we wish to
refresh. The noise in the resulting fresh ciphertext will be of fixed size depending
on the noise in the encryptions of the bits of the secret key. In the full version [2,
(Lemma 6, Theorem 8)] we show that YASHE can be bootstrapped to a fully
homomorphic scheme.

5 A More Practical Variant of the Scheme

In this section, we propose a more practical variant YASHE′ of YASHE. The dif-
ference to YASHE lies in the homomorphic multiplication procedure. In YASHE′,
an intermediate ciphertext is simply a single polynomial while it is a vector of
polynomials in YASHE. This results in an evaluation key that consists of only
	w,q polynomials instead of 	3w,q for YASHE and thus in a simpler key switching
procedure. We now state the scheme and discuss the noise growth during the
simplified homomorphic multiplication operation YASHE′.Mult.

• YASHE′.ParamsGen(λ): Output (d, q, t, χkey , χerr)← BasicParamsGen(λ).
• YASHE′.KeyGen(d, q, t, χkey , χerr, w): Compute

h, f ← Basic.KeyGen(d, q, t, χkey, χerr).

Sample e, s← χ
�w,q
err , compute γ = [Pw,q(f)+ e+ h · s]q ∈ R�w,q . and output

(pk, sk, evk) = (h, f,γ).
• YASHE′.Encrypt(pk,m): Encrypt m ∈ R as c← Basic.Encrypt(pk,m) ∈ R.
• YASHE′.Decrypt(sk, c): Output the message m← Basic.Decrypt(sk, c) ∈ R.
• YASHE′.KeySwitch(c̃mult, evk): Output the ciphertext [〈Dw,q(c̃mult), evk〉]q.
• YASHE′.Add(c1, c2): Output cadd ← YASHE.Add(c1, c2) = [c1 + c2]q.
• YASHE′.Mult(c1, c2, evk): Output the ciphertext

cmult = YASHE′.KeySwitch(c̃mult, evk), where c̃mult =

[⌊
t

q
c1c2

⌉]

q

.

For two ciphertexts c1, c2 ∈ R that encryptm1,m2 ∈ R, the intermediate cipher-
text c̃mult during homomorphic multiplication YASHE′.Mult satisfies f2c̃mult =
Δ[m1m2]t + ṽmult (mod q) as shown in the following theorem. This means that
c̃mult is an encryption of [m1m2]t under f

2. The theorem also provides an upper
bound on the inherent noise term in the intermediate ciphertext. We assume
that the error distribution χerr is Berr-bounded and that the key distribution
χkey is Bkey-bounded.

Improved Security for a Ring-Based Fully Homomorphic Encryption Scheme 57

Theorem 4 (Multiplication Noise). Let c1, c2 ∈ R be ciphertexts encrypting
m1,m2 ∈ R, which are decryptable with the secret key f . Let v1, v2 ∈ R be the
inherent noise terms in c1, c2 and let V > 0 such that ‖vi‖∞ ≤ V < Δ/2,
i ∈ {1, 2}. Let c̃mult be the intermediate ciphertext in YASHE′.Mult.
Then f2c̃mult = Δ[m1m2]t + ṽmult (mod q) where

‖ṽmult‖∞ < δt(4 + δtBkey)V + δ2t2Bkey(Bkey + t).

Key Switching. The key switching algorithm now transforms such an inter-
mediate encryption into a ciphertext that can be decrypted with f itself. The

evaluation key is evk = [Pw,q(f) + e + h · s]q, where e, s ← χ
�w,q
err are vectors

of polynomials sampled from the error distribution χerr. Again, this key is a
vector of quasi-encryptions of the secret key f under its corresponding public
key. It is required for the homomorphic multiplication operation and is therefore
made public. This means, we need to make a circular security assumption as for
YASHE, namely that the scheme is still secure even given that evk is publicly
known. The following lemma gives a bound on the key switching noise.

Lemma 4. Let c̃mult be the intermediate ciphertext in YASHE′.Mult. Its inherent
noise term is denoted by ṽmult. Let γ be the evaluation key from above and cmult =
YASHE′.KeySwitch(c̃mult,γ). Then fcmult = Δ[m1m2]t + vmult (mod q), where

‖vmult‖∞ < ‖ṽmult‖∞ + δ2t	w,qwBerrBkey.

5.1 Correctness and Security of YASHE′

In the following theorem, we give an explicit bound for correctness of a homo-
morphic evaluation of an arithmetic circuit in R/tR of multiplicative depth L
that is organized in a leveled tree structure of multiplications without any addi-
tions. At each level all ciphertexts are assumed to have inherent noise terms of
roughly the same size. The bounds that we obtain might be too large and could
be significantly reduced for computations that involve more additions and less
multiplications as well as multiplications of ciphertexts with imbalanced inherent
noise terms. In favor of simplicity, we restrict to the above setting.

Theorem 5 (Correctness of YASHE′). Let ε1 = 4(δtBkey)
−1. The scheme

YASHE′ can correctly evaluate an arithmetic circuit consisting of L-levels of mul-
tiplications in R/tR on ciphertexts with inherent noise of size at most V that
are arranged in a binary tree of L levels of multiplications if

2(1 + ε1)
L−1δ2Lt2L−1BLkey((1 + ε1)tV + L(tBkey + t2 + 	w,qwBerr)) < Δ− rt(q).

Appendix K in [2] gives detailed bounds on the increase of the inherent noise
terms in ciphertexts during homomorphic addition and multiplication. One can
take these bounds to deduce overall bounds for the exact computation that is
supposed to be carried out on encrypted data. The obtained bounds can then
be used to deduce tailored parameters for the scheme to ensure correctness and

58 J.W. Bos et al.

security for that particular setting, possibly resulting in more efficient parameters
for the specific computation.

The security of YASHE′ is based on the RLWE assumption and a circular se-
curity assumption similar to the one for YASHE. The price we pay for a simpler
homomorphic multiplication operation lies in an additional security assumption.
Since YASHE′ only works for a much narrower key distribution that does not sat-
isfy the requirements for applying the Stehlé and Steinfeld result ([25, Thm. 4.1]),
security also relies on the Decisional Small Polynomial Ratio (DSPR) assump-
tion, as stated in Section 2. In YASHE, this assumption could be avoided by
making the scheme work with a key distribution as demanded by [25]. Following
the same hybrid argument as in [16], one can prove that the scheme described
in this section is secure under the DSPR assumption and the RLWE assumption
(see [16, Section 3.3]). If a, b are two elements sampled from a Gaussian with
very small standard deviation or from a different distribution that yields poly-
nomials with very small coefficients only, the ratio h = a/b can clearly not be
uniform because the number of elements for a and b is too small and produces
only a small number of values for h when compared to all elements in Rq. Still,
a computationally bounded adversary might not be able to distinguish such a
case from uniform randomly chosen h.

Theorem 6 (Security of YASHE′). Let d be a positive integer, q and t < q
be two moduli, w be a fixed positive integer, and let χkey and χerr be distri-
butions on R. The scheme YASHE′ is IND-CPA secure under the RLWEd,q,χerr

assumption, the DSPRd,q,χkey
assumption, and the assumption that the scheme

remains IND-CPA secure even when the evaluation key evk which is output by
YASHE′.KeyGen(d, q, t, χkey, χerr) is known to the adversary.

Remark 1. The DSPRd,q,χkey
assumption can be replaced by a weaker assump-

tion DSPRd,q,χf ,χg , where the elements f and g that are used for the public key
h = [tgf−1]q are sampled from distributions of different width with bounds Bf
and Bg, respectively. This new assumption can be made weaker than the original
assumption since the element g can be sampled from a much wider distribution
than f . Introducing these two distributions means that the noise bound for the
inherent noise in a fresh ciphertext is changed to δt(Berr(Bf +Bg)+ rt(q)Bf/2).
The proofs of the noise bounds for YASHE′.Mult show that the bound Bg only
influences the constant C2 in Lemma 9 in the full version [2]. The contributions
of Bg in the noise bounds for L levels of multiplications are merely a constant
factor independent of L. Therefore, the scheme is still leveled homomorphic with
the weaker assumption.

Remark 2. For YASHE′, since private keys are sampled with very small norm,
the circular security assumption can be avoided in the usual way by providing a
different public/private key pair (hi, fi) for each level i of multiplications for 0 ≤
i ≤ L. The evaluation key has to be extended to L vectors γi = [Pw,q(f

2
i−1)+e+

hi·s]q, 1 ≤ i ≤ L, such that the key switching step YASHE′.KeySwitch(c̃mult, evki)
transforms the intermediate ciphertext c̃mult decryptable under f2

i−1 (obtained
from two ciphertexts at level i− 1) into one decryptable under fi at level i.

Improved Security for a Ring-Based Fully Homomorphic Encryption Scheme 59

Table 1. Parameters that guarantee security of λ = 80 bits against the distinguishing
attack with advantage ε = 2−80. We fix w = 232, the key distribution is assumed to be
bounded byBkey = 1, and we use σerr = 8 andBerr = 6σerr. Either for fixed sizes of q, we
give the minimal degree nmin (left part), or for fixed dimension n, we give the maximal
size log(qmax) (right part). For each pair (q, n) according to the given sizes, and different
values of t, correctness is guaranteed for at most Lmax multiplicative levels.

�log(q)� nmin t Lmax

2 3
128 3329 256 2

1024 1

2 5
192 5018 256 3

1024 3

2 7
256 6707 256 5

1024 4

2 15
512 13463 256 10

1024 9

2 31
1024 26974 256 21

1024 19

n log(qmax) t Lmax

2 4
212 157 256 2

1024 2

2 9
213 312 256 6

1024 5

2 19
214 622 256 13

1024 11

2 37
215 1243 256 25

1024 23

2 71
216 2485 256 50

1024 46

5.2 Parameters

In this section, we give suggestions for choosing concrete parameters which can
be used as a guideline to instantiate practical schemes with varying complexity.
There are multiple parameters one can adjust, so we restrict ourselves to a subset
of choices which we think are most relevant. We consider two settings. In the first,
we fix a specific size for the modulus q. This is interesting for instance when a fast
modular multiplication implementation (in either hard- or software) is already
available, and one prefers to use this to boost the scheme’s performance. We
fix different sizes for the modulus q starting from 128 bits up to 1024 bits. The
other setting focuses on special-purpose polynomial arithmetic. Here, we fix the
degree n = ϕ(d) to be a power of 2 between 212 and 216.

The parameters presented in Table 1 are obtained by following the security anal-
ysis of Lindner and Peikert [15] under the assumption that the results from [15] in
the LWE setting carry over to the RLWE setting, and assuming that the assump-
tions in Section 5.1 hold. This analysis is similar to the ones from [12,9,14] and we
refer to [12] for a more complete discussion of assumptions made in deriving pa-
rameters. Note that recent results by Chen and Nguyen [7] are considered to be
more accurate for estimating the security of specific parameters using the simula-
tion of the BKZ 2.0 algorithm for assessing the runtime of lattice basis reduction.
Selecting parameters for YASHE′ with this method is ongoing work at the time of
writing this paper. However, it is expected that the parameters presented in this
paper which are obtained by using the Lindner-Peikert method are more conser-
vative than those obtained with the BKZ 2.0 simulation.

60 J.W. Bos et al.

Next, we discuss in more detail the parameter selection recommendationsmade
in Table 1. We use Bkey = 1, in other words we are assuming that even when the
polynomials f ′, g have coefficients in {−1, 0, 1}, the public key h = [tgf−1]q is in-
distinguishable from uniform. The standard deviation of the error distribution is
fixed atσerr = 8; this is consistentwith [19]. The high probability bound on the size
of the coefficients of errors drawn from Gaussian distributions is chosen as 6σerr.

To distinguish with an advantage of ε in the RLWE problem, an adversary is
required to find vectors of length at most α · (q/σ) where α =

√
ln(1/ε)/π. In

our specific parameter examples, we use ε = 2−80, which results in α ≈ 4.201.
We refer to [15] for a more complete description of a distinguishing attack and
the precise lattices we are required to find short vectors in. Running Schnorr-
Euchner’s BKZ [22], the best known lattice reduction algorithm in practice,
and its successor BKZ 2.0 [7] for security parameter λ (following [12] we use

λ = 80) one expects to find vectors of length 22
√
n log2(q) log2(δRHF) in time TBKZ =

2λ where δRHF is the so-called root Hermite factor. This latter quantity is the
overwhelming factor determining the quality of the basis which can be achieved
in a given time and is computed as in [15] from

log2(TBKZ) = 1.8/ log2(δRHF)− 110.

It is currently infeasible to achieve a target root Hermite factor δRHF < 1.005 [7].
To guarantee security, we require that the shortest vector obtained through lat-
tice reduction is longer than a vector which could give an adversary a non-
negligible advantage ε in the Ring-LWE distinguishing problem. This means
that for security we thus require

α · q/σ < 22
√
n log2(q) log2(δRHF).

For fixed parameters α and δRHF, this inequality provides bounds on the remain-
ing parameters q, σerr and n. Fixing σerr too (σerr = 8 here), we get a dependency
between q and n that is expressed in the two settings discussed above as follows.
When we fix q, we obtain a lower bound nmin for the dimension n to guarantee
security against the distinguishing attack. For the example values for the sizes
of q given in the first column of the left part of Table 1, we list this minimal
degree in the second column. We used the worst case bound for a modulus q of
that size. Vice versa, first fixing the degree n means that we get an upper bound
qmax for q. We display the relation between n and the size log(qmax) in the first
two columns of the right part of Table 1.

For guaranteeing correctness, we use the noise bounds derived in the previous
section.Asmentioned in Section 2, when d is a power of 2 and thusΦd(X) = Xn+1,
the expansion factor is δ = n. Then, by Lemma 1 andLemma9 in the full version [2]
we know that our scheme can correctly evaluate a depth L circuit as long as

(1 + ε1)
L−1n2Lt2L−1BLkey ((1 + ε1)tV + L (t(Bkey + t) + 	w,qwBerr))

is less than (Δ − rt(q))/2, where ε1 = 4(ntBkey)
−1 and V = ntBkey(2Berr +

rt(q)/2) is the inherent noise of fresh ciphertexts by Lemma 2. For each row in

Improved Security for a Ring-Based Fully Homomorphic Encryption Scheme 61

either the left or the right part of Table 1, we take the given values for q and
n together with different values for t and check what is the maximum number
of levels Lmax for which the correctness bound still holds. Note that in the left
part, we take the minimal degree nmin. This means that when choosing a power
of 2 for the degree, the values for Lmax might change. In the right part, we take
the largest possible value for q with the given maximal bit size.

It is important to ensure that the security bounds as well as the correctness
bounds are both satisfied. Note that the authors of [9] failed to check their pa-
rameters presumably obtained from the correctness bound in the security bound,
too, resulting in insecure parameters of q = 21358 and n = 210.

5.3 Implementation

Currently there are not many known implementation results for FHE schemes.
Some of those which have been published demonstrate that the current state-
of-the-art’s performance is still rather unsatisfactory, see for example the imple-
mentations which are capable of computing AES homomorphically [12,8]. Other
people have focused on implementing relatively simple schemes that require only
a few levels of multiplications [14]. When using the ring R = Z[X]/(X4096 + 1),
t = 210 and a 130-bit prime q, the authors of [14] present implementation results
on an Intel Core 2 Duo running at 2.1 GHz. Encryption takes 756 ms, addition of
ciphertexts 4 ms, multiplication of ciphertexts 1590 ms (this includes the degree
reduction) and decryption 57 ms.

We have implemented the YASHE′ variant proposed in Section 5 in a C-library.
All the arithmetic has been built from scratch and we do not depend on any
external number theory library. Using almost the same parameters (we use a
127-bit prime q) with w = 232 we obtained the following results on an Intel Core
i7-3520M at 2893.484 MHz with hyperthreading turned off and over-clocking
(“turbo boost”) disabled. Encryption runs in 79.2 million cycles (27 ms), addition
of ciphertexts in 70 thousand cycles (0.024 ms), multiplication of ciphertexts
(including the key-switching) in 90.7 million cycles (31 ms) and decryption in
14.1 million cycles (5 ms).

This performance increase by at least one order of magnitude (for the decryp-
tion) to two orders of magnitude (for the addition of ciphertexts) can be partially
explained by the fact that we are running on a more recent processor and that
we implemented the scheme directly in C (avoiding the overhead incurred by
using a computer algebra system as in [14]). The remainder of the speed-up is
due to our newly proposed scheme, in particular due to a simpler multiplication
operation on ciphertexts that uses a more compact evaluation key consisting of
only 4 elements. These performance numbers highlight the fact that HE is much
more practical for schemes which do not require very deep circuits (like AES)
but instead only need a few (around 22 to 25) multiplications.

5.4 Truncating Ciphertext Words

Brakerski [3, Section 4.2] first suggested for his scale-invariant LWE scheme
to discard some least significant bits of the ciphertext. Based on this idea, we

62 J.W. Bos et al.

describe an optimization to our scheme which significantly reduces both the
ciphertext length and the number of elements in the evaluation key. By aligning
the number of bits we discard with a multiple of w used in YASHE.KeySwitch,
the number of elements required to switch keys is reduced per multiplication.

Define YASHE.Discardw(c, i) as the function which takes as input a cipher-
text and the number 0 ≤ i < 	w,q of w-words to be truncated and outputs
c′ = YASHE.Discardw(c, i) = �w−ic	. Then, wic′ is equal to c with the i least
significant w-words of c being set to 0. If cf = Δm + v (mod q), then wic′f =
Δm+ v′ (mod q) with ‖v′‖∞ ≤ ‖v‖∞ + 1

2δw
i‖f‖∞. For a constant B > 0 such

that 2B > δ‖f‖∞/2, if we discard logw(2B)− logw(δ‖f‖∞) words, we incur an
additional noise term of size B, but the ciphertext can now be represented by
logw(q/B)+logw(δ‖f‖∞/2) words. This means that, with discarding, the length
of ciphertexts does not depend on the absolute value of q but only on the ratio of
q to the noise in the ciphertext. Perhaps more importantly, this means that when
we consider Dw,q(c) for a ciphertext c with coefficients represented by roughly
logw(q/B) words, all the lowest logw(B) words are now zero. If c is a ciphertext
decryptable under f2, in the key switching step, we only need the top logw(q/B)
elements from the evaluation key to carry out the switch.

5.5 Encoding Input Data via the CRT

For our leveled homomorphic encryption scheme, we have given bounds on pa-
rameters and input data to ensure correctness and security. For applications
such as outsourcing of storage and computation on private data to the cloud,
it could be the case that the user requires a flexible system which allows for
additional computation, more computation than was planned for when setting
system parameters. We propose a way to extend the system to allow additional
computation without resetting the parameters. For computations on integer val-
ues, the encoding of larger integers using the Chinese Remainder theorem allows
for either greater precision of computation or larger integer inputs, using the
same underlying field size and lattice dimension but at the cost of increasing the
number of ciphertexts to be operated on.

Integer computations with results up to a bound B are done by encoding each
input as a collection of integers modulo coprime ti via the CRT. Computations
are then carried out on the collection and correctly reflect the integer operations
not involving any modular reductions, as long as the product of the ti is greater
than B. Each integer in the collection is encrypted as a separate ciphertext with
respect to its corresponding plain text modulus ti and those ciphertexts can be
processed in parallel to return encrypted collections. After they are decrypted,
the CRT is used to recover the output as an actual integer.

This approach is different than the ones introduced in [23] and [8], since in
contrast to these schemes, we do not use the CRT to pack information into
different plain text slots of a single ciphertext. Instead, we simply encrypt each
part of the CRT encoding in a separate ciphertext with respect to its plain text
modulus ti. This introduces a different way of flexibility. Ciphertexts now consist
of several ring elements, but can be processed in parallel. For example, this allows

Improved Security for a Ring-Based Fully Homomorphic Encryption Scheme 63

to work on integers of double bit length by keeping the same parameters, only
extending to two ciphertexts with different values for t0 and t1.

6 Conclusions

We have proposed a new fully homomorphic encryption scheme based on the
scheme by Stehlé and Steinfeld which removes the non-standard decisional small
polynomial ratio assumption needed in the homomorphic encryption scheme
by López-Alt, Tromer and Vaikuntanathan. Hence, the security is solely based
on standard lattice assumptions and a circular security assumption. Our new
scheme avoids modulus switching and keeps the size of ciphertexts to a single
ring element. Furthermore, we have presented a more practical variant of our
scheme which does need the decisional small polynomial ratio assumption. For
this latter scheme we presented parameters and implementation results.

Acknowledgments. The authors thank Adriana López-Alt for many useful
suggestions and discussions, in particular for pointing out the possibility of a
weaker assumption in Remark 1, Tancrède Lepoint for his comments and for
noticing an error in an earlier version of Table 1, Nigel P. Smart for helpful
advice and the anonymous reviewers for their constructive feedback.

References

1. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009)

2. Bos, J.W., Lauter, K., Loftus, J., Naehrig, M.: Improved security for a ring-based
fully homomorphic encryption scheme (full version). Cryptology ePrint Archive,
Report 2013/075 (2013), http://eprint.iacr.org/

3. Brakerski, Z.: Fully homomorphic encryption without modulus switching from
classical gapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 868–886. Springer, Heidelberg (2012)

4. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: Fully homomorphic encryption with-
out bootstrapping. In: ITCS, pp. 309–325 (2012)

5. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: FOCS, pp. 97–106 (2011)

6. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE
and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011)

7. Chen, Y., Nguyen, P.Q.: BKZ 2.0: Better lattice security estimates. In: Lee, D.H.,
Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidel-
berg (2011)

8. Cheon, J.H., Coron, J.-S., Kim, J., Lee, M.S., Lepoint, T., Tibouchi, M., Yun, A.:
Batch fully homomorphic encryption over the integers. In: Johansson, T., Nguyen,
P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 315–335. Springer, Heidel-
berg (2013)

9. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive, Report 2012/144 (2012), http://eprint.iacr.org/

http://eprint.iacr.org/
http://eprint.iacr.org/

64 J.W. Bos et al.

10. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–
178 (2009)

11. Gentry, C., Halevi, S.: Implementing Gentry’s fully-homomorphic encryption
scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 129–
148. Springer, Heidelberg (2011)

12. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867.
Springer, Heidelberg (2012)

13. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998)

14. Lauter, K., Naehrig, M., Vaikuntanathan, V.: Can homomorphic encryption be
practical?. In: Cachin, C., Ristenpart, T. (eds.) CCSW, pp. 113–124. ACM (2011)

15. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryp-
tion. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer,
Heidelberg (2011)

16. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: STOC, pp. 1219–1234
(2012)

17. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010)

18. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian
measures. In: SIAM J. on Comp., pp. 372–381. IEEE Computer Society (2004)

19. Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, D.J., Buch-
mann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 147–191. Springer,
Heidelberg (2009)

20. Coron, J.-S., Mandal, A., Naccache, D., Tibouchi, M.: Fully homomorphic encryp-
tion over the integers with shorter public keys. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 487–504. Springer, Heidelberg (2011)

21. Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homo-
morphisms. In: Foundations of Secure Computation, vol. 4, pp. 169–180. Academic
Press, New-York (1978)

22. Schnorr, C.-P.: A hierarchy of polynomial time lattice basis reduction algorithms.
Theor. Comput. Sci. 53, 201–224 (1987)

23. Smart, N., Vercauteren, F.: Fully homomorphic SIMD operations. Cryptology
ePrint Archive, Report 2011/133 (2011), http://eprint.iacr.org/

24. Smart, N.P., Vercauteren, F.: Fully homomorphic encryption with relatively small
key and ciphertext sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS,
vol. 6056, pp. 420–443. Springer, Heidelberg (2010)

25. Stehlé, D., Steinfeld, R.: Making NTRU as secure as worst-case problems over ideal
lattices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 27–47.
Springer, Heidelberg (2011)

26. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24–43. Springer, Heidelberg (2010)

http://eprint.iacr.org/

On the Relationship between Functional Encryption,
Obfuscation, and Fully Homomorphic Encryption

Joël Alwen1, Manuel Barbosa2, Pooya Farshim3, Rosario Gennaro4, S. Dov Gordon5,
Stefano Tessaro6,7, and David A. Wilson7

1 ETH Zurich
2 HASLab – INESC TEC and Universidade do Minho

3 Fachbereich Informatik, Technische Universität Darmstadt
4 City University of New York

5 Applied Communication Sciences
6 University of California, Santa Barbara

7 MIT

Abstract. We investigate the relationship between Functional Encryption (FE)
and Fully Homomorphic Encryption (FHE), demonstrating that, under certain
assumptions, a Functional Encryption scheme supporting evaluation on two ci-
phertexts implies Fully Homomorphic Encryption. We first introduce the notion
of Randomized Functional Encryption (RFE), a generalization of Functional En-
cryption dealing with randomized functionalities of interest in its own right, and
show how to construct an RFE from a (standard) semantically secure FE. For this
we define the notion of entropically secure FE and use it as an intermediary step
in the construction. Finally we show that RFEs constructed in this way can be
used to construct FHE schemes thereby establishing a relation between the FHE
and FE primitives. We conclude the paper by recasting the construction of RFE
schemes in the context of obfuscation.

Keywords: Functional encryption, Randomized functionality, Obfuscation,
Homomorphic encryption.

1 Introduction

The goal of this work is to draw connections between FE and FHE. The motivation
is twofold. On the one hand, from a purely theoretical point of view it is interesting
to understand the relationship between these new concepts, both of which promise to
guide much future research in the area. On the other hand, from a constructive point of
view, we hope that by exploring this relationship we can also discover connections that
will help us progress towards new constructions of FHE schemes, taking advantage of
techniques used in constructing FE schemes. This motivation is even stronger in light
of very recent developments in the area, which indicate that constructing efficient FE
schemes supporting complex functionalities may be within our reach in the near future.
For example, an FE for arbitrary functionalities has been recently proposed in [13], as
well as functional encryption for regular languages in [19]. Goldwasser et al. recently
demonstrated that FHE together with attribute-based encryption implies FE [12]; here

M. Stam (Ed.): IMACC 2013, LNCS 8308, pp. 65–84, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

66 J. Alwen et al.

we study the opposite problem, asking what additional assumptions can be used to build
FHE from FE.

To explain our high-level approach to accomplishing this goal, let us consider the
main differences between FE and FHE. For any function f(·), an FHE scheme allows
us to compute an encryption of f(x) from an encryption of x; whereas an FE scheme
allows us to compute, in the clear, f(x) from an encryption of x. Our intuition is that
an FE scheme supporting functions of the type Encf , where Encf (x) = Enc(f(x)) is a
re-encryption of f(x), would be very close to constructing an FHE scheme. However,
an immediate problem inherent to this approach is how to provide the tokens needed
for the computation of Encf , when f can be arbitrary. We will demonstrate that this can
be done if one considers FE schemes that support functions on two inputs f(x1, x2). In
this case, it is sufficient to publish the token for EncNAND(x1, x2) = Enc(¬(x1 ∧ x2)),
as any Boolean function can be computed using a circuit of NAND gates.

When we set out to formally prove this intuition we stumbled across two major def-
initional issues: First, the “re-encryption” functionality described above is a “random-
ized” functionality, a case which is not treated in the original definitions of FE [7,16].
Second, this approach to constructing FHEs from FEs relies on a functionality that re-
encrypts under the original encryption key. However, this implies extending the syntax
of functional encryption schemes to allow for functionalities that take the domain pa-
rameters as an additional input (i.e., where the functionality can depend on the master
public key).

RANDOMIZED FUNCTIONAL ENCRYPTION. In Randomized Functional Encryption an
encryptor is able to hide an input within a ciphertext in such a way that authorized
decryptors can only recover the result of applying a randomized function to it. Intu-
itively, the encryption and/or decryption operations can take additional randomness
that is fed into the randomized function upon decryption, ensuring that the recovered
image f(x) is distributed as if the randomized function was calculated on fresh ran-
domness r as f(x; r). This is a correctness criterion. As for functional encryption, the
security goal in RFE is to ensure that the decryption operation leaks no more about
x than that which could be inferred from the output of the randomized functional-
ity with private randomness.We introduce a natural indistinguishability-based notion
of security for randomized functional encryption to capture this intuition, and show
that it suffices to establish a relation to fully homomorphic encryption. Indeed, we
show that an IND-CPA-secure RFE supporting the NAND re-encryption functionality
EncNAND(x1, x2) described above can be used as a secure fully homomorphic encryp-
tion scheme.

Randomized Functional Encryption is an interesting cryptographic primitive in its
own right. In the full version of this paper we show that various existing public-key
encryption schemes can actually be seen as particular instances of this primitive, e.g.,
those supporting re-randomization of ciphertexts and re-encryption. That said, our pri-
mary motivation in introducing the notion of RFE is to enable the construction of
FHE from FE, so we do not attempt to fully explore the subtleties of RFE. In par-
ticular, we provide and use a very strong indistinguishability notion for RFE which is

Functional Encryption, Obfuscation, and Fully Homomorphic Encryption 67

likely too strong to admit many interesting functionalities, but suffices for building FHE.
We leave further exploration of RFE to future work.

FROM FUNCTIONAL ENCRYPTION TO RFE AND FHE. We show how FE schmes can
be used to build RFE schemes, which, in turn, can be used to construct a fully homo-
morphic encryption scheme, as described above. To this end, we begin by extending
the syntax and security definitions for functional encryption schemes as follows: 1) we
modify the syntax to allow functionalities to take multiple inputs,as well as the do-
main parameters as an extra input; 2) we introduce a new indistinguishability notion of
security for FE schemes that we call entropic security in the spirit of the eponymous
definition of Russel and Wang [18]; and 3) we extend the semantic security definition
of Gorbunov, Vaikuntanathan, and Wee [13] to accommodate our new syntactic exten-
sions. We also discuss the relation between the two security notions we propose, and
show that, under certain conditions, semantic security implies entropic security.

We then present a generic construction of an RFE scheme supporting a given
randomized functionality RFn of arity n, from an entropically secure FE supporting
a specific functionality Fn of the same arity. Interestingly, for binary functionalities we
require a PRF that resists a particular class of related-key attacks [5,4] in order to prove
the security of our construction. When combined with the semantically secure FE con-
struction of Gorbunov, Vaikuntanathan, and Wee [13], our results for the unary case
yield positive feasibility results for RFE supporting complex functionalities.

Finally, we present two constructions of FHE from functional encryption. The di-
rect construction from an RFE supporting NAND re-encryption mentioned above gives
us that entropically secure functional encryption supporting a binary functionality (and
taking also the domain parameters) implies FHE. However, we cannot show that the
required RFE scheme can be constructed by assuming semantic security alone. Our
second construction uses two RFEs and a PKE, and it enables leveled homomorphic
computation using an adaptation of the bootstrapping technique of Gentry [11] to the
functional setting. We can relate the security of this construction to semantically secure
functional encryption supporting functionalities of arity 2 (there is no need for the func-
tionality to take the domain parameters). As is typical of bootstrapping techniques, an
extra assumption akin to key-dependent message (KDM) security [11] allows us to use
this construction as an FHE scheme.

CONNECTION WITH OBFUSCATION. As our final contribution, we explore the problem
of obfuscating specific re-encryption functionalities, introducing new notions extending
those proposed in earlier works on re-encryption [14,9]. We then explain how to use
such obfuscated circuits to obtain RFE schemes suitable for FHE constructions.

STRUCTURE OF THE PAPER. In Section 2 we recall the syntax and security of FE
schemes, and introduce a set of extensions that we require for our results. In Section 3
we introduce randomized functional encryption. In Section 4 we introduce the notion of
entropic securityand, in Section 5, we present generic constructions of fully homomor-
phic encryption schemes from RFE schemes.Finally, the connection with obfuscated
re-encryption is explored in Section 6.

68 J. Alwen et al.

2 Functional Encryption

NOTATION. We start by settling the notation. We write x ← y for assigning value y to
variable x. We write x←$ X for sampling x from set X uniformly at random. If A is a
probabilistic algorithm we write y←$ A(x1, . . . , xn) for the action of running A on in-
puts x1, . . . , xn with random coin chosen uniformly at random, and assigning the result
to y. We use “:” for appending to a list, and denote the empty string by ε. For random
variable X we denote by [X] the support of X, i.e., the set of all values that X takes with
nonzero probability. All algorithms in this paper are probabilistic polynomial-time. We
say η(λ) is negligible if |η(λ)| ∈ λ−ω(1). Finally in various security games we use the
notation AO and adversary A haveing oracle access to all oracles specified within the
same figure as the game.

We now formalize the syntax and security of an FE scheme, extending it with respect
to several features that were proposed in [7].

DETERMINISTIC FUNCTIONALITY. A deterministic functionality is an algorithm
Fn implementing an n-ary function f over a parameter space Fn.Prms, a key space
Fn.KeySp, and a plaintext space Fn.MsgSpn:

f : Fn.Prms× Fn.KeySp× Fn.MsgSpn −→ Fn.Rng .

We require that the key space contains a special key called the empty key denoted kε.
The empty key abstracts the information that publicly leaks from a ciphertext. This
function in most natural cases would only depend on a single argument, although one
may envisage the more general case where it has arity n. Throughout the paper we
assume the messages in the message space are of equal length, and whenever the empty
key is not explicitly defined, it is assumed that it returns the length of its first input.

SYNTAX. A functional encryption (FE) scheme FE for the functionality Fn (of arity n)
is specified by four algorithms as follows.

1. FE.Setup(1λ): This is the setup algorithm. On input the security parameter, this
algorithm outputs a master secret key Msk and master public key Mpk, a key space,
and a message space. We require that the set of all possible master public keys
output by the setup algorithm, the key space, and the message space are identical
to Fn.Prms, Fn.KeySp, and Fn.MsgSp respectively.

2. FE.TKGen(k,Msk): This is the token-generation algorithm. On input a key k ∈
Fn.KeySp, and a master secret key Msk, it outputs a token TK. We assume, without
loss of generality, that the token for the empty functionality is the empty string.

3. FE.Enc(m,Mpk): This is the encryption algorithm. On input a message m ∈
Fn.MsgSp and a master public key Mpk, it outputs a ciphertext c.

4. FE.Dec(c1, . . . , cn,TK,Mpk): This is the deterministic decryption (or evaluation)
algorithm. On input n ciphertexts, a token TK, and a master public key Mpk, it
outputs a message m or a special failure symbol⊥.

CORRECTNESS. We call scheme FE correct if, for (Msk,Mpk)←$ FE.Setup(1λ), any
m1, . . . ,mn ∈ Fn.MsgSp, randomly chosen ci ←$ FE.Enc(mi,Mpk) for 1 ≤ i ≤ n,

Functional Encryption, Obfuscation, and Fully Homomorphic Encryption 69

any k ∈ Fn.KeySp, and randomly chosen TK←$ FE.TKGen(k,Msk),
Pr [FE.Dec(c1, . . . , cn,TK,Mpk) �= Fn(Mpk, k,m1, . . . ,mn)] is negligible as a
function of λ.

SECURITY. We now discuss security notions for FE that match our syntactic exten-
sions to the primitive. Given the limitations of indistinguishability-based notions al-
ready identified in [7,16] and further discussed in the full version of this paper, we
adopt a semantic (or simulation-based) security notion akin to those in [7,16,13,3,6,2].
More precisely, we adopt of [13] extended to multiple encryption queries. Our choice is
due to the conceptual simplicity of the model and to the general feasibility result we au-
tomatically obtain for unary functionalities. We restrict our attention to TNA queries to
avoid impossibility results such as those presented in [7,6,2]. The definition formalizes
the intuition that in a secure FE scheme, no information beyond that which is leaked
through extracted tokens is available to an adversary. The fine details of the semantic
security model are not important to our results, as long as the model is strong enough to
imply an indistinguishability-based notion (Definition 8) that we introduce later in the
paper.

Definition 1 (Semantic security). Let games SS-RFE,A,D and SS-IFE,A,S,D be as in
Figure 1. Let FE be an (n-ary) functional encryption scheme. We say FE is semantically
secure if, for any adversaryA, there exists a simulator S such that for all distinguishers
D the following definition of advantage is negligible.

Advss-cpa
FE,A,S,D(λ) := Pr

[
SS-RFE,A,D(1λ)⇒ T

]− Pr
[
SS-IFE,A,S,D(1λ)⇒ T

]

Game SS-RFE,A,D(1λ):

KList← [kε]; m←⊥
(Msk,Mpk)←$FE.Setup(1

λ)

α←$ AToken,Enc0(Mpk)
Return D(MList, α)

Game SS-IFE,A,S,D(1λ):

KList← [kε]; m←⊥
(Msk,Mpk)←$FE.Setup(1

λ)

α←$ AToken,Enc1(Mpk)
Return D(MList, α)

oracle Token(k):

TK←$ FE.TKGen(k,Msk)
KList← k : KList
Return TK

oracle Enc0(m):

c←$ FE.Enc(m,Mpk)
MList← m : MList
Return c

oracle Func(I, k,m1, . . . ,mn):

For (i, j) ∈ I do
mi ← MList[j]

Return Fn(Mpk, k,m1, . . . ,mn)

oracle Enc1(m):

c←$ SFunc(Mpk,KList)
MList← m : MList
Return c

Fig. 1. Games defining the semantic security of an FE scheme. A is legitimate if it does not
call Token after calling Encb. In the single-message model A can call Encb exactly once.
Simulator S is legitimate if it queries Func with k ∈ KList only.

THE Func ORACLE. Note that providing a ciphertext and a set of tokens to the adver-
sary in the real world allows the adversary to compute many images of the functionality
simply by encrypting fresh ciphertexts and decrypting (evaluating) them along with the

70 J. Alwen et al.

provided ciphertext. Our definition provides an oracle to the simulator in the ideal world
that gives it essentially the same power. Here I denotes a set of index pairs (i, j) which
indicates hidden message j should be used in position i of the functionality. Note that
in the single-message setting and for unary functionalities, this oracle is equivalent to
directly providing a list of images to the simulator, as in the definition proposed in [13]

FEASIBILITY. The feasibility results presented in [13,16] directly carry over to our def-
inition for unary functionalities in the single-message model, where the adversary may
only request a single challenge ciphertext. This can be extended to the multi-message
model (for the TNA case) through a composition theorem, but we do not discuss the
details here due to space constraints. For the multi-ary case, however, the feasibility
problems resurface even in this more restricted scenario. More precisely, a problem
similar to that identified for noninteractive noncommitting encryption [15] may arise.
However, we do not know of any impossibility result that excludes the construction of
an FE scheme for the specific functionalities that we require for building FHE schemes
and leave a detailed treatment to future research.

3 Randomized Functional Encryption

In this section we propose a new cryptographic primitive that generalizes FE to ran-
domized functionalities. We start by formally introducing the syntax and security of
randomized functional encryption schemes. In the full version we describe several ex-
amples of cryptographic primitives that can be seen as particular cases of RFE.

RANDOMIZED FUNCTIONALITY. A randomized functionality is a probabilistic algo-
rithm RFn implementing an n-ary function f that also takes a set of random coins from
a randomness space RFn.RndSp:

f : RFn.Prms× RFn.KeySp× RFn.MsgSpn × RFn.RndSp −→ RFn.Rng .

We assume the random coins are uniformly distributed over RFn.RndSp.

SYNTAX. A randomized functional encryption (RFE) scheme for the randomized func-
tionality RFn (of arity n) is specified by four algorithms as follows.

1. RFE.Setup(1λ): This is the setup algorithm. On input the security parameter, it
outputs a master secret key Msk and a master public key Mpk, a key space, and
a message space. We require that the set of all possible master public keys out-
put by the setup algorithm, the key space, and the message space are identical to
RFn.Prms, RFn.KeySp, and RFn.MsgSp respectively.

2. RFE.TKGen(k,Msk): This is the token-generation algorithm. On input a key k ∈
RFn.KeySp and a master secret key Msk, it outputs a token TK.

3. RFE.Enc(m,Mpk): This is the encryption algorithm. On input a message m ∈
RFn.MsgSp and a master public key Mpk, it outputs a ciphertext c.

4. RFE.Dec(c1, . . . , cn,TK,Mpk): This is the (possibly probabilistic) decryption (or
evaluation) algorithm. On input n ciphertexts, a token TK, and a master public key
Mpk, it outputs a message m or a special symbol⊥.

Functional Encryption, Obfuscation, and Fully Homomorphic Encryption 71

CORRECTNESS. Intuitively, the correctness requirement imposes that the distribution of
a decrypted value (over the random coins of the encryption and decryption algorithms)
is computationally indistinguishable from that obtained by sampling the randomized
functionality directly on the encrypted message. We formalize this property next.

Definition 2 (Correctness). Let game CORRFE,A be as in Figure 2. Let RFE be a ran-
domized functional encryption scheme. We say RFE is correct if, for any adversary A,
the following definition advantage is negligible.

Advcor
RFE,A(λ) := 2 · Pr [CORRFE,A(1λ)⇒ T

]− 1

Game CORRFE,A(1λ):

b←$ {0, 1}
(Mpk,Msk)←$RFE.Setup(1

λ)

b′ ←$ AO(Mpk,Msk)
Return (b = b′)

oracle Token(k):

TK←$ RFE.TKGen(k,Msk)
KList ← (TK, k) : KList
Return TK

oracle Func(i1, . . . , in, j):

For � = 1 to n do (m�, c�)← MList[i�]
(TK, k)← KList[j]
y0 ←$ RFE.Dec(TK, c1, . . . , cn)
y1 ←$ RFn(Mpk, k,m1, . . . ,mn)
Return yb

oracle Enc(m):

c←$ RFE.Enc(m,Mpk)
MList← (m, c) : MList

Fig. 2. Game defining the correctness of an RFE scheme. An adversary is legitimate if all Func
queries are distinct.

We emphasize that the adversary in the correctness game has access to Msk (this is
needed to model correctness for Msk-dependent messages), and that it may force some
of the ciphertexts to be repeatedly used in the input to the decryption algorithm.

SECURITY. Our proposed notions of security for RFE are indistinguishability based.
We will formalize the definitions and then discuss why the models do not necessarily
suffer from the same limitations as IND-CPA security for FE.

Definition 3 (Indistinguishability). Let game IND-CPARFE,A be as shown in Figure 3.
We say RFE is IND-CPA secure if, for any adversary A, the following definition of
advantage is negligible.

Advind-cpa
RFE,A (λ) := 2 · Pr [IND-CPARFE,A(1λ)⇒ T

]− 1

We observe that, unless the functionality has special characteristics, the images re-
covered by the adversary may allow it to trivially win the game; for instance, the above
definition is unrealizable for nontrivial deterministic functionalities. To deal with this,
we will consider restricted classes of legitimate adversaries that cannot “trivially” win
the game. We start with a definition which characterizes when image values can be used
to win the IND-CPA game.

72 J. Alwen et al.

Game IND-CPARFE,A(1λ):

b←$ {0, 1}
(Msk,Mpk)←$RFE.Setup(1

λ)

b′ ←$ AO(Mpk)
Return (b = b′)

oracle LR(m0,m1):

c←$ RFE.Enc(mb,Msk)
Return c

oracle Token(k):

TK←$ RFE.TKGen(k,Msk)
Return TK

Fig. 3. Game defining the IND-CPA security of an RFE. In the TNA model A may not query
Token after LR.

Definition 4 (Message-hiding RFE). Let game MHRFE,A be as in Figure 4. We say
RFE is message hiding if, for any adversaryA , the following definition of advantage is
negligible.

Advmh
RFE,A(λ) := 2 · Pr [MHRFE,A(1λ)⇒ T

]− 1

Game MHRFE,A(1λ):

b←$ {0, 1}
(Msk,Mpk)←$RFE.Setup(1

λ)

b′ ←$ AO(Mpk)
Return (b = b′)

oracle LR(m0,m1):

MList← (m0,m1) : MList

oracle Func(I,m1, . . . ,mn, k):

For (i, j) ∈ I do
(m0,m1)← MList[j]
mi ← mb

y←$ RFn(Mpk, k,m1, . . . ,mn)
Return y

oracle Token(k):

TK←$ RFE.TKGen(k,Msk)
KList← k : KList
Return TK

Fig. 4. Game defining the message-hiding property. An adversary A is legitimate if it queries
Func with k ∈ KList only. In the TNA model A may not query Token after querying LR.

The message-hiding property detects whether an adversary can distinguish messages
queried to the LR oracle by looking at images of the functionality. Note that this may
depend intrinsically on the way in which the domain parameters are sampled by the
setup algorithm of the RFE scheme, and hence we have honest parameter generation.
We can now introduce variants of the IND-CPA definition where we exclude trivial at-
tacks by adversaries that win the game by exploiting information leaked via the images.
To this end, we formalize the notion of an associated adversary B that mimics A’s
capabilities in the MH game.

Definition 5 (Associated adversary). Let RFE be an RFE scheme, and let A be an
adversary in the IND-CPARFE,A game. Let also B be an adversary in the MHRFE,B
game. Define the traces of A and B to be (Mpk,MList,KList,TKList) in their respec-
tive games, where TKList is the list of tokens returned by the Token oracle. We say B

Functional Encryption, Obfuscation, and Fully Homomorphic Encryption 73

is an adversary associated to A if the traces of A and B are computationally indistin-
guishable. Weak associated adversary is defined analogously, where TKList is omitted
from the traces.

We now set legitimacy criteria for IND-CPA adversaries, excluding MH attacks.

Definition 6 (Legitimacy). Let RFE be a randomized functional encryption scheme,
and let A be an IND-CPARFE,A adversary. We say A is legitimate if the advantage of
any adversary B associated to A in the MHRFE,B game is negligible.

Let us now introduce our weaker indistinguishability notions before discussing the
legitimacy conditions.

Definition 7 (Restricted indistinguishability). Let RFE be a randomized functional
encryption scheme. The R-IND-CPA security of RFE requires the advantage of any
legitimate adversary A in the IND-CPA game to be negligible.

The following implications are easy to verify: IND-CPA =⇒ R-IND-CPA ;
R-IND-CPA+MH =⇒ IND-CPA . Note also that, if scheme RFE is IND-CPA secure,
then the supported functionality must be MH secure. (If the functionality is not mes-
sage hiding, then the adversary could trivially break the security of the RFE scheme by
simply distinguishing the images it recovers using legitimately retrieved tokens). As we
shall see later in the paper, our constructions of a homomorphic scheme from an RFE
impose that the adversary is unrestricted in its challenge query. One way to achieve this
is to concentrate on RFEs that are provably message hiding. The potential limitations of
this indistinguishability-based definition are discussed in the full version of this paper.

4 Entropic Security

We now turn our attention to a particular class of (standard) functional encryption
schemes that we will use as a stepping-stone between the standard notions of functional
encryption and randomized functional encryption. We call such functional encryption
schemes entropically secure.

Intuitively, entropic security imposes that an adversary has a negligible advantage
in distinguishing encryptions provided that a part of the encrypted message is sampled
uniformly at random. To this end, we must restrict our attention to functionalities Fn
for which the plaintext space Fn.MsgSp is partitioned as Fn.MsgSpm×Fn.MsgSpr. For
FE schemes supporting such functionalities, we can define a natural adaptation of the
IND-CPA model as follows.

Definition 8 (Entropic indistinguishability). Let game IND-ECPAFE,A be as in Fig-
ure 5. Let FE be a functional encryption scheme with a portioned message space. We say
FE is IND-ECPA secure if for any adversaryA, the following definition of advantage is
negligible.

Advind-ecpa
FE,A (λ) := 2 · Pr [IND-ECPAFE,A(1λ)⇒ T

]− 1

74 J. Alwen et al.

Game IND-CPAFE,A(1λ):

b←$ {0, 1}
(Msk,Mpk)←$FE.Setup(1

λ)

b′ ←$ AO(Mpk)
Return (b = b′)

oracle LR(m0,m1):

r←$ FE.MsgSpr

c←$ FE.Enc((mb, r),Msk)
Return c

oracle Token(k):

TK←$ FE.TKGen(k,Msk)
Return TK

Fig. 5. Game defining the IND-ECPA security of an FE scheme. In the TNA model A may not
query Token after querying LR.

Unlike the standard definition of IND-CPA, the above definition is meaningful for
functionalities of arbitrary arity. Note also that unless the functionality has special char-
acteristics the images recovered by the adversary may allow it to trivially win the game.
We therefore adopt a similar strategy to that presented for RFE security, define an en-
tropic message-hiding property, and impose a legitimacy condition on the adversary to
obtain a weaker flavor of the definition. We present these definitions in the full version
of the paper. In entropic message hiding, the two differences to the model presented
for RFEs are the following. Firstly, the LR oracle now samples part of the hidden mes-
sage, as in the IND-ECPA definition. Secondly, the Func oracle allows the adversary to
evaluate the functionality choosing all the r inputs except those that correspond to LR
queries. This means that the EMH property (contrarily to message hiding for RFEs,
where fresh images are sampled on each query to Func) entails a form of security un-
der randomness reuse across the different functions k that are queried by the adversary.
Note also that for multi-ary functionalities the adversary can maliciously choose part
of the randomness components in the input to Fn. Later in the paper we will see how
to build entropically message-hiding FEs. The definition of legitimacy is analogous to
that presented for RFEs. We call the resulting definition restricted entropic indistin-
guishability. We also note that the legitimacy of an IND-ECPA adversary is a natural
generalization of the restriction imposed in the IND-CPA model for FEs that the func-
tions queried to the Token oracle must all collide on the challenge messages.

Constructing RFEs from FEs We now show how to construct RFEs for arbitrary
functionalities starting from FE schemes. Technically, we will show that specific en-
tropically secure FE schemes suffice, and then establish a connection to semantically
secure FE.

The intuition behind our construction is the following. Suppose our goal is to con-
struct an RFE scheme for a functionality RFn of arity n. We begin by defining a
derandomized version of RFn, denoted Fn, of arity n, which we call the determinis-
tic functionality associated to RFn. We then show that the simple generic construc-
tion in Figure 6 converts a functional encryption scheme FE into a correct and secure
RFE scheme for RFn, provided that the underlying scheme FE is correct and entrop-
ically secure for Fn. Observe that the only modification that is made to the original
functional encryption scheme is that the encryption algorithm samples extra random-
ness that is encrypted along with the message. This naturally relates to entropic secu-
rity, where we considered functionalities where the message space was partitioned as
MsgSp = MsgSpm ×MsgSpr. We now formalize this intuition.

Functional Encryption, Obfuscation, and Fully Homomorphic Encryption 75

algo. RFE.Setup(1λ):

Return FE.Setup(1λ)

algo. RFE.Enc(m,Mpk):

r←$ Fn.MsgSpr

c←$ FE.Enc((m, r),Mpk)
Return c

algo. RFE.TKGen(k,Msk):

Return FE.TKGen(k,Msk)

algo. RFE.Dec(c1, . . . , cn,TK,Mpk):

Return FE.Dec(c1, . . . , cn,TK,Mpk)

Fig. 6. Generic construction of an RFE scheme from an FE scheme

CORRECTNESS. We begin by defining what it means to correctly derandomize a ran-
domized functionality. We require that Fn and RFn are computationally indistinguish-
able to an adversary with oracle access that can choose all message inputs to Fn/RFn
(except of course the components coming from Fn.MsgSpr).

Definition 9 (Derandomized functionality). Let game DRNDRFn,Fn,A be as shown
in Figure 7. Let RFn be an n-ary randomized functionality. Let Fn be a determin-
istic functionality with the same arity, parameter space, and key space as those of
RFn. Suppose further that the message space of Fn is partitioned as Fn.MsgSp =
RFn.MsgSp × Fn.MsgSpr. We say Fn correctly derandomizes RFn if, for any adver-
sary A, the following definition of advantage is negligible.

Advdrnd
RFn,Fn,A(λ) := 2 · Pr [DRNDRFn,Fn,A(1λ)⇒ T

]− 1

Game DRNDRFn,Fn,A(1λ):

b←$ {0, 1}
b′ ←$ AO(1λ)
Return (b = b′)

oracle Rand(m):

r←$ Fn.MsgSpr
List← (m, r) : List

oracle Func(Mpk, i1, . . . , in, k):

For � = 1 to n do (m�, r�)← List[i�]
y0 ← Fn(Mpk, k, (m1, r1), . . . , (mn, rn))
y1 ←$ RFn(Mpk, k,m1, . . . ,mn)
Return yb

Fig. 7. Game defining correct derandomization of RFn by Fn. An adversary is legitimate if all
Func queries are distinct.

Observe that the derandomized functionality must simulate independent samplings of
RFn, whilst reusing the same input randomness. We now state the correctness result.
The proof is a direct reduction and is given in the full version.

Proposition 1. Let RFn and Fn be a randomized and a deterministic functionality, re-
spectively. Suppose that Fn correctly derandomizes RFn. Then, any correct FE sup-
porting Fn yields, by the construction in Figure 6, a correct RFE scheme supporting
RFn.

BUILDING DERANDOMIZED FUNCTIONALITIES. We now consider how unary and bi-
nary functionalities can be derandomized. (The techniques used to deal with the binary

76 J. Alwen et al.

case naturally extend to arity greater than 2.) For each randomized functionality that we
want to support in the generic RFE construction of Figure 6, we define an associated
deterministic functionality as follows.

Definition 10 (Associated deterministic functionality). Let RFn be a randomized
functionality.

Unary RFn: Let PRF : PRF.KeySp×RFn.KeySp −→ RFn.RndSp be a pseudoran-
dom function. The associated unary deterministic functionality Fn is

Fn(Mpk, k, (m, r)) := RFn (Mpk, k,m;PRFr(k)) .

The key space and the parameter space of Fn match those of RFn and the message
space of Fn is RFn.MsgSp× Fn.MsgSpr where Fn.MsgSpr := PRF.KeySp.

Binary RFn: Let PRF : PRF.KeySp× ({0, 1}2λ×RFn.KeySp) −→ RFn.RndSp be
a pseudorandom function with PRF.KeySp forming an abelian group with operation ◦.
The associated binary deterministic functionality Fn is defined as

Fn(Mpk, k, (m1, r1, s1), (m2, r2, s2)) := RFn (Mpk, k,m1,m2;PRFr1◦r2(s1||s2, k)) .
The key space and the parameter space of Fn match those of RFn and the message
space of Fn is RFn.MsgSpm×Fn.MsgSpr where Fn.MsgSpr := PRF.KeySp×{0, 1}λ.

We first show that an associated deterministic functionality, as defined as above,
satisfies the correctness derandomization criterion. The proof of the following theorem
is a direct reduction and can be found in the full version.

Theorem 1 (Derandomization via PRFs). Let RFn be a unary or a binary randomized
functionality. Let Fn be the associated deterministic functionality to RFn that uses the
pseudorandom function PRF. Suppose that PRF satisfies the standard notion of PRF
security. Then Fn correctly derandomizes RFn.

SECURITY. We can now discuss the security of the construction. The next theorem
shows that an FE scheme supporting the associated deterministic functionality to RFn
suffices to obtain a secure RFE with an analogous security level.

Theorem 2 (Security of the RFE construction). Let RFn be a randomized function-
ality and let Fn be its associated deterministic functionality. Let FE be a functional
encryption scheme supporting Fn. Then if FE is IND-ECPA secure, the RFE scheme
RFE resulting from the generic construction in Figure 6 is IND-CPA secure. A similar
result holds for the restricted indistinguishability game if the PRF is Φ-RKA secure,
where

Φ := {φLi : (K1, · · · ,Kn) �→ Ki ◦ L | L ∈ PRF.KeySp} ∪
{φ�i,j : (K1, · · · ,Kn) �→ Ki ◦ Kj | i, j ∈ N ∧ i ≤ j} .

The proof is a direct reduction. However, for the restricted case, one needs to prove
that the resulting IND-ECPA adversary is legitimate. The most challenging part of this
argument consists of establishing that any successful EMH adversary against FE gives
rise to a successful MH adversary against RFE. The intuition is as follows. The RKA

Functional Encryption, Obfuscation, and Fully Homomorphic Encryption 77

security of the PRF ensures that its outputs look random even if one of the inputs to
the functionality is maliciously chosen. This allows us to make a transition from the
entropically message-hiding game to another game where the random coins of RFn are
generated via a truly random function. The reduction to the legitimacy then consists
of proving that any adversary succeeding in this game would either be breaking the
MH property, or triggering the unlikely event of guessing input s, when this is sampled
uniformly at random. Details of the proof may be found in the full version.

Constructing Entropically Secure FE In this section we discuss how to construct en-
tropically secure FEs from semantically secure functional encryption schemes. In our
constructions we will be relying on FE schemes supporting functionalities that do not
depend on the domain parameters, as this is the standard FE notion from [7,13] (modulo
the arity extension). Therefore we first discuss how to construct a functionality that may
depend on the parameters from one with a larger key space that no longer does. This
then leads us to a natural transformation of FE schemes converting an FE scheme sup-
porting the constructed parameter-independent functionality to one which supports the
original parameter-dependent functionality. We show that this transformation preserves
semantic security, and conclude the section by showing that any semantically secure FE
scheme is also entropically secure.

REMOVING PARAMETER DEPENDENCY. Let Fn be a parameter-dependent functional-
ity. We define a parameter-independent functionality as

Fn(ε , (Mpk, key),m1, · · · ,mn) := Fn(Mpk, key,m1, · · · ,mn) .

Therefore, the key space of Fn is Fn.Prms×Fn.KeySp. Let us look at a concrete exam-
ple useful for our purposes. Consider an FE scheme in which we would like to support
the following binary deterministic parameter-dependent functionality:

FnNAND (pk, kNAND, (b1, (r1, s1)), (b2, (r2, s2))) :=
PKE.Enc(¬(b1 ∧ b2), pk;PRFr1◦r2(s1||s2, kNAND)) ,

where PKE is an encryption scheme and kNAND is the only key supported by the func-
tionality. The converted functionality has key space identical to the public key space of
the PKE, and is given by

FnNAND (ε , (pk, kNAND), (b1, (r1, s1)), (b2, (r2, s2))) :=
PKE.Enc(¬(b1 ∧ b2), pk;PRFr1◦r2(s1||s2, kNAND)) .

We present our transformation in Figure 8, where we build scheme FE for FnNAND

from scheme FE for FnNAND. Note that although FENAND permits extracting tokens for
encryption under all public keys in the underlying PKE scheme, FENAND samples a
single public key at set-up, which it publishes along with the master public key. The
fact that the public key is sampled honestly means that not only we can rely on the
security properties of the PKE, but also that we can include (pk, sk) in the master key
for FENAND. This means that the holder of the master public key is capable of recovering
encrypted messages from FnNAND images, a feature that we will use later on.

78 J. Alwen et al.

algo. FENAND.Gen(1
λ):

(pk, sk)←$ PKE.Gen(1λ)

(Msk′,Mpk′)←$ FENAND.Setup(1
λ)

Mpk← (Mpk′, pk)
Msk← (Msk′, sk, pk)
Return (Msk,Mpk)

algo. FENAND.TKGen(Msk, kNAND):

(Msk′, sk, pk)← Msk

TK←$ FENAND.TKGen(kpk,Msk′)
Return TK

algo. FENAND.Enc(m1,m2,Mpk):

(Mpk′, pk)← Mpk

c←$FENAND.Enc(m1,m2,Mpk′)
Return c

algo. FENAND.Dec(c,TK,Mpk):

(Mpk′, pk)← Mpk

Return FENAND.Dec(c,TK,Mpk′)

Fig. 8. Scheme FENAND for FnNAND based on scheme FENAND for FnNAND.

The following result establishes that the above transformation yields a correct and
secure FE scheme. The proof can be found in the full version. The intuition is that
FENAND uses only a subset of the functionality of FENAND, and so the simulator implied
by the hypothesis can be used to establish the semantic security of the construction.

Proposition 2. If scheme FENAND is correct (for FnNAND) and semantically secure,
then scheme FENAND is correct for FnNAND and semantically secure.

An important aspect of this result is that it goes through for the case in which the
semantic security adversary places a single extraction query. This is important for fea-
sibility, as the construction in [13] of FE schemes for general functionalities imposes
the restriction that the semantic security adversary places a bounded number of such
queries. Looking ahead, the FHE constructions we will present rely on FEs supporting
functionalities with a single key.

FROM SEMANTIC TO ENTROPIC SECURITY. We now show that semantic security is
strong enough to imply entropic security. Given that our definition of semantic secu-
rity is restricted to the TNA scenario, we obtain entropic security in a similar setting.
Luckily, entropic security under TNA attacks suffices for the results in the next section.

Theorem 3. Let FE be a (deterministic) functional encryption scheme. Then if FE is
semantically secure, it is also entropically secure in the TNA model.

The intuition of the proof (given in the full version) is as follows. Any IND-ECPA
attacker can be recast as a semantic security attacker that wins the real-world game with
the same probability. The key observation is that the ideal world environment matches
to entropic message hiding game, when this is played by an associated adversary to the
original IND-ECPA attacker. However, the legitimacy condition on the attacker implies
that this associated adversary cannot be successful, and that the real-world advantage
(and hence the IND-ECPA advantage) must also be negligible.

Putting the above results together we obtain a path to constructing an RFE scheme for
a randomized functionality RFn as follows. 1) Construct Fn, the associated determin-
istic functionality to RFn; 2) Construct scheme FE that is correct for Fn; 3) Prove that

Functional Encryption, Obfuscation, and Fully Homomorphic Encryption 79

FE is semantically secure, and hence, by the above theorem, it is R-IND-ECPA secure;
4) Let RFE be the randomized scheme associated to FE. By Theorem 2 it is R-IND-CPA
secure; 5) Finally, to achieve security against unrestricted adversaries (IND-CPA se-
curity), establish that RFE is message hiding. We will be using this strategy in the
following section.

5 Relating Homomorphic and Functional Encryption Schemes

We saw earlier in the paper that homomorphic public-key encryption can be seen as a
particular instance of a randomized functional encryption scheme. We now combine this
observation with our results from the previous section to formalize a relation between
FHE and FE.

FHE FROM ENTROPICALLY SECURE FE. We restrict our attention to homomorphic
public-key encryption schemes that support encrypting bits (rather than strings) and
which allow the homomorphic computation of an arbitrary number of NAND gates.
We note that since NAND is complete, we can support the evaluation of arbitrary func-
tions by first representing the function as a circuit of NAND gates and using bit-wise
encryption on the inputs.

We start from an RFE scheme supporting the following binary randomized function-
ality RFn, which we call NAND re-encryption, and is given by

RFn(Mpk, kNAND, b1, b2) := RFE.Enc(¬(b1 ∧ b2),Mpk) .

This functionality has message space {0, 1} and it supports a single key kNAND (in ad-
dition to the empty key). We also assume, for the sake of correctness, that RFE supports
a special decryption operation Dec(Msk, c) akin to that of PKEs.

Our first construction of a fully homomorphic encryption scheme is as follows. The
key generation algorithm generates RFE domain parameters and further extracts the to-
ken for kNAND, which is added to the public key. Encryption is simply RFE encryption,
and decryption is carried out using the special algorithmDec(Msk, c). Evaluation of a sin-
gle NAND gate on two ciphertexts is carried out by running RFE.Dec(c1, c2,TKkNAND).
Furthermore, the correctness of the underlying RFE scheme ensures that one can keep
computing over the encrypted results, as the evaluated ciphertext will be with overwhelm-
ing probability in the co-domain of the RFE encryption circuit. In this way one can eval-
uate circuits of arbitrary size. Finally, it is easy to see that the IND-CPA security of the
resulting FHE directly reduces to the IND-CPA security of the RFE scheme for single-
message,TNA attacks, where by definition the adversary is unrestricted. We also observe
that, by construction, this FHE is compact and function hiding. This is because the re-
sult of any computation is indistinguishable from a fresh encryption of the result of the
computation, even to the holder of the decryption key. This construction and Theorems 1
and 2 immediately yield the following result.

Theorem 4. Entropically secure FE with respect to unrestricted adversaries in the sin-
gle message, TNA model and supporting the deterministic functionality associated with
NAND re-encryption implies fully homomorphic encryption.

80 J. Alwen et al.

We note that the underlying FE must be entropically secure against unrestricted ad-
versaries. However, as we are dealing with bit-wise encryption, this is really the mini-
mal assumption that one could have: the scheme should be secure when the adversary
is allowed to choose challenge messages m0 �= m1.

FHE FROM SEMANTICALLY SECURE FE. The previous construction reveals an inter-
esting relation between entropically secure FE, RFE, and FHE. However, it does not
give a relation between semantically secure FE and FHE. It would be tempting to try
to build an RFE scheme such as the one described above from semantically secure FE,
using Theorem 3 to obtain security against restricted adversaries, and then proving that
the resulting RFE is message hiding to obtain unrestricted security. However, this ap-
proach fails: the fact that the randomized functionality is defined using the same RFE
scheme that supports it introduces a circular dependency that we cannot overcome. In-
tuitively, assuming that self-re-encryption is message hiding amounts to assuming that
RFE construction is secure to begin with. (Note that in Theorem 4 this circular argument
is broken by explicitly assuming security against unrestricted adversaries.)

We present an alternative, slightly more involved construction to overcome the above
difficulty. We require two RFE schemes supporting the following binary functionalities,
each having a single key (in addition to the empty key).

RFENAND supports NAND re-encryption, with the caveat that re-encryption targets a
standard public-key encryption scheme. More precisely,

RFnNAND((Mpk, pk), kNAND, b1, b2) := PKE.Enc(¬(b1 ∧ b2), pk) .

We also impose that the master secret key for RFENAND includes the secret key sk
corresponding to pk.

RFEboot enables a functional analogue of the bootstrapping technique of Gentry [11].
It permits functionally decrypting a ciphertext under PKE and re-encrypting it under
RFENAND:

RFnboot ((Mpk,MpkNAND), kboot, c, sk) :=
RFENAND.Enc(PKE.Dec(c, sk),MpkNAND) .

We also impose that the master secret key for RFEboot includes the master secret key
MskNAND corresponding to MpkNAND.

We observe that these RFE schemes can be constructed from parameter-independent
FE schemes as discussed in Section 4. Indeed, RFENAND can be constructed directly
from the FENAND construction in Figure 6. Also, from Theorems 2 and 3, these RFEs
will be R-IND-CPA secure in the TNA model if the underlying FE schemes are seman-
tically secure. To establish IND-CPA security, it suffices to prove the message-hiding
property. We address this for RFENAND, as a similar argument follows for RFEboot. The
following result follows from the observation that the message-hiding game reduces to
the IND-CPA security of the underlying PKE scheme.

Theorem 5. If the underlying PKE is IND-CPA secure, then the RFE scheme support-
ing RFnNAND that results from plugging the FE scheme in Figure 8 in the generic con-
struction in Figure 6 is message hiding.

Functional Encryption, Obfuscation, and Fully Homomorphic Encryption 81

Using these RFE schemes, we construct an FHE scheme as follows. To encrypt or de-
crypt, one simply perform the equivalent operation using a pk for the underlying PKE.
Evaluation of a single NAND gate proceeds as follows. The two ciphertexts are inde-
pendently re-encrypted under RFEboot, and then they are independently functionally
decrypted and re-encrypted under RFENAND using TKboot. To enable this operation, sk
is encrypted under Mpkboot and published in the public key, as is customary in boot-
strapped constructions. Given any two PKE ciphertexts, one can therefore convert them
into encryptions under RFENAND from which one can evaluate a NAND gate and re-
encrypt again under the PKE. We obtain a ciphertext that is indistinguishable from a
fresh encryption, which means that the construction is compact and function hiding.

The construction is correct if the underlying RFE schemes are correct. For security,
note that one can easily reduce the IND-CPA security of the resulting FHE scheme
to that of RFEboot if the secret key encrypted under cboot does not correspond to the
public key pk used inside RFENAND. This is typical in bootstrapping techniques [11],
and the additional assumption that the construction securely encrypts key-dependent
messages (i.e., that it is KDM secure) is necessary to use the scheme with the same
pk. On the other hand, without relying on this assumption, this result implies a leveled
homomorphic encryption scheme [11], allowing a bounded number of cascaded NAND
computations through multiple independent instances of RFEboot. The last theorem in
the paper follows from this discussion.

Theorem 6. Semantically secure FE schemes supporting the deterministic functionali-
ties associated to RFnNAND and RFnboot imply fully homomorphic encryption, under a
key-dependent message security assumption.

6 Relation to Obfuscated Re-encryption

FUNCTIONAL RE-ENCRYPTION IN THE CIRCUIT MODEL. For concreteness, we con-
sider the functional re-encryption notions of Section 5 in the randomized circuit model.
Specifically, we consider a family of re-encryption circuits Rf = {Rfsk,pk′}, called the

f -re-encryption functionality from PKE to PKE′, which decrypts each input (which is
a ciphertext encrypted with PKE) using key sk, applies the function f to the resulting
values, and outputs the encryption of the result under key pk′ using PKE′. (In the full
version, we consider the general discussion of functionalities that do not necessarily
re-encrypt with fresh randomness, but here we restrict ourselves to such “canonical”
functionalities.) Intuitively, a “secure” obfuscation of this circuit should serve as an
evaluation key for a functional re-encryption scheme for function f .

OBFUSCATION FOR f -RE-ENCRYPTION. We define new notions of secure obfuscation
as specifically applied to a f -re-encryption functionalityRf . Following earlier work on
obfuscation [20,10,1,14,8], we want the obfuscated circuit to perform the same compu-
tation as the original circuit without revealing any information beyond its input-output
behavior.

Our notion differs from the one proposed by Chandran et al [9], while still follow-
ing the same average-case viewpoint. We attempt to capture at the same time the fact

82 J. Alwen et al.

that the obfuscated re-encryption functionality does not reveal any information beyond
black-box access to the functionality and the fact that black-box access to the func-
tionality does not reveal any information about the messages being encrypted. Still, our
notion is connected to (and in many cases implied by) the notion defined in these earlier
work, as we explain below.

Definition 11 (Re-encryption Obfuscation). Let Obf be a PPT algorithm whose in-
put and output are both circuits. We say Obf securely obfuscates the f -re-encryption
functionalityRf from PKE to PKE′ if the following properties hold:

Correctness: For any circuit C = Rfsk,pk′ ∈ Rf and for all inputs x, the statistical
distance Δ(Obf(C)(x), C(x)) is negligible .

Simulatability: There exists a PPT simulator S such that for all PPT distinguishers D
and security parameter λ,

|Pr[D(pk, pk′,Obf(Rfsk,pk′)) = 1]− Pr[D(pk, S(pk)) = 1]| < negl(λ)

where (sk, pk)←$ Gen(1λ), (pk′, sk′)←$ Gen′(1λ), and the probabilities are taken
over the coins of Gen and S.

We stress that the definition provides a very strong guarantee, in that it says that an
attacker, given pk, pk′ and the obfuscation Obf(Rfsk,pk′) does not learn anything beyond
the public key pk of the source scheme. In particular, the simulator simulates the pub-
lic key pk′. Note that the obfuscation may be a randomized circuit itself, and that the
correctness requirements assumes honest evaluation of the circuit, i.e., using honestly
generated random coins. In the full version, we also consider a stronger simulatability
requirement, where pk′ is generated honestly and the simulator does not learn sk′.

RELATION TO EARLIER DEFINITIONS OF OBFUSCATION. As mentioned above, previ-
ous works on re-encryption [14,9] consider a different notion of average-case obfusca-
tion which appears at first incomparable to ours, in which the simulator must simulate
Obf(Rfsk,pk′), given black-box access to Rfsk,pk′ and knowing the public keys pk, pk′.
Formally, when translated to our setting, the requirement of these earlier works is as
follows:

Virtual Black-Boxness: There exists a PPT simulator S such that for all PPT distin-
guishersD and security parameter λ,

|Pr[DRf

sk,pk′ (pk, pk′,Obf(Rfsk,pk′)) = 1]]−
Pr[DRf

sk,pk′ (pk, pk′, SR
f

sk,pk′ (pk, pk′) = 1]| < negl(λ)

where (sk, pk)←$ Gen(1λ), (pk′, sk′)←$ Gen′(1λ), and the probabilities are taken
over the coins of Gen and S.

This definition of strong virtual black-boxness implies our obfuscation notion above
for natural re-encryption functionalities, hence making it a somewhat stronger notion.

Functional Encryption, Obfuscation, and Fully Homomorphic Encryption 83

More concretely, we say that the f -re-encryption functionalityRf = {Rfsk,pk′} is sim-
ulatable if there exists a simulator S′ such that for all PPT distinguishersD, we have

|Pr[(DRf

sk,pk′ (pk, pk′) = 1]− Pr[DS′(pk,pk′)(pk, pk′) = 1]| < negl(λ) .

For example, the canonical re-encryption functionality is simulatable by semantic secu-
rity, provided we can efficiently test if a ciphertext input to the functionality is decrypt-
able given pk only. In the full version, we prove the following:

Lemma 1. Assume that the obfuscator satisfies the virtual black-boxness property and
the f -re-encryption functionalityRf is private. Then, the obfuscator satisfies the simu-
latability property.

RELATION TO FUNCTIONAL ENCRYPTION. The main result of this section connects
the notions of obfuscated re-encryption with functional encryption.

Lemma 2. Any securely obfuscatable functional re-encryption scheme for function f
where the underlying public-key scheme(s) are semantically secure implies an
IND-CPA-secure randomized functional encryption scheme with a single non-empty
key for f -re-encryption.

Proof (Sketch). We consider RFE defined as follows:

1. RFE.Setup(1λ): Run PKE.Gen(1λ) and PKE′.Gen(1λ) to obtain (pk, sk)
and (pk′, sk′). Let Mpk = (pk, pk′) and Msk = sk. Let the message space of
RFE be the message space of PKE, and the key space contain kf (and kε).

2. RFE.TKGen(kf ,Msk): Return Obf(Rfsk,pk′).
3. RFE.Enc(m,Mpk): Return PKE.Enc(m, pk).
4. RFE.Dec(c1, . . . , cn,TK,Mpk): Return Obf(Rfsk,pk′)(c1, . . . , cn); that is, the out-

put of the obfuscated circuit applied to the ciphertexts.

Details about the security proof are deferred to the full version. �
Combined with the results of Section 5, we therefore conclude that secure obfus-

cators for circuits computing RFnNAND and RFnboot imply a fully-homomorphic en-
cryption scheme. Such obfuscations can be constructed based on the LWE assumption,
starting from the encryption scheme of Regev [17]. We defer the details of this con-
struction to the full version.

Acknowledgments. Tessaro and Wilson wish to thank Shafi Goldwasser for insightful
feedback. Their work was partially supported by NSF Contract CCF-1018064 and is
based on research sponsored by DARPA under agreement numbers FA8750-11-C-0096
and FA8750-11-2-0225. The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright notation thereon.
The views and conclusions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of DARPA or the U.S. Government.

84 J. Alwen et al.

References

1. Adida, B., Wikström, D.: How to Shuffle in Public. In: Vadhan, S.P. (ed.) TCC 2007. LNCS,
vol. 4392, pp. 555–574. Springer, Heidelberg (2007)

2. Agrawal, S., Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption: new per-
spectives and lower bounds. Cryptology ePrint Archive, Report 2012/468 (2012)

3. Barbosa, M., Farshim, P.: On the semantic security of functional encryption schemes.
In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 143–161. Springer,
Heidelberg (2013)

4. Bellare, M., Cash, D.: Pseudorandom functions and permutations provably secure against
related-key attacks. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 666–684.
Springer, Heidelberg (2010)

5. Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: RKA-PRPs, RKA-
PRFs, and applications. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 491–
506. Springer, Heidelberg (2003)

6. Bellare, M., O’Neill, A.: Semantically-secure functional encryption: possibility results, im-
possibility results and the quest for a general definition. Cryptology ePrint Archive, Report
2012/515 (2012)

7. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges. In: Ishai,
Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011)

8. Canetti, R., Rothblum, G.N., Varia, M.: Obfuscation of Hyperplane Membership. In: Mic-
ciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 72–89. Springer, Heidelberg (2010)

9. Chandran, N., Chase, M., Vaikuntanathan, V.: Functional re-encryption and collusion-
resistant obfuscation. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 404–421.
Springer, Heidelberg (2012)

10. Dodis, Y., Smith, A.: Correcting Errors Without Leaking Partial Information. In: Gabow,
H.N., Fagin, R. (eds.) STOC 2005, pp. 654–663. ACM Press (May 2005)

11. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford University (2009)
12. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: Succinct func-

tional encryption and applications: reusable garbled circuits and beyond. In: Boneh, D.,
Roughgarden, T., Feigenbaum, J. (eds.) STOC 2013, pp. 555–564. ACM (2013)

13. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded collusions
via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 162–179. Springer, Heidelberg (2012)

14. Hohenberger, S., Rothblum, G.N., Shelat, A., Vaikuntanathan, V.: Securely Obfuscating Re-
encryption. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 233–252. Springer, Hei-
delberg (2007)

15. Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs: the non-
committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 111–
126. Springer, Heidelberg (2002)

16. O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint Archive, Report
2010/556 (2010)

17. Regev, O.: On Lattices, Learning with Errors, Random Linear Codes, and Cryptography. In:
Gabow, H.N., Fagin, R. (eds.) STOC 2005, pp. 84–93. ACM Press (May 2005)

18. Russell, A.Y., Wang, H.: How to Fool an Unbounded Adversary with a Short Key. In: Knud-
sen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 133–148. Springer, Heidelberg
(2002)

19. Waters, B.: Functional encryption for regular languages. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 218–235. Springer, Heidelberg (2012)

20. Wee, H.: On Obfuscating Point Functions. In: Gabow, H.N., Fagin, R. (eds.) STOC 2005, pp.
523–532. ACM Press (May 2005)

On Minimal and Quasi-minimal Linear Codes

Gérard D. Cohen1,4, Sihem Mesnager2, and Alain Patey1,3,4

1 Télécom ParisTech, CNRS LTCI
{gerard.cohen,alain.patey}@telecom-paristech.fr

2 Department of Mathematics, University of Paris VIII, LAGA (Laboratoire Analyse,
Géometrie et Applications), UMR 7539, CNRS, and University of Paris XIII,

Sorbonne Paris Cité
smesnager@univ-paris8.fr

3 Morpho
alain.patey@morpho.com

4 Identity and Security Alliance (The Morpho and Télécom ParisTech Research
Center)

Abstract. Minimal linear codes are linear codes such that the support
of every codeword does not contain the support of another linearly inde-
pendent codeword. Such codes have applications in cryptography, e.g. to
secret sharing. We here study minimal codes, give new bounds and prop-
erties and exhibit families of minimal linear codes. We also introduce and
study the notion of quasi-minimal linear codes, which is a relaxation of
the notion of minimal linear codes, where two non-zero codewords have
the same support if and only if they are linearly dependent.

Keywords: minimal codes, quasi-minimal codes, intersecting codes,
secret sharing.

1 Introduction

A minimal codeword [15,16] c of a linear code C is a codeword such that its
support (set of non-zero coordinates) does not contain the support of another
linearly independent codeword. Minimal codewords are useful for defining access
structures in secret sharing schemes using linear codes. Determining the set of
minimal codewords is difficult for general linear codes, although this has been
studied for some classes of specific linear codes. This led to work on how to
find codes where all codewords are minimal, in order to facilitate the choice of
access structures. The problem of finding a code satisfying this condition, called
a minimal linear code has first been envisioned in [10] and later studied in [20,4].

Interestingly, in [4], the motivation for finding minimal linear codes is no
longer secret sharing but in a new proposal for secure two-party computation,
where it is required that minimal linear codes are used to ensure privacy.

It is pointed out in [4] that minimal codes are close to the notions of intersect-
ing and separating codes [7,6]. Such codes have been suggested for applications
to oblivious transfer [2], secret sharing [1,10,20] or digital fingerprinting [18].

M. Stam (Ed.): IMACC 2013, LNCS 8308, pp. 85–98, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

86 G.D. Cohen, S. Mesnager, and A. Patey

In the binary case, the notions of intersecting and minimal linear codes coin-
cide. Intersecting codes have already received a lot of attention [7,19,8,2,11]. For
instance, [7] gives definitions, some generic constructions and non-constructive
bounds on rates; [19] gives explicit constructions for small dimensions and sum-
marizes bounds on minimum distance; [8] gives an explicit constructive sequence
of intersecting codes with high rate, and so on. We will not here focus on the
binary case, but on the q-ary case, where the notion of minimal codes is more
restrictive than the notion of separating codes. Secret-sharing and secure two-
party computations both crucially hinge on a large alphabet; thus, one cannot
rely on the well-understood binary case only.

We thus pursue in Section 2 the study of [4] on bounds and criteria for minimal
linear codes and exhibit families of minimal codes with better rates (but still
asymptotically zero). We also exhibit in Section 3 new constructions of minimal
codes using trace functions, following the works of [10,20]. Finally, in Section 4,
we relax the notion of minimal codes and introduce quasi-minimal linear codes.
Quasi-minimal linear codes are codes where two non-zero codewords have the
same support if and only if they are linearly dependent. This slight relaxation
enables to exhibit families with non-zero asymptotic rates.

2 Minimal Codes – Bounds and Constructions

2.1 Definitions – Notations

We denote by |F | the cardinality of a set F . Let q = ph, where p is a prime
number and h ∈ N∗. An [n, k, d]q code is a vector subspace of Fnq of dimension
k with minimum Hamming distance d; dmax is the maximal distance between
two codewords of C. Normalized parameters will be denoted by R = k/n, δ =
d/n, δmax = dmax/n; R is called the rate of C.

The support of a codeword c ∈ C is the set supp(c) = {i ∈ {1, . . . , n}|ci �= 0}.
The Hamming weight of a codeword c ∈ C denoted by wt(c) is the cardinality of
its support : wt(c) = |supp(c)|. A codeword c covers a codeword c′ if supp(c′) ⊂
supp(c).

Definition 1 (Minimal codeword). [15] A codeword c is minimal if it only
covers Fq · c, i. e. if ∀c′ ∈ C, (supp(c′) ⊂ supp(c)) =⇒ (c, c′) linearly dependent.

Definition 2 (Minimal linear code). [10] A linear code C is minimal if every
non-zero codeword c ∈ C is minimal.

A code C is intersecting if ∀c �= 0, c′ �= 0 ∈ C, supp(c) ∩ supp(c′) �= ∅. A code
C is t-intersecting if ∀c �= 0, c′ �= 0 ∈ C, |supp(c) ∩ supp(c′)| ≥ t

For a complete treatment of coding theory, we refer to the book of MacWil-
liams and Sloane [14].

2.2 Generic Bounds

Two non-constructive bounds on the rates of minimal codes are exhibited in
[4]. We recall them with their proofs. Notice that these constructions are more
demanding as q grows.

On Minimal and Quasi-minimal Linear Codes 87

Theorem 1 (Maximal Bound). [4] Let C a minimal linear [n, k, d] q-ary code,
then, asymptotically, R ≤ logq(2).

Proof. This bound is even true for non-linear minimal codes. Let us consider the
family F of supports of the vectors of C. By definition of minimal codes, this is
a Sperner family. It is known that |F | ≤ (nn/2

)
. Thus, |C| = qk ≤ 1+ (q− 1)

(
n
n/2

)

and R = k/n ≤ logq(2) + o(1).

Theorem 2 (Minimal Bound). [4]

For any R, 0 ≤ R = k/n ≤ 1
2 logq(

q2

q2−q+1), there exists an infinite sequence

of [n, k] minimal linear codes.

Proof. The proof is similar to the one of [7] in the binary case. Let us fix n and
k. For a ∈ F

n
q , such that |supp(a)| = i, there are qi − q linearly independent

vectors b such that supp(b) ⊂ supp(a). The pair (a, b) belongs to

[
n− 2
k − 2

]

linear

[n, k] codes, where

[
x
k

]

denotes the q-ary Gaussian binomial coefficient.

There are less than
n∑

i=0

(
n
i

)
(q−1)i(qi−q) = (1+(q−1)q)n−qn+1 ≤ (q2−q+1)n

such ordered “bad” (a, b) pairs. At least

[
n
k

]

−
[
n− 2
k − 2

]

(q2− q+1)n linear [n, k]

codes thus contain no “bad” pairs, i. e. are minimal. For k/n ≤ 1
2 logq(

q2

q2−q+1),
this quantity is positive.

2.3 Minimal Codes and Intersecting Codes

Proposition 1. A minimal linear code C is intersecting.

Proof. Let c, c′ be two codewords such that supp(c) ∩ supp(c′) = ∅. We have
supp(c) ⊂ supp(c + c′) and supp(c′) ⊂ supp(c + c′). Thus, c and c + c′ are
linearly dependent, c′ and c + c′ are linearly dependent; hence c and c′ are
linearly dependent. Since supp(c) ∩ supp(c′) = ∅, at least one of c, c′ is equal to
zero, thus C is intersecting. �

The converse is true in the binary case (only).

Proposition 2. A binary intersecting linear code C is minimal.

Proof. Let C be a binary linear code. Let us assume that there exist two nonzero
codewords c �= c′ with supp(c) ⊂ supp(c′). The inclusion is strict since two
different binary codewords cannot share the same support. the support of c+ c′

does not intersect with the support of c. Hence, a non-minimal code is not
intersecting. �

The condition of minimality is more demanding than that of intersection, and
the more so when q increases. This fact is captured by the next result (which
also proves that the only case where the converse of Proposition 1 is true is the
binary case).

88 G.D. Cohen, S. Mesnager, and A. Patey

Proposition 3. A minimal [n, k, d]q code is (q − 1)-intersecting, if k ≥ 2.

Proof. Let c, c′ be two linearly independent codewords. One can write by blocks,
w.l.o.g., c = 0||X ||0||Z and c′ = 0||0||Y ||Z ′, where all X,Y, Z, Z ′ do not contain
any zeros, |X | ≥ 1, |Y | ≥ 1 and |Z| = |Z ′| ≥ 1 (minimality). Let λ ∈ F

∗
q ,

c+λc′ = 0||X ||λY ||Z+λZ ′ is independent of c and of c′, consequently it should
not cover either c or c′. Thus, there exists iλ such that ziλ + λz′iλ = 0. This
must be true for any λ ∈ F

∗
q . Since all coordinates of Z and Z ′ are non-zero, one

cannot have iλ = iμ, for λ �= μ. Consequently |supp(c)∩supp(c′)| ≥ |Fq| = q−1.
In particular, the minimum weight d of a nonzero codeword is at least (q − 1)
and two linearly dependent nonzero codewords also intersect in at least q − 1
positions. Thus C is (q − 1)-intersecting. �
Example 1 (Simplex Code). The shortest minimal codes of dimension 2 have
length q + 1.

For instance, consider the simplex code Sq,k[(qk − 1)/(q− 1), k, qk−1]q, where
the generator matrix’s columns are a complete set of pairwise linearly indepen-
dent vectors.

For k = 2, it is a Sq,2[q+1, 2, q] code with generator matrix

(
1 0 1 . . . 1
0 1 α1 . . . αq−1

)

,

where α1, . . . , αq−1 are all the nonzero elements of Fq.

Corollary 1. Let C be a minimal [n, k, d]q code, then

d ≥ k + q − 2

Proof. The projection on a codeword with minimal weight gives a [d, k, d′ ≥
(q− 1)] code (see the proof of Proposition 3). The Singleton bound now implies
d ≥ k + d′ − 1, thus d ≥ k + q − 2. �
Proposition 4. Let C be a minimal [n, k, d]q code with maximal distance dmax.
Then

dmax ≤ n− k + 1

.

Proof. Consider a codeword cmax of weight dmax and the projection of C on
its zero coordinates, i. e. on {1, . . . , n} \ supp(cmax). It is a linear operation,
whose kernel has dimension 1 (since cmax is minimal), so its rank is k − 1 and
k − 1 ≤ n− dmax. �

Notice that the bounds given by the three previous results are all tight: to see
this, consider the code Sq,2[q + 1, 2, q] of Example 1.

2.4 Constructions

We now give a construction based on the Kronecker product of codes. which
yields infinite families of minimal codes with relatively slowly decreasing rates.

On Minimal and Quasi-minimal Linear Codes 89

Proposition 5. The product C1⊗C2 of a minimal [n1, k1, d1]q code C1 and of a
minimal [n2, k2, d2]q code C2 is a minimal [n1 × n2, k1 × k2, d1 × d2]q code.

Proof. Let c �= 0, c′ be two codewords of C1 ⊗ C2. They can both be written as
n1 × n2 matrices where rows are codewords of C1 and columns are codewords
of C2. Let us assume that c covers c′. For i = 1, . . . , n1, j = 1, . . . , n2 let c1i
(resp. c

′1
i) be the ith row of c (resp. c′) and c2j (resp. c

′2
j) be the jth column of

c (resp. c′). For every i, c1i covers c
′1
i , so ∃λi such that c

′1
i = λic

1
i . With the

same reasoning on the columns, for every j, there exists λj such that c
′2
j = λjc

2
j .

Then, all the λi’s and λj ’s are equal and there exists λ such that c′ = λc, so c
and c′ are linearly dependent. Thus, C1 ⊗ C2 is minimal. �
Example 2. For q = 3, k = 2, the associated simplex S3,2 is the celebrated
[4, 2, 3]3 tetracode T. T is self-dual, both a simplex and a Hamming code. Its
(Kronecker) square is T 2, a [16, 4, 9]3 minimal code. More generally, the square of
the [q+1, 2, q]q simplex code is a [(q+1)2, 4, q2]q minimal code. Repeating the pro-
cess, we obtain [(q+1)�, 2�, q�]q minimal codes, with rate R := k/n = (2/(q+1))�.

There exists a sufficient condition on weights for a given linear code to be
minimal. More precisely, if the weights of a linear code are close enough to each
other, then each nonzero codeword of the code is a minimal vector as described
by the following statement.

Proposition 6. [10] Let C be an [n, k, d] code. Let d and dmax be the minimum
and maximum nonzero weights respectively. If d

dmax
> q−1

q then C is minimal.

Remark 1. Note that the previous condition is only necessary. Indeed, the square
of the tetracode is T 2[16, 4, d = 9, dmax = 12]. To see this, take as a basis for T
c1 = 1011, c2 = 0112, giving

G = H =

(
1 0 1 1
0 1 1 2

)

Then c1, c2, c3 = c1 + c2, c4 = c1 + 2c2 is a codeword A of T 2 of weight 12:

⎛

⎜
⎜
⎝

1 0 1 1
0 1 1 2
1 1 2 0
1 2 0 2

⎞

⎟
⎟
⎠

Consider now T 4[256, 16, 81], the square of T 2. It is easy to check that A⊗A ∈
T 2 ⊗ T 2 = T 4 has weight 144:

⎛

⎜
⎜
⎝

A 0 A A
0 A A 2A
A A 2A 0
A 2A 0 2A

⎞

⎟
⎟
⎠

Thus dmax(T
4) ≥ 144 and for this minimal code, d/dmax ≤ 81/144 < (q −

1)/q = 2/3.

90 G.D. Cohen, S. Mesnager, and A. Patey

Remark 2. Note that the easier to check sufficient condition d
n > q−1

q is too

strong to get asymptotically good codes; indeed, by the Plotkin bound ([14],
for any code, not necessarily linear, of length n, size M and distance d, if d >
(q − 1)n/q, then M ≤ d/(d− (1− q−1)).

Plotkin bound is tight, achieved with equality by simplex codes Sq,k[(qk −
1)/(q − 1), k, qk−1].

On the other hand, for δ < 1 − q−1, the classical Varshamov-Gilbert bound
[12] guarantees the existence of asymptotic families of codes with non zero rate
R(δ, q). We shall come back to that later.

Example 3. The sufficient condition exposed in Proposition 6 enables to prove
the minimality of several known codes. Many examples come from the codes with
a limited number of weights. For instance, in [22], one can find 3-weight codes
with parameters [26, 6, 15]3 or [124, 6, 90]5 that satisfy the sufficient condition
and that have better rates than simplex codes (respectively S3,4 and S5,4).

Similarly, the [39, 4, 28]5 4-weight code exposed in [9] also meets the condition
and beats the S5,4 simplex code.

3 Constructions of Minimal Linear Codes via Trace
Functions

Let p be a prime, m be a positive integer and h be a positive integer, divisor of
m. Set m = hr. and q = ph.

Definition 3 (Trace function over Fqr).
The trace function Trqr/q : Fqr → Fq is defined as:

Trqr/q(x) :=

r−1∑

i=0

xq
i

= x+ xq + xq
2

+ · · ·+ xq
r−1

The trace function from Fqr to its prime subfield is called the absolute trace
function.

Recall that the trace function Trqr/q is Fq-linear and satisfies the transitivity
property in a chain of extension fields (m = hr): Trpm/p(x) = Trph/p(Trpm/ph(x))
for all x ∈ Fqr .

Given a Boolean function f defined on F2n (that is, a mapping from F2n

to F2), the Walsh transform of f is the discrete Fourier transform of the sign
function of f that is, χ(f) := (−1)f where χ is the canonical additive character.
The Walsh transform of f denoted by χ̂f is defined as:

χ̂f (a) =
∑

x∈F2n

(−1)f(x)+x·a, ∀a ∈ F2n

where ”·” denotes a scalar product in F2n . The mapping (x, y) �→ Tr2n/2(xy)
defines an inner (scalar) product on F2n . Finally, a Boolean function f on F2n

(n even) is bent if and only if its Walsh transform satisfies χ̂f (a) = ±2n
2 for all

a ∈ F2n . The dual f̃ of a bent function f is defined by the relation χ̂f (ω) =

2
n
2 (−1)f̃(ω), ∀ω ∈ F2n .

On Minimal and Quasi-minimal Linear Codes 91

3.1 A Construction of a Class of q-ary Linear Minimal Codes

For any α, β ∈ Fpm , define a q-ary function fα,β as:

fα,β : Fqr −→ Fq

x �−→ fα,β(x) := Trqr/q(αΨ(x) + βx)

where Ψ is a mapping from Fqr to Fqr such that Ψ(0) = 0. We now define a
linear code CΨ over Fq as :

CΨ := {c̄α,β = (fα,β(ζ1), fα,β(ζ2), · · · , fα,β(ζqr−1)), α, β ∈ Fqr}

where ζ1, · · · , ζqr−1 denote the nonzero elements of Fqr .

Proposition 7. The linear code CΨ is of length qr − 1 and dimension k with
k = 2m

h = 2r if the mapping Ψ has no linear components, and k < 2r otherwise.

Proof. It is clear that CΨ is of length qr − 1. Now, compute the cardinality of
CΨ . Let c̄α,β be a codeword of CΨ . We have

c̄α,β = 0 ⇐⇒ Trqr/q(αΨ(ζi)− βζi) = 0, ∀i ∈ {1, · · · , qr − 1}
⇐⇒ Trqr/q(αΨ(x) − βx) = 0, ∀x ∈ F

�
qr

⇒ Trqr/p(αΨ(x) − βx) = 0, ∀x ∈ F
�
qr

⇒ Trqr/p(αΨ(x) − βx) = 0, ∀x ∈ Fqr

⇒ Trqr/p(αΨ(x)) = Trqr/p(βx), ∀x ∈ Fqr

Hence, c̄α,β = 0 implies that the mapping from Fqr to Fq, that is, a component
of Ψ associated to α �= 0, is linear (or null) and coincides with x �→ Trqr/p(βx).
Therefore, it suffices that no component function of Ψ is identically equal to 0 or
linear to ensure that the only null codeword appears only one time at α = β = 0.
Furthermore, this implies that all the codewords c̄α,β are pairwise distinct. In
this case, the size of the code is q2r and the dimension of the code is thus 2r. �

Assume p is an odd prime. Choose Ψ a perfect nonlinear mapping, that is,
Ψ is such that maxa∈F�

qr
minb∈Fq |DaΨ

−1(b)| = qr−1
qr where DaΨ(x) denotes the

derivatives of Ψ defined by DaΨ(x) := Ψ(x + a) + Ψ(x). According to [3], if

q < qr/2+1
2 , then (using the sufficient condition given in Proposition 6) CΨ is a

minimal [qr − 1, 2r, d > q−1
q (qr − qr/2)]-code.

3.2 A Construction of a Class of Linear Minimal 2h-ary Codes

The previous construction of minimal codes is valid when p is an odd prime. In
this subsection, we provide a construction of minimal codes in the case where

92 G.D. Cohen, S. Mesnager, and A. Patey

p = 2. To this end, let m be a positive integer and h a divisor of m. Set r := m
h .

We define two sets E and R of F2m × F2m as follows:

E := {(x, 0), x ∈ F2m},
and

R := {(0, y), y ∈ F2m}.
Set

Γ := F2m × F2m \ (E ∪R) = {(δi, ζi), 1 ≤ i ≤ (2m − 1)2}.
For any a ∈ F2m , we define the function Φa as

Φa : Γ −→ F2h

(x, y) �−→ Φa(x, y) := Tr2m/2h(ax
2m+1−3y2)

We now define a linear code C over F2h as :

C := {c̄a = (Φa(δ1, ζ1), · · · , Φa(δ(2m−1)2 , ζ(2m−1)2)), a ∈ F2m}

It is clear that the code C is of length (2m − 1)2. The following statement
provides the weight distribution of C.
Proposition 8. The linear code C is a one-weight minimal code. More precisely,
every non-zero codeword has Hamming weight 2m−h(2h − 1)(2m − 1).

Proof. For ω ∈ F
�
2m , denote by ψaω the Boolean function defined as follows:

ψaω : F2m × F2m −→ F2

(x, y) �−→ ψaω(x, y) := Tr2m/2(aωx
2m+1−3y2)

Thanks to [17], the Walsh transform of ψaω can be computed as well as its
dual function. For every a �= 0, we have:

χ̂ψaω(z, t) = 2m(−1)Tr2m/2(aωzt
−2), ∀(z, t) ∈ F2m × F2m

This result implies that the function ψaω is bent (since its Walsh transform

takes only the values ±2m) and that its dual equals ψ̃aω defined by ψ̃aω(z, t) =
Tr2m/2(aωzt

−2), ∀(z, t) ∈ F2m × F2m . In particular, for a ∈ F
�
2m and ω ∈ F

�
2m ,

χ̂ψaω(0, 0) = 2m. Now, let us compute the value of the sum
∑

ω∈F
2h
χ̂ψaω(0, 0)

over the subfield F2h of F2m in two ways. On the one hand, thanks to the the
above expression of the Walsh transform, we get:

∑

ω∈F
2h

χ̂ψaω(0, 0) = χ̂ψ0(0, 0) +
∑

ω∈F�

2h

χ̂ψaω(0, 0)

= 22m + 2m(2h − 1).

On Minimal and Quasi-minimal Linear Codes 93

On the other hand, using the transitivity rule of the trace function and the
F2h-linearity of the trace function Tr2m/2h , we have:

∑

ω∈F
2h

χ̂ψaω(0, 0) =
∑

ω∈F
2h

∑

x∈F2m

∑

y∈F2m

(−1)ψaω(x,y)

=
∑

x∈F2m

∑

y∈F2m

∑

ω∈F
2h

(−1)Tr2m/2(aωx
2m+1−3y2)

=
∑

x∈F2m

∑

y∈F2m

∑

ω∈F
2h

(−1)Tr2h/2
(Tr

2m/2h
(aωx2m+1−3y2))

=
∑

x∈F2m

∑

y∈F2m

∑

ω∈F
2h

(−1)Tr2h/2
(Tr

2m/2h
(ax2m+1−3y2)ω)

=
∑

(x,y)∈F2
2m
|Tr

2m/2h
(ax2m+1−3y2)=0

2h

= 2h#{(x, y) ∈ F
2
2m | Tr2m/2h(ax2

m+1−3y2) = 0}
= 2h

(
22m −#{(x, y) ∈ F

2
2m | Tr2m/2h(ax2

m+1−3y2) �= 0}

= 2h
(
22m −#{(x, y) ∈ F

2
2m | Φa(x, y) �= 0}

)

= 2h
(
22m −#{(x, y) ∈ Γ | Φa(x, y) �= 0}

)

= 22m+h − 2hwt(c̄a).

Hence, we have the following equality:

22m+h − 2hwt(c̄a) = 22m + 2m(2h − 1)

from which we deduce the Hamming weight of any non-zero codeword of C:
wt(c̄a) = 22m − 22m−h − 2m + 2m−h = 2m−h(2h − 1)(2m − 1).

According to the previous result, the code C is of constant weight. The structure
of linear codes of constant weight is well-known. In fact, it has been proved that
such codes are equivalent to simplex codes.

The next theorem ([5], page 363) characterizes all the q-ary linear codes with
constant weight in terms of simplex codes and therefore defines the structure of
the code C.
Theorem 3. ([5]) If all the nonzero codewords of a q-ary [n, k]- code have the
same weight and no coordinate identically zero, then the code has a generator
matrix of the form (G1, G2, · · · , Gt), where each Gi is a generator matrix of the
k-dimensional simplex code Sq,k over Fq.

Therefore, we deduce that the code C defined explicitly above is a minimal
code equivalent to a (2m− 1)(2h− 1)-multiple of the 2h-ary simplex code S2h,mh .

94 G.D. Cohen, S. Mesnager, and A. Patey

The code C has a generator matrix of the form (G1, G2, · · · , G(2m−1)(2h−1)),
where each Gi is a generator matrix of the m

h -dimensional simplex code over Fh2 ,

(that is, a m
h ×(2

m−1
2h−1) matrix whose columns are pairwise linearly independent).

Note that one can generalize the previous construction and prove the following
result.

Proposition 9. Let i be a positive integer co-prime with m. For any a ∈ F2m ,
we define the function Φia as

Φia : Γ −→ F2h

(x, y) �−→ Φia(x, y) := Tr2m/2h(ax
2m+i−2i+1+1y2

i

)

Define Ci := {c̄a = (Φia(δ1, ζ1), · · · , Φia(δ(2m−1)2 , ζ(2m−1)2)), a ∈ F2m}. Then,
the linear code Ci over F2h is a minimal code with parameters [(2m − 1)2,
m
h , 2

m−h(2h − 1)(2m − 1)].

4 Quasi-minimal Codes

As we have seen in the previous sections, we still have no construction of minimal
codes with asymptotic nonzero rate. To obtain such constructions, we slightly
relax the notion of minimal codes to the new notion of quasi-minimal codes.
Minimal codes prevent a codeword to have its support included in the sup-
port of a linearly independent codeword, whereas quasi-minimal codes prevent
a codeword to have the same support as a linearly independent codeword.

We will see that this new setting, although it also brings intersection proper-
ties, allows constructions with nonzero asymptotic rates.

4.1 Definitions and Properties

Definition 4 (Quasi-minimal codeword). A codeword c is quasi-minimal if
∀c′ ∈ C, (supp(c′) = supp(c)) =⇒ (c, c′) linearly dependent.

Definition 5 (Quasi-minimal linear code). A linear code C is quasi-minimal
if every non-zero codeword c ∈ C is quasi-minimal.

Quasi-minimality is clearly a weaker requirement than minimality. For in-
stance, every binary code is obviously quasi-minimal. Still, these codes do enjoy
intersection properties.

Theorem 4. If C is quasi-minimal with n ≥ q − 2, k ≥ 2, q ≥ 3, then it is
(q − 2)-intersecting.

Proof. Suppose C minimal and c, c′ ∈ C with support intersection of size s ≤
q − 3. W.l.o.g., one can write by blocks c = 0||X ||0||Z and c′ = 0||0||Y ||Z ′ with
|Z| = |Z ′| = s, and where Z and Z ′ do not contain any zeros.

On Minimal and Quasi-minimal Linear Codes 95

Then at most s elements λi ∈ F ∗q can make |supp(Z) ∩ supp(Z + λiZ
′)| < s.

If s ≤ q− 3, there are at least two nonzero field elements left, say α and β, such
that Z+αZ ′ and Z+βZ ′ are independent and have the same support. Moreover
c+αc′ and c+βc′ will also share the same support and be linearly independent,
which contradicts the minimality of C. Hence, s > q − 3. �

We now prove a sufficient condition for quasi-minimality, weaker than the one
for minimality. This relaxation will then allow us to construct infinite classes of
asymptotically good quasi-minimal codes by concatenation.

Theorem 5 (Sufficient condition for quasi-minimality). Let C be a linear
[n, k, d]q code; if d/n > (q − 2)/(q − 1), then C is quasi-minimal.

Proof. Let C be a linear [n, k, d]q code and let c, c′ be two linearly independent
codewords of C such that supp(c) = supp(c′). Let α be a primitive element
of Fq. Then, w.l.o.g., one can write c and c′ by blocks, in the following way:
c = β0|| . . . ||βq−2||0 and c′ = α0β0|| . . . ||αq−2βq−2||0. Let Ai be the size of the

(possibly empty) block βi. Then wt(c) = wt(c′) =
q−2∑

i=0

Ai ≥ d. We also have, for

j = 0, . . . , q − 2, d(αjc, c′) =
∑

i�=j
Ai ≥ d. If we sum all these inequalities, we get

(q − 2)
q−2∑

i=0

Ai ≥ (q − 1)d, hence wt(c) ≥ q−1
q−2d. Thus, if n <

q−1
q−2d, wt(c) > n,

which is impossible, so c and c′ cannot exist and C is quasi-minimal. �

Now, the celebrated non-constructive Varshamov-Gilbert bound implies the
existence of infinite families of semi-constructive codes with rate R = 1 −
hq(

q−2
q−1) > 0. Estimations of this rate are given in Table 1. This is still far

from the upper bound, derived analogously to the minimal case:

Theorem 6 (Maximal Bound). Let C be a quasi-minimal linear [n, k, d]q
code, then, asymptotically, R ≤ logq(2).

Proof. This bound is even true for non-linear quasi-minimal codes. Consider the
family F of the supports of the vectors of C. Clearly, |F | ≤ 2n. Thus, |C| = qk ≤
1 + (q − 1)2n and R = k/n ≤ logq(2) + o(1).

Table 1. Estimations of the rates of semi-constructive codes

q 2 3 4 5 7

Rate of the semi-constructive code 1 0.053 0.013 0.0046 0.0011

Upper bound 1 0.63 0.5 0.43 0.36

96 G.D. Cohen, S. Mesnager, and A. Patey

4.2 Infinite Constructions

The general idea is to concatenate a q-ary “seed” or inner code (e.g. a simplex)
with an infinite family of algebraic-geometric (AG) codes (the outer codes) [21],
in such a way as to obtain a high enough minimum distance and conclude by
Theorem 5.

In practice, we can take the seed to be Sq,r[n = (qr − 1)/(q − 1), k = r, d =
qr−1]q (with δ > (q − 1)/q), set r = 2m and concatenate with AG[N,K =
NR,D = NΔ]q2m . These codes exist lying almost on the Singleton bound,
namely satisfying R+Δ = 1− (qm − 1)−1.

This concatenation results in the family C[nN, kK, dD]q. If dD/nN = δΔ >
(q − 2)/(q − 1), this family is quasi-minimal by Theorem 5.

It is not hard to check that, for example, choosing q large enough, m ≥ 2, Δ =
(qm − q)/(qm − 1), R = (q − 2)/(qm − 1), this is the case.

Example 4 (Small examples).

– Take q = 4,S4,4[85, 4, 64]4, Δ = 9/10, R = 1/30, resulting in an infinite
construction of [n, 2n/1275] quaternary codes.

– Take q = 3, C[15, 4, 9]3 [13] as inner code and AG[N,NR,NΔ]34 with
R + Δ = 7/8. Choose Δ = 41/48, R = 1/48; then Δδ = 41/80 and by
Theorem 5 the concatenation is an infinite construction of quasi-minimal
[n, n/180, 41n/80] ternary codes.

Concluding Remarks. We can prove, non-constructively, the existence of in-
finite families of codes with δmax := dmax/n < 1− ω, for some fixed 0 < ω.

To do so, observe that any nonzero n-tuple belongs to

[
n− 1
k − 1

]

linear [n, k]

codes, i.e. a fraction ≈ qn−k of their total number.
Fix ω, 0 < ω < 1− q−1, w := ωn.

The number of q-ary n-tuples of weight at least n− w is
w∑

i=0

(
n
i

)
(q − 1)n−i ≈

(
n
w

)
(q − 1)n−w ≈ 2nh(ω)(q − 1)n(1−ω), where h(.) is the binary entropy function.

As in the proof of the previous theorem, if R := R(q, ω = ε(q)) ≤ 1−h(ω) logq 2−
(1−ω) logq(q−1), then the number of “bad” vectors is negligible and there exist
codes with (in fact almost all codes have) rate R and no high-weight vector (of
weight larger than n(1− ω)).

Now, take a code on the Varshamov-Gilbert bound (again, almost all codes
are), with δ = 1 − q−1 − α and rate R(q, α) > 0, with α = α(ω) small enough
so that δ/δmax > (1− q−1 − α)/(1− ω) > 1− q−1; this code will necessarily be
minimal.

To summarize, for a small enough rate R = R(q), there exist infinite families
of codes satisfying δ/δmax > (q − 1)/q, thus minimal. Note that, by the Plotkin
bound, they necessarily satisfy δ < (q−1)/q, so the fact that δmax < 1 is crucial.

Open Problems. We saw that obtaining explicit constructions of minimal
binary linear codes with asymptotically non zero rates can be done using known

On Minimal and Quasi-minimal Linear Codes 97

techniques (e.g. [7,8]). We can however not use the same techniques in the q-ary
case, where obtaining minimal linear codes, with asymptotically non zero rates,
remains an open issue. Finding such codes might be done using quasi-minimal
linear codes, it would thus be interesting to find a condition for minimality
specific to quasi-minimal codes.

Acknowledgements. This work was partially done during the French FUI-12
RESILIENCE project that is funded by DGCIS.

References

1. Ashikhmin, A.E., Barg, A.: Minimal vectors in linear codes. IEEE Transactions on
Information Theory 44(5), 2010–2017 (1998)

2. Brassard, G., Crépeau, C., Santha, M.: Oblivious transfers and intersecting codes.
IEEE Transactions on Information Theory 42(6), 1769–1780 (1996)

3. Carlet, C., Ding, C., Yuan, J.: Linear codes from perfect nonlinear mappings and
their secret sharing schemes. IEEE Transactions on Information Theory 51(6),
2089–2102 (2005)

4. Chabanne, H., Cohen, G., Patey, A.: Towards Secure Two-Party Computation from
the Wire-Tap Channel. ArXiv e-prints (June 2013)

5. Cohen, G., Honkala, I., Litsyn, S., Lobstein, A.: Covering codes. North Holland
(1997)

6. Cohen, G.D., Encheva, S.B., Litsyn, S., Schaathun, H.G.: Intersecting codes and
separating codes. Discrete Applied Mathematics 128(1), 75–83 (2003)

7. Cohen, G.D., Lempel, A.: Linear intersecting codes. Discrete Mathematics 56(1),
35–43 (1985)

8. Cohen, G.D., Zémor, G.: Intersecting codes and independent families. IEEE Trans-
actions on Information Theory 40(6), 1872–1881 (1994)

9. Ding, C.: A class of three-weight and four-weight codes. In: Chee, Y.M., Li, C., Ling,
S., Wang, H., Xing, C. (eds.) IWCC 2009. LNCS, vol. 5557, pp. 34–42. Springer,
Heidelberg (2009)

10. Ding, C., Yuan, J.: Covering and secret sharing with linear codes. In: Calude, C.S.,
Dinneen, M.J., Vajnovszki, V. (eds.) DMTCS 2003. LNCS, vol. 2731, pp. 11–25.
Springer, Heidelberg (2003)

11. Encheva, S.B., Cohen, G.D.: Constructions of intersecting codes. IEEE Transac-
tions on Information Theory 45(4), 1234–1237 (1999)

12. Gilbert, E.N.: A comparison of signalling alphabets. Bell System Technical Jour-
nal 31(3), 504–522 (1952)

13. van Lint, J.H., Schrijver, A.: Construction of strongly regular graphs, two-weight
codes and partial geometries by finite fields. Combinatorica 1(1), 63–73 (1981)

14. MacWilliams, F.J., Sloane, N.J.: The theory of error-correcting codes. North-
Holland, Amsterdam (1977)

15. Massey, J.L.: Minimal codewords and secret sharing. In: Proc. 6th Joint Swedish-
Russian Int. Workshop on Info. Theory, pp. 276–279 (1993)

16. Massey, J.L.: Some applications of coding theory in cryptography. In: Farrell, P.G.
(ed.) Codes and Cyphers: Cryptography and Coding IV, pp. 33–47. Formara Ltd.
(1995)

17. Mesnager, S.: Bent functions from spreads. Fq11 proceedings (preprint 2013)

98 G.D. Cohen, S. Mesnager, and A. Patey

18. Schaathun, H.G.: The Boneh-Shaw fingerprinting scheme is better than we thought.
IEEE Transactions on Information Forensics and Security 1(2), 248–255 (2006)

19. Sloane, N.: Covering arrays and intersecting codes. Journal of Combinatorics De-
signs 1, 51–63 (1993)

20. Song, Y., Li, Z.: Secret sharing with a class of minimal linear codes. CoRR
abs/1202.4058 (2012)

21. Tsfasman, M.A., Vladut, S.G.: Algebraic Geometric Codes. Kluwer (1991)
22. Zhou, Z., Ding, C.: A class of three-weight cyclic codes. CoRR abs/1302.0569 (2013)

A Code-Based Undeniable Signature Scheme

Carlos Aguilar-Melchor, Slim Bettaieb, Philippe Gaborit, and Julien Schrek

XLIM-DMI, Université de Limoges,
123, av. Albert Thomas

87060 Limoges Cedex, France
{carlos.aguilar,slim.bettaieb,philippe.gaborit,julien.schrek}@xlim.fr

Abstract. In this work we propose the first code-based undeniable sig-
nature scheme (and more generally the first post-quantum undeniable
signature scheme). The verification protocols for our scheme are 3-pass
zero-knowledge protocols derived from the Stern authentication proto-
col. There are two main ideas in our protocol, first we remark that it is
possible to obtain a full-time undeniable signature from a one-time unde-
niable signature simply by signing the one-time public key by a standard
signature. Second, we introduce a zero-knowledge variation on the Stern
authentication scheme which permits to prove that one or two different
syndromes are associated (or not) to the same low weight word. We give
a polynomial reduction of the security of our scheme to the security of
the syndrome decoding problem.

Keywords: code based cryptography, undeniable signature schemes,
syndrome decoding.

1 Introduction

Digital signatures are an important cryptographic primitive. Digital signature
are known to satisfy the property of universal verifiability; the ability to verify the
signature by anyone using the signer’s public key. Undeniable signature schemes
are similar to digital signatures but they do not satisfy the property of universal
verifiability. In fact, verification of validity or invalidity of the signature can only
be done by interaction with the signer.

The concept of undeniable signatures scheme was introduced by Chaum and
Antwerpen [6]. The motivation of the authors was the limitation of verifiability
of signed confidential contract or documents that contains private informations.
Since their introduction in 1989, undeniable signatures were used in various ap-
plications such as software licensing [4], e-voting [19] as well as e-cash [5,18]. An
undeniable signature scheme is composed of four algorithms. The key genera-
tion algorithm, the signing algorithm, and two verification protocols (confirma-
tion/disavowal) used to prove the validity or invalidity of a given signature.

An undeniable signature scheme is secure if it satisfies two basic security
properties: the existential unforgeablility, which means that no one except the
signer can generate valid signatures; and invisibility, which means that an ad-
versary cannot be able to decide whether a given signature is valid or not. Zero-
knowledge and non-transferability are two additional security properties related

M. Stam (Ed.): IMACC 2013, LNCS 8308, pp. 99–119, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

100 C. Aguilar-Melchor et al.

to the verification protocols. It is also important to have protocols which satisfys
non-transferability because undeniable signatures with this property have many
useful applications like for instance software licensing.

There are many constructions that have been proposed since 1989, works
based on discrete logarithm such as [3,4,7,9] or RSA in [13] and pairings based
constructions such as [15,16,17]. Concerning code-based cryptography besides
classical signature schemes like CFS [8] or zero-knowledge based signature
schemes [21,12] there exist very few special signature schemes, essentially the
ring signature of [1,2].

Our Contribution. All previous undeniable signature schemes are based on
number theory hard problems (like factoring big integers and discrete logarithm)
or pairings hard problems. We give the first undeniable signature with security
based on problems from codes. With the resistance against quantum computers,
code-based cryptography is an attractive alternative to construct cryptographic
primitive. Our scheme has the properties of existential unforgeablity, invisibil-
ity, completeness and soundness. It can also be made non-transferable and zero
knowledge. In this conference version of the paper we only present a version of
the protocol without the non-transferability property. Meanwhile we explain in
the last section how it is possible to obtain this property but by lack of space
we do not give the detail of this more complex version of the protocol.

Organization. Section 2 is composed of definitions about difficult problems
and some properties. In section 3 we give a general overview of the scheme. In
section 4, a description of the protocol is proposed. Section 5 is concerned with
security proofs. In section 6, some parameters are given to use the signature with
different level of security. At last section 7 deals with non-transferability.

2 Preliminaries

2.1 Notation

We use the following syntax notation: || for the concatenation. We noteMi,j(Fq)
the set of matrix of size i× j over Fq.

Let h and h′ two hash functions modeled as random oracles. Images of h are
inMn−k,n(F2) and images of h′ are inMn,t(F2). For protocols, we denote by P
the prover and by V the verifier. The prover secret key is KPs and his public key
is KPp . In this paper we use a generic digital signature Sign with (KS

s ,K
S
p) the

couple of private-public key associated. To sign x with Sign we use the notation
Sign(x,KS

s). To verify the signature σ of m, we use Verif(m,σ,KS
p). Among

different possibilities ([8,10]) an example of a signature algorithm which could
be used in practice in our case is a code-based signature obtained through a Fiat-
Shamir paradigm applied to a zero-knowledge code-based authenticatio scheme
like the Stern authentication scheme or its derivatives ([21]).

A Code-Based Undeniable Signature Scheme 101

We also use usual coding theory notation, with C a code of parameter [n, k],
H the parity check matrix of C (H ∈Mn−k,n(F2)). w is integer and denote the
Hamming weight of a word.

We denote by Snw the set of words in F
n
2 of Hamming weight w and by wt

the function which gives the Hamming weight of a word. The Gilbert-Varshamov
bound of a random code C[n, k] is the value of a distance d such that the number
of codewords of weight less than d is close or equal to the number of possible
syndromes, it means that on the average any syndrome as one preimage, but this
does not imply that there is a unique preimage for any syndrome, we will see
in the following sufficient conditions to obtain a unique preimage with a good
probability.

In the paper, all elements referring to a matrix or a vector is named by a bold
character.

2.2 Syndrome Decoding Problem

The syndrome decoding problem is a NP-Complete problem based on coding
theory. In our scheme, we use the particular finite field F2. It consists in finding
a low weight word of a given syndrome.

Definition 1 (Syndrome Decoding problem).
Let H a random (n−k, n) matrix in a finite fields Fq, w an integer and s ∈ F

n−k
q .

Finding e a word of weight w or less and such that HeT = s.

We will have to use a decisional form of that problem in the proof of invisibility.

Definition 2 (Decisional Syndrome Decoding problem).
Let H be a (n − k, n) matrix in a finite fields Fq, w an integer and s ∈ F

n−k
q .

Finding if there exists a word e of weight w such that HeT = s with good
probability.

In cryptography, the syndrome is usually used as the public key and the low
weight word as the private key. This problem is used in cryptography because of
its useful properties. Indeed it uses fast operations like matrix product or coor-
dinates permutation. This problem also resists a priori to quantum computers
at the difference of hard problems based on number theory.

Remark 1. It is a folk theorem that both previous problem can be reduced to
one another. In one way it is obvious, for the other way, suppose we have an
algorithm which solves the decisional problem, then starting from a syndrome
s = HxT associated to a small weight w unknown word x (below the Gilbert-
Varshamov bound an with unicity conditions- the case we are interested in),
then it is possible to recover x. Indeed, consider the syndrome si = s+ the ith

column of H, if the ith coordinate is in the support of x then the unique small
weight word associated to si is x+ ’1’ in the ith coordinate, therefore knowing
by the decisional problem whether there is a solution of weight w + 1 or not
permits to deduce whether the ith coordinate belongs to the support of x or not.
Eventually it is possible to recover x completely.

102 C. Aguilar-Melchor et al.

In the following we prove a simple lemma on sufficient conditions on the preim-
age of a syndrome for a random code that we will need later for the parameters
of our scheme.

Lemma 1 (Unicity of syndrome preimage). Let H be a random dual ma-
trix of a random C[n, k] binary code, and let x be a codeword of weight w with
syndrome s = H.xt. The probability over the random choices of H and x that
there exists a different codeword y �= x of weight w such that H.yt = s is bounded

above by
∑2w

i=0 (
n
i)

2n .

Proof. Suppose there exists y of weight w such that H.yt = s = H.xt then
H.(x− y)t = 0, and hence x− y belongs to C. Now obviously the weight of x− y
is bounded above by 2w. For any random code C the number of codewords of
weight 2w is bounded above by

∑2w
i=0

(
n
i

)
, since x is random of fixed weight there

are 2n−k possible syndromes, the result follows.

In practice since
∑2w

i=0

(
n
i

) ∼ (n2w
)
, taking

(n
2w)
2n < 2−80 assures with very good

probability the uniqueness of a preimage of any syndrome s. Asymptotically it
means that unicity is assured for a very good probability whenever 2w is a little
below the Gilbert-Varshamov bound of the random code, and hence w is a little
less than half the Gilbert-Varshamov bound.

2.3 Definitions

Definition 3. Formally, an undeniable signature scheme consists of a quadru-
plet of polynomial-time algorithms defined as follows.

– KGP(n, k): The key generation algorithm consists of a polynomial random-
ized algorithm. The signer runs KGP with input the security parameters (n, k)
to get valid key pair (KPs ,KPp).

– USign: The signing algorithm is a randomized algorithm that takes the signer’s
secret key KPs and a messagem, and outputs a signature σ ofm.

– ConfirmationP,V: The confirmation protocol is an interactive proof between a
prover P and a verifier V in possess of a potential message-signature pair
(m,σ). The protocol takes as input the message m, its supposed signature σ,
the prover’s public key KPp . At the end of the protocol outputs “Success” if
σ is a valid signature of m, otherwise it outputs ⊥.

– DisavowalP,V: The disavowal protocol is an interactive proof between a prover
P and a verifier V in possess of a potential invalid message-signature pair
(m,σ). The protocol takes as input the message m, σ, the prover’s public key
KPp . At the end of the protocol outputs “Success” if σ is an invalid signature
of m, otherwise it outputs ⊥.

A one-time undeniable signature allows to sign a single message. In order
to obtain a secure signature the signer has to generate new key-pairs for each
message he wants to sign.

A Code-Based Undeniable Signature Scheme 103

Definition 4. More formally such scheme consists of a quadruplet of polynomial-
time algorithms defined as follows.

– KGP(n, k): The key generation algorithm consists of a polynomial random-
ized algorithm. The signer runs KGP with input the security parameters (n, k)
to get valid key pair (Ks,Kp).

– OTUSign: The signing algorithm is a randomized algorithm that takes the
signer’s secret key Ks and a message m, and outputs a one-time signature
σ of m.

– ConfirmationP,V: The confirmation protocol is similar to the one given in
Definition 3.

– DisavowalP,V: The disavowal protocol is similar to the one given in Definition
3.

2.4 Security Model

In this subsection we give the definitions of the security notions related to the
signing algorithm (Definition 5, Definition 6) and ones related to the verification
protocols (Definition 7, Definition 8). The following two definitions are similar
to the one in [14].

Definition 5 (Unforgeability). The unforgeability of an undeniable signature
is defined by the following game between a challenger CH and a forger F . CH
starts the game by running KGP(n, k) and obtain (KPs ,K

P
p), then he gives KPp

to F . The forger is allowed to make signing queries to a signing oracle and to
the verification oracles. The signing oracle responds with σ ← USign(KPs ,m)
when he receives m as a signing query from F . Queries to the confirmation
(respectively, disavowal) oracles are of the form (m,σ). After receiving a query
(m,σ), the confirmation (respectively, disavowal) oracle execute the confirmation
(respectively, disavowal) protocol with F . Finally, F outputs a pair (m�, σ�). F
wins the game if (m�, σ�) is a valid massage-signature pair and m� was not
queried to the signing oracle.

Definition 6 (Invisibility). Let us consider D as a probabilistic polynomial
time distinguisher. We define the invisibility of an undeniable signature scheme
using the following game between a challenger CH′ and a distinguisher D. First
CH′ runs KGP(n, k) and obtain (KPs ,KPp), then he gives KPp to D. The distin-
guisher D allowed to make queries to oracles that execute the signing and the
verification (confirmation and disavowal) protocols. At some time, D will have
no more access to the verification oracles. Then, D requests a challenge on mes-

sage m of his choice. CH′ chooses b $← {0, 1} and sets σ ← USign(KPs ,m) if
b = 0, otherwise σ is chosen randomly at uniform from the signature space and
sends σ to D. After that, D is allowed to make queries to the signing and verifi-
cation protocols on condition that m is not a query of signing oracle and (m,σ)
is not a query to the verification protocols. At the end D outputs a guess b′, we
say that D wins the game if it outputs the right guess.

104 C. Aguilar-Melchor et al.

Definition 7 (Completeness). If the prover P and the verifier V honestly
execute the confirmation and the disavowal protocols. Then for any message m,
we have that

Pr[ConfirmationP,V(m,USign(KPs ,m)) outputs Accept] = 1.

And for any invalid message-signature pair (m,σ), we have that

Pr[DisavowalP,V(m,σ) outputs Accept] = 1.

Definition 8 (Soundness). For any cheating proverP and any invalid message-
signature pair (m,σ), we have that :

Pr[ConfirmationP,V(m,σ) outputs Accept] is negligible.

And for any message-signature pair (m,σ), we have that :

Pr[DisavowalP,V(m,σ) outputs Accept] is negligible.

Definition 9 (Impersonation). Let us consider I as a probabilistic polyno-
mial time impersonator. We define the impersonation of an undeniable signature
scheme using the following game between a him and a verifier V. First I gets on
input a public key KPp . Then the impersonator I can make some signing queries
or confirmation/disavowal queries. At the end, the impersonator I decides to run
a confirmation or disavowal verification with a verifier V and a couple message-
signature (m,σ). We say that I wins the game if the verifier V is convinced of
the verification protocol. An undeniable signature is said secure against imper-
sonation under adaptive chosen message attack if no PPT impersonator I has
a non-negligible advantage in the above game.

3 General Overview

In this section we describe the main idea used to obtain our undeniable code-
based signature scheme. As recalled in the introduction we only detail here a
basic undeniable scheme with unforgeability and invisibility properties, we will
consider non-transferability in the last section of the paper.
The main idea is that we consider a one-time undeniable signature scheme, and
we show that it is possible to extend it to a full-time undeniable signature scheme
simply by the use of a standard full signature algorithm. We first explain the
idea behind the one-time signature scheme (with confirmation and disavowal
protocols), we then explain how to make a full time signature with the one time
protocol.

3.1 Undeniable One-Time Signature: Basic Idea

The idea behind undeniable signature schemes is that the undeniable signature
must be linked to the secret key but ’not too much’ in the sense that if the link
is too strong we get closer to a classical signature scheme.

A Code-Based Undeniable Signature Scheme 105

The idea of the one time signature is that the private key of the one time
signature is a low Hamming weight word x. The public key is its syndrome s,
computed with a fixed random (n − k) × n matrix H. The difficulty to recover
x from s and H is the syndrome decoding problem described in section 2. The
idea of this one time signature is to take as a signature a new syndrome z
associated to x but with another k′×n matrix M related to the message m. We
can assume that z cannot be distinguished from a random word, which is the
principal property of an undeniable signature. Now, two problems appear. The
first one is that a new syndrome gives new informations about the secret x. An
adapted parametrization can solve this problem, nevertheless such a signature
can only be a few-time signature, because any new signature will give new linear
equations on the secret x. The second problem is to involve the message m into
the signature. This problem is solved by constructing a new random matrix M
from a hash value of m (also related to the public key) , which serves to compute
the new syndrome. If one proceeds this way the obtained signature z = Mxt is
well linked, both to the secret x and to the message m since the matrix M is
built from the message m. The following scheme sums up the basic idea of our
protocol.

H →

M →

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

H1,1 H1,2 . . . H1,n

.
Hn−k,1 Hn−k,2 . . . Hn−k,n

M1,1 M1,2 . . . M1,n

.
Mk′,1 Mk′,2 . . . Mk′,n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x1
x2
...
...

xn−1
xn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

s1
...

sn−k

z1
...
zk′

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

← s

← z

Proceeding this way permits to obtain many possible different signatures de-
pending on the message, since different messages give different matricesM which
give different signature z. In terms of parameters a natural choice is to take
n− k = k′ = n/3, moreover for unicity reasons the weight w of x is chosen with
conditions of Lemma 1 for a random matrix H .

Now the main property of an undeniable signature scheme are the two dis-
avowal and confirmation protocols, we explain now how our approach makes
them easy to obtain.

3.2 One-Time Undeniable Signature: Confirmation and Disavowal
Protocols

The aim of the confirmation protocol is to make possible for the signer to prove
the validity of the signature. In our case, we want to prove the relation between
the syndrome s and the syndrome z, ie the fact that both syndromes are obtained
from the same low weight vector x. A natural tool to use in that case is the Stern
authentication protocol [21], this protocol is a zero-knowledge protocol in which

106 C. Aguilar-Melchor et al.

the prover proves that he knows a low weight vector x associated to a given
syndrome HxT .

We introduce a variation on the Stern authentication protocol in which one
considers not one syndrome s = HxT but two syndromes s = HxT and z = MxT

at the same time. In the confirmation protocol the prover proves that he knows a
small weight vector x associated to both syndromes s and z. Now this approach
also permits to show that the prover is unable to repudiate a valid signature z,
indeed if the signature z = MxT is valid, the fact that the prover has to use
at the same time the same small weight vector with both syndromes s and z,
implies that he has to use x (since x is the unique small weight vector associated
to s). Now since the verifications of both syndromes are linked in the variation
of the protocol, the same x will also work for the valid signature z = MxT , so
that the prover will not be able to repudiate the valid signature z.

Now for the disavowal protocol, the case where a signature z is not valid (ie
z �= MxT with a very strong probability), the prover wants to prove that he
knows the secret associated to the public key syndrome s but that he did not
computed the false signature z. Recall that for the variation on the protocol the
same small weight weight vector x is used with the two syndromes s and z at the
same time so that it permits the prover to prove that he knows the secret x and
that this secret is compatible with the public syndrome s = HxT but that x is
not compatible with z, so that since z is not compatible with x, the signature z
is not valid since MxT �= z.

In this way we obtain the desired properties, a prover can confirm a valid
signature but cannot repudiate it, moreover he can disavow a false signature
without giving any information since the protocol is zero-knowledge.

3.3 One-Time Signature to Full-Time Signature

The idea is that a full-time undeniable signature can be obtained by using a stan-
dard signature scheme together with the one-time undeniable signature scheme.
Each time the signer wants to sign, he generates extra keys corresponding to
one-time undeniable keys: a private extra key which permits him to use the
undeniable one-time signature and a public extra key, which is signed with the
standard signature. The new full-time signature is therefore composed of the
public extra key signed with the standard signature, together with a one-time
signature of the message obtained from the private extra key.

The invisibility property remains unchanged because the digital signature is
not used to sign the message but to sign an extra public key, which can be
anything. The unforgeability or other properties are not affected neither by this
transformation. On the other hand, a problem appears when the signer has to
stock each extra secret key in anticipation for future confirmation or disavowal
protocols. We can solve that by adding to the undeniable signature the seed who
was used to build the extra secret key. Naturally, this seed will be masked by a
random word, which will be part of the full time undeniable private key.

To conclude, we have a private key, composed of a digital signature private key
and a random word, and a public key equal to the digital signature public key.

A Code-Based Undeniable Signature Scheme 107

The full time undeniable signature consists in constructing for each signature:
an extra couple of one-time key, computing a one-time signature for the message
and signing with the digital signature the one-time extra public key and the
masked seed together. The only difference for the confirmation and disavowal
protocols is the rebuilding of the private extra key for each signature.

4 Undeniable Signature Scheme

The undeniable signature defined in section 2 is composed of 4 algorithms. We
describe here those components: a key generator, a signature algorithm, a con-
firmation protocol and a disavowal protocol.

4.1 Key Generation

In this subsection we present the key generator algorithm. It depends on a ran-
dom public matrix H.

To guarantee that the signer cannot hide a trapdoor in the public dual matrix
H , we will use the following approach. The signer is given access to a hash

function h that outputs random values in F
(n−k)×n
2 , therefore to generate his

public matrix he chooses a random seed sd and sets H to the hash value of the
seed. Obviously, to share the matrix with the verifier he will just send the seed
used as input to the hash function h.

It only generates a random word and includes the key pair of Sign (the generic
signature), (KSs ,K

S
p). Recall that Gen is a key generation algorithm for the

generic signature algorithm. In the following for the protocol and the proofs we
consider the case k = 2n

3 .

KGP(n, k):
Generates a key pair

1. Choose a random seed sd ∈ F
n
2 .

2. Set H = h(sd), where h is a hash function such that h(μ) ∈ F
(n−k)×n
2 .

3. Run Gen to get a valid key pair (KS
s ,K

S
p).

4. Set r
$← F

t
2.

5. Output (KP
s ,K

P
p) = ((KS

s , r), (K
S
p , sd)).

Fig. 1. Signer key generation

The digital signature scheme can be for instance the CFS signature scheme
or the Stern zero-knowledge signature scheme.

108 C. Aguilar-Melchor et al.

4.2 The Signature

The signer wants to sign the message m. First of all he needs to compute an
extra key (Ks,Kp) using the EKG (Extra Key Generator) generator and random
seeds α and sd.

EKG(α, sd):
Generates a key pair (Ks,Kp), for w a given weight chosen as in Lemma 1
for a random code C, relatively to the security parameter t

1. Set H = h(sd).

2. Set e
$← Sn

w.
3. Set s = HeT .
4. Output (Ks,Kp) = (e, s).

Fig. 2. Extra Key Generation

The extra key pair consists of a word of Hamming weight w and its syndrome.
To build the signature, the signer needs M = h′(m) and then computes :

((s, α⊕ r, sd), Sign((s, α⊕ r, sd),KS
s),MeT).

USign(KP
s ,m):

For a given message m, he generates a signature as follows:

1. Set α
$← F

t
2

2. The signer runs EKG(α, sd) and obtain a key pair (Ks,Kp) = (e, s).
3. Set M = h′(m) where h′ is a hash function such that h′(m) ∈ F

n×t
2 .

4. Set z = MeT .
5. Set x = (s, α⊕ r, sd).
6. Set y = Sign(x,KS

s).
7. Output σ = (x, y, z).

Fig. 3. Signing protocol

The signature space and the invisibility property
For the invisibility property, we have to introduce the signature space. Even if
it was obvious for the one time signature, it is not the case for the full time
signature. The signature space associated to the key pair (KPs ,K

P
p) is :

(x, y, z) where : x ∈ (Fn2)
3, y = Sign(x,KS

s) and z ∈ F
n−k
2

A Code-Based Undeniable Signature Scheme 109

It is clear that a signature obtained with the signature algorithm in Figure 3
belongs to this space. On the other hand, for the aim of the undeniable signa-
ture, with the parameters in the parameter section , this space is much larger
than the possible result of Figure 3.

Remark 2. This signature space is composed with valid and invalid signatures.
All the signature are composed with a valid message-signature couple, for the
standard signature Sign. That could be disturbing but there is no contradiction
with the definition. In fact, anyone can build an invalid signature, from a valid
or invalid one, just by changing the third value z. The validity of the standard
signature only means that his owner participated to a given signature process,
but that does say what he did: it could be a previous signature, for which the
last part z of the triple σ = (x, y, z) could be invalid or valid.

4.3 The Verification

According to the definition, the undeniable signature needs two verification pro-
tocols. A confirmation and a disavowal protocol. Both involve a prover P and a
verifier V . Those protocols are interactive and aim to prove the validity or the
invalidity of the signature. We describe the confirmation and the disavowal pro-
tocol in the same scheme because there are only few differences between those
protocols. We denote by ’verification’ those two protocols, the difference being in
the verification step c = 1, which changes for the disavowal and the confirmation
protocols .

KE(σ,r):

1. σ = (x, y, z)
2. Verif(x, y,KS

p)
3. x = (x1, x2, x3)
4. Set (Ks,Kp)← EKG(x2 ⊕ r, x3)
5. Output (Ks,Kp, z) = (e, s, z)

Fig. 4. Key Extractor algorithm

To make the verification protocol the signer needs to use the extra key used
during the signing protocol. To do that he uses his secret key r to find α and
rebuild the extra key (Ks,Kp).

The verification protocol is a variation of the Stern protocol , in [21], with the
extra key (Ks,Kp). Here the protocol uses four commitments, the last one is to
verify the validity or invalidity of the undeniable signature.

The protocol of verification needs to be repeated several time to decrease the
probability close to 0.

110 C. Aguilar-Melchor et al.

ConfirmationP,V(m,z) −DisavowalP,V (m, z):
The prover possess a key pair (Ks,Kp) = (e, s). The verifier wants to verify the
validity of the signature z. Both parties calculate the public values H and M using
the hash functions h and h′ (i.e H = h(sd) and M = h′(m)). Then they proceed
as follow :

1. The prover chooses a random permutation π over {1, . . . , n} and a random
vector u ∈ F

n
2 and sends commitments c1, c2, c3, and c4 computed as

C1 = h(π||HuT), C2 = h(π(u)), C3 = h(π(e+ u)) and C4 = h(π||MuT).

2. The verifier sends a random challenge c ∈ {0, 1, 2} to the prover
3. Three possibilities:

– if c = 0 : send π, u.
– if c = 1 : send π, e+ u.
– if c = 2 : send π(e) and π(u).

4. Three possibilities
– if c = 0 : The verifier checks that C1, C2 and C4 have been honestly

calculated.
– if c = 1 : (ConfirmationP,V(m, z)) The verifier checks that C1, C3 have

been honestly calculated and the validity of C4.
– if c = 1 : (DisavowalP,V (m, z)) The verifier checks that C1, C3 have been

honestly calculated and C4 �= com(π||M(e+ u)T)
– if c = 2 : The verifier checks that C2, C3 have been honestly calculated

and wt(π(e)) = w.

Output Accept if all checks are passed, otherwise output ⊥.

Fig. 5. Verification protocol

5 Security

5.1 Completeness

Theoreme 1. If the prover P and the verifier V honestly execute the confirma-
tion and the disavowal protocols. Then for any message m, we have that

Pr[ConfirmationP,V(m,USign(KPs ,m)) outputs Accept] = 1.

And for any invalid message-signature pair (m,σ), we have that

Pr[DisavowalP,V(m,σ) outputs Accept] = 1.

Proof. For the first part, let’s take (m,σ) a valid couple, message-signature.
We have that σ = (x,y, z), and we can extract the extra key (e, s) such that
HeT = s and MeT = z where h′(m) = M. With (e, s), the prover can make the
confirmation protocol. The last part we have to verify is that the verification of
the hash value in the protocol is possible. This verification is trivial for the major
part of the case and the other part use the properties : H(e+ u)T − s = HuT ,

A Code-Based Undeniable Signature Scheme 111

M(e+u)T − z = MuT or π(e) + π(u) = π(e+u). The confirmation protocol is
always accepted in that condition.

For the second part of the theorem, let’s take (m,σ) an invalid signature. We
saw that even the invalid signatures σ = (x,y, z) are made with a valid couple
(x,y) = (x, Sign(x,KS

s)). That means that the key extractor can be apply to
this signature to obtain the extra key (e, s). If σ is invalid, that means that
z �= MeT , with M = h′(m). That imply that M(e + u)T − z �= MuT and the
hash value C4 cannot be verify. Meanwhile, the others hash values are verified as
well as in the first part of the proof. The disavowal protocol is so always accepted
in that condition.

5.2 Soundness

Theoreme 2. For any cheating prover P and any invalid message-signature
pair (m,σ), we have that :

Pr[ConfirmationP,V(m,σ) outputs Accept] is negligible.

And for any message-signature pair (m,σ), we have that :

Pr[DisavowalP,V(m,σ) outputs Accept] is negligible.

Proof. Let’s prove the first point of the theorem with (m,σ) an invalid couple
message-signature. The idea of the proof is as follows: we will prove that the
cheating prover P has a maximum probability of 2/3 for each round to cheat
(meaning proving that an invalid couple message-0 is valid), the result is obtained
by proving that if he can cheat (being able to answer correctly to all possible
challenges) then necessarily its couple message-signature is valid, which is a
contradiction, since by hypothesis it is invalid (the proof for the Disavowal works
the same but in the other way).

The signature σ is equal to (x,y, z). As we saw, even if σ is an invalid sig-
nature, the couple (x,y) stay valid for the signature Sign. We can make an
extraction of the key (e, s) where HeT = s and wt(e) = w. The invalidity of σ
and the validity of (x,y) imply that z �= MeT , with M = h′(m).

To accept the confirmation protocol, the verifier needs to verify all the hash
values at the end of the interaction. We consider the situation where the prover
can answer correctly to the 3 possible challenges. More precisely, suppose that
for c = 0 the prover has sent (say) a permutation φ (with φ(x) the action of the
permutation φ on a vector x) and α, the permutation (say) ψ and the word β for
c = 1 or the words (say) (γ and δ for c = 3. Those values verify the construction
of the hash values, it implies that :

C1 = h(φ||HαT) = h(ψ||HβT − s)

C2 = h(φ(α)) = h(δ)

C3 = h(ψ(β)) = h(γ + δ)

112 C. Aguilar-Melchor et al.

C4 = h(φ||MαT) = h(ψ||MβT − z)

wt(γ) = w

Either the prover can make a collision on h or we have the equalities :

φ = ψ

HαT = HβT − s

φ(α) = δ

ψ(β) = γ + δ

MαT = MβT − z

Those equations imply that s = Hφ−1(γ)T and z = Mφ−1(γ)T and wt(γ) = w.
From Lemma 1 we have that φ−1(γ) = e. The next equation gives z = MeT and
let appear a contradiction since because of the invalidity z �= MeT . That means
that the prover is not able to answer correctly the 3 different challenges in one
round. The best he could do is answer with a probability 2/3. With a t-round
protocol, it makes the probability for the confirmation to outcome accept equal
to (2/3)t, which becomes negligible when t increases.

The proof of the second point is close to the first one. Let us consider (m,σ) as
a valid couple message-signature. We can use the extractor key to obtain (e, s)
such that HeT = s, wt(e) = w and MeT = z where σ = (x,y, z). The last
equation is due to the validity of σ. For the confirmation protocol, the fact that
the prover could anticipate the 3 different challenges implied that z = MeT .
For the disavowal protocol, it is easy to remark that the equation become z �=
MeT . It is also a contradiction in this case. That means that the prover cannot
anticipate the 3 challenges during the protocol and that the probability that the
algorithm outputs accept is (2/3)t, which is negligible in t.

5.3 Zero-Knowledge

(Sketch of proof) The zero knowledge proof consists in constructing a simulator
which can create an interaction between a prover and a verifier in polynomial
time. The interaction must be indistinguishable from an interaction with a true
prover and a true verifier. The interaction for the verification part is only about
the verification protocol, because this is the only part during the verification
where the prover and the verifier interact. We can construct a simulator for this
protocol using the one constructed in the Stern authentication protocol’s proof
of zero knowledge, with an 0 hash value. The rest of the interaction is exactly
the same. We refer to the proof of zero knowledge of the Stern protocol to prove
the property, in [21].

A Code-Based Undeniable Signature Scheme 113

5.4 Impersonation

Theoreme 3. The signature is secure against impersonation under adaptive
chosen message attack or we can find a polynomial attack on the syndrome de-
coding problem.

Proof. We consider an instance of the syndrome decoding problem (H, s) with
H a (n − k) × n matrix and s its syndrome in F2. Let consider a PPT I that
wins the game of impersonation with non-negligible probability and input H .
We note (m,σ) the couple message-signature used to convince the verifier V and
(e,HeT) the couple of one-time secret and public keys associated to the one-time
signature in σ. Since it is possible to choose the signing queries, we can assume
that HeT = s. The one-time keys in the signatures are independent from the
full-time keys. That means that the impersonator I took no information about
(e,HeT) from the signing queries. Moreover, the confirmation/disavowal proto-
cols are zero-knowledge. That means that I took no information about (e,HeT)
from those protocols as well. If we remove the commitment C4 and its verifica-
tion in the confirmation/disavowal protocols, we obtain the same protocol, call
new verification which doesn’t refer to the message m. The impersonator I is
able to pass this protocol as well as the previous one. To summarize, we can
create from I a PPT KE with input (H, s) and no access to signing queries
or verification queries which can pass the new verification protocol with non-
negligible probability. This new verification corresponds exactly to the protocol
of Stern [21] and it is proved on the proof of soundness of this paper that, with
the previous assumptions, I and KE know e with non-negligible probability (we
used the same arguments in the soundness proof in our paper). We proved that
if I can wins this game with non-negligible probability then KE can solve the
syndrome decoding instance (H, s) with good probability.

5.5 Unforgeability

In this section we consider parameters for the syndrome decoding associated to
a code C [n, k = 2n

3] with a small weight words of weight w, chosen as in Lemma
1. The first part of the section proves the security of the one-time signature and
the second part proves the unforgeability of the full-time signature.

Theoreme 4. Consider the previous parameters for one-time signature associ-
ated to a [n, k = 2n

3] code C with security parameters associated to a weight w
chosen for unicity of syndrome preimage as in Lemma 1 for a random [n, k = 2n

3]
code. Then if a forger can forge a one-time signature in O operations with prob-
ability λ, then he can solve the syndrome decoding problem for a random [n, n3]
code with small weight w in n3+O operations with probability 1

2qRO λ in the ran-
dom oracle model, where qRO correspond to the number of queries to the random
oracle.

Proof. We consider an instance HxT = y of the syndrome decoding problem
such that H is a 2/3n× n matrix and x is a small weight word of weight w, as

114 C. Aguilar-Melchor et al.

in Lemma 1 for a random [n, k = 2n
3] code. We will prove that a forger F who

can forge a one-time signature (with previously described parameters) can solve
this instance of the syndrome decoding problem with a polynomial factor in
some probability. We decompose the instance (H,y) into (H1,y1) and (H2,y2)

with H =

(
H1

H2

)

and y =

(
y1
y2

)

. The problem is now to search x such that

H1x
T = y1 and H2x

T = y2 with H1 and H2 of size n
3 × n. In those problems x

still needs to be of weight w. The public key of the one time signature correspond
to (H1,y1). The forger receives the public key (H1,y1). Then the forger needs
to interact with a confirmation/disavowal oracle and a signing oracle to produce
a result. He also have access to a random oracle RO.

When F asks for a signature, he is given (m,y2) (for m a random message).
In that case since the signature is one time, the forger has only access to a
maximum of one signature. The forger could have asked for the hash value of
message m before. That is why, among the qRO queries to the random oracle,
one is fixed to H2. The probability that the hash value H2 corresponds to the
message m is 1

qRO
, in the case that this value doesn’t correspond, the algorithm

stops.
It is also possible forF to ask for an interactionwith the confirmation/disavowal

protocol. There is a difficulty here since only someone who knows the secret key
can simulate those protocol 0. To overcome this problem we modify the forger F :
when the forger runs the confirmation protocol, he receives at the end a result value
equal to true or false. We construct two new PPT Turing machine F1 and F2 such
that bothmachines respond true whenF asks for the couple (m,y2), but such that
for all the other queriesF1 responds always true andF2 responds always false. No-
tice that in our scheme, the confirmation and the disavowal protocols are almost
the same. If the confirmation succeeds that means that the disavowal fails and vice
versa. That is not true in general but the fact that the construction of those two
confirmation/disavowal protocols in our scheme is almost identical implies this
property. That means that if the confirmation protocol succeeds with a negligi-
ble probability, the disavowal protocol succeeds with a non negligible probability.
Therefore, either F1 or F2 returns the same result as F with good probability. We
now rename F the PPT which is F1 with probability 1/2 and F2 else. This new
forger is a polynomial Turing machine which succeeds with non negligible proba-
bility and does not ask anything to the confirmation/disavowal protocols.

With those considerations, the machine F returns a valid couple message-
signature (m,σ). If we denote by H3 the hash value ofm, we have a new instance
of the syndrome decoding problem. This instance is (H1|H2|H3,y1|y2|σ), this
instance has a non negligible probability to be solved in polynomial time because
the matrix (H1|H2|H3) has a non negligible probability to be invertible. The
solution of this problem is obviously the solution to the first difficult problem
(H,y), the cost of the matrix inversion is n3. That concludes the proof.

Theoreme 5. Consider a full-time signature built from a one-time signature
with parameters chosen as in the previous theorem, and from a generic signature
Sign. Then if a forger can forge a full-time signature in O operations and N

A Code-Based Undeniable Signature Scheme 115

access to the signing oracle with probability λ, either he can forge the signature
Sign or he can solve an instance of the syndrome decoding problem (as in the
previous theorem: for a [n, n/3] code with w the value of the GV bound for a
random [n, 2n/3] code) in N(n3 + O) operations with probability 1

2q2RO
λ in the

random oracle model, where qRO correspond to the number of queries to the
random oracle.

Proof. This proof is very similar to the one for the one-time signature. Here
we 4 use only one instance of the syndrome decoding problem but we consider
N instances of this problem but with different matrices Hi. These instances
correspond to different couples (H1,y1), . . . , (HN ,yN). Each matrix Hi is split
in two - equal size - matrices Hi,1 and Hi,2, as well as each yi is split into yi,1
and yi,2.

We will prove that a forger F which can forge a full-time signature in poly-
nomial time and with non negligible success probability, can solve one instance
of the syndrome decoding problem in polynomial time and with non negligible
probability.

We start the proof as in the previous theorem. We compute a key pair (sk, pk)
and give pk to the forger. The forger needs access to a signing oracle, a confir-
mation oracle, a disavowal oracle and a random oracle. This time, the forger can
ask for a polynomial number of signatures.

The signing oracle is simulated with the signing protocol described in figure 3
and using as extra key an instance Hi,1,yi,1 of the difficult problem. The forger
could have asked for the hash value of message needed before. That is why,
among the qRO queries to the random oracle, one is fixed to Hj,2.

The problem with the confirmation and the disavowal protocol is solved with
the same approach as in the proof for the one-time signature.

The forger can return a valid couple message-signature (m,σ) in polynomial
time and with non negligible probability. The signature σ is a triple (x, Sign
(x,KS

s), z). Hence, either the forger can forge the signature Sign or he uses a
signed couple (x,KS

s) which was already used. If he uses a signed couple (x,KS
s),

which has already been used, it means that the forger is in the case of forging a
one-time signature. Then we can reduce the proof to the proof of the one time
signature. The difference being that the probability that the hash value Hi,2

corresponds to the message m is 1
q2RO

in the case.

Therefore, we constructed a PPT machine which can solve one instance among
N of the syndrome decoding problem. The fact that those instances are inde-
pendent means that the maximum gain we can obtain in comparison to the
research of only one instance is almost N (see also [20]). With N polynomial in
n, this problem is polynomially equivalent to solve one instance of the syndrome
decoding problem with parameters values as the one-time signature proof.

5.6 Invisibility

The proof follows the same approach as in the unforgeability proof to prove
that the distinguisher D can solve the decisional syndrome decoding problem.

116 C. Aguilar-Melchor et al.

The problem is given by a matrix H and a syndrome y. We want to know
if there exists a word of weight w with associated syndrome y by the matrix

H. We split H into

(
H1

H2

)

and y into

(
y1
y2

)

. We make the same construction

as the previous theorems in order to interact with the distinguisher D, taking
(H2,y2) to compute the new signature. The distinguisher returns true or false,
corresponding to the fact that (H,y) has a solution or not.

6 Parameters

In this section we give some parameters to use with the signature for different
levels of security. For simplicity matter we consider the case where the matrix
H is a n

3 × n matrix (hence k = 2
3n) and where length of the signature is also

k′ = n/3 = n − k. The parameter w - the low weight of x- must be chosen
according to Lemma 1 with appropriate probability so that one can suppose the
unicity of the syndrome preimage - in practice a little below half the Gilbert-
Varshamov bound of a random [n, 2n3] code-, and the length n of the code must
be chosen so that it resists to syndrome decoding attacks for finding a low weight
vector of weight w in a [n, n3] code. For the best practical attacks we follow the
lower bounds from [11]. Notice that the matrices H and M can also be chosen
quasi-cyclic, which reduces the size of the public key. Remember that from the
reduction theorems the security of the scheme for a [n, 2n/3] code with a given
w corresponds to attacking with the same value of w, not a [n, 2n/3] code but a
[n, n/3] code.

n k w bits security

4500 3000 130 80

5100 3400 157 90

6000 4000 175 100

7500 5000 220 128

For digital signature one can use the zero-knowledge based Stern signature
scheme (and its improvements) so that the digital signature has length roughly
40k Bytes.

Remark 3. In the approach of the proofs of the different theorem, we 3 for sim-
plicity to rely on Lemma 1 and unicity of the syndrome premimage. Another
approach would have consisted in basing our proofs on the fact that a cheat-
ing prover, given a syndrome s with preimage x of weight w is not able to find
another word y of weight w with the same syndrome s. This can be done by
supposing that finding a word of weight 2w in a random code [n, n/3] is dif-
ficult.Indeed if such a word of weight 2w was reachable, it would possible by
cutting this word in two equal weight parts, to find two words of same weight
with the same syndrome. Such an approach would indeed improve a little bit
the parameters but would make proofs less direct.

A Code-Based Undeniable Signature Scheme 117

7 Non-transferability

The non-transferability property corresponds to the fact that only one chosen
person at a time can verify the validity of the undeniable signature, and that
this person is not able to convince a third party of the validity or invalidity of a
signature. To make this possible, any potential verifier must have a private and
a public key.

Definition 10 (Non-transferability).
Let (m,σ) be a message-signature couple. If someone gets information of the
validity or invalidity of the signature with good probability, then he gets infor-
mation of almost one of the private key used during a verification. The private
key can be the one of the prover or the one of one of the verifiers.

Remark 4. The non-transferability is not induced by the zero-knowledge prop-
erty. In fact, the zero-knowledge proof only guarantees that the process doesn’t
give any information about the secret key. For the non-transferability, we want
that the verifier gives no information about the proof of knowledge of the secret.
In the particular case of the undeniable signature describes in the paper, the ver-
ifier can generate his challenges from a PRGN, make an approval (or disavowal)
protocol, and reveals the transcript of the interaction with the seed of the PRNG
to prove, with no interaction, the validity (or invalidity) of the signature. This
strategy correspond to the Fiat-Shamir paradigm and is usually used to make a
signature scheme from a zero-knowledge authentication scheme.

The scheme described in this paper does not respect this property. For a reason
of lack of space, we did not present the whole version of the scheme which permit
to obtain a non-transferable undeniable signature. We now explain here, how it
is possible construct a new version of our protocol with this property.
First of all, the verifier needs a couple of private-public keys. We use the extra
key generator to generate the verifier keys. Recall that a ring signature scheme
for n persons permits to convince a verifier that one persons of the ring has signed
the message but without knowing which one. A particularity of a ring signature
scheme compared to group signature scheme is that : first the anonymity cannot
be eliminated and second that the public keys used to compose the ring are not
related to one another, so that it is possible to use public keys of persons which
do not know their public is used (we refer to [1,2] for more details). The idea
to obtain the non-transferability property is then to use a ring authentication
protocol with 2 persons: the prover and the chosen verifier. If one proceeds this
way, the chosen verifier knows that the prover is confirming a valid signature -
simply by the fact that the chosen verifier knows there are only two persons in
the ring: himself and the prover, and since it is not him confirming the signature,
it has to be the prover. Now the verifier cannot convince a third person that the
prover did the confirmation, without revealing his private key, indeed since a
third person is not be able to break the anonymity of the 2-ring authentication
scheme, a third person (at the difference of any two member of the ring) is not

118 C. Aguilar-Melchor et al.

be able to know who did the confirmation protocol between the two members of
the ring: the prover or the chosen verifier.

Overall the protocol we described in previous sections can be adapted to
obtain the non-transferability property by mixing it with the code-based ring
signature of [2], but we obtain a more complex version of our protocol that we
do not describe in this extended abstract version.

8 Conclusion

In this paper we present the first undeniable signature based on coding the-
ory (and more generally the first undeniable signature scheme for post-quantum
cryptography). Our scheme relies on a variation of the Stern authentication al-
gorithm. The main idea of the scheme is to consider a very simple one-time
undeniable signature which is turned into a full-time signature scheme. The
scheme uses only fast operations with attractive parameters, as small size keys.
We described how the main properties of undeniable signatures could be ob-
tained. We also give a general view on how it was also possible to obtain the
non-transferability properties from our scheme.

References

1. Aguilar Melchor, C., Cayrel, P.-L., Gaborit, P.: A new efficient threshold ring sig-
nature scheme based on coding theory. In: Buchmann, J., Ding, J. (eds.) PQCrypto
2008. LNCS, vol. 5299, pp. 1–16. Springer, Heidelberg (2008)

2. Aguilar-Melchor, C., Cayrel, P.-L., Gaborit, P., Laguillaumie, F.: A new efficient
threshold ring signature scheme based on coding theory. IEEE Transactions on
Information Theory 57(7), 4833–4842 (2011)

3. Boyar, J., Chaum, D., Damg̊ard, I., Pedersen, T.: Convertible undeniable signa-
tures. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp.
189–205. Springer, Heidelberg (1991)

4. Chaum, D.: Zero-knowledge undeniable signatures. In: Damg̊ard, I.B. (ed.) EU-
ROCRYPT 1990. LNCS, vol. 473, pp. 458–464. Springer, Heidelberg (1991)

5. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)

6. Chaum, D., van Antwerpen, H.: Undeniable signatures. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 212–216. Springer, Heidelberg (1990)

7. Chaum, D., van Heijst, E., Pfitzmann, B.: Cryptographically strong undeniable
signatures, unconditionally secure for the signer. In: Feigenbaum, J. (ed.) CRYPTO
1991. LNCS, vol. 576, pp. 470–484. Springer, Heidelberg (1992)

8. Courtois, N.T., Finiasz, M., Sendrier, N.: How to achieve a mcEliece-based digital
signature scheme. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp.
157–174. Springer, Heidelberg (2001)

9. Damg̊ard, I., Pedersen, T.: New convertible undeniable signature schemes. In: Mau-
rer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 372–386. Springer, Hei-
delberg (1996)

10. Finiasz, M.: Parallel-CFS strengthening the CFS mceliece-based signature scheme.
In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp.
159–170. Springer, Heidelberg (2011)

A Code-Based Undeniable Signature Scheme 119

11. Finiasz, M., Sendrier, N.: Security bounds for the design of code-based cryp-
tosystems. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 88–105.
Springer, Heidelberg (2009)

12. Gaborit, P., Schrek, J.: Efficient code-based one-time signature from automorphism
groups with syndrome compatibility. In: International Symposium on Information
Theory (ISIT 2012), pp. 1982–1986. MIT, Boston (2012)

13. Gennaro, R., Krawczyk, H., Rabin, T.: RSA-based undeniable signatures. In:
Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 132–149. Springer,
Heidelberg (1997)

14. Kurosawa, K., Heng, S.-H.: 3-move undeniable signature scheme. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 181–197. Springer, Heidelberg
(2005)

15. Laguillaumie, F., Vergnaud, D.: Short undeniable signatures without random ora-
cles: The missing link. In: Maitra, S., Veni Madhavan, C.E., Venkatesan, R. (eds.)
INDOCRYPT 2005. LNCS, vol. 3797, pp. 283–296. Springer, Heidelberg (2005)

16. Laguillaumie, F., Vergnaud, D.: Time-selective convertible undeniable signatures.
In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 154–171. Springer, Hei-
delberg (2005)

17. Libert, B., Quisquater, J.-J.: Identity based undeniable signatures. In: Okamoto,
T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 112–125. Springer, Heidelberg (2004)

18. Pointcheval, D.: Self-scrambling anonymizers. In: Frankel, Y. (ed.) FC 2000. LNCS,
vol. 1962, pp. 259–275. Springer, Heidelberg (2001)

19. Sakurai, K., Miyazaki, S.: An anonymous electronic bidding protocol based on a
new convertible group signature scheme. In: Clark, A., Boyd, C., Dawson, E.P.
(eds.) ACISP 2000. LNCS, vol. 1841, pp. 385–399. Springer, Heidelberg (2000)

20. Sendrier, N.: Decoding one out of many. In: Yang, B.-Y. (ed.) PQCrypto 2011.
LNCS, vol. 7071, pp. 51–67. Springer, Heidelberg (2011)

21. Stern, J.: A new identification scheme based on syndrome decoding. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 13–21. Springer, Heidelberg (1994)

Filtered Nonlinear Cryptanalysis of

Reduced-Round Serpent, and the Wrong-Key
Randomization Hypothesis�

James McLaughlin1 and John A. Clark2

1 Solarflare, Block 2, Westbrook Centre,
Milton Road, Cambridge, UK

james.d.mclaughlin@gmail.com
2 Department of Computer Science, University of York,

Deramore Lane, Heslington, York, UK
john.clark@york.ac.uk

Abstract. We present a deterministic algorithm to find nonlinear S-box
approximations, and a new nonlinear cryptanalytic technique; the “fil-
tered” nonlinear attack, which achieves the lowest data complexity of any
known-plaintext attack on reduced-round Serpent so far. We demonstrate
that the Wrong-Key Randomization Hypothesis is not entirely valid for
attacks on reduced-round Serpent which rely on linear cryptanalysis or a
variant thereof, and survey the effects of this on existing attacks (including
existing nonlinear attacks) on 11 and 12-round Serpent.

Keywords: Nonlinear cryptanalysis, generalized linear cryptanalysis,
multidimensional linear cryptanalysis, WKRH, Wrong-Key Randomiza-
tion Hypothesis, Serpent.

1 Introduction

Linear cryptanalysis [1][2] has had several extensions and variations proposed
since its discovery in 1993. One such generalisation was the use of nonlinear
approximations. That is, instead of being restricted to equations of the form
xa1 ⊕ xa2 ⊕ . . .⊕ xai ⊕ yb1 ⊕ yb2 ⊕ . . .⊕ ybj in the input bits xi and output bits
yi of cipher components, the cryptanalyst could utilise higher-degree terms such
as xa1xa3 .

This was first proposed by Harpes, Kramer and Massey [3], and investigated
in more depth by Knudsen and Robshaw [4]. It was concluded that nonlinear
approximations could replace linear approximations only in the first and last
rounds of the distinguisher - and even then, there were problems that would
not apply in the case of a purely linear approximation. One of these was the
difficulty of finding the nonlinear S-box approximations; for a DES-sized 6 × 4

� This work was carried out while the first author was a graduate student at the
University of York.

M. Stam (Ed.): IMACC 2013, LNCS 8308, pp. 120–140, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Filtered Nonlinear Cryptanalysis of Reduced-Round Serpent 121

S-box, the search space for possible approximations was 264 in size, increasing
to 2256 for an AES-sized 8× 8 S-box.

Courtois [5][6] demonstrated that the use of nonlinear approximations was
in fact possible in other rounds of a Feistel cipher, as long as each round’s
approximation was a particular form of quadratic expression. This approach,
however, could not be generalised to non-Feistel ciphers.

The first attempt to obtain arbitrary-degree nonlinear approximations with-
out restrictions on cipher type was the use of simulated annealing (SA) by Clark
et al. [7] to evolve nonlinear approximations to the MARS S-box [8] for use
in the first round of nonlinear distinguishers. They were able to obtain nonlin-
ear approximations holding with a much higher absolute bias (151/512) than the
best linear approximations for the MARS S-box. However, no attack on reduced-
round MARS that could exploit these was known. Subsequent research [9] built
on this, refining the SA algorithm to obtain nonlinear approximations for the
Serpent S-boxes.

In this paper, we build on the above research in the following directions:

– We present a fast, deterministic algorithm for obtaining the full set of non-
linear approximations for a given S-box with the highest possible bias.

– The cryptanalyst does not know the values of the key bits xored with the
bits involved in the nonlinear approximation. Where n0 denotes the non-
linear function involved, computing n0 on the bits exposed through par-
tial encryption/decryption means that the cryptanalyst is in fact computing
nα1α2...αh

= n0(x1⊕kα1 , x2⊕kα2 , . . . , xh⊕kαh
). There exist 2h candidates for

the correct function, ni, to compute on these bits, and the cryptanalyst does
not know which is correct. We present an adaptation of Matsui’s Algorithm
2 which can make use of nonlinear approximations, as well as two separate
means of addressing this issue. One of these is a straightforward general-
isation of linear cryptanalysis to incorporate the new approximations, the
other utilises a technique known as “filtering” to achieve even lower data
complexity at the cost of higher time and memory complexity.

– In [9], nonlinear approximations for some of the Serpent S-boxes, with higher
bias than the best linear approximations for the same, were derived. We
incorporate these into both filtered and unfiltered nonlinear attacks, which
we compare to the previous attacks on 11-round Serpent.

– For linear cryptanalysis and its variants, the “Wrong-Key Randomization
Hypothesis” (WKRH) states that, for any wrong key value used to partially
encrypt/decrypt a cipher during cryptanalysis, the expectation for the bias
is 0; and it should certainly be much lower than the bias for the correct key.
We demonstrate that in the case of the Serpent cipher, this does not always
apply, and quantify its effects on the various attacks on 11- and 12-round
Serpent.

This paper is structured as follows: The remainder of this section describes
the notation used, and provides a brief description of certain key aspects of linear
cryptanalysis. Section 2 describes the new search algorithm for S-box approx-
imations, and discusses the ways in which the new approximations affect the

122 J. McLaughlin and J.A. Clark

attack. It also contains an explanation of how we handle nonlinear approxima-
tions differently in the filtered attacks. Section 3 describes the new attacks, in
particular the adaptation of Collard et al.’s improved algorithm for the analysis
phase [10] to the nonlinear and filtered nonlinear domains. It also contains a
detailed discussion of the complexities of this algorithm and the nonlinear at-
tacks. Finally, Section 4 surveys the existing attacks on reduced-round Serpent,
recalculates their complexities in light of the issues surrounding the WKRH, and
describes the nonlinear and filtered nonlinear attacks on 11-round Serpent.

1.1 Linear Cryptanalysis – The Algorithm 2 Attack

We use the following notation:

– N is the number of known plaintext/ciphertext pairs.
– K denotes the cipher’s key length.
– P and C denote, respectively, the plaintext and ciphertext.
– l is the number of “active” text bits which are relevant to the attack. In

a 1R attack, this includes plaintext bits which are xored together but not
partially encrypted.

– The subset of key bits we seek to recover is known as the target partial subkey
(TPS).

– k is the number of key bits in the TPS. For 2R linear attacks on SPN-based
ciphers such as Serpent, k = l. For 1R attacks on SPNs, k is equal to the
number of active ciphertext bits.

– k0 is the correct k-bit value for the TPS.
– In nonlinear attacks, k1 denotes the subset of TPS bits that are used in the

round keys for the outer rounds of the cipher. (All attacked key bits are of
this type in a linear attack.)

– In nonlinear attacks, k2 is the set of TPS bits active in the outer rounds of
the approximation.

– r is the number of rounds of the cipher.
– Ps is the success probability of the attack.
– If, in a cryptanalytic attack, we aim for the correct key to be one of the 2n−a

highest ranked keys, the value a is referred to as the “advantage”.

In a 1R attack, the cryptanalyst knows of a linear approximation to rounds
1, 2, . . . , (r−1) of the cipher, and uses candidate key values to partially decipher
some of the bits in the known ciphertexts. In a 2R attack, the cryptanalyst only
has an approximation to rounds 2, . . . , (r−1), and as well as the aforementioned
partial decryption, must partially encrypt certain plaintext bits to obtain the
bits on which the probabilistic linear relation is expected to hold.

The theoretical bias for this linear approximation is calculated using the
Piling-Up Lemma [1]:

Definition 1. For 1 ≤ i ≤ n, let Xi be independent Bernoulli random variables
such that pi = Pr(Xi = 0), and (1− pi) = Pr(Xi = 1).

Filtered Nonlinear Cryptanalysis of Reduced-Round Serpent 123

(In the case of linear cryptanalysis, Xi = 0 iff the linear approximation to the
ith approximated S-box holds.)

Then Pr(X1 ⊕X2 ⊕ . . .Xn = 0) is:

(1/2) + 2n−1
n∏

i=1

(pi − 1/2).

with probability bias:

ε = 2n−1
n∏

i=1

(pi − 1/2)

In reality, the probabilities of the linear approximations to the S-boxes in one
round holding are not independent of the probabilities of the linear approxima-
tions to other rounds holding, so the Piling-Up Lemma only estimates the true
bias. This is usually accurate enough for the purposes of cryptanalysis, although
there are situations where it is not [11][12][13].

Definition 2. Where a linear approximation holds with bias ε, i.e. with prob-
ability 1/2 + ε, the capacity C of the approximation is equal to 4 × ε2. More
generally, in an attack using multiple approximations Ai (1 ≤ i ≤M), each with

bias εi, the set of approximations has capacity 4
∑M
i=1 ε

2
i .

2 Finding and Utilising Nonlinear Approximations

2.1 Finding the Approximations

The approximations used are of the following form: (linear function of either the
input or the output bits) = (nonlinear function of some subset of the other) with
bias ε. The linear function is defined by some bitmask with 1s in the positions
corresponding to the bits involved.

We use the term “projection” to refer to the subset of either the input bits xi
or output bits yi involved in the nonlinear function. For example, y0⊕ y1⊕ y0y3
has the projection {y0, y1, y3}.

Let us use Serpent S3 to illustrate the new algorithm. We will search for
approximations involving a nonlinear function on the set of input bits, with
projection {x0, x1, x3} and bitmask 10 (1010).

First of all, we reorder the truth table of the linear function.

Value x0x1x3 of bits in projection 000 001 010 011 100 101 110 111
TT entry for x0x10x3 0 0 1 1 1 0 0 1
TT entry for x0x11x3 0 1 1 1 1 0 0 0

We define a template for the approximations as follows: For any value x0x1x3
of the bits in the projection, if the truth table of the linear function takes the

124 J. McLaughlin and J.A. Clark

value 0 more often than the value 1, let template entry x0x1x3 equal 0. If the
opposite is true, set entry x0x1x3 to 1. If the two entries occur equally often, let
entry x0x1x3 be the character *.

This gives us:

Value x0x11x3 of bits in projection 000 001 010 011 100 101 110 111
Template entry for x0x11x3 0 * 1 1 1 0 0 *

We can now obtain four approximations with bias 6 by replacing the *s in the
template with 0s and 1s. These are:

– 00111000 (x1 ⊕ x0 ⊕ x0x3 ⊕ x0x1x3),
– 00111001 (x1 ⊕ x0 ⊕ x0x3),
– 01111000 (x3 ⊕ x1 ⊕ x0 ⊕ x1x3), and
– 01111001 (x3 ⊕ x1 ⊕ x0 ⊕ x1x3 ⊕ x0x1x3).

2.2 The “Related” Approximations

We have already mentioned the difficulty faced by the cryptanalyst in working
out which of 2|k2| functions is the correct nonlinear function. One possible ap-
proach would be to compute all of the functions, and for each guess at the key
bits involved, accept the function with the highest bias as correct.

If we wish to include the k2 bits in our attack, several of the related approx-
imations may also possess biases with high magnitude. In some cases, one or
more of the relateds may have a bias with the same magnitude as the original,
and even when this is not the case, we may still need to distinguish, say, the
correct function and a bias 24 approximation from an incorrect function defining
a bias −22 approximation.

Let xi denote the ith input bit to whichever S-box we are dealing with, and
yj the jth output bit. Consider the nonlinear approximation to Serpent S3 in
Table 1:

Table 1. Nonlinear approximation to Serpent S3. The “filtered” biases are explained
in subsection 2.3.

Related Nonlinear function Bias Bias
approximation (filtered)
0 x3 ⊕ x4 = y4 ⊕ y3 ⊕ y1y3 +6 6
1 x3 ⊕ x4 = y4 ⊕ y3 ⊕ (y1 ⊕ 1)y3 0 -4
2 x3 ⊕ x4 = y4 ⊕ (y3 ⊕ 1)⊕ y1(y3 ⊕ 1) 0 0
3 x3 ⊕ x4 = y4 ⊕ (y3 ⊕ 1)⊕ (y1 ⊕ 1)(y3 ⊕ 1) +2 0
4 x3 ⊕ x4 = (y4 ⊕ 1)⊕ y3 ⊕ y1y3 -6 0
5 x3 ⊕ x4 = (y4 ⊕ 1)⊕ y3 ⊕ (y1 ⊕ 1)y3 0 0
6 x3 ⊕ x4 = (y4 ⊕ 1)⊕ (y3 ⊕ 1)⊕ y1(y3 ⊕ 1) 0 2
7 x3 ⊕ x4 = (y4 ⊕ 1)⊕ (y3 ⊕ 1)⊕ (y1 ⊕ 1)(y3 ⊕ 1) -2 -4

Filtered Nonlinear Cryptanalysis of Reduced-Round Serpent 125

For this nonlinear approximation, if y1y3 = 1, any wrong guess for corre-
sponding key bits (ka, kc) will result in y1y3 being wrongly calculated as 0. If
y1y3 = 0, by contrast, only one of the three possible wrong guesses for (ka, kc)
will result in its being incorrectly calculated. In general, an incorrect key guess
will not consistently result in the wrong value being assigned to the nonlinear
terms affected by it, and so will not simply leave the magnitude of the bias
invariant.

It is therefore necessary to guess the key bits involved in the first and last
rounds of the approximation, as well as those involved in the first and last rounds
of the cipher, to obtain the latter set of key bits.

2.3 Increasing the Signal/Noise Ratio – “Filtering” Nonlinear
Cryptanalysis

Each of the approximations in Section 2.1 has bias 6/16 = 0.375. However, for
two of the possible inputs to the function (001 and 111), the approximation has
no bias. In the analysis phase, no information is obtained by adding to counter
values when these inputs occur, and we therefore have no reason to do so.

In fact, we have very good reason not to do so. Consider that, for each (k1, k2)
pair, by ignoring (P,C)-pairs such that function inputs 001 or 111 would occur,
we effectively increase the bias from 6/16 to 6/12. Since the data complexity is
proportional to the square of the bias, we appear to reduce the KP requirements
to (3/4)2 = 9/16 of their original value. In actual fact, since the improved bias
is obtained by discarding a quarter of the available data, the value of N is only
reduced to 3/4 of its original value.

This improvement may come at a price. In a basic nonlinear attack using
one of the four original approximations, we could for two of these approxima-
tions ignore certain values of k2 which simply resulted in the truth table of
the nonlinear approximations being flipped. Since we now need the full value of
PARTIAL ENCRY PT (P ⊕k1)⊕k2 to know whether to filter it out, and since
different k2 result in different sets of values being filtered out, we cannot now
easily omit these k2 from the attack. As this previously allowed us to compute
the nonlinear function for only half the values of k2, the time complexity of the
attack is doubled.

For example, in a basic nonlinear attack using the approximation from Table 1,
we would not have needed to compute truth table values for half of the relateds,
since the related for k2 ⊕ 100 would have the same absolute bias (but opposite
sign) to that for k2. In an attack using filtering, this is clearly no longer the case.

2.4 How Unbalanced Nonlinear Components in the Approximation
Affect the Attack

Let us assume that one end of the overall approximation is balanced. Without
loss of generality, we may assume that this is the input end. Let P(function at
output end = 0) be denoted α.

126 J. McLaughlin and J.A. Clark

Then, for an incorrect key, Pr(approximation = 0) =

Pr((xa1 ⊕ . . .⊕ xas = 0) ∩ (ya1 ⊕ . . .⊕ yas = 0))

+ Pr((xa1 ⊕ . . .⊕ xas = 1) ∩ (ya1 ⊕ . . .⊕ yas = 1))

= (0.5× α) + (0.5× (1 − α))
= 0.5

We see that, as long as either the first or the last round of the overall approx-
imation is a balanced function, it does not matter whether the function at the
other end is balanced.

Unfortunately, in general we cannot use unbalanced approximations at both
ends. Let β denote the probability that the nonlinear function at the input end
equates to zero, and let γ be the corresponding probability for the function at
the output end. Then, for an incorrect key, Pr(approximation = 0) =

Pr((xa1 ⊕ . . .⊕ xas = 0) ∩ (ya1 ⊕ . . .⊕ yas = 0))

+ Pr((xa1 ⊕ . . .⊕ xas = 1) ∩ (ya1 ⊕ . . .⊕ yas = 1))

= (β × γ) + ((1 − β)× (1− γ))

which is not always equal to 0.5.

3 The New Cryptanalysis Algorithm

3.1 Adapting the New Analysis Phase to Nonlinear Cryptanalysis
of SPNs

Where the cipher being attacked is an SPN, we present an adaptation of Col-
lard et al.’s algorithm for the analysis phase [10][14] to nonlinear (and filtered
nonlinear) cryptanalysis.

– Let f(i, j), where i is the value of the active text bits, and j the value of
the k1 bits with which they are xored, be a 2|k2|-long string of values. We
compute it as follows:

1. Partially encrypt/decrypt i using j. This yields a string δ of text bits
entering/leaving the outer rounds of the approximation, |k2| of which
are involved in the nonlinear component.

2. For each possible value μ of k2, compute the nonlinear function on (δ⊕μ).
3. If the attack does not use filtering, set the μth entry in the string of

values to −1 if the nonlinear approximation does not hold, 1 if it does
hold.

4. For a filtered attack, set the μth entry to 0 if (δ⊕μ) is one of the inputs
being ”filtered out”. Otherwise, assign either -1 or 1 as a value in the
same way as before.

Filtered Nonlinear Cryptanalysis of Reduced-Round Serpent 127

– Since δ is obtained by applying a sequence of functions to a set of bits
determined entirely by the value of (i ⊕ j), the matrix C such that Cij =
f(i ⊕ j) = the value ∈ {−1, 1} or {−1, 0, 1} which we have just computed
can be defined as it was in [10], except that Cij is now a string of values
instead of just one. We only need to compute one column of C.

– Where x is the vector containing the frequency with which each value for
the l active text bits occurred, since C is a circulant matrix, Cx can be
calculated using the Fast Fourier Transform. Each entry in Cx is a 2|k2|-
string of integers.

– The memory complexity, and time complexities in terms of arithmetic op-
erations (AOs) and memory accesses (MAs), of the corresponding stages of
the linear version of this method can be multiplied by 2|k2| to obtain the
complexity of the new method up to this point. Since we do not need this
many copies of the “interim” arrays y and z, the memory complexity is in
fact slightly lower.

However, if we do not employ key ranking, we can optimise much further in
terms of memory. Instead of calculating and storing the entire 2|k1| × 2|k2|

matrix Cx (the final column of which can use the space originally occu-
pied by x), we could compute one column at a time and search it for its
maximal absolute entry. In an array indexed by k2 value, we store this en-
try and its corresponding value of k1. The highest value will correspond to
the most likely (k1, k2) and we therefore need only enough memory for two
columns of Cx (half of which will in fact be used to store x). For a 2R attack,
this reduces memory requirements to 2|k1|+|k2| + 2|k1|+4+1 + 2max(l1,l2)+5 =
2|k1|+5+2|k1|+|k2|+2max(l1,l2)+5 bytes (The 2max(l1,l2)+5 bytes are explained
in the discussion of the original method’s complexity below) instead of
2|k1|+|k2|+4.087 + 2max(l1,l2)+5.

The time complexity of each partial encryption/decryption may be higher
than in the case of linear cryptanalysis, due to the complexity of computing
the nonlinear function.

– We assign to each Cxi a score equal to the maximum absolute value therein.
The highest-scoring Cxi corresponds to the most likely key. This requires
(2|k1|+2|k1|+|k2|) MAs, to access all values in all strings and write the scores
to an array.

The array of scores should need at most (block size of cipher) bits per entry.
For block size 128, this adds 16× 2|k1| bytes to the memory complexity.

– This allows us to deduce k1. We can then proceed to obtain information on
k2 by analysing the biases of the relateds for the correct k1 candidate.

We can use the maximum absolute bias of all the related approximations to
calculate the data complexity in the same way that the bias of one approximation
is used in linear cryptanalysis.

128 J. McLaughlin and J.A. Clark

3.2 The Complexity of the Method

We discuss the complexity of this analysis method for linear attacks in more
detail, having already explained how the complexity of the nonlinear version is
related to it.

The column of C has 2k entries, all -1 or 1. We need 2k bytes to store it in
signed char variables. Variable types using fewer bits are unlikely to be efficiently
implemented on any platform.

The vector x has 2k entries, each of which must be at least log2(N) bits in
size. On a 64-bit processor, a cipher with 128-bit block size will require 2k+1

words here, or 2k+4 bytes.
During the calculation of Cx, two “interim” arrays, y and z, are used [10].

Based on Carlet’s description [15] of a version of the FFT which is equivalent to
both the Fast Walsh-Hadamard Transform and the k-dimensional FFT of size
2k [16], we note that the same data type can be used for these as for x, and
hence these arrays will require 2k+5 bytes.

This gives us a memory complexity of 2k+2k+4 +2k+5 ≈ 2k+5.615 bytes. The
space used by one of the previous arrays, such as x, can be reused to store Cx.

We now consider the time complexity. The algorithm requires 2k partial en-
cryption/decryptions (PEDs) to calculate a column of C, followed by O(3·k·2k)
MAs and AOs to calculate Cx.

Based on the aforementioned version of the FFT [15], we estimate ≈ (2k+3)·2k
MAs per transform. Where y and z denote the output arrays from the first two
transforms, calculating the dot product y · z requires 3 × 2k MAs. Multiplying
the per-transform complexity by three, and adding the complexity of the dot
product and the 2k MAs when the first column of C was calculated and written
to memory, gives us ≈ (6k + 13) · 2k MAs in total. As for AOs, the calculation
of the dot product requires 2k AOs, and we estimate ≈ (2k + 1) · 2k AOs per
transform, giving us a total of ≈ (6k + 4) · 2k.

This is a significant improvement on the O(22k) MAs of the original analysis
phase; although in most cases that phase was able to access contiguously stored
array elements in sequence and it may be that the extent of the improvement
is reduced if this factor aided the CPU’s cache management/location-seeking in
main memory.

Equating complexity in terms of memory accesses to complexity in terms of
partial cipher encryptions is a difficult matter [17], depending on several factors
such as; whether the CPU’s memory controller is on-die or off-die, whether the
memory access is to L1 cache, L2 cache, higher-level cache or main memory,
the instruction set of the CPU, the efficiency of physical address extension...
Previous work on the cryptanalysis of reduced-round Serpent [18][19][20] was
not always consistent in converting between the two, and assumed 3 processor
cycles per memory access - which would seem to require all memory accesses to
be to L1 processor cache. Estimates for the time required to access data in main
memory in the event of a cache miss vary from 75 to 300 cycles, and it is not clear
if this figure is likely to increase or decrease over time, as processor performance
improvements increasingly rely on multiple cores and parallel execution rather

Filtered Nonlinear Cryptanalysis of Reduced-Round Serpent 129

than increased clock speed. In 2003, the NESSIE project [21] gave a figure of 50
cycles per encrypted byte on either the PowerPC G3 or G4 processor as the best
performance for full Serpent; if we extrapolate from this to 800 cycles per block
we have a worst-case estimate of 1 MA = 3/8 of a full Serpent encryption, and
we do not have up-to-date figures for more recent processors to compare this to.
It is becoming accepted that there is no easy means to compare complexity in
terms of memory accesses to complexity in terms of cipher operations [17], and
this is a problem we ourselves will encounter when discussing the performance
of our attacks in a later section.

For 2R attacks, later research [14] allows us to trade very slight increases in
MA and AO complexity for reduced memory and PED complexities. Let l1, l2 be
such that (l1 + l2) = k, where l1 denotes the number of TPS bits acting on the
plaintext, and l2 the number of TPS bits acting on the ciphertext. Then instead
of 2k PEDs, the method need only execute 2l1 partial encryptions (PEs) and 2l2

partial decryptions (PDs), in addition to est. (2l2 ·(6l1+4)·2l1+2l1 ·(6l2+4)·2l2) =
(6k+8) ·2k AOs and est. (2l2 · (6l1+13) ·2l1 +2l1 · (6l2+13) ·2l2) = (6k+26) ·2k
MAs. Memory complexity is also improved, since the arrays y and z need only
have 2max(l1,l2) entries each, reducing the total to 2k + 2k+4 + 2max(l1,l2)+5 ≈
2k+4.087 + 2max(l1,l2)+5 bytes.

This algorithm was also generalised for multidimensional linear attacks [14].
Where m is the number of dimensions, the generalised algorithm requires 2m×
the number of MAs and AOs for the one-dimensional case, plus the complexity
of computing 2l1+l2 more transforms on a data set of size 2m to convert correla-
tions to empirical probability distributions, plus the complexity of applying the
convolution method [22] to these distributions.

3.3 Other Issues Affecting the Complexity of the New Attack

The time complexity is affected by the cost of computing a nonlinear function
compared to the cost of a linear function (usually considered negligible), and
by the differing numbers of active S-boxes. For example, this is the nonlinear
component of an approximation to DES S5:

1⊕ x5 ⊕ x5x6 ⊕ x2x6 ⊕ x1x5 ⊕ x1x2 ⊕ x1x5x6 ⊕ x1x2x6
It is not clear how to compare the complexity of this to the complexity of the

full S-box, as it is unlikely that an S-box implementation would rely solely on
XOR, AND and NOT (to add the constant term) gates. Moreover, the difficulty
of finding, for a given basis and function, the circuit for that function with the
smallest number of gates is a difficult and still open problem [23]. It is to be
assumed that the cryptanalyst would be using S-box implementations chosen
to maximise speed, without regard to such factors as resistance to side-channel
attacks which most cipher implementations would have to address.

Since this may be represented by a lookup table with as many elements as
the S-box:

1101110111011101100010001000100011111111111111110000000000000000,

130 J. McLaughlin and J.A. Clark

and since its algebraic normal form has a much smaller weight than any co-
ordinate function of the S-box, we will assume that the complexity of calculating
this function is ≤ that of computing the full S-box. Since it must be calculated
2|k2| times for each PED, where Sc denotes the total number of S-boxes in all
the rounds of the cipher, we estimate the time required for each PED to be ≤
(number of active outer round boxes)/Sc + 2|k2|/Sc of the time required for a
full encryption.

In a filtered attack, prior to computing the nonlinear function we must check
whether (δ ⊕ μ) is filtered. This requires either another lookup table or the
computation of a second function, and so we upper-bound the PED complexity
with (no. of active outer round boxes)/Sc + 2|k2|+1/Sc.

4 Cryptanalysing Reduced-Round Serpent

4.1 Survey of Existing Attacks

The various linear, differential-linear and multidimensional linear attacks on
reduced-round Serpent fall into two categories; those based on Collard et al.’s
approximations [24][25][10][14] and those based on the approximation of Dunkel-
man, Keller et al. [18][19][26]. In Appendix A, we point out a few errors in the
existing descriptions of Dunkelman et al.’s approximation.

However, the data complexities of some of these attacks have been underesti-
mated.

Let C denote capacity, and p the probability that the linear approximation
holds (so (p − 1/2) is the bias). Let Ps denote the success probability of the
attack. In [14], N is equal to 4C−1. This figure is intended to match the values
for N used by Collard et al. in multiple linear attacks. However, Collard et al.
also used N = 4 · |p−1/2|−2 in conventional linear attacks (apparently to obtain
Ps = 0.785 as predicted by Matsui in Table 3 of [1]), and this is 16C−1, not
4C−1. Moreover, Table 3 of [1] assumes that l = 6 - which is not the case in any
of the attacks on Serpent - and the values therein are calculated using a double
integral which does not match that obtained by Selçuk [27].

The below equation is Selçuk’s double integral. It allows the success proba-
bilities for various x such that N = x · |p− 1/2|−2 to be calculated for arbitrary
k, assuming that the Wrong-Key Randomization Hypothesis holds:

Ps =

∫ ∞

−2√N|p−1/2|

(∫ u+2
√
N |p−1/2|

−u−2√N|p−1/2|
φ(v)dv

)2k−1

φ(u)du (4.1)

However, in the case of Collard et al.’s approximation, the WKRH does not
always apply, and so we cannot use Equation 4.1 directly. If we look at Figure 1,
we see that an input difference of 0010 or 1000 to Serpent S2 will always cause
the value of y4 to flip - and input difference 1010 will always leave it invariant.
Likewise, input differences 0010, 0100 and 0110 will cause the value of y0⊕y1⊕y2
to flip with probability bias ±1/2.

Filtered Nonlinear Cryptanalysis of Reduced-Round Serpent 131

Fig. 1. Table showing probability biases for truncated differentials for Serpent S2, in
which input difference ΔX causes linear combination λY of the output bits to flip with
bias ε

Figure 2 shows that four of the input-end S-boxes for which we guess key
bits in the Collard/Standaert/Quisquater attack are affected by this; two with
output bitmask 1 and two with bitmask 14. This means that we can only recover
eight of the sixteen key bits for these S-boxes.

Likewise, an input difference to S4’s inverse (i.e. an output difference to S4)
of 0010, 1100 or 1110 causes the value of x0⊕x2⊕x3 to flip with bias 0.5. Since
one of the active ciphertext S-boxes contributes the parity of these bits to the
approximation, the number of bits that can be recovered is reduced by 2 again.
Instead of recovering 108 key bits, we can only recover 98.

Fig. 2. Input end S-boxes in Collard et al.’s attack. Dark cells signify active output
bits

132 J. McLaughlin and J.A. Clark

Fig. 3. Output end S-boxes in Collard et al.’s attack

This leaves 22 active S-boxes. For each of these, there are six incorrect keys
such that the approximation is expected to hold with an absolute bias equal to
half the absolute bias of the correct key. Let ε denote the value |p−1/2|. Instead
of using Equation 4.1, we computed Ps in a way that took this into account, by
integrating Z(u) =

⎛

⎝
22∏

i=1

(∫ u+2
√
Nε(1−1/2i)

−u−(2√Nε(1+1/2i))

φ(v)dv

)6i(22i)
⎞

⎠

(∫ u+2
√
Nε

−u−2√Nε
φ(v)dv

)2l−
22
∑

i=1

6i(22i)

φ(u)

from −2√Nε to ∞:

∫ ∞

−2√Nε
Z(u)du

for k = 98. However, the difference between this and the value of Ps obtained
by using Equation 4.1 was negligible. We deduced that N = 37.63|p− 1/2|−2 ≈
2121.234 was necessary to achieve Ps = 0.785.

In Biham et al.’s linear attack [18], five active plaintext boxes have incorrect
key values which cause the parity of their active output bits to flip with bias
0.5. This reduces the number of key bits which can be recovered from 140 to
130. The other active plaintext/ciphertext S-boxes all have six input/output
differences which flip the parities of their active bits with bias 0.25, but these
have a negligible effect on the value of Ps.

Fig. 4. Active plaintext S-boxes in Biham et al.’s attack

Nguyen et al.’s multidimensional “Method 2” attack on 12-round Serpent
[14] modifies Collard et al.’s 9-round approximation by adding a 56-dimensional
approximation to the preceding round, resulting in a multidimensional 10-round
approximation. The attack aims for maximum advantage a = k = 172 with
M = (256 − 1).

Filtered Nonlinear Cryptanalysis of Reduced-Round Serpent 133

Fig. 5. Active ciphertext S-boxes in Biham et al.’s attack

There are two statistical frameworks for multidimensional linear cryptanaly-
sis; one based on the χ2 statistic and the other on the log-likelihood ratio (LLR)
[28]. None of the attacks in [14] are feasible with the χ2 statistic, so we assume
that the LLR is used and generalise Equation 4.1 to the multidimensional case:

Ps =

∫ ∞

−∞

(∫ x

−∞
fW (y)dy

)2k−1
fR(x)dx

=

∫ ∞

−∞
FW (x)2

k−1 1

σR
φ

(
x− μR
σR

)

dx

=

∫ ∞

−∞

(
ΦμW ,σ2

W
(x)M+1

)2k−1 1

σR
φ

(
x− μR
σR

)

dx

For large M and k, this, and its generalisations when the WKRH does not
hold, are not easy to calculate numerically. With M = 256− 1, Wolfram Mathe-
matica fails to complete the calculation. As a result, we are currently forced to
rely on the approximate statistical framework for the case in which key-ranking
is used [28], based on Normally-approximated order statistics [29][27][28]. We
begin by addressing an error in this framework.

Let b denote the value Φ−1(M+1
√
1− 2−a). The following equation is derived

in [28] using the incorrect approximation a ≈ (b2/2)− log2(M + 1):

a ≈ (
√
NC − Φ−1(Ps))2/2− log2(M + 1) (4.2)

Using the approximation b ≈ Φ−1(1 − 2−a−log2(M+1)) instead, we obtain a
very different equation:

a ≈ 0.72(
√
NC−Φ−1(Ps))2+ log2(

√
NC−Φ−1(Ps))+1.325− log2(M+1) (4.3)

There is also the “linear hull” effect to consider. Approximations with the same
input and output bitmasks, but following different paths through the cipher, may
cause the actual distribution to differ from that predicted theoretically. Figure
4 of [13] shows the results of experiments on a cipher similar to Serpent [30]. In
these, as the number of rounds increases, the magnitude of the bias calculated
with the Piling-Up Lemma increasingly underestimates that of the actual bias,
to an extent which varies significantly depending on the key value. The LLR
statistic in multidimensional linear cryptanalysis rewards high Kullback-Leibler
distance from the uniform distribution, and low distance from the theoretical
distribution, equally [31]. Clearly, the linear hull effect interferes with the second
part of this.

134 J. McLaughlin and J.A. Clark

The capacity claimed by Nguyen et al. for this attack is 2−116. However, this
is incorrect:

– The various 2−4m terms in their Equation 2 correspond to ±2s in the columns
of Serpent S2’s linear approximation table, and should therefore be 2−3m.

– The equation multiplies (4× the square of the bias of the rest of the ap-
proximation) by (the sum of some individual S-box biases). These S-box
biases should be multiplied by 2 when calculating the overall bias using the
Piling-Up Lemma, and Equation 2 should have multiplied by the sum of the
squares of these doubled biases.

– The term 8m assumes that all ±2s in the relevant LAT columns for the rel-
evant active S-boxes contribute towards the attack’s capacity. However, any
approximation which is the sum of an even number of the 56 base approx-
imations will have output bitmask 0, and hence zero bias. After writing a
script to quantify the effect of this, we discovered that at least four nonzero
entries in the LAT columns for output bitmasks other than 0001, 1110 and
1111 must fail to contribute to the attack’s capacity. The highest value this
term can take is therefore 4m.

We therefore recalculate the capacity as follows:

C ≤ (2−58)2
11∑

m=0

(
11

m

)

4m211−m44[(215(2−3m2−2(11−m)2−2×4))2]

= 2−120.565

Solving Equation 4.3 with this capacity, we obtain N ≈ 2128.956, in excess of
the size of the codebook and thus invalidating the 12-round Method 2 attack.

A wrong key is far more likely for this sort of attack to have a randomising
effect, since each active S-box may contribute more than one bit or sum of bits
to the 56 “base” approximations in the multidimensional attack, and a wrong
key value for one S-box is less likely to flip all of these with high or indeed any
bias than just one. We believe that the WKRH is sufficiently valid for the active
plaintext boxes to make little or no difference to Ps in the multidimensional
attacks of [14].

The “Method 1” attack from the same paper consists of 2128 separate 1R
attacks with key guessing on 48 bits in the final round (only 46 of which we
can recover). The data complexity for one such 1R attack must lower-bound the
value of N . For capacity 2−118.565, we obtain N ≥≈ 2125.813, but note that this
may be adversely affected by the linear hull effect.

We also consider [14]’s attacks on 11-round Serpent. In the case of the attack
with twelve active S-boxes in the final round, only 46 of the 48 attacked bits
can be recovered. We solve Equation 4.3 for capacity 2−118.565 and Ps = 0.785,
and obtain N ≈ 2125.813. In the case of the attack with eleven active final-round
S-boxes, we obtain N ≈ 2127.784.

(These figures do not take into account the linear hull effect, as there is no
way to quantify it.)

Filtered Nonlinear Cryptanalysis of Reduced-Round Serpent 135

If the LLR statistic is used, the convolution method [22] for converting em-
pirical probability distributions into scores for key candidates requires 2k((6m+
13)·2m) MAs + 2k((6m+ 4)·2m) AOs.

Finally, we consider the differential-linear attacks. In Indesteege et al.’s chosen-
ciphertext attack on 11-round Serpent [26], two active plaintext boxes (both
Serpent S4) contribute bit y4 to the attack. Since three input differences cause
this bit to flip with bias ±0.5, the attack recovers 56 key bits instead of 60. For
the other differential-linear attacks [26], all key bits are obtainable and the effect
of the bias ±0.25 parity flips on Ps is negligible.

Fig. 6. Active plaintext S-boxes in Biham et al.’s reverse-direction CC differential-
linear attack

4.2 Nonlinear Attacks on 11-round Serpent-192 and Serpent-256.

In this section, we describe various modifications to Collard et al.’s Approxi-
mation D2 [25], which will allow us to attack 11-round Serpent using nonlinear
approximations.

The simplest change is to replace the (input bitmask 12, output bitmask
10) approximation in the first round (affecting bits 16, 17, 18, 19) with x2 ⊕
x1 ⊕ x1x4 = y1 ⊕ y3. Doing this gives us 20 active plaintext S-boxes, increasing
|k1| to 128. However, four such boxes contribute a bit (or parity) that can flip
with bias ±0.5 for various input differences, as does one of the active ciphertext
boxes. We can therefore recover only 118 bits of k1. One of the bits affected
by this is involved in the quadratic term of the nonlinear approximation, so we
cannot recover any k2 bits. The memory requirements are increased to 2(128+2)+
2(128+5) = 2133.17 bytes. The time complexity of the analysis phase also increases,
and is dominated by 4·(6×128+8)·2128 = 2139.6 AOs and 4·(6×128+26)·2128 =
2139.63 MAs.

We estimate the number of AOs per reduced-round encryption by counting
the number of AOs in Serpent’s bitslice implementation [32]. We assume that
Osvik’s implementation of S-box 6 [33] is used. This gives us 212.65 AOs per
11-round encryption, and 212.78 per 12-round encryption. We therefore obtain
time complexity of 2126.95 encryptions + 2139.63 MAs.

The capacity C is multiplied by (6/4)2 = 2.25. The increased number of k1
bits, and the need to deal with 22 relateds, minus the ten k1 bits which cannot be
deduced, effectively raise k to 120 for the purposes of calculating N . We obtain
Ps = 0.8 with N = 2120.357.

136 J. McLaughlin and J.A. Clark

T
a
b
le

2
.
A
tt
a
ck

co
m
p
le
x
it
ie
s.

M
em

o
ry

is
m
ea
su
re
d
in

b
y
te
s.

T
h
e
m
em

o
ry

re
q
u
ir
ed

fo
r
th
e
a
tt
a
ck

o
f
[1
8
]
w
h
en

th
e
a
n
a
ly
si
s
m
et
h
o
d
o
f

[1
0
]
is

n
o
t
u
se
d
is

u
n
cl
ea
r,

a
n
d
th
e
re
le
va

n
t
so
u
rc
es

[1
8
][
1
0
]
d
is
a
g
re
e
o
n
th
is
.
In

m
o
st

ca
se
s
P
s
=

0
.7
8
5
(o
r
sl
ig
h
tl
y
h
ig
h
er
.)

T
h
e
ch

o
se
n

p
la
in
te
x
t
a
tt
a
ck
s
o
f
B
ih
a
m

et
a
l.
h
av

e
P
s
=

0
.8
4
,
a
n
d
th
e
ch

o
se
n
-c
ip
h
er
te
x
t
a
tt
a
ck

h
a
s
P
s
=

0
.9
3
.
T
h
e
ti
m
e
co
m
p
le
x
it
y
fo
r
B
ih
a
m

et
a
l.
’s

li
n
ea
r
cr
y
p
ta
n
a
ly
si
s
va

ri
es

d
ep

en
d
in
g
o
n
w
h
et
h
er

th
e
n
ew

a
n
a
ly
si
s
m
et
h
o
d
o
f
C
o
ll
a
rd

et
a
l.
is

u
se
d
,
o
r
w
h
et
h
er

a
n
ea
rl
ie
r
m
et
h
o
d
[1
8
]
is
.

T
a
b
le

en
tr
ie
s
in

b
o
ld

si
g
n
if
y
th
a
t
th
e
m
et
h
o
d
m
ay

n
o
t
w
o
rk

a
s
cl
a
im

ed
d
ep

en
d
in
g
o
n
th
e
li
n
ea
r
h
u
ll
eff

ec
t.

E
=

fu
ll
en

cr
y
p
ti
o
n
s
o
f
th
e

re
d
u
ce
d
ro
u
n
d
ci
p
h
er
.
P
E

=
p
a
rt
ia
l
en

cr
y
p
ti
o
n
s.

P
D

=
p
a
rt
ia
l
d
ec
ry
p
ti
o
n
s.

R
o
u
n
d
s
T
y
p
e
o
f
a
tt
a
ck

D
a
ta

T
im

e
(a
n
a
ly
si
s)

M
em

B
it
s
re
co
v
er
ed

1
1

L
in
ea
r
[1
8]

2
1
2
1
.7
2
8
K
P

2
1
8
8
.1

E
*

1
3
0

1
1

L
in
ea
r
[1
8]

2
1
2
1
.7
2
8
K
P

2
9
6
P
E

+
2
4
4
P
D

+
2
1
4
9
.7
3
A
O

+
2
1
4
9
.7
6
M
A

2
1
4
4
.0
8
7
1
3
0

1
1

L
in
ea
r
[1
0]

2
1
2
1
.2
3
4
K
P

2
6
0
P
E

+
2
4
8
P
D

+
2
1
1
7
.3
6
A
O

+
2
1
1
7
.4

M
A

2
1
1
2
.0
8
7
9
8

1
1

M
u
lt
id
im

.
li
n
.
[1
4]

2
1
2
5
.8
1
3
K
P

2
4
8
P
D

+
2
1
1
4
.0
8
7
A
O

+
2
1
1
4
.1
3
4
M
A

2
1
0
8

4
6

1
1

M
u
lt
id
im

.
li
n
.
[1
4]

2
1
2
7
.7
8
4
K
P

2
4
4
P
D

+
2
1
1
0
.0
5
5
A
O

+
2
1
1
0
.1
0
3
M
A

2
1
0
4

4
4

1
1

D
iff
er
en
ti
a
l-
li
n
ea
r
[2
6]

2
1
2
1
.8

C
P

2
1
3
5
.7

M
A

2
7
6

4
8

1
1

N
o
n
li
n
ea
r
(t
h
is

p
a
p
er
)

2
1
2
0
.3
5
7
K
P

2
8
0
P
E

+
2
4
8
P
D

+
2
1
3
9
.6

A
O

+
2
1
3
9
.6
3
M
A

2
1
3
3
.1
7

1
1
8
k
1

1
1

N
o
n
li
n
ea
r
(t
h
is

p
a
p
er
)

2
1
1
7
.3
1
7
K
P

2
6
0
P
E

+
2
7
6
P
D

+
2
1
4
9
.6
9
A
O

+
2
1
4
9
.7
2
M
A

2
1
4
1
.5
8
5
1
2
8
k
1
,
4
k
2

1
1

F
il
te
re
d
N
L
(t
h
is

p
a
p
er
)
2
1
1
6
.5
0
8
K
P

2
6
0
P
E

+
2
7
6
P
D

+
2
1
5
1
.6
9
A
O

+
2
1
5
1
.7
2
M
A

2
1
4
2
.5
8
5
1
2
8
k
1
,
6
k
2

1
1

N
o
n
li
n
ea
r
(t
h
is

p
a
p
er
)

2
1
1
5
.4
4
K
P

2
6
0
P
E

+
2
8
0
P
D

+
2
1
5
3
.7
3
A
O

+
2
1
5
3
.7
6
M
A

2
1
4
5
.5
8
5
1
3
0
k
1
,
4
k
2

1
1

F
il
te
re
d
N
L
(t
h
is

p
a
p
er
)
2
1
1
4
.5
5
K
P

2
6
0
P
E

+
2
8
0
P
D

+
2
1
5
5
.7
3
A
O

+
2
1
5
5
.7
6
M
A

2
1
4
6
.5
8
5
1
3
2
k
1
,
6
k
2

1
1

D
iff
er
en
ti
a
l-
li
n
ea
r
[2
6]

2
1
1
3
.7

C
C

2
1
3
7
.7

M
A

2
9
9

5
6

1
2

D
iff
er
en
ti
a
l-
li
n
ea
r
[2
6]

2
1
2
3
.5

C
P

2
2
4
9
.4

E
2
1
2
8
.5

1
6
0

1
2

M
u
lt
id
im

.
li
n
.
[1
4]

≥
2
1
2
5
.8
1
3
K
P
2
1
2
8
P
E

+
2
4
8
P
D

+
2
2
4
2
.0
8
7
A
O

+
2
2
4
2
.1
3
4
M
A

2
1
0
8

1
7
4

Filtered Nonlinear Cryptanalysis of Reduced-Round Serpent 137

Table 3. Attack complexities cont. 212.65 AOs are needed for an 11-round Serpent
encryption, and 212.78 AOs for twelve rounds

Rounds Type of attack Time (analysis) summary
11 Linear [18] 2188.1 E
11 Linear [18] 2137.08 E + 2149.76 MA
11 Linear [10] 2104.71 E + 2117.4 MA
11 Multidim. linear [14] 2101.437 E + 2114.134 MA
11 Multidim. linear [14] 297.405 E + 2110.103 MA
11 Differential-linear [26] 2135.7 MA
11 Nonlinear (this paper) 2126.95 E + 2139.63 MA
11 Nonlinear (this paper) 2137.04 E + 2149.72 MA
11 Filtered NL (this paper) 2139.04 E + 2151.72 MA
11 Nonlinear (this paper) 2141.08 E + 2153.76 MA
11 Filtered NL (this paper) 2143.08 E + 2155.76 MA
11 Differential-linear [26] 2137.7 MA
12 Differential-linear [26] 2249.4 E
12 Multidim. linear [14] 2229.437 E + 2242.134 MA

We now consider a situation in which the entire first round approximation
remains linear. We replace the final-round x1 ⊕ x3 ⊕ x4 = y2 approximation on
state bits 96-99 with x1⊕x3⊕x4 = y2⊕ y1⊕ y2y4, and also replace x3⊕x4 = y4
(bits 76-79) with x3 ⊕ x4 = y4 ⊕ y3 ⊕ y1y3. The total number of active S-
boxes increases to 34. We have replaced a bias 4 approximation and a bias 2

approximation with two bias 6 approximations, multiplying C by
(

6×6
4×2
)2

=

20.25. For the purposes of calculating N , the value of k is effectively increased
to (140-8) = 132, and N = 2117.317 gives Ps ≈ 0.8. The memory requirements
are increased to 2141.585. The time complexity of the analysis phase is dominated
by 16·(6·136 + 26)·2136 = 2149.72 MAs and 16·(6·136 + 8)·2136 = 2149.69 AOs.

If we utilise filtering here, the number of active S-boxes does not change. The bi-
ases of the eight relateds for each of the S-box approximations become (6,−4,−4, 2,
0, 0, 0, 0), allowing us to attack all six k2 bits. Memory requirements increase to
2142.585, and the time complexity of the analysis phase increases to 64·(6·136 +
26)·2136 = 2151.72 MAs and 64·(6·136+ 8)·2136 = 2151.69 AOs. For the purposes of
calculating N , k is effectively equal to 134, and C is multiplied by (16/9)2. How-
ever, the need to effectively discard 9/16 of our KP pairs means we must calculate
N as if it were only multiplied by (16/9), and we obtainN = 2116.508.

To reduce the data complexity further, we could replace the x1⊕x3⊕x4 = y2
approximation on state bits 116-119 with a nonlinear approximation, instead of
replacing x3 ⊕ x4 = y4. C is then multiplied by 81 instead of 20.25, and we
activate 35 S-boxes. We obtain time complexity 16·(6·140 + 26)·2140 = 2153.76

MAs and 16·(6·140 + 8)·2140 = 2153.73 AOs with memory complexity 2145.585.
For the purposes of calculating N , k is effectively increased to (144-10)=134,
and N = 2115.338 yields Ps = 0.8.

138 J. McLaughlin and J.A. Clark

Fig. 7. Left-hand graph shows mean advantages for attack on four round SPN with
4×4 S-boxes using: linear approximation (red), nonlinear approximation (grey), nonlin-
ear approximation with filtering (black). Right-hand graph shows results of alternate
calculation for average advantage in which the mean rank obtained is input to the
formula for advantage.

Again, we can employ filtering here. The number of active S-boxes is still 35,
and all six k2 bits can now be attacked. The memory complexity increases to
2146.585, and the time complexity to 2155.76 MAs and 2155.73 AOs. To calculate
N , since one less S-box is affected by the “WKRH max-bias” issue than before,
k is effectively (146-8)=138 and we obtain N = 2114.55.

5 Conclusion

We have obtained nonlinear approximations for block cipher S-boxes with higher
absolute bias than their best linear approximations. We have also derived algo-
rithms which can use the new approximations in attacks, and calculated the
complexities for these new attacks. Having done this, we have presented non-
linear attacks on 11-round Serpent with better data complexity than any other
known-plaintext attack, as well as the best time complexity of any attack so far
on 11-round Serpent-256.

References

1. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

2. Matsui, M.: The first experimental cryptanalysis of the Data Encryption Stan-
dard. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 1–11. Springer,
Heidelberg (1994)

3. Harpes, C., Kramer, G.G., Massey, J.L.: A generalization of linear cryptanalysis
and the applicability of Matsui’s piling-up lemma. In: Guillou, L.C., Quisquater,
J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 24–38. Springer, Heidelberg
(1995)

4. Knudsen, L.R., Robshaw, M.: Non-linear approximations in linear cryptanaly-
sis. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 224–236.
Springer, Heidelberg (1996)

Filtered Nonlinear Cryptanalysis of Reduced-Round Serpent 139

5. Courtois, N.T.: Feistel schemes and bi-linear cryptanalysis (extended abstract).
In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 23–40. Springer,
Heidelberg (2004)

6. Courtois, N.: Feistel schemes and bi-linear cryptanalysis. Cryptology ePrint
Archive, Report 2005/251 (August 2005), http://eprint.iacr.org/2005/251

7. Tapiador, J.M.E., Clark, J.A., Hernandez-Castro, J.C.: Non-linear cryptanalysis
revisited: Heuristic search for approximations to S-boxes. In: Galbraith, S.D. (ed.)
Cryptography and Coding 2007. LNCS, vol. 4887, pp. 99–117. Springer, Heidel-
berg (2007)

8. Burwick, C., Coppersmith, D., D’Avignon, E., Gennaro, R., Halevi, S., Jutla,
C.: Jr, S.M., O’Connor, L., Peyravian, M., Safford, D., Zunic, N.: MARS
- a candidate cipher for AES. Technical report, IBM (September 1999),
http://www.research.ibm.com/security/mars.pdf

9. Clark, J., McLaughlin, J.: Nonlinear cryptanalysis of reduced-round Serpent and
metaheuristic search for s-box approximations. Cryptology ePrint Archive, Report
2013/ (January 2013), http://eprint.iacr.org/2013/

10. Collard, B., Standaert, F.-X., Quisquater, J.-J.: Improving the time complexity of
Matsui’s linear cryptanalysis. In: Nam, K.-H., Rhee, G. (eds.) ICISC 2007. LNCS,
vol. 4817, pp. 77–88. Springer, Heidelberg (2007)

11. Murphy, S.: The effectiveness of the linear hull effect. Technical Report
RHUL-MA-2009-19, Royal Holloway, University of London (October 2009),
http://www.isg.rhul.ac.uk/~sean/Linear_Hull_JMC-Rev2-llncs.pdf

12. Leander, G.: On linear hulls, statistical saturation attacks, PRESENT and a
cryptanalysis of PUFFIN. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 303–322. Springer, Heidelberg (2011)

13. Collard, B., Standaert, F.X.: Experimenting linear cryptanalysis (2011),
http://perso.uclouvain.be/fstandae/PUBLIS/90.pdf

14. Nguyen, P.H., Wu, H., Wang, H.: Improving the algorithm 2 in multidimensional
linear cryptanalysis. In: Parampalli, U., Hawkes, P. (eds.) ACISP 2011. LNCS,
vol. 6812, pp. 61–74. Springer, Heidelberg (2011)

15. Carlet, C.: Boolean functions for cryptography and error-correcting
codes. In: Crama, Y., Hammer, P. (eds.) Boolean Models and Meth-
ods in Mathematics, Computer Science, and Engineering, Cambridge
University Press, Cambridge (2010), The chapter is downloadable from
http://www.math.univ-paris13.fr/~carlet/chap-fcts-Bool-corr.pdf .

16. Kunz, H.: On the equivalence between one-dimensional discrete Walsh-Hadamard
and multidimensional discrete Fourier transforms. IEEE Transactions on Comput-
ers C-28(3), 267–268 (1979)

17. Dunkelman, O.: Private communication
18. Biham, E., Dunkelman, O., Keller, N.: Linear cryptanalysis of reduced round

Serpent. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 16–27. Springer,
Heidelberg (2002)

19. Biham, E., Dunkelman, O., Keller, N.: Differential-linear cryptanalysis of Serpent.
In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 9–21. Springer, Heidelberg
(2003)

20. Biham, E., Dunkelman, O., Keller, N.: New results on boomerang and rectangle
attacks. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 1–16.
Springer, Heidelberg (2002)

21. Preneel, B., Rompay, B.V., Ors, S.B., Biryukov, A., Granboulan, L., Dottax, E.,
Dichtl, M., Schafheutle, M., Serf, P., Pyka, S., Biham, E., Barkan, E., Dunkelman,

http://eprint.iacr.org/2005/251
http://www.research.ibm.com/security/mars.pdf
http://eprint.iacr.org/2013/
http://www.isg.rhul.ac.uk/~sean/Linear_Hull_JMC-Rev2-llncs.pdf
http://perso.uclouvain.be/fstandae/PUBLIS/90.pdf
http://www.math.univ-paris13.fr/~carlet/chap-fcts-Bool-corr.pdf

140 J. McLaughlin and J.A. Clark

O., Stolin, J., Ciet, M., Quisquater, J.J., Sica, F., Raddum, H., Parker, M.: Per-
formance of optimized implementations of the NESSIE primitives (version 2.0)
(February 2003),
http://www.cosic.esat.kuleuven.be/nessie/deliverables/D21-v2.pdf

22. Hermelin, M., Nyberg, K.: Dependent linear approximations: The algorithm
of Biryukov and others revisited. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS,
vol. 5985, pp. 318–333. Springer, Heidelberg (2010)

23. Courtois, N., Hulme, D., Mourouzis, T.: Solving circuit optimisation problems
in cryptography and cryptanalysis. Cryptology ePrint Archive, Report 2011/475
(September 2011), http://eprint.iacr.org/2011/475

24. Collard, B., Standaert, F.-X., Quisquater, J.-J.: Improved and multiple linear
cryptanalysis of reduced round Serpent. In: Pei, D., Yung, M., Lin, D., Wu, C.
(eds.) Inscrypt 2007. LNCS, vol. 4990, pp. 51–65. Springer, Heidelberg (2008)

25. Collard, B., Standaert, F.X., Quisquater, J.J.: Improved and multiple linear crypt-
analysis of reduced round Serpent - description of the linear approximations
(2007), http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.95.522&rep=rep1&type=pdf

26. Dunkelman, O., Indesteege, S., Keller, N.: A differential-linear attack on 12-round
Serpent. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008.
LNCS, vol. 5365, pp. 308–321. Springer, Heidelberg (2008)

27. Selçuk, A.: On probability of success in linear and differential cryptanalysis. Jour-
nal of Cryptology 21, 131–147 (2008)

28. Hermelin, M., Cho, J.Y., Nyberg, K.: Multidimensional extension of Matsui’s
algorithm 2. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 209–227.
Springer, Heidelberg (2009)

29. David, H.: Order Statistics. 2nd edn. Wiley (1981)
30. Leander, G.: Small scale variants of the block cipher PRESENT. Cryptology

ePrint Archive, Report 2010/143 (March 2010),
http://eprint.iacr.org/2010/143

31. Cover, T., Thomas, J.: Elements of Information Theory. 2nd edn. Wiley-
Interscience (2006)

32. Anderson, R., Biham, E., Knudsen, L.: Serpent: A Proposal for the Advanced
Encryption Standard, http://www.cl.cam.ac.uk/~rja14/Papers/serpent.pdf

33. Osvik, D.: Speeding up Serpent. In: Proceedings of the 3rd Advanced Encryption
Standard Candidate Conference, AES 2000 (April 2000)

A Errors in the Description of the Dunkelman/Keller
Approximation

In the original description of Biham et al.’s linear approximation [18], on page
20, after S6 is applied the only active bit in the state is bit 30. In later papers
[19][26], after the application of S6, bit 28 is shown as active instead of bit 30.
One of the authors has informed us by email that bit 28 was correct.

The Serpent diffusion layer is then applied, after which the active bits ac-
cording to the diagram are 80, 101 and 103. However, the xor of diffusion layer
output bits {80, 101, 103} is the xor of input bits {4, 22, 35, 44, 46, 57, 62, 75,
86, 96, 97} - and is therefore unaffected by either bit 28 or bit 30. In the same
correspondence mentioned above, this was revealed to be a typographical error
- the active bits shown at this point should have been 81, 83 and 100.

http://www.cosic.esat.kuleuven.be/nessie/deliverables/D21-v2.pdf
http://eprint.iacr.org/2011/475
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.95.522&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.95.522&rep=rep1&type=pdf
http://eprint.iacr.org/2010/143
http://www.cl.cam.ac.uk/~rja14/Papers/serpent.pdf

Differential Cryptanalysis of Keccak Variants

Stefan Kölbl, Florian Mendel, Tomislav Nad, and Martin Schläffer

IAIK, Graz University of Technology, Austria

Abstract. In October 2012, NIST has announced Keccak as the win-
ner of the SHA-3 cryptographic hash function competition. Recently, at
CT-RSA 2013, NIST brought up the idea to standardize Keccak variants
with different parameters than those submitted to the SHA-3 competi-
tion. In particular, NIST considers to reduce the capacity to the output
size of the SHA-3 standard and additionally, standardize a Keccak vari-
ant with a permutation size of 800 instead of 1600 bits. However, these
variants have not been analyzed very well during the SHA-3 competition.
Especially for the variant using an 800-bit permutation no analysis on
the hash function has been published so far.

In this work, we analyze these newly proposed Keccak variants and
provide practical collisions for up to 4 rounds for all output sizes by con-
structing internal collisions. Our attacks are based on standard differ-
ential cryptanalysis contrary to the recent attacks by Dinur at al. from
FSE 2013. We use a non-linear low probability path for the first two
rounds and use methods from coding theory to find a high-probability
path for the last two rounds. The low probability path as well as the
conforming message pair is found using an automatic differential path
search tool. Our results indicate that reducing the capacity slightly im-
proves attacks, while reducing the permutation size degrades attacks on
Keccak.

Keywords: hash functions, SHA-3, collision attack, differential crypt-
analysis.

1 Introduction

In October 2012, NIST has announced Keccak [2] as the winner of the SHA-3
cryptographic hash function competition [16], which was held between 2008 and
2012 [15]. Traditionally, cryptographic hash functions take as input a string of
arbitrary finite length and produce a fixed sized output of n bits. As a conse-
quence, the following main security requirements are defined for cryptographic
hash functions:

– Preimage Resistance: For a given output y it should be computationally
infeasible to find any input x′ such that y = f(x′).

– Second Preimage Resistance: For given x, y = f(x) it should be compu-
tationally infeasible to find any x′ �= x such that y = f(x′).

– Collision Resistance: It should be computationally infeasible to find two
distinct inputs x, x′ such that f(x) = f(x′).

M. Stam (Ed.): IMACC 2013, LNCS 8308, pp. 141–157, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

142 S. Kölbl et al.

Table 1. Summary of collision attacks on Keccak

Variants Hash Size Capacity Permutation Rounds Complexity Reference

224 448 1600 4 practical [8]

256 512 1600 4 practical [8]

Keccak 256 512 1600 5 2115 [9]

(c = 2n) 384 768 1600 3 practical [9]

384 768 1600 4 2147 [9]

512 1024 1600 3 practical [9]

224 224 1600 4 practical this work

256 256 1600 4 practical this work

384 384 1600 4 practical this work

Keccak 512 512 1600 4 practical this work

(c = n) 224 224 800 4 practical this work

256 256 800 4 practical this work

384 384 800 4 2102 this work

other all ≤ 640 1600 4 practical this work

variants all ≤ 352 800 4 practical this work

For any ideal hash function with n-bit output size, we can find preimages or
second preimages with a complexity of 2n, and collisions with a complexity of
2n/2 using generic attacks. However, in practice the security of a hash function
is not necessarily linked to the hash output size. This is addressed by the sponge
construction [1] which is the underlying design principle of Keccak. The sponge
construction provides an internal capacity of c bits and allows an arbitrary hash
value output size of n bits. Therefore, the security is given by s = min (c/2, n)
bits against (second-) preimage attacks and by s = min (c/2, n/2) bits against
collision attacks. As a consequence, the SHA-3 candidates of Keccak submitted
to the competition were defined with a capacity of c = 2n bits.

At CT-RSA 2013, NIST proposed the idea to standardize Keccak variants
with different parameters than those submitted to the SHA-3 competition. More
specifically, NIST proposes to reduce the capacity c to n instead of 2n bits. Due to
the reduced capacity, NIST may also consider to standardize a smaller 800-bit
permutation for small capacities. Unfortunately, these variants have not been
analyzed very well during the SHA-3 competition.

Our Contribution. In this work, we analyze these new and the original variants
of Keccak using the same attack strategy. We use a standard differential attack,
which allows us to better compare the security of all variants. Our results show
that reducing the capacity does not lead to much better differential attacks on
Keccak. On the other hand, reducing the permutation size b from 1600 to 800
bits even increases the security against differential attacks. To summarize, we
are able to provide practical results for up to 4 rounds of all Keccak variants
proposed for SHA-3 with a permutation size of 1600 bits. This includes the
Keccak variants supporting arbitrary output sizes. A summary of our results
and related work can be found in Table 1.

Differential Cryptanalysis of Keccak Variants 143

Related Work. The collision resistance of Keccak with permutation size of
b = 1600 has already been investigated by a number of researchers. The first
practical attack on Keccak with c = 512 and n = 256 has been published
by Naya-Plasencia et al. in [17]. They have presented a 2-round collision attack
which uses an efficient method to find high probability differential characteristics
using the column parity (or kernel) property. By using these characteristics and
connecting them with the input using an algebraic method, Dinur et al. have
presented a 4-round collision attack for Keccak with c = 448 and n = 224, and
for Keccak with c = 512 and n = 256 in [8]. Furthermore, in [9] Dinur et al.
have presented the first attacks on reduced Keccak with c = 768 and n = 384,
and Keccak with c = 1024 and n = 512. For both variants practical collision
attacks on 3 rounds were shown. Moreover, they have shown theoretical attacks
on Keccak with c = 512 and n = 256 reduced to 5 rounds and Keccak with
c = 768 and n = 384 reduced to 4 rounds with a complexity of 2115 and 2147,
respectively.

Outline. The paper is structured as follows. In Section 2 we provide a short
description of Keccak. In Section 3 we give an overview of the basic attack
strategy. Section 4 presents our method to find high probability characteristics.
In Section 5, we discuss our approach to connect these characteristics to the
input, using an automated search tool.

2 Description of Keccak

Keccak is a family of hash functions based on the sponge construction, with
state sizes b ∈ {25, 50, 100, 200, 400, 800, 1600}. Keccak uses a b-bit permutation
Keccak-f [b] and a multi-rate padding scheme. A specific instance of Keccak is
defined by the two parameters r (the rate) and c (the capacity) with b = r+c. For
the NIST SHA-3 competition, the Keccak designers have defined one instance
for each output size n ∈ {224, 256, 384, 512} bits. All four instances use the
1600-bit permutation with capacity c = 2n, where n is the hash output size.
Additionally, to these four variants the Keccak designers also specify a variant
supporting arbitrary output sizes which they named Keccak[]. This variant has
capacity c = 576 and rate r = 1024.

The permutation Keccak-f used in Keccak operates on a three-dimensional
state with elements in F2. The dimensions for this state are 5 × 5 × w with
w ∈ {1, 2, 4, 8, 16, 32, 64}. This allows to represent each lane as a w-bit word.
A three-dimensional array is used, S[x][y][z], to describe the state. The hash h
for a message m is computed in the following way for Keccak with rate r and
capacity c:

1. Initialise the state S[x][y][z] = 0 for x = 0 . . . 4, y = 0 . . . 4 and z = 0 . . . w.
2. Compute the padded message M = m||10∗1 such that M is a multiple of r.
3. Absorb the next r-bit message block by computing S[x][y] = S[x][y] ⊕Mi

and update the state by computing S = Keccak-f(S). Repeat this process
until all message blocks are absorbed.

144 S. Kölbl et al.

m pad

0

0

r

c

f

M0

f

M1

f

M2

f

h0

f

h1

h|∗|

Absorb Squeeze

Fig. 1. Overview of the sponge construction, which is used in the Keccak hash function

4. Concatenate the first r bits to the hash value. Compute S = Keccak-f(S)
and repeat this process to get the desired number of output bits.

This procedure is also outlined in Fig. 1.

2.1 Keccak-f

Keccak uses the iterative permutation Keccak-f operating on F
w
2 , with w being

the lane size. The permutation consists of multiple rounds in which five functions
are used in sequence R = ι ◦ χ ◦ π ◦ ρ ◦ θ. The number of rounds nr depends on
the lane size:

nr = 12 + 2 log2(w) (1)

Apart from ι, all functions are equivalent for each round.

Description of θ. This step adds to every bit of the state S[x][y][z] the bitwise
sum of the neighbouring columns S[x − 1][∗][z] and S[x + 1][∗][z − 1]. This
procedure can be described by the following equation:

θ : S[x][y][z]← S[x][y][z] +

4∑

n=0

S[x− 1][n][z] +

4∑

n=0

S[x+ 1][n][z − 1] (2)

Description of ρ. This step rotates the bits in every lane by a constant value.

ρ : S[x][y][z]← S[x][y][z + C(x, y)] (3)

where C(x, y) is a constant value.

Description of π. This function transposes the lanes using the following func-
tion: (

x
y

)

=

(
0 1
2 3

)

×
(
x
y

)

(4)

Differential Cryptanalysis of Keccak Variants 145

Description of χ. This step is the only non-linear step in Keccak and operates
on each row of 5 bits.

χ : S[x][y][z]← S[x][y][z]⊕ ((¬S[x + 1][y][z]) ∧ S[x+ 2][y][z]) (5)

It can be seen as applying a 5-bit S-box in parallel to all rows.

Description of ι. This steps adds a round dependent constant to the state.
For a list of the constants see [2].

3 Differential Cryptanalysis of Keccak

In this section, we give a brief overview of our attack strategy on the Keccak
hash function. We use standard differential cryptanalysis which has first been
published to cryptanalyze the block cipher DES [3] and was later applied to hash
functions as well. The basic idea of our attack is the same as used by Wang et
al. in the cryptanalysis of the MD4-family of hash functions [19, 20]. The hash
function is split into two parts. We first construct a high-probability differential
characteristic for the second part and then, use a low-probability differential
characteristic and message modification to connect with the input in the first
part. In more detail, we perform the following 4 steps:

1. Find a differential characteristic for the hash function that results in a col-
lision and holds with a high probability for the last few rounds of the hash
function.

2. Find a differential characteristic (not necessary with high probability) for
the first few rounds of the hash function.

3. Use message modification techniques to find conforming message pairs for
the differential characteristic in the first few rounds.

4. Use the message pairs of the previous step to find a solution for the high-
probability characteristic in the last few rounds of the hash function.

This strategy has already been used in [8] by Dinur et al. in the attack on
4 rounds of Keccak with c = 512 and n = 256. In this paper, we revisit the
attack, extend it, and apply it to other variants of Keccak. Our attack differs
from the attack of Dinur et al. in several ways. First of all, we show how to
construct high probability differential characteristics for the last few rounds of
Keccak that result in a (internal) collision for more than 256 bits. This allows
us to construct collisions for larger output sizes of Keccak reduced to 4 rounds
including the variant of Keccak supporting variable output sizes.

Second, we present a more general technique to perform Step 2 and 3 of the
attack. We use an automatic search tool implementing a guess-and-determine
strategy that constructs a differential characteristic and uses message modifi-
cation techniques to find conforming message pairs. For this purpose, we use a
similar tool as published by Mendel et al. in the analysis of SHA-2 [13,14]. Fig. 2
shows an high-level overview of our attack strategy.

146 S. Kölbl et al.

c

r

c0

0

M0 M1

connect with input

(Step 2,3)

high probability path

(Step 1,4)

Fig. 2. Outline of our 4-round differential attack strategy

In Step 1 of the attack, we search for 2-round high-probability characteristics
which lead to (internal) collisions. To find collisions for larger output sizes than
in [8], we use a linearized version of Keccak and methods from coding theory
(see Sect. 4).

In Step 2 and Step 3 of the attack, we need to connect the input difference
of the high-probability characteristic with the fixed input value given by the
capacity c. We solve this problem by searching for a differential characteristic
and conforming message pair using an automatic search tool (see Sect. 5). The
difficulty of finding a solution depends on the size of the capacity c. By improving
the search strategy of our tool, we are able to solve the problem for larger values
of the capacity c.

4 Finding Colliding High-Probability Characteristics

High-probability differential characteristics can be constructed for Keccak by us-
ing the column parity property of θ. Using this property, Naya-Plasencia et al. pre-
sented the first practical collision attacks on round-reduced versions of Keccak in
[17]. Similar differential characteristics over 2 rounds were also used by Dinur et al.
in [8]. A method to construct all column parity paths up to a given Hamming
weight is described in [17], and a full characterization of kernel paths was done
in [6]. However, no low-weight paths over three consecutive rounds exist [2].

4.1 Differential Characteristics and Coding Theory

To find a good characteristic for 2 rounds of Keccak, we use a linearized model
of the Keccak hash function. Therefore, we replace all non-linear operations by
a linear approximation resulting in a linear code over F2. Finding characteris-
tic in the linear code is not difficult, since it depends only on the differences

Differential Cryptanalysis of Keccak Variants 147

at the input. The probability that the characteristic holds in the original hash
function is related to the Hamming weight of the characteristic. In general, a
characteristic with low Hamming weight has a higher probability than one with
a high Hamming weight. Hence, for finding a characteristic with high probabil-
ity, i.e. with low Hamming weight, we use probabilistic algorithms from coding
theory. It has been shown in the past [4, 11, 12, 18] that these algorithms work
quite well. Furthermore, we can impose additional restrictions on the charac-
teristic by forcing certain bits/words to zero. Note that this is needed to find
suitable characteristics for Keccak resulting in an (internal) collision for the hash
function. In the following we will briefly discuss the linear approximation and
algorithms we were using to find the characteristics.

Linear Approximation of Keccak. The only non-linear transformation in
Keccak is χ. There are many ways to approximate χ by a linear function. For
our analysis we decided to use the identity function, since it comes very close to
the original definition and we are aiming for sparse characteristics.

χ : S[x][y][z]← S[x][y][z] (6)

All other transformations are linear facilitating our approach.

4.2 Finding Low-Weight Codewords

To find codewords with low Hamming weight we use the publicly available Cod-
ingTool Library1. It implements the probabilistic algorithm from Canteaut and
Chabaud [5] to search for codewords with low Hamming weight. Moreover, it
provides some other usable functionalities that turned out to be very useful for
our purpose. With this tool we can find good characteristics for different choices
of c and n in a few seconds on a standard PC. Table 2 and Table 3 show the
best (lowest Hamming weight) characteristics we have found for a different set of
parameters. It has to be noted that we can use these characteristics to construct
internal collisions for Keccak with capacity up to 416 resp. 832 bits. However,
for Keccak with variants with c = 2n this is too small to attack versions with
output sizes larger than 208 resp. 416 bits. Therefore, we also give the results
for characteristics resulting only in a collision for the hash function. The results
are characteristics that can be used for collision attacks for up to 448 resp. 832
bits.

Using this general approach the whole (linear) search space is covered and
arbitrary differences in the state words are possible. However, it turned out that
the best characteristics we have found are indeed column parity kernel paths. In
hindsight the same differential characteristics could have been found using the
method described in [17].

Extending the Approach to 3 Rounds. Using the same method one could
try to construct differential characteristics for more than 2 rounds. Unfortu-
nately, we did not find any sparse solutions which is conform with the work by

1 http://www.iaik.tugraz.at/content/research/krypto/codingtool/

 http://www.iaik.tugraz.at/content/research/krypto/codingtool/

148 S. Kölbl et al.

Table 2. Low-weight differential characteristics for 2 rounds resulting in an internal
collision for Keccak with capacity c.

Permutation Capacity Weight Kernel Path

800

320 16 yes

352 16 yes

384 16 yes

416 20 yes

1600

640 20 yes

704 20 yes

768 20 yes

832 28 yes

Table 3. Low-weight differential characteristics for 2 rounds resulting in a collision for
Keccak with hash size n

Permutation Hash Size Weight Kernel Path

800

320 12 yes

352 12 yes

384 20 yes

416 30 no

448 32 yes

1600

512 16 yes

640 20 yes

704 20 yes

768 20 yes

832 28 no

Daemen and Van Assche in [6]. Another approach we tried was to non-linearly
propagate the linear paths for 2 rounds forward using the automatic tool de-
scribed in Sect. 5. As we can not linearly combine these paths, we use a brute
force algorithm to check if a combination results in a collision after three rounds.
However, since the search space is too large to cover, we restricted ourselves to
a combination of only a few candidates. Unfortunately, we could not find a so-
lution, which confirms that a sparse 3-round path is unlikely to exist.

5 Non-linear Characteristics and Message Modification

Once we have determined a high-probability characteristic for the second half
of Keccak, we need to connect this path with the constraints at the input of
the Keccak permutation. In [8], Dinur et al. have used their target difference
algorithm to find a solution for both differences and values of the input message.

In our work, we use the improved differential path search algorithm of Mendel
et al. [14]. Using this automated search tool, complex nonlinear differential char-
acteristics can be found. Additionally, the tool can be used for solving nonlinear
equations involving conditions on state and message words (i.e. for message
modification).

Differential Cryptanalysis of Keccak Variants 149

Using the bitsliced propagation method used in [14], we were not able to find
a solution for the first two rounds of Keccak. The problem is, that the linear
functions used in Keccak are significantly larger than the linear functions used in
SHA-2. However, using the linear propagation method proposed in [10] and some
other minor improvements, we are able to find solutions for the first two rounds
of Keccak. In the following, we give a brief description of the search algorithm.

5.1 Search for Differential Characteristics and Message Pairs

The basic idea of this search algorithm is to pick and guess previously unre-
stricted bits. After each guess, the information due to these restrictions is prop-
agated to other bits. If an inconsistency occurs, the algorithm backtracks to an
earlier state of the search and tries to correct it. Similar to [14], we denote these
three parts of the search by decision (guessing), deduction (propagation), and
backtracking (correction). Then, the search algorithm proceeds as follows.

Let U be a set of bits. Repeat the following until U is empty:
Decision (Guessing)

1. Pick randomly (or according to some heuristic) a bit in U .
2. Impose new constraints on this bit.

Deduction (Propagation)
3. Propagate the new information to other variables and equations as de-

scribed in [14].
4. If an inconsistency is detected start backtracking, else continue with

step 1.
Backtracking (Correction)

5. Try a different choice for the decision bit.
6. If all choices result in an inconsistency, mark the bit as critical.
7. Jump back until the critical bit can be resolved.
8. Continue with step 1.

In the deduction, we use generalized conditions on bits [7]. To propagate
information, we use the techniques of [10] and during the search, we backtrack
as shown in [14]. In the message search, we additionally consider linear conditions
on two related bits (Xj ⊕Xk = {0, 1}) as proposed in [13].

Note that in each stage different bits are chosen (guessed). In total we have
two stages which can be summarized as follows.

1. Characteristic Search: In the first phase we search for a consistent differ-
ential characteristic in the state words. Therefore, we only add unconstrained
bits ’?’ to the set U .

2. Message Search: In the second stage we search for a conforming message.
In this phase, we only add bits with many linear two-bit conditions to the
set U . This ensures that bits which influence a lot of other bits are guessed
first.

Note that we dynamically switch between the two stages. Additionally, we
restart the search from scratch after a certain amount of inconsistencies to ter-
minate branches which appear to be stuck because of exploring a search space
far from a solution.

150 S. Kölbl et al.

5.2 Improved Linear Propagation in Keccak

Using the bitsliced propagation method used in [14], we were not able to find
a solution for the first two rounds of Keccak. The problem is, that the linear
layer λ = π ◦ ρ ◦ θ of Keccak is significantly larger than the linear functions used
in SHA-2. We have tried to split the linear layer into bitslices and at least 320
bitslices are needed. In this case the linear information propagates very badly
and many contradictions in the linear layer are not detected.

To avoid this problem, we use the linear propagation method of [10]. In this
case, a linear system of equations is defined, which contains all equations of the
linear functions for Xi and X

∗
i , as well as the equations for the linear generalized

conditions at the input and output of the function. The resulting system of
equation is solved using Gauss-Jordan elimination to detect contradictions and
propagate information.

We get the best results when applying this linear approach to the complete
linear layer λ = π ◦ ρ ◦ θ of Keccak. We have also performed experiments which
include the XORs of the S-box layer χ, or by combining the linear parts of
two Keccak rounds. However, the best performance/propagation trade-off was
achieved for the linear layer λ.

5.3 Finding Solutions for 2 Rounds of Keccak

Using the automated search tool combined with the linear propagation method,
we can efficiently find both, differential characteristics and conforming message
pairs for up to two rounds of Keccak. However, the difficulty of finding a solution
depends on fine-tuning of the search algorithm based on a number of parameters.

The parameter which influences the search most is the capacity c. If too many
bits are fixed by the capacity, then we are not able to find a solution. For the
1600-bit permutation, we could find solutions for capacities of up to 640 bits
(ten 64-bit lanes), and for the 800-bit permutation, we could find solutions for
capacities of up to 352 bits (eleven 32-bit lanes).

Our experiments have shown, that for a zero value at the input it is harder
to find a solution, in particular for larger capacities. The running time of the
search algorithm can be improved by prepending a random first message block
with random differences. This was used for the results given in the appendix.

6 Results

For the 1600-bit permutation reduced to 4 rounds with a capacity of c ≤ 640
we can find internal collisions and hence, collisions for the hash function with
arbitrary output size. We want to note that that this also includes the Keccak
variant with capacity c = 576, which was proposed by the Keccak designers for
supporting variable output sizes. The confirming message pair and the according
differential characteristic is given in Appendix A. Note that for the zero IV of
Keccak, our automatic search tool does not work very well. By using a first

Differential Cryptanalysis of Keccak Variants 151

c

n

capacity (c)

o
u
tp
u
t
(n

)

128 256 352 512 640 768 1024

128

256

384

512

c = 2n

(theoretical [9])

c = n

(theoretical)

Keccak[]

1600 bits:
Dinur et al. [8]

this work

800 bits:
this work

Fig. 3. Overview of all 4-round collision attacks on Keccak with permutation size of
1600 and 800 bits, respectively. Blue: attacks by Dinur et al. and green: our attacks
on Keccak with permutation size of 1600 bits. Orange: our attacks on Keccak with
permutation size of 800 bits. Additionally, a theoretical 5-round collision attack on
Keccak-256 has been published in [9].

message block with differences (which could even be meaningful), the tool works
much better. In this case a solution was found within minutes on a standard PC.

For the smaller 800-bit permutation we can show internal collisions for a
capacity of c ≤ 352 bits. A confirming message pair and the according differential
characteristic is given in Appendix B. Finding this solution took about 140
minutes on a standard PC. This corresponds to about 238 Keccak computations.
Note that in an attack on the hash function with a capacity of 352 bits, the
values and differences of 32 additional bits can be chosen freely. Based on this,
we estimate the complexity to construct an internal collision with capacity 384
to be at most 264+38 = 2104. However, we expect the complexity to be much
smaller in practice. Our results are shown in Fig. 3.

Acknowledgements. This work has been supported in part by the Secure
Information Technology Center-Austria (A-SIT), by the Austrian Science Fund
(FWF) under grant number TRP 251-N23 (Realizing a Secure Internet of Things
- ReSIT), and by the Austrian Research Promotion Agency (FFG) and Styrian
Business Promotion Agency (SFG) under grant number 836628 (SeCoS).

152 S. Kölbl et al.

References

1. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the Indifferentiability
of the Sponge Construction. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS,
vol. 4965, pp. 181–197. Springer, Heidelberg (2008)

2. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak reference.
Submission to NIST (Round 3) (January 2011),
http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/submissions_rnd3.html

3. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. J.
Cryptology 4(1), 3–72 (1991)

4. Brier, E., Khazaei, S., Meier, W., Peyrin, T.: Linearization Framework for Collision
Attacks: Application to CubeHash and MD6. In: Matsui, M. (ed.) ASIACRYPT
2009. LNCS, vol. 5912, pp. 560–577. Springer, Heidelberg (2009)

5. Canteaut, A., Chabaud, F.: A New Algorithm for Finding Minimum-Weight Words
in a Linear Code: Application to McEliece’s Cryptosystem and to Narrow-Sense
BCH Codes of Length 511. IEEE Transactions on Information Theory 44(1), 367–
378 (1998)

6. Daemen, J., Van Assche, G.: Differential Propagation Analysis of Keccak. In: Can-
teaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 422–441. Springer, Heidelberg
(2012)

7. De Cannière, C., Rechberger, C.: Finding SHA-1 Characteristics: General Results
and Applications. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 1–20. Springer, Heidelberg (2006)

8. Dinur, I., Dunkelman, O., Shamir, A.: New Attacks on Keccak-224 and Keccak-
256. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 442–461. Springer,
Heidelberg (2012)

9. Dinur, I., Dunkelman, O., Shamir, A.: Collision Attacks on Up to 5 Rounds of
SHA-3 Using Generalized Internal Differentials. In: Moriai, S. (ed.) FSE. LNCS,
Springer (to appear, 2013)

10. Eichlseder, M., Mendel, F., Nad, T., Rijmen, V., Schläffer, M.: Linear Propagation
in Efficient Guess-and-Determine Attacks. In: Budaghyan, L., Helleseth, T., Parker,
M.G. (eds.) WCC (2013), http://www.selmer.uib.no/WCC2013/

11. Indesteege, S., Preneel, B.: Practical Collisions for EnRUPT. J. Cryptology 24(1),
1–23 (2011)

12. Mendel, F., Nad, T.: A Distinguisher for the Compression Function of SIMD-512.
In: Roy, B., Sendrier, N. (eds.) INDOCRYPT 2009. LNCS, vol. 5922, pp. 219–232.
Springer, Heidelberg (2009)

13. Mendel, F., Nad, T., Schläffer, M.: Finding SHA-2 Characteristics: Searching
through a Minefield of Contradictions. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 288–307. Springer, Heidelberg (2011)

14. Mendel, F., Nad, T., Schläffer, M.: Improving Local Collisions: New Attacks on
Reduced SHA-256. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 262–278. Springer, Heidelberg (2013)

15. National Institute of Standards and Technology: Cryptographic Hash Algorithm
Competition (November 2007),
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html

16. National Institute of Standards and Technology: SHA-3 Selection Announcement
(October 2012), http://csrc.nist.gov/groups/ST/hash/sha-3/
sha-3 selection announcement.pdf

http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/submissions_rnd3.html
http://www.selmer.uib.no/WCC2013/
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
http://csrc.nist.gov/groups/ST/hash/sha-3/sha-3_selection_announcement.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/sha-3_selection_announcement.pdf

Differential Cryptanalysis of Keccak Variants 153

17. Naya-Plasencia, M., Röck, A., Meier, W.: Practical Analysis of Reduced-Round
Keccak. In: Bernstein, D.J., Chatterjee, S. (eds.) INDOCRYPT 2011. LNCS,
vol. 7107, pp. 236–254. Springer, Heidelberg (2011)

18. Rijmen, V., Oswald, E.: Update on SHA-1. In: Menezes, A. (ed.) CT-RSA 2005.
LNCS, vol. 3376, pp. 58–71. Springer, Heidelberg (2005)

19. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the Hash Functions
MD4 and RIPEMD. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 1–18. Springer, Heidelberg (2005)

20. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)

A Results for Keccak with a 1600-Bit Permutation

Table 4. The 4-round characteristic used for the second block to find an internal
collision for Keccak with a 1600-bit permutation and a capacity of 640. Note that a
random first block was used in this case.

Round State

0

737bc39f15b62ce3 4-ae-67d9-f67961 72c17e19ecf12b7b 2ba7b749c7949634 fc-cfc935859fb2e
3d196398efcd8-85 fce83de1dec57822 585c3e88-e91a216 7abfed54f57e1dd9 d9a96ed7944d8ede
147b6be6e6-24fdb --4a7743-1159181 -1df19ab97369543 77a1e8bca7-c--6f -5e697e1852d7fd5
1a9b2c7d9b5a9abf 2913f4ef6ca6b829 4--b84511febc4ff 236c8edaa59db4a3 fa16a175b84e4326
6c34feb1242754fb cb2ea33a4c-db176 b2c5aa5a8-df6238 7bafafd7ee121941 8b4cf1f55781e-9f

1

96--3182f1fad467 22--9-644fa7e-f- de--54fb5f2e9a6b 7e--726f824-bd4c d2--114a6bb11583
96-171-2f1fad467 26--9-644fa7e-f- de--54fb5f2e9a6b 7e--726f8244b14c d2--114a6fb51583
96-17112f1fad467 22--b-244fa7e-f- de--54fb5f2e9a4b 7e--726f8244b14c d2--114a6bb11583
96-171-2f1fad467 26--9-644fa7e-f2 de--54fb5f2e9a6b 7e--726f884-b14c d2--114a6bb11583
96-171-2f1fad467 22--9-644fa7e-f- da--5-fb5f2e9a6b fe--726f8244b14c d2--114a6ab11583

2

----4-8--------- ------4--------- ---1------------ ---------------- ----------------
----4-8--------- ------4--------- ---------------- ---------------- --8-------------
---------------- ---------------- ---------------- ---------------- ----------------
---------------- ---------------- ---1------------ ---------------- --8-------------
---------------- ---------------- ---------------- ---------------- ----------------

3

----4-8--------- -----------4---- ---------------- ---------------- ----------------
---------------- -------------8-- ---------------- ---------------- ----------------
------8--------- ---------------- ---------------- 8--------------- ----------------
---------------- -----------4-8-- ---------------- 8--------------- ----------------
----4----------- ---------------- ---------------- ---------------- ----------------

4

----4-8--------- --8------------- ----------1----- ------8---1----- --8-4-----------
---------------- -1---4---------- -----4---------- 81-------------- ----------------
---------1-8---- ---------------- ---------1-----1 ---------------1 ---------------1
---------------- ---------------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- ---------------- ----------------

154 S. Kölbl et al.

Table 5. A 4-round internal collision for Keccak with a 1600-bit permutation and a
capacity of 640

M0:

0000000082784B27 0000000027B97209 00000000F9E7B4C3 00000000FE890B5C 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

M1:

1AE4DA9BCE0F58C5 3E41B66FEC61367F 60EFB06502B1E522 8F2689B944C6ADA4 3679B40E76AEE052
29023AF14A8D1931 0589A067B9C0882B 9CDCF37544841411 52448031E1488314 295FB9F654DD515D
58783A446CC0DF27 DC575C851C1DA5C0 9F82D47401FC7A76 7D7971B3C8B6D25A EA79DD2396CA4FEE

M2:

0000408000000000 0080000000000000 0000000000100000 0000008000100000 0080400000000000
0000000000000000 0100040000000000 0000040000000000 8100000000000000 0000000000000000
0000000001080000 0000000000000000 0000000001000001 0000000000000001 0000000000000001

M∗
0 :

000000006DF2B918 00000000EF86D9FE 0000000040DD1D22 00000000326C57A3 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

M∗
1 :

93A3B74748B2D4D0 D1224F333B3E30CD E37E9B50203D12F1 9558EABAEB983C68 036275C12894EBCD
E56F4097FFB56F5F 06070F676C145DFD FB11961465177857 C831E04FD29B424E 04AFAA83CF448D0B
59A7AC2AE2163340 E0E482684E961996 778732CDA01B329D BED51FB2554F233A 7830FB4DC95AB3C4

M∗
2 :

0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

State after processing third block:

8E485EC7CC0271CA BA770EFBBD69EE16 5A3DA8FFD2F4C521 081E39496F095437 756E97B6477B1ED9
833FB0900600EB96 26A93661FE6F9531 86ADA9C976EB9861 9DD0D44634EC35AC F0D14E73C1916C96
3C0FF867406BB4EA 8EDF8F16DABCBAE9 DE3EDE57965FEE6F B34B3B20F466A277 7726B4B7AA8A84D8
272A11E9F2AD4981 046F4AF7DA9F98EC 4788C486729AC3A7 F95AFA8787C36990 06E3748CA8574FDC
929C857723322ED0 6706560C7EE7A3E3 313BB48B67DCCDB2 795A30724698D71C 3BC9CFF2827373AC

Differential Cryptanalysis of Keccak Variants 155

B Results for Keccak with a 800-Bit Permutation

Table 6. The 4-round characteristic used for the second block to find a internal collision
for Keccak with a 800-bit permutation and a capacity of 352. Note that a random first
block was used in this case.

Round State

0

551c2e5a 5b7cc9a2 d7fab224 893-5cd9 f3a536f5
7198b13f c8fb3e45 c82abe5e e85886f1 226465c-
-a9f5-d6 d5b9-fb6 47926282 2538236- 996272ee
16f3b671 2fa-3-dd 3aad9-1e 6252-cfd 777383b4
7f928adf c7dcfa85 d8b21bf2 5bf4c55- 27dfd4dd

1

9-25244a 4-721523 612e18b- 8-ae-689 b-e28e-c
b-242442 5-731563 61ae18b- 81ae-688 b-e28f-c
b-27244a 5-721563 612a18b- 81ae4688 b-e28e-c
b-25244a 5-7295e3 6-2e189- 81ae-688 3-c28e-c
b-25244a 5-721563 e1ae18b- 91ae8688 b-e2-e-c

2

2------- 1------- -------- -------- --------
-------- 1------- -------- -------- --1-----
2------- -------- -------- ------8- --------
-------- -------- -------- ------8- --1-----
-------- -------- -------- -------- --------

3

2------- -----1-- -------- 1------- --------
-------- -----1-- -------1 -------- --------
2------- -------- -------1 1------- --------
-------- -------- -------- -------- --------
-------- -------- -------- -------- --------

4

2----8-- --1--8-- -----8-- 2------- 2-1-----
-1-----1 -------- -------1 -------- --------
--2--24- ------4- --2----- -----2-- --------
-------- -------- -------- -------- --------
-------- -------- -------- -------- --------

156 S. Kölbl et al.

Table 7. A 4-round internal collision for Keccak with a 800-bit permutation and a
capacity of 352

M0:

8F1075E0 EDFC1488 58EFE9FC 433877BD 00000000
00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000

M1:

B051BED6 1DECB0DA D26B2923 01734BC7 2D2002D8
120AB268 10634585 16F789D1 4AD2F036 AF13E319
3DD3C552 0FF14835 8049189A 9786F56E

M2:

20000800 00100800 00000800 20000000 20100000
01000001 00000000 00000001 00000000 00000000
00200240 00000040 00200000 00000200

M∗
0 :

3BBBA6F0 97006B85 09124595 C63FA0D6 00000000
00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000

M∗
1 :

1B9837F7 1FFE60AD 13269184 9F567790 6C0191B1
DF45607B 97EE79C4 D963BDDA 00FF2D4A BE6F08C8
1FFBDA2C B787E7C8 34F8358A 8EB37499

M∗
2 :

00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000

State after processing third block:

85AF483E 0CED18F7 BC101BB2 2F2CC963 0DCE54BE
30C5B7F8 B5CE439A 465B540D 760424F3 006BB414
045BBB7A 7C14CDA7 F082AF8E 2BA59219 A730ACCD
D5DBAE77 E1598F25 89373578 552A4091 E7D9C411
043CF740 A1D66CA3 F454A015 0E2A1D74 5FA83840

Differential Cryptanalysis of Keccak Variants 157

C Differential Distribution Table

Table 8. Differential distribution table for χ

Δout
00 01 02 03 04 05 06 07 08 09 0A0B0C0D0E0F101112 13 14 15 16 17 18 19 1A1B1C1D1E1F

Δin

00 32 -
01 - 8 - 8 - 8 - 8 -
02 - - 8 - - - 8 - - - 8 - - - 8 - - - - - - - - - - - - - - - - -
03 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - - - - - - - - - - - - - - - -
04 - - - - 8 - - - - - - - 8 - - - - - - - 8 - - - - - - - 8 - - -
05 - 4 - 4 - - - - - - - - - 4 - 4 - 4 - 4 - - - - - - - - - 4 - 4
06 - - 4 - - - 4 - - - 4 - - - 4 - - - 4 - - - 4 - - - 4 - - - 4 -
07 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2
08 - - - - - - - - 8 8 - - - - - - - - - - - - - - 8 8 - - - - - -
09 - - - - - - - - 4 - - 4 4 - - 4 - - - - - - - - 4 - - 4 4 - - 4
0A - - 4 4 - - 4 4 - - - - - - - - - - - - - - - - - - 4 4 - - 4 4
0B - 4 4 - - 4 4 - - - - - - - - - - - - - - - - - - 4 4 - - 4 4 -
0C - - - - 4 4 - - - - - - 4 4 - - - - - - 4 4 - - - - - - 4 4 - -
0D - - - - 4 - - 4 4 - - 4 - - - - - - - - 4 - - 4 4 - - 4 - - - -
0E - - 2 2 - - 2 2 - - 2 2 - - 2 2 - - 2 2 - - 2 2 - - 2 2 - - 2 2
0F - 2 2 - - 2 2 - - 2 2 - - 2 2 - - 2 2 - - 2 2 - - 2 2 - - 2 2 -
10 - - - - - - - - - - - - - - - - 8 8 8 8 - - - - - - - - - - - -
11 - - - - - - - - - - - - - - - - 4 4 4 4 4 4 4 4 - - - - - - - -
12 - - - - - - - - - - - - - - - - 4 4 - - - - 4 4 4 4 - - - - 4 4
13 - - - - - - - - - - - - - - - - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
14 - - - - 4 - 4 - - - - - 4 - 4 - - - - - - 4 - 4 - - - - - 4 - 4
15 - 4 - 4 - - - - - - - - - 4 - 4 4 - 4 - - - - - - - - - 4 - 4 -
16 - - 4 - 4 - - - - - 4 - 4 - - - - - - 4 - 4 - - - - - 4 - 4 - -
17 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -
18 - - - - - - - - 4 4 4 4 - - - - - - - - - - - - 4 4 4 4 - - - -
19 - - - - - - - - 2 2 2 2 2 2 2 2 - - - - - - - - 2 2 2 2 2 2 2 2
1A - - - - - - - - 4 4 - - - - 4 4 4 4 - - - - 4 4 - - - - - - - -
1B - - - - - - - - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 - - - - - - - -
1C - - - - 2 2 2 2 - - - - 2 2 2 2 - - - - 2 2 2 2 - - - - 2 2 2 2
1D - - - - 2 2 2 2 2 2 2 2 - - - - - - - - 2 2 2 2 2 2 2 2 - - - -
1E - - 2 2 2 2 - - - - 2 2 2 2 - - - - 2 2 2 2 - - - - 2 2 2 2 - -
1F - 2 2 - 2 - - 2 2 - - 2 - 2 2 - 2 - - 2 - 2 2 - - 2 2 - 2 - - 2

Recovering Private Keys

Generated with Weak PRNGs

Pierre-Alain Fouque1, Mehdi Tibouchi2, and Jean-Christophe Zapalowicz3

1 Université de Rennes 1 and Institut universitaire de France
pierre-alain.fouque@ens.fr

2 NTT Secure Platform Laboratories
tibouchi.mehdi@lab.ntt.co.jp

3 Inria
jean-christophe.zapalowicz@inria.fr

Abstract. Suppose that the private key of discrete logarithm-based or
factoring-based public-key primitive is obtained by concatenating the
outputs of a linear congruential generator. How seriously is the scheme
weakened as a result?

While linear congruential generators are cryptographically very weak
“pseudorandom” number generators, the answer to that question is not
immediately obvious, since an adversary in such a setting does not get
to examine the outputs of the congruential generator directly, but can
only obtain an implicit hint about them—namely the public key.

In this paper, we take a closer look at that problem, and show that,
in most cases, an attack does exist to retrieve the key much faster than
with a naive exhaustive search on the seed of the generator.

The problem is similar to the one considered by Bellare, Goldwasser
and Micciancio regarding DSA and “pseudorandomness”, and this line
of work arguably has renewed relevance in view of the sensitive role that
random number generation has been found to play in a number of recent
noted papers, such as the one by Lenstra et al. at CRYPTO 2012.

Keywords: linear congruential generator, discrete logarithm, factoring,
cryptanalysis.

1 Introduction

Recently Lenstra et al. have proposed a sanity check of public keys collected on
the web [20] and concluded that generating secure public keys in the real world is
challenging. A related study by Heninger et al. [17] pointed in particular to the
role of (pseudo)randomness generation as the chief cause for the weak keys ob-
served in the wild. Cryptographers have to look at the security of pseudorandom
generators used to generate the secret keys.

Pseudorandom generators are one of the main component of security products
and their importance for security is hard to overestimate. A number of practical
attacks stem from problems with randomness generators. Indeed, it is difficult to
obtain randomness on computers and embedded devices, which tend to aggregate

M. Stam (Ed.): IMACC 2013, LNCS 8308, pp. 158–172, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Recovering Private Keys Generated with Weak PRNGs 159

various more or less reliable sources of entropy (mouse movements, passwords,
network interrupts, electronic noise) and use pseudorandom number generators
to expand them into arbitrarily long, hopefully uniform-looking bit strings.

Such practical generators have been analyzed and a framework has been given
by Barak and Halevi [1] for the Linux generators, who discuss the importance of
the randomness collector which maintains a state of enough entropy and an ex-
traction function whose aims is to output random bitstring from the state, which
is then expanded into an arbitrarily long pseudorandom string. Cryptographers
tend to concentrate on the second aspect: they assume that a pseudorandom
generator is seeded with a uniformly distributed bitstring and the goal of the
generator is to stretch the seed to a longer bitstring. They define security no-
tions and a generator is called secure if it is hard to distinguish its output from
uniformly distributed bitstring given the previous output bits.

The security of the first cryptographically secure generators has been based on
some number-theoretic hard problems, in the sense that the problem of distin-
guishing the outputs from uniform is reduced to a number-theoretic problem. In
1981, Shamir proposed one generator based on the strong RSA problem in [25];
Blum and Micali proposed a generator based on the discrete logarithm prob-
lem [5]; Blum, Blum and Shub proposed a generator based on the factorization
problem in [4]; and Micali and Schnorr defined another generator based on the
problem of distinguishing small e-th root modulo a RSA modulus from uniform
values in [23].

These generators are interesting from a theoretical point of view, but they
are rather inefficient and in practice more efficient generators using symmetric
cryptographic functions have been preferred. For instance, ISO and NIST pro-
pose generators using symmetric primitives such as hash functions and block
ciphers, which are more efficient and can be modeled as random oracles, ideal
ciphers, pseudorandom functions or permutations. In [14], Desai et al. proved
the security of these symmetric primitive-based generators, provided that the
underlying primitives satisfy certain standard assumptions.

Linear Congruential Generators. Cryptographers have also studied the se-
curity of the linear congruential generators (LCG), widely used in simulation.
These generators are efficient and have a very small memory footprint. Moreover,
with suitable parameters, they can have good statistical properties such as a large
period length and their output distribution is uniform. As they are also very easy
to implement, they tend to be used in the standard libraries of many languages
and compilers: the rand function proposed in the POSIX standard and the ones
used in many C/C++ standard libraries, Java’s java.util.Random, most im-
plementations of RAND in Fortran, etc. Their efficiency and ubiquity make them
attractive to implementors, especially in constrained environments, even in some
security-sensitive applications.

Unfortunately, LCGs are cryptographically insecure: Boyar [9] proved that,
with a sufficiently long run of the pseudorandom sequence, one can recover the
seed in polynomial time in the size of the internal state and Stern [26] proved

160 P.-A. Fouque, M. Tibouchi, and J.-C. Zapalowicz

that this is also the case even if only the most significant bits of each successive
states is revealed (see also [8,19,16]). These attacks are based on lattice reduc-
tion, usually LLL [21]. However, Contini and Shparlinski have proposed a careful
analysis of these algorithms in [12] and established some limits to their appli-
cability, indicating that with properly chosen parameters, the generator might
become secure.

Related Work. In any case, these attacks assume that the adversary has direct
access to a certain number of outputs (although the parameters of the gener-
ator may remain unknown). As a result, using such a cryptographically weak
generator in a cryptographic protocol does not automatically make the resulting
protocol insecure, because an adversary against the protocol may not have ac-
cess to the actual outputs of the generator. This led Bellare et al. [2] to analyze
the security of the Digital Signature Algorithm (DSA) when the random nonces
used in signature generation are computed using a linear congruential generator.
They showed that this does seriously break security: a few signatures are enough
to recover the secret key. This started an important line of research on the se-
curity of DSA when partial information on the nonces is revealed. For instance,
Smart and Howgrave-Graham [18] and later Nguyen and Shparlinski [24] showed
that the knowledge of a small number of the most significant bits of the nonces
allows to efficiently recover the secret key using LLL. Bleichenbacher even estab-
lished [3] that the bias on the single most significant bit of the nonce that occurs
when using some version of the NIST generator can be sufficient to efficiently
recover the secret key.

Our Contributions. In this paper, we investigate a question similar to the
one considered by Bellare et al. but in a different direction than the DSA crypt-
analysis papers. We consider the problem of the security of public-key schemes
based on the hardness of the discrete logarithm problem or the factoring problem
when the secret keys are constructed by concatenating the outputs of a linear
congruential generator. Since the attacker does not get those outputs directly,
but only an implicit hint, namely the corresponding public key, recovering the
secret key is not trivial even if a cryptographically weak generator such as the
LCG is used. We show that this is usually enough to recover the secret key much
faster than using the trivial exhaustive search on the seed of the generator.

Our attack relies on the assumption that the secret key is obtained as the
concatenation of successive outputs of a linear congruential generator. We also
assume as is usual in cryptography that the parameters of the LCG are public
and therefore an exhaustive search on the seed allows to recover the secret key
in time 2k where k is the size of the seed. Typical parameters for the LCG are
32 bits or 64 bits internal state to allow fast implementation without using a
library for large integer arithmetic. The main observation of our work is that
if we split the seed of size k into two parts (A · 2k/2 + B) where A and B are
(k/2)-bit long, the linearity of the LCG makes it “almost” possible to write the
secret key as a sum U + V · 2k/2 where U (respectively V) only depends on B

Recovering Private Keys Generated with Weak PRNGs 161

(resp. A) and the parameters of the LCG. This is correct up to carries, which
do occur but can be taken care of separately. As a result, we can obtain a time-
memory tradeoff on the search for the LCG seed when such generators are used
to generate the secret key of a discrete logarithm-based scheme or to the prime
factors of an RSA modulus. The discrete logarithm case is mainly a baby-step
giant-step attack on the lower and upper halves of the seed, while the factoring
case proceeds similarly using multipoint polynomial evaluation.

The main advantage of these attacks is that they allow key recovery from the
public key alone, independently of any further information on the underlying
cryptographic schemes.

Organization of the Paper. The paper is organized as follows. After some
preliminaries in §2, we present our attack in the discrete logarithm case in §3 and
in the factoring case in §4. Finally, in §5, we give an overview of the complexity
of our attacks for typical parameter sizes.

2 Preliminaries

We first recall the definition of the linear congruential generator and fix some
notations which will be used in the following sections; then we briefly discus-
sion multipoint evaluation of univariate polynomials, which will be used in the
factoring case.

2.1 Linear Congruential Generator

For M an integer of size m bits, we denote by ZM the ring of integers modulo
M . The internal state of a linear congruential generator evolves according to the
following recurrence relation:

vi+1 = a · vi + b modM (1)

where a and b are fixed constant in ZM (the parameters of the generator) and
v0 = s is the secret seed. The successive outputs oi of the generator are the k least
(or most) significant bits vi at each iteration (for some fixed k ∈ {1, . . . ,m}).
Note that the recurrence equation is easily solved as:

vi = ai · s+ b · (1 + a+ · · ·+ ai−1) = ai · s+ bi (mod M). (2)

The following attacks rely on the assumption that a certain secret x is com-
puted as a concatenation of successive outputs of such a linear congruential
generator, with known parameters a, b and M . In other words, x can be written
as:

x = o0 + 2ko1 + · · ·+ 2(r−1)kor−1 (3)

for some fixed constant r. The secret x is then of size rk bits.

162 P.-A. Fouque, M. Tibouchi, and J.-C. Zapalowicz

2.2 Multipoint Evaluation of Univariate Polynomials

Let P (x) ∈ ZN [x], with N an arbitrary integer, be a polynomial of degree
less than d = 2k. The multipoint evaluation problem is the task of evaluating
P at d distinct points α0, . . . , αd−1 ∈ ZN . Using Horner’s rule, it is easy to
propose a solution that uses O(d2) additions and multiplications in ZN but it
is well-known that one can propose an algorithm with quasi-linear complexity
Õ(d) operations in ZN using a divide-and-conquer approach [15]; a better, more
involved algorithm based on the middle product of polynomials has later been
proposed in some special cases by Bostan and Schost [7,6]. That observation has
found several applications in cryptanalysis [11,13].

A succinct description of the classical approach, based on product and re-
mainder trees of polynomials is given in Appendix A. The complexity T (d) of
the recursive algorithm satisfies T (d) = 2T (d/2)+O(M(d)), whereM(i) denotes
the arithmetic complexity to compute the product of two polynomials of degree
i in ZN [x], and therefore T (d) = O(M(d) log d).

3 The Discrete Logarithm Case

We now consider key generation in a public-key scheme whose security is related
to the discrete logarithm problem in some cyclic group G of prime order q and
generator g. Typically, for such a scheme, G, q and g are public parameters, the
secret key contains a random element x ∈ Zq, and h = gx is revealed as part of
the public key.

Assume that x is obtained from the outputs of a linear congruential generator
of known parameters, as in Equation (1). The problem is to recover x from the
public data faster than by an exhaustive search on the seed s.

Our approach in a nutshell is as follows. Separate the seed in its lower-order
and higher-order halves: s = u + 2k/2 · v (we can assume for simplicity’s sake
that k is even). Then, by Equation (1), the internal state of the generator can
be written as:

vi =
(
ai · u+ 2k/2 · ai · v + bi

)
modM.

Thus, the corresponding output oi can essentially be written, in turn, as the
sum of a part depending only on u and another part depending only on v—
only “essentially” because of possible carry bits and of possible overflows in the
addition modulo M , but this can be taken care of, and we will ignore that for
the moment.

Then, x is itself of the form x = U + V where U is a publicly computable
function of u, and V of v. In the group G, this gives h = gU ·gV , or equivalently:

gU = h · g−V .
Now, in time and space O(2k/2), we can find a collision between the lists of
elements of G of the form gU for all 2k/2 possible values of u on the one hand,
and h · g−V for all 2k/2 possible values of v on the other hand, and hence recover
the secret x = U + V .

Recovering Private Keys Generated with Weak PRNGs 163

The real algorithm has a slightly higher complexity due to the need to take
carries and overflows into account, which we work out below first when M = 2k

(the output is the full internal state) and then in the general case.
Note that since the parameters a and b are known, the constants bi can be

computed publicly and are thus irrelevant to the attack. To simplify notations,
we can thus assume without loss of generality that b = 0.

Remark 1. The attack discussed here is generic and can of course be carried
out in any cyclic group: it applies to (subgroups of) the multiplicative group of
a finite field and to elliptic curves or abelian varieties alike. In the case of an
elliptic curve group, the problem is to recover a secret value x from two points
P,Q such that Q = xP , and when x is obtained from a linear congruential
generator as before, it is again possible to divide x into two parts U and V , the
first depending on u, the second on v. We can find a collision by checking an
equality of the form Q− UP = V P .

3.1 Attack for Non-truncated Linear Congruential Generators

We first work out the details of this attack for a non-truncated linear congruential
generator, which satisfies that M = 2k. The non-truncated linear congruential
generator is the most efficient of the linear congruential generator in the sense
that it outputs the maximal number of available bits at each iteration.

Theorem 1. Given two group elements g, h ∈ G with h = gx, where x is an
(r · k)-bit exponent generated with a non-truncated linear congruential generator
with public parameters and k-bit state, there exists an algorithm which retrieves

the secret x in time and memory O(2
k+r
2).

Proof. As mentioned previously, we may assume without loss of generality that
the LCG has parameters such that b = 0. By Equation (2), its successive outputs
are thus of the form:

oi = vi = (ai · s) mod M = (ai · s) mod 2k.

Now write the seed as s = u+ 2k/2 · v, with u, v of k/2 bits. We get:

oi =
(
ai · (u + 2k/2 · v)) mod 2k.

We can expand that expression for oi using the following elementary lemma.

Lemma 1. For all α, β, γ ∈ Z, γ �= 0, there exists ε ∈ {0, 1} such that:

(α+ β) mod γ = (α mod γ) + (β mod γ)− εγ.
Proof. Indeed, let L = (α+β) mod γ and R = (α mod γ)+(β mod γ). Clearly, L
and R are congruent modulo γ, so they must differ by a multiple of γ. Moreover,
0 ≤ L < γ and 0 ≤ R < 2γ, hence −γ < R − L < 2γ, so R − L must be of the
form ε · γ with ε ∈ {0, 1} as required. ��

164 P.-A. Fouque, M. Tibouchi, and J.-C. Zapalowicz

Thus, for all indexes i (and any choice of the two seed halves u, v), there exists
εi ∈ {0, 1} such that:

oi = (ai · u mod 2k) + (ai · 2k/2v mod 2k)− εi · 2k
= (ai · u) mod 2k + 2k/2(ai · v mod 2k/2)− εi · 2k.

If u and v are the two halves of the correct seed used to generate x, summing
the 2ikoi yields, according to Equation (3):

x = U + V − Y
where:

U =

r−1∑

i=0

2ik · (aiu mod 2k)

V =

r−1∑

i=0

2ik+k/2 · (aiv mod 2k/2)

Y =

r−1∑

i=0

2(i+1)k · εi.

We can also decompose Y into a sum W +Z where each of W and Z consist of
r/2 terms, and obtain the relation U − Z = x+W − V , or equivalently:

gU−Z = h · gW−V . (4)

We can thus recover x by finding a collision between two lists of 2
k+r
2 elements

of G, namely the gU−Z (for all values of the half-seed u and all possible choices
of the bits εi in Z) on the one hand, and the h · gW−Z (for all values of the
half-seed v and all possible choices of the bits εi in W) on the other. Using hash

tables, this can be achieved in time and space O(2
k+r
2).

More precisely, one first computes the 2k/2 possible values Ui, the 2r/2 pos-
sible values Zj and stores i, j in a hash table under the key gUi−Zj . This table

contains 2
k+r
2 different values accessible in constant time. Then one computes

the 2k/2 possible values Vs, the 2r/2 possible values Wt and tests, for each of
them, whether h · gWt−Vs is a key of the hash table. When the test succeeds, one
obtains the correct values of u and v and can deduce the value x. The attack is
summarized in Algorithm 1. ��

3.2 Attack for Truncated Linear Congruential Generators

We now consider a truncated linear congruential generator with a modulus M >
2k of size m (with m < rk). It is typically less efficient than the non-truncated
one, but may have better properties in statistical and security terms. The attack
we obtain has a slightly worse complexity than in the non-truncated setting.

Recovering Private Keys Generated with Weak PRNGs 165

Algorithm 1. Attack overview

Require: q, g, h = gx, a, b, M
Ensure: x such as h = gx

Compute the hash table H by storing i, j at H(gUi−Zj)
for each (Vs,Wt) do

if H(h · gWt−Vs) exists then
return x← Ui + Vs − Zj −Wt

end if
end for

Theorem 2. Given two group elements g, h ∈ G with h = gx, where x is an
(r · k)-bit exponent generated with a truncated linear congruential generator out-
putting the k most (or least) significant bits at each iteration, with public param-
eters and m-bit state, there exists an algorithm which retrieves the secret x in
time and memory O(2m/2 · 5r/2).
Proof. The principle of the attack remains similar however the carry is in a
larger set of values. As a consequence the complexity in time and in memory is
increased. Indeed, starting from Equation (2) with b = 0, the successive outputs
are now of the form:

oi = vi mod 2k =
(
(ai · s) modM

)
mod 2k

in the case where the least significant bits are output, and:

oi = vi � (m− k) = ((ai · s) modM
)� (m− k)

in the most significant bits case. By writing s as u+ 2m/2v, we get:

vi =
(
ai · (u+ 2m/2 · v)) modM.

and Lemma 1 ensures that:

(ai · u) modM + 2m/2(ai · v modM) = vi or vi +M.

Using the same lemma and the fact that oi = vi mod 2k (LSB case), we obtain:

(ai ·u modM) mod 2k+(2m/2 ·ai ·v mod M) mod 2k =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

oi
oi + 2k

oi + (M mod 2k)
oi + (M mod 2k) + 2k

oi + (M mod 2k)− 2k

In the MSB case, we have (by denoting j = m− k) oi = vi � j and thus:

(ai · u modM)� j + (2m/2 · ai · v mod M)� j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

oi
oi − 1
oi + (M � j)
oi + (M � j) + 1
oi + (M � j)− 1

166 P.-A. Fouque, M. Tibouchi, and J.-C. Zapalowicz

Therefore, by applying the attack as before and using Equation (4), we have to
find a collision between two sets of 2m/2 · 5r/2, the factor 2m/2 coming from the
search of U (respectively V) and the factor 5r/2 coming from the search of Z
(respectively W). ��

4 The Factoring Case

The attacks extend to public-key schemes whose security is related to the hard-
ness of factoring, or of the RSA problem.

Denoting p and q two secret primes obtained from outputs of a linear con-
gruential generator, and N the resulting product published as part of the public
key, we would like to find p and q given N and the parameters of the generator.

The idea is again to separate the seed into a lower-order and a higher-order
part, and to obtain a time-memory tradeoff compared to exhaustive search. The
key ingredient is multipoint polynomial evaluation.

4.1 Basic Prime Generation

We first consider a prime number generation algorithm (see [22]) which consists
in, from a random seed, computing the required number of outputs, concate-
nating them and using a probabilistic primality test such as Miller-Rabin or a
deterministic one such as the AKS primality test. If the test fails, one selects
another random seed and restarts the algorithm: all primality tests are indepen-
dent.

As before, we consider the case where the linear congruential generator is not
truncated and the case where it is truncated.

Theorem 3. Given a RSA modulus N with N = pq, where p is an (r · k)-
bit prime generated with a non-truncated linear congruential generator (resp. a
truncated linear congruential generator outputting the k most or least significant
bits at each iteration), with public parameters and k-bit state (resp. m-bit state),

there exists an algorithm which factorizes N in time and memory Õ(2
k+r
2) (resp.

Õ(2m/2 · 5r/2)) with overwhelming probability.

Proof. For simplicity, we will treat the case of the non-truncated LCG since the
use of a truncated one implies only a difference in the exhaustive search of the
carry. By splitting the seed as s = u+2k/2 · v, we can write p as p = U + V − Y
with:

U =

r−1∑

i=0

2ik(aiu mod 2k)

V =

r−1∑

i=0

2ik(2k/2(aiv mod 2k/2))

Y =

r−1∑

i=0

2(i+1)k · εi.

Recovering Private Keys Generated with Weak PRNGs 167

We can also cut Y into two r/2-bit elements W,Z. Let us denote A = U −Z and
B = V −W and suppose having c(A+B) mod N = cp mod N with c an integer.
Then, except the rare case where c is a multiple of q, this value is necessarily
a multiple of p. Indeed cp mod pq can only have the values 0 (case where q|c),
p, · · · , (q−1)p. Thus, a greater common divisor computation (GCD) with N will
reveal p.

As an attacker, one does not have access to the correct value of the seed.
Since u and v can take 2k/2 distinct values, one can compute the same amount
of values U and V . Moreover there are 2r/2 possibilities for W and Z. In other

words, the values A = U − Z and B = V −W are in two sets of 2
k+r
2 elements

and we have to find a test in order to determine the good ones.

More precisely, one first computes the 2
k+r
2 different values Bs,t by generating

the values Vs and Wt and we consider the following polynomial of degree 2
k+r
2 :

P (X) =
∏

s,t

(X +Bs,t) mod N

Then one computes the 2
k+r
2 possible values Ai,j by generating the values Ui

and Zj and proceeds a multi-evaluation of the polynomial P at the points Ai,j .

The result is a set of 2
k+r
2 values of the form:

{∏

s,t

(Ai,j +Bs,t) mod N | i = 0, · · · , 2k/2 − 1, j = 0, · · · , 2r/2 − 1
}
.

Finally one has to compute a test to detect the correct values A and B. It is
done by computing a GCD between each value (Ai,j) and the public modulus
N . Since all the values of the seed and all the values of the carry are efficiently
tested, the prime p will be recovered except if P (A) is equal to 0. However this
failure case is extremely rare: it requires that at least one of the d − 1 integers
composing the product with p is the prime q. The probability is thus equal to
d−1
2log q . The attack is summarized in Algorithm 2. ��

Algorithm 2. Attack overview (case M = 2k)

Require: N = pq, a, b, M
Ensure: p such as N = pq

Generate the polynomial P (X) =
∏

s,t(X + Vs −Wt) mod N
Multi-evaluate P at the points Ai,j = Ui − Zj

for each point Ai,j do
if gcd(P (Ai,j), N) �= 1 then

return gcd(P (Ai,j), N)
end if

end for

168 P.-A. Fouque, M. Tibouchi, and J.-C. Zapalowicz

4.2 Improved Prime Generation

Since there is no link between each probabilistic primality test in the first prime
number generating algorithm, the failed tests are useless and free of cost from
the point of view of the attacker. We now propose another one with a link by
using a counter.

PRIMEINC Method. The PRIMEINC algorithm is a prime number gener-
ating algorithm proposed by Brandt and Damg̊ard in [10] which basically picks
a random number and increases it until a prime is found. In other words, if p
is not a prime (but odd), then p = p + 2 and repeat. According to the prime
number theorem, we expect to find a prime number after log p trials on average.

Corollary 1. Considering the twocases ofTheorem3 coupledwith thePRIMEINC

algorithm, there exists analgorithmwhich factorizesN in timeandmemory Õ(2
k+r
2)

(resp. Õ(2m/2 · 5r/2)) with overwhelming probability.

Proof. In our attack, we now search the correct value of p such as p = A+B+2ε
with ε ∈ {0, · · · , log p} (see Remark 2 for the size of the set). Thus, after the
multi-evaluation, our algorithm should have computed a set covering the entire
space of search as follows:

{∏

s,t

(Ai,j +Bs,t + 2γ) mod N | i ≤ 2k/2 − 1, j ≤ 2r/2 − 1, γ ≤ log p
}
.

An efficient way to compute the search of the correct value of γ (i.e. γ = ε)
consists in applying the same trick as before, i.e. writing γ as γ = γMSB + γLSB
by splitting the bits into two parts.
In other words, in the first part of the algorithm, one computes the different
values Bs,t and the

√
log p values of γLSB. In the second part, one focus on

the different values Ai,j and the
√
log p values of γMSB . Thus, after the multi-

evaluation, the resulted set corresponds to 2
k+r
2

√
log p values of the form (case

M = 2k):
∏

s,t,γ

(Ai,j +Bs,t + 2(γMSB + γLSB)) mod N.

With overwhelming probability, the value containing p does not contain q too
and the test using the greatest common divisor will reveal p.

The modification due to the PRIMEINCmethod thus increases the complexity
in time and in memory by a factor of

√
log p, which disappears in the Õ since√

log p = O(
√
rk) = O

(
r+k
2

)
. ��

Remark 2. Brandt and Damg̊ard prove in [10] that the failure is about equal to
e−2� when applying � · log p iterations of the PRIMEINC algorithm. In the proof,
we put � = 1, leading to a success rate of 86%.

Recovering Private Keys Generated with Weak PRNGs 169

5 Complexity Estimates for Concrete Parameter Sizes

Table 1 below presents the time complexity of our attack in the discrete loga-
rithm case for typical parameter LCG sizes, as found in implementation of the
random functions of common compilers and standard libraries, namely a modu-
lus equal to either 232 or 264 (so that modular addition and multiplication can
be implemented as simple operations on standard size registers), and an output
size equal to either the full modulus size or half of it (corresponding to the top
or bottom half of the state). The complexities are to be compared with that of
the trivial attack: exhaustive search on seed.

Table 1. Overview of our Attacks complexities in the discrete logarithm case. When
the output size is smaller than the modulus, the first number corresponds to the LSB
case, and the second one to the MSB case.

Secret size Modulus Output size Attack complexity

160 232 32 218.5

160 232 16 223.9 227.7

160 264 64 233.5

160 264 32 236 237.8

256 232 32 220

256 232 16 228.7 234.6

256 264 64 234

256 264 32 238.3 241.3

512 232 32 224

512 232 16 241.4 253.2

512 264 64 236

512 264 32 244.7 250.6

1024 264 64 240

2048 264 64 248

Remark 3. Note that the differences of complexity between a linear congruential
generator which outputs the least significant bits or the most significant bits
is due to the fact that there are only three possibilities for the value of (ai ·
u mod M) mod 2k + (2m/2 · ai · v mod M) mod 2k. Indeed, taking M = 232 or
M = 264 yields M mod 2k = 0.

Remark 4. In a few cases, for 16-bit output size, the complexity is in fact worse
than the exhaustive search on the seed. This happens in the truncated case only,
when r (the number of LCG outputs used to construct the secret) is particularly
large, namely when 5r/2 (MSB case), resp. 3r/2 (LSB case), is greater than 2m/2.

Remark 5. In the factoring case, the complexities are larger by a logarithmic
factor, from the use of quasilinear multipoint polynomial evaluation.

170 P.-A. Fouque, M. Tibouchi, and J.-C. Zapalowicz

6 Conclusion

In this paper, we present new key-recovery attacks on discrete logarithm and
factoring-based public-key schemes whose private keys are generated by con-
catenating the outputs of a linear congruential generator. Even though the LCG
itself is known to be a cryptographically weak pseudorandom generator, it is not
a priori obvious that its use would make key generation insecure, as its outputs
are never revealed in clear to an adversary. It turns out, however, that the im-
plicit hint about those outputs provided by the public key is enough to recover
the private key significantly faster than with an exhaustive search on the seed.

It is hoped that this attack can be generalized to other, less naive pseudo-
random generators in further work. Moreover, even in the case of the LCG, it
would be interesting to extend it to different scenarios, such as the generation
of randomness used in padding functions for encryption and signatures, or to
settings where LCG parameters are unknown to the attacker.

References

1. Barak, B., Halevi, S.: A model and architecture for pseudo-random generation with
applications to /dev/random. In: ACM CCS, pp. 203–212 (2005)

2. Bellare, M., Goldwasser, S., Micciancio, D.: “Pseudo-random” number generation
within cryptographic algorithms: The DSS case. In: Kaliski Jr., B.S. (ed.) CRYPTO
1997. LNCS, vol. 1294, pp. 277–291. Springer, Heidelberg (1997)

3. Bleichenbacher, D.: On the generation of one-time keys in DL signature schemes.
Presentation at the IEEE P1363 Working Group Meeting (November 2000)

4. Blum, L., Blum, M., Shub, M.: A simple unpredictable pseudo-random number
generator. SIAM J. Comput. 15(2), 364–383 (1986)

5. Blum, M., Micali, S.: How to generate cryptographically strong sequences of
pseudo-random bits. SIAM J. Comput. 13(4), 850–864 (1984)

6. Bostan, A., Schost, É.: On the complexities of multipoint evaluation and interpo-
lation. Theor. Comput. Sci. 329(1-3), 223–235 (2004)

7. Bostan, A., Schost, É.: Polynomial evaluation and interpolation on special sets of
points. J. Complexity 21(4), 420–446 (2005)

8. Boyar, J.: Inferring sequences produced by a linear congruential generator missing
low-order bits. J. Cryptology 1(3), 177–184 (1989)

9. Boyar, J.: Inferring sequences produced by pseudo-random number generators. J.
ACM 36(1), 129–141 (1989)

10. Brandt, J., Damg̊ard, I.B.: On generation of probable primes by incremental search.
In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 358–370. Springer,
Heidelberg (1993)

11. Chen, Y., Nguyen, P.Q.: Faster algorithms for approximate common divi-
sors: Breaking fully-homomorphic-encryption challenges over the integers. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
502–519. Springer, Heidelberg (2012)

12. Contini, S., Shparlinski, I.E.: On stern’s attack against secret truncated linear
congruential generators. In: Boyd, C., González Nieto, J.M. (eds.) ACISP 2005.
LNCS, vol. 3574, pp. 52–60. Springer, Heidelberg (2005)

Recovering Private Keys Generated with Weak PRNGs 171

13. Coron, J.-S., Joux, A., Mandal, A., Naccache, D., Tibouchi, M.: Cryptanalysis
of the RSA subgroup assumption from TCC 2005. In: Catalano, D., Fazio, N.,
Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 147–155. Springer,
Heidelberg (2011)

14. Desai, A., Hevia, A., Yin, Y.L.: A practice-oriented treatment of pseudorandom
number generators. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 368–383. Springer, Heidelberg (2002)

15. Fiduccia, C.M.: Polynomial evaluation via the division algorithm: The fast fourier
transform revisited. In: STOC, pp. 88–93 (1972)

16. Frieze, A.M., H̊astad, J., Kannan, R., Lagarias, J.C., Shamir, A.: Reconstructing
truncated integer variables satisfying linear congruences. SIAM J. Comput. 17(2),
262–280 (1988)

17. Heninger, N., Durumeric, Z., Wustrow, E., Alex Halderman, J.: Mining your Ps
and Qs: Detection of widespread weak keys in network devices. In: Kohno, T. (ed.)
USENIX Security 2012 (2012)

18. Howgrave-Graham, N., Smart, N.P.: Lattice attacks on digital signature schemes.
Des. Codes Cryptography 23(3), 283–290 (2001)

19. Joux, A., Stern, J.: Lattice reduction: A toolbox for the cryptanalyst. J. Cryptol-
ogy 11(3), 161–185 (1998)

20. Lenstra, A.K., Hughes, J.P., Augier, M., Bos, J.W., Kleinjung, T., Wachter,
C.: Public keys. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 626–642. Springer, Heidelberg (2012)

21. Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Math. Ann. 261(4), 515–534 (1982)

22. Menezes, A., Van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptog-
raphy (1996)

23. Micali, S., Schnorr, C.-P.: Efficient, perfect polynomial random number generators.
J. Cryptology 3(3), 157–172 (1991)

24. Nguyen, P.Q., Shparlinski, I.: The insecurity of the digital signature algorithm with
partially known nonces. J. Cryptology 15(3), 151–176 (2002)

25. Shamir, A.: On the generation of cryptographically strong pseudo-random se-
quences. In: Even, S., Kariv, O. (eds.) ICALP 1981. LNCS, vol. 115, pp. 544–550.
Springer, Heidelberg (1981); U. C. Santa Barbara, Dept. of Elec. and Computer
Eng., ECE Report No 82-04

26. Stern, J.: Secret linear congruential generators are not cryptographically secure.
In: FOCS, pp. 421–426. IEEE Computer Society (1987)

A Multipoint Evaluation of Univariate Polynomials

Here is a succinct description of the classical approach, based on product and re-

mainder trees of polynomials. Let P0 =
∏d/2−1
�=0 (x−α�) and P1 =

∏d−1
�=d/2(x−α�)

and let us define R0 = P mod P0 and R1 = P mod P1. We have R0(αi) = P (αi)
for all i ∈ {0, . . . , d/2−1} andR1(αi) = P (αi) for all i ∈ {d/2, . . . , d−1} and this
gives immediately a recursive algorithm (i.e. compute P0, P1, R0, R1 and reduce
the problem to the multipoint evaluation of R0 and R1 of degree d/2 = 2k−1).

172 P.-A. Fouque, M. Tibouchi, and J.-C. Zapalowicz

Let Ai(x) = (x−αi) for i ∈ {0, . . . , d−1} and Pi,j = Aj2iAj2i+1 . . . Aj2i+2i−1
for i ∈ {0, . . . , k} and 0 ≤ j < 2k−i. We have P0,j = Aj and Pi+1,j = Pi,2jPi,2j+1

so for i ∈ {0, . . . , k} we can compute recursively all polynomials Pi,j and 0 ≤ j <
2k−i in 2k−i−1O(M(2i)) = O(M(d)) operations in ZN where M(i) denotes the
arithmetic complexity to compute the product of two polynomials of degree i in
ZN [x]. Overall, the computation of all polynomials Pi,j requires O(M(d) log d)
operations in ZN .

The polynomials R0 and R1 can be computed using O(M(d)) operations in ZN

(using a Newton inversion), hence the complexity T (d) of the recursive algorithm
satisfies T (d) = 2T (d/2) +O(M(d)) and therefore T (d) = O(M(d) log d).

A Leakage-Resilient Pairing-Based Variant
of the Schnorr Signature Scheme

David Galindo1 and Srinivas Vivek2

1 CNRS, Loria, France
david.galindo-chacon@loria.fr

2 University of Luxembourg, Luxembourg
srinivasvivek.venkatesh@uni.lu

Abstract. Leakage-resilient cryptography aims at capturing side-chan-
nel attacks within the provable security framework. Currently there ex-
ists a plethora of schemes with provably secure guarantees against a
variety of side-channel attacks. However, meeting the strongest security
levels (resilience against continual leakage attacks) under the weakest as-
sumptions leads currently to costly schemes. Additionally, recent results
show the impossibility to achieve the strongest leakage-resilient security
levels for cryptosystems whose secret key is uniquely determined by its
public key.

The above justifies the use of stronger assumptions to achieve simpler,
more efficient schemes, since most deployed and practical cryptosystems
satisfy the above-mentioned uniqueness of the secret key property. In
particular, the Schnorr-based leakage-resilient digital signature schemes
proposed up to now are built by gluing together �-copies of the basic
signature scheme, resulting in a public key that admits exponentially-
many secret keys. Furthermore, the space needed to store the secret key
material is proportional to the leakage tolerated by these schemes.

We aim at designing a leakage-resilient variant of the Schnorr signa-
ture scheme whose secret key’s storage space is constant, independently
of the amount of leakage that it can tolerate. We assume that at any
given time only the parts of the memory in use leak (split-state/only
computation leaks information model); we ease the problem of exhibit-
ing a security reduction by relying on generic groups (generic bilinear
group model). We proceed by first proposing a pairing analogue of the
Schnorr signature scheme, that we next transform to include split signing
key updates. We give a leakage-resilience lower bound in generic bilinear
groups against continual leakage attacks for the new scheme.

Keywords: Digital signatures, generic group model, leakage-resilient
cryptography, continual leakage, efficiency, min-entropy.

1 Introduction

Over the last 30 years the theory of cryptography has been robustly built. It
started with the proposal of simple, elegant and sound definitions [19,13,20], it

M. Stam (Ed.): IMACC 2013, LNCS 8308, pp. 173–192, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

174 D. Galindo and S. Vivek

was followed by plausibility results under the weakest assumptions, and currently
culminating in the practical constructions used nowadays by the information
security community [1].

Concurrently, the theory and practice of cryptanalysis has been no less suc-
cessful. In particular, the exploitation of the physical nature of the devices where
cryptographic primitives are run, pioneered from an academic perspective in
[24,25,9], has rendered many of the beautiful and theoretically robust construc-
tions broken. Typical examples of side channel information are the analysis of
primitives’ running-time, power consumption or electromagnetic radiation leak,
to name just but the most well-known.

The area of provable security that provides security reductions even in the
presence of secret key leakage is called leakage-resilient cryptography and it has
been an increasingly active field in recent years. In this work we assume leakage
to be continual leakage, i.e. the useful leakage data per signature invocation
is bounded in length, but unbounded overall; and adhere to the independent
leakage/split-state model, meaning that the computation can be divided into
rounds, where each such round access independent parts of the memory that
leak independently.

The continual split-state leakage model has been previously used in the works
[15,31,23,16,18,26]. The first assumption is restrictive but overall reasonable; in
practice many side-channel attacks only exploit a polylogarithmic amount of
information. The second assumption allows us to divide the memory of a device,
at every computing step, into two parts - an active and a passive part. The part
of the memory being currently accessed by a computation is the active part, and
only the active part leaks information at any given time. We stress that even if
leakage is local with respect to each part of the memory, it still captures some
global functions of the secret key, for instance any affine leakage function. We
refer to the work by Dziembowski and Faust [14] and by Faust et al. [17] for a
discussion on the significance and limitations of this leakage model.

In the last few years the interplay between provable security and side-channel
attacks has experienced great progress, as the works [22,16,8,11,27,7] bear wit-
ness for the case of digital signatures. However, the schemes that do not use
any idealized assumption (random oracle, generic groups), are much more in-
volved than their non-leakage counterparts and depart significantly from the
schemes in the standard cryptography tool-box. Interestingly, recent work by
Wichs [38] seems to indicate that it might be impossible to achieve contin-
ual leakage-resilience for cryptosystems whose secret key is uniquely determined
by its public key, unless we weaken the security model. Furthermore, existing
strongly secure proposals are not yet efficient enough. A rough estimation of the
efficiency of current leakage-resilient schemes is that they are a linear number of
times in the security parameter slower than their non-leakage counterparts.

In this work we study a signature scheme secure against continual leakage in
the split-state model that builds on the Schnorr signature scheme [33]. Notice
that several works [21,3,16] have already built leakage-resilient signature schemes
based on Schnorr. All of these works confirm the finding by Wichs: they are

A Leakage-Resilient Pairing-Based Variant of the Schnorr Signature Scheme 175

built by gluing together several copies of the basic Schnorr signature scheme (a
technique that was first used by Okamoto [30]), and thus given its public key
there are exponentially many possible secret keys. The works [21,3] only allow
a bounded leakage during the life-time of the protocol, although in their model
every part of the memory is susceptible to leak (as opposed to the split-state
model); the work [16] uses the split-state model and allows roughly 1/36 leakage
ratio at every signing step, but the number of signature queries is bounded in
advance. Our goal is to provide a Schnorr-like signature scheme where the secret
key material to be stored is constant at any time, since in the aforementioned
works the secret keys’ storage is proportional to the leakage ratio allowed. In
particular we propose a scheme where the secret key is uniquely determined by
its public key, the secret key consists of only two group elements at any given
time and it is unforgeable even if the number of adversarial signature queries is
not known in advance.

Our positive results are of course far from the ideal achievement, that is,
to prove leakage-resilience of the original Schnorr scheme instantiated over any
cryptographic group G where the discrete logarithm problem is assumed to be
hard. However, this is presently out of reach using standard techniques [38]. This
is why we state our theorems with respect to a transposition of the modified
Schnorr signature scheme to pairing groups, where the secret key is no longer
x ∈ Zp but X = gx ∈ G, where G is the base pairing group with e : G × G →
GT . This allows us to use an idealized model of computation called the generic
bilinear group (GBG) model that will ease our analysis. We proceed by first
showing that our transposition of the Schnorr signature scheme to pairing groups
is existentially unforgeable [20] in the GBG model. This is achieved by showing
that the security reduction in the generic group model [36] for elliptic-curve based
Schnorr signatures recently given by Neven, Smart and Warinschi [29] can be
translated to the GBG and allows to deal with data leakage. Secondly, we modify
the pairing-based Schnorr scheme by multiplicatively sharingX = X1 ·X2, where
X1, X2 ∈ G, and by breaking the signing scheme into two phases, each one using
the corresponding share X1 or X2. Again, at each new signature invocation a
fresh sharing (X ′1, X

′
2) of X is computed. Our main theorem (Theorem 2) states

that allowing λ bits of leakage at each phase of every round overall decreases the
security of the scheme by a factor of at most 22λ in our leakage model.

The GBG model has been previously used for stating leakage-resilience prop-
erties by Kiltz and Pietrzak [23], and Galindo and Vivek [18]. Kiltz and Pietrzak
propose a bilinear version of the ElGamal key encapsulation mechanism which
enjoys provable leakage-resilience in the presence of continual leakage. Their
scheme is very efficient, less than a handful of times slower than standard El-
Gamal. Galindo and Vivek propose a leakage-resilient existentially unforgeable
signature scheme based on the Boneh-Boyen identity-based encryption scheme
[4]. Their scheme enjoys efficiency and leakage-resilience properties similar to
the scheme by Kiltz and Pietrzak. Our Schnorr-like scheme has efficiency com-
parable to that of Galindo and Vivek’s scheme. Additionally it is so far the only
Schnorr-based leakage-resilient scheme whose secret key is uniquely determined

176 D. Galindo and S. Vivek

by its public key (thus bypassing the impossibility result by Wichs [38] at the
cost of the GBG assumption), and the secret key material storage is constant
and independent of the leakage rate (two elements in the pairing base group G).
Organization of the Paper. We start in Section 2 by recalling some basic
facts and definitions. In Section 3, we introduce a bilinear variant of the Schnorr
signature scheme and prove its security in the GBG model. In Section 4, we split
the secret state of the bilinear Schnorr scheme and prove its leakage resilience
under continual leakage in the GBG model. Finally, we conclude in Section 5 by
summarizing the achievements and limitations of our methodology.

2 Definitions

In this section, we recollect some basic notions of security of signature schemes,
bilinear groups, and the generic bilinear group model. We also describe the model
of leakage we shall consider in this paper and formulate a definition of security
of signature schemes in the presence of continual leakage. We adapt the leakage
model specified in [23] to signature schemes, exactly as done in [18].

Let Z denote the set of integers and Zp (p > 0) denote, depending upon the
context, either the set of integers {0, 1, . . . , p − 1} or the ring modulo p. We
denote a random sampling of an element a ∈ A from a set A, and also denote
a (possibly probabilistic) output of an algorithm A, by a ← A. If we want to
explicitly denote the randomness r used during the sampling/output, then we
do so by s

r← S. Unless otherwise mentioned or implicit from the context, any
sampling is from an uniform distribution. The symbol “ :=” is used to define a
notation in an expression, as in A := Z, or to explicitly indicate an output of a
deterministic algorithm or a function.

A signature scheme Π = (KeyGen, Sign,Verify) consists of three probabilistic
polynomial-time algorithms KeyGen, Sign, and Verify. Let κ denote the security
parameter. KeyGen(κ) on input κ produces a public- and secret-key pair (pk, sk)
along with other public parameters PP. The algorithm Sign(sk,m) on input a
secret key sk and a message m ∈ M , where M is the message space, outputs a
signature σ. Verify(pk,m, σ) on input a public key pk, a message m ∈ M and a
signature σ, outputs a bit b = 1 meaning valid, or b = 0 meaning invalid. We
require the following correctness requirement to be satisfied by Π:

Pr[Verify(pk,m, Sign(sk,m)) = 1 : (pk, sk)← KeyGen(κ),m ∈M] = 1.

The standard security notion for signature schemes is existential unforgeabil-
ity under adaptive chosen-message attacks (EUF-CMA), and it is is defined
through the following experiment:

Sign-ForgeΠ(A, κ) Sign-Oracle Ωsk(m)
(pk, sk)← KeyGen(κ) w := w ∪m
w := ∅ σ ← Sign(sk,m)

(m,σ)← AΩsk(·)(pk) Return σ
If m ∈ w, then return b := 0
b← Verify(pk,m, σ)

A Leakage-Resilient Pairing-Based Variant of the Schnorr Signature Scheme 177

Definition 1. [Existential Unforgeability] A signature scheme Π is existentially
unforgeable under adaptive chosen-message attacks, in short “secure”, if Pr [b =
1] is negligible in Sign-ForgeΠ(A, κ) for any efficient adversary A.

2.1 Leakage Model

We split the secret state into two parts that reside in different parts of the
memory, and structure any computation that involves access to the secret state
into a sequence of steps. Any step accesses only one part of the secret state (active
part) and the other part (passive part) is assumed not to leak in the current step
of computation. For simplicity, we define a security notion for leakage-resilient
signature schemes assuming that the signing process is carried out in two steps.
We also refer to a single invocation of the signature generation algorithm as a
round.

Let us consider the problem of achieving leakage resilience under continual
leakage even when a significant fraction of the bits of the secret state are leaked
per round. Then it is necessary that the secret state must be stateful, i.e. the
secret state must be refreshed during every round [23]. Otherwise, after many
rounds the entire secret state will be completely leaked.

Formally, a stateful signature scheme Π∗ = (KeyGen∗, Sign∗1, Sign
∗
2,Verify

∗)
consists of four probabilistic polynomial-time algorithms KeyGen∗, Sign∗1, Sign

∗
2

and Verify∗. KeyGen∗(κ) is same as the set-up phase KeyGen of Π except that
instead of a “single” secret key sk, it outputs two initial secret states (S0, S

′
0).

From the point of view of an adversary, the signing algorithm Sign of Π and
(Sign∗1, Sign

∗
2) have the same functionality. First, Sign∗1 is executed and later

Sign∗2 is executed. That is, the ith round of the signing process is carried out as:

(Si, wi)
ri← Sign∗1(Si−1,mi) ; (S

′
i, σi)

r′i← Sign∗2(S
′
i−1, wi). (1)

In the above expression, ri and r′i are the randomness used by Sign∗1 and Sign∗2,
respectively. The parameter wi is some state information passed onto Sign∗2 by
Sign∗1. The signature σi is generated for the message mi, and the internal state
is updated from (Si−1, S′i−1) to (Si, S

′
i).

We model the leakage during signature generation by giving an adversary A
access to a leakage oracle Ωleak

(Si−1,S′
i−1)

(·). This oracle, in addition to giving A
signatures for the messages of its choice, also allows A to obtain leakage from
the computation used to generate signatures. More precisely, let λ be a leakage
parameter. During the ith signing round, A is allowed to specify two functions
fi and hi, each of range {0, 1}λ, that can be efficiently computed. The outputs
of the leakage functions are

Λi = fi(Si−1, ri) ; Λ′i = hi(S
′
i−1, r

′
i, wi). (2)

Since the value of m can be included in the description of fi and hi, hence it is
not explicitly included as an input. Note that it also possible for A to specify
hi after obtaining Λi. But for simplicity of the exposition, we only describe here

178 D. Galindo and S. Vivek

the case where fi and hi are specified along with the message mi to the oracle.
The security of the signature scheme Π∗ in the presence of (continual) leakage
is defined through the following experiment Sign-Forge-LeakΠ∗(A, κ, λ). In the
description below, |fi| refers to the length of the output of fi.

Sign-Forge-LeakΠ∗(A, κ, λ) Sign-Leak-Oracle Ωleak
(Si−1,S′

i−1)
(mi, fi, hi)

(pk, (S0, S
′
0))← KeyGen∗(κ) If |fi| �= λ or |hi| �= λ, return ⊥

i := 1, w := ∅ (Si, wi)
ri← Sign∗1(Si−1,mi)

(m,σ)← AΩ
leak
(Si−1,S′

i−1
)
(·)
(pk) (S′i, σi)

r′i← Sign∗2(S
′
i−1, wi)

If m ∈ w, then return b := 0 Λi := fi(Si−1, ri)
b← Verify∗(pk,m, σ) Λ′i := hi(S

′
i−1, r

′
i, wi)

i := i+ 1
w := w ∪mi

Return (σi, Λi, Λ
′
i)

Definition 2. [Existential Unforgeability with Leakage] A signature scheme
Π∗ is existentially unforgeable under adaptive chosen-message attacks in the
presence of (continual) leakage if Pr [b = 1] is negligible in the Experiment
Sign-Forge-LeakΠ∗(A, κ, λ) for any efficient adversary A.

2.2 Bilinear Groups

Let BGen(κ) be a probabilistic bilinear group generator that outputs (G,GT , p, e,
g) such that:

1. G = 〈g〉 and GT are (multiplicatively written) cyclic groups of prime order
p with binary operations · and �, respectively. The size of p is κ bits.

2. e : G×G→ GT is a bilinear map that is:
(a) bilinear: ∀u, v ∈ G and ∀a, b ∈ Z, e(ua, vb) = e(u, v)ab.
(b) non-degenerate: e(g, g) �= 1.

Such a group G is said to be a bilinear group if the above properties hold and
the group operations in G and GT , and the map e are efficiently computable.
The group G is called as base group and GT as target group.

2.3 Generic Bilinear Group Model

The generic bilinear group (GBG) model [6] is an extension of the generic group
model [36]. The encodings of the elements of G and GT are given by random
bijective maps ξ : Zp → Ξ and ξT : Zp → ΞT , respectively, where Ξ and ΞT
are sets of bit-strings. The group operations in G and GT , and evaluation of the
bilinear map e are performed by three public oracles O, OT and Oe, respectively,
defined as follows. For all a, b ∈ Zp

– O(ξ(a), ξ(b)) := ξ(a+ bmod p)
– OT (ξT (a), ξT (b)) := ξT (a+ bmod p)

A Leakage-Resilient Pairing-Based Variant of the Schnorr Signature Scheme 179

– Oe(ξ(a), ξ(b)) := ξT (abmod p)

We assume that the (fixed) generator g of G satisfies g = ξ(1), and also the
(fixed) generator gT of GT satisfies gT = e(g, g) = ξT (1). The encoding of g is
provided to all users of the group oracles. The users can thus efficiently sample
random elements in both G and GT .

We further assume that Ξ ∩ ΞT = φ, |Ξ| = |ΞT | = p, and that the elements
of Ξ and ΞT are efficiently recognizable. For instance, the encodings in Ξ can
comprise of the binary representation of the set {0, 1, . . . , p − 1}, where every
string begins with ‘0’ and all are of uniform length. The encodings in ΞT are
similarly defined but instead begin with ‘1’. Since the encodings are efficiently
recognizable, the queries to a group oracle with an invalid encoding can be
detected and an error can be raised. For simplicity, we assume that the users’
queries to the oracles are all valid.

2.4 Min-entropy

Let X be a finite random variable with probability distribution Pr. The min-
entropy ofX , denoted H∞(X), is defined as H∞(X) := − log2

(
max
x

Pr[X = x]
)

. Min-entropy is a standard measure of the worst-case predictability of a random
variable. Let Z be a random variable. The average conditional min-entropy of
X given Z, denoted H̃∞(X |Z), is defined as H̃∞(X |Z) := − log2

(
E

z←Z

[
max
x

Pr[X = x |Z = z]
])
. Average conditional min-entropy is a measure of the worst-

case predictability of a random variable given a correlated random variable.

Lemma 1. [[12]] Let f : X → {0, 1}λ′
be a function on X. Then H̃∞(X | f(X))

≥ H∞(X)− λ′.

The following result is a variant of the Schwartz-Zippel Lemma [34,39,18].

Lemma 2. [Schwartz-Zippel; min-entropy version] Let F ∈ Zp[X1, . . . ,Xn] be a
non-zero polynomial of (total) degree at most d. Let Pi (i = 1, . . . , n) be proba-
bility distributions on Zp such that H∞(Pi) ≥ log p− λ′, where 0 ≤ λ′ ≤ log p.

If xi
Pi← Zp (i = 1, . . . , n) are independent, then Pr[F(x1, . . . , xn) = 0] ≤ 2λ

′ d

p
.

Corollary 1. If λ′ < log p−ω (log log p) in Lemma 2, then Pr[F(x1, . . . , xn) = 0]
is negligible (in log p).

3 Basic Signature Scheme

We propose a bilinear variant of the Schnorr signature scheme [32,33].
Let H : {0, 1}∗ → Zp be a hash function. The signature scheme ΠSc =

(KeyGenSc, SignSc, VerifySc), defined on the message space {0, 1}∗, is as follows:

180 D. Galindo and S. Vivek

1. KeyGenSc(κ): Compute PP := (G,GT , p, e, g) ← BGen(κ). Choose random
x ← Zp. Set X := gx, gT := e(g, g), and XT := e(g,X) = gxT . The public
key is pk := (PP, XT ,H) and the secret key is sk := X .

2. SignSc(sk,m): Choose a random t ← Zp. Set γ := H(gtT ||m), Y := gt · Xγ

and σ := (Y, γ). Output the signature σ.
3. VerifySc(pk,m, σ): Let σ = (Y, γ) ∈ G×Zp. Set ρ := e(Y, g)� (gxT)

−γ . Output
the bit b = 1 (valid) if H(ρ||m) = γ. Otherwise output b = 0 (invalid).

We now prove the security of the above scheme in the GBG model relative
to two hardness assumptions about the hash function H that were introduced
in [29], and which are recalled below. These two assumptions are weaker than
collision-resistance [29]. We adapt the proof techniques of [29] to the bilinear
setting.

Definition 3. [Random-Prefix (Second-) Preimage problem [29]] The advan-
tage of an adversary A in solving the Random-Prefix Preimage (RPP) prob-
lem (respectively, Random-Prefix Second-Preimage (RPSP) problem) for a hash
function H : {0, 1}∗ → Zp, with prefix in a set of bit-strings D, is given by

Adv
RPP[D]
H (A) = Pr [H(R||m) = γ : γ ← A, randomR← D, m← A(R)] ,

Adv
RPSP[D]
H (A) = Pr [H(R||m) = H(R||m′) : m← A, randomR← D,

m′ ← A(R), m′ �= m] ,

where the probability is taken over R and the coins of A. The RPP problem
(respectively, RPSP problem) for H is said to be (t, ε) hard if no adversary A
with running time at most t has advantage greater than ε in solving it.

Theorem 1. The signature scheme ΠSc is EUF-CMA secure in the generic bi-
linear group model if the RPP[ΞT] and RPSP[ΞT] problems are hard for H.

Proof. Let A be a (Γ -time, q-query) adversary that can break the security of
ΠSc. Hence A can make totally at most q group oracle, pairing oracle and signing
oracle queries, and runs in time at most Γ . Let qO denote the total number of
calls to the oracles O, OT and Oe, and qΩ denote the number of calls to the
signing oracle ΩSc. Thus qO + qΩ ≤ q.

PrforgeA,ΠSc
denote the advantage of the adversary A in computing a forgery

against ΠSc. Also let RPP[ΞT] and RPSP[ΞT] problems be (Γ ′, εRPP)- and (Γ ′,
εRPSP)-hard for the hash function H. We show that

PrforgeA,ΠSc
≤ 2q · εRPSP + 36q2 · εRPP +

15q2

p
+

108q3

p

for any (Γ -time, q-query) adversary A in the GBG model, where Γ ′ ≈ Γ . More
precisely, Γ ′ is the sum of Γ and the time required by simulator to maintain the
environment.

The main idea is to use A to construct an adversary B that solves both the
RPP[ΞT] and the RPSP[ΞT] problems for the hash function H. B will simulate

A Leakage-Resilient Pairing-Based Variant of the Schnorr Signature Scheme 181

EUF-CMA experiment for A in the naive way, through the game G that we later
describe below. In the game, B also simulates the generic bilinear group oracles
in the usual way by maintaining lists of pairs of encodings and polynomials that
represent the relation amongst group elements. Let C be a challenger trying to
prove the hardness of both the RPP[ΞT] and the RPSP[ΞT] problems for H
against B.

There are only two possibilities for A to output a forgery:

1. A uses a signature previously obtained to output a forgery (on a distinct
message).

2. A does not output a previously obtained signature as a forgery.

Note that in a forgery of type 1, the “random prefix” for the hash function
input (during verification) is the same as that for the corresponding previously
obtained signature. In this case B will attempt to solve the RPSP[ΞT] problem
for H. There are two issues that B needs to address in this case to solve the
RPSP problem. First, it must correctly guess at the beginning of the simulation
when A outputs a forgery of type 1 (and accordingly inform C that it attempts
to solve the RPSP problem). Secondly, B needs to guess a priori which one of
the previous signatures will A use for the forgery. Then during that step B needs
to forward the corresponding message to the (now RPSP) challenger C to obtain
a random prefix as part of its RPSP challenge. This random prefix will be used
as the encoding of the corresponding element gtT during the above signing step.
B solves the RPSP problem by forwarding to its (now RPSP) challenger C the
forged message output by A. Note that the probability that B will succeed in
both the guesses is at least 1

2q .
In the case of forgery of type 2, B will attempt to solve the RPP[ΞT] problem

for H. Again, B must first guess correctly when this type of forgery occurs (and
accordingly inform C that it attempts to solve the RPP problem). Secondly,
B must commit to a value γ to obtain a random prefix R ∈ ΞT as part of a
RPP challenge. Eventually when A outputs a forgery on a (distinct) message
m, it must turn out that the encoding of the “corresponding gtT ” must be R and
that H(R||m) = γ. The tricky question is how to commit to the value γ before
seeing R and m? We overcome this problem by assuming that A executes the
verification algorithm VerifySc(·) before outputting its forgery (Y, γ), as done in
[29]. This is w.l.o.g. because for every adversary that does not verify its forgery,
we can build an adversary that has the same advantage but verifies its attempted
forgery. This step guarantees that the elements Y ∈ G and gtT ∈ GT appears as
outputs of group oracles, with Y appearing before gtT . We bound the probability
that Y appears later than gtT to be εRPP.

Hence B simply needs to guess a priori which group oracle query outputs
gtT . During this step, B recovers the value of γ using the coefficients of the
polynomials representing Y and gtT , as explained in (7) and proved in Lemma
3. Note that B also needs to guess a priori which element will be output as Y . B
forwards the value of γ to the (now RPP) challenger C and obtains the random
prefix R, which it uses as the encoding of gtT . Note that the probability that
B will succeed in all the three guesses is at least 1

2(3q)2 , where we later show

182 D. Galindo and S. Vivek

that the number of elements to choose from is at most 3q in both the cases. We
would like to note that recovering γ in the proof of [29] (for the original Schnorr
signature scheme) is easier than in the bilinear setting. This is because in [29] it
involved guessing an element in only one list and the polynomials involved are
all binomials.

We now formally describe the game G. The description of the group oracles
is typical for proofs in the generic group model (see [36,28,5,18]).

Description of Game G: Initially, B will choose a random bit βC
$← {0, 1}. This

bit decides which of the two problems RPSP (if βC = 0) or RPP (if βC = 1) will
B attempt to solve using the forgery output by A. If βC = 0, then B randomly
chooses i∗ $← {1, . . . , q}, else it randomly chooses i∗, j∗ $← {1, . . . , 3q}. The
quantity i∗ indicates the step in which B interacts with C to obtain a random
prefix ξT,i∗ ∈ ΞT . This step may be a signature query (if βC = 0) or a group oracle
query to OT (if βC = 1). More on this will be discussed later when describing
the simulation of signature queries and queries to the group oracle OT .

Let X, {Ti : i ≥ 1}, {Ui : i ≥ 1} and {Vi : i ≥ 1} be indeterminates, and
{mi : i ≥ 1} be bit-strings (messages) that are chosen by A. Intuitively, these
(or other) polynomials represent the relation amongst the group elements that
are output by a group oracle, or guessed by A. The indeterminate X corresponds
to the quantity x (discrete logarithm of the secret key), whereas Ti corresponds
to the parameter ti chosen in the ith signing step (1 ≤ i ≤ qΩ). Since A can query
the group oracles with representations (from Ξ and ΞT) not previously obtained
from the group oracles, in order to accommodate this case, we introduce the
indeterminates Ui, Vi. The Ui correspond to the guessed elements of G, whereas
Vi correspond to the guessed elements of GT . We denote the lists {Ti : i ≥ 1},
{Ui : i ≥ 1} and {Vi : i ≥ 1} by {T}, {U} and {V}, respectively.
B maintains three lists of pairs

L = {(F1,i , ξ1,i) : 1 ≤ i ≤ τ1}, (3)
LT = {(FT,i , ξT,i) : 1 ≤ i ≤ τT }, (4)
LΩ = {(mi , ξΩ,i , γi) : 1 ≤ i ≤ τΩ}. (5)

The entries F1,i ∈ Zp[X, {U}, {T}], FT,i ∈ Zp[X, {U}, {V}, {T}] are multivariate
polynomials over Zp, whereas ξ1,i, ξΩ,i, and ξT,i are bit-strings in the encoding
sets Ξ (of G), Ξ, and ΞT (of GT), respectively. We have mi ∈ {0, 1}∗ and
γi ∈ Zp. The polynomials in lists L and LT correspond to elements of G and
GT , respectively, that A will ever be able to compute or guess. The list LΩ
records the signatures obtained by A on the messages mi of its choice. The
values τ1, τT and τΩ denote the respective list counters.

Initially, τ1 = 1, τT = 1, τΩ = 0, L = { (1, ξ1,1) }, LT = { (X, ξT,1) }, and
LΩ = {}. The bit-strings ξ1,1, ξT,1 are set to random distinct strings from Ξ
and ΞT , respectively. We assume that there is some ordering among the strings
in the sets Ξ and ΞT (say, lexicographic ordering), so that given a string ξ1,i
or ξT,i, it is possible to efficiently determine its index in the lists, if it exists.

A Leakage-Resilient Pairing-Based Variant of the Schnorr Signature Scheme 183

The initial state of the lists L and LT correspond to the generator of G and the
public key, respectively.

The game begins by B providing A with the string ξ1,1 from L, and the string
ξT,1 from LT .

Signature Query: Signature queries by A are modeled as follows.A provides
a message mτΩ ∈ {0, 1}∗ of its choice to B. In response B first increments the
counters τ1 := τ1 + 1, τT := τT + 1 and τΩ := τΩ + 1, and sets FT,τT := TτΩ .

– (RPSP Challenge) If βC = 0 and i∗ = τΩ, then B passes on mτΩ to C to
obtain a random prefix ξT,i∗ ∈ ΞT as part of an RPSP challenge. If ξT,i∗
is already present in LT , then B completes the RPSP challenge with C by
returning arbitrary values, after A terminates. Denote this event by Abort.
Else B sets ξT,τT := ξT,i∗ .

– Else if βC �= 0 or i∗ �= τΩ, then B sets ξT,τT to a random string distinct from
those already present in LT .

Append LT with (FT,τT , ξT,τT). B computes γτΩ := H(ξT,τT ||mτΩ), sets F1,τ1 :=
TτΩ + γτΩX, sets ξ1,τ1 to a random distinct string, appends L with (F1,τ1 , ξ1,τ1),
sets ξΩ,τΩ := ξ1,τ1 , and appends LΩ and provides A with (mτΩ , ξΩ,τΩ , γτΩ).

Group Operation of G: The calls made by A to the group oracle O are
modeled as follows. For group operations in G, A provides B with two operands
(bit-strings) ξ1,i, ξ1,j (1 ≤ i, j ≤ τ1) in L and also specifies whether to multiply or
divide them. B answers the query by first incrementing the counter τ1 := τ1 +1,
and computes the polynomial F1,τ1 := F1,i±F1,j . If F1,τ1 = F1,k for some k < τ1,
then B sets ξ1,τ1 := ξ1,k. Otherwise, ξ1,τ1 is set to a random string distinct from
those already present in L. The pair (F1,τ1 , ξ1,τ1) is appended to L and B provides
A with ξ1,τ1 . Note that the (total) degree of the polynomials F1,i in L is at most
one.

If A queries O with an encoding ξ not previously output by the oracle, then
A increments the counter τ1 := τ1 + 1, sets ξ1,τ1 := ξ, and sets F1,τ1 := Uτ1 .
The pair (F1,τ1 , ξ1,τ1) is appended to L. This step is carried out for each guessed
operand.

Group Operation of GT : The group oracle OT is modeled similar to O,
instead appropriately updating the counter τT , and appending the list LT with
the output (FT,τT , ξT,τT). B provides A with ξT,τT . For guessed operands in GT ,
a new variable TτT is introduced instead.

Pairing Operation: For a pairing operation, A queries B with two operands
ξ1,i, ξ1,j (1 ≤ i, j ≤ τ1) in L. B first increments τT := τT +1, and then computes
the polynomial FT,τT := F1,i · F1,j . Again, if FT,τT = FT,k for some k < τT , then
B sets ξT,τT := ξT,k. Otherwise, ξT,τT is set to a random string distinct from
those already present in LT . The pair (FT,τT , ξT,τT) is appended to LT , and B
provides A with ξT,τT . Note that the degree of the polynomials FT,i in LT is at
most two.

RPP Challenge: Recollect that B has earlier sampled i∗, j∗ $← {1, . . . , 3q}.
Since A makes at most qO < q group oracle queries and that in each query A can

184 D. Galindo and S. Vivek

guess at most two new elements, it is easy to see that lists L and LT together
have at most 3(qO + qΩ) ≤ 3q elements. Hence

|L|+ |LT | ≤ 3q. (6)

If βC = 1, then during each of the queries above the counter τT is checked while
adding an element to the list LT . If i∗ = τT , then B computes

γ∗ =
qΩ∑

i=1

aiγi − aX, (7)

where aX is the coefficient of X in FT,i∗ , ai is the coefficient of Ti in F1,j∗ (1 ≤ i ≤
qΩ), and γi is, as defined previously, the hash value in the ith signature query.

If F1,j∗ does not exist, or i∗ > τT at the end of the game G, then B completes
the RPP challenge with C by returning arbitrary values. Else, B passes γ∗ ∈ Zp

to C to obtain a random prefix ξT,i∗ ∈ ΞT , as part of an RPP challenge. If
FT,τT = FT,k for some k < τT and ξT,i∗ �= ξT,k, then B completes the RPP
challenge with C by returning arbitrary values (Abort). Else, if there is no such
k but ξT,i∗ is already present in LT , then also Abort. Else B sets ξT,τT := ξT,i∗ .

If B has made right guesses for i∗ and j∗, then F1,j∗ and FT,i∗ corresponds to
the forgery and satisfy

FT,i∗ := F1,j∗ − γX, (8)

where γ is the hash value corresponding to the forgery. Note again that both
the polynomials exist (in case of successful forgery) because we assume that A
always verifies its attempted forgery before it is output. Lemma 3 below proves
that indeed γ∗ = γ. Because A has access to the oracle OT , it is easy to see that
it is not possible to recover γ from FT,i∗ alone.

Lemma 3. Let FT,i∗ = F1,j∗ −γX, as computed in (8). Let aX be the coefficient
of X in FT,i∗ , and ai be the coefficient of Ti in F1,j∗ (1 ≤ i ≤ qΩ). Also let γi be
the hash value in the ith signature query. Then γ =

∑qΩ
i=1 aiγi − aX.

Proof. Any polynomial in L, in particular F1,j∗ , is of the form F1,j∗ = c1 +∑
i=1 c2,iUi +

∑qΩ
i=1 ai(Ti + γiX), where c1, c2,i, ai ∈ Zp are chosen by A. Hence

the lemma follows. ��

End of Game G: When A terminates it outputs (m, (ξ1,α , γ)) ∈ {0, 1}∗ ×
Ξ×Zp, where ξ1,α ∈ L and 1 ≤ α ≤ τ1. This corresponds to the “forgery” output
by A in the actual interaction. B simply forwards m to its challenger C.

Let Forge denote the event of successful forgery. Next, B chooses random values
x, {u}, {v}, {t} ← Zp for the indeterminates X, {U}, {V}, {T}, respectively. Then
it evaluates the polynomials in lists L and LT . B will abort if:

1. F1,i(x, {u}, {t}) = F1,j(x, {u}, {t}) in Zp, for any F1,i �= F1,j in L.
2. FT,i(x, {u}, {v}, {t}) = FT,j(x, {u}, {v}, {t}) in Zp, for any FT,i �= FT,j in
LT .

A Leakage-Resilient Pairing-Based Variant of the Schnorr Signature Scheme 185

Let Collide denote either of the above events, i.e. a collision occurring in lists L
and/or LT . This completes the description of game G and simulator B.

Analysis of PrforgeA,ΠSc
: The success probability PrforgeA,ΠSc

of A in the actual EUF-
CMA game satisfies

PrforgeA,ΠSc
≤ Pr[Forge |Collide] + Pr[Collide]. (9)

This is because the event Collide ensures that A will get to see only distinct
group elements in the actual interaction. In other words, A is unable to cause
collisions among group elements. As long as the event Collide does not occur,
then the view of A is identical in the game G and the actual interaction. Hence if
A is unable to provoke collisions, then adaptive strategies are no more powerful
than non-adaptive ones (see [28, Lemma 2 on pp. 12], also [36]). This observation
allows us to choose group elements and their representations independently of
the strategy of A.

First we bound Pr[Collide]. The τ1 polynomials F1,i in L have degree at most
one. Note that F1,i �= F1,j ⇔ F1,i − F1,j �= 0 as polynomials. From Lemma 2
(with λ′ = 0), the probability that two distinct polynomials in L evaluate to the
same value for randomly and independently chosen values for the indeterminates
is at most 1

p . Summing up over at most
(
τ1
2

)
distinct pairs (i, j), the probability

that the condition 1 above holds is at most
(
τ1
2

) · 2p . Similarly, the probability
that the condition 2 above holds is at most

(
τT
2

) · 2p . Using (6) we obtain

Pr[Collide] ≤
(
τ1
2

)

· 1
p
+

(
τT
2

)

· 2
p
≤ 1

p
(τ1 + τT)

2 ≤ 9q2

p
. (10)

Next we bound Pr[Forge |Collide] in terms of the advantage of B against C.
Whenever A succeeds in outputting a forgery (m, (ξ1,α , γ)), there are only two
possibilities that can arise:

– (Solving RPSP Challenge) There exists an i (1 ≤ i ≤ qΩ) such that
(mi, (ξ1,α , γ)) ∈ LΩ . In other words, A uses a signature previously obtained
to output its forgery on a distinct message. Let Forge1 denote this event.
If βC = 0 and i∗ = i, then B can successfully use the forgery to solve the
RPSP[ΞT] problem for H. This is because B will attempt to solve the RPSP
problem only when βC = 0, the probability of which is 1

2 . Since at the begin-
ning itself B will decide at which signing step (step i∗) it will interact with C
when βC = 0, the probability that i∗ = i is at least 1

qΩ
> 1

q . Hence the advan-

tage of B in solving RPSP problem is at least 1
2qPr[Forge1 |Collide]−

(
3q
p

)
,

where
(

3q
p

)
is an upper bound on the probability that B does not Abort

due to a repeated entry in LT during RPSP challenge step. It may be
noted that if B attempts to solve the RPP problem using this type of
forgery, then Abort will occur with overwhelming probability. Therefore,
Pr[Forge1 |Collide] ≤ 2q · εRPSP + 6q2

p .

186 D. Galindo and S. Vivek

– (Solving RPP Challenge) The complementary event of Forge1, Forge1.
That is, A does not use a signature previously obtained to output its forgery.
Since A verifies its forgery before it is output, then there exists some ith
entry (FT,i, ξT,i) in the list LT such that H(ξT,i||m) = γ. Also let this entry
be the first occurrence of this pair in LT . If βC = 1, i∗ = i and j∗ =
α, then B can successfully use the forgery to solve the RPP[ΞT] problem
for H. Hence the advantage of B in solving the RPP problem is at least

1
2(3q)2 Pr[Forge1 |Collide]−

(
3q
p + εRPP

)
, where again

(
3q
p

)
is an upper bound

on the probability that B does not Abort due to a repeated entry in LT during
RPP challenge step.
The quantity εRPP appearing above is an upper bound on the probability
that the entry (FT,i, ξT,i) does not appear before (F1,α, ξ1,α). Because FT,i =
F1,α − γX (c.f. (8)) and that encodings are random, this means that A is
able to compute the value γ even before getting an encoding ξT,i such that
H(ξT,i||m) = γ. In other words, A has solved the RPP[ΞT] problem for H.
Therefore, Pr[Forge1 |Collide] ≤ 36q2 · εRPP + 108q3

p .

Since Pr[Forge |Collide] = Pr[Forge1 |Collide] + Pr[Forge1 |Collide], we obtain

Pr[Forge |Collide] ≤ 2q · εRPSP + 36q2 · εRPP +
6q2

p
+

108q3

p
. (11)

From (9), (10) and (11), we have PrforgeA,ΠSc
≤ 2q ·εRPSP+36q2 ·εRPP+

15q2

p + 108q3

p .
Hence if q = poly(log p), then PrforgeA,ΠSc

is negligible provided (εRPSP + εRPP) is
negligible. This completes the proof of Theorem 1. ��

4 A Leakage-Resilient Signature Scheme

In this section, we describe a leakage-resilient variant Π∗Sc of the scheme ΠSc. We
use the techniques of [23] to transform ΠSc to Π∗Sc. A major difference between
the two variants is that the secret keyX = gx of ΠSc is now split into two parts as
(S0 := gl0 , S′0 := gx−l0) for a random l0 ← Zp. The two shares reside in different
parts of the memory. The key generation step KeyGen∗Sc of Π∗Sc is obtained by
suitably modifying the KeyGenSc step of ΠSc. The signing step of Π∗Sc is also split
into two steps Sign∗Sc1 and Sign∗Sc2. After every signature query, the two shares
of the secret key are randomly refreshed. This is required because, as seen in
Section 2.1, if the secret state is not stateful, then the scheme cannot be secure
in the presence of continual leakage.

Let H : {0, 1}∗ → Zp be a hash function. The stateful signature scheme
Π∗Sc = (KeyGen∗Sc, Sign

∗
Sc1, Sign

∗
Sc2,Verify

∗
Sc), defined on {0, 1}∗, is as follows:

1. KeyGen∗Sc(κ): Compute PP := (G,GT , p, e, g) ← BGen(κ). Choose random
x, l0 ← Zp. Set X := gx and XT := e(g,X) = e(g, g)x. The public key is
pk := (PP, XT ,H) and the secret key is sk∗ := (S0 := gl0 , S′0 := gx−l0 =
X · g−l0) ∈ G

2.

A Leakage-Resilient Pairing-Based Variant of the Schnorr Signature Scheme 187

2. Sign∗Sc1(Si−1,mi): Choose random ti, li ← Zp. Set Si := Si−1 · gli , γi :=
H(gtiT ||mi), and Y ′i := gti · Sγii .

3. Sign∗Sc2(S
′
i−1, (Y

′
i , γi, li)): Set S′i := S′i−1 · g−li , Yi := Y ′i · (S′i)γi , and σi :=

(Yi, γi). Output the signature σi. .
4. Verify∗Sc(pk,m, σ): Let σ = (Y, γ) ∈ G×Zp. Set ρ := e(Y, g)� (gxT)

−γ . Output
the bit b = 1 (valid) if H(ρ||m) = γ. Otherwise output b = 0 (invalid).

The index i used above refers to the number of times the signing algorithm has
been invoked. For i ≥ 1, let Zi :=

∑i
j=0 lj . The correctness property of Π∗Sc

follows from ΠSc since Si · S′i = gZi · gx−Zi = X . The leakage functions fi()
and hi() that the adversary specifies to the signing oracle would take the form
f i(Si−1, (li, ti)) and hi(S′i−1, (Y ′i , γi, li)) (cf. (1) and (2)).

The signing step of Π∗Sc requires totally six exponentiations - four for Sign∗Sc1
and two for Sign∗Sc2. This quantity can be reduced to five if gli is also passed
on from Sign∗Sc1 to Sign∗Sc2. Note that the SignSc step of ΠSc requires only three
exponentiations.

Since the input/output behaviour of Π∗Sc and ΠSc is identical, from Theorem
1 we obtain that Π∗Sc is secure in the GBG model in a non-leakage setting.

Lemma 4. The signature scheme Π∗Sc is EUF-CMA secure in the generic bilin-
ear group model if the RPP[ΞT] and RPSP[ΞT] problems are hard for H.

The following theorem shows that Π∗Sc is resilient to continual leakage in the
GBG model if RPP[ΞT] and RPSP[ΞT] problems are hard for the hash function
H, and λ < log p

2 − ω (log log p), where λ is the leakage parameter.

Theorem 2. The signature scheme Π∗Sc is secure with leakage w.r.t. Definition
2 in the generic bilinear group model relative to the hardness of RPP[ΞT] and
RPSP[ΞT] problems for H. Let the RPP and RPSP problems be (Γ, εRPP) and
(Γ, εRPSP)-hard, respectively. Then the advantage of a (Γ -time, q-query) adver-
sary who gets at most λ bits of leakage per each invocation of Sign∗Sc1 or Sign∗Sc2
is O

(
q2 εRPP + q εRPSP + q3

p + q2

p 2
2λ
)
.

Let us briefly sketch the main ideas of the proof. Working on the lines of (9),
the advantage of A is bounded by its success probabilities conditioned on the
event whether or not a collision has occurred in the lists consisting of elements
of G and GT . It is important to note that the proofs for the non-leakage setting
(i.e. proof of Theorem 1) and the leakage setting would be the same conditioned
on the fact that a collision has not occurred. The reason is that in the event of no
collision, the adversary must either solve the RPP or the RPSP problem for the
hash function in order to output a forgery (let us recall that a solution to either
the RPP or the RPSP problem implies a collision for the hash function). Hence
leakage on the secret state will not be useful in this case. Hence the success
probability of A against ΠSc and Π∗Sc is the same in the event of no collision
(that includes the event of guessing the representations of group elements using
partial information about them).

However the probability that a collision occurs in the leakage setting is in-
creased by a factor of at most 22λ. This is because when A has access to leakage

188 D. Galindo and S. Vivek

output f i(Si−1, (li, ti)) and hi(S′i−1, (Y ′i , γi, li)) during ith signature query, then
in adversary’s view the parameters ti, li (i ≥ 1) are no longer uniformly dis-
tributed even though they are still independent. HenceA can now cause collisions
among polynomials (in Conditions 1-2 on page 184) with increased probability.
Each value ti can only be leaked by fi, hence at most λ bits of ti can be leaked.
Since li appears in both f i() and hi(), at most 2λ bits of li can be leaked.

The only useful information that the leakage functions can provide to A is
about the secret key X and the values ti. This is because the values li are
independent of the signatures generated. However A can use the leakages of li
to eventually leak X . If A is able to compute X , then it can trivially forge a
signature on a distinct message. The event of no collision, and the fact that X
is not a “linear combination” of the inputs to the leakage functions, guarantees
that A is unable to compute X .

Proof. Let A be a (Γ -time, q-query) adversary that can break the security of
Π∗Sc. Hence A can make totally at most q group oracle, pairing oracle and signing
oracle queries, and runs in time at most Γ . In the count of q, even group oracle
queries by leakage functions f i, hi (i ≥ 1) specified by A are also included. Let
the adversary A play the game G′ described below. This game is an extension
of game G described in the proof of Theorem 1. To avoid repetition, we only
describe here the extensions that are not part of game G. Let {L} denote the
list of indeterminates {Li : 1 ≤ i ≤ qΩ} that correspond to the values li in Π∗Sc.

Game G′: For each leakage function f i(Si−1, (li, ti)) and hi(S
′
i−1, (Y

′
i , γi, li)),

A maintains a pair of lists
(
Lfi , LfiT

)
and

(
Lhi , Lhi

T

)
, respectively. These lists

contain polynomial and bit-string pairs. The polynomials in Lfi and Lhi be-
long to Zp[X, {U}, {T}, {L}], and the corresponding bit-strings are from the
encoding set Ξ of group G. The polynomials in LfiT and Lhi

T are in the ring
Zp[X, {U}, {V}, {T}, {L}], and the corresponding bit-strings are from the en-
coding set ΞT of group GT . Intuitively, the polynomials in lists Lfi and Lhi

correspond to the elements of group G that can be computed by fi and hi,
respectively, whereas the lists LfiT and Lhi

T correspond to the elements of GT .

Every polynomial in Lfi is of the form c1,iLi + c2,i
i−1∑

j=0

Lj + c3,iDi, where

c1,i, c2,i, c3,i ∈ Zp are chosen by A and Di ∈ Zp[X, {U}, {T}] is in L (cf. (3)).
Every polynomial in Lhi is of the form

d1,iLi + d2,i

⎛

⎝X−
i−1∑

j=0

Lj

⎞

⎠+ d3,i

⎛

⎝Ti + γi

⎛

⎝
i∑

j=0

Lj

⎞

⎠

⎞

⎠+ d4,iWi, (12)

where d1,i, d2,i, d3,i, d4,i ∈ Zp are also chosen by A and Wi ∈ Zp [X,X0,X1, {U},
{T}] is in the list L. Note that the polynomials in lists Lfi and Lhi are of degree
at most one, and that they do not contain the monomial X . The polynomials in
lists LfiT and Lhi

T are of degree at most two.

A Leakage-Resilient Pairing-Based Variant of the Schnorr Signature Scheme 189

The game G′ proceeds exactly as game G except that A can also obtain leak-
age through functions f i and hi in the ith signature query. In particular, when
A terminates it outputs (m, (ξ1,α , γ)) ∈ {0, 1}∗ × Ξ × Zp, where ξ1,α ∈ L and
1 ≤ α ≤ τ1. Let us denote by Forge∗ the event of successful forgery by A. Let
Collide∗ denote the event of a collision occurring in lists L, LT , Lfi , Lhi , LfiT ,
Lhi

T (1 ≤ i ≤ qΩ). The polynomials are now evaluated with values chosen from
independent distributions with min-entropy log p− 2λ, not necessarily from an
uniform distribution. The exact distribution depends on the leakage functions
chosen by A. Since we are only interested to upper bound the collision probabil-
ity, we can safely assume that the simulator chooses the right distribution. Note
that even in the leakage setting, adaptive strategies are no more powerful than
non-adaptive ones, as observed in [2, pp. 691]. This completes the description of
the game G′.

Let PrforgeA,Π∗
Sc

denote the advantage of A in computing a forgery against Π∗Sc.
On the lines of (9), we can write

PrforgeA,Π∗
Sc
≤ Pr[Forge∗ |Collide∗] + Pr[Collide∗]. (13)

As mentioned before, conditioned on the event Collide∗, the view of the adversary
A will be same in both the games G′ and G. This is because in both the cases A
will get to see only distinct group elements. Hence, from (11), we have

Pr[Forge∗ |Collide∗] ≤ O

(

q2 εRPP + q εRPSP +
q3

p

)

. (14)

Lemma 5. Pr[Collide∗] ≤ O
(
q2

p 2
2λ
)
.

Proof. To compute the required probability, the polynomials in lists L, LT , Lfi ,
Lhi , LfiT , Lhi

T (1 ≤ i ≤ qΩ) are evaluated by choosing values from Zp according to
(independent) distributions with min-entropy at least log p−2λ. This is because
A can obtain at most 2λ bits of leakage about li (i = 0, . . . , qΩ), and at most
λ bits of ti (i = 1, . . . , qΩ). According to Lemma 1, the values li, ti have min-
entropy at least log p − 2λ in the view of A. The total length of all the lists is
at most O(qΩ + qO) = O(q). Hence there can be at most O(q2) pairs of distinct
polynomials (of degree at most two) evaluating to the same value. From Lemma
2 (with λ′ = 2λ), we obtain Pr[Collide∗] ≤ O

(
q2

p 2
2λ
)
. ��

From (13), (14) and Lemma 5, we have PrforgeA,Π∗
Sc
≤ O

(
q2 εRPP + q εRPSP+

q3

p + q2

p 2
2λ
)
. This completes the proof of Theorem 2. ��

5 Conclusions

In this work we presented the pairing-based split Schnorr scheme and quantified
its security against independent and continual leakage in the generic bilinear

190 D. Galindo and S. Vivek

group model. In particular, we showed that allowing λ bits of leakage at each
of the two phases of every round in the proposed scheme can be compared to
decreasing the security of the pairing-based Schnorr scheme (without leakage)
by a factor of at most 22λ in our leakage model.

Undoubtedly, the main advantage of our approach lies on its practicality: sign-
ing takes at most 5 exponentiations in G plus 1 exponentiation in GT ; verification
takes 1 pairing plus 1 exponentiation in GT . A suitable bilinear pairing group to
implement our modification of the Schnorr scheme is the pairing-friendly curve
BN-128 studied by Scott in [35]. Thus while our scheme offers continual leakage-
resilience, its efficiency is comparable to that of standard pairing-based signature
schemes [37]. This is currently out of reach for schemes that offer EUF-CMA se-
curity against continual leakage and dispense with the generic group model, be
it in the standard or the random oracle models.

It is interesting to compare the relative efficiency and strength of our scheme
and the FKPR scheme by Faust et al. [16]. The latter has a weak form of
EUF-CMA security against continual independent leakages in the random oracle
model, where the adversary can ask at most for D signatures queries, for D fixed
before the key generation phase. The main advantage of that construction with
respect to ours is that it can be implemented over any group G where the DL
problem is conjectured to be hard (our scheme needs pairing-based groups). Let
us now examine its disadvantages against our scheme, which are all related to its
practicality. The signer in the FKPR scheme needs to maintain a state consist-
ing on roughly d Schnorr signatures and d public and corresponding secret keys,
with the length of a signature being proportional to d and D = 2d+1−2; signing
takes 9 exponentiations in the group G, while verification time is proportional
to d. FPKR only tolerates a leakage rate of roughly 1/36. Thus, for reasonable
values of d, e.g. d = 20, our scheme is more efficient in storage, computing time
and leakage ratio than the FPKR scheme, while offering standard existential
unforgeability against continual leakage in the split-state model. Finally both
our scheme and the FPKR scheme use an idealized model of computation to
prove security, namely the former uses the random oracle model, while ours uses
generic groups.

Acknowledgements. The research leading to these results has received fund-
ing from the European Research Council under the European Union’s Seventh
Framework Programme (FP7/2007-2013) / ERC grant agreement n◦ 258865.

References

1. ISO/IEC 18033-2:2006 - Information technology – security techniques – encryption
algorithms – Part 2: Asymmetric ciphers

2. Aggarwal, D., Maurer, U.: The leakage-resilience limit of a computational problem
is equal to its unpredictability entropy. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 686–701. Springer, Heidelberg (2011)

A Leakage-Resilient Pairing-Based Variant of the Schnorr Signature Scheme 191

3. Alwen, J., Dodis, Y., Wichs, D.: Leakage-resilient public-key cryptography in the
bounded-retrieval model. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
36–54. Springer, Heidelberg (2009)

4. Boneh, D., Boyen, X.: Efficient selective-id secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

5. Boneh, D., Boyen, X.: Short signatures without random oracles and the sdh as-
sumption in bilinear groups. J. Cryptology 21(2), 149–177 (2008)

6. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with con-
stant size ciphertext. In: Cramer [10], pp. 440–456

7. Boyle, E., Segev, G., Wichs, D.: Fully leakage-resilient signatures. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 89–108. Springer, Heidelberg
(2011)

8. Brakerski, Z., Kalai, Y.T., Katz, J., Vaikuntanathan, V.: Overcoming the hole
in the bucket: Public-key cryptography resilient to continual memory leakage. In:
FOCS, pp. 501–510. IEEE Computer Society (2010)

9. Coron, J.-S.: Resistance against differential power analysis for elliptic curve cryp-
tosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302.
Springer, Heidelberg (1999)

10. Cramer, R. (ed.): EUROCRYPT 2005. LNCS, vol. 3494. Springer, Heidelberg
(2005)

11. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Efficient public-key cryptog-
raphy in the presence of key leakage. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 613–631. Springer, Heidelberg (2010)

12. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate
strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139
(2008)

13. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography. SIAM J. Comput-
ing 30(2), 391–437 (2000)

14. Dziembowski, S., Faust, S.: Leakage-resilient cryptography from the inner-product
extractor. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp.
702–721. Springer, Heidelberg (2011)

15. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: FOCS, pp. 293–
302. IEEE (2008)

16. Faust, S., Kiltz, E., Pietrzak, K., Rothblum, G.N.: Leakage-resilient signatures. In:
Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 343–360. Springer, Heidelberg
(2010)

17. Faust, S., Pietrzak, K., Schipper, J.: Practical leakage-resilient symmetric cryp-
tography. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp.
213–232. Springer, Heidelberg (2012)

18. Galindo, D., Vivek, S.: A practical leakage-resilient signature scheme in the generic
group model. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp.
50–65. Springer, Heidelberg (2013)

19. Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and Sys-
tem Sciences 28(2), 270–299 (1984)

20. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

21. Katz, J.: Signature schemes with bounded leakage resilience. Cryptology ePrint
Archive, Report 2009/220 (2009), http://eprint.iacr.org/

http://eprint.iacr.org/

192 D. Galindo and S. Vivek

22. Katz, J., Vaikuntanathan, V.: Signature schemes with bounded leakage resilience.
In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 703–720. Springer,
Heidelberg (2009)

23. Kiltz, E., Pietrzak, K.: Leakage resilient elgamal encryption. In: Abe, M. (ed.)
ASIACRYPT 2010. LNCS, vol. 6477, pp. 595–612. Springer, Heidelberg (2010)

24. Kocher, P.C.: Timing attacks on implementations of diffie-hellman, rsa, dss, and
other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113.
Springer, Heidelberg (1996)

25. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

26. Liu, F.-H., Lysyanskaya, A.: Tamper and leakage resilience in the split-state
model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417,
pp. 517–532. Springer, Heidelberg (2012)

27. Malkin, T., Teranishi, I., Vahlis, Y., Yung, M.: Signatures resilient to continual leak-
age on memory and computation. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597,
pp. 89–106. Springer, Heidelberg (2011)

28. Maurer, U.M.: Abstract models of computation in cryptography. In: Smart, N.P.
(ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 1–12. Springer, Hei-
delberg (2005)

29. Neven, G., Smart, N.P., Warinschi, B.: Hash function requirements for schnorr
signatures. J. Mathematical Cryptology 3(1), 69–87 (2009)

30. Okamoto, T.: Provably Secure and Practical Identification Schemes and Cor-
responding Signature Schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS,
vol. 740, pp. 31–53. Springer, Heidelberg (1993)

31. Pietrzak, K.: A leakage-resilient mode of operation. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 462–482. Springer, Heidelberg (2009)

32. Schnorr, C.-P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990)

33. Schnorr, C.-P.: Efficient signature generation by smart cards. J. Cryptology 4(3),
161–174 (1991)

34. Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identi-
ties. J. ACM 27(4), 701–717 (1980)

35. Scott, M.: On the efficient implementation of pairing-based protocols. In: Chen, L.
(ed.) IMACC 2011. LNCS, vol. 7089, pp. 296–308. Springer, Heidelberg (2011)

36. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997)

37. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer
[10], pp. 114–127

38. Wichs, D.: Barriers in cryptography with weak, correlated and leaky sources. In:
Kleinberg, R.D. (ed.) ITCS, pp. 111–126. ACM (2013)

39. Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Ng, K.W. (ed.) EU-
ROSAM 1979 and ISSAC 1979. LNCS, vol. 72, pp. 216–226. Springer, Heidelberg
(1979)

High-order Masking by Using Coding Theory

and Its Application to AES

Guilhem Castagnos1, Soline Renner1,2, and Gilles Zémor1

1 Institut de Mathématiques de Bordeaux UMR 5251, Université Bordeaux 1
351, cours de la Libération, 33405 Talence cedex, France
{guilhem.castagnos,gilles.zemor}@math.u-bordeaux1.fr

2 Oberthur Technologies Security Group
4, allée du Doyen Georges Brus, 33600 Pessac, France

s.renner@oberthur.com

Abstract. To guarantee that some implementation of a cryptographic
scheme is secure against side channel analysis, one needs to formally
prove its leakage resilience. A relatively recent trend is to apply meth-
ods pertaining to the field of Multi-Party Computation: in particular this
means applying secret sharing techniques to design masking countermea-
sures. It is known besides that there is a strong connection between se-
cret sharing schemes and error-correcting codes, namely every linear code
gives rise to a linear secret sharing scheme. However, the schemes mostly
used in practice are the so-called Boolean masking and Shamir’s secret
sharing scheme and it is widely thought that they are the most adapted
to masking techniques because they correspond to MDS codes that are in
some sense optimal. We propose alternative masking techniques that rely
on non-MDS linear codes: these codes are non-binary but have an un-
derlying binary structure which is that of a self-orthogonal binary code.
Their being non-MDS is compensated by the fact that the distributed
multiplication procedure is more efficient than with MDS codes due to
an efficient encoding process and that the distributed computation of
squares comes at almost no cost. In protecting AES against high-order
side channel analysis, this approach is more efficient than methods using
Shamir’s secret sharing scheme and competitive with Boolean masking.

Keywords: High-Order Side Channel Analysis, Linear Secret Sharing
Scheme, Self-Dual Codes.

1 Introduction

In the 90’s, Kocher et al. published the so-called Side Channel Analysis (SCA
for short) which generated a huge interest in both academic and industrial com-
munities. Indeed, they noticed that side channel leakage of an embedded device
such as its power consumption or its electromagnetic radiation can reveal in-
formation on any value manipulated ([Koc96, KJJ99]). When applied during
the execution of a cryptographic algorithm, such an attack can be used for
secret key recovery. Since then, a wide variety of attacks has been proposed

M. Stam (Ed.): IMACC 2013, LNCS 8308, pp. 193–212, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

194 G. Castagnos, S. Renner, and G. Zémor

including tth-order SCA which exploits leakage observations resulting from the
handling of t intermediate variables during the cryptosystem processing (see
e.g., [Mes00, JPS05, PR10, FMPR10]).

One standard way to thwart this kind of attack is based on secret sharing and
is called tth-order masking when each sensitive variable is split into numerous
shares in a way such that t of them give no information on this variable. These
shares must then be propagated independently throughout the algorithm to en-
sure its resistance against tth-order SCA. In particular, when applying a linear
secret sharing for a masked implementation of the AES cipher, shares can be eas-
ily propagated through all linear operations. However, much more work is needed
to deal with the inversion in the finite field F28 involved in the AES Sbox. When
masking AES, this inversion is usually (see e.g., [TDG02, BMK04, OMPR05])
computed using exponentiation so masking this operation comes down to mask-
ing multiplications of sensitive variables. This last problem has been extensively
addressed in the secure Multi-Party Computation literature. For instance in
[BOGW88, CCD88], the authors have introduced a secure multiplication proce-
dure for the secret sharing scheme of Shamir ([Sha79]). Much later, in [ISW03],
Ishai, Sahai and Wagner have proposed another procedure applied for a ba-
sic secret sharing scheme, commonly used to design countermeasures, the so-
called Boolean masking. These two methods have been used in the past few
years to propose high-order masking schemes for AES ([RP10, KHL11, CPRR13]
with Boolean Masking, and [GM11, PR11, CPR12] with Shamir’s secret sharing
scheme).

Let us mention that, quite recently, the authors of [BFGV12] have suggested
an adaptation of the nonlinear masking technique described in [DF12] to design
an implementation of AES resistant against high-order SCA. In particular, they
improved the secure multiplication of [DF12]. However this scheme being non-
linear, the implementation of linear operations becomes expensive compared to
linear schemes.

Another idea is to take advantage of the fact that every linear code gives rise
to a linear secret sharing scheme as described in [Mas93] for example. In practice,
MDS codes, such as the parity check code (corresponding to Boolean masking)
and Reed-Solomon code (for Shamir’s secret sharing scheme) are generally used
to design countermeasures as tth-order SCA resistance is achieved with only
t + 1 shares. Moreover, the initial Multi-Party Computation protocol proposed
in [BOGW88, CCD88] for Shamir’s secret sharing scheme has been generalized
by Cramer et al. ([CDM00]) from any linear secret sharing scheme and family
of codes such as self-dual and geometric codes have been suggested to improve
performance of the distributed multiplication procedure ([CC06, CDG+08]).

Our Contribution. In this paper, we propose to take advantage of results of
coding theory and Multi-Party Computation to design new tth-order masking
techniques by selecting linear codes adapted to the masked operations. More
precisely, we suggest to use self-dual codes with a binary basis to create secret
sharing schemes in which secrets and shares belong to an extension field K of

High-order Masking by Using Coding Theory and Its Application to AES 195

the binary field F2. These codes will provide low-cost square operations1 and
an efficient encoding which is extensively used as a subroutine of the secure
multiplication procedure. Encoding require zero multiplication over the large
field, contrary to all strategies based on Shamir’s secret sharing scheme. As a
result, our secure multiplication procedure needs O(t) multiplications whereas
the methods based on Shamir’s secret sharing scheme ([GM11, PR11]) involve
O(t3) multiplications2, due to a costly encoding procedure, and the method
given in [RP10], using Boolean masking, has complexity O(t2) multiplications.
Moreover, we propose an improvement of the multiplication procedure given
in [BOGW88, CCD88, CDM00] which can also be applied for Shamir’s secret
sharing scheme.

Our codes are non-MDS, so we need more than t+1 shares to achieve tth-order
SCA resistance. However, thanks to the underlying binary structure of our code,
we show that it is possible to efficiently switch code to the same code used for
Boolean masking during linear operations. As a result, these linear operations
can be masked as efficiently as with Boolean masking. We also propose to work
with an underlying self-dual code over F4 which provides a low-cost x �→ x4

operation over K with less shares.
Finally, in the context of an implementation of a tth-order secure AES, we

show that our masking proposal dramatically improves the method with Shamir’s
secret sharing scheme and is competitive with Boolean masking.

Paper Organization. In Section 2, we recall the connection between tth-order
SCA countermeasures and secret sharing schemes and present the approach
with Shamir’s secret sharing scheme. In Section 3, we present the construc-
tion of linear secret sharing schemes derived from linear codes and the general
Multi-Party Computation multiplication procedure of [CDM00] that generalizes
[BOGW88, CCD88]. Section 4 is the core of our proposal: we present a new tth-
order masking technique based on self dual codes, and several implementation
improvements. In Section 5, we apply our technique to secure an AES imple-
mentation present experimental results and make a comparison with previous
works. Finally Section 5 concludes the paper.

2 Secret Sharing Scheme and tth-Order Masking

An implementation of a secret key algorithm is said to be tth-order secure if an
adversary gains no information about the secret key from the knowledge of t
intermediate values. This ensures that the observation of the physical leakage
related to the manipulation of these intermediate values will not help the adver-
sary in performing a key recovery attack. A sound approach to reach this level of

1 We note that a similar trick have been proposed to make efficient squaring in the
long version of [PR11] but only with Reed-Solomon codes which are different to the
codes used in our proposal.

2 This can be improved to O(t2 log4 t) multiplications by using discrete Fourier trans-
form cf. [CPR12].

196 G. Castagnos, S. Renner, and G. Zémor

security is to mask each sensitive variable s with a linear secret sharing scheme.
For example, the so-called Boolean masking consists in randomly splitting s into
t+1 shares s1, . . . , st+1 in a way such that s = s1+ · · ·+st+1 ([RP10, CPRR13]).
The linear secret sharing scheme of Shamir has also been used in this context
([GM11, PR11, CPR12]).

Some mechanisms must be developed to make this masking procedure com-
patible with the operations performed in the protected algorithm, i.e., to enable
the computation on masked data. For example, for the AES cipher, linear oper-
ations are compatible with linear secret sharing. Nonlinear functions involved in
the SubBytes transformation are more difficult to deal with. Usually the inver-
sion involved in this transformation is computed using an exponentiation which
requires a method to protect multiplications of sensitive variables. In the context
of the AES, some solutions have been developed in [RP10, KHL11, CPRR13]
for multiplication with Boolean masking.

In this section, after some definitions on secret sharing schemes, we describe
the solution, close to our proposal, given in [GM11, PR11, CPR12] still in the
context of AES, to perform multiplications with Shamir’s secret sharing scheme.

2.1 Definitions

Let K be a field. A secret sharing scheme is a method to split a secret s ∈ K
among a set of n shares. More precisely a secret sharing scheme is composed of
two algorithms, encoding and decoding . The encoding of s provides an n−vector
of shares called share vector : (s1, . . . , sn) ∈ Kn. The decoding algorithm recon-
structs the secret s from (s1, . . . , sn).

A secret sharing scheme has t-privacy if any set of at most t shares reveals no
information about the secret, and r-reconstruction if r shares reveal the entire
secret. A secret sharing scheme is said to be linear if for any two secrets s and s′

shared respectively by (s1, . . . sn) and (s′1, . . . s
′
n), the vectors (s1+s

′
1, . . . , sn+s

′
n)

and (λs1, . . . , λsn) decode respectively to s+ s′ and λs, λ ∈ K.
A tth-order secure implementation of an algorithm can be based on a linear

secret sharing scheme with t−privacy. The encoding procedure is applied to
each input variable. Share vectors are then manipulated to reflect the protected
algorithm. Additions and scalar multiplications of secrets are performed easily
on the share vectors. In the following, we recall the linear secret sharing scheme
of Shamir and the method to perform tth-order secure multiplication of secrets
described in [GM11, PR11, CPR12].

2.2 Shamir’s Secret Sharing Scheme

In [Sha79], Shamir has introduced a linear secret sharing scheme over a finite field
Fq based on polynomial interpolation. The encoding step consists in generating
a random secret polynomial P of degree t over Fq such that P (0) = s. Then, the
share vector of s denoted (s1, . . . , sn) is generated by evaluating si = P (xi) in
n distinct non-zero points x1, . . . , xn of Fq. Let A be a subset of {1, . . . , n} such
that |A| � t+ 1. The decoding step consists in recovering the secret polynomial

High-order Masking by Using Coding Theory and Its Application to AES 197

by interpolation and then the secret by an evaluation at 0. This is done by
computing:

s =
∑

i∈A
siβi(0), (1)

where βi(X) =
∏
j∈A,j �=i

X−xj

xi−xj
are Lagrange polynomials. This gives a linear

secret sharing scheme with t-privacy and t+ 1-reconstruction.
Linear operations on secrets can be securely executed as described in sub-

section 2.1. However nonlinear operations over Fq are more complex to deal
with. Multiplication of two secrets has been extensively studied to design se-
cure multiparty computation schemes, e.g. in [BOGW88, CCD88, GRR98]. The
method consists in multiplying the two share vectors share by share. This oper-
ation corresponds to the multiplication of two degree t polynomials which gives
a polynomial of degree 2t. The secret result of the multiplication can then be
recovered with at least 2t + 1 shares if n � 2t + 1. A method to reduce the
number of shares required to reconstruct the secret is needed, otherwise k suc-
cessive multiplications would require to take n � kt+1. The solution consists in
re-encoding 2t+1 shares and to compute the sum of the resulting share vectors.

In [GM11, PR11], this secure multiplication has been used to implement the
AES cipher. Algorithm 1 recalls the solution to perform the secure multiplication
procedure as given in [GM11]. In particular the authors have suggested to take
n = t + 1 during the whole process and to generate on-the-fly the additional
shares when a multiplication step is required reducing the overall complexity of
their AES implementation.

Algorithm 1. Secure Multiplication [GM11, Algorithm 2]
Inputs: 2n− 1 distinct non-zero public elements x1, . . . , x2n−1

(s1, . . . , sn) a share vector of s and (s′1, . . . , s
′
n) a share vector of s′

βj(xi) pre-computed for 1 � j � n and n+ 1 � i � 2n− 1

β∗
i pre-computed for 1 � i � 2n− 1 with β∗

i =
∏2n−1

j=1,j �=i

−xj

xi−xj

Output: (z1, . . . , zn) a share vector of ss′

1. For i = n+ 1 to 2n− 1 do

2. si ←∑n
j=1 sjβj(xi)

3. s′i ←
∑n

j=1 s
′
jβj(xi)

4. For i = 1 to 2n− 1 do

5. wi = sis
′
iβ

∗
i

6. (wi1 , . . . , win)← encoding(wi)

7. For j = 1 to n do

8. zj ←∑2n−1
i=1 wij

9. Return (z1, . . . , zn)

Remark 1. When the field Fq has characteristic 2, the square of a secret can
be performed more efficiently than general multiplication. Let us consider the
square (s21, . . . , s

2
n) of a share vector of s and let us denote P the secret polynomial

used to share s. Relation (1) gives s2 =
∑
i∈A s

2
iβi(0)

2, so the secret s2 can be

198 G. Castagnos, S. Renner, and G. Zémor

recovered with only (t+1) shares. However each share s2i is an evaluation of P 2

at x2i instead of xi. In [GM11] the authors propose again to apply a re-encoding
step so that the shares are the evaluation of a polynomial at (x1, . . . , xn). In the
long version of [PR11] it is proposed to choose the points x1, . . . , xn such that
the set of these points is stable with respect to the Frobenius map x �→ x2. As a
result, a simple re-ordering of the shares is needed instead of a re-encoding step.
The situation will be even simpler with our proposal since no re-ordering will be
needed.

The main cost of Algorithm 1 comes from the numerous multiplications by
constant values, namely the multiplications by β∗i and βj(xi) and the ones re-
quired during the encoding steps. These steps correspond to evaluations of poly-
nomials at n different points. In [CPR12], the authors propose to use the discrete
Fourier transform for these computations. Hence the whole secure multiplication
procedure can be improved to a complexity of O(n2) multiplications instead of
the naive approach in O(n3) multiplications. With our proposal, no multiplica-
tion by constant values over Fq will be needed, as a result of which the secure
multiplication procedure will be improved to a complexity of O(n) multiplica-
tions.

3 Coding Theory Generalisation

It is well-known that a linear secret sharing scheme can be built from a linear
code as described, for example, in [Mas93, CC06, CCG+07, CDG+08]. More-
over, the problem of computing on masked data (addition and multiplication of
secret values) for general secret sharing schemes has been addressed to design
secure multiparty computation protocol (see, e.g., [CDM00]), generalizing the
protocol initially proposed in [BOGW88, CCD88] with Shamir’s scheme. In the
following, we recall some basic definitions, explain the construction of a linear
secret sharing scheme from a linear code and describe the algorithms to per-
form secure computation on secrets that generalize the algorithms given in the
previous section.

3.1 Basic Definitions and Results from Coding Theory

Over a finite field Fq, an [n+1, k+1, d]q linear code C is a (k+1)−dimensional
vector subspace of Fn+1

q with minimum Hamming distance d. The generator
matrix G of a linear code in systematic form can be written as G = [Idk+1| A],
whereA is a (k+1)×(n−k)−matrix. The elements c = (c0, . . . , cn) of C are called
codewords and can be generated as c = (r0, . . . , rk)·G, where (r0, . . . , rk) ∈ Fk+1

q .

The dual code C⊥ of C is an [n+ 1, n− k]q linear code defined by

C⊥ =
{
c ∈ Fn+1

q : 〈c, c′〉 = 0 for all c′ ∈ C} ,

where 〈., .〉 denotes the inner product defined by 〈c, c′〉 =∑n
i=0 cic

′
i. When C =

C⊥ (resp. C ⊆ C⊥), C is said to be self-dual (resp. self-orthogonal).

High-order Masking by Using Coding Theory and Its Application to AES 199

From C an [n+ 1, k + 1]q linear code, the squared code denoted Ĉ is defined by

Ĉ = 〈{c ∗ c′, c, c′ ∈ C}〉 ,

where ∗ denotes the Schur product c ∗ c′ = (c0c
′
0, . . . , cnc

′
n). Moreover we define

C2 as
C2 =

〈{c2 = c ∗ c, c ∈ C}〉 .
For more details on linear codes, the interested reader may refer to [MS78].

In the following we give two lemmas useful to select suitable codes for efficient
operations on masked data.

Lemma 1. Let C be an [n, k] linear code over Fq of characteristic 2. The fol-
lowing assertions are equivalent:

1. ∀c ∈ C, c2 ∈ C,
2. C has a binary basis.

Proof. Let C be a linear code over Fq of characteristic 2 having a binary basis
(b1, . . . , bk) with bi ∈ Fn2 . For all i, b2i = bi. If c is a codeword of C, then there

exists a linear combination such that c =
∑k

i=1 λibi with λi ∈ Fq. We have

c2 =
∑k
i=1 λ

2
i b

2
i =

∑k
i=1 λ

2
i bi ∈ C.

Conversely, let C be a [n, k] linear code over Fq, such that for all code-
word c ∈ C, c2 ∈ C. Let G be a generator matrix of C in systematic form
and bi be the ith row of G. Let a1, . . . , an−k be elements of Fq such that
bi = (0, . . . , 0, 1, 0, . . . , 0, a1, . . . , an−k).

By definition b2i = (0, . . . , 0, 1, 0, . . . , 0, a21, . . . , a
2
n−k) ∈ C, so there exists a

linear combination such that b2i =
∑k

i=1 λibi. From the last equality, the jth

coordinate of b2i is equal to λj for j ∈ {1, . . . , k}. By identification, we have for
1 � j � k and j
= i, λj = 0, and λi = 1. Therefore b2i = bi and then a2j = aj for
j ∈ {1, . . . , n− k}. Thus bi ∈ Fn2 . ��
Lemma 2. If C is a linear self-dual code (or a linear self-orthogonal code), then

the codeword 1 = (1, . . . , 1) ∈ Ĉ⊥.
Proof. For all c, c′ ∈ C of the self-dual (or self-orthogonal) code, we have: 〈c, c′〉 =
〈c ∗ c′,1〉 = 0. ��

3.2 Construction of a Linear Secret Sharing Scheme from a Linear
Code

Let C be an [n+1, k+1, d]q linear code with G its generator matrix in systematic
form. All codewords c = (c0, c1, . . . , cn) of C can be identified with a share vector
(c1, . . . , cn) of the secret c0 = s. Hence the encoding procedure of a secret s ∈ Fq
consists in generating a codeword c = (s, r1, . . . , rk) · G, where r1, . . . , rk are
random values of Fq. In case of ambiguity, this procedure is denoted encodingC .
Assuming that there exists a codeword h = (h0, . . . , hn) of C⊥ such that h0 = 1,

200 G. Castagnos, S. Renner, and G. Zémor

the decoding procedure can be implemented by computing s =
∑n

i=1 λici where
λi = −hi ∈ Fq. In this case, we call recombination vector of C, such a vector
λ = (λ1, . . . , λn) where the number of non-zero λi equals to d

⊥ − 1.
In [CCG+07, Theorem 1], it is shown that such a linear secret sharing scheme

has (d⊥− 2)−privacy and (n−d+2)−reconstruction, where d⊥ is the minimum
distance of C⊥.

3.3 Operations on Masked Data

A linear code gives a linear secret sharing scheme, so addition and scalar mul-
tiplication of secrets correspond to addition and scalar multiplication of share
vectors. Consider now the problem of multiplying two secrets shared by a general
secret sharing scheme. In other words, from the shared vectors of two secrets one
wishes to obtain a shared vector representing the product of the secrets by using
operations on shares and without reconstructing the secrets. This problem has
been addressed in [CDM00]. In this work, a procedure that generalizes Algo-

rithm 1 is given, by considering any linear code C such that d̂⊥ ≥ d⊥ where d̂⊥

is the minimum distance of Ĉ. We describe this approach below.
We assume that there exists a recombination vector λ̂ of Ĉ (for example,

according to Lemma 2, we can choose λ̂ = (1, . . . , 1) if C is self-dual or self-
orthogonal). Let c, c′ ∈ C be such that c0 = s and c′0 = s′. The secret multiplica-

tion ss′ can be shared by c∗c′ ∈ Ĉ and recovered by computing ss′ =
∑n

i=1 λ̂icic
′
i.

Furthermore Ĉ gives a secret sharing scheme with (d̂⊥ − 2)−privacy and as

d̂⊥ ≥ d⊥, the privacy level of the secret sharing scheme associated to C is pre-
served. To be able to perform further multiplications, we need a method for
re-encoding the codeword c ∗ c′ ∈ Ĉ into a new codeword z ∈ C such that
z0 = ss′. As seen in the previous section, this can be done by re-encoding each
λ̂icic

′
i into a new codeword of C. Then by summing these n codewords, we ob-

tain z, a codeword of C, such that z0 = ss′. This procedure is described in the
following algorithms: Algorithm 3 for the secure multiplication procedure, and
Algorithm 2 for the re-encoding subroutine.

Algorithm 2. Secure Re-encoding Procedure
Inputs: C a [n+ 1, k + 1]q linear code
C′ a [n′ + 1, k′ + 1]q linear code and λ′ a recombination vector
(w1, . . . , wn′) a share vector corresponding to a codeword of C′
Output: (z1, . . . , zn) a share vector of

∑n′
i=1 λ

′
ici corresponding to a codeword of C

Function: re-encoding C′ �→C(λ
′, w1, . . . , wn′)

1. For i = 1 to n′ do

2. (wi1 , . . . , win)← encodingC(λ′
iwi)

3. For j = 1 to n do

4. zj ←∑n′
i=1 wij

5. Return (z1, . . . , zn)

High-order Masking by Using Coding Theory and Its Application to AES 201

Algorithm 3. Secure Multiplication Procedure
Inputs: C a [n+ 1, k + 1]q linear code
(c1, . . . , cn) a share vector of s and (c′1, . . . , c

′
n) a share vector of s′ corresponding to

codewords of C
λ̂ a recombination vector of Ĉ
Output: (z1, . . . , zn) a share vector of ss′ corresponding to a codeword of C
1. (w1, . . . , wn)← (c1c

′
1, . . . , cnc

′
n)

2. (z1, . . . , zn)← re-encoding
̂C�→C(λ̂, w1, . . . , wn)

3. Return (z1, . . . , zn)

These algorithms requires n multiplications of shares and numerous multipli-
cations by constant values: the coordinates of λ̂ and the elements of the matrix
G for the encodings. In our proposal, all these elements will be binary, so only
n multiplications will be needed for a secure multiplication.

Fact 1. From the properties of the secure Multi-Party Computation protocol
given in [CDM00, Section 6], Algorithms 2 and 3 give a tth-order secure mul-
tiplication, with t = d⊥ − 2 where d⊥ is the dual distance of the linear code
C.
Remark 2. Over a finite field Fq of characteristic 2, the square of a secret s can be

computed without using the squared code Ĉ and λ̂. Indeed, if (1, λ1, . . . , λn) ∈ C⊥,
then (1, λ21, . . . , λ

2
n) ∈ C2

⊥
. As a result, if s is shared by (c1, . . . , cn), one can apply

Algorithm 2 to λ2, (c21, . . . , c
2
n), to obtain a share vector of s2 corresponding to

a codeword of C. Moreover, no re-encoding is needed if c2 ∈ C. According to
Lemma 1, this will be the case if and only if C has a binary basis. In this case,
the secure squaring procedure only requires to compute n squares.

3.4 Application to Boolean Masking and to Shamir’s Secret Sharing
Scheme

The well-known Boolean masking can be obtained with this framework by using
the [n+ 1, n]q linear parity check code with generator matrix

G =

⎛

⎜
⎝

1

Idn
...
1

⎞

⎟
⎠ . (2)

The dual of this code is generated by the codeword (1, . . . , 1). As a conse-
quence, the secret sharing scheme constructed from such a code has (n − 1)-
privacy and the secret s ∈ Fq can be recovered by computing s =

∑n
i=1 ci,

where (c1, . . . , cn) is a share vector of s. As said in Remark 2 this scheme al-
lows a secure squaring procedure with a low computational cost. However for
n + 1 � 2, it is easy to see that Ĉ⊥ = {0}. As a consequence we cannot apply

202 G. Castagnos, S. Renner, and G. Zémor

Algorithm 3 to perform a secure multiplication. Nevertheless other methods are
proposed in the literature to perform such an operation without using the frame-
work of error-correcting codes (for instance the method given in [RP10] requires
roughly n2 multiplications of shares).

Shamir’s secret sharing scheme can be constructed from the Reed-Solomon
code of parameters [n+ 1, t+ 1]q with the generator matrix

G =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 1 . . . 1
0 x1 . . . xn
0 x21 . . . x

2
n

...
... . . .

...
0 xt1 . . . x

t
n

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

with for all i, j, i
= j, xi
= xj ∈ Fq � {0}. The recombination vector λ can
be chosen such that λi = βi(0) (i.e., Lagrange polynomials evaluated in 0).

Moreover, Ĉ is the [n+1, 2t+1]q Reed-Solomon code and if 2t+1 � n, then we can
apply Algorithm 3. This gives essentially Algorithm 1 where the only difference
is the on-the-fly computation of the missing shares. Similarly the method of
[GM11] to compute secure squaring for Shamir’s scheme explained in Remark 1,
corresponds to the method given in Remark 2.

4 Our Contribution

The codes generally considered for the construction of secret sharing schemes
are MDS codes, such as the parity check code (for Boolean masking) and Reed-
Solomon codes (for Shamir’s scheme). This is because they give perfect secret
sharing schemes, namely t−privacy and t+1−reconstruction. In particular, when
used as tth-order masking, only t + 1 shares can be used to mask each input
variable.

The efficiency of Boolean masking comes from the fact that it corresponds to
a code with a binary generator matrix (2). By lemma 1, this binary basis implies
that squaring in an extension of the binary field is a low-cost operation. More-
over, encoding requires only additions and no multiplications. As mentioned in
subsection 3.4, the general secure multiplication (Algorithm 3) cannot be applied
to Boolean masking, and the secure multiplication algorithm of [RP10] requires
O(t2) multiplications. For Shamir’s secret sharing scheme [PR11, GM11], secure
multiplication corresponds to Algorithm 3. But the encoding subroutine needs
numerous multiplications in the finite field and secure multiplication has com-
plexity O(t3) or Õ(t2) multiplications with FFT techniques ([CPR12]), even if
only O(t) multiplications of shares are needed. Moreover, some work has been
done to make the squaring procedure more efficient (cf. remark 1).

We propose to select a family of non-MDS linear codes over an extension of
the binary field such that Algorithm 3 is applicable like in Shamir’s scheme,
and such that a binary basis is available like in Boolean masking. With these
codes we will have all the benefits : an encoding subroutine which requires zero

High-order Masking by Using Coding Theory and Its Application to AES 203

multiplication, a low-cost square operation (like in Boolean masking), and a
secure multiplication procedure which requires only O(t) multiplications and is
thus more efficient than methods with MDS codes. The codes that we use have
an underlying binary structure which is that of a self-dual or a self-orthogonal
binary code. We also discuss the case of codes defined with a basis in F4.

Moreover, we propose an improvement of the multiplication procedure de-
scribed in Algorithm 3 which can also be applied for Shamir’s secret sharing
scheme.

Finally, to compensate the additional number of shares needed by the fact that
our codes are non-MDS, we show that it is possible to efficiently switch code to
the same code used for Boolean masking during linear operations, thanks to the
underlying binary structure of our codes. As a result, these linear operations can
be masked as efficiently as with Boolean masking.

Table 3 sums up the costs of our masking procedure when applying all these
improvements.

4.1 Linear Secret Sharing Schemes Based on Self-Dual Codes

In all the following we consider a base field Fq of characteristic 2. As previously
said, we want to select a linear code C over Fq with a binary basis. Moreover,
as described in Section 3, to ensure that the multiplication procedure given by
Algorithm 3 is applicable, Ĉ⊥ must contains a particular codeword h such that
h0 = 1. Lemma 2 shows that by choosing for C a self-dual or self-orthogonal
code, such a property is fulfilled.

As described in Section 3, a linear [n + 1, k + 1] code allows to construct a
secret sharing scheme with n shares and t−privacy, where t = d⊥−2. For a fixed
value t, the number of shares must be the smallest possible to reduce the total
number of operations of a tth-order masking. In the coding literature, self-dual
and self-orthogonal binary codes are well-studied. In particular, we can give in
Table 1 a list of binary codes C with minimal length and dual distance d⊥ = t+2
for 1 � t � 6, such that for even length, the codes C are self-dual and for odd
length, self-orthogonal. The code used for our tth-order masking is not strictly
speaking the code C but the code over Fq generated by the binary generator
matrix of C. The code constructed over Fq remains self-dual or self-orthogonal,
and has the same properties (length, dimension, minimum distance and dual
distance) than the underlying binary code.

In this table, the self-dual shortened Golay code [22,11,6] is built from the
extended Golay code by using codewords beginning by 00 and 11. The code C21

[21,11,5] is obtained by removing a coordinate of the shortened Golay code. For
larger values of t, the reader is referred to the codes given in [CS90, GO03], and
it is known that n will be linear in t.

Interestingly, self-dual binary codes and some generalisations have been called
upon [CGKS12, CG13] in order to improve resistance against side-channel anal-
ysis, through in contexts that do not invoke secret sharing.

To construct a tth-order masking scheme, we select the [n+1, k+1] code from
the line t of Table 1. The encoding procedure (cf. subsection 3.2) requires the

204 G. Castagnos, S. Renner, and G. Zémor

Table 1. List of binary codes

t
Binary code C Binary Dual code C⊥ Number of additions

[n+ 1, k + 1] with d⊥ = t+ 2 required during an encoding

1 Code [7, 3] Hamming code [7, 4, 3] 5

2 Extended Hamming code [8, 4, 4] 8

3 Code [21, 10] C21 [21, 11, 5] 48

4 Shortened Golay code [22, 11, 6] 44

5 Code [23, 11] Golay code [23, 12, 7] 64

6 Extended Golay code [24, 12, 8] 72

generation of k random values over Fq and only L additions, where L is given in
Table 1 and depends on the number of 1s in the generator matrix considered. For
this encoding step, there is no multiplication by constant values of Fq unlike in
Shamir’s scheme. The addition and scalar multiplication of a secret are computed
on each of the n shares, so n operations are needed. Squaring also consists in
squaring the n shares. Secure multiplication is done with Algorithm 3. The vector
λ̂ is defined over F2, so only n multiplications in Fq are required.

From Table 1, we note that the number of shares n of our tth-order masking
scheme is important compared to a perfect scheme such as Shamir’s. For example
for t = 3, we need n = 20 shares and with a perfect masking only 4. To improve
the performance of our masking method, a solution is to consider an underling
self-dual or self-orthogonal code over F4 instead of F2 if F4 ⊂ Fq. Indeed, as
we can see in [GO03] such codes provide a better ratio n/t. With such a code
the generator matrix has now its coefficients in F4 = {0, 1, w, w + 1} ⊂ Fq. As
a result the encoding procedure requires some multiplications by w. However,
unlike in Shamir’s scheme, here only one constant value, i.e., w is manipulated
and the products wx, x ∈ Fq can be precomputed in a table.

In Table 2, we give a list of optimal codes over F4 and indicate the number of
additions and the number of low-cost multiplications with w required during an
encoding procedure. As with Table 1, the code used in our masking scheme is a
self-dual or a self-orthogonal code over Fq built from the generator matrix of the
code given in the table. With these codes, we lose the advantage of the low-cost
squaring operation: the secure squaring now requires a re-encoding procedure as
described in Remark 2. However the complexity of raising a sensitive variable to
the power 4 is still small. Indeed by adapting Lemma 1, we can show that for
any codeword c ∈ C, we have c4 ∈ C.

4.2 Improvement of Secure Multiplication

During a secure multiplication (Algorithm 3), the most expensive step is the re-

encoding process from Ĉ to C where n calls are done to the encoding procedure.

High-order Masking by Using Coding Theory and Its Application to AES 205

Table 2. List of codes over F4

t
Code C over F4 Dual code C⊥ encoding

[n+ 1, k + 1] with d⊥ = t+ 2 add mult with w

1 Extended quadratic residue code XQR(3) [4, 2, 3] 4 2

3 Code [11, 5] Quadratic residue code QR(11) [11, 6, 5] 25 5

4 Extended quadratic residue code XQR(11) [12, 6, 6] 32 6

5 Code [19, 9] Quadratic residue code QR(19) [19, 10, 7] 69 9

In order to reduce the complexity of this algorithm, we show that this number
of calls can be decreased. This modified algorithm will still be tth-order SCA
secure with t = d⊥ − 2.

After the multiplication of two share vectors of s and s′, we obtain a share
vector (c1c

′
1, . . . , cnc

′
n) of ss′ corresponding to a codeword of Ĉ. If we add the

vector (c1c
′
1, . . . , cnc

′
n) and a random share vector of 0 in Ĉ, then we obtain a

random3 share vector in Ĉ of ss′ denoted w = (w1, . . . , wn). Furthermore, Ĉ gives
a secret sharing scheme with (d̂⊥− 2)−privacy. Assuming that e = d̂⊥−d⊥ > 0,
we combine (e + 1) elements of w giving a share vector

w̃ =

(
e+1∑

i=1

λ̂iwi, we+2, . . . wn

)

associated to a linear code Ĉ∗ of length n − e. By construction, the vector
λ̂∗ = (1, λ̂e+2, . . . , λ̂n) is a recombination vector of this code if (λ̂1, . . . , λ̂n) is

a recombination vector of Ĉ . The algorithm is still tth-order SCA secure if we
re-encode the coordinates of this share vector w̃ instead of w. Indeed, suppose
that an adversary has access to a subset of t shares of this vector w̃. If the first
coordinate is not in this subset, the adversary has no information on the secret
as the scheme is at least t−private. If he knows the first coordinate he has less
information than with w1, w2, . . . , we+1 and t− 1 others shares, i.e., with d̂⊥− 2
shares, so he has again no information on the secret.

Therefore, only n−e shares can be re-encoded during the secure multiplication
procedure as described in Algorithm 4.

This improvement can be applied for each linear code with d̂⊥ > d⊥. In
particular, the squared codes Ĉ associated to the codes given in Tables 1 and 2
are the parity check codes of length n+1 and have d̂⊥ = n+1, so only n−e = t+1
shares have to be re-encoded in Step 5. Similarly, for Shamir’s secret sharing
scheme by taking n = 2k + 1, then we have that t = k, d⊥ = k + 2 and the
squared code Ĉ associated is the Reed-Solomon code of parameters [2k+2, 2k+1],

so d̂⊥ = 2k + 2. Therefore n− e = t+ 1.

3 If this step is omitted, the vector y = c ∗ c′ of Ĉ may not have (d̂⊥− 2)−privacy. For
example, if s = s′ and the two input share vectors are equals, y ∈ C2 and as C2 = C
in our proposal, this vector has only (d⊥ − 2)−privacy.

206 G. Castagnos, S. Renner, and G. Zémor

Algorithm 4. Improvement of Secure Multiplication
Inputs: C a [n+ 1, k + 1]q linear code
(c1, . . . cn) and (c′1, . . . , c

′
n) two share vectors respectively of s and s′

λ̂ a recombination vector of Ĉ and e = d̂⊥ − d⊥ > 0
Output: (z1, . . . , zn) a share vector of ss′

Function: SecMult((c1, . . . cn), (c
′
1, . . . c

′
n))

1. (w1, . . . , wn)← (c1c
′
1, . . . , cnc

′
n) + encoding

̂C(0)

2. (w1, . . . , wn)← (λ̂1w1, . . . , λ̂e+1we+1, we+2, . . . , wn)

3. For i = 1 to e do

4. we+1 ← we+1 + wi

5. (z1, . . . , zn)← re-encoding
̂C∗ �→C((1, λ̂e+2, . . . , λ̂n), (we+1, . . . , wn))

6. Return (z1, . . . , zn)

4.3 Code Switching to Perform Efficient Linear Operations

To compensate the additional number of shares needed by the fact that our codes
are non-MDS, we propose a solution to reduce the number of shares used during
linear operations, still achieving a tth-order masking. Let us consider the masking
scheme using a code C built from Table 1. Thanks to the underlying binary
structure, it is possible to efficiently re-encode the share vectors of C to an MDS
code C� for linear operations (additions and scalar multiplications). This simply
consists in considering only the shares involved in the reconstruction, namely
the t+1 shares corresponding to the non-zero coordinates of the recombination
vector. As a result, the MDS code C� corresponds to Boolean masking. Hence
all linear operations can be implemented with the same complexity as Boolean
masking. At the end of the linear operations, when a multiplication has to be
done, each share will be re-encoded to form a new share vector corresponding
to a codeword of C.

This method can be adapted for a masking scheme using the codes C of Table
2. At the end of the multiplication procedure, the shares of a vector of Ĉ are
re-encoded into C� (instead of C) to form a share vector of length t + 1. This
code is used during the linear operations and then a re-encoding is applied so as
to fall back on a codeword of C when another multiplication is needed.

4.4 Comparison with Other Masking Schemes

We summarize in Table 3 the cost of secure operations when we use our tth-
order masking schemes derived from the codes of Table 1 (resp. from the codes
of Table 2) denoted by our masking scheme F2 (resp. our masking scheme F4)
using the improvements proposed in subsections 4.2 and 4.3.

In this table, rand indicates the number of random elements to generate, add
andmult correspond to the numbers of additions and multiplications in the finite
field Fq. By mult with w, we indicate the number of small multiplications with
the constant w ∈ F4 which can be performed with a look-up table. We also

High-order Masking by Using Coding Theory and Its Application to AES 207

give the cost of masked operations for Boolean masking using the multiplication
procedure described in [RP10] and for Shamir’s secret sharing scheme using
the multiplication procedure of [GM11, PR11]. For the multiplication procedure
(denoted by Mult. of share vectors) with Shamir’s scheme, the cost of polynomial
evaluations may be lowered by using the discrete Fourier transform as described
in [CPR12].

According to this table, our masking procedure is dramatically more efficient
that Shamir’s secret sharing scheme. When n behaves as a linear function of t,
our solution is asymptotically the most efficient since the secure multiplication
procedure needs a number of field multiplications linear in t while a quadratic
number is needed for the Boolean masking scheme. In the next section, we com-
pare these methods for securing AES, with concrete parameters.

Table 3. Complexity of masked operations against tth-order SCA

Our Masking Scheme F2 Our Masking Scheme F4

Add. with a constant 1 add

Add. of share vectors t+ 1 add

Mult. with a constant t+ 1 mult

Mult. of share vectors

(n− 1) + k(t+ 1) rand (n− 1) + k(t+ 1) rand
[(t+ 1)(L+ n− 1) [(t+ 1)(L+ n− 1)

+2n− 1] add +2n− 1] add
n mult n mult

(t+ 1)L′ mult. with w

Square of share vectors t+ 1 squares

Boolean Masking Shamir Masking
[RP10] [GM11, PR11]

Add. with a constant 1 add t+ 1 add

Add. of share vectors t+ 1 add

Mult. with a constant t+ 1 mult

Mult. of share vectors

t(t+ 1)/2 rand t(2t+ 1) rand
2t(t+ 1) add t(2t2 + 2t) add
(t+ 1)2 mult (2t+ 1)2 mult

2t + 1 polynomial
evaluations:

(2t+ 1)× (t2 + t)add
(2t+ 1)× (t2 + t)
mult with const

Square of share vectors t+ 1 squares

Remarks: n and k corresponds to the parameters of the [n+ 1, k + 1] codes given in
Table 1 and 2. L and L’ refer respectively to the number of additions and low-cost
multiplication with w for encoding given in Table 1 and 2.

208 G. Castagnos, S. Renner, and G. Zémor

5 Application to AES

In this section, we apply our masking scheme to design a secure implementa-
tion of AES against tth-order SCA and compare its performance with Boolean
masking [RP10] and Shamir’s secret sharing scheme [GM11, PR11].

The AES [FIP01] is a block cipher algorithm which operates on a 4× 4 bytes
state. The bytes are viewed as elements of F28 = F2[x]/(x

8+x4+x3+x+1). Dur-
ing encryption, four transformations are involved. AddRoundKey is an addition
between the state and the round key, SubBytes is a nonlinear transformation,
ShiftRows and MixColumns are linear transformations.

In the following, we describe the implementation of our tth-order masking on
all the AES transformations.

5.1 Secure Implementation of Linear AES Transformations

To secure the linear transformations (AddRoundKey, ShiftRows, MixColumns)
against tth-order SCA, we propose to apply Boolean masking. More precisely,
we consider the [t + 2, t + 1] parity check code C� over F28 constructed from
the generator matrix given by (2). Each element of the state is shared into t+1
elements of F28 with the encoding procedure described in subsection 3.2. Hence
all linear AES transformations can be performed share by share as for Boolean
masking. As a result the masking of this transformation is as efficient as the
method of [RP10]. More precisely, AddRoundKey requires 16× (t+1) additions
in F28 and MixColumns requires 4 × 15 × (t + 1) additions and 4 × 4 × (t + 1)
multiplications by the constant {0x02} which can be performed by a look-up
table.

5.2 Secure Implementation of SubBytes Transformation

The nonlinear SubBytes transformation is the composition of two functions: the
nonlinear calculation of the inverse in F28 and an affine transformation over
F2, denoted Af . To secure the computation of the inverse in F28 , one uses the
fact that this operation can be defined as X �→ X254. As shown in [RP10],
this exponentiation requires a lower bound of 4 multiplications and 7 squares
over F28 :

X254 = [(X2X)4(X2X)]16(X2X)4X2 . (3)

At the beginning of the SubBytes Transformation, we apply the code switching
method of subsection 4.3. More precisely, each coordinate of the share vectors of
the short code C� are re-encoded in a code C selected from Table 1 or 2. Then,
the entire secure inversion is performed in this code with formula (3).

For the codes of Table 1, the square procedure require n squares performed
share by share. Secure multiplications are done with Algorithm 4. For the codes
of Table 2, the map X �→ X4 can be computed efficiently share by share. The
square procedure now needs a re-encoding procedure as described in Remark
2. For this reason, with these codes, we perform the first operation (i.e., the

High-order Masking by Using Coding Theory and Its Application to AES 209

computation of the share vector of X2) with the short parity check code C�

before switching code to C.
Finally, we need to apply the affine transformation Af which can be decom-

posed as X �→ A(X) + b where A is linear over F2 and b is a constant byte. The
function A being linear over F2 (and not F28), we propose to compute this step
by switching code to the parity check code C�. Hence as for Boolean masking
(cf [RP10]), this transformation requires roughly only t + 1 times the cost of a
single A evaluation which is performed by using a look-up table.

5.3 Implementation Results and Comparisons

In order to give an idea of the global complexity of our masking scheme, we
give in Table 4 estimations of the number of cycles needed for different imple-
mentations of a tth-order masking of the AES Sbox for t ∈ {1, . . . , 6}. These
estimations are based on 8051 assembly language with a 8-bit smartcard CPU.
In such an environment, generation of a random byte requires 2 cycles, an ad-
dition requires 1 cycle, a secure multiplication over F28 implemented by using
so-called log/alog tables (see for instance [DR02]) requires roughly 20 cycles,
and an access to a look-up table (describing the square operations, the multi-
plication with w and the affine transformation) requires 3 cycles. In particular
the magnitude of complexity estimations given in Table 4 has been confirmed
by a real implementation of our proposal, with the two first codes of Table 1, to
design a first and second-order secure implementation.

Table 4. Estimation of timing for a secure AES Sbox on an 8-bit smartcard (in thou-
sands of cycles)

Scheme \ Order t 1 2 3 4 5 6

Boolean masking [RP10] 0.4 0.9 1.5 2.4 3.4 4.6
Shamir [GM11, PR11] 1.3 4.8 11.6 22.7 39.3 62.3
Our masking scheme F2 0.8 1.1 3.8 4.3 5.3 6.2
Our masking scheme F4 0.5 - 2.2 2.9 5.7 -

From Table 4, we can see that, as t grows, our approach becomes more and
more efficient than the method proposed in [GM11, PR11] using Shamir’s secret
sharing scheme. Furthermore we can remark that the cost of our method is
very close to the method using Boolean masking described in [RP10]. However
a security flaw in this method has been very recently announced in [CPRR13]
where the authors proposed a new solution. For future work, it will be interesting
to compare our proposal to this solution and to see if some ideas using the
framework of error correcting codes introduced in our work can be adapted to
this solution to devise a more efficient masking of AES.

210 G. Castagnos, S. Renner, and G. Zémor

6 Conclusion

In this paper, we have presented a new high-order masking scheme and an appli-
cation to the AES cipher. The masking scheme relies on secret sharing based on
carefully chosen non-MDS linear codes and is significantly more efficient than
the methods that rely on Shamir’s secret sharing scheme. As a result, when
applied to the secure implementation of AES, our masking scheme is a more
attractive alternative to Boolean masking than Shamir’s scheme. Moreover, the
comparison given by Table 4 shows that the efficiency of our proposal is very
close to Boolean masking and it could open new perspectives in masking scheme
design.

References

[BFGV12] Balasch, J., Faust, S., Gierlichs, B., Verbauwhede, I.: Theory and Practice
of a Leakage Resilient Masking Scheme. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 758–775. Springer, Heidelberg
(2012)

[BMK04] Blömer, J., Guajardo, J., Krummel, V.: Provably Secure Masking of AES.
In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp.
69–83. Springer, Heidelberg (2004)

[BOGW88] Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness Theorems For
Non-Cryptographic Fault-Tolerant Distributed Computation. In: Sympo-
sium on Theory of Computing, pp. 1–10 (1988)

[CC06] Chen, H., Cramer, R.: Algebraic Geometric Secret Sharing Schemes and
Secure Multi-Party Computations over Small Fields. In: Dwork, C. (ed.)
CRYPTO 2006. LNCS, vol. 4117, pp. 521–536. Springer, Heidelberg (2006)

[CCD88] Chaum, D., Crépeau, C., Damgard, I.: Multiparty Unconditionally Secure
Protocols. In: Symposium on Theory of Computing, pp. 11–19 (1988)

[CCG+07] Chen, H., Cramer, R., Goldwasser, S., de Haan, R., Vaikuntanathan, V.:
Secure Computation from Random Error Correcting Codes. In: Naor, M.
(ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 291–310. Springer, Hei-
delberg (2007)

[CDG+08] Cramer, R., Daza, V., Gracia, I., Urroz, J.J., Leander, G., Mart́ı-Farré,
J., Padró, C.: On Codes, Matroids, and Secure Multiparty Computation
from Linear Secret-Sharing Schemes. IEEE Transactions on Information
Theory 54(6), 2644–2657 (2008)

[CDM00] Cramer, R., Damg̊ard, I.B., Maurer, U.M.: General Secure Multi-party
Computation from any Linear Secret-Sharing Scheme. In: Preneel, B. (ed.)
EUROCRYPT 2000. LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg
(2000)

[CG13] Carlet, C., Guilley, S.: Side-channel indistinguishability. In: HASP 2013
Proceedings of the 2nd International Workshop on Hardware and Archi-
tectural Support for Security and Privacy. ACM, New York (2013)

[CGKS12] Carlet, C., Gaborit, P., Kim, J.-L., Solé, P.: A New Class of Codes for
Boolean Masking of Cryptographic Computations. IEEE Transactions on
Information Theory 58(9), 6000–6011 (2012)

High-order Masking by Using Coding Theory and Its Application to AES 211

[CPR12] Coron, J.-S., Prouff, E., Roche, T.: On the Use of Shamir’s Secret Shar-
ing against Side-Channel Analysis. In: Mangard, S. (ed.) CARDIS 2012.
LNCS, vol. 7771, pp. 77–90. Springer, Heidelberg (2013)

[CPRR13] Coron, J.-S., Prouff, E., Rivain, M., Roche, T.: Higher-Order Side Channel
Security and Mask Refreshing. In: Fast Software Encryption – FSE 2013
(2013)

[CS90] Conway, J.H., Sloane, N.J.A.: A new upper bound on the minimal distance
of self-dual codes. IEEE Transactions on Information Theory 36(6), 1319–
1333 (1990)

[DF12] Dziembowski, S., Faust, S.: Leakage-Resilient Circuits without Computa-
tional Assumptions. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp.
230–247. Springer, Heidelberg (2012)

[DR02] Daemen, J., Rijmen, V.: The Design of Rijndael. Springer (2002)
[FIP01] FIPS PUB 197. Advanced Encryption Standard. National Institute of

Standards and Technology (November 2001)
[FMPR10] Fumaroli, G., Martinelli, A., Prouff, E., Rivain, M.: Affine masking against

higher-order side channel analysis. In: Biryukov, A., Gong, G., Stinson,
D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 262–280. Springer, Heidelberg
(2011)

[GM11] Goubin, L., Martinelli, A.: Protecting AES with Shamir’s Secret Sharing
Scheme. In: Preneel, Takagi (eds.) [PT11], pp. 79–94

[GO03] Gaborit, P., Otmani, A.: Experimental Constructions Of Self-Dual Codes.
Finite Fields and Their Applications-Elsevier (July 2003)

[GRR98] Gennaro, R., Rabin, M., Rabin, T.: Simplifed vss and fact-track multiparty
computations with applications to threshold cryptography. In: Symposium
on Principles of Distributed Computing, pp. 101–111 (1998)

[ISW03] Ishai, Y., Sahai, A., Wagner, D.: Private Circuits: Securing Hardware
against Probing Attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS,
vol. 2729, pp. 463–481. Springer, Heidelberg (2003)

[JPS05] Joye, M., Paillier, P., Schoenmakers, B.: On Second-order Differential
Power Analysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS,
vol. 3659, pp. 293–308. Springer, Heidelberg (2005)

[KHL11] Kim, H., Hong, S., Lim, J.: A Fast and Provably Secure Higher-Order
Masking of AES S-Box. In: Preneel, Takagi (eds.) [PT11], pp. 95–107

[KJJ99] Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M.
(ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg
(1999)

[Koc96] Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS,
vol. 1109, pp. 104–113. Springer, Heidelberg (1996)

[Mas93] Massey, J.: Minimal Codewords and Secret Sharing. In: Sixth Joint
Swedish-Russian Workshop on Information Theory, pp. 246–249 (1993)

[Mes00] Messerges, T.S.: Using Second-Order Power Analysis to Attack DPA Resis-
tant Software. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965,
pp. 238–251. Springer, Heidelberg (2000)

[MS78] MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes.
North-holland Publishing Company (1978)

[OMPR05] Oswald, E., Mangard, S., Pramstaller, N., Rijmen, V.: A Side-Channel
Analysis Resistant Description of the AES S-Box. In: Gilbert, H., Hand-
schuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 413–423. Springer, Hei-
delberg (2005)

212 G. Castagnos, S. Renner, and G. Zémor

[PR10] Prouff, E., Roche, T.: Attack on a Higher-Order Masking of the AES
Based on Homographic Functions. In: Gong, G., Gupta, K.C. (eds.) IN-
DOCRYPT 2010. LNCS, vol. 6498, pp. 262–281. Springer, Heidelberg
(2010)

[PR11] Prouff, E., Roche, T.: Higher-Order Glitches Free Implementation of the
AES Using Secure Multi-party Computation Protocols. In: Preneel, Takagi
(eds.) [PT11], pp. 63–78

[PT11] Preneel, B., Takagi, T. (eds.): CHES 2011. LNCS, vol. 6917. Springer,
Heidelberg (2011)

[RP10] Rivain, M., Prouff, E.: Provably Secure Higher-Order Masking of AES. In:
Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp.
413–427. Springer, Heidelberg (2010)

[Sha79] Shamir, A.: How to Share a Secret. CACM 22(11), 612–613 (1979)
[TDG02] Trichina, E., DeSeta, D., Germani, L.: Simplified Adaptive Multiplicative

Masking for AES. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES
2002. LNCS, vol. 2523, pp. 187–197. Springer, Heidelberg (2003)

Hashing Mode Using a Lightweight Blockcipher

Hidenori Kuwakado1 and Shoichi Hirose2

1 Kansai University, 2-1-1 Ryozenji-cho, Takatsuki-shi, Osaka 569-1095 Japan
2 University of Fukui, 3-9-1 Bunkyo, Fukui-shi, Fukui 910-8507, Japan

kuwakado@kansai-u.ac.jp, hrs shch@u-fukui.ac.jp

Abstract. This article proposes a hashing mode using a lightweight
blockcipher. Since the block size of a lightweight blockcipher is small, the
hashing mode uses a double-block-length compression function that con-
sists of two Matyas-Meyer-Oseas (MMO) modes. Tag-based applications
often require a hash function to be a one-way function and a primitive for
constructing a pseudorandom function. We analyze the one-wayness of
the hashing mode and the pseudorandomness of the keyed hashing mode
under standard assumptions of an underlying blockcipher. The analysis
in the standard model is practically more significant than the analysis
in the ideal-primitive model.

Keywords: hash function, computational security, preimage resistance,
pseudorandom function, lightweight blockcipher.

1 Introduction

Background. Applications of RFID and sensor networks are likely to be de-
ployed. In order to achieve secure communication in the applications, secure yet
efficiently implementable cryptographic primitives are required, but standard-
ized primitives such as AES [28] and SHA-2 [29] (and Keccak [5]) seem to be too
expensive to implement in such a constrained device. Accordingly, lightweight
secret-key ciphers and lightweight hash functions have been recently proposed.

Lightweight hash functions are classified into dedicated hash functions and
blockcipher-based hash functions. The former include PHOTON [16], QUARK

Table 1. Lightweight blockciphers (κ: key, n: block [bits])

Supported size (κ, n)

KATAN [11] (80, 32), (80, 48), (80, 64)

KLEIN [15] (64, 64), (80, 64), (96, 64)

LBlock [34] (80, 64)

LED [17] (64 + 4 ∗ i, 64), i = 0, 1, . . . , 16

Piccolo [31] (80, 64), (128, 64)

PRINCE [10] (128, 64)

PRESENT [7] (80, 64), (128, 64)

TWINE [33] (80, 64), (128, 64)

M. Stam (Ed.): IMACC 2013, LNCS 8308, pp. 213–231, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

214 H. Kuwakado and S. Hirose

[1], and SPONGENT [8]. The circuit size of the latter is expected to be smaller
than that of the former if a lightweight blockcipher is implemented in the same
device. Since the block size of lightweight blockciphers is usually 64 bits (Table 1),
blockcipher-based hash functions inevitably use double-block-length compression
functions. For example, the blockcipher-based hash function using PRESENT
has been reported [9].

This article focuses on hash functions for resource-constrained devices such as
an RFID tag. Bogdanov et al. [9] have identified five issues when a hash function
is used in RFID tag-based applications. The five issues are briefly summarized
below.

1. In tag-based applications, we are unlikely to hash large amounts of data.
The typical input is usually much less than 256 bits.

2. In many tag-based applications we do not need the property of collision resis-
tance. Most often the security of protocols depends on the one-way property.

3. Applications will only require moderate security levels. Consequently 80-bit
security, or even less, may be adequate.

4. While the physical space for an implementation is often the primary consid-
eration, the peak and average power consumption are also important.

5. Some protocols use a hash function to build a message authentication code
(MAC), often by appealing to the HMAC construction [30].

From the second and the last item, we observe that a lightweight hash function is
required to be a one-way function and a primitive for achieving a pseudorandom
function.

The security of hash functions has been usually analyzed in an ideal-primitive
model. The security of the sponge construction on which the above dedicated
hash functions are based has been analyzed in the random-permutation model
[3,4]. The security of blockcipher-based hash functions has been analyzed in
the ideal-cipher model. The security proof in the ideal-primitive model suggests
that the hash function has no structural weakness. However, when the ideal
primitive is instantiated with a practical primitive, the proof does not necessarily
guarantee that the resulting hash function achieves the expected security. Hence,
the security proof in a standard model (e.g., computational assumptions) is
generally preferable.

Contribution. This article describes a hashing mode using a double-block-length
compression function that consists of two Matyas-Meyer-Oseas (MMO) modes
of an underlying blockcipher. On the other hand, previous double-block-length
compression functions such as Abreast-DM consist of two Davies-Meyer (DM)
modes. When a lightweight blockcipher with a 80-bit key and a 64-bit block
is used (Table 1), the previous double-block-length compression functions are
inefficient because the size of a message block is 16 bits. The size of a message
block in our double-block-length compression function is 64 bits. In addition,
the hashing mode does not take a fixed initial value to improve the efficiency.
The hashing mode can be used in a pseudorandom function by assigning a key
to the first message block (the prf mode). The prf mode is slightly more efficient
than the HMAC construction because the hashing mode is invoked only once.

Hashing Mode Using a Lightweight Blockcipher 215

We prove the preimage resistance of the hashing mode and the pseudoran-
domness of the prf mode under standard assumptions. The standard assumptions
are that (i) an underlying blockcipher is a pseudorandom permutation against a
related-key attack, (ii) an underlying blockcipher is secure against key-recovery
attacks in the known-plaintext model, and (iii) the number of keys that give the
same plaintext-ciphertext pair is small.

Related Works. MDC-2 and MDC-4 are double-block-length hash functions that
have been standardized by ISO/IEC [21]. Since the work of Steinberger [32],
their preimage resistance and their collision resistance have been rapidly ana-
lyzed in the ideal-cipher model [13,20,23,26]. Tandem-DM, Abreast-DM [24], and
Hirose’s scheme [18] are well-known double-block-length compression functions,
and their preimage resistance and their collision resistance have been analyzed in
the ideal-cipher model. In particular, “super query” proposed by Lee et al. [25] is
a significant technique for analyzing the preimage resistance of these compression
functions. A key derivation function proposed by Jonsson and Robshaw [22] can
be considered as a double-block-length compression function. The security of the
key derivation function was analyzed in the ideal-cipher model. Unlike Tandem-
DM, Abreast-DM, and Hirose’s scheme, the key derivation function consists of
two MMO modes. Namely, the key derivation function by Jonsson and Robshaw
is similar to the compression function of our hashing mode.

While the preimage resistance and the collision resistance have been of major
concern to the security of hash functions, the indifferentiability from a random
oracle has been recently discussed as an important property of hash functions
since the seminal work of Coron et al. [12]. Weimar-DM proposed by Fleischmann
et al. [14] has been analyzed in the ideal-cipher model. Naito [27] has proposed
a double-block-length hash function with a post-processing function and proved
that the hash function is indifferentiable from a random oracle up to the birthday
bound of the hash length. The post-processing function is similar to the post-
processing function of our hashing mode.

It should be noted that all the above double-block-length compression func-
tions are inefficient if the key size of the underlying blockcipher is smaller than
twice of the block size. Table 1 suggests that some lightweight blockciphers fall
into this case. Furthermore, the security of all the above hash functions has
been proved only in the ideal-cipher model. There are few works on preimage
resistance in the standard model. Hirose et al. [19] discussed the preimage re-
sistance of single-block-length compression functions under the computational
assumption. However, their scheme requires an unconventional padding.

Organization. Section 2 proposes a new hashing mode and its prf mode. Section 3
describes definitions of security against attacks. Section 4 analyzes the preimage
resistance of the hashing mode under standard assumptions of an underlying
blockcipher. Section 5 summarizes the pseudorandomness of the prf mode under
computational assumptions of an underlying blockcipher. Section 6 concludes
this paper.

216 H. Kuwakado and S. Hirose

digestinner
digest

output function G
compression
function h

function F

function f

compression
function g

Key at the
prf mode

Fig. 1. Proposed hashing mode H

2 Construction

Hashing Mode. Let E be a blockcipher from {0, 1}κ × {0, 1}n to {0, 1}n where
n < κ < 2n. A function f is defined as

f(x, z) = tr(E(x, z)) (1)

where tr denotes truncation from {0, 1}n to {0, 1}κ/2 (say, the first κ/2 bits).
A proposed hashing mode H is a function from {0, 1}∗ to {0, 1}κ (Fig. 1). Let

m be an �-bit message to be hashed. Padding is performed as follows: a single
‘1’ bit is appended to m, and then 0t is appended where

t =

{
n+ κ− (�+ 1) if � ≤ κ− 1

n− (� + 1− κ mod n) if � ≥ κ.

The first κ bits of the padded message is assigned to the first message block m0

and the remaining string is divided into n-bit message blocks mi (i = 1, 2, . . . , l).
Note that m1 is 0n if � ≤ κ− 1. The index of the last message block, l, is given
by the following formula. 1

l = idxH(�) =

{
1 if � ≤ κ− 1
⌈
�+1−κ
n

⌉
if � ≥ κ.

Compression functions g, h from {0, 1}κ×{0, 1}n to {0, 1}κ, which only differ in
constants, are defined as follows:

g(x, z) = tr(E(x, z)⊕ z) ‖ tr(E(x ⊕ c1, z)⊕ z) (2)

= f(x, z)⊕ tr(z) ‖ f(x⊕ c1, z)⊕ tr(z)

h(x, z) = tr(E(x, z)⊕ z) ‖ tr(E(x ⊕ c2, z)⊕ z) (3)

= f(x, z)⊕ tr(z) ‖ f(x⊕ c2, z)⊕ tr(z)

1 The last index l is not the number of message blocks because the index of message
blocks begins with 0.

Hashing Mode Using a Lightweight Blockcipher 217

where each ci is a distinct non-zero constant and ‖ denotes the concatenation
operator on strings. Compute x1 = g(m0,m1). For i = 2, 3, . . . , l, compute a
chaining value xi as xi = h(xi−1,mi). The value of xl, denoted by δ, is called an
inner digest. To simplify the notation, g followed by the cascade of h is denoted
by F , namely,

δ = h(. . . h(h(g(m0,m1),m2),m3) . . . ,ml)

= F (m),

wherem denotes the (unpadded) message. An output function (a post-processing
function) G from {0, 1}κ to {0, 1}κ is defined as

G(x) = tr(E(x ⊕ c3, o1)) ‖ tr(E(x ⊕ c3, o2)) (4)

= f(x⊕ c3, o1) ‖ f(x⊕ c3, o2)

where each oi is a distinct constant and c3 is a non-zero constant that is different
from c1 and c2. A digest d is given by d = G(δ) = G ◦ F (m) = H(m) where m
denotes the (unpadded) message.

PRF Mode. The hashing modeH is usable as a keyed function {0, 1}κ×{0, 1}∗ →
{0, 1}κ by assigning a key to the first message block m0. We call the keyed
function a prf mode of H and denote it by Ĥk(m) for a κ-bit key k and a message
m. Given an �-bit message m, message blocks m1,m2, . . . ,ml are produced in a
way similar to that of H except for m0. Namely, a single ‘1’ bit is appended to
m, and then 0t

′
is appended where t′ = n− (�+1 mod n). The padded message

is divided into n-bit message blocks mi (i = 1, 2, . . . , l). The index of the last
message block, l, is given by the following formula. 2

l = idxPRF(�) =

⌈
�+ 1

n

⌉

An output is computed as

Ĥk(m) = G ◦ F (k ‖ m)

= G(h(. . . h(h(g(k,m1),m2),m3) . . . ,ml)).

3 Security Definition

Section 4 will prove that the security of the proposed hashing mode H is reduced
to that of an underlying blockcipher E. This section describes definitions of
security on hash functions and blockciphers. Let {0, 1}n be the set of all n-bit
binary strings and {0, 1}≤� is defined as

{0, 1}≤� = ∪�i=1{0, 1}i.
2 In this case, the last index l is equal to the number of message blocks.

218 H. Kuwakado and S. Hirose

The concatenation of mi,mi+1, . . . ,mj is denoted by m[i,j], that is, m[i,j] =
mi ‖ mi+1 ‖ . . . ‖ mj . When S is a probabilistic space, s ← S denotes the
operation of selecting s according to the distribution specified by S. Unless
otherwise specified, the distribution specified by S is the uniform distribution
on S. We often say that s is uniformly selected from S. If S is not a set, then
s← S is an assignment statement.

3.1 Preimage Resistance

Let H be a hash function from {0, 1}∗ to {0, 1}κ. Let A be an adversary that
finds a preimage of a given digest d for H . The advantage of A against H is
defined by

Adv
pre[�, �̌]
H (A) = Pr

[
m← {0, 1}≤�; d← H(m); m̂← A(d, �) : H(m̂) = d

]
(5)

where the length of m̂ is at most �̌. The adversaryA is called a pre[�, �̌]-adversary
against H . The definition above is different from that of the preimage resistance
in previous works. In the previous works, a digest d is uniformly selected from
the digest space {0, 1}κ or is arbitrarily selected by an adversary before making
any queries [25]. In order to discuss the security in practical use, we define the
preimage resistance as Eq. (5), which is similar to the definition of a one-way
function given in article [6].

3.2 Pseudorandom Function

Let Func(a, b) be the set of all the functions from {0, 1}a to {0, 1}b. When a
domain is {0, 1}≤a, the set is denoted by Func(≤ a, b). A function λ that is
uniformly selected from Func(a, b) is called a random function in Func(a, b). In
this paper, a random function always works by lazy evaluation. Namely, on any
query in {0, 1}a, the random function returns an element selected from {0, 1}b
uniformly as a response subject to the restriction that if the same query is given,
the response is the same. Let Func(κ+ a, b) be the set of all the keyed functions
from {0, 1}κ × {0, 1}a to {0, 1}b where {0, 1}κ is a key space. A keyed function
f(k, x) ∈ Func(κ+ a, b) is often denoted by fk(x) (particularly, when k is fixed).
Suppose that k is uniformly selected from {0, 1}κ and an oracle V is either fk
or λ. Let A be an adversary that makes queries to the oracle V and outputs 0
or 1. The advantage of A against f is defined as

Advprf
f (A) =

∣
∣Pr
[
k ← {0, 1}κ : Afk = 1

]− Pr
[
λ← Func(a, b) : Aλ = 1

]∣
∣. (6)

The adversary A is called a prf-adversary against f . If Advprf
f (A) is negligible

for any efficient A, then f is called a pseudorandom function. When there is
no confusion on k and λ, the right hand side of Eq. (6) is often denoted by∣
∣Pr
[
Afk = 1

]− Pr
[
Aλ = 1

]∣
∣.

Hashing Mode Using a Lightweight Blockcipher 219

In this paper, a related-key attack using a multi-oracle will be discussed. For
a keyed function f ∈ Func(κ+a, b), let 〈fkj 〉4qj=1 = (fk1 , fk2 , . . . , fk4q) where each
kj is defined as

kj ←

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{0, 1}κ if j mod 4 = 1

kj−1 ⊕ c1 if j mod 4 = 2

kj−2 ⊕ c2 if j mod 4 = 3

kj−3 ⊕ c3 if j mod 4 = 0,

(7)

and each ci is the constant defined in Sect. 2. In general, related-key attacks
depend on related-key-deriving functions [2]. The related-key-deriving function
we consider in this paper is the identical function and three XORing functions
given by Eq. (7). Namely, an adversary knows constants ci, but the adversary
is not allowed to change them. Let ρ be a family of 2κ independent random
functions in Func(a, b), called a keyed random function in Func(κ + a, b). Note
that λkj and λkj′ are independent random functions in Func(a, b) even if kj′

is a related-key of kj such as Eq. (7). The advantage of A against f under the
related-key attack using 4q oracles is defined as

Adv4q-prf-rka
f (A) =

∣
∣
∣Pr
[
A〈fkj 〉

4q
j=1 = 1

]
− Pr

[
A〈λkj

〉4qj=1 = 1
]∣
∣
∣,

where each kj is determined as Eq. (7). The adversary A is called a 4q-prf-rka-
adversary against f .

3.3 Pseudorandom Permutation

Let Perm(a) be the set of all the permutations on {0, 1}a. A permutation π that
is uniformly selected from Perm(a) is called a random permutation in Perm(a).
In this paper, a random permutation always works by lazy evaluation. Let
Perm(κ, a) be the set of all the keyed permutations from {0, 1}κ × {0, 1}a to
{0, 1}a where {0, 1}κ is a key space. The set Perm(κ, a) is identical to the set of
all the blockciphers with key length κ and block length a. A keyed permutation
p(k, x) ∈ Perm(κ, a) is often denoted by pk(x). Suppose that k is uniformly se-
lected from {0, 1}κ and an oracle V is either pk or π. Let A be an adversary that
makes queries to the oracle V and outputs 0 or 1. The advantage of A against p
is defined as

Advprp
p (A) = |Pr [k ← {0, 1}κ : Apk = 1]− Pr [π ← Perm(a) : Aπ = 1]|

The adversary A is called a prp-adversary against p. If Advprp
f (A) is negligible

for any efficient A, then p is called a pseudorandom permutation. When there
is no confusion on k and π, the right hand side of Eq. (6) is often denoted by
|Pr [Apk = 1]− Pr [Aπ = 1]|, for short. A 4q-prp-rka-adversary is defined in a
manner similar to 4q-prf-rka-adversary. The advantage of the adversary against
p is done as

Adv4q-prp-rka
p (A) =

∣
∣
∣Pr
[
A〈pkj 〉

4q
j=1 = 1

]
− Pr

[
A〈πkj

〉4qj=1 = 1
]∣
∣
∣,

220 H. Kuwakado and S. Hirose

where each kj is determined as Eq. (7) and π is a keyed random permutation
(i.e., an ideal cipher).

In this paper, a key recovery attack in the known-plaintext model will be
discussed. Let A be an adversary that finds a key from q pairs of a plaintext xj
and its ciphertext yj , denoted by 〈xj , yj〉qj=1. The adversary A cannot choose xj
because this attack is a known-plaintext attack. The advantage of A against p
is defined as

Advq-kr-kpp (A) =

Pr
[
〈xj , yj〉qj=1 ← Encp(xj); k̂ ← A(〈xj , yj〉qj=1) : p(k̂, xj) = yj , 1 ≤ ∀j ≤ q

]
,

where Encp(xj) denotes k ← {0, 1}κ; yj ← p(k, xj), 1 ≤ j ≤ q. The recovered key

k̂ may not be equal to k. The adversary A is called a q-kr-kp-adversary against
p. This paper only discusses the following advantage of A.

Adv2-kr-kp
p (A) =

Pr
[
〈oj , yj〉2j=1 ← Encp(oj); k̂ ← A(〈xj , yj〉2j=1) : p(k̂, oj) = yj, j = 1, 2

]
,

where each oj is defined in Section 2.

4 Preimage Resistance

4.1 Main Theorem

Let 〈xi, yi〉qi=1 be a set of q pairs (xi, yi) where each xi is distinct and yi = Ek(xi).

We say that a key k̂ is consistent with 〈xi, yi〉qi=1 if yi = Ek̂(xi) for i = 1, 2, . . . , q.
The set of all the keys consistent with 〈xi, yi〉qi=1 is denoted by

ConsEk
(〈xi, yi〉qi=1) .

The number of elements in this set, denoted by #ConsEk
(〈xi, yi〉qi=1), may not

be one. Let o1 and o2 be constants defined in Sect. 2. We denote by φE the
average number of elements in ConsEk

(〈oi, yi〉2i=1

)
, that is,

φE =
1

2κ

∑

k∈{0,1}κ
#ConsEk

(〈oi, yi〉2i=1

)
.

Similarly, we define φtr◦E as

φtr◦E =
1

2κ

∑

k∈{0,1}κ
#Constr◦Ek

(〈oi, di〉2i=1

)
,

where di = tr(Ek(oi)) = f(k, oi).
Theorem1 means that the preimage resistance of H can be reduced to the

security of the underlying blockcipher E.

Hashing Mode Using a Lightweight Blockcipher 221

Theorem 1. Suppose that n < κ ≤ 2n. Let A be a pre[�, �̌]-adversary against
H that runs in time τA. Then, there exists a 4-prp-rka-adversary B against E
and a 2-kr-kp-adversary C against E such that

Adv
pre[�, �̌]
H (A) ≤ idxH(�)Adv4-prp-rka

E (B) +
φtr◦E
φE

Adv2-kr-kp
E (C). (8)

Let τE be a time for the encryption of E. The adversary B makes two queries
and the running time is τA + O((idxH(�) + idxH(�̌))τE). The adversary C runs
in time τA +O(idxH(�̌)τE).

As mentioned in Sect. 1, the input length in RFID tag-based applications is
usually less than 256 bits. The value of idxH(�) does not have a major effect on
the security bound. The preimage resistance of H also depends on the value of
φtr◦E/φE , which is a statistical property of E.

4.2 Proof of Theorem1 and Lemmas

The proof of Theorem1 requires Lemma 1 and Lemma2 that are proved in Ap-
pendix. Let G ◦ $ be an operation as

G ◦ $: δ ← {0, 1}κ; d← G(δ).

Let Adv
pre[�, �̌]-H
G◦$ (A) be the advantage of A that is a pre[�, �̌]-adversary against

H when A is given a digest d produced with G ◦ $, that is,

Adv
pre[�, �̌]-H
G◦$ (A) = Pr [δ ← {0, 1}κ; d← G(δ); m̂← A(d, �) : H(m̂) = d] . (9)

Let F̂ be a keyed function as

F̂k(m) = F (k ‖ m)

= h(. . . h(h(g(k,m1),m2),m3) . . . ,ml)).

for a κ-bit key k and a message m. The algorithm of F̂ is the same as that of
the prf mode of H excluding G.

Lemma 1. Let A be a pre[�, �̌]-adversary against H that runs in time τA. Then,
there exists a prf-adversary A1 against F̂ such that

∣
∣
∣Adv

pre[�, �̌]
H (A)−Adv

pre[�, �̌]-H
G◦$ (A)

∣
∣
∣ ≤ Advprf

F̂
(A1). (10)

The adversary A1 makes a single query and runs in time τA + O(idxH(�̌)τE).
The length of the single query is at most �− κ.

Since H = G ◦ F , Lemma 1 shows that the difference between G ◦ F and
G ◦ $ is determined by the pseudorandomness of F̂ . Lemma 2 shows that the
pseudorandomness of F̂ is reduced to the security of an underlying blockcipher
E against the related-key attack.

222 H. Kuwakado and S. Hirose

Lemma 2. Let A1 be a prf-adversary against F̂ that makes a single query and
runs in time τA1 . The length of the single query is at most �−κ bits. Then, there
exists a 4-prp-rka-adversary B against E such that

Advprf

F̂
(A1) ≤ idxH(�)Adv4-prp-rka

E (B). (11)

The adversary B makes two queries and runs in time τA1 +O(idxH(�)τE).

Proof of Theorem 1. In Theorem1, the goal of C is to find a key k from 〈oi, yi〉2i=1

where yi = Ek(oi). Note that each oi is defined in Sect. 2, that is, they are not
chosen by C. Consider C that uses the pre[�, �̌]-adversary A as a subroutine.
Then, C has to produce a digest d given to A. The algorithm of C is described
below.

1. Produce a digest d as d = d1 ‖ d2 where di = tr(yi).
2. Run A given d. Let m be the output of A.
3. Compute an inner digest δ as δ = F (m).
4. If E(δ ⊕ c3, o1) = y1 and E(δ ⊕ c3, o2) = y2, then output δ ⊕ c3 as a key.

Otherwise output a κ-bit random string r.

The running time of C is τA +O(idxH(�̌)τE) +O(τE).
We discuss the distribution of the digest d in step 1. Step 1 is equivalently

written as

d = tr(Ek(o1)) ‖ tr(Ek(o2))
= G(k ⊕ c3),

where G is defined by Eq. (4) and k is unknown to C. We cannot say that the
distribution of d in step 1 is the same as that of H(m) = G ◦ F (m) where
m is uniformly selected from {0, 1}≤� because the distribution of k ⊕ c3 is not
necessarily the same as that of F (m) whenm is uniformly selected from {0, 1}≤�.
However, since k is uniformly selected from {0, 1}κ, the distribution of d is the
same as that of G ◦ $.

Assume that A succeeds in finding m such that H(m) = d in step 2. Equa-

tion (9), Adv
pre[�, �̌]-H
G◦$ (A), denotes the probability that the assumption holds.

Owing to the assumption, δ ⊕ c3 in step 4 is consistent with 〈oi, di〉2i=1, but
δ⊕ c3 is not necessarily consistent with 〈oi, yi〉2i=1 because A does not know the
(n−κ/2)-bit information of yi. Consequently, the probability that two equations
in step 4 holds is given by φE/φtr◦E . Summarizing the discussion above gives

Adv2-kr-kp
E (C) = Adv

pre[�, �̌]-H
G◦$ (A) · φE

φtr◦E

+

(

1−Adv
pre[�, �̌]-H
G◦$ (A) · φE

φtr◦E

)
#ConsEk

(〈oi, yi〉2i=1

)

2κ
(12)

≥ Adv
pre[�, �̌]-H
G◦$ (A) · φE

φtr◦E
. (13)

Hashing Mode Using a Lightweight Blockcipher 223

Since the second term in Eq. (12) is the probability that r in step 4 is consistent

with 〈oi, yi〉2i=1, we are not interested in the second term. If Adv
pre[�, �̌]-H
G◦$ (A) ≥

Adv
pre[�, �̌]
H (A), then substituting it into Eq. (13) gives

Adv2-kr-kp
E (C) ≥ φE

φtr◦E
Adv

pre[�, �̌]
H (A).

If Adv
pre[�, �̌]-H
G◦$ (A) < Adv

pre[�, �̌]
H (A), then applying Eq. (10) of Lemma 1 to

Eq. (13) yields

Adv2-kr-kp
E (C) ≥ φE

φtr◦E

(
Adv

pre[�, �̌]
H (A) −Advprf

F̂
(A1)

)
.

Since Advprf

F̂
(A1) ≥ 0, the following inequality holds for both of cases.

Adv2-kr-kp
E (C) ≥ φE

φtr◦E

(
Adv

pre[�, �̌]
H (A) −Advprf

F̂
(A1)

)
. (14)

Substituting Eq. (11) of Lemma 2 into Eq. (14) yields

Adv2-kr-kp
E (C) ≥ φE

φtr◦E

(
Adv

pre[�, �̌]
H (A)− idxH(�)Adv4-prp-rka

E (B)
)
.

The proof is completed. ��

5 Pseudorandom Function

5.1 Main Theorem

This section analyzes the pseudorandomness of the prf mode of H , Ĥ , described
in Sect. 2. Theorem2 shows that the pseudorandomness of Ĥ is reduced to the
computational security of E.

Theorem 2. Suppose that n < κ ≤ 2n− 5. Let A be a prf-adversary against Ĥ
that runs in time τA and makes at most q queries. The length of a query by A is
at most � bits. Suppose that q < 2κ/2. Let lmax = idxPRF(�). Then, there exists
a 4-prp-rka-adversary C against E such that

Advprf

Ĥ
(A) ≤ (lmax + 1)

(

qAdv4-prp-rka
E (C) +

2κ/2

1− (2eθ
)

(
2e

θ

)θ
)

(15)

where e denotes the base of the natural logarithm and θ = 2n−κ/2 + 1. The
adversary C makes at most 2q queries and runs in time τA+O(qlmaxτE) where
τE denotes the time required to compute E.

224 H. Kuwakado and S. Hirose

The assumption that κ ≤ 2n−5 is required for being 2e/θ < 1. When n = 64,
κ = 80, and κ = 96, the second term in the last parenthesis on the right hand
side of Eq. (15) is approximated to 2−3.6×10

8

and 2−8.8×10
5

, respectively. The
second term is negligible for typical parameters of lightweight blockciphers. In
tag-based applications, the value of lmax does not have a major effect on the
security bound.

Owing to the assumption of q < 2κ/2, Theorem2 does not guarantee the
pseudorandomness beyond the birthday bound of the output length κ. The as-
sumption is required only to obtain the second term on the right hand side.
Namely, the assumption is not required to obtain the first term. However, it is
meaningless to remove the assumption from the second term for the following
reason. Consider an adversary C that performs an exhaustive search for q ran-
dom keys because C is allowed to spend time for computing E q times. The
probability that C finds a correct key by the exhaustive search is at least q/2κ,

that is, Adv4-prp-rka
E (C) ≥ q/2κ. It follows that the first term looks like q2/2κ.

Accordingly, the pseudorandomness does not go beyond the birthday bound of
the output length κ even if the assumption is removed.

5.2 Lemmas for Theorem2

Combining Lemma3 and Lemma 4, which are proved in the full paper, immedi-
ately gives Theorem2

Lemma 3. Let A be a prf-adversary against Ĥ that runs in time τA and makes
at most q queries. The length of a query by A is at most � bits. Let lmax =
idxPRF(�). Then, there exists a 4q-prf-rka-adversary B against f , which is de-
fined by Eq. (1), such that

Advprf

Ĥ
(A) = (lmax + 1)Adv4q-prf-rka

f (B). (16)

The adversary B makes at most 2q queries and runs in time τA +O(qlmaxτE).

Lemma 4. Suppose that κ ≤ 2n − 5. Let B be a 4q-prf-rka-adversary against
f that runs in time τB and makes at most 2q queries. Suppose that q < 2κ/2.
Then, there exists a 4-prp-rka-adversary C against E such that

Adv4q-prf-rka
f (B) ≤ qAdv4-prp-rka

E (C) +
2κ/2

1− (2eθ
)

(
2e

θ

)θ
, (17)

where e denotes the base of the natural logarithm and θ = 2n−κ/2 + 1. The
adversary C makes at most 2q queries and runs in time τB +O(qτE).

6 Concluding Remarks

This article has proposed a new hashing mode suitable for a lightweight block-
cipher. When a lightweight blockcipher is implemented in the same device, the

Hashing Mode Using a Lightweight Blockcipher 225

hashing mode is expected to be more efficient than a dedicated hash function
in terms of the circuit size. When we designed the hashing mode, we were des-
perately aware of issues pointed out by Bogdanov et al. Although the security
of previous hash functions has been analyzed in the ideal-primitive model, the
preimage resistance and the pseudorandom function of our hashing mode can be
reduced to the standard security of an underlying blockcipher. Our analysis is
practically more significant than analysis in the ideal-primitive model. In addi-
tion, the full paper will show the collision resistance of the hashing mode in the
ideal-cipher model.

Acknowledgments. This work was supported by JSPS KAKENHI Grant
Numbers 22560376, 25330150.

References

1. Aumasson, J.-P., Henzen, L., Meier, W., Naya-Plasencia, M.: QUARK: a
lightweight hash. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS,
vol. 6225, pp. 1–15. Springer, Heidelberg (2010)

2. Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: RKA-PRPs,
RKA-PRFs, and applications. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 491–506. Springer, Heidelberg (2003)

3. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Sponge functions. In: Ecrypt
Hash Workshop 2007 (2007),
http://sponge.noekeon.org/SpongeFunctions.pdf

4. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the indifferentiabil-
ity of the sponge construction. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS,
vol. 4965, pp. 181–197. Springer, Heidelberg (2008)

5. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: The Keccak sponge function
family (2009), http://keccak.noekeon.org/

6. Black, J.A., Rogaway, P., Shrimpton, T.: Black-box analysis of the block-cipher-
based hash-function constructions from PGV. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 320–335. Springer, Heidelberg (2002)

7. Bogdanov, A.A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M., Seurin, Y., Vikkelsoe, C.: PRESENT: An ultra-lightweight block cipher. In:
Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

8. Bogdanov, A., Knežević, M., Leander, G., Toz, D., Varıcı, K., Verbauwhede, I.:
SPONGENT: A lightweight hash function. In: Preneel, B., Takagi, T. (eds.) CHES
2011. LNCS, vol. 6917, pp. 312–325. Springer, Heidelberg (2011)

9. Bogdanov, A., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin,
Y.: Hash functions and RFID tags: Mind the gap. In: Oswald, E., Rohatgi, P. (eds.)
CHES 2008. LNCS, vol. 5154, pp. 283–299. Springer, Heidelberg (2008)

10. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen,
L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen,
S.S., Yalçın, T.: PRINCE - a low-latency block cipher for pervasive computing
applications. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658,
pp. 208–225. Springer, Heidelberg (2012)

http://sponge.noekeon.org/SpongeFunctions.pdf
http://keccak.noekeon.org/

226 H. Kuwakado and S. Hirose

11. De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — A
family of small and efficient hardware-oriented block ciphers. In: Clavier, C., Gaj,
K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009)

12. Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-damg̊ard revisited: How
to construct a hash function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 430–448. Springer, Heidelberg (2005)

13. Fleischmann, E., Forler, C., Lucks, S., Wenzel, J.: The collision security of MDC-4.
Cryptology ePrint Archive, Report 2012/096 (2012), http://eprint.iacr.org/

14. Fleischmann, E., Forler, C., Lucks, S., Wenzel, J.: Weimar-DM: A highly secure
double-length compression function. In: Susilo, W., Mu, Y., Seberry, J. (eds.)
ACISP 2012. LNCS, vol. 7372, pp. 152–165. Springer, Heidelberg (2012)

15. Gong, Z., Nikova, S., Law, Y.W.: KLEIN: A new family of lightweight block ciphers.
In: Juels, A., Paar, C. (eds.) RFIDSec 2011. LNCS, vol. 7055, pp. 1–18. Springer,
Heidelberg (2012)

16. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON family of lightweight hash
functions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 222–239.
Springer, Heidelberg (2011)

17. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. Cryp-
tology ePrint Archive, Report 2012/600 (2012), http://eprint.iacr.org/

18. Hirose, S.: Some plausible constructions of double-block-length hash functions. In:
Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 210–225. Springer, Heidelberg
(2006)

19. Hirose, S., Kuwakado, H., Yoshida, H.: Compression functions using a dedicated
blockcipher for lightweight hashing. In: Kim, H. (ed.) ICISC 2011. LNCS, vol. 7259,
pp. 346–364. Springer, Heidelberg (2012)

20. Hong, D., Kwon, D.: New preimage attack on MDC-4. Cryptology ePrint Archive,
Report 2012/633 (2012), http://eprint.iacr.org/

21. ISO/IEC 10118-2:2010, Information technology – security techniques – hash-
functions – part 2: Hash-functions using an n-bit block cipher (2010)

22. Jonsson, J., Robshaw, M.: Securing RSA-KEM via the AES. In: Vaudenay, S. (ed.)
PKC 2005. LNCS, vol. 3386, pp. 29–46. Springer, Heidelberg (2005)

23. Knudsen, L.R., Mendel, F., Rechberger, C., Thomsen, S.S.: Cryptanalysis of MDC-
2. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 106–120. Springer,
Heidelberg (2009)

24. Lai, X., Massey, J.L.: Hash functions based on block ciphers. In: Rueppel, R.A.
(ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 55–70. Springer, Heidelberg (1993)

25. Lee, J., Stam, M., Steinberger, J.: The preimage security of double-block-
length compression functions. Cryptology ePrint Archive, Report 2011/210 (2011),
http://eprint.iacr.org/

26. Mennink, B.: On the collision and preimage security of MDC-4 in the
ideal cipher model. Cryptology ePrint Archive, Report 2012/113 (2012),
http://eprint.iacr.org/

27. Naito, Y.: Blockcipher-based double-length hash functions for pseudorandom ora-
cles. Cryptology ePrint Archive, Report 2010/566 (2010),
http://eprint.iacr.org/

28. National Institute of Standards and Technology, Advanced encryption stan-
dard (AES), Federal Information Processing Standards Publication 197 (2001),
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

29. National Institute of Standards and Technology, Secure hash standard, Fed-
eral Information Processing Standards Publication 180-2 (August 2002),
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf

Hashing Mode Using a Lightweight Blockcipher 227

30. National Institute of Standards and Technology, The keyed-hash message authenti-
cation code (HMAC), Federal Information Processing Standards Publication, FIPS
PUB 198-1 (2008),
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf

31. Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo:
An ultra-lightweight blockcipher. In: Preneel, B., Takagi, T. (eds.) CHES 2011.
LNCS, vol. 6917, pp. 342–357. Springer, Heidelberg (2011)

32. Steinberger, J.P.: The collision intractability of MDC-2 in the ideal-cipher model.
In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 34–51. Springer,
Heidelberg (2007)

33. Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: TWINE: A lightweight,
versatile block cipher. In: ECRYPT Workshop on Lightweight Cryptography 2011
(2011)

34. Wu, W., Zhang, L.: LBlock: A lightweight block cipher. In: Lopez, J., Tsudik, G.
(eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344. Springer, Heidelberg (2011)

A Proof of Lemma 1

Lemma 1. Let A be a pre[�, �̌]-adversary against H that runs in time τA. Then,
there exists a prf-adversary A1 against F̂ such that

∣
∣
∣Adv

pre[�, �̌]
H (A)−Adv

pre[�, �̌]-H
G◦$ (A)

∣
∣
∣ ≤ Advprf

F̂
(A1).

The adversary A1 makes a single query and runs in time τA + O(idxH(�̌)τE).
The length of the single query is at most �− κ.
Proof. When the pseudorandomness of F̂ is discussed, a length-extension attack
can be ignored because A1 is not allowed to make two queries.

Let V be the oracle of A1. The oracle V is either F̂k or η where η is a random
function in Func(≤ � − κ, κ). The goal of A1 is to identify V . Consider A1 that
uses the pre[�, �̌]-adversary A against H as a subroutine. The algorithm of A1 is
described below.

1. m← {0, 1}≤�−κ.
2. Make a query m to V . The answer is denoted by δ.
3. Compute d = G(δ). (G: Eq. (4))
4. Run A given d. The output of A is denoted by m̂.
5. If H(m̂) = d, then output 1. Otherwise output 0.

The number of queries by A1 is one (i.e., step 2) and the length of the query
is at most � − κ. Step 3 requires two encryptions of E. The time of step 4 is
equal to that of A. Step 5 requires at most 2 · idxH(�̌) + 2 encryptions of E
because the length of m̂ is at most �̌. Accordingly, the running time of A1 is
τA +O((2idxH(�̌) + 2)τE).

If V = F̂k, then δ = F̂k(m) and d = G(δ) = G ◦ F (k ‖ m) = H(k ‖ m)
where the length of k ‖ m is at most � bits. If V = η, then δ ← η(m) and
d = G(δ) = G ◦ η(m). Since V is invoked only once, δ ← η(m) is equivalent to

http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf

228 H. Kuwakado and S. Hirose

δ ← {0, 1}κ. Hence, d can be regarded as the string produced with the operation
G ◦ $. The probability that A1 outputs 1 is given by

Pr
[
AF̂k

1 = 1
]
= Adv

pre[�, �̌]
H (A), Pr [Aη1 = 1] = Adv

pre[�, �̌]-H
G◦$ (A).

Hence, we have

Advprf

F̂
(A1) =

∣
∣
∣Pr
[
AFk

1 = 1
]
− Pr [Aη1 = 1]

∣
∣
∣

=
∣
∣
∣Adv

pre[�, �̌]
H (A)−Adv

pre[�, �̌]-H
G◦$ (A)

∣
∣
∣.

Since there may exist a better adversary with the same resource as A1 we con-
sidered here, we obtain the inequality of Eq. (10). ��

B Proof of Lemma 2

Lemma 2. Let A1 be a prf-adversary against F̂ that makes a single query and
runs in time τA1 . The length of the single query is at most �−κ bits. Then, there
exists a 4-prp-rka-adversary B against E such that

Advprf

F̂
(A1) ≤ idxH(�)Adv4-prp-rka

E (B)

The adversary B makes two queries and runs in time τA1 +O(idxH(�)τE).

Proof. The oracle given to B is denoted by V = 〈Vkj 〉4j=1. The oracle V is

E = 〈Ekj 〉4j=1 or P = 〈πkj 〉4j=1 where each kj is determined by Eq. (7) and π is
a keyed random permutation in Perm(κ, a). To make consistent with notation,
we sometime denote k1 by k. The goal of B is to identify V . Consider B that
uses the prf-adversary A1 against F̂ as a subroutine. Then, B has to simulate
the oracle of A1, which accepts an (�−κ)-bit (or less) string and answers a κ-bit
string.

To simulate the oracle of A1 using V , B defines a function TV(v,m) as Fig. 2.
In Fig. 2, η is a random function in Func(≤ � − κ, κ) and h is the function
of Eq. (3). In Line 102, message blocks m[1,l] are produced in the same way as

F̂k. Proposition 1 described later shows that the following equations hold when
TV(v,m) is invoked only once.

T E(1,m) = F̂k(m) (18)

T E(v,m) = TP(v − 1,m) for 2 ≤ v ≤ l (19)

TP(l,m) = η(m) (20)

The above equations suggest that TV(v,m) changes from F̂k(m) to η(m) as v
increases. Note that A1 is the adversary that distinguishes F̂k(m) from η(m).

The adversary B tries to identify V using A1. The algorithm of B is described
below.

Hashing Mode Using a Lightweight Blockcipher 229

101: function TV(v,m)
102: Produce m[1,l] from m.
103: if l ≤ v − 1 then
104: xl ← η(m) � η: rand. func.
105: else if l ≥ v then
106: if v = 1 then
107: xv ← tr(Vk1(mv)⊕mv) ‖ tr(Vk2(mv)⊕mv) � k2 = k1 ⊕ c1
108: else
109: xv ← tr(Vk1(mv)⊕mv) ‖ tr(Vk3(mv)⊕mv) � k3 = k1 ⊕ c2
110: end if
111: for i← v + 1 to l do
112: xi ← h(xi−1,mi) � h: Eq. (3)
113: end for
114: end if
115: return xl

116: end function

padding

unused

Fig. 2. Pseudocode of T and its diagram

1. Run A1 that is allowed to make a single query m.
2. Compute l = idxF(len(m)) where len(m) denotes the length of m.
3. v ← {1, 2, . . . , l}.
4. Compute xl = TV(v,m) according to Fig. 2.
5. Answer xl to A1.
6. Output the output of A1, which is 0 or 1.

From the above algorithm, the number of queries by B to V is two (Line 109),
precisely one query to each Vi. The running time of B is dominated by the sum

230 H. Kuwakado and S. Hirose

of the running time of A1 and time for encrypting mi at most 2(idxF(�− κ)− 1)
times (Line 112). The probability that B outputs 1 is given as follows:

Pr
[
BE = 1

]
=

l∑

i=1

Pr [v = i] Pr
[
A
TE (v,·)
1 = 1|v = i

]

=
1

l

(

Pr
[
AF̂k

1 = 1
]
+

l∑

v=2

Pr
[
A
TE (v,·)
1 = 1

]
)

(∵ Eq. (18))

=
1

l

(

Pr
[
AF̂k

1 = 1
]
+

l∑

v=2

Pr
[
A
TP(v−1,·)
1 = 1

]
)

(∵ Eq. (19))

=
1

l

(

Pr
[
AF̂k

1 = 1
]
+

l−1∑

v=1

Pr
[
A
TP(v,·)
1 = 1

]
)

(21)

Pr
[
BP = 1

]
=

l∑

i=1

Pr [v = i] Pr
[
A
TP(v,·)
1 = 1|v = i

]

=
1

l

(
l−1∑

v=1

Pr
[
A
TP(v,·)
1 = 1

]
+ Pr [Aη1 = 1]

)

(∵ Eq. (20)) (22)

Subtracting Eq. (22) from Eq. (21) gives the advantage of B against E.

Adv4-prp-rka
E (B) =

∣
∣Pr
[
BE = 1

]− Pr
[
BP = 1

]∣
∣

=
1

l

∣
∣
∣Pr
[
AF̂k

1 = 1
]
− Pr [Aη1 = 1]

∣
∣
∣ (∵ Eq. (21), Eq. (22))

=
1

l
Advprf

F̂
(A1)

≥ 1

idxPRF(�− κ)Advprf

F̂
(A1) (∵ len(m) ≤ �− κ)

≥ 1

idxH(�)
Advprf

F̂
(A1)

The proof is completed. ��
Proposition 1. When TV(v,m) is invoked only once, the following equations
hold.

T E(1,m) = F̂k(m)

TP(l,m) = η(m)

T E(v,m) = TP(v − 1,m) for 2 ≤ v ≤ l
Proof. When V = E and v = 1, x1 is computed in Line 107 as follows:

x1 ← tr(Ek1(m1)⊕m1) ‖ tr(Ek2 (m1)⊕m1)

= g(k,m1),

Hashing Mode Using a Lightweight Blockcipher 231

where we denoted k1 by k and k2 = k ⊕ c1. It turns out that
T E(1,m) = h(. . . h(h(g(k,m1),m2),m3) . . .ml) = F̂k(m).

When V = P and v = l, xl is computed in Line 109 as follows:

TP(l,m) = xl ← tr(πk1 (mv)⊕mv) ‖ tr(πk3 (mv)⊕mv) (23)

Recall that TV(v,m) is invoked only once. Since each πki is the random permu-
tation, the distribution of the first output of πki is uniform on {0, 1}n. It follows
that the distribution of xl is uniform on {0, 1}κ. Since the distribution of η(m)
is also uniform on {0, 1}κ, Eq. (23) is equivalent to xl ← η(m).

Lastly, we show T E(v,m) = TP(v − 1,m) depending on the last index of
message blocks of m, denoted by l.

– l ≤ v − 2: In both of functions, xl is computed in Line 104.
– l = v − 1:
• T E(v,m): Since xl is computed in Line 104, xl is uniformly distributed
on {0, 1}κ.
• TP(v− 1,m): xl is computed in Line 109, (i.e., Eq. (23)). For the reason
above, xl is uniformly distributed on {0, 1}κ.

– l = v:
• T E(v,m): xl is computed in Line 109.

xl ← tr(Ek1 (ml)⊕ml) ‖ tr(Ek3(ml)⊕ml), (24)

where k3 = k1 ⊕ c2.
• TP(v − 1,m): xl−1 is computed in Line 109.

xl−1 ← tr(πk1 (mv−1)⊕mv−1) ‖ tr(πk3 (mv−1)⊕mv−1)

For the reason above, xl−1 is uniformly distributed on {0, 1}κ. After
that, xl is computed in Line 109.

xl ← tr(Exl−1
(ml)⊕ml) ‖ tr(Exl−1⊕c2(ml)⊕ml) (25)

Since the distribution of xl−1 is the same as that of k1 in T E(v,m), the
distribution of xl in Eq. (25) is the same as that of xl in Eq. (24).

– l ≥ v + 1:
• T E(v,m): xv is computed in Line 109.

xv ← tr(Ek1(mv)⊕mv) ‖ tr(Ek3(mv)⊕mv) = h(k,mv) (26)

• TP(v − 1,m): xv−1 is computed in Line 109.

xv−1 ← tr(πk1(mv−1)⊕mv−1) ‖ tr(πk3(mv−1)⊕mv−1).

For the reason above, xv−1 is uniformly distributed on {0, 1}κ. xv is
computed in Line 112.

xv ← tr(Exv−1(mv)⊕mv) ‖ tr(Exv−1⊕c2(mv)⊕mv) = h(xv−1,mv)
(27)

Since the distribution of k in Eq. (26) is the same as that of xv−1 in Eq. (27),
the distribution of xv in Eq. (26) is the same as that of xv in Eq. (27). The
subsequent steps in the both of functions are identical.

��

Indifferentiability of Double Length

Compression Functions

Bart Mennink

Dept. Electrical Engineering, ESAT/COSIC,
KU Leuven, and iMinds, Belgium
bart.mennink@esat.kuleuven.be

Abstract. Double block length hashing covers the idea of constructing
a compression function on 2n bits using an n-bit block cipher. In this
work, we present a comprehensive indifferentiability analysis of all rele-
vant double length compression functions. Indifferentiability is a stronger
security notion than collision and preimage resistance and ensures that
a design has no structural flaws. It is very well suited for composition:
using an indifferentiable compression function in a proper mode of op-
eration supplies an indifferentiable hash function. Yet, as we demon-
strate compression function indifferentiability is not at all a triviality:
almost all double length compression functions, including Tandem-DM
and Jetchev et al.’s, appear to be differentiable from a random function
in 2 queries. Nevertheless, we also prove that two known functions are
indifferentiable: the MDC-4 compression function (up to 2n/4 queries
tight) and Mennink’s function (up to 2n/2 queries tight).

Keywords: double block length, block cipher based, compression func-
tion, indifferentiability.

1 Introduction

Double (block) length hashing is a well-established method for constructing a
compression function with 2n-bit output based only on n-bit block ciphers. The
idea dates back to the designs of MDC-2 and MDC-4 in 1988 by Meyer and
Schilling [22]. Double length hash functions have an obvious advantage over
classical block cipher based functions such as Davies-Meyer and Matyas-Meyer-
Oseas, and more generally the PGV class of functions [25, 28]: the same type
of underlying primitive allows for a larger compression function. Yet, for double
length compression functions it is harder to achieve optimal n-bit collision and
2n-bit preimage security.

We focus on the simplest type of double length compression functions, namely
those that compress 3n to 2n bits. Adopting the convention of Mennink [20], we
divide the state of the art into two classes: DBL2n, consisting of all functions that
internally evaluate a 2n-bit keyed block cipher E : {0, 1}2n × {0, 1}n → {0, 1}n,
and DBLn, of functions based on an n-bit keyed block cipher E : {0, 1}n ×
{0, 1}n → {0, 1}n. A classification on the collision and preimage security of the

M. Stam (Ed.): IMACC 2013, LNCS 8308, pp. 232–251, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Indifferentiability of Double Length Compression Functions 233

known functions is given in Table 1 (this classification is accredited to [20]). Re-
garding these security properties, DBL2n is well-understood. For instance, the
most notable Tandem-DM and Abreast-DM [11] and Hirose’s function [7], that
all make two underlying block cipher calls, are proven optimally secure with
respect to both security notions. Hirose [6] and Özen and Stam [24] presented
generalizations of these compression function designs (but for convenience all
of these results are handled separately in this work). Stam introduced a single-
call compression function [27,28] (reconsidered in [16]) which is proven optimally
collision secure. Lucks [17] introduced a compression function that allows for col-
lisions in about 2n/2 queries—and is therefore not included in the classification—
but achieves optimal collision resistance in the iteration. On the other hand, in
the DBLn class the first provably optimally collision secure function was pre-
sented only recently by Mennink [20]: his function is proven collision secure up to
2n queries and preimage secure up to 23n/2 queries. Earlier designs in this class
are the MDC-2 and MDC-4 compression functions [22] and MJH [13], which are
merely constructed to achieve security in the iteration,1 and Jetchev et al.’s con-
struction (which we will call JOS) [9], a clever design achieving collision security
up to 22n/3 queries (with preimage security guaranteed up to 2n queries).

Table 1. Asymptotic ideal cipher model security guarantees of known functions in the
classes DBL2n (first) and DBLn (second). The collision and preimage results are taken
from [20]; all indifferentiability results (in bold) are derived in this paper.

compression
E-calls

collision preimage indifferen- underlying
function security security tiability cipher

Stam’s 1 2n [28] 2n [28] 2 (Sect. 3)

Tandem-DM 2 2n [14] 22n [2, 15] 2 (Sect. 3)

Abreast-DM 2 2n [5, 12] 22n [2, 15] 2 (Sect. 3)

Hirose’s 2 2n [7] 22n [2, 15] 2 (Sect. 3)

Hirose-class 2 2n [6] 2n [6] 2 (Sect. 3)

Özen-Stam-class 2 2n [24] 2n [24] 2 (Sect. 4)

MDC-2 2 2n/2 2n 2 (Sect. 5)

MJH 2 2n/2 2n 2 (Sect. 5)

JOS 2 22n/3 [9] 2n [9] 2 (Sect. 6)

Mennink’s 3 2n [20] 23n/2 [20] 2n/2 (Sect. 7)

MDC-4 4 25n/8 [21] 25n/4 [21] 2n/4 (Sect. 8)

So far, these results only concern the collision and preimage security of the
compression functions. If such compression function is used in a proper iter-
ation, these carry over to the hash function design [1]. Beyond these notions,

1 In the iteration, collision resistance is proven up to 23n/5 for MDC-2 [29] and 22n/3

for MJH [13].

234 B. Mennink

the indifferentiability framework of Maurer et al. [18] has gained recent atten-
tion. Indifferentiability is an important security criterion as it guarantees that
a construction based on an underlying idealized primitive shows no structural
flaws: generic attacks on such a design are impossible up to the proven bound,
and weaknesses, if any, come from the underlying primitive. It is well suited
for composition: a hash function indifferentiability result (based on an underly-
ing compression function) and a compression function indifferentiability result
(based on, say, a block cipher) compose to security of the hash function based
on the ideality of the block cipher. Several hash function indifferentiability re-
sults exist [3, 4, 8] and compression functions are usually easier to analyze than
hash functions, and therefore it is of interest to study the indifferentiability of
compression functions.

But, returning to block cipher based compression functions, the state of affairs
is entirely topsy-turvy when it comes to indifferentiability. First of all, as for
single block length compression functions, the PGV functions are known to be
differentiable from random functions [10]. As a first contribution of this work,
we show that this problematic situation also applies to double length functions:
all functions in the DBL2n class, as well as MDC-2, MJH, and JOS (in the
DBLn class), are trivially differentiable from a random function in 2 queries. The
attacks show similarities with the differentiability attacks on the PGV functions.
In general, indifferentiability appears to be much harder to achieve then “simply”
collision and preimage security.

However, on the positive side, we derive non-trivial indifferentiability results
for Mennink’s and the MDC-4 compression function. Starting with Mennink’s
compression function class, called F 3

A (see Fig. 2). These functions make three
block ciphers calls and are indexed by a 4× 4 matrix A that is required to com-
ply with certain simple conditions. We prove that any F 3

A meeting these condi-
tions is indifferentiable from a random function in about 2n/2 queries (tight).
This bound is worse than the collision and preimage bounds, but this is as ex-
pected, given the negative indifferentiability results so far. The proof crucially
relies on two key characteristics of F 3

A : that any two block cipher evaluations
of F 3

A define the inputs to the third one, but more importantly, that at least
two such calls are needed to learn something about an F 3

A evaluation. In gen-
eral, the proof is made possible by the sequential block cipher evaluation of the
design.

Next, for the MDC-4 compression function (see Fig. 5) based on two distinct
block ciphers, we prove it indifferentiable from a random function up to 2n/4

queries (tight).2 The proof is very similar to the one of Mennink’s function, and
in particular also crucially relies on the sequential block cipher evaluation.

All indifferentiability results are summarized in Table 1, in which we also
mention the corresponding section of this paper. The work is concluded in Sect. 9.

2 The MDC-4 compression function based on one single block cipher is differentiable
in 2 queries.

Indifferentiability of Double Length Compression Functions 235

2 Indifferentiability

The indifferentiability framework, introduced by Maurer et al. [18], is a security
notion that formally captures the “distance” between a cryptographic construc-
tion and its random equivalent. Informally, it gives a sufficient condition under
which an ideal primitive R can be replaced by some construction CP using an
ideal subcomponent P . In this paper, we employ the adaption and simplification
by Coron et al. [4]. Recent results by Ristenpart et al. [26] show that indifferen-
tiability does not capture all properties of a random oracle, it applies to single
stage games only. Nevertheless, this notion captures pretty many games and re-
mains the best way to prove that a hash or compression function behaves like a
random oracle.

Definition 1. Let C be a cryptographic primitive with oracle access to an ideal
primitive P. Let R be an ideal primitive with the same domain and range as C.
Let S be a simulator with the same domain and range as P with oracle access to
R and making at most qS queries, and let D be a distinguisher making at most
qD queries. The differentiability advantage of D is defined as

adviff
C,S(D) =

∣
∣Pr

(DC,P = 1
)−Pr

(DR,S = 1
)∣
∣ .

We refer to (C,P) as the real world, and to (R,S) as the simulated world. We
denote D’s left oracle (C or R) by L and its right oracle (P or S) by R.

For k, n ≥ 1, we denote by Bloc(k, n) the set of all block ciphers with a k-bit
key and n-bit message space. We simply write Bloc(n) if k = n. Throughout,
C : {0, 1}3n → {0, 1}2n corresponds to a compression function design, and P
represents block ciphers from Bloc(k, n) (where k = 2n for functions in DBL2n

and k = n for functions in DBLn). We stress that some of the designs analyzed
in this work are defined to make use of two distinct block ciphers (e.g., one call
to a cipher E1 and one call to E2). Except for our indifferentiability result on
MDC-4, for all of our results it is not relevant whether the underlying ciphers
are distinct or the same. Therefore, we consider all designs simply to be based
on one single block cipher, unless stated otherwise.

3 Stam’s, Tandem-DM, Abreast-DM, Hirose’s, and
Hirose-Class

In this section, we consider Tandem-DM andAbreast-DM [11] (cf. Fig. 1), Hirose’s
compression function [7] (cf. Fig. 1) and its generalized Hirose-class [6],3 as well

3 Hirose’s function can be seen as a special case of Hirose-class (using that in the attack
it is not relevant whether the underlying block ciphers are distinct or the same), and
our attack directly carries over.

236 B. Mennink

u

v
w

y

z

u

v

w

y

z

u

v w
const

y

z

Fig. 1. Tandem-DM (left), Abreast-DM (middle), and Hirose’s compression function
(right) [7,11]. All wires carry n bits. For Abreast-DM, the circle ◦ denotes bit comple-
mentation. For Hirose’s function, const is any non-zero constant.

as Stam’s supercharged single call Type-I compression function design [27, 28],
or more specifically the block cipher based variant considered in [16]:

Stam(u, v, w) = (y, z), where:

c1 ← E(v‖w, u) ,
y ← c1 + u ,

z ← wy2 + vy + u .

Here, additions and finite field multiplications are done over the field GF (2n).
The differentiability attacks are identical for all designs, and we only consider
Tandem-DM (abbreviated to TDM). The attack is a direct generalization of the
fixed-point attack on the Davies-Meyer (DM) compression function.

We note that Özen and Stam presented a generalized double length design [24],
and our attack on their class (in Sect. 4) can be seen as a true generalization of
the attacks in this section on Abreast-DM and Hirose’s functions (given that in
these attacks it is not relevant whether the underlying block ciphers are distinct
or the same). Nevertheless, these functions are handled separately for clarity and
as an illustration.

Proposition 1. Let E
$← Bloc(2n, n), and let R : {0, 1}3n → {0, 1}2n be a

random compression function. For any simulator S that makes at most qS queries
to R, there exists a distinguisher D that makes 2 queries to its oracles, such that

adviff
TDM,S(D) ≥ 1− qS + 1

2n
.

Proof. Our distinguisher D aims at finding an evaluation of TDM that satisfies:

TDM(u, v, w) = (u, z) , (1)

for some values u, v, w, z. D operates as follows. First, it fixes some values v, w,
and queries u ← R−1(v‖w, 0). Next, it queries its left oracle L on input of
(u, v, w), and outputs 0 if and only if the first half of the response equals u
(hence if (1) is satisfied). Clearly, in the real world, (1) holds with certainty, and
D succeeds except if S or D obtains a solution to R(u, v, w) = (u, z). As R is a
random function, any query satisfies this equation with probability 1

2n , and R
is consulted at most qS + 1 times. This completes the proof. ��

Indifferentiability of Double Length Compression Functions 237

4 Özen-Stam-Class

Özen and Stam [24] analyzed a wide class of double length compression functions,
extending the single-length compression function result of Stam [28].

OS(u, v, w) = (y, z), where:

(k1,m1)← Cpre
1 (u, v, w) ,

c1 ← E(k1,m1) ,

(k2,m2)← Cpre
2 (u, v, w) ,

c2 ← E(k2,m2) ,

(y, z)← Cpost(u, v, w, c1, c2) .

Here, it is required that Cpre
1 and Cpre

2 are bijections, as is Cpost(u, v, w, ·, ·) for
fixed (u, v, w). Additionally, certain requirements are posed on Caux

1 and Caux
2

(combinations of the three functions), but these are not relevant for our analysis.
We assume the existence of a bijection M : {0, 1}2n → {0, 1}2n such that

the left half of M ◦ Cpost(u, v, w, c1, c2) is independent of c2, and consider the
compression function design with M appended. (Note that this does not affect
the security result.) For convenience, we simply assume the existence of Cpost

1

and Cpost
2 such that

y ← Cpost
1 (u, v, w, c1) ,

z ← Cpost
2 (u, v, w, c1, c2) .

Proposition 2. Let E
$← Bloc(2n, n), and let R : {0, 1}3n → {0, 1}2n be a

random compression function. For any simulator S that makes at most qS queries
to R, there exists a distinguisher D that makes 2 queries to its oracles, such that

adviff
OS,S(D) ≥ 1− qS + 1

2n
.

Proof. The proof is similar to the one of Prop. 1, and we only highlight the
differences. Our distinguisher D aims at finding an evaluation of OS that satisfies:

OS(u, v, w) = (Cpost
1 (u, v, w, 0), z) , (2)

for some values u, v, w, z. First, the adversary fixes k1, and queries
m1 ← R−1(k1, 0). Then, it computes (u, v, w)← C−pre1 (k1,m1). Next, it queries
its left oracle L on input of (u, v, w), and outputs 0 if and only if (2) is satisfied.
The remainder of the analysis is the same as in the proof of Prop. 1. ��

5 MDC-2 and MJH

In this section, we consider the MDC-2 and MJH compression functions. For
MDC-2, we leave out the swapping at the end as it is of no influence to the

238 B. Mennink

indifferentiability proof. The functions are defined as follows (for MJH, σ is an
involution and θ a constant):

MDC-2(u, v, w) = (y, z), where: MJH(u, v, w) = (y, z), where:

c1 ← E(u,w) , c1 ← E(v, u + w) ,

y ← c1 + w , y ← c1 + u+ w ,

c2 ← E(v, w) , c2 ← E(v, σ(u + w)) ,

z ← c2 + w . z ← (c2 + σ(u + w)) · θ + u .

Recall that for our results, it is not relevant whether the underlying ciphers are
distinct or the same.

Proposition 3. Let E
$← Bloc(n), and let R : {0, 1}3n → {0, 1}2n be a random

compression function. For any simulator S that makes at most qS queries to R,
there exists a distinguisher D that makes 2 queries to its oracles, such that

adviff
MDC-2,S(D) ≥ 1− qS + 1

2n
.

The same result holds for MJH.

Proof. The proof is similar to the one of Prop. 1. Now, our distinguisher aims at
finding an evaluation of MDC-2 that satisfies MDC-2(u, v, w) = (w, z), and the
same for MJH. The remainder of the analysis is almost identical to the proof of
Prop. 1, and therefore omitted. ��

6 JOS

In this section, we consider Jetchev et al.’s compression function (called JOS).
The analysis is slightly more complicated but in fact not much different. We con-
sider the block cipher based variant with the underlying matrix A as suggested
in [23, Sect. 5.4.2].

JOS(u, v, w) = (y, z), where:

c1 ← E(w, u) ,

c2 ← E(w + uv, v) ,

y ← u+ v + (u+ c1)(v + c2) ,

z ← u+ v + c1 + c2 .

Here, additions and finite field multiplications are done over the field GF (2n).

Proposition 4. Let E
$← Bloc(n), and let R : {0, 1}3n → {0, 1}2n be a random

compression function. For any simulator S that makes at most qS queries to R,
there exists a distinguisher D that makes 2 queries to its oracles, such that

adviff
JOS,S(D) ≥ 1− qS + 1

2n
.

Indifferentiability of Double Length Compression Functions 239

u v w

c1

A

a1·(u, v, c1)
a2·(u, v, c1, w)

a3·(u, v, c1)
a4·(u, v, c1, w)

y z

F 3
A(u, v, w) = (y, z), where:

c1 ← E(u, v) ,

k2 ← a1 ·(u, v, c1) ,
m2 ← a2 ·(u, v, c1, w) ,
y ← E(k2,m2) +m2 ,

k3 ← a3 ·(u, v, c1) ,
m3 ← a4 ·(u, v, c1, w) ,
z ← E(k3,m3) +m3 .

Fig. 2. Mennink’s compression function class F 3
A where A is a 4× 4 matrix as in (3)

Proof. The proof is similar to the one of Prop. 1. Now, our distinguisher aims at
finding an evaluation of JOS(u, v, w) = (y, z) that satisfies y + uz = u2 + u+ v.
The remainder of the analysis is almost identical to the proof of Prop. 1, and
therefore omitted. ��

7 Mennink’s

Mennink’s double length compression function design, dubbed F 3
A : {0, 1}3n →

{0, 1}2n (depicted in Fig. 2), makes three calls to a single block cipher, and is
indexed by a 4× 4 matrix

A =

⎛

⎜
⎜
⎝

a1
a2
a3
a4

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

a11 a12 a13 0
a21 a22 a23 a24
a31 a32 a33 0
a41 a42 a43 a44

⎞

⎟
⎟
⎠ (3)

over the field GF (2n).4

The security of F 3
A is based on the key principle that any two block cipher

evaluations define the input to the third one. Indeed, invertibility of A guarantees
that evaluations of the second and third block cipher define the values (u, v, c1).
Also, if a24 	= 0 (resp. a44 	= 0), the first and second (resp. third) block cipher
define the inputs to the third (resp. second) one. However, in order to achieve

4 Bit strings from {0, 1}n and finite field elements in GF (2n) are identified to define
addition and scalar multiplication over {0, 1}n. For two tuples x = (x1, . . . , xl) and
y = (y1, . . . , yl) of elements from {0, 1}n, x ·y denotes inner product

∑l
i=1 xiyi ∈

{0, 1}n.

240 B. Mennink

collision and preimage security, Mennink posed a slightly larger set of conditions
on A, which he called colreq (for collision security) and prereq (for preimage
security). For the indifferentiability results, it suffices to pose a much weaker
condition on A. In detail, we require the following from A (called indreq): A
is invertible and a12, a13, a24, a32, a33, a44 	= 0. As prereq ⇒ colreq⇒ indreq,
our results particularly apply to all schemes proven secure in [20].

Suiting the analysis, we define a function getw that, on input of j ∈ {2, 4},
m ∈ {0, 1}n, and (k1,m1, c1) ∈ {0, 1}3n, outputs w such that aj·(k1,m1, c1, w) =
m. Note that a24, a44 	= 0 implies uniqueness of w. Differentiability is discussed
in Sect. 7.1, and indifferentiability in Sect. 7.2.

7.1 Differentiability

In Prop. 5 we show that F 3
A is differentiable from a random oracle in at most

about 2n/2 queries.

Proposition 5. Let E
$← Bloc(n), and let R : {0, 1}3n → {0, 1}2n be a random

compression function. For any simulator S that makes at most qS queries to R,
there exists a distinguisher D that makes 2n/2 + 2 queries to its oracles, such
that

adviff
F 3

A ,S(D) ≥
1

2
− 1

2n/2+1
− qS + 1

2n − qS .

Proof. Our distinguisher D aims at finding two different evaluations of F 3
A with

the same key inputs to the second (or third) block cipher call. In more detail,
the distinguisher aims at finding two distinct block cipher calls (k1,m1, c1) and
(k′1,m′1, c′1) such that for j ∈ {1, 3}:

aj ·(k1,m1, c1) = aj ·(k′1,m′1, c′1) . (4)

Note that in the real world, for F 3
A , such collisions are expected to be found

in about 2n/2 queries to E (here we use that a12, a13, a32, a33 	= 0). If the dis-
tinguisher eventually finds a collision as in (4), then for any m ∈ {0, 1}n, the
following condition naturally holds in the real world:

y = y′ if j = 1 and z = z′ if j = 3 , (5)

where

(y, z) = F 3
A(k1,m1, getw(j + 1,m, k1,m1, c1)) ,

(y′, z′) = F 3
A(k
′
1,m

′
1, getw(j + 1,m, k′1,m

′
1, c
′
1)) .

In the random world, with F 3
A replaced by R, this equation only holds with small

probability. Note that the simulator never learns the value m, yet, it may simply
try to avoid collisions as in (4). However, in this case, the responses from S are
too biased, which allows the distinguisher to succeed.

Indifferentiability of Double Length Compression Functions 241

Formally, the distinguisher D proceeds as follows.

(i) D makes 2n/2 queries to its right oracle R for different key and different
message values, obtaining 2n/2 distinct tuples (k1,m1, c1);

(ii) If there is no solution to (4), D returns 1;

(iii) Let j ∈ {1, 3} and (k1,m1, c1) and (k′1,m
′
1, c
′
1) be such that (4) is satisfied;

(iv) Take m
$← {0, 1}n. If (5) holds, D returns 0, and otherwise it returns 1.

Distinguisher D succeeds except in the following two cases: “C1” it is conversing
with the real world and (4) does not have a solution (which means that his
guess in step (ii) is wrong), or “C2” it is conversing with the simulated world
and (5) holds (which means that his guess in step (iv) is wrong). Therefore,
adviff

F 3
A ,S(D) ≥ 1−Pr (C1)−Pr (C2). Regarding C1: note that all queries are made

with different key inputs, and E is a random cipher. Therefore, all responses are
randomly drawn from a set of size 2n, and a collision (4) occurs with probability

at least
(
2n/2

2

)
1
2n (as a12, a13, a32, a33 	= 0). Thus,

Pr (C1) ≤ 1−
(
2n/2

2

)
1

2n
=

1

2
+

1

2n/2+1
.

Regarding C2, denote by E the event that S ever queries R(k1,m1, getw(j +
1,m, k1,m1, c1)). Then,

Pr (C2) ≤ Pr (C2 | ¬E) +Pr (E) ≤ 1

2n − qS +
qS

2n − (qS − 1)
=

qS + 1

2n − qS ,

where we use that a24, a44 	= 0. This completes the proof. ��

7.2 Indifferentiability

We prove that F 3
A is indifferentiable from a random function.

Theorem 1. Let E
$← Bloc(n), and let R : {0, 1}3n → {0, 1}2n be a random

function. There exists a simulator S such that for any distinguisher D that makes
at most qL left queries and qR right queries,

adviff
F 3

A ,S(D) ≤
7(3qL + qR)

2

2n
,

where S makes qS ≤ qR queries to R.
The simulator S used in the proof mimics the behavior of random cipher E such
that queries to S and queries to R are consistent, which means that relations
among the query outputs in the real world hold in the simulated world as well. In
the remainder of the section, we first introduce our simulator and accommodate
it with an intuition, and next present the formal proof.

242 B. Mennink

Simulator Intuition

For k ∈ {0, 1}n, the simulator maintains an initially empty list LE[k]. In this
list, it stores tuples (m, c) such that S(k,m) = c. We write LE+[k] for all input
values m and LE−[k] for all output values c. Sometimes, we abuse notation and
write (k,m, c) ∈ LE to denote that (m, c) ∈ LE[k].

Mennink’s F 3
A class of functions is based on the key principle that any two

block ciphers define the inputs to the third one. The simulator we use for the
proof of Thm. 1 enormously benefits from some of these characteristics. In more
detail, the simulator is given in Fig. 3.

Apart from the if-clause of lines 02-06, the simulator identically mimics an
ideal cipher. In this particular clause, the simulator checks whether a query
(k,m) may appear in an F 3

A evaluation (see Fig. 2) as a bottom query (left or
right) for some other query appearing in the top. In more detail, this happens
if (k,m) = (aj ·(k1,m1, c1), aj+1 ·(k1,m1, c1, w)) for some j ∈ {1, 3} and some
earlier query (k1,m1, c1) ∈ LE. In this case, the simulator should consult R to
derive the query response. At a higher level, the simulator is based on the idea
that, with high probability, a distinguisher can only compare (F 3

A , E) and (R,S)
if it makes the queries to E/S “in correct order”: for any evaluation of F 3

A that
can be derived from LE, the top query is made prior to the two bottom queries.

Forward Query S(k,m)

00 if LE+[k](m) �= ⊥ return c = LE+[k](m)

01 c
$← {0, 1}n\LE+[k]

02 if ∃ j ∈ {1, 3}, (k1,m1, c1) ∈ LE : k = aj ·(k1,m1, c1)

03 w ← getw(j + 1,m, k1,m1, c1)

04 (y, z)←R(k1,m1, w)

05 c← m+ (y[j = 1] + z[j = 3])

06 end if

07 return LE+[k](m)← c

Inverse Query S−1(k, c)

10 if LE−[k](c) �= ⊥ return m = LE−[k](c)

11 m
$← {0, 1}n\LE−[k]

12 return LE−[k](c)← m

Fig. 3. The simulator S for E used in the proof of Thm. 1

Proof of Theorem 1

We formally proof Thm. 1. Let S be the simulator of Fig. 3, and let D be any
distinguisher that makes at most qL left queries and qR right queries. Note that
S makes qS ≤ qR queries. By Def. 1, the goal is to bound:

adviff
F 3

A ,S(D) =
∣
∣
∣Pr

(
DF 3

A ,E = 1
)
−Pr

(DR,S = 1
)∣∣
∣ . (6)

As a first step, we apply a PRP-PRF switch to both worlds. More formally, we
define Ẽ as E with the difference that all responses are randomly drawn from
{0, 1}n. Similarly, S̃ is defined as S of Fig. 3 with the difference that random
sampling from {0, 1}n is done in lines 01 and 11. Now,

∣
∣
∣Pr

(
DF 3

A ,E = 1
)
−Pr

(
DF 3

A , ˜E = 1
)∣
∣
∣ ≤ (3qL + qR)

2

2n+1
,

Indifferentiability of Double Length Compression Functions 243

and

∣
∣
∣Pr

(
DR, ˜S = 1

)
−Pr

(DR,S = 1
)∣∣
∣ ≤ q2R

2n+1
,

and we obtain for (6):5

adviff
F 3

A ,S(D) ≤
∣
∣
∣Pr

(
DF 3

A , ˜E = 1
)
−Pr

(
DR, ˜S = 1

)∣
∣
∣+

(3qL + qR)
2

2n
. (7)

It remains to analyze the probability of D to distinguish (F 3
A , Ẽ) from (R, S̃).

Abusing notation, we remain calling these worlds the real and simulated world.
These worlds are described in Fig. 4. Here, in both worlds, LE represents an
initially empty list of all right oracle queries, and in the simulated world only
we furthermore use LR as an initially empty list of all left oracle queries.

Let event cond(LE) be defined as follows:

cond(LE) =

⎛

⎜
⎝

∃ j, j′ ∈ {1, 3}, (k,m, c), (k′,m′, c′) ∈ LE :

(k,m, c) newer than (k′,m′, c′) and
aj ·(k,m, c) ∈ {k, k′, aj′ ·(k′,m′, c′)}

⎞

⎟
⎠ . (8)

Event cond(LE) covers the case of two distinct top queries that result to the same
key input to two bottom queries, as well as the case of a top query accidentally
hitting the key k′ of a bottom query (which may be the equal to the top query).
Particularly, as long as ¬cond(LE), the condition in line 42 of Fig. 4 is always
satisfied by at most one (j, (k1,m1, c1)). In the remainder, we prove in Lem. 1

that (F 3
A , Ẽ) and (R, S̃) are perfectly indistinguishable as long as cond(LE) does

not occur in both worlds. Then, in Lem. 2 we prove that cond(LE) occurs in the

real world with probability at most 3(3qL+qR)2

2n and in the simulated world with

probability at most
3q2R
2n . Together with (7), this completes the proof.

Lemma 1. As long as ¬cond(LE), (F 3
A , Ẽ) from (R, S̃) are perfectly indistin-

guishable.

Proof. We consider any query made by the distinguisher, either to the left ora-
cle L (either F 3

A or R) and the right oracle R/R−1 (either Ẽ/Ẽ−1 or S̃/S̃−1),
and show that the query responses are equally distributed in both worlds (ir-
respectively of the query history). Without loss of generality, we consider new
queries only: if the distinguisher makes a repetitive query, the answer is known
and identically distributed in both worlds.

5 Technically, we could have taken S̃ as our simulator, therewith obtaining an improved
indifferentiability bound for Thm. 1. However, for clarity and ease of presentation,
we opted for simulator S .

244 B. Mennink

Query F 3
A (u, v,w)

00 c1 ← Ẽ(u, v)

01 k2 ← a1 ·(u, v, c1)
02 m2 ← a2 ·(u, v, c1, w)

03 y ← Ẽ(k2,m2) +m2

04 k3 ← a3 ·(u, v, c1)
05 m3 ← a4 ·(u, v, c1, w)

06 z ← Ẽ(k3,m3) +m3

07 return (y, z)

Query Ẽ(k,m)

10 if LE+[k](m) �= ⊥ return c = LE+[k](m)

11 c
$← {0, 1}n

12 return LE+[k](m)← c

Query Ẽ−1(k, c)

20 if LE−[k](c) �= ⊥ return m = LE−[k](c)

21 m
$← {0, 1}n

22 return LE−[k](c) ← m

Query R(u, v,w)

30 if LR(u, v, w) �= ⊥ return (y, z) = LR(u, v, w)

31 (y, z)
$← {0, 1}2n

32 return LR(u, v, w)← (y, z)

Query S̃(k,m)

40 if LE+[k](m) �= ⊥ return c = LE+[k](m)

41 c
$← {0, 1}n

42 if ∃ j ∈ {1, 3}, (k1,m1, c1) ∈ LE : k = aj ·(k1,m1, c1)

43 w← getw(j + 1,m, k1,m1, c1)

44 (y, z)←R(k1,m1, w)

45 c← m+ (y[j = 1] + z[j = 3])

46 end if

47 return LE+[k](m)← c

Query S̃−1(k, c)

50 if LE−[k](c) �= ⊥ return m = LE−[k](c)

51 m
$← {0, 1}n

52 return LE−[k](c)← m

Fig. 4. The worlds (F 3
A , Ẽ) (left) and (R, S̃) (right)

L-query (u, v, w). We make the following distinction:

1. LE+[u](v) = ⊥. In the real world, this means that the first cipher call Ẽ(u, v)
is new, and answered with a fresh value. As cond(LE) does not occur, also

the second and third call, Ẽ(k2,m2) and Ẽ(k3,m3), are fresh, and both
their responses are drawn from {0, 1}n. Regarding the simulated world, by

the condition “LE+[u](v) = ⊥,” S̃ has never queried R on input of (u, v, w).
Indeed, it had only queried R if the condition of line 42 was satisfied for
some j ∈ {1, 3} and existing (u, v, c1) ∈ LE. Thus, also in this world the
response is randomly generated from {0, 1}2n;

2. LE+[u](v) 	= ⊥. Note that in the real world, this element could have been
added to LE via D or via F 3

A . Let c1 = LE+[u](v), and write (k2,m2) =
(a1·(u, v, c1), a2·(u, v, c1, w)) and (k3,m3) = (a3·(u, v, c1), a4·(u, v, c1, w)). We
make the following distinction:
• LE+[k2](m2) = ⊥ and LE+[k3](m3) = ⊥. In the real world, the answers

to the queries Ẽ(k2,m2) and Ẽ(k3,m3) are both fresh and randomly
drawn from {0, 1}n. Regarding the simulated world, by contradiction

we prove that R(u, v, w) has never been queried before by S̃. Indeed,
suppose it has been queried before. This necessarily means that there
exist j ∈ {1, 3} and (u, v, c1) ∈ LE such that aj · (u, v, c1) = k′ and
w = getw(j+1,m′, u, v, c1) for some (k′,m′, c′) ∈ LE. The former implies
k′ = k2[j = 1] + k3[j = 3], and the latter implies m′ = aj+1 ·(u, v, c1, w)
and thus m′ = m2[j = 1] + m3[j = 3]. This contradicts the condition
that (k2,m2) and (k3,m3) are not in LE. Therefore, the query (u, v, w)
to R is new, and the response is randomly drawn from {0, 1}2n;

Indifferentiability of Double Length Compression Functions 245

• LE+[k2](m2) 	= ⊥ and/or LE+[k3](m3) 	= ⊥. Without loss of generality,
assume the former and write c2 = LE+[k2](m2). In the real world, this
query could not have been made in an earlier evaluation of F 3

A (by virtue
of cond(LE)). Therefore, the distinguisher must have made this query,
and particular knows y = c2 + m2, which is the left half of the query
response. In the simulated world, a similar story applies: by ¬cond(LE),

this query to S̃ must have been made after (u, v, c1), and thus, the re-
sponse value c2 equals m+ y by line 45, where y equals the left half of
R(u, v, w). Thus also in this case, the distinguisher knows the left half
of the query response.
If also LE+[k3](m3) 	= ⊥, the same reasoning applies to z, the second
half of the query response. On the other hand, in case LE+[k3](m3) = ⊥,
the previous bullet carries over to the z-part.

R-query (k,m). We make the following distinction:

1. ¬∃ j ∈ {1, 3}, (k1,m1, c1) ∈ LE : k = aj·(k1,m1, c1). In the simulated world,
the response is randomly drawn from {0, 1}n by construction. Regarding the

real world, first assume (k,m) has never been queried to Ẽ via a query to
F 3
A . Then, the response is clearly fresh and randomly drawn from {0, 1}n.

However, it may be the case that the Ẽ-query could have been triggered
by an earlier F 3

A-query. However, by the condition, it could have impossi-
bly appeared in such evaluation as a bottom left/right query. It may have
appeared as a top query in an F 3

A evaluation, which means that (k,m,w)
has been queried to F 3

A for some w. However, in this setting, the adversary
never learnt c1, and thus the response to the R-query appears completely
randomly drawn from {0, 1}n;

2. ∃ j ∈ {1, 3}, (k1,m1, c1) ∈ LE : k = aj ·(k1,m1, c1). By ¬cond(LE), these
values are unique. Let w = getw(j+1,m, k1,m1, c1). In the simulated world,
the response c is defined as m + y (if j = 1) or m + z (if j = 3), where
(y, z) = R(k1,m1, w). Clearly, if the distinguisher has queried R(k1,m1, w)
before, it knows the response in advance. Otherwise, it is randomly drawn
from {0, 1}n by construction. Regarding the real world, the same reasoning
applies: either the query is new, or it must have appeared as a bottom query
(left if j = 1, right if j = 3) of an earlier F 3

A evaluation (by ¬cond(LE)), in
which case the distinguisher knows the response.

R−1-query (k, c). In the simulated world, queries are always answered with a
random answer from {0, 1}n. In the real world, this is also the case, except if a
certain query (k,m) with LE+[k](m) = c has ever been triggered via a call to
F 3
A . However, in this case, the response will still appear completely random to

the distinguisher, similar to the first item of forward queries to R. ��
Lemma 2. Pr

(
cond(LE) for (F 3

A , Ẽ)
)
≤ 3(3qL+qR)2

2n and

Pr
(
cond(LE) for (R, S̃)

)
≤ 3q2R

2n .

246 B. Mennink

Proof. We start with the real world (F 3
A , Ẽ). At the end of the proof, we highlight

the differences that give rise to the bound for the simulated world (R, S̃).
Let 1 ≤ i ≤ 3qL + qR, and denote by LEi the set LE after the ith query.

We assume ¬cond(LEi−1) and consider the probability cond(LEi) gets satisfied.
More detailed, we consider the probability that the ith query makes the condition
satisfied for some j, j′ ∈ {1, 3} and some earlier query (k′,m′, c′) ∈ LE. Note
that cond(LEi) can only be triggered by the values derived in lines 11 and 21.
In fact, these values are always randomly generated from {0, 1}n.

Decomposing cond(LEi), the ith query satisfies the condition if it satisfies any
of the following three:

aj ·(k,m, c) = k for j ∈ {1, 3} ,
aj ·(k,m, c) = k′ for j ∈ {1, 3} and (k′,m′, c′) ∈ LEi−1 ,
aj ·(k,m, c) = aj′ ·(k′,m′, c′) for j, j′ ∈ {1, 3} and (k′,m′, c′) ∈ LEi−1 .

Therefore, cond(LEi) gets satisfied with probability at most 6(i−1)+2
2n (as a12,

a13, a32, a33 	= 0). We thus find:

Pr (cond(LE)) ≤
3qL+qR∑

i=1

Pr (cond(LEi) | ¬cond(LEi−1))

≤
3qL+qR∑

i=1

6(i− 1) + 2

2n
≤ 3(3qL + qR)

2

2n
.

Now, for the simulated world, first note that 1 ≤ i ≤ qR. In this setting,
cond(LEi) can only be triggered by the values derived in lines 41, 45, and 51.
We remark that in line 45, the value c is indeed always a random n-bit value by
¬cond(LEi−1). ��

8 MDC-4

For MDC-4, we leave out the swapping at the end as it is of no influence to
the indifferentiability proof. The function is given in Fig. 5. Here, for a bit
string x, we write xl and xr to denote its left and right halves where |xl| = |xr |.
MDC-4 achieves a higher level of indifferentiability security than MDC-2, mainly
due to the two sequential rounds. Differentiability is discussed in Sect. 8.1, and
indifferentiability in Sect. 8.2.

8.1 Differentiability

In Prop. 6 we show that MDC-4 is differentiable from a random oracle in at
most about 2n/4 queries. The attack is very similar to the attack of Prop. 5, but
is included for convenience. We briefly note that if E1 = E2, MDC-4 is clearly
differentiable in 2 queries, exploiting that MDC-4(u, u, w) has the same left and
right half for any u,w ∈ {0, 1}n.

Indifferentiability of Double Length Compression Functions 247

u v
w

c1 c2

k3 k4

y z

E1 E2

E2 E1

MDC-4(u, v, w) = (y, z), where:

c1 ← E1(u,w) ,

c2 ← E2(v, w) ,

k3 ← cl2‖cr1 + w ,

y ← E2(k3, u) + u ,

k4 ← cl1‖cr2 + w ,

z ← E1(k4, v) + v .

Fig. 5. The MDC-4 compression function. For convenience, the swapping at the end is
omitted.

Proposition 6. Let E1, E2
$← Bloc(n), and let R : {0, 1}3n → {0, 1}2n be a

random compression function. For any simulator S that makes at most qS queries
to R, there exists a distinguisher D that makes 2n/4 + 2 queries to its oracles,
such that

adviff
MDC-4,S(D) ≥

1

2
− 1

2n/4+1
− qS + 1

2n − qS .

Proof. Our distinguisher D aims at finding two different evaluations of MDC-4
with the same key inputs to the bottom left block cipher call. In more detail, the
distinguisher fixes u and w and aims at finding two distinct block cipher calls
(v, w, c2) and (v′, w, c′2) such that:

cl2 = c′2
l
. (9)

Note that in the real world, for MDC-4, such collisions are expected to be found
in about 2n/4 queries to E. If the distinguisher eventually finds a collision as in
(9), then the following condition naturally holds in the real world:

y := MDC-4(u, v, w)l = MDC-4(u, v′, w)l =: y′ . (10)

In the random world, with MDC-4 replaced by R, this equation only holds with
small probability. Note that the simulator never learns the value u, yet, it may
simply try to avoid collisions as in (9). However, in this case, the responses from
S are too biased, which allows the distinguisher to succeed.

Formally, the distinguisher D proceeds as follows.

(i) D makes 2n/4 queries to its right oracle R for different key values and for
a fixed message value w, obtaining 2n/4 distinct tuples (v, w, c2);

248 B. Mennink

(ii) If there is no solution to (9), D returns 1;
(iii) Let (v, w, c2) and (v′, w, c′2) be such that (9) is satisfied;

(iv) Take u
$← {0, 1}n. If (10) holds, D returns 0, and otherwise it returns 1.

Distinguisher D succeeds except in the following two cases: “C1” it is conversing
with the real world and (9) does not have a solution (which means that his
guess in step (ii) is wrong), or “C2” it is conversing with the simulated world
and (10) holds (which means that his guess in step (iv) is wrong). Therefore,
adviff

MDC-4,S(D) ≥ 1 − Pr (C1) − Pr (C2). Regarding C1: note that all queries
are made with different key inputs, and E2 is a random cipher. Therefore, all
responses are randomly drawn from a set of size 2n, and a collision (4) occurs

with probability at least
(
2n/4

2

)
2n/2

2n . Thus,

Pr (C1) ≤ 1−
(
2n/4

2

)
2n/2

2n
=

1

2
+

1

2n/4+1
.

Regarding C2, the proof of Prop. 5 carries over and we find Pr (C2) ≤ qS+1
2n−qS .

This completes the proof. ��

8.2 Indifferentiability

We prove that MDC-4 is indifferentiable from a random function.

Theorem 2. Let E1, E2
$← Bloc(n), and let R : {0, 1}3n → {0, 1}2n be a random

function. There exists a simulator S such that for any distinguisher D that makes
at most qL left queries and qR right queries,

adviff
MDC-4,S(D) ≤

6(4qL + qR)
2

2n/2
,

where S makes qS ≤ qR queries to R.
The proof is truly similar to the proof of Thm. 1. We now only present the
simulator; the formal proof is presented in the full version of this paper.

Simulator Intuition

Similar to Sect. 7.2, the simulator maintains an initially empty lists LE1[k]
(corresponding to E1) and LE2[k] (corresponding to E2) for k ∈ {0, 1}n. Abusing
notation, we also write LE = LE1 ∪ LE2. The simulator is given in Fig. 6.
It consists of four interfaces: S1/S−11 corresponding to E1/E

−1
1 , and S2/S−12

corresponding to E2/E
−1
2 .

Again, apart from the if -clause of lines 02-06, the simulator identically mimics
an ideal cipher. In this particular clause, the simulator checks whether a query
(k,m) may appear in an MDC-4 evaluation (see Fig. 5) as a bottom query (left
or right) for some other pair of queries appearing in the top. In this case, the
simulator should consult R to derive the query response.

Indifferentiability of Double Length Compression Functions 249

Forward Query Sj(k,m) (j ∈ {1, 2})
00 if LE+

j [k](m) �= ⊥ return c = LE+
j [k](m)

01 c
$← {0, 1}n\LE+

j [k]

02 if ∃ (u, w, c1) ∈ LE1, (v, w, c2) ∈ LE2 : . . .

03 . . . m = u[j = 2] + v[j = 1] and k = clj‖crj̄ + w

04 (y, z)←R(u, v, w)

05 c← m+ (y[j = 2] + z[j = 1])

06 end if

07 return LE+
j [k](m)← c

Inverse Query S−1
j (k, c) (j ∈ {1, 2})

10 if LE−
j [k](c) �= ⊥ return m = LE−

j [k](c)

11 m
$← {0, 1}n\LE−

j [k]

12 return LE−
j [k](c)← m

Fig. 6. The simulator S for E used in the proof of Thm. 2. Here, j̄ ∈ {1, 2} is the
complement of j ∈ {1, 2}.

9 Conclusions

Being the only known double length compression function that achieves optimal
collision security and a non-trivial indifferentiability bound, Mennink’s compres-
sion function class appears to be stronger than its alternatives. Yet, this addi-
tional level of security does not come for free: the function makes three block
cipher calls, rather than “the usual” two, which are moreover not parallelizable.
It would be of both theoretical and practical interest to derive a two-call com-
pression function (for either choice of k) with the same or even better security
guarantees.6 We note, however, that the indifferentiability proof in this work
relies on the presence of the third block cipher call, and all attacks on functions
with k = 2n rely on the fact that these make only two primitive calls.

Acknowledgments. This work has been funded in part by the IAP Pro-
gram P6/26 BCRYPT of the Belgian State (Belgian Science Policy), in part by
the European Commission through the ICT program under contract ICT-2007-
216676 ECRYPT II, and in part by the Research Council K.U.Leuven: GOA
TENSE. The author is supported by a Ph.D. Fellowship from the Institute for
the Promotion of Innovation through Science and Technology in Flanders (IWT-
Vlaanderen). The author would like to thank Atul Luykx for his valuable help
and feedback.

References

1. Andreeva, E., Neven, G., Preneel, B., Shrimpton, T.: Seven-property-preserving it-
erated hashing: ROX. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833,
pp. 130–146. Springer, Heidelberg (2007)

2. Armknecht, F., Fleischmann, E., Krause, M., Lee, J., Stam, M., Steinberger, J.:
The preimage security of double-block-length compression functions. In: Lee, D.H.,
Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 233–251. Springer, Hei-
delberg (2011)

6 Without going into detail, we refer to a slightly related work of Maurer and Tessaro
[19] on indifferentiable domain extenders from random functions.

250 B. Mennink

3. Bellare, M., Ristenpart, T.: Multi-property-preserving hash domain extension and
the EMD transform. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 299–314. Springer, Heidelberg (2006)

4. Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-damg̊ard revisited: How
to construct a hash function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 430–448. Springer, Heidelberg (2005)

5. Fleischmann, E., Gorski, M., Lucks, S.: Security of cyclic double block length hash
functions. In: Parker, M.G. (ed.) Cryptography and Coding 2009. LNCS, vol. 5921,
pp. 153–175. Springer, Heidelberg (2009)

6. Hirose, S.: Provably secure double-block-length hash functions in a black-box
model. In: Park, C.-s., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 330–342.
Springer, Heidelberg (2005)

7. Hirose, S.: Some plausible constructions of double-block-length hash functions. In:
Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 210–225. Springer, Heidelberg
(2006)

8. Hirose, S., Park, J.H., Yun, A.: A simple variant of the merkle-damg̊ard scheme
with a permutation. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833,
pp. 113–129. Springer, Heidelberg (2007)

9. Jetchev, D., Özen, O., Stam, M.: Collisions are not incidental: A compression func-
tion exploiting discrete geometry. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194,
pp. 303–320. Springer, Heidelberg (2012)

10. Kuwakado, H., Morii, M.: Indifferentiability of single-block-length and rate-1 com-
pression functions. IEICE Transactions 90-A(10), 2301–2308 (2007)

11. Lai, X., Massey, J.L.: Hash functions based on block ciphers. In: Rueppel, R.A.
(ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 55–70. Springer, Heidelberg (1993)

12. Lee, J., Kwon, D.: The security of Abreast-DM in the ideal cipher model. Cryp-
tology ePrint Archive, Report 2009/225 (2009)

13. Lee, J., Stam, M.: MJH: A faster alternative to MDC-2. In: Kiayias, A. (ed.) CT-
RSA 2011. LNCS, vol. 6558, pp. 213–236. Springer, Heidelberg (2011)

14. Lee, J., Stam, M., Steinberger, J.: The collision security of tandem-DM in the ideal
cipher model. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 561–577.
Springer, Heidelberg (2011)

15. Lee, J., Stam, M., Steinberger, J.: The preimage security of double-block-length
compression functions. Cryptology ePrint Archive, Report 2011/210 (2011)

16. Lee, J., Steinberger, J.: Multi-property-preserving domain extension using
polynomial-based modes of operation. In: Gilbert, H. (ed.) EUROCRYPT 2010.
LNCS, vol. 6110, pp. 573–596. Springer, Heidelberg (2010)

17. Lucks, S.: A collision-resistant rate-1 double-block-length hash function (Symmet-
ric Cryptography, Dagstuhl Seminar Proceedings 07021) (2007)

18. Maurer, U.M., Renner, R.S., Holenstein, C.: Indifferentiability, impossibility results
on reductions, and applications to the random oracle methodology. In: Naor, M.
(ed.) TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)

19. Maurer, U.M., Tessaro, S.: Domain extension of public random functions: Beyond
the birthday barrier. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp.
187–204. Springer, Heidelberg (2007)

20. Mennink, B.: Optimal collision security in double block length hashing with single
length key. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp.
526–543. Springer, Heidelberg (2012)

Indifferentiability of Double Length Compression Functions 251

21. Mennink, B.: On the collision and preimage security of MDC-4 in the ideal cipher
model. In: Designs, Codes and Cryptography (to appear, 2013)

22. Meyer, C., Schilling, M.: Secure program load with manipulation detection code.
In: Proc. Securicom., pp. 111–130 (1988)

23. Özen, O.: Design and Analysis of Multi-Block-Length Hash Functions. PhD thesis,
École Polytechnique Fédérale de Lausanne, Lausanne (2012)

24. Özen, O., Stam, M.: Another glance at double-length hashing. In: Parker, M.G.
(ed.) Cryptography and Coding 2009. LNCS, vol. 5921, pp. 176–201. Springer,
Heidelberg (2009)

25. Preneel, B., Govaerts, R., Vandewalle, J.: Hash functions based on block ciphers:
A synthetic approach. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp.
368–378. Springer, Heidelberg (1994)

26. Ristenpart, T., Shacham, H., Shrimpton, T.: Careful with composition: Limitations
of the indifferentiability framework. In: Paterson, K.G. (ed.) EUROCRYPT 2011.
LNCS, vol. 6632, pp. 487–506. Springer, Heidelberg (2011)

27. Stam, M.: Beyond uniformity: Better security/Efficiency tradeoffs for compression
functions. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 397–412.
Springer, Heidelberg (2008)

28. Stam, M.: Blockcipher-based hashing revisited. In: Dunkelman, O. (ed.) FSE 2009.
LNCS, vol. 5665, pp. 67–83. Springer, Heidelberg (2009)

29. Steinberger, J.P.: The collision intractability of MDC-2 in the ideal-cipher model.
In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 34–51. Springer,
Heidelberg (2007)

Security Amplification against
Meet-in-the-Middle Attacks Using Whitening

Pierre-Alain Fouque1,2 and Pierre Karpman3

1 Université de Rennes 1, France
2 Institut universitaire de France, France

pierre-alain.fouque@irisa.fr
3 École normale supérieure de Cachan, antenne de Bretagne, France

pierre.karpman@gmail.com

Abstract. In this paper we introduce a model for studying meet-in-the-
middle attacks on block ciphers, and a simple block cipher construction
provably resistant to such attacks in this model. A side-result of this is
a proper formalization for an unproven alternative to DESX proposed by
Kilian and Rogaway; this construction can now be shown to be sound in
our model. Meet-in-the-middle attacks exploit weaknesses in key sched-
ule algorithms, and building constructions resistant to such attacks is
an important issue for improving the security of block ciphers. Our con-
struction is generic so that it can be used on top of any block cipher,
and it does not require to increase the key-length. We use an exposure
resilient function (or ERF) as a building block and we propose a concrete
and efficient instantiation strategy based on compression functions.

Keywords: Block cipher, meet-in-the-middle attack, provable security,
exposure resilient function.

1 Introduction

In the area of block cipher design, much work up to now has been devoted to
proving resistance to classical statistical attacks like standard linear and dif-
ferential cryptanalysis (see e.g. [33,38,13]). However, resistance to attacks that
exploit weaknesses of the key schedule has remained mainly unaddressed. These
attacks consist principally in meet-in-the-middle (MiTM) [15] and related-key
attacks [4].

A typical good design criterion for key schedules is to have a high minimal
distance between expanded keys; performance is also often another issue, and
key schedules are expected to be fast, so as not to impact too much the encryp-
tion of small messages. An additional criterion could be for the key schedule
to be non-linear, although many (good) key schedules are in fact linear. These
design principles, however, do not really amount to a theory comparable to the
one devoted to resistance to statistical attacks. Nonetheless, a few works study
the security of key schedules with respect to related-key attacks from a more
theoretical perspective [31,30,12].

M. Stam (Ed.): IMACC 2013, LNCS 8308, pp. 252–269, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

pierre-alain.fouque@irisa.fr
mailto:pierre-alain.fouque@irisa.fr
pierre.karpman@gmail.com
mailto:pierre.karpman@gmail.com

Security Amplification against Meet-in-the-Middle Attacks 253

Meet-in-the-middle attacks are an important technique available to the crypt-
analysts studying symmetric primitives. It is important to avoid such attacks
since unlike statistical attacks they usually have low data requirements. Beyond
the classical result on double-encryption (see e.g. [15]), MiTM attacks are ef-
fective at exploiting weaknesses in the key schedule algorithms of block ciphers
or the message expansion of hash functions. In the context of block ciphers,
MiTM attacks are the most efficient attacks on many ciphers: round-reduced
version of IDEA [5], round-reduced version of AES [14,17,9], or the full GOST [21].
Furthermore, a MiTM phase is usually used to extend the number of rounds
reached by a statistical attack, as seen for instance in the attacks of Biham and
Shamir [6] and of Matsui [29] on the DES. Finally, the recent biclique attack is
a MiTM-related technique useful to speed up exhaustive search. Bicliques were
found to be successful against AES and IDEA [7,23]. In the context of hash func-
tions, MiTM techniques may be used to find preimages; this was for instance the
case for attacks on MD4 [26,2], MD5 [37,2], or AES in a hash function setting [36].

Our Contributions. In this paper, we develop a simple model for meet-in-the-
middle attacks and propose a generic block cipher construction that is provably
resistant to such attacks in this model. The idea behind our model is simple
and based on the fact that many MiTM attacks on block ciphers can be seen
as decomposing the cipher into two sub-ciphers, and then applying the classical
MiTM attack on double-encryption (in more recent variations, the cryptana-
lyst may also guess part of the key or part of the intermediate state [21,16]).
Hence we argue that studying a construction in the sole context of double-
encryption is actually meaningful for studying many types of MiTM attacks on
a single cipher vulnerable to such attacks. However our goal is not to study con-
structions actually based on double-encryption (such as for instance the double
XOR-cascade [20], cf. below). This is because such constructions already lend
themselves to meet-in-the-middle attacks even when the underlying cipher(s)
does not; our objective is different and consists in obtaining a construction re-
sistant to MiTM when the underlying cipher is not. Studying the construction
with a composition of two ciphers as an underlying primitive is therefore only a
mean of simulating the construction applied to a single cipher that is vulnerable
to meet-in-the-middle attacks.

Our construction relies on a core (or internal) cipher and on a form of whiten-
ing. Let Ek be the core cipher of key k, and f a function with good enough
properties, then define a new cipher

EFk(p) � Ek(p ⊕ f (k))⊕ f (k).

The main idea behind this construction is to force an attacker to commit to
a value for the whole key before being able to exploit any data he may have
access to, thereby making it impossible to work separately on parts of the key1.

1 Or alternatively to force the attacker to guess the value of the whitening indepen-
dently of the key.

254 P.-A. Fouque and P. Karpman

A similar idea can be found for instance in the operation mode of the SHA-3
candidate SIMD [27]: the goal in this context was to make message modification
techniques à la Wang impossible by forcing the attacker to commit to a specific
value of the message, before the message expansion phase. We prove that meet-
in-the-middle attacks are not effective against the EF cipher; this is achieved by
upper-bounding the maximum advantage of an attacker of the above construc-
tion in a double-encryption setting (when E is a cascade of two ciphers), and
showing that it is less than the advantage of a meet-in-the-middle adversary.
We do this with a method adapted from Kilian and Rogaway’s proof on DESX,
and justify formally how this is relevant when the construction is applied to a
single cipher on which MiTM attacks may be performed. We also discuss how
the construction can be instantiated efficiently in practice.

Related Work. We can distinguish two kinds of works on provable security for
block ciphers: proving a property for some high-level and generic construction,
or proving the resistance of an actual cipher to more specific attacks. Our work
clearly belongs to the first category, whereas from the second we can cite e.g. the
provable resistance of block ciphers to classical linear and differential cryptanal-
ysis. Our approach is generic so that it can be used on top of any cipher; it is
for instance similar to some proposals for building tweakable block ciphers [28].

Similar-looking constructions have already been proposed in the literature,
but with a distinct motivation of extending the equivalent key length of the core
primitive. One such construction is the DESX (or its more generic name ‘FX’) con-
struction, proposed by Rivest and formally proved by Kilian and Rogaway [25].
It can be described as taking a cipher Ek under the key k, and defining a new
cipher

EXk,k1,k2(p) � Ek(p ⊕ k1)⊕ k2.
A more recent development is the aforementioned double XOR-cascade of Gaži
and Tessaro [20]. This construction is based on a cipher E and defines a new
cipher 2XOR as:

2XORk,k1(p) � E k̃(Ek(p ⊕ k1)⊕ k1),
where k̃ is a key related to k (the authors suggest flipping one bit of k). However,
this requires two calls to the cipher E , and therefore cannot readily be used in our
context. The main difference between the above constructions and ours is that
we do not aim for a bigger equivalent key length, and derive all the whitening
keys from the original key to E . We also study our construction specifically in
the context of resistance to meet-in-the-middle attacks.

Interestingly, Kilian and Rogaway briefly mention a construction that can be
seen as an instantiation of ours. Their purpose was to define an alternative to
the FX construction that gives more flexibility in the choice of the key length to
the user. Instead of using independent keys k, k1, k2, they suggest deriving them
from an arbitrarily-long key k̂, as the (truncated) output of f (k̂), f 1(k̂), and f 2(k̂)
respectively, where f , f 1, f 2 are defined as SHA-1 prefixed with three different
constants. Once again the motivation is different from ours, and no proof nor

Security Amplification against Meet-in-the-Middle Attacks 255

formalization is given for this construction. Note that as a consequence of our
results, it is possible to prove that this construction is sound.

Outline of the Paper. We present our model for studying meet-in-the-middle
attacks in §2 and our construction in §3. We prove the resistance of the construc-
tion to the attacks captured by our model in §4. We discuss our result and its
implications on advanced meet-in-the-middle techniques in §5, and instantiation
issues in §6.

2 A Model for Meet-in-the-Middle Attacks

2.1 Generic Constructions

The aim of our work is to define constructions resistant to MiTM attacks. We
define here what we mean by construction and what kinds of constructions we
specifically consider. We first recall the definition of a block cipher.

Definition 1. A block cipher is a mapping E : {0, 1}κ × {0, 1}n → {0, 1}n such
that ∀k ∈ {0, 1}κ, E(k, ·) (also noted Ek(·)) is a permutation. The first and
second arguments of E are called the key and message (block) respectively. The
variables κ and n denote the key size (or length) and block size (idem) of E.
Definition 2. Asingle-cipher construction is a block cipherE : {0, 1}κ×{0, 1}n→
{0, 1}n that can be described as the composition Post ◦ E ◦Pre of functions Pre, E,
and Post, where E : {0, 1}κ′ ×{0, 1}n → {0, 1}n is a block cipher. The functions
Pre and Post may take both of E’s inputs as arguments, that is the key and
the message. A ν-cipher construction is a block cipher that can be described as
the composition Post(ν) ◦ E(ν) ◦Pre(ν) ◦Post(ν−1) ◦ · · ·◦E(1) ◦Pre(1) where the ci-
phers E(i) use independent keys, and where the Pre(i) and Post(i) functions may
take any of these keys as inputs. A ν-cipher construction of the specific form
Post◦ E(ν) ◦ E(ν−1) ◦ · · ·◦E(1) ◦Pre is called a ν∗-cipher construction. Any single-
cipher construction can be extended to a ν∗-cipher construction in a straightfor-
ward way.

In this paper, we consider the EF construction, defined in §3, which is a single-
cipher construction. It is thus generic, and can be used both with already-existing
algorithms, and as a basis to design a cipher ex nihilo.

2.2 The Model

Our goal in this section is to give a formal model for MiTM attacks that allows
to prove security properties. We later use this model to prove the resistance of
the EF construction to such attacks. This model does not capture the concept of
any MiTM attack, but it does nonetheless take into account a significant class.

The idea behind our model is that a MiTM attack on, say, cipher E often per-
forms a conceptual decomposition of E into two sub-ciphers, with separate key

256 P.-A. Fouque and P. Karpman

bits. We can thus model such attacks as being performed on a double-encryption
construction with two independent ciphers, seen as black-boxes. This allows us
to consider MiTM attacks against generic ciphers. We detail this argument in
the remainder of this section.

The Classical Meet-in-the-Middle Attack on Double Encryption. Let
us consider the cipher E , defined as the composition of the two independent
ciphers F and G, operating on independent keys k1 and k2 respectively. We
denote by Ek(p) the action of encrypting the plaintext p with E and key k and
producing the ciphertext c. By definition of E , we have Ek(p) � Gk2(Fk1(p)),
with k1 and k2 uniquely defined by k.

The MiTM attack on double-encryption exploits the fact that k1 and k2 are
used independently in their respective ciphers; in its simplest form, it can be
described as follows:

Get a known plaintext p and its corresponding ciphertext c.
for every possible candidate ki1 for key k1 do

Compute yi � Fki1(p) and store the result in memory.
end for
for every possible candidate kj2 for key k2 do

Compute y′j � G−1
kj2

(c) and store the result in memory.
end for
for every yi = y′j do

Output (ki1, k
j
2) as a candidate for (k1, k2).

end for

This procedure may be repeated until only one candidate for k1 and k2 remains,
using many plaintext/ciphertext pairs. If we call κ the size of the keys k1 and k2
in bits, the cost of the attack is then of the order 2κ in time and memory, which
is much lower than the 22κ time that brute-force search on k would cost. If k1
and k2 are of different size κ1 and κ2, one needs only to store the candidates for
the smaller size, e.g. in a hash table, and the candidates for the bigger key size
can be computed on the fly. The general cost of this attack is thus of the order
of max(2κ1 , 2κ2) in time, and min(2κ1 , 2κ2) in memory.

This attack can still be applied when k1 and k2 are not independent but have
only some of their bits in common. In that case, one just needs to guess the
common bits and repeat the above procedure for every guess.

A Model for Meet-in-the-Middle Attacks on a Single Cipher. MiTM
attacks are in no way limited to double-encryption; in fact they are well-suited
to iterated ciphers with weak key schedules. However, the ideas involved in a
MiTM attack on a single cipher are essentially the same as for attacking double-
encryption.

Let us consider an iterated cipher E with round function ρi for round i: we
define Ek(p) as the composition ρrkr ◦ · · · ◦ ρ1k1(p), where r is the number of
iterations of the round function, and the ki’s are round keys generated from k

Security Amplification against Meet-in-the-Middle Attacks 257

by a key schedule. The idea behind a MiTM attack on E is to find two sets kα and
kβ of consecutive round keys such that they involve strictly different bits of k.
In other words we have kα � {ki, · · · , ki+j}, kβ � {ki+j+1, · · · , ki+j+1+k}, with
kα ∩ kβ = ∅ (when the intersection is taken over the bits of k found in kα and
kβ). Once these sets are found, it is possible to guess independently the bits of k
present in kα and the ones present in kβ , in a way exactly similar as for double-
encryption. That is, finding the sets is equivalent to conceptually decompose (a
part of) E in two sub-ciphers with independent keys, on which double-encryption
is performed: we have Ek = (ρi+j+1+k ◦ · · ·◦ρi+j+1)kβ◦(ρi+j ◦ · · ·◦ρi)kα (although
this equality is true only if i = 1 and i+ j+1+k = r. This constraint can easily
be waved, however, if we restrict ourselves to finding sub-ciphers for a round-
reduced version of E).

We are now ready to formalize our model. We start by stating the security of
double-encryption with ideal ciphers, thanks to a theorem of Aiello et al. [1]2.

Theorem 1 ([1]). Let F : {0, 1}κ × {0, 1}n → {0, 1}n be an ideal block cipher.
For any κ, n, t, q ≥ 1, where t and q denote the number of oracle access to F
and F−1, and F ◦F respectively, then the maximum advantage of any adversary
At,q trying to distinguish F ◦F from a random permutation with resources t and
q is upper-bounded by t2/22κ. This bound is tight up to a constant factor as long
as q is not too small.

We allow ourselves to use a more general expression of this result when consider-
ing double-encryption of not necessarily equal ciphers F and G, of not necessarily
equal key lengths κ1 and κ2, where t1 and t2 denote the number of oracle access
to F and G−1 respectively. In this case, we use the upper-bound t1 · t2/2κ1+κ23.
We now define the notion of constructions resistant to MiTM attacks.

Definition 3. Let F : {0, 1}κ1 ×{0, 1}n → {0, 1}n and G : {0, 1}κ2 × {0, 1}n →
{0, 1}n be two block ciphers. A two-cipher construction E(F ,G) is said to be
resistant to the meet-in-the-middle attack if the maximum advantage of any
adversary A trying to distinguish E(F ,G) from a random permutation is:

max
A

AdvE(F,G)(At1+t2,q) < t1 · t2/2κ1+κ2 ,

up to constant factors.

This definition is made meaningful by the tightness of the bound of theorem 1.
Essentially, it says that a two-cipher construction is resistant to meet-in-the-
middle attacks if no adversary can distinguish it with an advantage that is at
least as good as the best one it could get if only composition of the two ciphers
were used instead.

2 The result is stated in the specific case where the two ciphers are equal.
3 Although in practice, we actually study our construction in the case of κ1 = κ2, and

therefore we will really be using exactly the same bound as in the main result of [1].

258 P.-A. Fouque and P. Karpman

Definition 4. Let E : {0, 1}κ × {0, 1}n → {0, 1}n be a block cipher. A single-
cipher construction E(E) is said to be resistant to the meet-in-the-middle attack
if for any two block ciphers F : {0, 1}κ1 × {0, 1}n → {0, 1}n and G : {0, 1}κ2 ×
{0, 1}n → {0, 1}n such that E = G ◦F and κ = κ1+κ2, the maximum advantage
of any adversary A trying to distinguish E(E) from a random permutation is:

max
A

AdvE(E)(At1+t2,q) < t1 · t2/2κ1+κ2 ,

up to constant factors.

In other words, this means that the best attack on the construction E(E) is
strictly worse than the best meet-in-the-middle attack on E . Our model is justified
by the next proposition:

Proposition 1. Let E be a two∗-ciphers construction resistant to the meet-in-
the-middle attack. Then the restriction of E to a single cipher is a single-cipher
construction resistant to the meet-in-the-middle attack.

Proof. This is a direct consequence of definitions 3 and 4.
�
Hence, the resistance of a single-cipher construction to MiTM attacks can be
studied by analyzing its two∗-ciphers variant. In practice, we perform this anal-
ysis in the ideal block cipher model [3,25].

3 A Construction Resistant to Meet-in-the-Middle
Attacks

We now formally define our construction. We start by introducing the notion of
Exposure-Resilient Functions (or ERF), as defined by Canetti et al. [11]. ERFs
are similar to all or nothing transforms, which were introduced by Rivest [35].

Definition 5. An �-ERF is a mapping f : {0, 1}α → {0, 1}β such that for ran-
dom values r, R in {0, 1}α, {0, 1}β; for any L ∈ {

α
�

}
, the distributions 〈[r]L̄, f (r)〉

and 〈[r]L̄, R〉 are indistinguishable one from another; where
{
α
�

}
denotes the set

of subsets of {1 . . . α} of size �, and for x ∈ {0, 1}α, [x]L̄ denotes x restricted to
its bits not in L.

Here, we will consider particularly weak ERFs, in the sense that when less
than � bits of r are unknown to the adversary, he is then supposed to be able
to predict the value of f (r′) for any r′ that fixes the unknown bits of r to some
value. However, we will mostly consider degenerate cases where � is zero. That is,
the output of the ERF is indistinguishable from random until all of its input is
revealed. Constructions of ERFs are known to exist in the standard model [11],
and it is trivial to see that a random oracle meets the definition of a zero-ERF.
Hence, from a practical point of view, a zero-ERF can be instantiated by a hash
function, in the random oracle model.

We now define our construction, which we will note EF for short.

Security Amplification against Meet-in-the-Middle Attacks 259

Definition 6. Let E : {0, 1}κ × {0, 1}n → {0, 1}n be a block cipher. We write
Ek(p) � c the action of encrypting the plaintext p with E under the key k, to
produce the ciphertext c. Let f : {0, 1}κ → {0, 1}n be an �-ERF. Then we define
the EF construction with core cipher E as EFk(p) � Ek(p ⊕ f (k))⊕ f (k), where
‘⊕’ denotes bitwise exclusive or.

Our goal is to prove the resistance of this construction to MiTM attacks. Accord-
ing to our model, we will study this construction as a two-ciphers construction.
That is, we instantiate Ek by Gk2 ◦Fk1 . In this case, the EF construction applied
to E can be written as:

EF(k1,k2)(p) � Gk2(Fk1(p ⊕ f (k1, k2)))⊕ f (k1, k2).

4 Resistance of the EF Construction to
Meet-in-the-Middle Attacks

In this section, we prove an upper-bound on the advantage of an adversary
trying to distinguish the EF two-ciphers construction from a random permuta-
tion, in function of the number of queries made to different oracles. The bound
we obtain shows that our construction significantly improves the resistance of
double-encryption to generic attacks such as the classical MiTM, and hence is
resistant to the MiTM attack, in the terminology of definitions 3 and 4.

4.1 Security Model

We consider theEF two-ciphers construction applied to G ◦F , whereF : {0, 1}κ1×
{0, 1}n → {0, 1}n and G : {0, 1}κ2 × {0, 1}n → {0, 1}n are ideal block ci-
phers [3,25]: for each key k1 (resp. k2), the map Fk1 (resp. Gk2) is a permutation
randomly chosen from the set Πn of all (2n)! permutations operating on words
of size n. For ease of presentation, and without loss of generality, we assume that
κ1 = κ2 � κ. The ‘f ’ function used in EF is an �-ERF with � small. We consider
an adversary who is given access to four oracles:

– Two of them are F and G; when provided with a key k′1 (resp. k′2) of size
κ and an input x (resp. y) of size n, they return the result y (resp. z) of
encrypting x (resp. y) with F (resp. G) with key k′1 (resp. k′2). Queries to
the inverse oracles F−1 and G−1 are permitted, and are not distinguished
from regular queries. That is, if F(x) � y has been queried, we consider that
F−1(y) � x has also been queried, and conversely.

– One oracle gives an access to f , and when provided with an input of size 2κ
bits, returns the result of size n of the evaluation of f on this input.

– The last oracle, which we call U , takes as input a plaintext p and returns
either EF(p), with EF instantiated with F , G, and f with fixed, randomly
chosen keys k1 and k2; or the image of p from a fixed permutation π randomly
selected from the set Πn. Again, queries to U−1 are permitted.

260 P.-A. Fouque and P. Karpman

Each access to an oracle will be counted and expressed by the following variables:

– The number of accesses to U is denoted by D . They represent the amount
of data available to the adversary.

– The number of accesses to F and F−1 (resp. G and G−1) is denoted by q1
(resp. q2).

– The number of accesses to f is denoted by qf .

The goal of the adversary is to distinguish between U being π or the EF
construction. We define the advantage of an adversary as its probability of suc-
cessfully distinguishing the two instantiations of U . More formally:

Definition 7. Let Πn be the set of permutations on words of size n; let us
note x R← S the action of randomly choosing an object x from the set S; let us
denote by AEF and Aπ the answer, 0 or 1, of an adversary A with access to the
aforementioned oracles, when U is the EF construction and a randomly chosen
permutation respectively. Then the advantage AdvA of the adversary A is defined
as:

AdvA �
Pr

[∀k′1 ∈ {0, 1}κ,Fk′1
R← Πn; ∀k′2 ∈ {0, 1}κ,Gk′2

R← Πn;π
R← Πn : Aπ = 1

]−
Pr

[∀k′1 ∈ {0, 1}κ,Fk′1
R← Πn; ∀k′2 ∈ {0, 1}κ,Gk′2

R← Πn; k1
R← {0, 1}κ;

k2
R← {0, 1}κ : AEF = 1

]
.

Our objective is to bound this advantage for any adversary A in function of
the number of queries he has made to the oracles. We note Adv(�,D , q1 , q2 , qf)
the advantage of any adversary having made less than D , q1 , q2 , and qf queries
to the oracles, when f is an �-ERF.

Notations.

– A key candidate for F (resp. G) is denoted by k′1 (resp. k′2). Those are keys
for which the adversary makes queries to the oracles awaiting a key as part
of their inputs.
Moreover, we may count the accesses to those oracles when queried with a
specific key. The number of accesses to F (resp. G, f) with key k′1 (resp. k′2,
(k′1, k′2)) is written q1 (k

′
1) (resp. q2 (k′2), qf (k′1, k′2)).

Furthermore, the number of queries to the F (resp. G) oracle with key k′1
(resp. k′2) and for a specific message p is noted q1 (k

′
1, p) (resp. q2 (k′2, p)).

– If U has been instantiated with EF, the key used in the instantiation for
F (resp. G) is denoted by k1 (resp. k2). For ease of presentation, we will
consider it valid to talk about those keys even when it is not clear if U is
instantiated with EF.

– We denote by x, y, z, the intermediate values p⊕f (k1, k2), Fk1(p⊕f (k1, k2))),
and Gk2(Fk1(p ⊕ f (k1, k2))) respectively.

– We make use of an indicator function, written �. We have �(x) = 0 if and
only if x is zero, and it is one otherwise. This may be extended to sets, where
�(x) = 0 if and only if x is the empty set, and is one otherwise.

Security Amplification against Meet-in-the-Middle Attacks 261

– The concatenation of words x and y is noted x||y, the Hamming weight of a
word x is denoted by hw(x).

4.2 The Result

Our main result about the security of the EF construction is summarized by the
following theorem.

Theorem 2. The advantage Adv(�,D , q1 , q2 , qf) of an adversary trying to dis-
tinguish EF from a random permutation is upper-bounded by:

2−2κmax

(

2�
(
n

�

)

· qf , 2−n · D
∑

k′1, k
′
2

min(q1 (k
′
1), q2 (k

′
2))

)

. (1)

One can see that to gain an advantage of one, an adversary with D available
data needs at least 22κ

2�(n�)
or 2κ+n

D queries to the oracles, whichever is the smallest.

For � = 0, n = κ, and D = 1, these two terms are equal to 22κ; in the case of
double-encryption without the EF construction, one would only need of the order
of 2κ queries. This result immediately implies the following corollary:

Corollary 1. The two∗-ciphers and single-cipher EF construction is resistant
to meet-in-the-middle attacks, in the terminology of definitions 3 and 4, as long
as D < 2n (i.e. the adversary does not have access to the whole codebook).

Proof. For small values of �, and when D < 2n, Adv(�,D , q1 , q2 , qf) is strictly
smaller than the bound of definitions 3 and 4.
�
The restriction that D < 2n is important, and comes from more general proper-
ties of FX-like constructions. In particular, such a construction cannot be used
in all generality in order to increase the equivalent key length of a block cipher,
as the key length cannot be shown to be more than the one of the core cipher
when all the codebook is available to the adversary. This is the case for the
original construction of DESX, and remains true in our modified setting when
the core cipher is a 2-cascade (i.e. a composition of two ciphers). In the latter
case, the double XOR-cascade of Gaži and Tessaro does increase the effective
key length of the (modified) 2-cascade. However, as it has already been noted,
we want our construction to be applicable to a single cipher as well, and there-
fore cannot use one similar to theirs. The above restriction notwithstanding,
we believe that our construction is still interesting in practice. The first reason
is that attacks where the adversary uses the whole codebook would not only
be of limited interest to the attacker, they can also be made asymptotically as
expensive as the designer of the cipher wishes to; so big an amount of data is
also fairly unrealistic for many ciphers with big block sizes (e.g. 128 bits). The
second reason is that raising the data complexity of a MiTM attack from the
information-theoretically lower-bound to the whole codebook, for an adversary
to get the same time complexity, is in itself a huge improvement of the resistance
to MiTM attacks.

262 P.-A. Fouque and P. Karpman

4.3 Proof Sketch

We outline here the strategy used for proving theorem 2. The complete proof is
given in the full version of the paper [19].

Given the similarities between the EF and FX constructions and their secu-
rity models, our proof has a structure close to the one of Kilian and Rogaway
[25]. In particular, we use games for each oracle to define the situations where
an adversary may distinguish the instantiation of the U oracle (we do not fully
redefine the games in the proof, though, and refer to [25] for a more detailed
description). For each such situation, we then bound the probability of the dis-
tinction being possible in function of the past queries made by the adversary.
We bound separately the advantage of an adversary trying to find distinguishing
situations for the three oracles, F , G, and U , and then combine these bounds
together with the bound of the advantage over f to produce a general result.

It should be noticed that we do not need to consider situations for the “inverse”
oracles (such as e.g. F−1), as the constraints possibly put on the input/output
pairs of queries to those oracles are simply swapped when compared to the ones
for the “forward” oracles (an input of an inverse oracle being an output for the cor-
responding forward oracle). Therefore, the advantage when distinguishing inverse
oracles is not different from when considering forward oracles.

The main difference between our proof and the one of [25] is that, from the
structure of the construction, an adversary has essentially the choice of guess-
ing the output of the f function directly (thereby seeing f (k1, k2) as a third
independent key), or via its inputs and the properties of f . This shows in the
bound of theorem 2 as the two arguments of the maximum function. Because our
construction is more complex than FX, we also have more oracles to consider.

5 Discussion

In the previous section, we have shown that the EF construction increases the
resistance of a cipher to “classical” MiTM attacks. We now argue that this im-
proved resistance carries on to more advanced MiTM techniques, which further
increases the relevance and interest of the construction. We also address the
relevance of our ideal-cipher-based model.

5.1 About Ideal Ciphers

As pointed above, our proof uses the ideal cipher model. This could be seen
as limiting the relevance of the applications we claim —building constructions
resistant to MiTM attacks— as we use a setting where the best attack on the
sub-ciphers is basically brute-force.

We claim that this is not a limitation. Using ideal ciphers allows one to express
bounds in terms of number of queries to the relevant oracles: the cost of each
query is of little importance in so far as it is bounded by a constant. In other
words, our results show that the EF construction increases the security of double-
encryption by ensuring that an adversary needs to perform more queries to the

Security Amplification against Meet-in-the-Middle Attacks 263

oracles to gain an advantage comparable to the one he would get when the
construction is not used. Whether the queries are expensive or not (i.e. whether
the best attacks on the sub-ciphers is brute-force or not) does not change the
asymptotic increase of security that one can expect by choosing a bigger key or
block size. This is as much valid for the sub-ciphers decomposition of a MiTM
attack on single cipher as for double-encryption.

Another concern might be that actual MiTM attacks do not typically perform
a full decomposition of the attacked cipher in two sub-ciphers with independent
keys. This is indeed an ideal case for the attacker which is seldom met in practice.
However, real attacks that do not conform to this ideal case are typically less
powerful, while still needing a decomposition in two sub-ciphers at some point;
hence our construction increases the security against these real attacks as well.

5.2 The Splice-and-Cut Exception

Before going on to the expected advantages of the EF construction, we should
mention one situation where it does not seem to be useful, i.e. when protecting
against splice-and-cut MiTM attacks.

A splice-and-cut MiTM attack uses a conceptual decomposition of a cipher
with sub-ciphers that may be defined by considering the first and last round
of the attacked cipher as consecutive. That is, we consider decompositions of
say, E , that can be written as, say G2 ◦F ◦ G1. In order to perform this variant
of the MiTM attack, the attacker typically guesses one intermediate value at
the boundary between the two sub-ciphers using different key subsets, and then
queries the plaintext or ciphertext corresponding to the encryption or decryption
of this value for a given sub-key candidate. With data obtained this way, it is
then easy to perform a MiTM attack.

It is possible to adapt our model to the conceptual decomposition used in a
splice-and-cut attack. However, because this attack typically requires the whole
code-book to be performed, the bound that would be obtained by a general-
ization of theorem 2 would not show any improved resistance. It might be that
improved resistance to the splice-and-cut MiTM could be shown by leaving the
information-theoretic view of the ideal cipher model, but this does not seem to
be an easy task.

In the end, because of their huge data requirements, splice-and-cut MiTM
are more suited to attacking hash functions, and are seldom used against block
ciphers. Consequently, we think that the impact of the EF construction not being
efficient against them is somewhat limited in its targeted applications.

5.3 Taking Advanced Attack Techniques into Account

We now discuss the issue of including some more advanced MiTM techniques
used by cryptanalysts in our proof that the EF construction increases the re-
sistance of a single cipher to MiTM attacks. We discuss this for two important
techniques: the initial structure of Sasaki and Aoki [37], and its later generaliza-
tion to bicliques by Khovratovich et al. [24].

264 P.-A. Fouque and P. Karpman

Initial Structure. This is an advanced techniques that may be used in order to
increase the number of rounds reached by an existing MiTM attack. It consists
in finding an initial structure between two sub-ciphers of the MiTM attack that
use, say, key subsets k1 and k2 respectively. The structure consists itself in a
sub-cipher that can be computed thanks to the key subsets k′1 ⊆ k1 and k′2 ⊆ k2,
but with the key bits from k′2 being used before the bits of k′1 in the structure
(otherwise the relevant parts of the initial structure can be included in the two
sub-ciphers of the MiTM). Finding initial structures gives more flexibility to the
attacker in the matching phase, leading to more powerful attacks. For instance,
they were key in finding the first preimage attack on the full MD5 [37].

In order to be applicable, the initial structure technique still needs the cipher
under attack to be decomposed in two sub-ciphers. The added sophistication
of the matching phase typically allows the attacker to define a decomposition
that covers more rounds of the full cipher than what he would obtain without
using the initial structure. Yet this does not change the fact that the attacker
needs to test the key candidates for both sub-ciphers. What the bounds on the
EF construction say is that it is impossible to use a MiTM technique to do this
efficiently, because of the increased number of queries that have to be made to
the sub-ciphers (and possibly to the f function) in order to test all possible keys
and get an advantage of one; this is completely independent of the number of
rounds covered by the sub-ciphers.

In essence, the initial structure technique allows an attacker to find better
decompositions, but it does not improve the key-testing phase per se. Therefore
we claim that the EF construction still improves the security of a cipher against
adversaries using initial structures: however good the decomposition of the initial
cipher they may get, the construction layer will prevent efficient use of it.

Bicliques. This is a generalization of the previous technique that allows for a
more systematic way to construct initial structures, instead of searching them
manually as was done originally. In its simplest form, the biclique technique
can be seen as a way to extend an existing (splice-and-cut) MiTM attack by
constructing bicliques between intermediate states in order to cover the rounds
not included in the existing attack. Again, this leads to more powerful attacks,
and this technique has successfully been used to analyze several hash functions
and block ciphers such as Skein [24], AES [7], or IDEA [23].

Again, for this technique to be applicable, finding a decomposition in sub-
ciphers is necessary. Hence, even if the biclique parts themselves are not some-
thing that is captured in our analysis, it is still the case for the decomposition:
for a given decomposition of given parameters size, the bound on the number
of queries to the sub-ciphers necessary to gain a given advantage is not changed
by the presence of bicliques. The interest of the EF construction in this case is
again to ensure that no decomposition can be efficiently used, either alone or as
part of a wider attack.

This analysis and its arguments is similar to the one that was performed on
the recent PRINCE cipher in order to assess its resistance to bicliques [8].

Security Amplification against Meet-in-the-Middle Attacks 265

Summary. We did not formalize the arguments presented in this section, and
it does not seem to be easy to do so. In addition, although we think that an
increased resistance to the MiTM phase is an important step towards some sort
of provable security against these techniques, the interest of that in the case
of actual designs might be somewhat more limited. The reason is that if these
techniques allow to efficiently use a decomposition with small parameters size
as part of a bigger attack, the increased resistance to the MiTM phase might
not impact the overall complexity significantly. This might be a concern when
resistance to e.g. bicliques is considered.

In the end, much work still needs to be done in order to better understand
how to resist advanced MiTM techniques, and this is far beyond the scope of this
paper. Yet we believe that an increased resistance to even just the basic MiTM
attack should be an important part of this work, much as resisting standard
statistical attacks is an important part of modern cipher design.

5.4 Alternatives for the Construction

We end this section by outlining three alternatives for the EF construction that
differ with the main proposal in the way the output of the f function is combined
with the input of the core cipher.

A first obvious variation is to use modular addition instead of XOR.

Definition 8. Let f : {0, 1}κ → {0, 1}n be an �-ERF. Then we define the EF�

construction with core cipher E as EF�
k (p) � Ek(p � f (k)) � f (k), where �

denotes addition in �/2n�.

This variant may be useful in practice, when the core cipher of the construc-
tion is no longer seen as a black box. Because a block cipher typically performs
key whitening with sub-keys derived from k, if it is performed with an XOR
operation, it may be better to combine the output of f with modular addition,
in order to make it non-linear with respect to this whitening4. Conversely, the
original construction is maybe to be preferred when the whitening is done with
modular addition. Note that adding whitening keys with modular addition in-
stead of XOR was already proposed by Dunkelman et al. as a generalization of
the Even-Mansour construction [18].

A second variation exploiting a similar idea is to replace XOR with multipli-
cation in a finite field.

Definition 9. Let f : {0, 1}κ → {0, 1}n be an �-ERF. Then we define the EF�

construction with core cipher E as EF�
k (p) � Ek(p � f (k)) � f (k), where �

denotes multiplication in �2n.

Although quite slower than XOR or modular addition, multiplication in a finite
field mixes its inputs very thoroughly, which makes it attractive when perfor-
mance is not critical.

A last variation we suggest is to use even stronger mixing with a decorrelation
module [38].
4 Alternatively, a concrete instantiation could use f (k) as the unique whitening key.

266 P.-A. Fouque and P. Karpman

Definition 10. Let f , g : {0, 1}κ → {0, 1}n be two �-ERFs. Then we define the
EFGDC construction with core cipher E as EFGDC

k (p) � Ek(p � f (k)⊕ g(k)) �
f (k)⊕ g(k).

Finally, we can also propose an obvious variation orthogonal to the three
above, consisting in using two (four in the case of EFGDC) different functions to
derive the two whitening keys.

It is worthwhile noting that all these variants directly benefit from the proofs
for the EF construction, as these did not rely on any specific property of XOR
not shared by the alternative operations used here (in particular they are all
invertible). However, the different constructions are likely to give different levels
of security when used in practice, especially when other attacks than MiTM are
considered. For instance, decorrelation modules are expected to provide some ad-
ditional protection against classical differential attacks, which XOR or modular
addition do not by themselves.

6 Practical Instantiation

We conclude this work by discussing how to efficiently instantiate the EF con-
struction in practice. We start by showing how it is possible to use a hash
function h as the f function. This is justified by the fact that such a function is
a zero-ERF in the random-oracle model. We note EH the resulting construction.

Corollary 2. With notations adapted from §§3 and 4, the advantage
Adv(D , q1 , q2 , qh) of an adversary trying to distinguish EHk(p) � Ek(p⊕h(k))⊕
h(k) from a random permutation, where h is a hash function, is upper-bounded
in the random oracle model by:

2−κmax

(

qh , 2−n · D
∑

k′1,k
′
2

min(q1 (k
′
1), q2 (k

′
2))

)

(2)

for queries q1 and q2 to any two ciphers Fk1 and Gk2 such that Ek = Gk1 ◦Fk2 .
This is very similar to an alternative to the FX construction proposed by Kilian
and Rogaway, and already mentioned in §1.

From an efficiency point of view, using a call to a (small) hash function as
part of the encryption process could be expensive. Therefore, the EH construc-
tion might be of little interest when computational power is limited or when
the key has to be regularly changed (for instance because the cipher is itself
used in a hashing mode). However, we believe that there are meaningful applica-
tions for block ciphers where none of these restrictions apply, making this type
of instantiation still of interest. It is also worth noting that the input to h/f
is of fixed size, and thus only a “one-shot” compression function with a fixed
IV ĥ : {0, 1}κ → {0, 1}n is actually needed, and not a full-fledged hash func-
tion h : {0, 1}∗ → {0, 1}n. Finally, it is likely that a smart instantiation would

Security Amplification against Meet-in-the-Middle Attacks 267

use synergy between the core of the cipher and the h / ĥ function; using two
completely unrelated functions for both components would probably not be the
simplest way to proceed. In particular, it seems an interesting option to build
the hash function by using the block cipher E itself in a hashing mode5. If we
can make it so that only one call to the compression function is needed (this is
the case e.g. when the key and block sizes of E are equal), then it is even possible
to build the compression function from E used as a fixed permutation E ′, with
all its round keys independently set to a constant. This can be achieved by e.g.
using E in Matyas-Meyer-Oseas mode, with ĥ(x) then defined as E ′(x)⊕x. Note
that such a construction can be performed with many current block ciphers,
including AES-128. Even though care should be taken before using any cipher
in a hashing mode (this is the case for AES too [36]), the fact that in this case it
may be used with independent round keys may significantly improve its security
in that setting (not least because it rules out meet-in-the-middle attacks such
as [36]). Therefore, we believe that this instantiation strategy is sound, and that
it can be applied to many existing ciphers, as well as being usable for future
designs.

References

1. Aiello, W., Bellare, M., Di Crescenzo, G., Venkatesan, R.: Security Amplification
by Composition: The Case of Doubly-Iterated, Ideal Ciphers. In: Krawczyk, H.
(ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 390–407. Springer, Heidelberg (1998)

2. Aoki, K., Sasaki, Y.: Preimage Attacks on One-Block MD4, 63-Step MD5 and
More. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381,
pp. 103–119. Springer, Heidelberg (2009)

3. Bellare, M., Krovetz, T., Rogaway, P.: Luby-Rackoff Backwards: Increasing Secu-
rity by Making Block Ciphers Non-invertible. In: Nyberg, K. (ed.) EUROCRYPT
1998. LNCS, vol. 1403, pp. 266–280. Springer, Heidelberg (1998)

4. Biham, E.: New Types of Cryptanalytic Attacks Using Related Keys. J. Cryptol-
ogy 7(4), 229–246 (1994)

5. Biham, E., Dunkelman, O., Keller, N., Shamir, A.: New Data-Efficient Attacks on
Reduced-Round IDEA. IACR Cryptology ePrint Archive 2011, 417 (2011)

6. Biham, E., Shamir, A.: Differential Cryptanalysis of the Full 16-Round DES. [10],
487–496

7. Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique Cryptanalysis of the
Full AES. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp.
344–371. Springer, Heidelberg (2011)

8. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen,
L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen,
S.S., Yalçın, T.: PRINCE - A Low-Latency Block Cipher for Pervasive Computing
Applications - Extended Abstract. In: Wang, X., Sako, K. (eds.) ASIACRYPT
2012. LNCS, vol. 7658, pp. 208–225. Springer, Heidelberg (2012)

5 Obviously, one may also consider reduced-round variants of the same cipher in order
to make this step faster. It is a designer’s role to find a good tradeoff between
efficiency and security, and this instantiation strategy makes no exceptions.

268 P.-A. Fouque and P. Karpman

9. Bouillaguet, C., Derbez, P., Fouque, P.A.: Automatic Search of Attacks on Round-
Reduced AES and Applications. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 169–187. Springer, Heidelberg (2011)

10. Brickell, E.F. (ed.): CRYPTO 1992. LNCS, vol. 740. Springer, Heidelberg (1993)
11. Canetti, R., Dodis, Y., Halevi, S., Kushilevitz, E., Sahai, A.: Exposure-Resilient

Functions and All-or-Nothing Transforms. In: Preneel, B. (ed.) EUROCRYPT
2000. LNCS, vol. 1807, pp. 453–469. Springer, Heidelberg (2000)

12. Choy, J., Zhang, A., Khoo, K., Henricksen, M., Poschmann, A.: AES Variants Se-
cure against Related-Key Differential and Boomerang Attacks. In: Ardagna, C.A.,
Zhou, J. (eds.) WISTP 2011. LNCS, vol. 6633, pp. 191–207. Springer, Heidelberg
(2011)

13. Daemen, J., Rijmen, V.: The Wide Trail Design Strategy. In: Honary, B. (ed.)
Cryptography and Coding 2001. LNCS, vol. 2260, pp. 222–238. Springer, Heidel-
berg (2001)

14. Demirci, H., Selçuk, A.A.: A Meet-in-the-Middle Attack on 8-Round AES. In: [32],
pp. 116–126

15. Diffie, W., Hellman, M.: Special Feature Exhaustive Cryptanalysis of the NBS
Data Encryption Standard. Computer 10, 74–84 (1977)

16. Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: Efficient Dissection of Compos-
ite Problems, with Applications to Cryptanalysis, Knapsacks, and Combinatorial
Search Problems. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 719–740. Springer, Heidelberg (2012)

17. Dunkelman, O., Keller, N., Shamir, A.: Improved Single-Key Attacks on 8-Round
AES-192 and AES-256. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp.
158–176. Springer, Heidelberg (2010)

18. Dunkelman, O., Keller, N., Shamir, A.: Minimalism in Cryptography: The Even-
Mansour Scheme Revisited. In; [34], pp. 336–354

19. Fouque, P.A., Karpman, P.: Security Amplification against Meet-in-the-Middle At-
tacks Using Whitening. IACR Cryptology ePrint Archive 2013, 618 (2013)

20. Gaži, P., Tessaro, S.: Efficient and Optimally Secure Key-Length Extension for
Block Ciphers via Randomized Cascading. In: [34], pp. 63–80

21. Isobe, T.: A Single-Key Attack on the Full GOST Block Cipher. In: [22], pp. 290–
305

22. Joux, A. (ed.): FSE 2011. LNCS, vol. 6733. Springer, Heidelberg (2011)
23. Khovratovich, D., Leurent, G., Rechberger, C.: Narrow-Bicliques: Cryptanalysis of

Full IDEA. In: [34], pp. 392–410
24. Khovratovich, D., Rechberger, C., Savelieva, A.: Bicliques for preimages: Attacks

on skein-512 and the SHA-2 family. In: Canteaut, A. (ed.) FSE 2012. LNCS,
vol. 7549, pp. 244–263. Springer, Heidelberg (2012)

25. Kilian, J., Rogaway, P.: How to Protect DES against Exhaustive Key Search. In:
Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 252–267. Springer, Heidel-
berg (1996)

26. Leurent, G.: MD4 is Not One-Way. In: [32], pp. 412–428
27. Leurent, G.: Design and Analysis of Hash Functions. PhD thesis, Université Paris

7 (2010)
28. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable Block Ciphers. J. Cryptol-

ogy 24(3), 588–613 (2011)
29. Matsui, M.: The First Experimental Cryptanalysis of the Data Encryption Stan-

dard. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 1–11. Springer,
Heidelberg (1994)

Security Amplification against Meet-in-the-Middle Attacks 269

30. May, L., Henricksen, M., Millan, W.L., Carter, G., Dawson, E.: Strengthening the
Key Schedule of the AES. In: Batten, L.M., Seberry, J. (eds.) ACISP 2002. LNCS,
vol. 2384, pp. 226–240. Springer, Heidelberg (2002)

31. Nikolić, I.: Tweaking AES. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC
2010. LNCS, vol. 6544, pp. 198–210. Springer, Heidelberg (2011)

32. Nyberg, K. (ed.): FSE 2008. LNCS, vol. 5086. Springer, Heidelberg (2008) (revised
selected papers)

33. Nyberg, K., Knudsen, L.R.: Provable Security Against Differential Cryptanalysis.
In: [10], pp. 566–574

34. Pointcheval, D., Johansson, T. (eds.): EUROCRYPT 2012. LNCS, vol. 7237.
Springer, Heidelberg (2012)

35. Rivest, R.L.: All-or-Nothing Encryption and the Package Transform. In: Biham,
E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 210–218. Springer, Heidelberg (1997)

36. Sasaki, Y.: Meet-in-the-Middle Preimage Attacks on AES Hashing Modes and an
Application to Whirlpool. In: [22], pp. 378–396

37. Sasaki, Y., Aoki, K.: Finding Preimages in Full MD5 Faster Than Exhaustive
Search. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 134–152.
Springer, Heidelberg (2009)

38. Vaudenay, S.: Provable Security for Block Ciphers by Decorrelation. In: Meinel, C.,
Morvan, M. (eds.) STACS 1998. LNCS, vol. 1373, pp. 249–275. Springer, Heidelberg
(1998)

Secure Key Management in the Cloud

Ivan Damgård1, Thomas P. Jakobsen1,�,
Jesper Buus Nielsen1,�, and Jakob I. Pagter2

1 Aarhus University��

{ivan,tpj,jbn}@cs.au.dk
2 The Alexandra Institute A/S
jakob.i.pagter@alexandra.dk

Abstract. We consider applications involving a number of servers in the
cloud that go through a sequence of online periods where the servers com-
municate, separated by offline periods where the servers are idle. During
the offline periods, we assume that the servers need to securely store
sensitive information such as cryptographic keys. Applications like this
include many cases where secure multiparty computation is outsourced to
the cloud, and in particular a number of online auctions and benchmark
computations with confidential inputs. We consider fully autonomous
servers that switch between online and offline periods without communi-
cating with anyone from outside the cloud, and semi-autonomous servers
that need a limited kind of assistance from outside the cloud when doing
the transition. We study the levels of security one can – and cannot –
obtain in this model, propose light-weight protocols achieving maximal
security, and report on their practical performance.

Keywords: Information security, cloud computing, cloud cryptography,
secure key management, secure distributed storage, secure multiparty
computation.

1 Introduction

Cloud computing is a disruptive technology, changing the way computing re-
sources are deployed and consumed. The benefits of cloud computing are many,
ranging from cost-efficiency to business agility. The main drawback, however, is
security and in particular data confidentiality: Users of cloud technology essen-
tially have to trust that the cloud providers do not misuse their data. The recent
disclosure of the PRISM surveillance program1 in which NSA directly monitors

� Supported by the Danish Council for Independent Research via DFF Starting Grant
10-081612.

�� The authors acknowledge support from the CFEM research center (supported by
the Danish Strategic Research Council), the Danish National Research Foundation,
and the National Science Foundation of China (under the grant 61061130540) for
the Sino-Danish Center for the Thoery of Interactive Computation, within which
part of this work was performed.

1 http://en.wikipedia.org/wiki/PRISM_(surveillance_program)

M. Stam (Ed.): IMACC 2013, LNCS 8308, pp. 270–289, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Secure Key Management in the Cloud 271

all communication going through most world-wide cloud providers such as Ya-
hoo, Google, and Microsoft, is just one out of several incidents emphasizing that
this concern about security is real.

In the simple cloud computing case where a user outside the cloud wants to
store some data in the cloud for later retrieval, data confidentiality and integrity
can relatively easy be ensured. This is typically done using standard cryptogra-
phy, by encrypting the user’s data before it is stored in the cloud, keeping the
encryption key secret from the cloud provider. Several products such as Crash-
Plan2 and CloudFogger3 already offer this kind of security.

But the cloud is more than just a storage medium: In particular, computation
itself is often outsourced to the cloud. In some cases the computation outsourced
is even distributed among several cloud servers and may involve data from many
clients. Sometimes the cloud servers may even be controlled by different organi-
zations. Also, the cloud servers may exist in different parts of the cloud, spread
across different cloud providers such as Microsoft, Amazon, etc.

An example of this is the Danish site energiauktion.dk where electricity for
companies is traded at daily online auction. This works by each day starting up
a number of auction computations in the cloud. In order to protect the confi-
dentiality of the submitted bids, even against collusions involving the operator
of the auction site itself, the bids are encrypted at the clients (the companies),
and the auction computations are done using MPC where each MPC server is
running in the cloud, controlled by its own organization. Another relevant ex-
ample is that of the Danish sugarbeet auctions [4]. Here, similar auctions take
place, but running on a yearly basis and computing the optimal way to trade
Danish sugarbeet contracts instead of electricity. As for energiauktion.dk, the
confidentiality of bids for the sugarbeet auctions are also ensured via MPC.4

Strong notions of security in such more involved cloud applications are gen-
erally not as easily obtained as in the simpler case of cloud storage. Promising
technologies such as fully homomorphic encryption (FHE) [22] and secure mul-
tiparty computation (MPC) [42,23] definitely have the potential to raise the
security for these applications. But despite recent advances [32,12,24] they are
still quite demanding in terms of performance. While the functions to compute
securely in the above examples are simple enough to allow for MPC, securing
applications via MPC or FHE in general would still be too resource demanding.
More light-weight solutions are therefore needed.

This paper is a study of certain subsets of these cloud computing scenarios.
In Section 2 through Section 5 we define these subsets, analyze which levels of
security can be obtained and provide concrete protocols achieving this security.
In Section 6 we report on a prototype implementation of the proposed protocols.
For lack of space, the presentation in these sections has been kept at an informal

2 www.crashplan.com
3 www.cloudfogger.com
4 The sugarbeet auctions are actually computed by laptop computers on a standard

LAN network, but would fit nicely to a cloud setup.

272 I. Damgård et al.

level. A formal model of the protocols and proof of their security within the UC
framework [6] are provided in the full version of this paper [11].

2 The Model

In this paper we are interested in the following scenario:

– Distributed computation. A number of n servers S1, S2, . . . , Sn are en-
gaged in some distributed computation taking place in the cloud.

– Online/offline periods. The computation does not proceed in a continuous
fashion. Rather, in some periods there is no need for computation and the
servers are therefore idle. We call the first periods for online periods and the
latter for offline periods. In this way the application goes through a number
of rounds, each round consisting of an online period followed by an offline
period, and we assume that the servers receive signals from the application
that allows them to agree on the times to switch between online and offline.

– Sensitive state. During the application’s lifetime some or all of the servers
possess sensitive data that is needed by these servers in the online periods
and that must be stored securely during the offline periods. This could for
example be data used in the computation itself or keys needed to authenti-
cate against other servers. We will refer to the sensitive data that Si must
store securely during the offline phase of round r as that server’s secret file
and we denote it by σri .

This model of course does not cover all kinds of cloud computing. Regarding
the online/offline property we note, however, that many applications naturally
only require computation at certain well-defined points in time. For example,
online auctions and benchmarks are often designed to be repeated at regular
time intervals. Furthermore, most cloud providers operate on a pay-per-use basis
(pay per CPU cycle spent, pay per byte sent, etc.) that in itself motivates the
design of applications in which computation is “batched” together in time as
much as possible such that the cloud servers can be shut down in between these
periods of computation in order to save money.

Examples fitting particularly well into our model include those where MPC
is done in the cloud. Using MPC is for instance relevant in order to let a client
securely outsource a computation to the cloud: By computing via MPC and by
making sure that servers are hosted at different cloud providers, strong security
is guaranteed since a large number of different cloud providers must collaborate
maliciously in order to violate security. Other examples involving MPC in the
cloud are the electricity auctions and the Danish sugarbeet auctions mentioned
above. Both of these applications involve the regular running of auctions with
bids containing confidential client information, and to guarantee confidentiality
of the bids, the auction computations are done using MPC where the servers
are controlled by different organizations. These applications therefore consist of
a distributed system of servers going through a number of online and offline
periods (daily offline periods for the electricity auctions, yearly offline periods in

Secure Key Management in the Cloud 273

the sugarbeet case). During the offline periods, the servers need to store secret
data, namely the keys used for doing MPC.

In this paper we do not aim at providing any extra security in the online
periods, other than what can already be obtained by other means such as MPC.
Rather, we are concerned with the question: To which extend is it possible to
guarantee the confidentiality, integrity, and availability of the servers’ secret files
in the offline periods, given various attacks on the servers and the network over
which they communicate. By confidentiality and integrity we mean that a secret
file stored by a server at shutdown during an offline period is guaranteed not
to be read by others and that the server can be assured that it reads the same
unmodified file at wakeup as it stored at the previous shutdown. By availability
we refer to the guarantee that a file stored by a server can later be retrieved
again.

In the first part of our paper we take into account the following additional
requirement:

– Autonomous servers. The transition between online and offline periods
must proceed without anyone from outside the cloud taking action. That
is, the servers must be able to switch between online and offline periods
communicating only with each other.

This may be essential to some applications. In particular, there simply may
not be any relevant parties outside the cloud, such as system administrators or
non-cloud servers within an organization, with the right levels of trust, at the
times when the cloud servers shut down or wake up.

It turns out that within this model, where the only players are the servers
themselves, there is a limit to the level of availability and confidentiality we can
hope to get at the same time: Any protocol that guarantees that some subset
of the servers can restore a secret file at wake up (availability) of course also
allows the same subset of servers to learn the contents of this file, meaning that
the file leaks if the servers in that subset are malicious (lack of privacy). Let
tconf be the confidentiality threshold, that is, the maximal number of servers
an adversary can corrupt without learning anything about the contents of the
secret file. Similarly, let tavail be the availability threshold, meaning the maximal
number of servers the adversary can corrupt without being able to prevent the
reconstruction of the secret file. We can then express this trade-off as follows.

Fact 1. (Informal) With autonomous servers, the thresholds tconf and tavail
must satisfy the equation tconf + tavail < n. In particular, no protocol for fully
autonomous servers can guarantee at the same time both confidentiality and
availability of a secret file in the presence of more than n/2 malicious servers.

In Section 4 we present a protocol for fully autonomous servers that achieves
very strong privacy. Because of Fact 1, this means that we have to give up on
availability.

The limitation expressed by Fact 1 is a consequence of the requirement that
the servers are only allowed to communicate with each other during shutdown

274 I. Damgård et al.

and wakeup. We therefore continue our study in the second part of the paper,
Section 5, by considering how to most meaningfully relax the requirement of
autonomous servers in order to gain more security, while at the same time min-
imizing the involvement from outside. We end up with the following slightly
relaxed requirement:

– Semi-autonomous servers. Under normal conditions the transition be-
tween online and offline periods must proceed without anyone from outside
the cloud taking action. However, in case the system has been attacked, we
allow the transitions to involve actions from someone from outside the cloud.

We model this more concretely by assuming the existence of certain parties
outside the cloud that can fetch data from the cloud servers. For convenience we
call these parties administrators, though it could also for example be automated
scripts running on trusted (non-cloud) servers within the organizations operating
the cloud servers.

The model with semi-autonomous servers covers many applications where the
cloud servers are operated by organizations that have their own trusted people
or servers elsewhere, outside of the cloud, that can assist the cloud servers in
the transitions between online and offline periods. In particular, it models well
the scenario where human system administrators are actually willing to log in
to the cloud servers in certain situations.

In Section 5 we present a protocol with semi-autonomous servers, providing
both very strong confidentiality and availability while at the same time relying
only on minimal involvement from the administrators. The protocol essentially
guarantees that an administrator can always restore a secret file stored on his
server unless all the cloud servers have been corrupted.

While definitely suited for increasing security of applications like the Danish
sugarbeet auctions [4] and energiauktion.dk, we believe that these two models
capture many other interesting classes of cloud computing applications and that
the protocols provided here therefore will be useful for enhancing security for
such applications.

3 Related Work

Our work is based on secret sharing. Several secret sharing schemes exists, in-
cluding schemes allowing various thresholds [3,38] and schemes with proactive
security [25]. However, for the same reason as for Fact 1, secret sharing consid-
ered in isolation can never give both availability and confidentiality in case of
a dishonest majority of parties. We show how to combine secret sharing with
other techniques in a specific context and thereby achieve a level of security that
one cannot get with secret sharing alone. In particular, we show how to get both
confidentiality and availability in the presence of a dishonest majority in the
model with semi-autonomous servers.

Secure multiparty computation (MPC) [42,23] allows a set of servers to jointly
compute on encrypted data. Security, including data confidentiality, is then guar-
anteed even though some of the servers are malicious and may pool their data

Secure Key Management in the Cloud 275

together. While still a very resource demanding technology, MPC has reached a
level where it has become practical, at least for a limited class of applications
[4,17,33,39]. By letting the cloud servers compute using one of the MPC proto-
cols designed to give security against dishonest majority [12,32] one can achieve
a level of security somehow similar to ours in the offline periods, namely that an
adversary must break into the offline storage of all servers, stealing or modifying
all MPC keys, to do any harm. However, as mentioned, MPC is still often too
heavy and contrary to our protocol for semi-autonomous servers, protocols de-
signed for dishonest majority MPC do not provide strong termination (meaning
availability of files in our case).

In any case, for all non-MPC computations as well as computations based on
more light-weight MPC protocols that assume less powerful adversaries (that
is, honest majority protocols, honest-but-curious or covert adversaries, etc.) our
protocols can be used to enhance security during the offline periods at a low
cost. In this way, our protocols can be seen not as a substitute, but more as a
complement to the use of MPC.

Fully homomorphic encryption [22,21] allows general computations on en-
crypted data and is in many respects considered the “holy grail” of cloud com-
puting security. FHE allows a user to outsource computation to one or more
cloud servers without violating confidentiality even if all servers are malicious.
Combining FHE with other techniques allows to also guarantee the correctness of
the outsourced computation [20,10,9]. Furthermore, recent results consider out-
sourcing computations involving input from several parties [27]. As such FHE
can be used to secure essentially any cloud computing scenario, including those
we consider, to a very high degree. Despite recent improvements [5,24], though,
the performance of FHE is still a long way from being efficient enough for practi-
cal purposes. Therefore our protocols, perhaps combined with MPC in the online
periods, pose a more realistic way to secure cloud computing, at least for the
foreseeable future.

Our work essentially consist of protocols for secure, distributed storage of keys
and is as such related to the broader field of secure storage and secure distributed
file systems. Lots of work has been done in these areas [28], but in many cases
such as NFS [40], AFS [26], and SFS [18], security only means that unauthorized
clients cannot access or modify files; the storage servers themselves are trusted.
Due to increased security demands, a new generation of so-called cryptographic
storage systems has evolved, exemplified by Windows EFS [16], NCryptfs [41],
and many others. Using various kinds of cryptography, these systems provide
the stronger notion of end-to-end security, meaning that clients no longer need
to trust the storage servers. However, all of these systems require that clients
themselves securely store keys and/or remember passwords and are therefore
not suitable in our setting where servers must operate autonomously (or at least
semi-autonomously) in the cloud.

Some results [19,2,30] already consider how data can securely be dispersed
among a number of servers without the need for storing secret keys on any client.
These results combine secret sharing, error correcting codes, variants of Rabin’s

276 I. Damgård et al.

information dispersal algorithm [34,29] and other cryptographic techniques in
order to guarantee both confidentiality, integrity and availability of the stored
data. Forward-secure threshold encryption [31] could also be used to encrypt
files at shutdown. As such, these protocols could indeed be used to secure data
during the offline phases in our model with autonomous servers.

Common to these results, however, are that they only provide security in the
presence of up to n/2 malicious servers. In contrast, the constructions provided
in this paper are designed to guarantee confidentiality and integrity of the stored
data in the presence of up to n− 1 servers. In Section 4 we achieve this for fully
autonomous servers by giving up on availability. In Section 5 we show how to take
advantage of the model with semi-autonomous servers in order to also guarantee
availability with up to n− 1 malicious servers.

We are, to the best of our knowledge, the first to consider protocols specifi-
cally designed for securing the offline periods in cloud computing environments
as described above. In particular, we are not aware of any existing protocols suit-
able for such cases providing the same combination of high security and good
performance as those we present in this paper.

4 Fully Autonomous Servers

We here describe a protocol that increases the offline security in the model with
fully autonomous servers and we discuss the limits of the possible security we
can in this model. Due to space restrictions the description is kept at an informal
level while a formal modelling of the protocol in the UC framework [6] and a
rigorous proof of its claimed security are postponed to the full version of this
paper [11].

Suppose that the overlying application has a security threshold of Tapp, mean-
ing that an adversary breaking into Tapp or less servers does not violate security
of the overlying application. For many applications Tapp = 0, but Tapp may also
be higher, say Tapp = n/2, if for example the overlying application is MPC.

4.1 What Cannot Be Done

As discussed earlier, there is a limit as to how much confidentiality and availabil-
ity we can achieve at the same time with fully autonomous servers. In addition
we observe that it is clearly impossible to protect against the following kind
of attack: If the adversary manages to passively break into server Si during an
offline period, he learns whatever that server knows. If he then also attacks Si’s
network channels in the following wakeup phase, he can cut off Si, that is, silence
Si and pretend to be that server towards the remaining servers, using the keys
for authentication stolen from Si during the offline period. By doing this, the
adversary has essentially carried out what corresponds to an active (Byzantine)
corruption of Si only by means of a combination of a passive break-in during the
offline period followed by a network attack – two attacks normally considered
less difficult than a full active attack on the server. We will denote such attacks

Secure Key Management in the Cloud 277

as cut-off attacks, and not being able to avoid these can be seen as the price we
pay for not involving any external parties in the protocol.

4.2 What Can Be Done

We start out with the simplest possible solution and gradually show, in a num-
ber of steps informally discussed below, how to extend the solution in order to
increase security. The resulting protocol is presented in its entirety at the end of
this section.

Secret sharing. In the most naïve protocol each server simply stores its own
secret file locally during offline periods. This of course does not add any extra
security. In particular, an adversary can spoil security by breaking into the offline
storage of Tapp + 1 servers. The servers could encrypt their secret files before
storage, but not much is gained if the encryption key is also stored locally.

We therefore let each server Si encrypt its file σi using a randomly chosen
encryption key Li and then secret share this key among the full set of servers,
each server keeping one share si,i for itself and sending the remaining shares si,j
to each of the other servers Sj before the offline periods. When the servers wake
up for the next online period, each server collects its missing shares from the
other servers, reconstructs the encryption key, and decrypts its secret file.

With this approach the trade-off between confidentiality and availability dis-
cussed earlier can be adjusted by using secret sharing schemes with different
thresholds. For example, using Shamir’s secret sharing scheme [38] with thresh-
old t = n/2 ensures availability of secret files unless t+ 1 servers are malicious,
but also only guarantees confidentiality of the files for up to t malicious servers.
For now we aim at optimal confidentiality and therefore instead use a sharing
scheme with full threshold (t = n − 1), such as additive sharings over a finite
field. (Better availability is considered later, in Section 5).

This first solution ensures optimal confidentiality of the secret files against
adversaries performing only offline attacks, but we also have to consider network
attacks. Consider first the case where we just send the shares in cleartext. Here
we can observe that Si never sends its own share si,i to anyone. Therefore any
attack that only uses the network will miss at least one share for every server
and so cannot get any useful information. On the other hand, it is also clear
that passive eavesdropping combined with an offline attack on Si will allow you
to get σi, and so passive eavesdropping plus offline attacks on Tapp + 1 servers
will break the system.

Diffie-Hellmann key exchange. To improve this, we can encrypt the communica-
tion. However, securing the communication channels using standard encryption
requires servers to store private keys and therefore does not add extra secu-
rity: This solution can be still broken by offline attacks on t + 1 servers and
passive eavesdropping, because the adversary then knows the keys he needs for
decryption.

278 I. Damgård et al.

Instead, we use Diffie-Hellman (DH) key exchange [13] to set up secure pair-
wise channels on the fly when the systems starts up. DH lets each pair of servers
Si and Sj agree on a secret session key Ki,j that can be used to encrypt the
channel. This way no private keys for encrypting the channels need to be stored
during the offline periods. This means that we are secure against offline attacks
on up to n−1 servers combined with passive eavesdropping. This is an improve-
ment for any application with Tapp < n− 1.

The above solution does not authenticate the messages in the DH key ex-
change, since it is only designed to cope with passive eavesdropping. Using an
active network attack, an adversary could therefore impersonate any agent dur-
ing wakeup, and could therefore get the same information as one would get if
everything was sent in the clear. However, such an attack alone will not give him
any useful information, for the same reason that we described above (Si never
sends its own share si,i to anyone). As before, if this is combined with an offline
attack on Tapp servers, one gets the online information for these and nothing
more. We are therefore still secure against offline attacks on up to Tapp servers
combined with active network attacks. This is optimal because – as discussed in
connection with cut-off attacks above – the same attack on Tapp + 1 servers is
equivalent to Tapp + 1 full corruptions which is always fatal. In particular, this
shows that we do not get any benefit from authenticating the messages in the
DH key exchanges.

In conclusion, the solution sketched so far has optimal security against both
offline plus passive network attacks as well as offline plus active network attacks,
namely security against attacks on n− 1, respectively Tapp servers.

Detecting attacks. It turns out that authenticating the DH key exchanges, for
instance using digital signatures as in the STS protocol [14], or more generally,
using any scheme for authenticated key exchange (AKE), is not useless, however.
As discussed earlier, cut-off attacks cannot be prevented. But using AKE, in case
a cut-off attack do in fact occur, the cut-off server S itself will always notice that
something is wrong, as long as it is not actively corrupted when it wakes up.
The reason is the following: Since the adversary broke passively into S during
offline it knows S’s private AKE key and can thus pretend to be S towards the
remaining servers in the online phase. But the real, but impersonated, S will
still try to do AKEs with the remaining servers. Unless the adversary passively
breaks into all the servers, there will be at least one private AKE key that he
does not know. This means that S will experience that at least one of the AKEs
he tries to complete will fail and can therefore abort the protocol and try to
warn the other servers. In other words, the adversary can cut off S, but cannot
prevent S from detecting the cut-off attack, and unless the adversary can carry
out a denial-of-service attack on S forever (something that is often considered
practically impossible), this fact will become known to the rest of the system. For
these reasons we will use AKE instead of unauthenticated DH in our solution.

Integrity. In the above discussion we have focused on confidentiality. The solution
does not, however, protect against for example a corrupted server modifying a

Secure Key Management in the Cloud 279

share before sending it back to another server at wakeup. We can protect against
this by replacing the basic secret sharing scheme with an extended scheme, that
we will denote as a robust secret sharing scheme (RSS). Such a scheme produces
along with the shares, s1, s2, . . . , sn a public verification key V . The key V reveals
no information about the secret, and can be kept by the server during the offline
period and used at wakeup to verify that the shares reconstruct to the original
secret. Details on this kind of secret sharing is provided in the full version of this
paper [11].

Proactive security. Proactive security is a powerful notion of security put forward
by Canetti et al. [7]. In short, a protocol is proactively secure if it can tolerate
any number of corruptions during its lifetime as long as only a certain number
of corruptions take place within a given time frame. Having proactive security
is important for protocols such as ours that are supposed to run for a long time.

Our current protocol already is proactively secure in a limited sense: Due to
the fact that fresh session keys are generated in each round, we can tolerate any
number of passively corrupted servers in the offline phases, as long as at most
n− 1 of the corruptions happen in the same offline phase.

There is no proactiveness for the detection of cut-off attacks discussed above,
though, since the servers use the same keys for authenticating the DH throughout
all rounds. This means that if one manages to steal the private signing key
belonging to a server in one round, this key can be used to cut off that server in
a later round. We can remedy this by letting the servers in each round refresh
the digital signature keys for authenticating the DH. The refreshment is done
by letting each server generate a new key pair, replacing its old private signing
key with the fresh signing key while sending the new public verification key to
the other servers where similar replacements take place. To prevent an attacker
from modifying these new public verification keys while they are in transit, each
server attaches a message authentication code (mac) to the key, using the current
session key that the sending and receiving server share.5

With these extra steps we have now obtained a protocol that is proactively
secure with respect to passive corruptions and detection cut-off attacks, with
each round being one refreshment period. However, obtaining proactive security
against active offline attacks, that is, where someone not only gets read access to
the servers’ offline storage, but who can also modify this state during the offline
period, turns out to be impossible, at least without any further assumptions.
This stems from the fact that once the server gets actively corrupted, during
offline as well as online periods, the adversary can change all state, including
5 Our way of securing the network resembles to some extend the way in which

SSL/TLS works: SSL/TLS can be configured to use symmetric encryption and macs
with a session key established using authenticated Diffie-Hellmann, and also provides
a mechanism for renegotiating the keys used to authenticate the DH on a regular
basis. We choose however, to embed encryption, etc., directly in our protocol, not
relying on SSL/TLS. We do this because we want to be able to reason formally about
the security of our protocol which would not be easy with SSL/TLS that consists of
over 100 combinations of encryption modes, handshakes, etc.

280 I. Damgård et al.

the protocol code that specifies how the server behaves. By modifying the code
offline, the adversary can in effect control the behaviour of the server for the
following online period. In this sense, an active attack on a server during the
offline period is equivalent to a full active attack on that server during the
following online period.

Making the additional assumption that the code of each server cannot be
changed during offline periods, we can do better. This assumption is a variant of
the Read-Only Memory (ROM) model discussed further by Canetti et al. [8].6 In
the ROM model, we can strengthen our protocol by letting each server compute
a hash of its secret file plus some random salt at shutdown and distribute this
hash to all servers (including keeping a copy itself). At wakeup we let the server
collect again the hashes and abort if these are not all equal. In the ROM model
this implies that an adversary will have to actively corrupt the offline storage of
all servers in the same offline in order to break integrity.

The Protocol. We denote the protocol resulting from this discussion the Cloud
Key Management protocol, or just PCKM. It is illustrated in Fig. 1 and consists
of two procedures to be carried out by each server, one before entering an of-
fline period (shutdown) and another before returning to the next online period
(wakeup). The entire protocol consists of several rounds, each round r consisting
of four phases: An online phase where the application is running, a shutdown
phase where the servers run the PCKM shutdown procedure, an offline phase
with no computation, and finally a wakeup phase where the servers run the
PCKM wakeup procedure to restore the secret files.

When a server Si receives a file from the environment at shutdown, it is
encrypted under a key L using symmetric encryption (Enc). That key is then
split into shares {si,j}j∈[n] using a robust secret sharing scheme (RSS). The server
keeps one of the shares, si,i and distributes the remaining shares among the other
servers, using a session key for encryption and message authentication codes
(macs) to protect against leakage and modification during network transmission.
At the end of the shutdown procedure the server erases most values, including the
file itself, from its memory. The only values remaining in the following offline
phase are the encrypted file, the keys needed for AKEs in the the following
wakeup phase, the server’s own share and the shares received from the other
servers (that follow the same shutdown procedure). On wakeup, a procedure
reverse to the shutdown procedure takes place: The server receives its shares
from the other servers, reconstructs the key, verifies its integrity, decrypts the
file and returns it to the environment. At the beginning of each wakeup and
shutdown phase, a server Si agrees on a fresh secret session key with each of
the other servers using AKE. The private and public keys used for AKEs are
refreshed once in each round at shutdown.

6 The assumption can sometimes be justified by the use of ROM or other special
hardware such as TPM modules. Also, one can perhaps argue that this models well
a cloud environment with all servers booting up from the same uncorrupted virtual
image on every wakeup.

Secure Key Management in the Cloud 281

Shutdown Each server Si holds from the previous round a private key skr−1
i

and public keys vkr−1
j for each of the other servers Sj . When receiving the

secret file σ from the application, Si does the following.
1. Session key refreshment

(a) For each of the other servers Sj , invoke (in parallel) the AKE proto-
col, using skr−1

i and vkr−1
j . This results in Si and Sj sharing a fresh

secret session key Kdown
i,j .

(b) Generate a new AKE key pair (skri , vk
r
i).

2. Encrypt file and distribute shares of the encryption key.
(a) Choose a random encryption key L and compute C ← EncL(σ).
(b) Compute V, {si,j}j∈[n] ← RSS(L).
(c) For each of the other servers Sj , the server Si compute ci,j ←

EncKdown
i,j

(si,j) and di,j ← MacKdown
i,j

(vkri).
(d) Sends the message Mi,j = ci,j || vkri || di,j to Sj (keeping si,i).
(e) Wait to receive messages Mj,i = cj,i || vkrj || dj,i from the other

servers Sj . Abort if the mac dj,i is invalid, otherwise compute
sj,i ← DecKdown

i,j
(cj,i). This step is repeated until valid shares and

public keys have been received from all other servers.
3. Offline state hashing. Let O be the concatenation of (skri , C, V, si,i) with

the shares sj,i and public AKE keys vkrj received from the other servers
Sj . Compute γi ← H(O) and send γi to all other servers along with a mac
using Kdown

i,j . Wait until valid hash values γj have been received from all
other servers.

4. Erase all data except O and the hashes {γj}j∈[n].

Wakeup On wakeup Si does the following.
1. Session key refreshment. Invoke the AKE protocol, this time using skri

and vkrj , resulting in Si and Sj sharing a fresh secret session key Kup
i,j .

2. Offline state verification. Send γj to Sj , along with a mac of it using Kup
i,j .

Wait to receive γj from the other servers. Verify that all macs are valid
and that H(O) = γj for all j = 1, 2, . . . , n, and abort otherwise.

3. Reestablishing the secret file.
(a) Compute cj,i ← EncKup

i,j
(sj,i) and send cj,i to Sj . Wait until ci,j is

received from all other Sj and compute si,j ← DecKup
i,j

(ci,j).
(b) Reconstruct L from {si,j}j∈[n] and verify integrity of the sharing

using V . Abort if invalid, otherwise compute and return to the ap-
plication σ ← DecL(C).

4. Erase all values except skri and vkrj for the other servers Sj .

Fig. 1. The PCKM (Cloud Key Management) protocol

A few notes about the protocol are in place: The refreshment of the AKE
keys is done once every round, but the session key is refreshed twice each round,
using the same AKE keys. The reason for doing two session key refreshments is
to avoid any shared session key to reside in memory not only during offline, but
also during online periods, as doing so would reduce the number of corrupted
servers we can tolerate. Also, for simplicity of presentation, the same session
key is used for both encryption and macs in Fig. 1. A secure implementation

282 I. Damgård et al.

would require separate keys for macs and encryption, see the full version [11] for
details.

Security. In order to summarize the security of PCKM we first define cut-off
attacks more precisely as follows:

Definition 1 (Cut-Off Attack). A cut-off attack on Si in round r is a passive
corruption of Si in round r − 1 or r (stealing the server’s private AKE key
skr−1i) combined with active network attack on all of Si’s channels during the
shutdown phase of round r (impersonating Si in the AKEs done there), or a
passive corruption of Si at some point during round r (stealing skri) combined
with active attacks on all of Si’s channels during the wakeup phase of round r
(impersonating Si in the AKEs done in that phase).

We also note that the security of PCKM builds on a number of assumptions:

– Trusted setup A once-and-for-all setup must be in place, consisting of the
initial AKE keys for the first round. This can for instance be established in
practice by a PKI.

– Cryptographic assumptions Various cryptographic assumptions due to the
primitives used in the protocol. For example, the STS protocol for authen-
ticated key exchange [14] builds on the DDH assumption. More details on
this can be found in the full version [11].

– Erasure That a server can erase part of its state on shutdown such that it is
not accessible to an adversary that gets access to the server’s offline storage.

– Randomness That each server has access to a source of close-to-true ran-
domness.

– Static adversary We assume that the adversary decides before each round
which servers and channels to corrupt in the following round.

– Code in Read-Only Memory (ROM) We assume that at least the code of the
protocol itself is stored in ROM and cannot be altered by an active offline
attack.

In [11] we show how to model these assumptions precisely in the UC frame-
work. The ROM assumption is perhaps the most questionable of these assump-
tions, so we first summarize what security we have obtained without the ROM
assumption.

Theorem 1. (Informal) Given the assumptions above (except the ROM assump-
tion), the confidentiality and integrity of a file σri stored and retrieved by Si in
round r using the PCKM protocol in Fig. 1 is guaranteed as long as

1. Si has not been actively corrupted (during offline or during online periods)
up to and including round r.

2. Si is neither passively corrupted in the shutdown or in the wakeup phases of
round r.

Secure Key Management in the Cloud 283

3. No cut-off attack on Si takes place up to and including round r.
4. No more than n− 1 servers are passively corrupted in each offline phase up

to and including round r.

Furthermore, if σri leaked due to Si being exposed to a cut-off attack at any point
up to or including round r, this will be detected by Si.

In particular, without the ROM assumption, a server being actively cor-
rupted at any point, including during offline periods, will stay actively corrupted
throughout the protocol. On the other hand, as stated in Theorem 2, the ROM
assumption allows us to achieve full proactive security with regards active cor-
ruptions.

Theorem 2. (Informal) Given the assumptions above (including the ROM as-
sumption), the confidentiality and integrity of a file σri stored and retrieved by
Si in round r using the PCKM protocol in Fig. 1 is guaranteed as long as

1. Si is neither passively or actively corrupted during the shutdown or wakeup
phases of round r.

2. No cut-off attack on Si takes place in round r.
3. A maximum of n − 1 servers are corrupted, actively or passively, in each

round up to and including round r.

Furthermore, if σri leaked due to Si being exposed to a cut-off attack in round r,
this will be detected by Si.

This section has been kept at an informal level, including the two theorems
above. For lack of space, more precise definitions of the primitives used, such as
the AKE scheme and the robust secret sharing, a formal model of the protocol
itself, and a proof of its security in the UC framework have been deferred to the
full version of this paper [11].

5 Semi-autonomous Servers

In the previous section, dealing with fully autonomous servers, we had to choose
between guaranteeing either confidentiality or availability in case of dishonest
majority as expressed by Fact 1, and we aimed at a protocol with maximal
confidentiality. Here we show how to construct a protocol with the same strong
confidentiality as before, but with improved availability. This is possible because
semi-autonomous servers are allowed to interact with someone from outside the
cloud in case of an attack.

As discussed earlier, this is done by providing a special recovery mechanism
by which an administrator for a server is guaranteed to be able to recover a file,
even if the normal wakeup procedure fails to terminate.

The protocol, which we will denote as PCKM
∗, is given below in Fig. 2 and is

an extension to the PCKM protocol described earlier, that in addition relies on
a threshold signature scheme. Such a scheme allows the servers to collectively

284 I. Damgård et al.

sign data without any single server being able to sign. In fact, to fit in PCKM
∗

the threshold scheme must have full threshold and be proactive. It turns out
that the threshold signature scheme of Almansa et al. [1] is easily modified,
giving up on termination, to satisfy our needs. Details are provided in the full
version [11].

The protocol works as follows: As part of the trusted setup, we also require
a threshold signature scheme to have been initialized with the signing key dis-
tributed among the servers and such that the administrator and all servers hold
the public verification key. In addition we require each administrator to hold a
private decryption key for which his server holds the corresponding public en-
cryption key. At shutdown, along with the procedure already specified by PCKM,
the server Si computes an encryption Fi under the administrator’s public encryp-
tion key, and the servers then collectively sign Fi. The signature is distributed to
all servers, using the session key to authenticate the channels. If normal opera-
tion fails during wakeup, the administrator requests the copies of the encrypted
file held by the servers. When obtaining one or more of these, he verifies integrity
and decrypts the secret file using his private decryption key.

Some additional comments on the protocol: The receipts ensure that if Si
goes offline without aborting, all honest servers have marked the encrypted file
of Si as accessible to the administrator. The operation of “making data acces-
sible” typically involves that this information is stored in a dedicated location
on the server’s disk, but one could also imagine that on shutdown, this public
information is collected, say on a trusted mail server. If normal file recovery by
the servers fails, the administrator can, with his verification key, log in to this
email server and access the information needed to restore the file.

The security of PCKM
∗ is summarized in the following theorem.

Theorem 3 (File Availability). (Informal) The protocol PCKM
∗ has the same

guarantees as PCKM regarding confidentiality and integrity of stored files. Fur-
thermore, once a server that has not been actively corrupted up to and including
round r, finishes the shutdown procedure, the file σi stored at that server is guar-
anteed to be recoverable by the corresponding administrator, unless all servers
are actively corrupted during the following offline and wakeup phase.

Again, for lack of space, a more precise modelling of the protocol in the UC
framework, including the modelling of the administrator, is deferred to the full
version of this paper [11]. The intuitive reason for the strong availability is that
because of the threshold signature scheme, the adversary must corrupt all servers
during the offline period in order to forge the signature or delete all copies of the
encrypted file, Fi. If not, the administrator will be able to restore the correct file
by fetching Fi from just one honest server, verify the threshold signature, and
decrypt it using his private encryption key.

This is a considerably stronger availability guarantee than what was achieved
by the PCKM protocol. We stress that the extended protocol PCKM

∗ works in the
semi-autonomous model and therefore requires the involvement of administra-
tors, but only if retrieving secret files in the normal, autonomous, way fails due
to an attack on the system.

Secure Key Management in the Cloud 285

The trusted setup works as in PCKM, but also includes that the administrator gets
a private decryption key dk while each server gets a copy of the corresponding
public encryption key ek. Also, the threshold signature scheme is setup, meaning
that the administrator and all servers gets the public verification key W while
the shares {wj}j∈[n] of the corresponding signing key is distributed among the
servers.

Shutdown As PCKM, but with the addition that also the proactive refreshment
method of the threshold signature scheme is invoked. Also, the following ad-
ditional steps performed by server Si the erasing of values in Step 4 of PCKM:
1. Compute Fi ← Encek(σ).
2. Compute a threshold signature fi of Fi by invoking FTHSIG.
3. Verify fi using the public verification key W and abort if invalid.
4. Place Fi and fi somewhere that is accessible by the administrator.
5. Send (Fi, fi) to all other servers.
6. When a pair (Fj , fj) is received from another server Sj , verify the signa-

ture fj and abort if invalid. Otherwise, make the pair accessible to the
administrator and return an OK message to Sj with channel integrity
ensured by the session key Kdown

i,j .
7. Abort unless valid signatures have been received from all other servers,

and valid OK messages from all servers have been received for the (Fi, fi)
that was sent out from this server.

Wakeup As PCKM.

File Recovery When the administrator wants to recover the file σ during the
wakeup phase he does the following:
1. Fetch messages (Fi, fi) from the servers (can be done in parallel).
2. When a message (Fi, fi) is fetched from Sj , verify the signature fi. If

valid, output σ ← Decdk(Fi). If invalid, fetch a message from another
server.

Fig. 2. The protocol PCKM
∗ for semi-autonomous servers

6 A Prototype Implementation

A prototype of the basic PCKM protocol (without the mechanism for recovery of
files by administrators) has been implemented and benchmarked in the Amazon
Web Services (AWS) cloud environment. We here report on these benchmarks
and discuss a few practical aspects related to the implementation.

For the benchmarks, each server was running on its own EC2 instance with
an Elastic Block Store (EBS) volume as permanent storage. Before each offline
period, the shutdown procedure of PCKM was executed following by disposing
each EC2 instance such that during the offline phase only the EBS storage
volumes remained. On wakeup, new EC2 instances were started up, the EBS
volumes re-associated to the EC2 instances, and the wakeup procedure of PCKM

subsequently executed in order to restore the secret files of the servers.

286 I. Damgård et al.

Table 1. Performance of the CKM protocol, PCKM, in seconds (with 95% confidence
intervals). Timings do not include EC2 disposal and start-up times. Each server runs
on a small EC2 instance corresponding roughly to 1.7 GiB RAM and a 1.0-1.2 GHz
2007 Xeon processor [15]. Each server stores a 1 Kb file using 1024 bit asymmetric keys
and 128 bit symmetric keys.

PCKM Shutdown PCKM Wakeup

2 servers 5.6 ± 0.5 4.4 ± 1.1
5 servers 9.2 ± 1.2 7.4 ± 0.9
10 servers 16.7 ± 2.8 15.7 ± 1.0
20 servers 33.3 ± 18.8 30.4 ± 18.8

Table 6 shows the performance of the CKM protocol itself, that is, excluding
the 10-30 seconds it typically takes to start up or dispose the EC2 instances.
From these results we conclude that the protocol indeed is practical.

Most applications will only require storage of small files such as cryptographic
keys. To reflect this, the servers in the benchmark all store and retrieve secret
files of size 1 Kb. Storing larger secrets of course increases the execution time,
but the size of secrets was found to have relatively little impact: For example,
storing 100 Mb instead of 1 Kb secrets roughly costs 2 seconds extra. The reason
for this is that that encryption and decryption of secrets take place locally and
only the encryption keys are shared.

Also, the results in Table 6 are benchmarks with all servers located in the
same Amazon region (with network latency time being roughly 5-10 ms). Other
benchmarks have been carried out with servers located worldwide, again with
only little impact on the performance: As an example, five servers located across
Europe, US, and Singapore were found to decrease performance by roughly 10
percent compared to a single-region setup.

Detecting cut-off attacks. As already discussed, cut-off attacks cannot be pre-
vented, but in case a cut-off attack do in fact occur, the cut-off server S itself will
always notice that something is wrong. In order to make this detection as likely
as possible in practice, the servers should listen for (authentic) abort messages
from the other servers and if such an abort message is received, a server should
immediately forward the message to all other servers and to the application.
Also, letting the servers wait some time after completing the AKEs, but before
sending their shares over the network, will in practice make the task of breaking
security by cutting-off servers considerably harder, because the adversary must
then silence the cut-off server for at least an amount of time corresponding to
this delay before being able to collect shares. Inserting such delays comes, of
course, at the price of decreased protocol performance (and are not included in
the benchmarks above).

Entropy in the cloud. The servers in the PCKM protocol require sources of good
randomness in order to generate keys, shares, etc. In the full version of this paper

Secure Key Management in the Cloud 287

[11] this is modelled by letting the servers be probabilistic Turing machines. In
practice, however, this randomness has to come from somewhere. Perhaps the
most straightforward solution is to require a random seed to be passed to the
PCKM protocol from the application and then expand the seed using a secure
pseudo-random generator. If done correctly, a polynomial-time adversary will
not be able to distinguish the expanded randomness from true randomness if
the initial seed is truly random.

However, this just pushes the problem of finding good randomness to the
application layer. Another approach is to let the PCKM obtain its randomness
from the operating system, for example by using the SecureRandom Java class
which as the default on Linux obtains a random seed from the OS entropy pool
though the \dev\random interface that blocks until enough entropy has been
gathered from the internal clock, network traffic, etc. A somewhat surprising
finding from the implementation was that this seriously affects the performance
of PCKM. For example, in the case of five servers, this approach was found to cause
a slowdown of 5-10 times for wakeup and 15-20 times for wakeup compared to
the benchmark results in Table 6 that use the non-blocking, but potentially less
secure, \dev\urandom that never blocks, but instead falls back to generating
pseudo-random numbers using SHA1 when the OS entropy pool is empty: It
takes a considerable time for the entropy pool to acquire enough entropy in
newly started virtual instances in the Amazon cloud environment.

Acknowledgements. The authors would like to thank Tim Rasmussen for
providing the implementation of the protocol as part of his Master’s thesis [36].

References

1. Almansa, J.F., Damgård, I., Nielsen, J.B.: Simplified threshold RSA with adaptive
and proactive security. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004,
pp. 593–611. Springer, Heidelberg (2006)

2. Alon, N., Kaplan, H., Krivelevich, M., Malkhi, D., Stern, J.P.: Scalable secure
storage when half the system is faulty. In: Welzl, E., Montanari, U., Rolim, J.D.P.
(eds.) ICALP 2000. LNCS, vol. 1853, pp. 576–587. Springer, Heidelberg (2000)

3. Blakely, G.R.: Safeguarding cryptographic keys. National Computer Conference
Proceedings A.F.I.P.S 48, 313–317 (1979)

4. Bogetoft, P., et al.: Secure multiparty computation goes live. In: Dingledine, R.,
Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 325–343. Springer, Heidelberg (2009)

5. Brakerski, Z., Gentry, C., Vaikuntanathan, V. (Leveled) fully homomorphic en-
cryption without bootstrapping. In: Goldwasser, S. (ed.) ITCS, pp. 309–325. ACM
(2012)

6. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: FOCS, pp. 136–145. IEEE Computer Society (2001)

7. Canetti, R., Gennaro, R., Herzberg, A.: Proactive security: Long-term protection
against break-ins. Crypto Bytes 3, 1–8 (1997)

8. Canetti, R., Halevi, S., Herzberg, A.: Maintaining authenticated communication
in the presence of break-ins. J. Cryptology 13(1), 61–105 (2000)

9. Canetti, R., Riva, B., Rothblum, G.N.: Refereed delegation of computation. Inf.
Comput. 226, 16–36 (2013)

288 I. Damgård et al.

10. Chung, K.-M., Kalai, Y.T., Vadhan, S.P.: Improved delegation of computation
using fully homomorphic encryption. In: Rabin (ed.) [35], pp. 483–501

11. Damgård, I., Jakobsen, T.P., Nielsen, J.B., Pagter, J.I.: Secure key man-
agement in the cloud. Cryptology ePrint Archive, Report 2013/626 (2013),
http://eprint.iacr.org/

12. Damgård, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation
from somewhat homomorphic encryption. In: Safavi-Naini, Canetti (eds.) [37],
pp. 643–662

13. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on
Information Theory 22(6), 644–654 (1976)

14. Diffie, W., van Oorschot, P.C., Wiener, M.J.: Authentication and authenticated
key exchanges. Des. Codes Cryptography 2(2), 107–125 (1992)

15. Amazon EC2 instance types, http://aws.amazon.com/ec2/instance-types
16. The Encrypting File System (EFS). A white paper from Microsoft Corporation,

http://technet.microsoft.com/en-us/library/cc700811.aspx
17. Danish Energy Auctions, http://energiauktion.dk
18. Fu, K., Frans Kaashoek, M., Mazières, D.: Fast and secure distributed read-only

file system. ACM Trans. Comput. Syst. 20(1), 1–24 (2002)
19. Garay, J.A., Gennaro, R., Jutla, C.S., Rabin, T.: Secure distributed storage and

retrieval. Theor. Comput. Sci. 243(1-2), 363–389 (2000)
20. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: Out-

sourcing computation to untrusted workers. In: Rabin (ed.) [35], pp. 465–482
21. Gentry, C.: Computing on encrypted data. In: Garay, J.A., Miyaji, A., Otsuka, A.

(eds.) CANS 2009. LNCS, vol. 5888, pp. 477–477. Springer, Heidelberg (2009)
22. Gentry, C.: A fully homomorphic encryption scheme. PhD thesis, Stanford Univer-

sity (2009), http://crypto.stanford.edu/craig
23. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-

pleteness theorem for protocols with honest majority. In: Aho, A.V. (ed.) STOC,
pp. 218–229. ACM (1987)

24. HELib, a software library implementing fully homomorphic encryption (copy-
righted by IBM) (2012), https://github.com/shaih/HElib

25. Herzberg, A., Jarecki, S., Krawczyk, H., Yung, M.: Proactive secret sharing or:
How to cope with perpetual leakage. In: Coppersmith, D. (ed.) CRYPTO 1995.
LNCS, vol. 963, pp. 339–352. Springer, Heidelberg (1995)

26. Howard, J.H.: An overview of the Andrew File System. In: Winter 1988 USENIX
Conference Proceedings, pp. 23–26 (1988)

27. Kamara, S., Mohassel, P., Raykova, M.: Outsourcing multi-party computation.
IACR Cryptology ePrint Archive, 2011:272 (2011)

28. Kher, V., Kim, Y.: Securing distributed storage: Challenges, techniques, and sys-
tems. In: Atluri, V., Samarati, P., Yurcik, W., Brumbaugh, L., Zhou, Y. (eds.)
StorageSS, pp. 9–25. ACM (2005)

29. Krawczyk, H.: Distributed fingerprints and secure information dispersal. In: An-
derson, J., Toueg, S. (eds.) PODC, pp. 207–218. ACM (1993)

30. Lakshmanan, S., Ahamad, M., Venkateswaran, H.: Responsive security for stored
data. In: Proceedings of the 23rd International Conference on Distributed Com-
puting Systems, ICDCS 2003, p. 146. IEEE Computer Society, Washington, DC
(2003)

31. Libert, B., Yung, M.: Adaptively secure forward-secure non-interactive threshold
cryptosystems. In: Wu, C.-K., Yung, M., Lin, D. (eds.) Inscrypt 2011. LNCS,
vol. 7537, pp. 1–21. Springer, Heidelberg (2012)

http://eprint.iacr.org/
http://aws.amazon.com/ec2/instance-types
http://technet.microsoft.com/en-us/library/cc700811.aspx
http://energiauktion.dk
http://crypto.stanford.edu/craig
https://github.com/shaih/HElib

Secure Key Management in the Cloud 289

32. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practical
active-secure two-party computation. In: Safavi-Naini, Canetti [37], pp. 681–700

33. Partisia, http://partisia.com
34. Rabin, M.O.: Efficient dispersal of information for security, load balancing, and

fault tolerance. J. ACM 36(2), 335–348 (1989)
35. Rabin, T. (ed.): CRYPTO 2010. LNCS, vol. 6223. Springer, Heidelberg (2010)
36. Rasmussen, T.: Key Management in the Cloud. Master’s thesis, Aarhus University,

Aabogade 34, DK-8200 Aarhus N, Denmark. Master’s Thesis (2012)
37. Safavi-Naini, R., Canetti, R. (eds.): CRYPTO 2012. LNCS, vol. 7417. Springer,

Heidelberg (2012)
38. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
39. ShareMind, http://sharemind.cyber.ee
40. Spencer, B.P., Noveck, D., Robinson, D., Thurlow, R.: The NFS version 4 protocol.

In: Proceedings of the 2nd International System Administration and Networking
Conference, SANE (2000)

41. Wright, C.P., Martino, M.C., Zadok, E.: NCryptfs: A secure and convenient crypto-
graphic file system. In: Proceedings of the Annual USENIX Technical Conference,
pp. 197–210. USENIX Association (2003)

42. Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: FOCS,
pp. 162–167. IEEE Computer Society (1986)

http://partisia.com
http://sharemind.cyber.ee

Estimating Key Sizes for High Dimensional

Lattice-Based Systems

Joop van de Pol and Nigel P. Smart

Dept. Computer Science,
University of Bristol,
United Kingdom

joop.vandepol@bristol.ac.uk, nigel@cs.bris.ac.uk

Abstract. We revisit the estimation of parameters for use in appli-
cations of the BGV homomorphic encryption system, which generally
require high dimensional lattices. In particular, we utilize the BKZ-2.0
simulator of Chen and Nguyen to identify the best lattice attack that can
be mounted using BKZ in a given dimension at a given security level.
Using this technique, we show that it should be possible to work with
lattices of smaller dimensions than previous methods have recommended,
while still maintaining reasonable levels of security. As example applica-
tions we look at the evaluation of AES via FHE operations presented at
Crypto 2012, and the parameters for the SHE variant of BGV used in
the SPDZ protocol from Crypto 2012.

1 Introduction

Estimating parameters for lattice-based cryptographic systems is a major prob-
lem. Such systems are becoming increasingly of interest since, to the best of our
knowledge, they offer resistance to attacks that arise from the future develop-
ment of a quantum computer; and in addition can offer functionality not found
in traditional public key systems. This problem of parameter estimation becomes
more pronounced when one considers the lattice-based schemes underlying Fully
Homomorphic Encryption (FHE) [7]. This is particularly tricky as the lattice di-
mension in such schemes needs to be very large, so large in fact that it is unclear
whether our existing methods for parameter estimation even apply. It is to this
task that the current paper is focused.

The traditional measure of security of a lattice is the estimated root Hermite
value δB (see later for a definition), for a lattice basis B output by a lattice basis
reduction algorithm. In the literature one sees statements such as a δB of 1.05
as being “not secure”, but a value of δB of 1.005 as being “secure”. These values
are given, and evidence is presented for the correctness of such statements, when
in the context of relatively low lattice dimension. It is then assumed that such
statements also hold when applied to large dimensional lattices, since the overall
lattice dimension is not assumed to affect the difficulty of lattice reduction too
much. However, such an extrapolation is clearly not valid; lattice basis reduction

M. Stam (Ed.): IMACC 2013, LNCS 8308, pp. 290–303, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Estimating Key Sizes for High Dimensional Lattice-Based Systems 291

will be harder in higher dimension. Hence, it is not realistic to expect the same
value of δB to be achieveable in high dimension as it is in low dimension.

In various works on FHE, for example [8], a method to produce parameter
estimates which extrapolates the run time of existing lattice basis reduction
implementations is used. This extrapolation is needed so as to obtain security
estimates for high dimensional lattices, which are out of the reach of existing
software. In particular this line of approach follows from the analysis of Lindner
and Peikert [10], where an extrapolation of the performance of the Block Korkine
Zolotarev (BKZ) [14] algorithm in NTL is performed. This itself poses some
problems as the implementation of BKZ within NTL is very old (dating from the
1990’s in some respects) and does not take into account the various optimizations
and improvements which have been introduced over the years.

It turns out that on one hand the analysis in Lindner and Peikert extrapolates
the run times of an implementation which does not use modern techniques, whilst
on the other hand we show that the parameter estimates are too conservative.
This could be explained by the fact that Lindner and Peikert look at a decoding
attack, as opposed to our examination of a distinguishing attack. The decoding at-
tack is slightly more powerful than the distinguishing attack. The decoding attack
could benefit from the application of extreme pruning techniques, and the type of
analysis conducted here, but it is unclear how one could analytically analyse the
application of extreme pruning to decoding.

The BKZ algorithm, as one would implement it today, has a number of pa-
rameters which one can set to obtain different run-times and output qualities.
Such parameters include the block size β, the number of rounds R of BKZ one
runs (where each round consists of d − β applications of finding short vectors
in β dimensional projected lattices), and so-called pruning parameters for the
search in the projected lattices. Fortunately, in [2], Chen and Nguyen present
a simulation algorithm for their improved variant of BKZ. This simulation al-
gorithm allows one to estimate the output quality of a lattice produced by the
BKZ algorithm when performing R rounds with block size β. They also provide
an estimate for the number of basic operations needed to perform each search,
for varying values of the block size β. The term basic operation is deliberately
fuzzy, but in this paper we shall take it to mean the number of nodes visited in
all of the searches in the projected lattices.

Using the simulation algorithm in [2] one obtains the following “standard”
method of determining the hardness of a given set of lattice security parameters.
One first estimates the value of δB one would need to obtain so as to break the
system, one then uses the BKZ simulator to determine how many operations
this would require, and then one can deem the parameters to be secure or not.
However, this in itself implies that the parameters have already been chosen,
which have probably been done via appealing to the above rule of thumb in
relation to “secure” values of δB, and by extrapolation of the runtime of existing
software.

We start this work with the idea of achieving a more rational method of ob-
taining suitable parameters for lattice-based systems in high dimension; with

292 J. van de Pol and N.P. Smart

a special focus on FHE systems. We will still be utilizing the simulation algo-
rithm of [2], but in a way to generate parameters as opposed to testing them. In
FHE systems the underlying hard problem is essentially the bounded distance
decoding problem associated to LWE based lattices. This in effect has three pa-
rameters the dimension n (i.e. the ring dimension when considering ring-LWE
based schemes such as the BGV system [1]), the modulus q and the distance be-
tween a lattice vector and the target vector. In LWE systems, this last quantity
is essentially given by the standard deviation r chosen in the Gaussian sampling
of the error vector. For fixed n we know that as the ratio r/q becomes larger the
problem becomes harder to solve.

In BGV it is common to fix the value of r, and hence the only parameters
one can play with are q and n. On one hand we would like q to be large so as to
allow deeper circuits to be evaluated by the FHE scheme, but a large q implies
low security by the above rule of thumb. To compensate for this one also selects
large values of n, as can be seen in [8] where rings of dimension over 60000 are
considered. Thus there is a tension in selecting q and n, between the evaluation
power and the security of the resulting scheme.

In this paper we adopt the following approach . We first select a security
parameter sec. This is a value, such as 80, 128 or 256, for which we feel that
visiting 2sec nodes in a BKZ algorithm is infeasible. Then, for a particular lattice
dimension d (which for reasons we will explain later satisfies d ≥ n) we determine
the best δB one could obtain via a BKZ algorithm limited to visiting 2sec nodes.
This step is performed by using the BKZ 2.0 simulator from [2] called with
various values of β and R on the estimated Gram-Schmidt lengths of an LLL-
reduced basis of a random, d dimensional lattice. The notion of a random lattice
will be explained in the next section. In this way the δB we obtain is not a fixed
value (such as 1.005) but is in essence a function of d and sec. We then utilize
this δB value in the distinguishing attack analysis of Micciancio and Regev [11],
so as to obtain an equation linking n and q, in a way which guarantees 2sec

security. This equation can then be combined with any equation linking q and n
needed to obtain evaluation of circuits of the correct depth, so as to then obtain
a given set of parameters for a given specific application and/or system.

It should be noted first and foremost that things change over time. The avail-
able computing power increases as time passes by and new algorithms or attacks
can be discovered. Furthermore, it is tricky to make claims about the security of
lattice schemes, because it is often unclear how the behaviour of attacks in low
dimensions extrapolates to higher dimensions. This work analyses one attack,
which is currently believed to be the best generic attack against lattice-based
schemes. It is currently unknown whether generic attacks are the best attack in
every setting. In structured lattices, such as ideal or symplectic lattices, there
may exist better attacks that are not yet known to the cryptographic community.
Finally, in order to have confidence in any cryptographic scheme, there should
be a reasonably large margin between parameters that are trivially broken and
recommended secure ones. It is important to take this into account, especially
when selecting parameters for lattice-based schemes.

Estimating Key Sizes for High Dimensional Lattice-Based Systems 293

2 Lattice Background

In this section we present the basics on lattices which we will require, and in
addition present our notation.

A (full rank) lattice of dimension d is the discrete subgroup of Rd generated
(over Z) by a set of vectors [b1, . . . ,bd] in R

d called the basis. It is common to
represent the basis as a matrix B in which row i of the matrix B is given by the
vector bi (all vectors will be row vectors). Note that this is mathematically not
so nice as we then always deal with row vectors, but from a programming point
of view it is nicer due to being able to deal with swapping rows (i.e. basis vectors)
via pointer arithmetic. Therefore, this convention is common in the literature on
lattice basis reduction. We write

L(B) = {z ·B : z ∈ Z
d}.

A lattice basis is not unique and each basis is related to another via the relation
B′ = Z ·B where Z ∈ GLd(Z), i.e. Z is an integer matrix with determinant ±1.
We often use the shorthand L for L(B) if the underlying basis (which of course
does not really matter) is clear.

On vectors in C
d we can define the following norms

‖x‖p =

⎧
⎪⎨

⎪⎩

(∑d
i=1 |xi|p

)1/p
p �=∞

maxdi=1 |xi| p =∞.
Being a discrete structure there is a well defined quantity of a non-zero minimum
of the lattice, which we denote by

λ
(p)
1 (L) := min{‖x‖p : x ∈ L,x �= 0}.

We can also define the successive minima λ
(p)
i (L), which are defined as the

smallest radius r such that the d-dimensional ball of radius r centred on the origin
contains i linearly independent lattice points. To ease notation, and because we

will be mainly working with the 2-norm, we write λi(L) = λ
(2)
i (L).

For any basis B we define the fundamental region as the set

P(B) =

⎧
⎨

⎩

∑

1≤i≤d
xi · bi : xi ∈ [0, 1)

⎫
⎬

⎭
.

The d-dimensional volume, Δ(L) = Vol(P(B)), is called the fundamental vol-
ume, and can be computed via Δ(L) = | det(B)|. It is clear that this quantity
is an invariant of the lattice, and does not depend on the precise basis chosen.
The dual L∗ of a lattice L is the set of all vectors y ∈ R

d such that y · xT ∈ Z

for all x ∈ L. Given a basis matrix B of L we can compute the basis matrix B∗

of L∗ via B∗ = (B−1)T. Hence we have Δ(L∗) = 1/Δ(L).
The classic result in lattice theory (a.k.a. geometry of numbers), is that of

Minkowski, which relates the minimal distance to the fundamental volume.

294 J. van de Pol and N.P. Smart

Theorem 1 (Minkowski’s Theorem). For any d dimensional lattice L we
have

λ1(L) ≤
√
d ·Δ(L)1/d.

The notion of a random lattice stems from work by Goldstein and Mayer [9].
Consider lattices with a prime determinant p. For large p the vast majority of
these lattices are of the following type:

⎛

⎜
⎜
⎜
⎝

p
x1 1
...

. . .

xd−1 1

⎞

⎟
⎟
⎟
⎠
.

Goldstein and Mayer show that lattices generated by taking p at random and
taking xi independently and uniformly at random in {0, . . . , p− 1} are in some
(natural) sense random. These lattices are often studied when considering the
behaviour of basis reduction algorithms [12,5].

For such random lattices the first minimum is approximated by the Gaussian
Heuristic, which states that for a random lattice we have

λ1(L) ≈
√

d

2 · π · e ·Δ(L)1/d.

Hermite showed that there is an absolute constant γd, depending only on d, such
that

λ1(L) ≤ √γd · (Δ(L))1/d.
The value of γd (called “Hermite’s constant”) is, however, only known for 1 ≤
d ≤ 8 and d = 24.

A specific basis B is said to have Hermite factor δdB, or root Hermite factor
δB, if

‖b1‖2 = δdB ·Δ(L)1/d.
The root Hermite factor of the lattice is said to be the constant δL such that

λ1(L) = δdL ·Δ(L)1/d.
In lattice basis reduction algorithms we are trying to determine an output lattice
basis such that δB = δL, i.e. the first vector in the basis is the shortest vector.

By the Gaussian heuristic we have for a random lattice

δL ≈
(√

d

2 · π · e

)1/d

.

3 Estimating BKZ

In this section we provide an overview of the prior work on analysing the BKZ
algorithm and then present our results on estimating the output δB from BKZ,

Estimating Key Sizes for High Dimensional Lattice-Based Systems 295

for a specific dimension and with an explicit limit on the number of nodes eval-
uated. In later sections we will use this analysis to estimate parameters for the
LWE based systems used in FHE schemes.

BKZ Overview. Throughout the paper we assume the input basis to the BKZ
algorithm has been LLL reduced (i.e., reduced by the LLL algorithm). The
BKZ algorithm, as modified in [2] and called BKZ 2.0, is parameterized by
two parameters R and β and operates as follows. The algorithm executes the
following round function R times. In each round we iterate the index i from one
to d − β, and for each value of i we take the β-dimensional projected lattice
generated by the basis vectors bi, . . . ,bi+β−1 projected onto the orthogonal
space spanned by the first i − 1 basis vectors. A small vector is obtained in
the projection of this lattice, and the resulting vector is inserted into the main
lattice basis at the ith position. The search for the small vector in the projected
lattice is performed by an enumeration method using a heuristic called extreme
pruning [6].

Historical Background. The line of work aimed at assessing the behaviour
of basis reduction algorithms in practice was started by Gama and Nguyen [5].
They considered this behaviour from an experimental point of view and tried
to extrapolate it to higher dimensions (although not the astronomical dimen-
sions required in FHE schemes). Specifically, they analyse the behaviour of basis
reduction algorithms when applied to solving various lattice problems, such as
Hermite-SVP, Approximate SVP and Unique SVP. However, since BKZ 2.0 did
not exist at the time, they analysed the original BKZ which did not use extreme
pruning and did not abort after a fixed number of rounds, but would instead
run until termination.

The most interesting result from these experiments was that basis reduction
algorithms output a basis B which appeared to solve Hermite-SVP, i.e. finding
a short basis vector, with Hermite Factor δdB. The interesting part is that on
average, the δB observed in practice was much smaller than theoretical worst-
case bounds obtained from analysing the reduction algorithms theoretically. It
should be noted that this worst-case behaviour was tied to the basis of the
particular lattice, rather than to the lattice itself. Applying the basis reduction
algorithms to a ‘randomized’ basis of the same lattice resulted in average-case
rather than worst-case behaviour. Gama and Nguyen conjectured that the value
of δB of the output basis depends mostly on the basis reduction algorithm that
was used and not on the input lattice (unless this lattice has special structure).
The value also depended on the dimension d but appeared to converge quickly
as d increases.

Gama and Nguyen drew several conclusions. Most importantly, they con-
cluded that with the basis reduction algorithms available at that time, δB = 1.01
was the best reachable root-Hermite factor. They also examined the run-time
of exact SVP solvers and concluded that up to dimension 60 the shortest vec-
tor problem could be solved within an hour, whereas dimension 100 seemed out
of reach. They also observed that BKZ with block sizes much higher than 25
was not realistic in higher dimensions due to run-time constraints. Once again,

296 J. van de Pol and N.P. Smart

these observations were before the discovery of extreme pruning and before the
adoption of aborting BKZ after a fixed number of rounds R.

It should also be noted that this work was not aimed at cryptography, but only
at basis reduction algorithms in a general setting. Hence, Gama and Nguyen did
not experiment specifically with lattices that arise from a cryptographic setting,
but instead with random lattices from the Goldstein Mayer distribution [9] (as
described in Section 2) and some specially structured lattices for the unique
shortest vector problem.

Gama, Nguyen and Regev in 2010 [6] proposed improved heuristics for solving
SVP using enumeration via a technique called extreme pruning. Potentially, this
technique could be used with the enumeration of the β dimensional projected
lattices within the BKZ algorithm. However, this heuristic technique requires a
pretty good estimate of the length of the shortest vector. But Gama and Nguyen
had already observed that the projected lattices that occur in BKZ with low
block size (say β < 50) do not follow the distribution of random lattices. More
specifically, these projected lattices did not adhere to the Gaussian Heuristic,
which would have given a good approximation to the length of the shortest
vector. Thus, extreme pruning cannot trivially be applied to BKZ with low
block size.

But then Chen and Nguyen [2] made the observation that the projected lat-
tices that appear in BKZ for higher blocksizes (say β > 50) behave like random
lattices as far as the Gaussian Heuristic is concerned. This enables the intro-
duction of extreme pruning and several other heuristic improvements to BKZ,
resulting in the BKZ 2.0 algorithm outlined above. The BKZ 2.0 algorithm is
able to reduce lattices with much higher block sizes in practice than the original
BKZ. This observation about the projected lattices and Gaussian Heuristic also
allowed Chen and Nguyen to create a simulator for BKZ 2.0, which simulates
the behaviour of the algorithm on the lengths of the Gram-Schmidt vectors of
the basis. This makes it much easier to heuristically explain (for large enough
block size) the behaviour of BKZ in practice and the associated output δB, even
for block sizes that we might not be able to run in practice.

Chen and Nguyen use the simulator to estimate the approximate security of
the NTRU encryption scheme and the Gentry-Halevi FHE challenges. Specifi-
cally for the challenges by Gentry and Halevi they reason as follows. From the
parameters of the scheme they can derive that they require a root-Hermite fac-
tor of δB . They use the simulation to estimate that this requires R rounds of
BKZ with block size β (starting from an LLL-reduced basis). Using an upper
bound for the cost of a block size β enumeration derived from experiments, they
convert the R rounds into the number of enumeration nodes (given that each
round consists of d − β enumerations where d is the dimension of the lattice).
This number of nodes gives a rough estimate for the bit-security of the specific
parameters of the scheme.

Our Approach. In the heuristic approach by Chen and Nguyen (and others), an
estimated secrity level is essentially derived from a system with given parameters.
However, we would like to choose our parameters according to a given security

Estimating Key Sizes for High Dimensional Lattice-Based Systems 297

level. Thus, we reverse the analysis by Chen and Nguyen and try to answer the
question: Given a security level of sec such that the adversary can only perform
2sec operations, how should we choose our parameters such that our system is
secure against this adversary?

Say we choose the dimension d of a Goldstein Mayer lattice and a security
level sec. Now, an adversary can attempt to run BKZ with block size β, for
varying β. For each β, we can approximate the cost of a single enumeration
using the tables from Chen and Nguyen [2]. Then, we can compute how many
enumerations we could maximally perform with this block size without exceeding
2sec nodes. This bound on the number of enumerations gives us a bound on the
number of rounds R, say R(β, d, sec), for the dimension d as well. Now we can
simulate the behaviour of R(β, d, sec) rounds of BKZ with block size β on a
random LLL-reduced basis of a d-dimensional Goldstein Mayer lattice, using
the simulation algorithm from [2]. This allows us to predict the root-Hermite
factor δB of the output basis from BKZ. Thus, on input of d, sec and β, we
obtain a value of δB. If we perform this procedure for all block sizes β, we find
an estimated value of δB (one for each β). Taking the minimum of all such δB
we obtain an estimate for the best value of δB which can be obtained by an
adversary which is limited to enumerating at most 2sec nodes.

Doing this for a number of increasing dimensions we find the data in Table
1 for the estimate of the best δB an adversary can obtain in a given dimension
d. Unsurprisingly we see that as the dimension increases the best value of δB
that one can obtain also increases, although the increase is not too pronounced.
This can be explained as follows. If we allow BKZ with block size β to run
indefinitely, so for unbounded R, the simulation suggests that δB of the output
basis converges to some value that seems to only depend on β (consistent with
the observations from [5]). However, as the dimension increases, performing a
round of BKZ becomes more costly. Furthermore, the simulation also indicates
that in higher dimensions it converges more slowly to this value δ, i.e., it takes
a larger number of rounds R to reach it. In higher dimensions, BKZ with block
size β reaches a worse δB in R(β, d, sec) rounds than BKZ with block size β′ < β
in R(β′, d, sec) rounds. The results in Table 1 assume that the estimated number
of nodes visited during an enumeration reported in [2] cannot be improved by
further algorithmic improvements.

For d > 217, the BKZ simulator is rather slow, but for the applications in
Section 5 dimensions up to 217 are sufficient. Therefore, only dimensions up to
d17 were considered here. The value of δB achievable when evaluating at most
2256 nodes is achieved by performing BKZ with block size 250. Since Chen and
Nguyen only give the cost of enumerations up to block size 250, it is possible that
an attacker could use BKZ with a higher block size and achieve a better δB, while
evaluating no more than 2256 nodes. Because it was not possible to reproduce
the costs for varying block sizes and because it is unclear how to realistically
extrapolate the costs to higher block sizes, the value of δB here corresponds to
block size 250.

298 J. van de Pol and N.P. Smart

Table 1. Smallest achievable δB by BKZ in dimension d and evaluating at most 2sec

nodes

d
sec 1024 2048 4096 8192 16384 32768 65536 131072

80 1.0081 1.0081 1.0084 1.0084 1.0088 1.0088 1.0092 1.0092
128 1.0067 1.0067 1.0067 1.0069 1.0069 1.0069 1.0069 1.0072
256 1.0055 1.0055 1.0055 1.0055 1.0055 1.0055 1.0055 1.0055

4 Estimating LWE Parameters

Our goal is to provide estimates for LWE parameters for specific cryptographic
systems in large dimensions, given the estimates in the previous section. Before
proceeding we recap a little on notation and prior analysis so as to fix nota-
tion. The LWE problem, and hence to the best of our knowledge the ring-LWE
problem, is based upon arithmetic in q-ary lattices.

q-ary Lattices. A q-ary lattice L of dimension n is one such that qZn ⊂ L ⊂ Z
n

for some integer q. Note that all integer lattices are q-ary lattices for a value of
q which is an integer multiple of Δ(Λ). Our interest will be in special lattices
which are q-ary for a value of q much smaller than the determinant. Much of our
discussion follows that in [11].

Suppose we are given a matrix A ∈ Z
n×d
q , with d ≥ n, we then define the

following two d-dimensional q-ary lattices.

Λq(A) =
{
y ∈ Z

d : y = z · A (mod q) for some z ∈ Z
n
}
,

Λ⊥q (A) =
{
y ∈ Z

d : y · AT = 0 (mod q)
}
.

Suppose we have y ∈ Λq(A) and y′ ∈ Λ⊥q (A) then we have y = z · A and

y′ · AT = 0 (mod q). This implies that

y · y′T = (z ·A) · y′T = z · (y′ ·AT)T ∈ q · Z.

Hence, the two lattices are, up to normalisation, duals of each other. We have
Λq(A) = q · Λ⊥q (A)∗ and Λ⊥q (A) = q · Λq(A)∗.

To fix ideas consider the following example; Let n = 2, m = d = 3, q = 1009
and set

A =

(
1 2 3
3 5 6

)

.

To define a basis B of Λq(A) we can take the row-HNF of the 5 × 3 matrix(
A

q · I3
)

to obtain

B =

⎛

⎝
1009 0 0
1 1 0
336 0 1

⎞

⎠ .

Estimating Key Sizes for High Dimensional Lattice-Based Systems 299

The basis of Λ⊥q (A) is given by

B∗ = q · ((BT)−1) =

⎛

⎝
1 − 1 − 336
0 1009 0
0 0 1009

⎞

⎠ .

The properties of the above example hold in general; namely if q is prime and
(in general) if d is a bit larger than n then we have Δ(Λq(A)) = qd−n and
Δ(Λ⊥q (A)) = qn.

We now turn to discussing how short the vectors are that one can find in
q-ary lattices. Let us focus on the lattice Λ⊥q (A), which will be more important
for our analysis. We know that this contains vectors of length q (since it is a
q-ary lattice), we assume that lattice reduction will output a basis B with root
Hermite factor δB for some value of δB. This means that computationally the
shortest vector we can produce in the lattice Λ⊥q (A) will be of size

min(q, δdB · qn/d)

since Δ(Λ⊥q (A)) = qn.

LWE Problem. The LWE problem is parametrized by four parameters n, d, q
and r = s/

√
2π. To define the problem we introduce the Gaussian distribu-

tion in one variable with parameter s (and mean zero) as the distribution with
probability distribution function proportional to

f(x) =
1

s
exp

(

−π · x
2

s2

)

.

Thus we have that the standard deviation is given by r = s/
√
2 · π. The (spher-

ical) multivariate normal distribution on R
n, with Gaussian parameter s (resp.

standard deviation r) is given by

f(x) =
1

s
exp

(

−π · ‖x‖
2
2

s2

)

=
1

r · √2 · π exp

(

−‖x‖
2
2

2 · r2
)

.

Sampling from this distribution is performed by simply sampling each component
of the vector x independently from N(0, r).

The discrete Gaussian distribution, with support on the lattice L with Gaus-
sian parameter s (equivalently standard deviation r = s/

√
2 · π, denoted DL,s,

is the probability distribution on L which selects x ∈ L with probability propor-
tional to exp(−π · ‖x‖22/s2).

Definition 1 (LWE Decision Problem). Given (A,v) where A ∈ Z
n×d
q and

v ∈ Z
d
q determine which of the following distributions v is from:

1. v is chosen uniformly at random from Z
d
q .

2. v = s ·A+ e where e, s← DZn,s.

300 J. van de Pol and N.P. Smart

The link between LWE and q-ary lattices is then immediately obvious. Given A
and v the decision problem is to determine whether v is a random point or an
element which is close to a point in the lattice Λq(A).

The natural “attack” against the decision LWE problem is to first find a short
vector w in the dual lattice Λq(A)

∗ and then check whether w ·vT is close to an
integer. If it is, one concludes that the input vector is an LWE sample, whereas if
it is not one concludes that the input vector is random. Thus to ensure security,
following the argument in [11, Section 5.4.1], we require

r ≥ 1.5

‖w‖2 .

Now from earlier, we deduce that when applying lattice reduction to the lattice
Λq(A)

∗ = 1
qΛ
⊥
q (A) we will obtain a vector w with

‖w‖2 ≈ 1

q
min(q, δdB · qn/d).

The point is that we have some freedom in choosing d here, since it is related
to the number of LWE samples we take. In the traditional analysis [11] one
assumes δB is already given and one then applies calculus to minimize the above
estimate for ‖w‖2 by picking d as a function of q, n and δB. But as we presented
in Section 3 the value of δB is essentially a function of d and sec.

Our Analysis. We make the heuristic assumption that the behaviour of apply-
ing the BKZ lattice basis reduction technique to the d dimensional lattice Λq(A)

∗

performs roughly the same as the application to the Goldstein Mayer lattices in
Section 3. For the above distinguishing attack to fail to work we require

qn/d−1 ≥ 1.5

r · δdB
= cr,d,sec.

For fixed values of r we can derive, using the method in Section 3, values of
cr,d,sec for any value of sec and d that we require. We therefore require, to ensure
security, that for all d ≥ n we have

n log2 q − d log2 q ≥ d · log2 cr,d,sec.

Note that, as a sanity check, for fixed n this means we have an upper bound on
log2 q of

log2 q ≤ min
d>n

−d · log2 cr,d,sec
d− n . (1)

We end this section by discussing what this means for a simple LWE based
system at the security level of 80 bits; in particular we determine what the
maximum value of q could be when we fix n = 4000 and r = 3.2. We first derive
a more detailed version of Table 1 and use linear interpolation to determine
estimated δB values for dimensions not in our table; this needs to be done once
and for all, in all of our analysis. Retuning to considering our specific values of

Estimating Key Sizes for High Dimensional Lattice-Based Systems 301

n and r: We enumerate all d > n up to 217, and use the linear interpolation
of Table 1 to determine a value of δB for reducing a lattice of dimension d at
this security level. This enables us to obtain an upper bound on log2 q, over all
values of d, from Equation 1. Indeed we obtain an upper bound of log2 q of 195
and the “best” value of d for the distinguishing attack comes out as d = 8045
with δB ≈ 1.0084. We compare this with the traditional analysis which assumes
δB given and then computed d as d =

√
n · log(q)/ log(δB), which would give

us a value of d ≈ 8045 as well, as expected. However, we reiterate that this
traditional method of obtaining d comes from somehow estimating the value
of δB one would obtain in performing BKZ on lattices of (an as yet unknown)
dimension d.

5 Application of Our Method to Two Examples

As a first application we re-evaluate the parameters in (the full version of) [8].
The authors of [8] determine parameters for their SHE scheme so as to homomor-
phically evaluate large circuits, including the AES circuit. They select a security
level equivalent to 80 bits of security and derive sizes for the resulting parameters
to evaluate circuits of multiplicative depth L, for various values of L. In order
to compare the results, we will consider the same security level.

In [8, Appendix C], they use the security analysis by Lindner and Peikert [10]
to derive a lower bound on the approximate ring dimension n = φ(m) depending
on the largest modulus Q, standard deviation r and the security level sec, which
guarantees the security of the scheme. In particular the lower bound is

n ≥ log(Q/r)(sec+ 110)

7.2
. (2)

To guarantee the functionality of the L-leveled homomorphic scheme, they then
derive an estimate on the size of Q needed to evaluate a circuit of depth L, this
is given by

Q ≈ 222.5·L−3.6 · r · nL.
The individual moduli in the SHE scheme are given by

p0 ≈ 223.9 · n, pi ≈ 211.3
√
n for i = 1, . . . , L− 2, pL−1 ≈

√
n+ 11,

and
P ≈ 2 · 308L · ζL−2 · r · nL/2.

Combining the two equations for Q, setting sec = 80, ζ = 8 and r = 3.2 they
derive values of n and Q for various values of L.

In our analysis, we replace the security-related lower bound (2) on n by the
equivalent upper bound from Equation (1) on Q, given n. Now, we increase n, in
steps of 100 from a given starting value, until the upper bound on Q is above the
estimate for Q needed to ensure correct evaluation of a circuit of multiplicative
depth L. We present our results, and the comparison with those in [8] in Table 2.

302 J. van de Pol and N.P. Smart

As one can see the methodology for choosing parameters in this paper results in
roughly the same values for the moduli, but also produces significantly smaller
lattice dimensions. In practice, this will translate into faster overall performance
figures for the SHE scheme.

Table 2. Table comparing the estimates from [8] with our estimates. Here �2(x) =
log2(x).

L Estimates from [8] Our Estimates
n �2(p0) �2(pi) �2(pL−1) �2(P) n �2(p0) �2(pi) �2(pL−1) �2(P)

10 9326 37.1 17.9 7.5 177.3 7100 36.7 17.7 6.6 163.3
20 19434 38.1 18.4 8.1 368.8 14300 37.7 18.2 7.0 369.0
30 29749 38.7 18.7 8.4 564.2 21600 38.3 18.5 7.3 550.6
40 40199 39.2 18.9 8.6 762.2 28500 38.7 18.7 7.5 743.3
50 50748 39.5 19.1 8.7 962.1 35500 39.0 18.6 7.6 937.9
60 61376 39.8 19.2 8.9 1163.5 42900 39.3 18.9 7.7 1134.3
70 72071 40.0 19.3 9.0 1366.1 50400 39.5 19.1 7.9 1332.1
80 82823 40.2 19.4 9.1 1569.8 57900 39.7 19.2 7.9 1530.9
90 93623 40.4 19.5 9.2 1774.5 65500 39.9 19.3 8.0 1730.6

As another example we look at the example parameters used in the SPDZ
MPC protocol, see [3,4]. In [3] parameters are given for instantiating the SPDZ
MPC protocol over fields of prime characteristic of size 32, 64 and 128 bits.
The resulting parameter sets have lattice dimensions 8192, 16384 and 32768
respectively. In the prime characteristic case greater efficiency is obtained in the
protocol if one has lattices of dimension a power of two. If one performs the same
analysis as in [3] for the case of characteristic two one finds that the resulting
dimension will have size roughly 8192.

By using our analysis we find that we can securely use dimensions of size roughly
4096 (for characteristic two), 8192 (for prime characteristic of size roughly 232)
16384 (for prime characteristic of size roughly 264) 16384 (for prime characteris-
tic of size roughly 2128). Thus we obtain a more efficient scheme for the case of
characteristic two and for very large prime characteristic only. The reason for the
lack of a general improvement is that for odd prime characteristic, the dimensions
are restricted to a power of two due to scheme specific efficiency.

Acknowledgements. The authors would like to acknowledge the partial sup-
port of of the ERC (Advanced Grant ERC-2010-AdG-267188-CRIPTO), the
Defense Advanced Research Projects Agency (DARPA) and the Air Force Re-
search Laboratory (AFRL) (under agreement number FA8750-11-2-0079)1, and

1 The US Government is authorized to reproduce and distribute reprints for Gov-
ernment purposes notwithstanding any copyright notation thereon. The views and
conclusions contained herein are those of the authors and should not be interpreted
as necessarily representing the official policies or endorsements, either expressed or
implied, of Defense Advanced Research Projects Agency (DARPA) or the U.S. Gov-
ernment.

Estimating Key Sizes for High Dimensional Lattice-Based Systems 303

by EPSRC (Grant EP/I03126X). The second author has been supported in part
by a Royal Society Wolfson Merit Award. The authors also thank the anonymous
reviewers for their helpful comments and insights.

References

1. Brakerski, Z., Gentry, C., Vaikuntanathan, V. (Leveled) fully homomorphic en-
cryption without bootstrapping. In: Goldwasser, S. (ed.) ITCS, pp. 309–325. ACM
(2012)

2. Chen, Y., Nguyen, P.Q.: BKZ 2.0: Better lattice security estimates. In: Lee, D.H.,
Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidel-
berg (2011)

3. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority - or: Breaking the SPDZ limits. IACR
Cryptology ePrint Archive, 2012:642 (2012)

4. Damg̊ard, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, Canetti (eds.) [13], pp. 643–
662

5. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N.P. (ed.) EU-
ROCRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008)

6. Gama, N., Nguyen, P.Q., Regev, O.: Lattice enumeration using extreme pruning.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 257–278. Springer,
Heidelberg (2010)

7. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) STOC, pp. 169–178. ACM (2009)

8. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit.
In: Safavi-Naini, Canetti (eds.) [13], pp. 850–867

9. Goldstein, D., Mayer, A.: On the equidistribution of Hecke points. ForumMath. 15,
165–189 (2003)

10. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryp-
tion. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer,
Heidelberg (2011)

11. Micciancio, D., Regev, O.: Lattice-based cryptography. In: Post-Quantum Cryp-
tography, pp. 147–192. Springer (2009)

12. Nguyen, P.Q., Stehlé, D.: LLL on the average. In: Hess, F., Pauli, S., Pohst, M.
(eds.) ANTS 2006. LNCS, vol. 4076, pp. 238–256. Springer, Heidelberg (2006)

13. Safavi-Naini, R., Canetti, R. (eds.): CRYPTO 2012. LNCS, vol. 7417. Springer,
Heidelberg (2012)

14. Schnorr, C.P., Euchner, M.: Lattice basis reduction: Improved practical algorithms
and solving subset sum problems. In: Budach, L. (ed.) FCT 1991. LNCS, vol. 529,
pp. 68–85. Springer, Heidelberg (1991)

Sub-linear Blind Ring Signatures
without Random Oracles

Essam M. Ghadafi

University of Bristol, United Kingdom

Abstract. In this paper we provide the first provably secure blind ring signature
construction that does not rely on random oracles, which solves an open problem
raised by Herranz and Laguillaumie at ISC 2006. We present different instanti-
ations all of which are round-optimal (i.e. have a two-move signing protocol),
yield sub-linear size signatures, and meet strong security requirements. In order
to realize our constructions efficiently, we construct a sub-linear size set member-
ship proof which works in the different bilinear group settings, which may be of
independent interest.

As a secondary contribution, we show how to generically combine our set
membership proof with any secure signature scheme meeting some conditions to
obtain ring signatures whose security does not rely on random oracles. All our
constructions work over the efficient prime-order bilinear group setting and yield
signatures of sub-linear size. In addition, our constructions meet strong security
requirements: namely, anonymity holds under full key exposure and unforgeabil-
ity holds against insider-corruption. Finally, we provide some example instantia-
tions of the generic construction.

1 Introduction

Background. A Ring Signature (RS), introduced by Rivest, Shamir and Tauman [45],
allows a signer to choose an arbitrary set of signers called a “ring” and anonymously
sign a message on behalf of the ring providing that the signer himself is a member of
the ring. Generating the signature does not require the cooperation of other members of
the ring and hence they need not even be aware of their inclusion in the ring.

Besides correctness, the security of ring signatures [45,8] requires anonymity and
unforgeability. Informally, anonymity requires that a signature does not reveal the iden-
tity of the ring member who produced it. On the other hand, unforgeability requires
that an adversary cannot forge new signatures on behalf of an honest ring. In [8], the
authors provide various variants of those requirements. We will prove the security of
our constructions under the strongest definitions provided in [8].

Ring signatures were originally used for anonymous leaking of authoritative secrets.
For other applications of ring signatures see, e.g. [45,39,21].

Like group blind signatures [38], blind ring signatures extend blind signatures to the
multi-signer setting. However, in contrast to the former, the latter provide more flexibil-
ity in the choice of the group as it is done in an ad hoc manner without requiring prior
cooperation or join protocols. In addition, anonymity of the signer is not revocable. Be-
sides the three security properties required from traditional ring signatures, the security

M. Stam (Ed.): IMACC 2013, LNCS 8308, pp. 304–323, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Sub-linear Blind Ring Signatures without Random Oracles 305

of blind ring signatures requires blindness which informally states that members of the
ring cannot learn which message is being signed on behalf of the ring. Also, they cannot
match a signature to its signing session.

Applications of blind ring signatures include distributed e-cash systems [38], where
a client’s e-coin is signed by a member of a coalition of banks chosen in an ad hoc
manner. The choice of the coalition could be specified by either the issuing bank or the
client himself. Other applications of the primitive include multi-authority e-voting and
e-auction systems.

Related Work. BLIND RING SIGNATURES. Only a few blind ring signature schemes

[16,50,35,51] were proposed. All of those constructions are secure in the Random Ora-
cle Model (ROM) [7]. The scheme in [16] yields signatures of linear size and its security
requires both random oracles and the generic group model [48]. In [50], the authors pre-
sented a static blind ring signature scheme that requires both random oracles and the
generic group model. This scheme requires that the group (i.e. the ring) is fixed and
hence it yields signatures of constant size. The schemes in [35,51] also yield signatures
of linear size. We note here that the blindness requirement of [35] was proven using a
different game than the standard definition for blindness [37,43] where the adversary
only interacts once with the challenger and does not get to see the final signature.

RING SIGNATURES. The first construction by Rivest, Shamir and Tauman [45] is based
on trapdoor permutations and is secure in the random oracle model. Subsequently, other
constructions relying on random oracles followed [4,12,36,21,40].

A few constructions which do not rely on random oracles were proposed. Bender et
al. [8] gave a generic construction requiring generic ZAPs [22], making it inefficient.
They also gave two constructions for two-signer rings. Other constructions which do
not require random oracles include [47,17,14,46,15]. The constructions in [46,15] use
a weaker notion of unforgeability than the one we use in this paper.

All existing constructions apart from [17] (which yields sub-linear size signatures
in composite-order groups in the Common Reference String (CRS) model) and [21,40]
(which yield signatures of constant size in the ROM) yield signatures of linear size.

The Challenges. The subtlety one faces when designing blind ring signatures lies in
the dual privacy requirement: that is the dilemma of having parts of the witness of the
same proof of knowledge coming from different parties who do not trust each other.
On the one hand, the signer needs to hide his identity and parts of the signature that
could identify him (i.e. the anonymity requirement). On the other hand, the user needs
to hide the message and parts of the signature which could reveal the linkage between
a signature and its signing session (i.e. the blindness requirement). One might consider
addressing such an issue by resorting to secure multiparty computation, however, such
an approach would massively degrade the efficiency of the resulting construction.

Due to the nature of random oracles, in the random oracle model this obstacle is
easier to tackle by, for instance, using divertible proofs of knowledge e.g. [20,41]. In
the standard model, the issue is more subtle. To get around this issue, we exploit some
properties of Groth-Sahai proofs [33], namely: the randomizability of the proofs [6]
and the ability to transform some proofs without knowledge of the original witness

306 E.M. Ghadafi

[29,27]. This way we obtain the required divertibility needed to achieve the dual privacy
requirement.

The second technical challenge is that unforgeability of ring-related signatures re-
quires that the signature is bound to the ring in order to prevent the adversary from
transforming a signature by some ring into a signature by a different ring. The scenario
is more serious when the construction involves a malleable proof system such as the
Groth-Sahai proof system which we use in our constructions. This is because the mal-
leability of the proof system allows one to easily transform a proof for some statement
into another proof for a related statement.

When constructing ring signatures, one can easily bind the signature to the ring by
simply signing both the message and the ring. For instance, this could be efficiently
achieved by signing the hash of the concatenation of both the message and the ring.
Unfortunately, this approach does not work in a blind signing protocol. That is because
necessitating that the message remains hidden from the signer, one needs to prove that
such hashing was applied correctly without revealing the message, which cannot be
efficiently realized due to the complex structure of hash functions. To bind the signature
to the ring w.r.t. which it was produced, we deploy a different approach. We use a
signature scheme that simultaneously signs a pair of messages to construct a partially-
blind signature scheme where we hide the actual message from the signer but we include
the details of the ring as the public information shared between the user and the signer.

The remaining challenge which is inherent even in traditional ring signatures is the
size of the signatures. Almost all previous blind ring signatures e.g. [16,35,51] and
most existing traditional ring signatures e.g. [8,47,14] yield signatures whose size grows
linearly with the size of the ring. This limitation is usually inherited from the underlying
OR proof used to prove that the signature verifies w.r.t. a verification key contained in
the ring without revealing which one it is. In [17], the authors used some techniques
from private information retrieval applications to construct a membership proof that
has a sub-linear size. Unfortunately, their protocol is limited to the rather inefficient
composite-order bilinear group setting. As a part of our contribution, we adapt their
technique to the prime-order setting and thus we obtain a sub-linear size set membership
proof that works in the 3 different settings of prime-order bilinear groups. Although this
on its own is not a major contribution, it is of independent interest as we believe it could
have further applications beyond the scope of this paper.

Our Contribution. Our main contribution is the first blind ring signature schemes that
do not rely on idealized assumptions. This solves a problem that remained open since
2006 [35]. To realize our constructions efficiently, we instantiate the idea used for the
membership proof from [17] in the prime-order bilinear group setting. All our con-
structions yield signatures of sub-linear size and thus are shorter than those of previous
constructions. In addition, our schemes meet strong security requirements and their se-
curity is based solely on falsifiable complexity assumptions [44].

Our final contribution is a generic construction that combines our set membership
proof with any signature scheme in the standard model satisfying some conditions to
get sub-linear size ring signatures without random oracles. Again, our focus is on con-
structions in the efficient prime-order bilinear group setting.

Sub-linear Blind Ring Signatures without Random Oracles 307

Paper Organization. The rest of the paper is organized as follows: In Section 2, we
give some preliminary definitions. In Section 3, we define blind ring signatures and
present their security definitions. In Section 4, we present a new set membership proof.
In Section 5, we present our blind ring signature constructions. Finally, in Section 6 we
present our ring signature constructions.

2 Preliminaries

Notation. Given a probability distribution S, we denote by x ← S the operation of
selecting an element according to S. If A is a probabilistic machine, we denote by
A(x1, . . . , xn) the output distribution of A on inputs (x1, . . . , xn). By p.p.t., we mean
running in probabilistic polynomial time in the relevant security parameter. By [1, n],
we denote the set {1, 2, . . . , n}. A function v(.) : N→ R

+ is negligible in c if for every
polynomial p(.) and all sufficiently large values of c, it holds that v(c) < 1

p(c) .

Bilinear Groups. A bilinear group is a tuple P := (G1,G2,GT , p, G, G̃, e) where
G1,G2 and GT are groups of a prime order p and G and G̃ generate G1 and G2,
respectively. The function e : G1 × G2 −→ GT is a non-degenerate bilinear map. We
use multiplicative notation for all the groups although usually G1 and G2 are chosen to
be additive. We let G×1 := G1 \ {1G1} and G

×
2 := G2 \ {1G2}. For clarity, elements

from G2 will be accented with˜.
Following [28], we classify prime-order bilinear groups into 3 main types:

– Type-1: This is the symmetric pairing setting in which G1 = G2.
– Type-2: G1 �= G2 but there is an efficiently computable isomorphism ψ : G2 −→
G1.

– Type-3: Again G1 �= G2, but now there is no known efficiently computable iso-
morphism.

We assume that all groups are cyclic and there is an algorithm BGrpSetup that takes
a security parameter λ and a type tp ∈ {1, 2, 3} and outputs a description of bilinear
groups of Type-tp.

Complexity Assumptions. We will use the following assumptions from the literature:

CDH. For a groupG := 〈G〉 of a prime order p given (G,Ga, Gb) ∈ G
3 for a, b← Zp,

it is hard to computeGab.
DDH. For a group G := 〈G〉 of a prime order p given (G,Ga, Gb, C) ∈ G

4 for
a, b← Zp, it is hard to decide whether or not C = Gab.

Co-CDH [18]. In Type-2 bilinear groups given (G,Ga, G̃, G̃b) ∈ G
2
1 ×G

2
2 for a, b←

Zp, it is hard to compute Gab.
Co-CDH∗ [18]. In Type-3 bilinear groups given (G,Ga, Gb, G̃, G̃b) ∈ G

3
1 × G

2
2 for

a, b← Zp, it is hard to compute Gab.
SXDH. The DDH assumption holds in both groups G1 and G2.
DLIN [11]. For Type-1 bilinear groups where G1 = G2 = G andG generatesG, given

the tuple (Ga, Gb, Gra, Gsb, Gt) where a, b, r, s, t ∈ Zp are unknown, it is hard to
tell whether t = r + s or t is random.

308 E.M. Ghadafi

– Pairing Product Equation (PPE):
n∏

i=1

e(Ai, Yi) ·
m∏

i=1

n∏

j=1

e(Xi, Yj)
ki,j = tT ·

– Multi-Scalar Multiplication Equation (MSME)1:
n∏

i=1

A
yi
i

m∏

i=1

Xi
bi

m∏

i=1

n∏

j=1

Xi
ki,jyj = T ·

– Quadratic Equation (QE) in Zp:
n∑

i=1

aiyi +
m∑

i=1

xibi +
m∑

i=1

n∑

j=1

xiyj = t·

Fig. 1. Types of equations one can use Groth-Sahai proofs for

q-SDH [10]. For a groupG := 〈G〉 of a prime order p given (G,Gx, . . . , Gx
q

) ∈ G
q+1

for x ← Zp, it is hard to output a pair (c,G
1

x+c) ∈ Zp × G for an arbitrary
c ∈ Zp\{−x}.

WFCDH [26]. In Type-1 bilinear groups, given (G,Ga, Gb) ∈ G
3 for a, b← Zp, it is

hard to output a tuple (Gr, Gra, Grb, Grab) ∈ G
×4 for an arbitrary r ∈ Zp.

AWFCDH [26]. In asymmetric bilinear groups, given (G,Ga, G̃) ∈ G1
2 × G2 for

a ← Zp, it is hard to output a tuple (Gb, Gab, G̃b, G̃ab) ∈ G
×
1

2 × G
×
2

2
for an

arbitrary b ∈ Zp.
q-DHSDH [26]. In symmetric bilinear groups, given (G,H,K,Gx) ∈ G

4 for x ←
Zp, and q − 1 tuples (Wi := (K · Gui)

1
x+vi , U1,i := Gui , U2,i := Hui , V1,i :=

Gvi , V2,i := Hvi)q−1i=1 , where ui, vi ← Zp, it is hard to output a new tuple
(W ∗, U∗1 , U∗2 , V ∗1 , V ∗2) of this form.

q-ADHSDH [26]. In asymmetric bilinear groups, given (G,F,K,Gx, G̃, G̃x) ∈ G
4
1×

G
2
2 for x← Zp, and q−1 tuples (Wi := (K ·Gui)

1
x+vi , U1,i := Gui , Ũ2,i := G̃ui ,

V1,i := F vi , Ṽ2,i := G̃vi)q−1i=1 for ui, vi ← Zp, it is hard to output a new tuple
(W ∗, U∗1 , Ũ2

∗
, V ∗1 , Ṽ2

∗
) of this form.

Groth-Sahai (GS) Proofs. Groth and Sahai [33,34] introduced a proof system in the
CRS model that yields Non-Interactive Witness-Indistinguishable (NIWI) and Zero-
Knowledge (NIZK) proofs. The system can be instantiated in composite-order or prime-
order bilinear groups. The equations one can prove with the system are in Figure 1
where in the description X1, . . . , Xm, Y1, . . . , Yn ∈ G, x1, . . . , xm, y1, . . . , yn ∈ Zp

are secret variables (hence underlined), whereas Ai, T ∈ G, ai, bi, ki,j , t ∈ Zp, tT ∈
GT are public constants. Note that in the asymmetric setting, there are two types of
MSM equations depending on which group the elements belong to. The system is de-
fined by a tuple of algorithms

(GSSetup,GSProve,GSVerify,GSExtract,GSSimSetup,GSSimProve)·

Algorithm GSSetup takes as input the description of a bilinear group P and outputs
a soundness reference string crs and an extraction key xk. GSProve takes as input a
reference string crs, a witness and a set of equations, and outputs a proof Ω for the
satisfiability of the equations. For clarity, we will underline the elements of the witness
in the description of the equations.GSVerify takes as input a reference string crs, a proof
Ω and a set of equations, and outputs 1 if the proof is valid or 0 otherwise. In the rest
of the paper we will omit the set of equations from the input to the GSVerify algorithm.

Sub-linear Blind Ring Signatures without Random Oracles 309

GSExtract takes as input a soundness reference string crs, the extraction key xk and
a valid proofΩ, and outputs the witness used in the proof. GSSimSetup takes as input a
bilinear groupP and outputs a simulation string crsSim and a trapdoor key tr that allows
to simulate proofs. GSSimProve takes as input crsSim and the simulation trapdoor tr and
produces a simulated proofΩSim.

The system works by committing to the elements of the witness (using the algorithm
GSCommit) and then producing a proof of satisfiability for each equation. If a witness
component is involved in multiple equations, the same commitment is re-used when
verifying the proofs which makes the proofs correlated.

The proofs come in two flavors: the soundness setting yields extractable proofs,
whereas the simulation setting yields simulatable proofs. The system’s security requires
that the distributions of strings crs and crsSim are indistinguishable and simulated proofs
are indistinguishable from real proofs.

The proof system has perfect completeness, perfect soundness, composable witness-
indistinguishability and composable zero-knowledge. For formal definitions of those
properties refer to [34,30].

As formalized by [6], GS proofs can be rerandomized by rerandomizing the asso-
ciated GS commitments and updating the proofs accordingly so that we obtain fresh
proofs that are unlinkable to the original ones. Rerandomizing a proof requires knowl-
edge of neither the witness nor the associated randomness used in the original GS com-
mitments. We define an algorithm GSRandomize which takes as input a CRS crs and a
proofΩ, and outputs a proofΩ′ which is a randomized version of the proofΩ.

For details of the different instantiations see [34,32].

(Partially) Blind Signatures. Blind Signatures (BS) [19] allow a user to obtain a sig-
nature on a message hidden from the signer. Partially Blind Signatures (PBS) [3] are an
extension of blind signatures where unlike blind signatures, part of the message to be
signed is shared public information info which is known to both parties.

The signing protocol 〈PBSObtain(pk,m, info),PBSSign(sk, info)〉 in these schemes
is an interactive protocol between a user who knows a message m and a signer who
possesses a secret signing key sk and both parties know the public information info. If
the protocol is completed successfully, the user obtains a signature Σ on the message
m and the information info.

The security of partially blind signatures [5] is similar to that of blind signatures
[37,43] and consists besides correctness of blindness and unforgeability. Intuitively,
blindness requires that an adversarial signer does not learn the message being signed
and he cannot match a signature to its signing session. In the game, the adversary (mod-
eling an adversarial signer) chooses two messagesm0 andm1 and common information
info and then interacts with the honest user who requests signatures on those messages
in an arbitrary order unknown to the adversary. The same information info is used in
both interactions. If completed successfully, the adversary gets the two final signatures
and wins if it tells the order in which the messages were signed with a probability that
is non-negligibly greater than 1/2.

On the other hand, unforgeability deals with an adversarial user whose goal is to
obtain k + 1 distinct message/signature pairs after only k interactions w.r.t. the public
information info with the honest signer.

310 E.M. Ghadafi

PBSSetup(1λ):

• (G1,G2,GT , p, G, G̃, e) ← BGrpSetup(1λ, 3).
• P := (G1,G2,GT , p, G, G̃, e).

• (crs, xk)← GSSetup(P).
• F,K, L, T ← G1.
• Return paramPBS := (P, crs, F,K,L, T).

PBSKeyGen(paramPBS):

• Choose a← Zp and setA := Ga and Ã := G̃a.
• sk := a, pk := (A, Ã). Return (sk, pk).

PBSVerify(pk, (M, M̃), info, Σ):
• ParseΣ asΩsig.
• Return 1 if GSVerify(crs, Ωsig) = 1 Else Return 0.

The signing protocol 〈PBSObtain(pk, (M, M̃), info),PBSSign(sk, info)〉
• PBSObtain→ PBSSign

− Choose s← Zp and compute S := Gs, S̃ := G̃s and C := M · T s.
− Ω ← GSProve

(
crs, (M, M̃, S, S̃),

{
e(M, G̃) = e(G, M̃) ∧ e(S, G̃) = e(G, S̃)

∧ e(M, G̃)e(T, S̃) = e(C, G̃)
})

.
− Send (C,Ω) to PBSSign.
• PBSSign→ PBSObtain

− Abort if GSVerify(crs, Ω) 	= 1.

− Choose u, v ← Zp and set U ′ := Gu, V := Fv , W := (K · Tu · C · Linfo)
1

a+v , Ũ ′ := G̃u, Ṽ := G̃v .
− Send σ := (W,U ′, Ũ ′, V, Ṽ) to PBSObtain.
• PBSObtain

− Compute U := U ′ · S and Ũ := Ũ ′ · S̃.
− Abort if e(U, G̃) 	= e(G, Ũ), e(F, Ṽ) 	= e(V, G̃) or e(W, Ã · Ṽ) 	= e(K ·M · Linfo, G̃)e(T, Ũ).
− Ωsig ← GSProve

(
crs, (V, Ṽ ,W, U, Ũ),

{
e(V , G̃) = e(F, Ṽ) ∧ e(U, G̃) = e(G, Ũ)

∧ e(W, Ã · Ṽ)e(T−1, Ũ) = e(K ·M · Linfo, G̃)
})

.
− Output Σ := Ωsig.

Fig. 2. The partially blind signature scheme (in the asymmetric setting) [26,27]

A PARTIALLY BLIND SIGNATURE SCHEME [26,27]. In [26,2], the authors gave a
blind signature based on the DLIN, WFCDH and q-DHSDH/q-ADHSDH assumptions
in the symmetric setting or the SXDH, AWFCDH and q-ADHSDH assumptions in the
asymmetric setting. The message space of the scheme isM := {(Gm, G̃m)|m ∈ Zp}.
To get a partially blind scheme, we use a variant of their blind scheme based on the
modified signature scheme from [27] whose message space isM× Zp as highlighted
in [27].

The high-level idea behind the scheme is that the user commits to his message and
sends the commitment along with GS proofs to prove that it is well-formed to the signer.
The signer uses his secret key to produce a signature on the commitment and the public
information info. When the user receives the signature, he uses the randomness he used
in the commitment to modify the signature from one on the commitment to one on
the message itself. The final signature is a set of GS proofs of knowledge of such a
signature. The blindness of the scheme is ensured by the NIWI/NIZK properties of GS
proofs and the fact that the first-round commitment is information-theoretically hiding.
The scheme in the asymmetric setting is in Figure 2.

Ring Signatures. A ring signature [45] is a tupleRS := (RSSetup,RSKeyGen,RSSign,
RSVerify) of p.p.t. algorithms. Those algorithms are defined as follows; where to aid
notation all algorithms (bar RSSetup and RSKeyGen) take as implicit input paramRS

(output by RSSetup):

– RSSetup(1λ) takes as input a security parameter λ and outputs common public
parameters paramRS.

Sub-linear Blind Ring Signatures without Random Oracles 311

– RSKeyGen(paramRS) takes as input paramRS and outputs a pair (sk, pk) of se-
cret/public keys.

– RSSign(ski,m,R) takes as input a secret key ski, a message m ∈ M (whereM
is the message space) and a ring R := {pk1, . . . , pkn} with the condition that
pki ∈ R and outputs a signature Σ on the message m.

– RSVerify(m,Σ,R) takes as input a message m, a ring signature Σ and a ring R
and outputs 1 if the signature is on the message m w.r.t. ringR or 0 otherwise.

The security properties required from ring signatures are informally as follows:

– Correctness: All honestly generated signatures are accepted by the RSVerify algo-
rithm.

– Anonymity: An adversary cannot tell which ring member produced a signature.
– Unforgeability: An adversary cannot output a valid signature Σ∗ on a message
m∗ and w.r.t. an honest ring R∗ unless the adversary obtained such a signature by
querying the sign oracle on (m∗,R∗).

For detailed definitions and variants of those properties, we refer the reader to [8]. We
use the strongest variants from [8], namely: anonymity under full key exposure and
unforgeability against insider-corruption.

3 Blind Ring Signatures

Definition 1 (Blind Ring Signatures). A Blind Ring Signature (BRS) is a tuple
(BRSSetup,BRSKeyGen, 〈BRSObtain,BRSSign〉,BRSVerify) of p.p.t. algorithms.
Those algorithms are defined as follows; where to aid notation all algorithms (bar
BRSSetup and BRSKeyGen) take as implicit input paramBRS (output by BRSSetup):

– BRSSetup(1λ) takes as input a security parameter λ and outputs public parame-
ters paramBRS.

– BRSKeyGen(paramBRS) is run by a signer Signeri to generate his pair of se-
cret/public keys (sk, pk).

– 〈BRSObtain(m,R),BRSSign(ski,R)〉 is an interactive two-party protocol
between a user User and a signer in the ring R where pki ∈ R. If the protocol
completes successfully, User obtains a blind ring signature Σ on the message m.
If any of the parties abort, User outputs ⊥. This protocol is initiated by a call to
BRSObtain. The choice of the ring could be influenced by either the signer or the
user.

– BRSVerify(m,Σ,R) verifies if the blind ring signature Σ is on the message m
w.r.t. the ringR.

A tuple BRS := (BRSSetup,BRSKeyGen, 〈BRSObtain,BRSSign〉,BRSVerify) is a
secure blind ring signature if it has correctness, anonymity, unforgeability and blindness
which are defined as follows:

Definition 2 (Correctness). A blind ring signature BRS is correct if for any λ ∈ N,
any polynomialn(·), any {(pki, ski)}n(λ)i=1 output by BRSKeyGen, any messagem in the
message spaceM and any index i ∈ [1, n(λ)] ifΣ is the output of the honest interaction
〈BRSObtain(m,R),BRSSign(ski,R)〉 whereR = {pk1, . . . , pkn(λ)} then BRSVerify
accepts the signature Σ.

312 E.M. Ghadafi

ANONYMITY. We use a strong definition for anonymity where we allow the adversary
to use corrupt keys as well as obtaining the secret keys for the two challenge signers i0
and i1 and hence capturing security against full key exposure and adversarially-chosen
keys [8].

Definition 3 (Anonymity). A blind ring signature BRS satisfies anonymity if for any
λ ∈ N and polynomial n(·) the success probability of any p.p.t. adversary A in the
following game is negligibly close to 1/2:

1. The challenger generates paramBRS and key pairs {(pki, ski)}n(λ)i=1 using

BRSKeyGen(paramBRS). A is given paramBRS and S := {pki}n(λ)i=1 .
2. Throughout the game, A has access to a sign oracle OSign with which it interacts

to obtain signatures on messages and by signers in rings of its choice (providing
that the signer’s public key is in R and S). A can also ask for the secret key of any
signer to be revealed at any stage of the game.

3. A outputs two distinct indices i0 and i1 and a ring R with the only condition that
pki0 , pki1 ∈ R. It then interacts with the challenger to get a signature by signer
Signerib where b← {0, 1}.

4. A outputs a bit b′ and succeeds if b = b′.

UNFORGEABILITY. Informally, a blind ring signature is unforgeable if the adversary
cannot output a blind ring signature w.r.t. to a ring R of honest signers that was never
produced by the sign oracle. Due to the blind nature of the signing protocol and as in
standard blind signatures, we follow the (k, k + 1)-unforgeability definition [37,43].
The following definition also protects against insider corruption [8]:

Definition 4 (Unforgeability). A blind ring signature BRS is unforgeable if for any
λ ∈ N, and polynomial n(·) the success probability of any p.p.t. adversary A in the
following game is negligible:

1. The challenger generates paramBRS and key pairs {(pki, ski)}n(λ)i=1 using

BRSKeyGen(paramBRS). A is given paramBRS and S := {pki}n(λ)i=1 .
2. Throughout the game, A has access to the same oracles as in the anonymity game

(Definition 3).
3. A outputs k+1 pairs of message/signature {(mi, Σi)}k+1

i=1 , and a ringR∗.A wins
if all the following conditions hold:
(a) All k + 1 signatures verify correctly (w.r.t. ring R∗) and all the messages are

distinct.
(b) All members of the ringR∗ are honest.
(c) A engaged in at most k interactions with the sign oracle w.r.t. ringR∗.

Note that our definition above is not of strong unforgeability, i.e., we do not require that
the adversary cannot output a new signature on an old message.

BLINDNESS. Informally, a blind ring signature is blind if an adversary (modeling a dis-
honest behavior of signers in the ring) does not learn the message it is signing. More-
over, it cannot link a signature to its signing session.

Sub-linear Blind Ring Signatures without Random Oracles 313

Definition 5 (Blindness). A blind ring signature BRS satisfies blindness if for any λ ∈
N and polynomialn(·) the success probability of any p.p.t. adversaryA in the following
game is negligibly close to 1/2:

1. The challenger generates paramBRS and sends it to A.
2. A outputs a ring R (the keys of which are possibly adversarially chosen) and two

messages m0 and m1.
3. The honest user interacts with the adversary concurrently to get signatures on those

two messages in an arbitrary order unknown to the adversary by choosing a bit
b ← {0, 1}. A is sent the signatures Σb, Σ1−b. If any of the interactions did not
finish or any of the signatures do not verify w.r.t. R, A is not informed about the
other signature.

4. A outputs a bit b′ and wins if b = b′.

As noted by [35], since the ring is public, it is a natural requirement that the two chal-
lenge signatures are signed w.r.t. the same ring. Otherwise, blindness can be trivially
broken if different rings were used.

Unlike the blindness definition used in [35], which does not give the final challenge
signatures to the adversary, we give the adversary the two final signatures. This is im-
portant because blindness should capture the case that a blind signature is not linkable
to its signing session. Take, for example, the e-cash application where the issuing bank
eventually gets to see the coins when they are deposited. Also, unlike [35], our defini-
tion allows the adversary to use corrupt keys of its choice which again provides a strong
definition of blindness [1,42].

4 Sub-linear Size Set Membership Proof over Prime-Order
Groups

In this section we construct a non-interactive set membership proof. The proof allows
a prover to prove that a value Xγ is contained in a set {X1, . . . , XN} ∈ G

N . Our
construction is based on the underlying idea of the proof in [17] which is specific to
the composite-order bilinear group setting and is based on the subgroup decision as-
sumption [13]. Unlike the proof in [17], our proof is more general and works in both
composite-order and prime-order bilinear groups. However, for efficiency reasons our
focus is on the prime-order setting. We provide different instantiations over the 3 main
types of the prime-order setting as summarized in Table 1. We note that it might also be
possible to use the recent techniques, e.g. [25], for translating composite-order based
protocols to the prime-order setting to obtain a variant of the original protocol in [17]
in the prime-order setting.

The idea from [17] is to represent the set by a square n×nmatrix where n = 	√N�.
If N is not square, we can repeat X1 as many times as required to obtain a set whose
size is square. As we will see, this does not affect the complexity of the proof.

The prover knows a secret valueXγ and wants to produce a non-interactive proof that
such a value is contained in a square n×nmatrix X without revealing the secret value.

314 E.M. Ghadafi

Thus, we construct a proof for the statement Ωmem := PoK{(Xγ ∈ G) : Xγ ∈ X},
where the matrix is

X =

⎛

⎜
⎝

X1,1 X1,2 . . . X1,n

...
...

. . .
...

Xn,1 Xn,2 . . . Xn,n

⎞

⎟
⎠

For simplicity, the proof we give here is in the symmetric setting and is based on the
DLIN assumption and can be instantiated in the asymmetric setting as summarized in
Table 1.

Let (G,GT , p, G, e) be a description of symmetric bilinear groups. We summarize
the proof in the following steps where we assume that Xγ = Xα,β (i.e. Xγ lies in row
α and column β) and crs is the reference string used for the proof system:

1. The prover chooses 2 secret binary vectors y, z ∈ {0, 1}n as follows

yi =

{
1 if i = α,
0 if i �= α

zi =

{
1 if i = β,
0 if i �= β

The vectors y, z will be used to anonymously single out the row and the column
containing the secret value, respectively. The prover first needs to prove that each
element of those vectors has a value ∈ {0, 1} which is done by the following QE
proofs

Ωyi ← GSProve
(
crs, (yi),

{
yi(yi − 1) = 0

})
,

Ωzi ← GSProve
(
crs, (zi),

{
zi(zi − 1) = 0

}) ·
Additionally, the prover needs to prove that each vector contains only a single
value of 1. This could be achieved by generating two extra proofs for the equa-
tions

∑n
i=1 yi = 1 and

∑n
i=1 zi = 1, respectively, which only adds two linear

QE proofs and no extra commitments to the complexity. Alternatively, if witness-
indistinguishability is sufficient, one can prove this for free by exploiting the ho-
momorphic property of GS commitments (which are ElGamal ciphertexts [23] in
the SXDH instantiation and Linear ciphertexts [11] in the DLIN instantiation).
Thus, by choosing the GS randomness used for committing to one of those GS
commitments to be the inverse of the sum of the corresponding randomness used
for committing to the remaining values in the vector and then by multiplying the
GS commitments to the values in each vector, the randomness cancels out and we
can recover the sum of the values in the vector which allows the verifier to ver-
ify such a claim. Let Cyi ← GSCommit(yi, τyi) and Czi ← GSCommit(zi, τzi)
be the GS commitments used in committing to yi and zi, respectively. We set
τyn := −∑n−1

i=1 τyi and τzn := −∑n−1
i=1 τzi .

Note that since the randomness τy1 , . . . , τyn−1 and τz1 , . . . , τzn−1 is chosen uni-
formly, the randomness τyn and τzn is also uniform.

The verifier can verify that indeed each vector contains only a single value of 1
by checking that

∏n
i Cyi =

∏n
i Czi = GSCommit(1, 0), i.e. the product is equal to

a trivial GS commitment to 1.
In total, this step requires 2n GS commitments and 2n QE proofs.

Sub-linear Blind Ring Signatures without Random Oracles 315

Table 1. Complexity of the proof

Component/Instantiation DLIN
DDHG1 + DLING2 SXDH

G1 G2 G1 G2

GS Commitments 9n+ 3 4n 9n+ 3 4n 6n+ 2
GS proofs 21n+ 9 12n+ 4 15n + 3 12n+ 4 10n+ 2

Total 30n+ 12 16n+ 4 24n + 6 16n+ 4 16n+ 4

2. The prover anonymously singles out the row containing his secret value. To do
so, for each column j in the matrix compute Xα,j :=

∏n
i=1X

yi
i,j . Note that Xα

contains the messages in row α of the matrix X. The prover generates the following
MSME proofs to prove that each Xα,j was computed correctly

ΩXα,j ← GSProve

(

crs, (Xα,j , {yi}ni=1) ,

{
n∏

i=1

X
yi
i,j ·X−1α,j = 1

})

·

3. Finally, the prover proves that the value Xγ is contained in the secret vector Xα.
This is achieved by the following MSME proof

ΩXγ ← GSProve

(

crs, (Xγ , {Xα,i}ni=1, {zi}ni=1) ,

{
n∏

i=1

X
zi
α,i ·X−1γ = 1

})

·

The membership proof Ωmem is
((Cy,Cz,CXα , CXγ

)
,
(
Ωy, Ωz,ΩXα , ΩXγ

))
.

To verify the proof, the verifier verifies the proofs Ωyi , Ωzi , ΩXα,i for all i ∈ [1, n]
and ΩXγ , and checks that

∏n
i Cyi =

∏n
i Czi = GSCommit(1, 0).

Note that when the proof is instantiated over asymmetric bilinear groups we need to
commit to the vectors y and z in both groups G1 and G2 and provide a proof for the
equality of the commitments for each vector.

Theorem 1. The set membership proof is correct, sound and zero-knowledge.

Proof. Correctness and soundness follow from the correctness and soundness of GS
proofs and the fact that by checking that

∏n
i Cyi = GSCommit(1, 0) and

∏n
i Czi =

GSCommit(1, 0), the verifier ensures that only one non-zero value is contained in each
vector. The witness-indistinguishability of the membership proof also follows from that
of GS proofs.

When zero-knowledge is required, all the equations we prove (which are of types
QE and MSME) are simulatable at no extra cost. Simply by using trivial witnesses (i.e.
0 for exponent values and 1 for group elements), we can simulate all the proofs. Thus,
the proof is zero-knowledge.

Complexity of the Proof. We summarize in Table 1 the size (in group elements) of the
proof in the different GS instantiations. We note here that in the asymmetric setting, the
total size of the proof is irrespective of whether the set is in G

N
1 or GN2 . Although the

size of the commitments and proofs are swapped between the two cases, the total size
remains the same.

To speed up verification, one can apply batch verification techniques [31,9] to Groth-
Sahai proofs.

316 E.M. Ghadafi

5 Blind Ring Signature Construction

Overview of the Construction. Some of the recent round-optimal blind signature con-
structions e.g. [2] are instantiations of Fischlin’s generic construction [24], and combine
the GS proof system with commitment and signature schemes that are compatible with
one another. The latter is referred to as structure-preserving signatures [2]. In Fischlin’s
construction, the user sends a commitment to the message to the signer who in turn re-
turns a signature on the commitment. The user then constructs the final blind signature
by encrypting both the signature and the commitment and providing a NIZK proof of
knowledge that the signature is valid on the commitment and that the commitment is to
the message in question.

We exploit some properties of GS proofs. First, the rerandomizability of the proofs
[6]. Second, that they are independent of the public terms in the equations being proven
[29,27], which as shown by [29], allows transforming GS NIWI proofs into new
NIWI/NIZK proofs by adding some/all of those public terms to the witness without
knowledge of the original witness. The latter property was used by [29] to construct a
group blind signature scheme.

Additionally, we require that:

1. The verification equations of the signature scheme has the form that all the mono-
mials (e.g. the pairing in the case of PPE equations) involving the message are
independent of the signing key, i.e. they involve neither the verification key nor any
signature component that depends on the signing key so that we can exploit the
second property above. An example scheme satisfying this condition is the auto-
morphic scheme from [26].

2. The signature scheme signs n + 1 group elements or n group elements and an
integer where n is the size (in group elements) of the commitment so that we bind
the signature to the ring. To this end, we require a collision-resistant hash function
H : {0, 1}∗ −→ MSIG to map the ring into the message space of the signature
scheme.

The high-level idea of our generic construction is as follows: The user sends a commit-
ment to the message to the signer. The signer signs the commitment along with the ring
information and instead of sending the signature to the user in the clear, sends a GS
proof of knowledge Ω′sig of his public key and the signature σ such that the signature
is on the public commitment to the message and that it verifies w.r.t. to the signer’s
public key. In order to reduce the communication overhead, one does not need to hide
the whole signature and it is sufficient to just hide the components which depend on the
secret key. One might additionally need to hide other parts of the signature to ensure
that the proof is in a transformable form. In addition, using the set membership proof
from Section 4, the signer generates a proof Ω′mem to prove that his public key is in the
ring. The signer sends proofs Ω′sig and Ω′mem plus any remaining public components of
the signature to the user.

If the proofs are valid, the user first rerandomizes the proofsΩ′sig andΩ′mem (and their
GS commitments) intoΩsig andΩmem, respectively. The new proofs are now unlinkable
to the original ones. Additionally, he transforms the NIWI proofΩsig into a NIZK proof

Sub-linear Blind Ring Signatures without Random Oracles 317

by adding the commitment to the message and the remaining public components of the
signature (if any) to the witness of the proof. Finally, the user adds a NIZK proof Ωcom

to prove that the commitment is indeed to the message. The final blind ring signature is
a set of GS proofs (Ωsig, Ωmem, Ωcom) and their associated GS commitments. It is vital
that the proofs are correlated, i.e. proofs Ωsig and Ωmem involve the same public key,
and proofs Ωsig and Ωcom involve the same commitment. Thanks to the nature of GS
proofs, in our instantiations this correlation is directly realized by sharing the same GS
commitment for those shared components of the witness between the proofs.

Anonymity is ensured by the NIWI/NIZK properties of the proofs and the fact that
any remaining public components of the signature the user sees are independent of
the signer’s key. Blindness follows from the properties required by Fischlin’s generic
construction plus the composable rerandomizability [6] of the GS proof system. Fi-
nally, unforgeability is reduced to the unforgeability of the underlying signature scheme,
the soundness of the proofs, the binding property of the commitment scheme, and the
collision-resistant property of the hash function.

Efficient Instantiation. In order to get an efficient construction, we will base our sign-
ing protocol on a variant of the blind signing protocol from [26] using the signature
scheme from [27] which has a short public key and is capable of signing a pair of group
elements and an integer. Thus, obtaining a partially blind signing protocol as illustrated
in Figure 2. We note here that the blind signature in [26] deviates from Fischlin’s generic
construction [24] for blind signatures in that the final signature is on the message itself
rather than its commitment and it requires proofs of knowledge in the signature request
protocol.

To obtain a blind ring signature on the message (M, M̃) ∈ G1×G2, the user commits
to the message using Pedersen commitment C := M · T s for some random s ← Zp

and computes S := Gs and S̃ := G̃s. He then sends the commitment C along with GS
proofs of knowledge Ω to prove that: the commitment C is indeed to the message M
and that the message and the randomness pairs are well-formed.

The signer first verifies the proofs and if they are valid, produces a signature σ :=
(U ′, Ũ ′, V, Ṽ ,W) on the commitment C and the public integer H(R) (for some
collision-resistant hash function H : {0, 1}∗ −→ Zp) using the variant of the auto-
morphic signature scheme [26] as in [27]. However, instead of sending the signature
in the clear, the signer sends a GS proof of knowledge Ω′sig of his public verification

key (A, Ã) and the signature σ such that the signature verifies w.r.t. his key. Since the
componentsU ′ and Ũ ′ of σ are independent of the signing key, we need not hide them.
Additionally, the signer generates a proof of membership Ω′mem to prove that his key is
in the ring. The signer’s response is (Ω′sig, Ω

′
mem, U

′, Ũ ′).
The user first verifies the GS proofs Ω′sig and Ω′mem, and that the pair (U ′, Ũ ′) is

well-formed. If they are valid, the user rerandomizes those proofs into Ωsig and Ωmem,
respectively, using the algorithm GSRandomize. The new proofs are unlinkable to the
original ones. The user then transforms the proof Ωsig by making the signature verifiy
w.r.t. to the message itself rather than its commitment: he computes U := U ′ · S and
Ũ := Ũ ′ · S̃, and transforms the last equation in Ωsig from e(W, Ã · Ṽ) = e(K · C ·
LH(R), G̃)e(T, Ũ ′) into e(W, Ã · Ṽ)e(T−1, Ũ) = e(K ·M ·LH(R), G̃). In addition, he
hides the components (U, Ũ) by adding a proof for the equation e(U, G̃) = e(G, Ũ).

318 E.M. Ghadafi

• BRSObtain→ BRSSign

− Choose s← Zp and compute S := Gs, S̃ := G̃s and C := M · T s.
− Ω ← GSProve

(
crs, (M, M̃, S, S̃),

{
e(M, G̃) = e(G, M̃) ∧ e(S, G̃) = e(G, S̃)

∧ e(T, S̃)e(M, G̃) = e(C, G̃)
})

.
− Send (C,Ω) to BRSSign.
• BRSSign→ BRSObtain

− If GSVerify(crs, Ω) 	= 1 Then Abort().

− Choose u, v ← Zp and set U ′ := Gu, V := Fv , W := (K · Tu · C · LH(R))
1

a+v ,
Ũ ′ := G̃u, Ṽ := G̃v .

− Ω′
sig ← GSProve

(
crs, (V, Ṽ ,W, Ã),

{
e(V , G̃) = e(F, Ṽ)

∧ e(W, Ã · Ṽ) = e(K · C · LH(R), G̃)e(T, Ũ ′)
})

.

− Compute the membership proof Ω′
mem ← GSProve

(
crs, (Ã),

{
Ã ∈ RÃ

})
. 2

− Send (Ω′
sig, Ω

′
mem, U

′, Ũ ′) to BRSObtain.
• BRSObtain

− Abort if e(U ′, G̃) 	= e(G, Ũ ′), GSVerify(crs, Ω′
sig) 	= 1 or GSVerify(crs, Ω′

mem) 	= 1.
− Compute U := U ′ · S and Ũ := Ũ ′ · S̃.
− Ωsig ← GSRandomize(crs, Ω′

sig), Ωmem ← GSRandomize(crs, Ω′
mem) and transform Ωsig as follows:

− Ωsig ← GSProve
(
crs, (V, Ṽ ,W, Ã, U, Ũ),

{
e(V , G̃) = e(F, Ṽ) ∧ e(U, G̃) = e(G, Ũ)

∧ e(W, Ã · Ṽ)e(T−1, Ũ) = e(K ·M · LH(R), G̃)
})

.

− Output Σ := (Ωsig, Ωmem).

Fig. 3. The signing protocol

The final blind ring signature is Σ := (Ωsig, Ωmem). Again, the two proofs share the
same GS commitment to the signer’s verification key.

The detailed construction in the asymmetric setting is as follows:

– BRSSetup(1λ):
• Run P ← BGrpSetup(1λ, 3) and (crs, xk) ← GSSetup(P). Parse P as
(G1,G2,GT , p, G, G̃, e).
• Choose a suitable collision-resistant hash function H : {0, 1}∗ −→ Zp and
F,K,L, T ← G1.
• Set paramBRS := (P , crs,H, F,K, L, T). Return paramBRS.

– BRSKeyGen(paramBRS):

• Choose a ← Zp and set A := Ga and Ã := G̃a. Set sk := a, pk := (A, Ã).
Return (sk, pk).

– The signing protocol 〈BRSObtain((M, M̃),R),BRSSign(sk,R)〉 is in Figure 3.
– BRSVerify((M, M̃), Σ,R)
• Parse Σ as (Ωsig, Ωmem).
• Return 1 if GSVerify(crs, Ωmem) = 1 and GSVerify(crs, Ωsig) = 1. Otherwise,

return 0.

We provide a proof for the following Theorem in the full version [30].

Theorem 2. The construction is a secure blind ring signature scheme.

2 We only prove membership for one component of the key. The verifier can verify that all keys
in the ring are well-formed. Alternatively, one can add a proof for the equation e(A, G̃) =
e(G, Ã). It is a matter of trade-off between communication and computation complexities.

Sub-linear Blind Ring Signatures without Random Oracles 319

Table 2. Size of the blind ring signature in the different instantiations

Setting Signature Size Assumptions
Type-1 G

30n+42 DLIN, q-ADHSDH and WFCDH
Type-2 G

16n+22
1 +G

24n+30
2 DDHG1 , DLING2 , q-ADHSDH and AWFCDH

Type-3 G
16n+22
1 +G

16n+20
2 SXDH, q-ADHSDH and AWFCDH

Efficiency of the Construction. As mentioned earlier, our construction is the first real-
ization in the standard model and also the first to offer sub-linear signatures instead of
linear ones. Table 2 summarizes the size of the signature as well as the required assump-
tions for the different instantiations. Type-1 instantiation uses the DLIN instantiation of
GS proofs, Type-2 uses GS proofs based on DDH in G1 and DLIN in G2 as used in
[32], and Type-3 uses the SXDH instantiation of the proofs.

To give example concrete figures, we consider a security level equivalent to 128-bit
symmetric key security. For a ring consisting of 10,000 members, the Type-1 instan-
tiation, where the size of elements of group G is 512 bits, yields signatures of size of
approximately 190 kB. At the same security level in the asymmetric setting where ele-
ments of G1 are of size 256 bits and those of G2 are of size 512 bits, the signature size
is 203 kB and 152 kB in the Type-2 and Type-3 instantiations, respectively. Again, the
verification of the signature can be made more efficient by batch verifying Groth-Sahai
proofs [31,9].

6 Generic Construction of Ring Signatures over Prime-Order
Bilinear Groups

Here we provide a generic construction for ring signatures without random oracles by
combining the set membership proof from Section 4 with any compatible signature
scheme.

Let Sig := ([SigSetup], SigKeyGen, SigSign, SigVerify) be an existentially unforge-
able signature scheme secure against adaptive chosen-message attack that works in any
of the 3 main types (cf. Section 2) of prime-order bilinear groups. LetMSig be its mes-
sage space, (sk, pk) be its key pair and σ := (σ1, . . . , σn) be its signatures for some
positive integer n with the condition that for any i ∈ [1, n], σi is a group element if it
depends on sk. 3 Our construction is as follows:

– RSSetup(1λ): Run P ← BGrpSetup(1λ, tp) for tp ∈ [1, 3], (crs, xk) ←
GSSetup(P). Choose a collision-resistant hash function H : {0, 1}∗ −→ MSig.
The public parameters is then paramRS := (P , crs,H). Note that if Sig requires
setup, then the output of SigSetup is also added to paramRS.

– RSKeyGen(paramRS): Run SigKeyGen to obtain (sk, pk).
– RSSign(ski,m,R): To sign a message m ∈ {0, 1}∗ w.r.t. a ring R := {pk1, . . . ,
pkN} where pki ∈ R, run σ ← SigSign(ski,H(m,R)). Then generate the

3 Unlike structure-preserving signatures [2], we do not require that the messages are group ele-
ments.

320 E.M. Ghadafi

Table 3. Example instantiations of the generic ring signatures construction

Instantiation Setting Signature Size Complexity Assumptions

Waters
Type-1 G

30n+19 CDH + DLIN
Type-2 G

16n+10
1 +G

24n+13
2 Co-CDH + DDHG1 + DLING2

Type-3 G
16n+11
1 +G

16n+9
2 Co-CDH∗ + SXDH

FBB
Type-1 G

42n+39 + Z
4
p q-SDH + DLIN

Type-2 G
20n+14
1 +G

30n+21
2 + Z

4
p q-SDH + DDHG1 + DLING2

Type-3 G
20n+14
1 +G

20n+14
2 + Z

3
p q-SDH + SXDH

following two Groth-Sahai proofs where σ̄ is the subset of σ which depends on the
secret key sk.

Ωsig ← GSProve{crs, (pki, σ̄), {SigVerify(pki,H(m,R), σ) = 1}},
Ωmem ← GSProve{crs, (pki), {pki ∈ R}}.

The ring signature is then Σ := (Ωsig, Ωmem, {σ} \ {σ̄}). Again, the proofs Ωsig

and Ωmem must be correlated, i.e. they involve the same public key pki. This is
checked by ensuring that both proofs use the same GS commitment to pki when
verifying the signature.

– RSVerify(m,Σ,R): To verify that the ring signature Σ is a valid signature on the
message m w.r.t. the ringR, verify the two proofsΩmem and Ωsig.

We provide a proof for the following Theorem in the full version [30].

Theorem 3. The generic construction is a secure ring signature scheme for message
space {0, 1}∗.

In the full paper [30] we provide two example instantiations. In the first we instan-
tiate the Sig scheme using the full Boneh-Boyen signature scheme [10], whereas in the
second instantiation we use Waters signature scheme [49]. The efficiency summary of
those instantiations is provided in Table 3.

6.1 Instantiating the Construction in [17] over Prime-Order Groups

We note that by combining our set membership proof with the weakly secure Boneh-
Boyen signature scheme [10] and one-time signatures instantiated over prime-order
groups, we get efficient instantiations in prime-order groups of the composite-order
construction given in [17].

Acknowledgments. This work was supported by ERC Advanced Grant ERC-2010-
AdG-267188-CRIPTO and EPSRC via grant EP/H043454/1.

References

1. Abdalla, M., Namprempre, C., Neven, G.: On the (Im)possibility of blind message authen-
tication codes. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 262–279.
Springer, Heidelberg (2006)

Sub-linear Blind Ring Signatures without Random Oracles 321

2. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-preserving sig-
natures and commitments to group elements. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 209–236. Springer, Heidelberg (2010)

3. Abe, M., Fujisaki, E.: How to date blind signatures. In: Kim, K.-c., Matsumoto, T. (eds.)
ASIACRYPT 1996. LNCS, vol. 1163, pp. 244–251. Springer, Heidelberg (1996)

4. Abe, M., Ohkubo, M., Suzuki, K.: 1-out-of-n Signatures from a Variety of Keys. In: Zheng,
Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 415–432. Springer, Heidelberg (2002)

5. Abe, M., Okamoto, T.: Provably Secure Partially Blind Signatures. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 271–286. Springer, Heidelberg (2000)

6. Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A., Shacham, H.:
Randomizable proofs and delegatable anonymous credentials. In: Halevi, S. (ed.) CRYPTO
2009. LNCS, vol. 5677, pp. 108–125. Springer, Heidelberg (2009)

7. Bellare, M., Rogaway, P.: Random oracles are practical: A Paradigm for Designing Efficient
Protocols. In: ACM Conference on Computer and Communications Security 1993, pp. 62–
73. ACM (1993)

8. Bender, A., Katz, J., Morselli, R.: Ring signatures: Stronger definitions, and constructions
without random oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp.
60–79. Springer, Heidelberg (2006)

9. Blazy, O., Fuchsbauer, G., Izabachène, M., Jambert, A., Sibert, H., Vergnaud,
D.: Batch Groth-Sahai. Cryptology ePrint Archive, Report 2010/040,
http://eprint.iacr.org/2010/040

10. Boneh, D., Boyen, X.: Short Signatures Without Random Oracles and the SDH Assumption
in Bilinear Groups. Journal of Cryptology 21(2), 149–177 (2008)

11. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO
2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

12. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted signatures
from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 416–432.
Springer, Heidelberg (2003)

13. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF Formulas on Ciphertexts. In: Kilian, J.
(ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg (2005)

14. Boyen, X.: Mesh Signatures. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp.
210–227. Springer, Heidelberg (2007)

15. Brakerski, Z., Kalai, Y.T.: A Framework for Efficient Signatures, Ring Signatures and
Identity Based Encryption in the Standard Model. In: Cryptology ePrint Archive, Report
2010/086, http://eprint.iacr.org/2010/086.pdf

16. Chan, T.K., Fung, K., Liu, J.K., Wei, V.K.: Blind Spontaneous Anonymous Group Signatures
for Ad Hoc Groups. In: Castelluccia, C., Hartenstein, H., Paar, C., Westhoff, D. (eds.) ESAS
2004. LNCS, vol. 3313, pp. 82–94. Springer, Heidelberg (2005)

17. Chandran, N., Groth, J., Sahai, A.: Ring Signatures of Sub-linear Size Without Random
Oracles. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS,
vol. 4596, pp. 423–434. Springer, Heidelberg (2007)

18. Chatterjee, S., Hankerson, D., Knapp, E., Menezes, A.: Comparing Two Pairing-
Based Aggregate Signature Schemes. In: Cryptology ePrint Archive, Report 2009/060,
http://eprint.iacr.org/2009/060.pdf

19. Chaum, D.: Blind signatures for untraceable payments. In: CRYPTO 1982, pp. 199–203.
Plenum Press (1983)

20. Desmedt, Y.G., Goutier, C., Bengio, S.: Special Uses and Abuses of the Fiat Shamir Passport
Protocol. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 21–39. Springer,
Heidelberg (1988)

http://eprint.iacr.org/2010/040
http://eprint.iacr.org/2010/086.pdf
http://eprint.iacr.org/2009/060.pdf

322 E.M. Ghadafi

21. Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Nicolosi and Victor Shoup. Anonymous
Identification in Ad Hoc Groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 609–626. Springer, Heidelberg (2004)

22. Dwork, C., Naor, M.: Zaps and their applications. In: FOCS 2000, pp. 283–293 (1999)
23. El Gamal, T.: A Public Key Cryptosystem and a Signature Scheme Based on Discrete Log-

arithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18.
Springer, Heidelberg (1985)

24. Fischlin, M.: Round-optimal composable blind signatures in the common reference string
model. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 60–77. Springer, Heidel-
berg (2006)

25. Freeman, D.M.: Converting Pairing-Based Cryptosystems from Composite-Order Groups to
Prime-Order Groups. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 44–61.
Springer, Heidelberg (2010)

26. Fuchsbauer, G.: Automorphic Signatures in Bilinear Groups and an Application to
Round-Optimal Blind Signatures. In: Cryptology ePrint Archive, Report 2009/320,
http://eprint.iacr.org/2009/320.pdf

27. Fuchsbauer, G.: Commuting signatures and verifiable encryption. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 224–245. Springer, Heidelberg (2011)

28. Galbraith, S., Paterson, K., Smart, N.P.: Pairings for cryptographers. Discrete Applied Math-
ematics 156, 3113–3121 (2008)

29. Ghadafi, E.: Formalizing group blind signatures and practical constructions without random
oracles. In: Boyd, C., Simpson, L. (eds.) ACISP. LNCS, vol. 7959, pp. 330–346. Springer,
Heidelberg (2013)

30. Ghadafi, E.: Sub-linear Blind Ring Signatures without Random Oracles. In: Cryptology
ePrint Archive, Report 2013/612, http://eprint.iacr.org/2013/612.pdf

31. Ghadafi, E., Smart, N.P., Warinschi, B.: Practical zero-knowledge proofs for circuit evalua-
tion. In: Parker, M.G. (ed.) Cryptography and Coding 2009. LNCS, vol. 5921, pp. 469–494.
Springer, Heidelberg (2009)

32. Ghadafi, E., Smart, N.P., Warinschi, B.: Groth-Sahai proofs revisited. In: Nguyen, P.Q.,
Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 177–192. Springer, Heidelberg
(2010)

33. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart,
N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008)

34. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups (full version),
http://www.brics.dk/˜jg/WImoduleFull.pdf

35. Herranz, J., Laguillaumie, F.: Blind Ring Signatures Secure Under the Chosen-Target-CDH
Assumption. In: Katsikas, S.K., López, J., Backes, M., Gritzalis, S., Preneel, B. (eds.) ISC
2006. LNCS, vol. 4176, pp. 117–130. Springer, Heidelberg (2006)

36. Herranz, J., Sáez, G.: Forking Lemmas for Ring Signature Schemes. In: Johansson, T.,
Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 266–279. Springer, Heidelberg
(2003)

37. Juels, A., Luby, M., Ostrovsky, R.: Security of blind digital signatures. In: Kaliski Jr., B.S.
(ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 150–164. Springer, Heidelberg (1997)

38. Lysyanskaya, A., Ramzan, Z.: Group blind digital signatures: A scalable solution to elec-
tronic cash. In: Hirschfeld, R. (ed.) FC 1998. LNCS, vol. 1465, pp. 184–197. Springer, Hei-
delberg (1998)

39. Naor, M.: Deniable Ring Authentication. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 481–498. Springer, Heidelberg (2002)

40. Nguyen, L.: Accumulators from Bilinear Pairings and Applications. In: Menezes, A. (ed.)
CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer, Heidelberg (2005)

http://eprint.iacr.org/2009/320.pdf
http://eprint.iacr.org/2013/612.pdf
http://www.brics.dk/~jg/WImoduleFull.pdf

Sub-linear Blind Ring Signatures without Random Oracles 323

41. Nguyen, K.Q., Mu, Y., Varadharajan, V.: Divertible Zero-Knowledge Proof of Polynomial
Relations and Blind Group Signature. In: Pieprzyk, J.P., Safavi-Naini, R., Seberry, J. (eds.)
ACISP 1999. LNCS, vol. 1587, pp. 117–128. Springer, Heidelberg (1999)

42. Okamoto, T.: Efficient blind and partially blind signatures without random oracles. In:
Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 80–99. Springer, Heidelberg
(2006)

43. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures.
Journal of Cryptology 13(3), 361–396 (2000)

44. Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D. (ed.) CRYPTO 2003.
LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003)

45. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT
2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001)

46. Schäge, S., Schwenk, J.: A CDH-Based Ring Signature Scheme with Short Signatures and
Public Keys. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 129–142. Springer, Heidelberg
(2010)

47. Shacham, H., Waters, B.: Efficient ring signatures without random oracles. In: Okamoto, T.,
Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 166–180. Springer, Heidelberg (2007)

48. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy, W. (ed.)
EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg (1997)

49. Waters, B.: Efficient Identity-Based Encryption Without Random Oracles. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005)

50. Wu, Q., Zhang, F., Susilo, W., Mu, Y.: An Efficient Static Blind Ring Signature Scheme. In:
Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935, pp. 410–423. Springer, Heidelberg
(2006)

51. Zhang, J., Chen, H., Liu, X., Liu, C.: An Efficient Blind Ring Signature Scheme without
Pairings. In: Shen, H.T., Pei, J., Özsu, M.T., Zou, L., Lu, J., Ling, T.-W., Yu, G., Zhuang, Y.,
Shao, J. (eds.) WAIM 2010. LNCS, vol. 6185, pp. 177–188. Springer, Heidelberg (2010)

Constructions of Signcryption in the Multi-user

Setting from Identity-Based Encryption

Rintaro Nakano and Junji Shikata

Graduate School of Environment and Information Sciences,
Yokohama National University, Japan

{nakano-rintaro-xf,shikata}@ynu.ac.jp

Abstract. The security of signcryption requires both confidentiality
and integrity, and various constructions of signcryption have been pro-
posed so far. Although insider security in the multi-user setting is desir-
able in signcryption, in the standard model (i.e., without random oracles)
there are only few generic constructions of signcryption which meet both
strong insider indistinguishability and strong insider unforgeability in the
multi-user setting. In this paper, we propose two generic constructions
of signcryption schemes in the standard model, and our constructions
achieve such strong security. Our generic constructions are simple and
quite different from the existing constructions of signcryption, and ours
are based on the elegant known techniques for constructing strongly se-
cure public-key encryption from identity-based encryption.

1 Introduction

1.1 Background

The notion of signcryption was introduced by Zheng [16] in 1997. The purpose of
signcryption is to achieve security of encryption and digital signatures simulta-
neously, i.e., confidentiality and integrity. Various constructions of signcryption
schemes have been proposed so far [1,2,9,11,12,14]. The early security model of
signcryption schemes considers the two-user setting that consists only of a single
sender and a single receiver. However, security in the two-user setting does not
imply security in the multi-user setting that consists of multiple senders and re-
ceivers. Thus, it is important to consider security of signcryption schemes in the
multi-user setting. In addition, signcryption schemes have two kinds of security
definitions, namely an outsider security and an insider security. In the outsider
security, an external adversary only knows public information (i.e., public pa-
rameters and public-keys of entities). On the other hand, in the insider security,
an internal adversary can know some private-keys. Note that the insider security
is stronger, and hence it is sufficient and reasonable to consider the insider se-
curity. In 2004, the strongest security definition, which consists of strong insider
confidentiality and strong insider integrity in the multi-user setting, was first
formalized by Libert et al. [11].

Currently, several constructions of signcryption schemes that achieve the
strongest security in the random oracle model are known (for example, see

M. Stam (Ed.): IMACC 2013, LNCS 8308, pp. 324–343, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Constructions of Signcryption from Identity-Based Encryption 325

[2,11,12]). However, there are only few constructions of signcryption schemes pro-
posed in the standard model (i.e., without random oracles) [9,12,14]. In [14], Tan
proposed a direct construction of strongest signcryption schemes, while generic
constructions of strongest signcryption schemes were proposed by Matsuda et al.
in [12] and Chiba et al. in [9]. The generic construction is useful in the sense that
various primitives under various computational assumptions can be flexibly com-
bined in a general setting of parameters as the need of applications depending
on the situation. However, in [12] (and [14]), a restricted model called a key reg-
istration (KR) model is assumed. In the KR model, users are required to obtain
a certificate by registering their public-keys at a certificate authority before the
public-keys are used in interaction with other users. And, it is desirable to con-
struct signcryption schemes without KR. Therefore, in [9] generic constructions
of signcryption schemes without KR were proposed for the first time. In this
paper, we also propose generic constructions of strongest signcryption schemes
without KR in the standard model (see the next subsection for details).

1.2 Our Contribution

Our main purpose is to propose a simple approach to constructing strongly se-
cure signcryption in the multi-user setting by extending the elegant techniques
in [4,5,8] for constructing strongly secure PKE (public-key encryption) from IBE
(identity-based encryption). In this paper, we propose two generic constructions
of signcryption schemes without random oracles, so the resulting constructions
of signcyption do not require random oracles if concrete instantiations without
random oracles are applied. Moreover, our constructions achieve the strongest
security, i.e., both of multi-user indistinguishability against insider chosen ci-
phertext attack (MU-IND-iCCA) and multi-user strong unforgeability against
insider chosen message attack (MU-sUF-iCMA) without KR. Our idea for two
generic constructions lies in the following technical points.

– The first construction is based on the technique in [4,8] for constructing
PKE from IBE and OTS (one-time signature), and the technique in [3] for
constructing DS (digital signature) from (weak) DS and OTS. Our idea for
constructing signcryption is to combine primitives IBE, (weak) DS, and OTS
based on the techniques in [4,8,3], and to optimize it such that OTS will be
used only once (see Section 4.1).

– The second construction is based on the technique in [4,5] for constructing
PKE from IBE, MAC and encapsulation. In addition to IBE, we note that
MAC and encapsulation are effectively utilized in [4,5], while OTS is used in
[4,8]. In addition to this idea, we consider some technique to achieve strong
unforgeability of signcryption schemes by using MAC and encapsulation in
addition to (weak) DS. This idea successfully leads to the second construc-
tion for signcryption schemes such that each of IBE, (weak) DS, MAC, and
encapsulation is used only once (see Section 4.2).

326 R. Nakano and J. Shikata

Our generic constructions achieve the strongest security (i.e., MU-IND-iCCA
security and MU-sUF-iCMA security) without KR as well as the ones in [9],
however, our techniques are quite different from the ones in [9].

Furthermore, if we apply reasonable instantiations of cryptographic primitives
to our generic constructions, it turns out that our constructions achieve the
strongest security under the same computational assumptions as the ones in [9]
(i.e., MU-IND-iCCA security under the DBDH assumption, and MU-sUF-iCMA
security under the CDH assumption), and our construction has the same or
shorter size of public/secret-keys and less computational cost compared to other
existing constructions, however, our construction has larger ciphertext-size. In
this sense, there is a tradeoff between parameters of efficiency. Therefore, it would
be possible to adapt a construction of signcryption effectively and properly to
suit the situation of applications.

The rest of this paper is organized as follows. In Section 2, we review several
cryptographic primitives, such as IBE, DS, MAC, and encapsulation schemes,
which are used for our constructions of signcryption schemes as building blocks.
In Section 3, we describe the model and the security definition of signcryp-
tion schemes. In Section 4, we propose two generic constructions of signcryption
schemes without random oracles. Section 5 is devoted to compare our construc-
tions with other known constructions. Finally, in Section 6, we conclude the
paper.

2 Preliminaries

In this paper, we use the following notation. If we write (y1, y2, . . . , ym) ←
A(x1, x2, . . . , xn) for an algorithm A having n inputs and m outputs, it means to
input x1, x2, . . . , xn into A and to get the resulting output y1, y2, . . . , ym. If A is
a probabilistic algorithm, we write (y1, y2, . . . , ym)← A(r;x1, x2, . . . , xn), where
r is a random value used in A. If x is a string, then |x| denotes its bit-length.
We denote a concatenation of x and y by x‖y. If we write negligible ε in k, it
means a function ε : N → [0, 1] where ε(k) < 1/g(k) for any polynomial g and
sufficiently large k. Furthermore, in this paper, a polynomial-time algorithm is
abbreviated as PTA.

2.1 Identity-Based Encryption (IBE)

An id-based encryption (IBE) consists of a five-tuple of PTAs as follows, where a
space of ids IDIBE and a space of plaintextsMIBE are determined by a security
parameter k.

– prm← IBE.Setup(1k) : A setup algorithm is probabilistic, and it takes a
security parameter k as input and then outputs a public parameter prm.

– (mpk,msk)← IBE.Kg(prm) : A key generation algorithm is probabilistic,
and it takes a public parameter prm as input and then outputs a master
public-key mpk and a master secret-key msk.

Constructions of Signcryption from Identity-Based Encryption 327

– SKID ← IBE.Der(msk, ID) : A key derivation algorithm is probabilistic,
and it takes a master secret-keymsk and an id ID as input and then outputs
a secret-key SKID for ID.

– C ← IBE.Enc(mpk, ID,M) : An encryption algorithm is probabilistic, and
it takes a master public-key mpk, an id ID and a plaintext M ∈ MIBE as
input and then outputs a ciphertext C.

– M or ⊥ ← IBE.Dec(SKID, ID,C) : A decryption algorithm is deterministic
algorithm, and it takes a secret-key skID for ID, an id ID, and a ciphertext
C as input and then outputs a plaintext M ∈ MIBE or an invalid symbol
⊥ �∈ MIBE.

We require that for all k ∈ N, all prm ← IBE.Setup(1k), all (mpk,msk) ←
IBE.Kg(prm), all ID ∈ IDIBE, all SKID ← IBE.Der(msk, ID), all M ∈ MIBE,
it holds that M = IBE.Dec(SKID, ID,C), where C ← IBE.Enc(mpk, ID,M).

Definition 1 (IND-sID-CPA). For IBEs, a notion of indistinguishability
against selective id chosen plaintext attack (IND-sID-CPA) is defined as follows.
Let A={A1,A2,A3} be a polynomial-time adversary against IBE={IBE.Setup,
IBE.Kg, IBE.Der, IBE.Enc, IBE.Dec}, and we consider the following game:

Step 1. (ID∗, st1)← A1(prm).
Step 2. (mpk,msk)← IBE.Kg(prm).

Step 3. (M0,M1, st2)← A
O(·)
2 (st1,mpk).

Step 4. b←R {0, 1}, C∗ ← IBE.Enc(mpk, ID∗, Mb).

Step 5. b′ ← A
O(·)
3 (st2, C

∗).

We require |M0| = |M1|, and O is an oracle which takes an id ID as input
and then returns IBE.Der(msk, ID). A is allowed to access the above oracle at
any time, however, it cannot submit the target identity ID∗ to O. We define the
advantage of A in the above game by

AdvIND-sID-CPA
IBE,A (k) :=

∣
∣
∣
∣Pr[b = b′]− 1

2

∣
∣
∣
∣ .

An IBE meets ε-IND-sID-CPA, if there exists a negligible ε in k such that
AdvIND-sID-CPA

IBE,A (k) ≤ ε holds for any probabilistic PTA A.

2.2 Digital Signatures (DS)

A digital signature (DS) consists of a four-tuple of PTAs as follows, where a
space of messagesMSIG is determined by a security parameter k.

– prm← DS.Setup(1k): A setup algorithm is probabilistic, and it takes a se-
curity parameter k as input and then outputs a public parameter prm.

– (V K, SK)← DS.Kg(prm) : A key generation algorithm is probabilistic, and
it takes a public parameter prm as input and then outputs a verification-key
V K and a signing-key SK.

328 R. Nakano and J. Shikata

– S ← DS.Sign(SK,M) : A signing algorithm is probabilistic, and it takes a
signing-key SK and a message M ∈ MSIG as input and then outputs a
signature S.

– 1 or 0← DS.Vrfy(V K,M, S) : A verification algorithm is deterministic, and
it takes a verification-key V K, a message M ∈ MSIG, and a signature S as
input and then outputs 1 (accept) or 0 (reject).

We require that for all k ∈ N, all prm ← DS.Setup(1k), all (V K, SK) ←
DS.Kg(prm), all M ∈ MSIG, it holds that 1 = SIG.Vrfy(V K,M, S), where
S ← DS.Sign(SK,M).

Definition 2 ((s)UF-CMA, (s)UF-OT). For DSs, notions of strong un-
forgeability against chosen message attack (sUF-CMA) and strong unforgeability
against one-time attack (sUF-OT) are defined as follows. Let A be a polynomial-
time adversary against a digital signature DS={DS.Setup, DS.Kg, DS.Sign,
DS.Vrfy}, and we consider the following game:

Step 1. prm← DS.Setup(1k), (V K, SK)← DS.Kg(prm).

Step 2. (M∗, S∗)← AO(·)(V K).

O is an oracle which takes a message M as input and then returns S ← DS.Sign
(SK,M). A is allowed to access the above oracle, and we require (M∗, S∗) �=
(M,S). Let [A wins] be an event of 1 = DS.Vrfy(V K,M∗, S∗). We define the
advantage of A in the above game as follows: for ATK ∈ {CMA,OT },

AdvsUF -ATK
DS,A (k) := Pr[A wins],

where A is allowed to access the oracle O at most polynomial time if ATK =
CMA, and A is allowed to access to O at most one time if ATK = OT . A
DS meets ε-sUF-CMA (resp., ε-sUF-OT), if there exists a negligible ε in k such
that AdvsUF -CMA

DS,A (k) ≤ ε (resp., AdvsUF -OT
DS,A (k) ≤ ε) holds for any probabilistic

PTA A. For a DS satisfying ε-sUF-OT, we write OTS={OTS.Setup, OTS.Kg,
OTS.Sign, OTS.Vrfy}.

Similarly, notions of unforgeability against chosen message attack (UF-CMA)
and unforgeability against one-time attack (UF-OT) are defined by replacing
the above event [A wins] with the event of 1 = DS.Vrfy(V K,M∗, S∗) such that
M∗ �=M .

2.3 Message Authentication Code (MAC)

A message authentication code (MAC) consists of a two-tuple of PTAs as follows,
where a space of keys KMAC is determined by a security parameter k.

– τ ← MAC.Sign(K,M) : A message authentication algorithm is determinis-
tic, and it takes a symmetric-key K ∈ KMAC and a message M ∈ {0, 1}∗ as
input and then outputs a tag τ .

– 1 or 0← MAC.Vrfy(K,M, τ) : A verification algorithm is deterministic, and
it takes a symmetric-key K ∈ KMAC , a message M ∈ {0, 1}∗, and a tag τ
as input and then outputs 1 (accept) or 0 (reject).

Constructions of Signcryption from Identity-Based Encryption 329

We require that for all k ∈ N, all K ∈ KMAC, all M , it holds that 1 =
MAC.Vrfy(K,M, τ), where τ ← MAC.Sign(K,M).

Definition 3 (sUF-OT). For MACs, a notion of strong unforgeability against
one-time attack (sUF-OT) is defined as follows. Let A be a polynomial-time
adversary against MAC={MAC.Sign, MAC.Vrfy}, and we consider the following
game:

Step 1. K ←R KMAC.
Step 2. (M∗, τ∗)← AO(·)(1k).

O is an oracle which takes a plaintextM as input and then returns τ ← MAC.Sign
(K,M). A is allowed to access the above oracle at most one time. We require
(M∗, τ∗) �= (M, τ). Let [A wins] be an event of 1 = MAC.Vrfy(K,M∗, τ∗). We
define the advantage of A in the above game by AdvsUF -OT

MAC,A (k) := Pr[A wins].
A MAC meets ε-sUF-OT, if there exists a negligible ε in k such that

AdvsUF -OT
MAC,A (k) ≤ ε holds for any probabilistic PTA A.

2.4 Encapsulation

The encapsulation was first defined by Boneh and Katz in [5], and it may be
viewed as a weak variant of commitment.

An encapsulation consists of a three-tuple of PTAs as follows, where a space
of random strings Rencap is determined by a security parameter k.

– prm← E.Setup(1k): A setup algorithm is probabilistic, and it takes a secu-
rity parameter k as input and then outputs a public parameter prm.

– (r, com, dec)← E.Enc(prm) : An encapsulation algorithm is probabilistic,
and it takes a public parameter prm as input and then outputs a random
string r ∈ Rencap, a public commitment com and a de-commitment dec.

– r or ⊥ ← E.Rec(prm, com, dec) : A recovering algorithm takes as input a
public parameter prm, a public commitment com, and a de-commitment
dec. It outputs a string r ∈ Rencap or an invalid symbol ⊥ �∈ Rencap.

We require that for allk ∈ N, allprm←E.Setup(1k), all (r, com, dec)←E.Enc(prm),
it holds that E.Rec(prm, com, dec) = r.

Definition 4 (Security). For encapsulation schemes, security notions of hid-
ing and binding are defined as follows. Let A = {A1,A2} be a polynomial-time
adversary against Encap= {E.Setup, E.Enc, E.Rec}.
Hiding. We consider the following game:

Step 1. prm← E.Setup(1k), r0 ←R Rencap, (r1, com, dec)← E.Enc(prm),
and b←R {0, 1}.
Step 2. b′ ← A1(prm, com, rb).

We define the advantage of A1 in the above game by

AdvhidingEncap,A1
(k) :=

∣
∣
∣
∣Pr[b = b′]− 1

2

∣
∣
∣
∣ .

330 R. Nakano and J. Shikata

Binding. We consider the following game:

Step 1. prm← E.Setup(1k), (r, com, dec)← E.Enc(prm).
Step 2. dec∗ ← A2(prm, com, dec).

Let [A2 wins] be an event of E.Rec(prm, com, dec∗) /∈ {⊥, r}. We define the
advantage of A2 in the above game by

AdvbindingEncap,A2
(k) := Pr [A2 wins] .

An Encap is said to be ε-secure, if there exists a negligible ε in k such that
AdvhidingEncap,A1

(k) ≤ ε and AdvbindingEncap,A2
(k) ≤ ε hold for any probabilistic PTA A =

{A1,A2}.

3 Signcryption

In this section, we describe the model and security definition of signcryption
schemes.

A signcryption scheme (SCS) consists of a five-tuple of PTAs as follows, where
a space of plaintextsMSCS are determined by a security parameter k.

– prm← Setup(1k) : A setup algorithm is probabilistic, and it takes a security
parameter k as input and then outputs a public parameter prm.

– (pkR, skR)← KeyGenR(prm) : A receiver’s key generation algorithm is prob-
abilistic, and it takes a public parameter prm as input and then outputs a
receiver’s public-key pkR and a receiver’s secret-key skR.

– (pkS , skS)← KeyGenS(prm) : A sender’s key generation algorithm is prob-
abilistic, and it takes a public parameter prm as input and then outputs a
sender’s public-key pkS and a sender’s secret-key skS .

– σ ← SC(prm, pkR, skS ,M) : A signcrypt algorithm is probabilistic, and it
takes a public parameter prm, a receiver’s public-key pkR, a sender’s secret
key skS and a plaintext M ∈MSCS as input and then outputs a ciphertext
σ.

– M or ⊥ ← USC(prm, pkS , skR, σ) : An unsigncrypt algorithm takes a public
parameter prm, a sender’s public-key pkS , a receiver’s secret-key skR and a
ciphertext σ as input and then outputs a plaintext M ∈MSCS or an invalid
symbol ⊥ �∈ MSCS.

We require that for allk ∈ N, allprm←Setup(1k), all (pkR, skR)←KeyGenR(prm),
all (pkS , skS)←KeyGenS(prm), allM ∈MSCS, it holds that

USC(prm, pkS , skR, SC(prm, pkR, skS ,M)) =M.

The security of signcryption schemes consists of confidentiality and integrity.
In this paper, we adopt the strongest security considered in [9,12,14]. Specifi-
cally, we consider the multi-user indistinguishability against insider chosen ci-
phertext attack (MU-IND-iCCA, for short) and the multi-user strong unforge-
ability against insider chosen message attack (MU-sUF-iCMA, for short). These
notions are formalized as follows.

Constructions of Signcryption from Identity-Based Encryption 331

Definition 5 (MU-IND-iCCA). For SCSs, a notion of multi-user indistin-
guishability against insider chosen ciphertext attack (MU-IND-iCCA) is defined
as follows. Let A={A1,A2} be a polynomial-time adversary against a signcryp-
tion scheme SCS={Setup, KeyGenR, KeyGenS, SC, USC}, and we consider the
following game:

Step 1. prm← Setup(1k), (pkR, skR)←KeyGenR(prm).

Step 2. (M0,M1, pk
∗
S , sk

∗
S , st)← A

O(·)
1 (prm, pkR).

Step 3. b←R {0, 1}, σ∗ ← SC(prm, pkR, sk
∗
S ,Mb).

Step 4. b′ ← A
O(·)
2 (st, σ∗).

We require |M0| = |M1|, and O(·) is an unsigncrypt oracle which takes (pkS , σ)
as input and then returns USC(prm, pkS , skR, σ). A is allowed to access the
above oracle at any time, however, it cannot submit (pk∗S , σ

∗) to O in Step 4.
We define the advantage of A in the above game by

AdvMU-IND-iCCA
SCS,A (k) :=

∣
∣
∣
∣Pr[b = b′]− 1

2

∣
∣
∣
∣ .

A SCS meets ε-MU-IND-iCCA, if there exists a negligible ε in k such that
AdvMU-IND-iCCA

SCS,A (k) ≤ ε holds for any probabilistic PTA A.

Definition 6 (MU-sUF-iCMA). For SCSs, a notion of multi-user strong un-
forgeability against insider chosen message attack (MU-sUF-iCMA) is defined
as follows. Let A be a polynomial-time adversary against a signcryption scheme
SCS={Setup, KeyGenR, KeyGenS , SC, USC}, and we consider the following
game:

Step 1. prm← Setup(1k), (pkS , skS)←KeyGenS(prm).

Step 2. (pk∗R, sk
∗
R, σ

∗)← AO(·)(prm, pkS).

Here, O is a signcrypt oracle which takes (pkR,M) as input and then returns
SC(prm, pkR, skS ,M). A is allowed to access the above oracle at most polynomial
time, and suppose that {(pkR,1,M1, σ1), (pkR,2,M2, σ2), . . . , (pkR,t,Mt, σt)} is a
set of queries and answers obtained by accessing O. Let [A wins] be an event
that

USC(prm, pkS , sk
∗
R, σ

∗) =M∗ ∧ (pk∗R,M
∗, σ∗) �= (pkR,i,Mi, σi) for 1 ≤ i ≤ t.

We define the advantage of A in the above game by

AdvMU-sUF -iCMA
SCS,A (k) := Pr[A wins].

A SCS meets ε-MU-sUF-iCMA, if there exists a negligible ε in k such that
AdvMU-sUF -iCMA

SCS,A (k) ≤ ε holds for any probabilistic PTA A.

4 Our Constructions

In this section, we propose two generic constructions of signcryption schemes.

332 R. Nakano and J. Shikata

4.1 Construction 1

Although it is natural to think that PKE (public-key encryption) and DS can
be used to construct signcryption schemes, it is known that security for both
MU-IND-iCCA and MU-sUF-iCMA cannot be achieved if we combine PKE and
DS in a trivial way (see [1]). Therefore, we need some technical idea to achieve
security for both MU-IND-iCCA and MU-sUF-iCMA.

First, we note that, in [8], Canetti et al. constructed IND-CCA secure PKE
from IND-sID-CPA secure IBE and sUF-OT secure OTS in a generic way (i.e.,
generic construction). Secondly, we also note that, in [3], Bellare and Shoup
constructed sUF-CMA secure DS from UF-CMA secure DS and sUF-OT secure
OTS in a generic way. Our idea for constructing signcryption is to combine
primitives PKE, DS, and OTS based on their ideas in [8,3], and to optimize it
such that OTS will be used only once, since OTS would be used twice without
optimizing it (one for IND-CCA secure PKE and the other for sUF-CMA secure
DS). Based on this idea, we propose the following generic construction.

Let IBE= {IBE.Setup, IBE.Kg, IBE.Der, IBE.Enc, IBE.Dec} be an id-based
encryption, let DS= {DS.Setup, DS.Kg, DS.Sign, DS.Vrfy} be a digital signa-
ture, and let OTS= {OTS.Setup, OTS.Kg, OTS.Sign, OTS.Vrfy} be a one-time
signature. Then, a signcryption scheme SCS={Setup, KeyGenR, KeyGenS, SC,
USC} is constructed as follows.

– prm← Setup(1k): It computes prmIBE ← IBE.Setup(1k),
prmDS←DS.Setup(1k), and prmOTS ← OTS.Setup(1k). Then, it outputs
prm = (prmIBE , prmDS , prmOTS).

– (pkR, skR)← KeyGenR(prm): It computes (mpk,msk)←IBE.Kg
(prmIBE). Then, it outputs pkR = mpkCskR = mskD

– (pkS, skS)← KeyGenS(prm): It computes (V K, SK)←DS.Kg(prmDS).
Then, it outputs pkS = VKCskS = SKD

– σ ← SC(prm, pkR, skS,M): It computes (vk, sk)←OTS.Kg(prmOTS),
S←DS.Sign(skS ,M‖vk‖pkR), C←IBE.Enc(pkR, vk,M‖S),
s←OTS.Sign(sk, C). Then, it outputs σ = (vk, C, s)D

– M or ⊥ ← USC(prm, pkS, skR, σ): If OTS.Vrfy(vk, C, s) = 1, it com-
putes SKvk←IBE.Der(skR, vk) and M‖S←IBE.Dec(SKvk, vk, C). And, if
DS.Vrfy(pkS ,M‖vk‖pkR, S) = 1, it outputs MD Otherwise, it outputs ⊥.

We can show that the resulting signcryption SCS in the above construction
has security of both MU-IND-iCCA and MU-sUF-iCMA, if given IBE is IND-
sID-CPA secure, OTS is sUF-OT secure, and DS is UF-CMA secure, as follows.
The proofs of Theorems 1 and 2 are given in Appendices A and B, respectively.

Theorem 1. If given IBE meets ε1-IND-sID-CPA and OTS meets ε2-sUF-OT,
then the resulting SCS in the above construction meets δ-MU-IND-iCCA with
δ ≤ ε1 + 1

2qε2, where q is the number of queries to the unsigncrypt oracle.

Theorem 2. If given DS meets ε1-UF-CMA and OTS meets ε2-sUF-OT, then
the resulting SCS in the above construction meets δ-MU-sUF-iCMA with δ ≤
ε1 + qε2, where q is the number of queries to the unsigncrypt oracle.

Constructions of Signcryption from Identity-Based Encryption 333

4.2 Construction 2

In [5], Boneh et al. constructed IND-CCA secure PKE from IND-sID-CPA secure
IBE, sUF-OT secure MAC and secure encapsulation in a generic way. Note that
MAC and encapsulation are effectively utilized in [5], while OTS is used in [8]1. In
addition to this idea, we consider some technique to achieve strong unforgeability
of signcryption schemes by using MAC and encapsulation in addition to DS. This
idea successfully leads to the following construction for signcryption schemes
such that each of IBE, DS, MAC, and encapsulation is used only once.

Let IBE= {IBE.Setup, IBE.Kg, IBE.Der, IBE.Enc, IBE.Dec} be an id-based
encryption, let DS= {DS.Setup, DS.Kg, DS.Sign, DS.Vrfy} be a digital signa-
ture, and let MAC= {MAC.Sign, MAC.Vrfy} and Encap= {E.Setup, E.Enc,
E.Rec} be a MAC and an encapsulation, respectively. Then, a signcryption
scheme SCS={Setup, KeyGenR, KeyGenS , SC, USC} is constructed as follows.

– prm← Setup(1k): It computes prmIBE ← IBE.Setup(1k),
prmDS←DS.Setup(1k), and prmE ← E.Setup(1k). Then, it outputs prm =
(prmIBE , prmDS , prmE).

– (pkR, skR)← KeyGenR(prm): It computes (mpk,msk)←IBE.Kg
(prmIBE). Then, it outputs pkR = mpkCskR = mskD

– (pkS, skS)← KeyGenS(prm): It computes (V K, SK)←DS.Kg(prmDS).
Then, it outputs pkS = VKCskS = SKD

– σ ← SC(prm, pkR, skS,M): It computes (r, com, dec)←E.Enc(prmE),
S←DS.Sign(skS ,M‖com‖pkR), C←IBE.Enc(pkR, com,M‖S‖dec),
τ←MAC(r, C). Then, it outputs σ = (com,C, τ)D

– M or⊥ ← USC(prm, pkS, skR, σ): It computes SKcom←IBE.Der(skR,
com),M‖S‖dec←IBE.Dec(SKcom, com,C), and r← E.Rec(prmE , com, dec).
And, if MAC.Vrfy(r, C, τ) = 1 and DS.Vrfy(pkS ,M‖com‖pkR, S) = 1, it out-
putsMD Otherwise, it outputs ⊥.

We can show that the resulting signcryption SCS in the above construction has
security of both MU-IND-iCCA and MU-sUF-iCMA, if given IBE is IND-sID-
CPA secure, DS is UF-CMA secure, MAC is sUF-OT secure, and encapsulation
is secure, as follows. The proofs of Theorems 3 and 4 are given in Appendices C
and D, respectively.

Theorem 3. If given IBE meets ε1-IND-sID-CPA, MAC meets ε2-sUF-OT and
encapsulation is ε3-secure, then the resulting SCS in the above construction meets
δ-MU-IND-iCCA with δ ≤ 4ε1 + qε2 + 2ε3, where q is the number of queries to
the unsigncrypt oracle.

Theorem 4. If given DS meets ε1-UF-CMA, MAC meets ε2-sUF-OT and en-
capsulation is ε3-secure, then the resulting SCS in the above construction meets
δ-MU-sUF-iCMA with δ ≤ ε1 + qε2 + 2ε3, where q is the number of queries to
the unsigncrypt oracle.

1 However, we do not know whether secure OTS can be constructed from MAC and
encapsulation in a generic way.

334 R. Nakano and J. Shikata

5 Comparison

In this section, we compare our constructions with other existing ones of sign-
cryption schemes.

5.1 Comparison of Generic Constructions

In this subsection, we compare generic constructions of signcryption schemes in
the standard model (i.e., without random oracles). We summarize existing such
constructions in Table 1. In Table 1, TBE is a tag-based public-key encryption
in which the encryption and decryption algorithms take a tag as an additional
input; TBKEM is a tag-based key encapsulation mechanism; and security of IND-
tag-CCA means the strongest security of TBE and TBKEM (see [12] for deatls).
In Table 1, MU-wUF-iCMA means multi-user weak unforgeability against insider
chosen message attack, and it is weaker than MU-sUF-iCMA.

Table 1. Comparison of generic constructions of signcryptions in the standard model

Constructions Primitives Achievable security

MMS-StTE[12] IND-tag-CCA secure TBE MU-IND-iCCA
sUF-CMA secure DS MU-wUF-iCMA

MMS-SC[12] IND-tag-CCA secure TBKEM MU-IND-iCCA
sUF-CMA secure DS MU-sUF-iCMA(KR)

SCtk[9] IND-tag-CCA secure TBKEM MU-IND-iCCA
sUF-CMA secure DS, IND-CCA seucure DEM MU-sUF-iCMA

SCkem[9] IND-CCA secure KEM, sUF-CMA secure DS MU-IND-iCCA
IND-CCA secure DEM, sUF-OT secure MAC MU-sUF-iCMA

Construction 1 IND-sID-CPA secure IBE, UF-CMA secure DS MU-IND-iCCA
(ours) sUF-OT secure OTS MU-sUF-iCMA

Construction 2 IND-sID-CPA secure IBE, UF-CMA secure DS MU-IND-iCCA
(ours) secure encapsulation, sUF-OT secure MAC MU-sUF-iCMA

First, we compare cryptographic primitives providing confidentiality in all
constructions in Table 1. As shown in Table 1, each construction achieves security
of MU-IND-iCCA of signcryption schemes. Note that IND-tag-CCA secure TBE,
IND-tag-CCA secure TBKEM, or IND-CCA secure KEM/DEM is used as a
primitive in MMS-StTE[12], MMS-SC[12], SCtk[9], and SCkem[9]. On the other
hand, our constructions (i.e., Constructions 1 and 2) use IND-sID-CPA secure
IBE. These constructions employ different kinds of primitives. However, it is
known that IBE implies KEM [4,5,7,8] and also KEM implies TBE and TBKEM
[10,12].

Secondly, we compare cryptographic primitives providing integrity in all con-
structions in Table 1. Note that MMS-StTE[12] cannot achieve security of MU-
sUF-iCMA of signcryption (i.e., it only achieves MU-wUF-iCMA). MMS-SC[12]
achieves MU-sUF-iCMA, however, it assumes the key registration (KR) model.

Constructions of Signcryption from Identity-Based Encryption 335

In the KR model, the adversary is required to reveal a secret-key corresponding
to a public-key which is used in trying to attack signcryption schemes. This model
assumes that the public-key infrastructure (PKI) is available and all users can ex-
ecute zero-knowledge proofs with a certificate authority, which proves knowledge
of their secret-keys before they obtain a certificate for their public-keys. How-
ever, issuing these proofs places a heavy duty on the certificate authority. From
the above aspect, it is not desirable to assume the KR model, since this type
of registration is not used in most practical systems. SCtk[9], SCkem[9] and our
constructions achieve security of MU-sUF-iCMA without KR. SCtk[9] uses sUF-
CMA secure DS, while SCkem[9] uses sUF-CMA secure DS and sUF-OT secure
MAC. In contrast, our constructions achieve MU-sUF-iCMA by using UF-CMA
secure DS and sUF-OT secure OTS, or UF-CMA secure DS and sUF-OT secure
MAC and encapsulation. Note that, in DS, sUF-CMA security is stronger than
UF-CMA security and sUF-OT security. However, sUF-CMA secure DS can be
constructed in a generic way by combining UF-CMA secure DS and sUF-OT
secure OTS [3]. Hence, in this sense, there is essentially no difference between
the assumption about primitives. In summary, we observe that SCtk, SCkem and
ours are better than MMS-StTE[12] and MMS-SC[12] in terms of integrity, since
the constructions in [12] cannot achieve MU-sUF-iCMA without KR.

As a result of comparison, in confidentiality, it can be seen that our construc-
tions need strong primitive, since our constructions require IBE. Furthermore,
in integrity, each construction employs the same level of primitives, though our
constructions use DS of weak security. However, we stress that our goal is not to
displace the existing constructions [9] but rather to propose another approach
to simply constructing strongly secure signcryption by extending well-known
techniques for constructing strongly secure PKE from IBE [4,5,8].

5.2 Comparison of Direct Constructions

In this subsection, we compare direct constructions of signcryption schemes by
applying reasonable instantiations of cryptographic primitives to generic con-
structions (see Appendix E for tables which summarize constructions of primi-
tives used in this subsection), and we focus on comparison of SCtk, SCkem, and
Constructions 1 and 2 (ours), since these four constructions achieve the strong
security (i.e., MU-IND-iCCA and MU-sUF-iCMA) without KR.

In Table 2, we describe constructions of signcryption schemes about achiev-
able security and applied concrete primitives and computational assumptions
required for it. In confidentiality, we apply the primitives based on DBDH as-
sumption to each construction, and in integrity, we apply the primitives based
on CDH assumption to each construction, in order to fairly compare them based
on the same computational assumptions.

Next, we compare computational cost and sizes of ciphertexts and public/
secret-keys. Table 3 summarizes computational cost, and Table 4 summarizes
sizes of ciphertexts and public/secret-keys. In particular, as observed in Ta-
ble 3, Construction 2 (ours) is the best among the above four constructions in
terms of computational cost. Furthermore, as we can see in Table 4, the sizes of

336 R. Nakano and J. Shikata

Table 2. Comparison of computational assumptions: for assumptions, DBDH means
Decisional Bilinear Diffie-Hellman assumption, and CDH means Computational Diffie-
Hellman assumption; for primitives, tBMW1 denotes the TBKEM in [12]. BMW2
denotes the KEM in [7]. BCHK denotes the IBE in [4]. BSW and Waters denote the
DSs in [6] and [15], respectively. Okamoto denotes the OTS in [13]. Note that in the
comparison BSW is applied to SCtk and SCkem, since it is more efficient than BS[3]
using Waters and Okamoto (see Appendix E).

Construction Confidentiality Integrity
/Assumption /Assumption

SCtk[9] MU-IND-iCCA MU-sUF-iCMA
(tBMW1[12],BSW[6]) /DBDH /CDH

SCkem[9] MU-IND-iCCA MU-sUF-iCMA
(BMW2[7],BSW[6]) /DBDH /CDH

Construction 1 (ours) MU-IND-iCCA MU-sUF-iCMA
(BCHK[4],Waters[15],Okamoto[13]) /DBDH /CDH

Construction 2 (ours) MU-IND-iCCA MU-sUF-iCMA
(BCHK[4],Waters[15]) /DBDH /CDH

Table 3. Comparison of computational cost: exp stands for exponentiation, and m-exp
stands for multi-exponentiation. Group multiplications and computation costs of hash
functions and symmetric-key primitives (i.e., DEMs) are not considered here.

Construction Computational cost
SC USC

SCtk[9] 5 exps, 1 m-exp 1 exp, 1 m-exp, 3 pairing

SCkem[9] 4 exps, 2 m-exp 1 exp, 1 m-exp, 3 pairings

Construction 1 4 exps, 3 m-exps 1 exp, 2 m-exps 3 pairings

Construction 2 4 exps, 1 m-exp 1 m-exp, 3 pairings

public/secret-keys in our constructions are equal or slightly shorter than those
of SCtk and SCkem, while Constructions 1 and 2 are inferior to both of SCtk and
SCkem in terms of ciphertext-size.

Finally, we summarize the above discussion. Our construction achieves MU-
IND-iCCA security under DBDH assumption and MU-sUF-iCMA security under
CDH assumption with the same or shorter sizes of public/secret-keys and less
computational cost compared to other existing constructions, though ciphertext-
size becomes larger. In this sense, there is a tradeoff between parameters of ef-
ficiency. Thus, our construction would be useful in the situation where large
channel capacity for communication is available to transmit ciphertexts. How-
ever, if not (i.e., channel capacity is limited), our construction is not well suited.
Therefore, it would be possible to adapt a construction of signcryption effectively
and properly to suit the situation of applications.

Constructions of Signcryption from Identity-Based Encryption 337

Table 4. Comparison of sizes of ciphertexts and keys: |GBG| is bit-length of elements in
a bilinear group. |Ge| is bit-length of elements in an elliptic curve. |Zp| is the bit-length
of elements in a field of prime order p. |MAC| is the bit-length of MAC tag. |com| and
|dec| are bit-length of strings in an encapsulation scheme that require 3|com| ≤ |dec|
(see [4]). n is the bit-length of output of a collision-resistant hash function such that
p ≥ 2n. We assume that DEM has no ciphertext overhead. For example, if we consider
80-bit security, we can apply |Ge| = |Zp| = 160 bits, |GBG| = 171 bits, |MAC| =
|com| = 80 bits, and |dec| = 240 bits.

Construction Ciphertext Reciever’s key size Sender’s key size
size pk sk pk sk

SCtk[9] 4|GBG|+ |Zp| (2 + n)|GBG| |GBG| (5 + n)|GBG| |GBG|
+(1 + n)|Zp|

SCkem[9] 4|GBG|+ |Zp| 3|GBG| |GBG|+ 2|Zp| (5 + n)|GBG| |GBG|
+|MAC|

Construction 1 4|GBG|+ 2|Zp| 3|GBG| 3|Zp| (4 + n)|GBG| |GBG|
+4|Ge|

Construction 2 4|GBG|+ |MAC| 3|GBG| 3|Zp| (4 + n)|GBG| |GBG|
+|com|+ |dec|

6 Concluding Remarks

We emphasize that our main purpose was to propose a simple approach to con-
structing strongly secure signcryption in the multi-user setting based on well-
known techniques for constructing strongly secure PKE from IBE. In this paper,
we have successfully proposed such two generic constructions of signcryption
schemes without random oracles, and our constructions achieve the strongest
security (i.e., both of MU-IND-iCCA and MU-sUF-iCMA) without KR. More-
over, by applying reasonable instantiations of cryptographic primitives to our
generic constructions, we have shown that our constructions have the same or
shorter size of public/secret-keys and less computational cost, where the latter
is true only for our Construction 2, compared to other existing constructions,
however, our constructions have larger ciphertext-size. In this sense, there is
a tradeoff between parameters of efficiency. Therefore, it would be possible to
adapt a construction of signcryption effectively and properly to suit the situation
of applications.

Acknowledgments. The authors wish to thank anonymous referees for their
invaluable comments.

References

1. An, J.H., Dodis, Y., Rabin, T.: On the Security of Joint Signature and Encryp-
tion. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107.
Springer, Heidelberg (2002)

338 R. Nakano and J. Shikata

2. Baek, J., Steinfeld, R., Zheng, Y.: Formal Proofs for the Security of Signcryption.
J. Cryptology 20(2), 203–235 (2007)

3. Bellare, M., Shoup, S.: Two-Tier Signatures, Strongly Unforgeable Signatures, and
Fiat-Shamir Without Random Oracles. In: Okamoto, T., Wang, X. (eds.) PKC
2007. LNCS, vol. 4450, pp. 201–216. Springer, Heidelberg (2007)

4. Boneh, D., Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext Security from
Identity-based Encryption. SIAM J. Comput. 36(5), 1301–1328 (2007)

5. Boneh, D., Katz, J.: Improved Efficiency for CCA-Secure Cryptosystems Built
Using Identity-Based Encryption. In: Menezes, A. (ed.) CT-RSA 2005. LNCS,
vol. 3376, pp. 87–103. Springer, Heidelberg (2005)

6. Boneh, D., Shen, E., Waters, B.: Strongly Unforgeable Signatures Based on Com-
putational Diffie-Hellman. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.)
PKC 2006. LNCS, vol. 3958, pp. 229–240. Springer, Heidelberg (2006)

7. Boyen, X., Mei, Q., Waters, B.: Direct Chosen Ciphertext Security from Identity-
based Techniques. In: Atluri, V., Meadows, C., Juels, A. (eds.) ACM CCS 2005,
pp. 320–329. ACM (2005)

8. Canetti, R., Halevi, S., Katz, J.: Chosen-Ciphertext Security from Identity-Based
Encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 207–222. Springer, Heidelberg (2004)

9. Chiba, D., Matsuda, T., Schuldt, J.C.N., Matsuura, K.: Efficient Generic Construc-
tions of Signcryption with Insider Security in the Multi-user Setting. In: Lopez, J.,
Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 220–237. Springer, Heidelberg
(2011)

10. Kiltz, E.: Chosen-Ciphertext Security from Tag-Based Encryption. In: Halevi, S.,
Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg
(2006)

11. Libert, B., Quisquater, J.-J.: Efficient Signcryption with Key Privacy from Gap
Diffie-Hellman Groups. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS,
vol. 2947, pp. 187–200. Springer, Heidelberg (2004)

12. Matsuda, T., Matsuura, K., Schuldt, J.C.N.: Efficient Constructions of Signcryp-
tion Schemes and Signcryption Composability. In: Roy, B., Sendrier, N. (eds.)
INDOCRYPT 2009. LNCS, vol. 5922, pp. 321–342. Springer, Heidelberg (2009)

13. Okamoto, T.: Provably Secure and Practical Identification Schemes and Cor-
responding Signature Schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS,
vol. 740, pp. 31–53. Springer, Heidelberg (1993)

14. Tan, C.H.: Signcryption Scheme in Multi-user Setting without Random Oracles.
In: Matsuura, K., Fujisaki, E. (eds.) IWSEC 2008. LNCS, vol. 5312, pp. 64–82.
Springer, Heidelberg (2008)

15. Waters, B.: Efficient Identity-Based Encryption Without Random Oracles. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer,
Heidelberg (2005)

16. Zheng, Y.: Digital Signcryption or How to Achieve Cost(signature & encryption)
� Cost(signature) + Cost(encryption). In: Kaliski Jr., B.S. (ed.) CRYPTO 1997.
LNCS, vol. 1294, pp. 165–179. Springer, Heidelberg (1997)

Appendix A: Proof of Theorem 1

Suppose that there exists a probabilistic PTA A that breaks the MU-IND-iCCA
security of the signcryption scheme SCS with advantage δ. We say that a cipher-
text σ = (vk, C, s) is valid if OTS.Vrfy(vk, C, s) = 1. Let σ∗ = (vk∗, C∗, s∗) be

Constructions of Signcryption from Identity-Based Encryption 339

a challenge ciphertext recieved by A. Forge denotes the event that A submits a
valid (pkS , vk

∗, C, s) to the unsigncrypt oracle. Succ denotes the event that the
adversary wins the game. Then we have

AdvMU-IND-iCCA
SCS,A =

∣
∣
∣
∣Pr[Succ]−

1

2

∣
∣
∣
∣

≤
∣
∣
∣
∣Pr[Succ ∧ Forge]− 1

2
Pr[Forge]

∣
∣
∣
∣

+

∣
∣
∣
∣Pr[Succ ∧ Forge] +

1

2
Pr[Forge]− 1

2

∣
∣
∣
∣

≤ 1

2
Pr[Forge] +

∣
∣
∣
∣Pr[Succ ∧ Forge] +

1

2
Pr[Forge]− 1

2

∣
∣
∣
∣ .

To complete the proof, we need the following lemmas.

Lemma 1. Pr[Forge] ≤ qε2.
Lemma 2.

∣
∣Pr[Succ ∧ Forge] + 1

2 Pr[Forge]− 1
2

∣
∣ ≤ ε1.

The proofs of the above lemmas will be given in the full version of this paper.
By Lemmas 1 and 2, we obtain

AdvMU-IND-iCCA
SCS,A ≤ ε1 + q

2
ε2.

This completes the proof of Theorem 1. �

Appendix B: Proof of Theorem 2

Suppose that there exists a probabilistic PTA A that breaks the MU-sUF-iCMA
security of the signcryption scheme SCS. We use A to construct a probabilistic
PTA B that breaks the UF-CMA security of the digital signature DS as follow:
B is given as input a public parameter prm and a verification-key V K = pkS ,
and runs (pkR, skR) ← KeyGenR(prm), and then runs A(prm, pkS). B can an-
swer any signcrypt queries from A by using its own signing oracle. This pro-
vides perfect simulation of the view of A in the game. If A finally outputs
a valid forgery (pk∗R, sk

∗
R, vk

∗, C∗, s∗), it follows from the USC algorithm that
DS.Vrfy(pk∗S ,M

∗‖vk∗‖pk∗R, S∗) = 1. Thus (M∗‖vk∗‖pk∗R, S∗) is a valid forgery
for B if M∗‖vk∗‖pk∗R was never previously queried to the signing oracle. Let
Bad denotes the event that M∗‖vk∗‖pk∗R was previously queried to the signing
oracle, and Succ denotes the event that the adversary wins the game. Then, it
follows that

ε1 ≥ AdvUF -CMA
DS,B ≥ Pr[Succ ∧ Bad].

Furthermore, we use A to construct a probabilistic PTA F that breaks the
sUF-OT security of the one-time signature OTS as follows: F is given as input
a public parameter prm and a verification-key vk∗, and it runs (pkR, skR) ←

340 R. Nakano and J. Shikata

KeyGenR(prm), (pkS , skS)← KeyGenS(prm), and then runs A(prm, pkS). Let
q be the number of queries to the signcrypt oracle. When A submits a j-th
signcrypt query (for 1 ≤ j ≤ q), F can answer it by using generated one-
time key pair (vkj , skj) or using its own signing oracle only once. This pro-
vides perfect simulation of the view of A in the game. If A finally outputs a
valid forgery (pk∗R, sk

∗
R, vk

∗, C∗, s∗), it follows from the USC algorithm that
OTS.Vrfy(vk∗, C∗, s∗) = 1. When M∗‖vk∗‖pk∗R was previously signed by F,
the event Bad occurs. In this case, (C∗, s∗) is a valid forgery for F, if F did not
previously query C∗ to the signing oracle and did not recieve back s∗ as the
signature. Then, it follows that

qε2 ≥ q · AdvsUF -OT
OTS,F ≥ Pr[Succ ∧ Bad].

Thus, we have

AdvMU-sUF -iCMA
SCS,A = Pr[Succ ∧ Bad] + Pr[Succ ∧ Bad]

≤ AdvUF -CMA
DS,B + q ·AdvsUF -OT

OTS,F

≤ ε1 + qε2.

This completes the proof of Theorem 2. �

Appendix C: Proof of Theorem 3

Suppose that there exists a probabilistic PTA A that breaks the MU-IND-iCCA
security of the signcryption scheme SCS. We use A to construct a probabilistic
PTA B that breaks the IND-sID-CPA security of the identity-based encryption
IBE, or a probabilistic PTA D that breaks security of the encapsulation scheme,
or a probabilistic PTA F that breaks the sUF-OT security of the MAC. Then,
we define the following games.

Game0: This is the ordinary MU-IND-iCCA game.
Game1: When A outputs the query (pkS , com

∗, C, τ) in the Game0, the oracle
returns ⊥.

Game2: A submits two plaintexts M0 and M1, and then, we compute the
challenge ciphertext σ∗ = (com∗, C∗, τ∗) by C∗←IBE.Enc(pkR, com

∗, 0|M0|

‖S∗‖0|dec|), τ∗←MAC.Sign(r∗, C∗) in Game1.
Game3: The components com∗ and C∗ of the challenge ciphertext are computed

as in Game2. However, the component τ∗ is computed by choosing a random
key r.

Then, we define the following events.

– Succi: This is the event that A wins in the Gamei.
– Validi: This is the event that A submits a valid ciphertext σ = (com∗, C, τ)

in Gamei.
– NoBindi: This is the event that A submits a ciphertext σ = (com∗, C, τ) such

that M‖S‖dec← IBE.Dec(SKcom∗, com∗, C) and E.Rec(prm, com∗, dec) =
r /∈ {r∗,⊥} in Gamei.

Constructions of Signcryption from Identity-Based Encryption 341

– Forgei: This is the event that A submits a ciphertext σ = (com∗, C, τ) for
which MAC.Vrfy(r∗, C, τ) = 1 in Gamei.

Now, we note that Game0 and Game1 are the same until Valid occurs. Thus, we
have |Pr[Succ1] − Pr[Succ0]| ≤ Pr[Valid1]. Furthermore, in Valid1, the query in-
cludes com∗ and it is valid. Hence, we have Pr[Valid1] ≤ Pr[NoBind1]+Pr[Forge1].
Then, it follows that

∣
∣
∣
∣Pr [Succ0]−

1

2

∣
∣
∣
∣ ≤ |Pr [Succ0]− Pr [Succ1]|+

∣
∣
∣
∣Pr [Succ1]−

1

2

∣
∣
∣
∣

≤ Pr [NoBind1] + Pr [Forge1]

+ |Pr [Succ1]− Pr [Succ2]|+
∣
∣
∣
∣Pr [Succ2]−

1

2

∣
∣
∣
∣

≤ Pr [NoBind1] + Pr [Forge3]

+ |Pr [Forge2]− Pr [Forge3]|
+ |Pr [Forge1]− Pr [Forge2]|
+ |Pr [Succ1]− Pr [Succ2]|+

∣
∣
∣
∣Pr [Succ2]−

1

2

∣
∣
∣
∣ .

To complete the proof, we need the following lemmas.

Lemma 3. Pr[NoBind1] ≤ ε3.
Lemma 4. Pr[Succ2] = 1

2 , |Pr[Succ1] − Pr[Succ2]| ≤ 2ε1, and |Pr[Forge1] −
Pr[Forge2]| ≤ 2ε1.

Lemma 5. |Pr[Forge2]− Pr[Forge3]| ≤ ε3 and Pr[Forge3] ≤ qε2.
The proofs of the above lemmas will be given in the full version of this paper.
By Lemmas 3, 4, and 5, we obtain

AdvMU-IND-iCCA
SCS,A ≤ 4ε1 + qε2 + 2ε3.

This completes the proof. �

Appendix D: Proof of Theorem 4

Suppose that there exists a probabilistic PTA A that breaks the MU-sUF-iCMA
security of the signcryption scheme SCS. We use A to construct a probabilistic
PTA B that breaks the UF-CMA security of the digital signature DS as follows.

B is given as input a public parameter prm and a verification-key VK = pkS ,
and runs (pkR, skR) ← KeyGenR(prm), and then runs A(prm, pkS). B can
answer any signcrypt queries from A by using its own signing oracle. This
provides perfect simulation of the view of A in the game. If A finally out-
puts a valid forgery (pk∗R, sk

∗
R, com

∗, C∗, τ∗), it follows from the USC algorithm
that DS.Vrfy(pk∗S ,M

∗‖com∗‖pk∗R, S∗) = 1. Thus, (M∗‖com∗‖pk∗R, S∗) is a valid

342 R. Nakano and J. Shikata

forgery for B if M∗‖com∗‖pk∗R was never previously queried to the signing ora-
cle. Let Bad denotes the event thatM∗‖com∗‖pk∗R was previously queried to the
signing oracle, and Succ denotes the event that the adversary wins the game.
Then, it follows that

ε1 ≥ AdvUF -CMA
DS,B ≥ Pr[Succ ∧ Bad].

Then, we consider the following three cases in the event Bad.

– E1: A outputs a forgery (pk∗R, sk
∗
R, com

∗, C∗, τ∗) such that M∗‖S∗‖dec′ ←
IBE.Dec(SKcom∗, com∗, C∗) and E.Rec(prm, com∗, dec′) /∈ {⊥, r∗}.
Consider an adversary D2 which breaks the binding security of the en-
capsulation scheme as follows: given as input (prm, com∗, dec∗), D2 runs
(pkR, skR) ← IBE.Kg(prm), (pkS , skS) ← DS.Kg(prm) and then runs
A(prm, pkS). Whenever A submits a query to its signcrypt oracle, D2 can
respond to this query in the usual way. Specifically, D2 computes S∗ ←
DS.Sign(skS ,M

∗‖com∗‖pk∗R) at least once. Finally, A outputs (pk∗R, sk
∗
R,

com∗, C∗, τ∗), then D2 outputs a value dec
′ such that E.Rec(prm, com∗, dec′)

/∈ {⊥, r∗}. If E1 occurs, then D2 wins. Let SuccEi denotes the event that the
adversary wins in the event Ei. Then, we have

ε3 ≥ AdvbindingEncap,D2
≥ Pr[SuccE1].

– E2: A outputs a forgery (pk∗R, sk
∗
R, com

∗, C∗, τ∗) such that MAC.Vrfy(r∗b ,
c, τ) = 1.
Consider an adversary D1 which breaks the hidding security of the encapsula-
tion scheme as follows: given as input (prm, com∗, r∗b), D1 runs (pkR, skR)←
IBE.Kg(prm), (pkS , skS)← DS.Kg(prm) and then runs A(prm, pkS). When-
ever A submits a query to its signcrypt oracle, D1 can respond to this query in
the usual way. Specifically, D1 computes S∗ ← DS.Sign(skS ,M

∗‖com∗‖pk∗R)
at least once. Finally, A outputs (pk∗R, sk

∗
R, com

∗, C∗, τ∗), then D checks
whether MAC.Vrfy(r∗b , C

∗, τ∗) = 1. If so, D1 outputs 1, otherwise 0. If E2

occurs, then D1 wins. Thus, we have

ε3 ≥ AdvhidingEncap,D1
≥ Pr[SuccE2].

– E3: Other cases.
Consider an adversary F which breaks the sUF-OT security of MAC as fol-
lows: given as input prm, F runs (pkR, skR)← IBE.Kg(prm), (pkS , skS)←
DS.Kg(prm) and then runs A(prm, pkS). When A submits a j-th query to
its signcrypt oracle (for 1 ≤ j ≤ q), F can answer it by using generated key
rj or using its own signing oracle only once. F provides perfect simulation
for A in the game. Finally, A outputs (pk∗R, sk

∗
R, com

∗, C∗, τ∗), and then
F outputs (C∗, τ∗). When M∗‖com∗‖pk∗R was previously signed by F, the
event E3 occurs. In this case, (C∗, τ∗) is a valid forgery for F, if F did not
previously query C∗ to the signing oracle and did not recieve back τ∗ as the
tag. Thus, if E3 occurs, then F wins, and we have

qε2 ≥ q · AdvsUF -OT
MAC,F ≥ Pr[SuccE3].

Constructions of Signcryption from Identity-Based Encryption 343

From the above discussion, we have

AdvMU-sUF -iCMA
SCS,A = Pr[Succ ∧ Bad] + Pr[Succ ∧ Bad]

= Pr[Succ ∧ Bad] + Pr[SuccE1] + Pr[SuccE2] + Pr[SuccE3]

≤ AdvUF -CMA
DS,B +AdvbindingEncap,D2

+AdvhidingEncap,D1
+ q · AdvsUF -OT

MAC,F

≤ ε1 + qε2 + 2ε3.

This completes the proof. �

Appendix E: Tables for Primitives Used for Signcryption

We summarize constructions of primitives for confidentiality (encryption) in Ta-
ble 5, and constructions of primitives for integrity (signatures) in Table 6. These
constructions are used as instantiations applied to general constructions of sign-
cryptions in Section 5.2.

Table 5. Constructions of primitives for confidentiality (encryption)

Construction Security Computational cost Cipher- Key size
/Primitive /Assumption Enc/Dec text size pk sk

tBMW1[12] IND-tag-CCA 3 exps 2|GBG| (2 + n)|GBG| |GBG|
/TBKEM /DBDH /1 exp, 1 pairing +(1 + n)|Zp|
BMW2[7] IND-CCA 2 exps, 1 m-exp 2|GBG| 3|GBG| |GBG|
/KEM /DBDH /1 exp, 1 pairing +2|Zp|
BCHK[4] IND-sID-CPA 2 exps, 1 m-exp 2|GBG| 3|GBG| 3|Zp|
/IBE /DBDH /2 pairings

Table 6. Constructions of primitives for integrity (signatures): DL means Discrete
Logarithm assumption; “−” means that none of operations of exponentiation, multi-
exponentiation, and pairing is used

Construction Security Computational cost Signature Key size
/Primitive /Assumption Sig/Ver size pk sk

BSW[6] sUF-CMA 2 exps, 1 m-exp 2|GBG| (5 + n)|GBG| |GBG|
/DS /CDH /1 m-exp, 2 pairings +|Zp|
Waters[15] UF-CMA 2 exps 2|GBG| (4 + n)|GBG| |GBG|
/DS /CDH /2 pairings

Okamoto[13] sUF-OT 2|Zp| 4|Ge| |Ge|
/OTS /DL − / 1 exp, 1 m-exp +4|Zp|
BS[3] using sUF-CMA 2 exps, 2 m-exps 2|GBG| (4 + n)|GBG| |GBG|
[15] and [13] /CDH / 1 exp, 1 m-exp +2|Zp|
/DS , 2 pairings +4|Ge|

Anonymous Constant-Size Ciphertext HIBE

from Asymmetric Pairings

Somindu C. Ramanna and Palash Sarkar

Applied Statistics Unit
Indian Statistical Institute
203, B.T. Road, Kolkata

India 700108
{somindu r,palash}@isical.ac.in

Abstract. We present a new hierarchical identity-based encryption
(HIBE) scheme with constant-size ciphertexts that can be implemented
using the most efficient bilinear pairings, namely, Type-3 pairings. In
addition to being fully secure, our scheme is anonymous. The HIBE is
obtained by extending an asymmetric pairing based IBE scheme due to
Lewko and Waters. The extension uses the approach of Boneh-Boyen-
Goh to obtain constant-size ciphertexts and that of Boyen-Waters for
anonymity. Security argument is based on the dual-system technique of
Waters. The resulting HIBE is the only known scheme using Type-3 pair-
ings achieving constant-size ciphertext, security against adaptive-identity
attacks and anonymity under static assumptions without random oracles.

Keywords: identity-based encryption(IBE), constant-size ciphertext
hierarchical IBE, asymmetric pairings, dual-system encryption.

1 Introduction

The notion of identity-based encryption (IBE) was introduced by Shamir [19] and
the first IBE schemes appeared later [6,3]. In IBE, a sender encrypts a message
using the receiver’s identity itself as the public key and a central authority called
private key generator (PKG) generates and securely distributes decryption keys
corresponding to identities of different users. Hierarchical IBE (HIBE), proposed
by [11,12], reduces the workload of the PKG by allowing it to delegate the
key generation ability to lower-level entities. As a result, an individual user
can conveniently obtain a decryption key from a lower-level entity instead of
obtaining it from the PKG.

Type-3 Pairings: Most practical (H)IBE schemes are built using a bilinear
pairing which maps G1 × G2 to GT , where G1,G2 and GT are groups of the
same order. Well-known examples of such maps arise by suitably choosing G1

and G2 to be groups of elliptic curve points and GT to be a subgroup of the
multiplicative group of a finite field. From an implementation point of view, it is
most efficient to use bilinear maps where the (common) group order is prime and

M. Stam (Ed.): IMACC 2013, LNCS 8308, pp. 344–363, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Anonymous Constant-Size Ciphertext HIBE from Asymmetric Pairings 345

it is computationally difficult to find an isomorphism from G1 to G2 or vice versa.
Such pairings are called Type-3 pairings [5,20,10]. Less efficient alternatives are
when G1 and G2 are same (called Type-1 pairings) or when the common group
order is a composite number (called composite-order pairings). IBE or HIBE
schemes based on Type-3 pairings would have the fastest algorithms and the
most compact representations of parameters.

Constant-Size Ciphertext HIBE: In HIBE, identities consist of tuples of
varying lengths. Encryption of a message is done for a specified identity tuple.
In many HIBE schemes, as the length of the identity tuple increases, so does the
length of the resulting ciphertext. Consequently, the bandwidth requirement for
communicating the ciphertext also increases.

The solution to this issue is to require the ciphertext size to be independent
of the length of the identity tuple. Then, irrespective of the length of the iden-
tity tuple, the bandwidth required for the ciphertext would be the same. Such
a scheme is called a constant-size ciphertext HIBE. The first such HIBE scheme
was proposed by Boneh, Boyen and Goh [2]. While the scheme itself is quite
elegant, its proof of security was in a very restricted attack model, the so-called
selective-identity model. Lewko and Waters [15] provided the first constant-size
ciphertext HIBE scheme which is secure against the usual adaptive-identity at-
tacks. The drawback, however, was that the scheme in [15] used pairings on
composite order groups and could not be instantiated with the more efficient
Type-3 pairings.

In the following, we use the abbreviation CC-HIBE to denote HIBE schemes
with constant-size ciphertexts. We clarify that the constant size here only refers
to the number of group elements in the ciphertext. The size of representation
of the group elements, however, needs to increase if the value of the security
parameter increases.

Anonymity: In (H)IBE schemes with anonymity, ciphertexts do not reveal
any information about the identity of the recipient. Abdalla et.al. [1] first for-
malised the notion of anonymity and used it to construct public key encryption
with keyword search (PEKS). PEKS enables search on encrypted documents
based on some keywords and this capability for search is delegatable. Anonymous
HIBE schemes provide means to extend PEKS to more sophisticated primitives
such as public key encryption with temporary keyword search (PETKS) and
identity-based encryption with keyword search (IBEKS). The first construction
of anonymous HIBE without random oracles was given by [4] with security in
the selective-id model. Later constructions by [18,7] could achieve security in the
adaptive-id setting but were based on composite-order pairings. Two other con-
structions [8,16] used asymmetric pairings but with security in the selective-id
model.

1.1 Our Contributions

Our main motivation in this work is to obtain a constant-size ciphertext HIBE
which can be implemented using Type-3 pairings. This allows the benefits of

346 S.C. Ramanna and P. Sarkar

having constant-size ciphertexts to be combined with the efficiency benefits of us-
ing Type-3 pairings. These efficiency considerations are attained while retaining
the usual provable guarantees, namely security against adaptive-identity attacks,
use of static hardness assumptions, no degradation of security with increase in
the depth of the HIBE and the avoidance of random oracles.

The provable properties are achieved using the extremely useful idea of dual-
system encryption introduced by Waters [21]. This technique was used by Lewko
andWaters [15] to construct an IBE and a CC-HIBE scheme based on composite-
order pairings. The authors in [15] went on to convert their composite-order
pairing based IBE scheme to one which can be instantiated using Type-3 pair-
ings. However, no such conversion was done for the HIBE scheme in [15] and the
authors do not make any remark on whether this can be done or how difficult it
would be to do so.

The starting point of our work are the IBE schemes in [15]. Two IBE schemes
are given in [15] where the first one is in the setting of composite order groups and
the second one is in the Type-3 setting. The IBE in the composite order setting
is not anonymous (shown in [7]) due to the following reason – the identity-hash
in both the ciphertext and key live in the same subgroup; moreover, elements
used to create the hash are public thus providing a test for the recipient identity
for any ciphertext. On the other hand, the Type-3 variant, which we refer to
as “LW-IBE”, is anonymous. This is because ciphertexts live in G1, keys in
G2 and the elements required to create the hash in G2 are kept secret. Hence
there would be no way to test whether a given ciphertext is encrypted to a
particular identity or not. However, there has been no proof of anonymity in
any follow-up work. The first contribution of the current work is to show that
the LW-IBE is anonymous. Two static (though non-standard) computational
assumptions (which we denote as LW1 and LW2) along with decision bilinear
Diffie-Hellman (DBDH) assumption are used in [15] to show the security of
LW-IBE. For proving anonymity, we need to introduce a new computational
assumption, called A1, which is again static, but, non-standard.

The second contribution of this paper is to extend the LW-IBE to a constant-
size ciphertext HIBE. At a very basic level, the idea for obtaining constant-size
ciphertexts is to use the identity hashing technique suggested in [2] over ex-
isting IBE schemes. We will refer to this as BBG-hash or BBG-extension. We
do not take the path of converting the composite-order pairing based HIBE
of [15]. Techniques for such conversions have been proposed by Freeman [9] and
Lewko [14]. The latter uses dual pairing vector spaces (DPVSs) constructed over
pairing groups to simulate features of composite order pairings. But it seems
hard to retain the constant size of ciphertexts using these conversion techniques.
Instead, we start with LW-IBE and extend it to a CC-HIBE by plugging in the
BBG-hash. One complication in doing so arises. In the dual-system technique,
two kinds of ciphertexts and keys are defined – normal and semi-functional.
Semi-functional components are required only for proving secuirty and are gen-
erated using some secret elements during simulation. The main elements of a
dual system proof would be appropriately defining semi-functional components

Anonymous Constant-Size Ciphertext HIBE from Asymmetric Pairings 347

and generating them using a problem instance in the reduction ensuring correct
distribution of all elements provided to the attacker. Extending the decryption
key of LW-IBE to the decryption key of a HIBE in a straightforward manner
does not retain the structure required for a dual-system proof. Our way of tack-
ling this is to add additional components to the decryption key. On the face
of it, this complicates the key generation and delegation mechanisms. However,
somewhat counter-intuitively, adding this extra level of complication allows the
security reductions to go through.

An offshoot of the extension is that the scheme becomes anonymous. This is
because in LW-IBE, the semi-functional space (for both ciphertexts and keys)
is created using some secret elements (part of the master secret). The same
elements are implicitly used in creating ciphertexts and keys. In case of a direct
extension to HIBE, all these elements may have to be revealed in the public
parameters to facilitate re-randomisation during delegation of keys. This makes
the scheme non-anonymous but at the same time affects dual system arguments
for which keeping the elements secret is essential. The way out is to make the
scheme anonymous. We also provide a proof of anonymity based on a static
assumption.

The computational assumptions required to obtain CPA-security are those
used in [15] along with the new assumption required to show that the LW-IBE
is anonymous. The last assumption is used to prove the anonymity of the HIBE
scheme.

2 Preliminaries

Some basic notation, definitions and the complexity assumptions used in our
proofs are presented in this section.

2.1 Notation

For a set X , the notation x1, . . . , xk ∈R X (or x1, . . . , xk
R←− X) indicates that

x1, . . . , xk are elements of X chosen independently at random according to some
distribution R. We use two notations interchangeably. The uniform distribution
is denoted by U. For a (probabilistic) algorithm A, x ←− A(·) means that x
is chosen according to the output distribution of A (which of course may be
determined by its input). For two integers a < b, the notation [a, b] represents
the set {x ∈ Z : a ≤ x ≤ b}. Let G be a finite cyclic group and G

× denote the
set of generators of G. Fix a generator P1 ∈ G

×. The discrete logarithm of an
element Q ∈ G to base P1 is written as dlogP1

Q.

2.2 Bilinear Pairings

A bilinear pairing is given by a 7-tuple G = (p,G1,G2,GT , e, P1, P2) where
G1 = 〈P1〉, G2 = 〈P2〉 are written additively and GT , a multiplicatively written
group, all having the same order p and e : G1 × G2 → GT is a map with the
following properties.

348 S.C. Ramanna and P. Sarkar

1. Bilinear: For P1, Q1 ∈ G1 and P2, Q2 ∈ G2, the following holds:
e(P1, P2+Q2) = e(P1, P2)e(P1, Q2) and e(P1+Q1, P2) = e(P1, P2)e(Q1, P2).

2. Non-degenerate: If e(P1, P2) = 1T , the identity element of GT , then either
P1 is the identity of G1 or P2 is the identity of G2.

3. Efficiently computable: The function e should be efficiently computable.

Three main types of pairings have been identified in the literature [20,10].

Type-1. In this type, the groups G1 and G2 are the same.
Type-2. G1 �= G2 and an efficiently computable isomorphism ψ : G2 → G1 is

known.
Type-3. Here, G1 �= G2 and no efficiently computable isomorphisms between

G1 and G2 are known.

It has been reported [5,20,10] that from an implementation point of view, Type-
3 pairings are the fastest to compute and further provide the most compact
description of group elements. So, building functionalities which can be instan-
tiated with such pairings is of practical interest. This work is entirely based on
Type-3 pairings. The terms ‘Type-3 pairing’ and ‘asymmetric pairing’ are used
interchangeably in the rest of the paper.
Note:We introduce some notation: fix P1 ∈ G

×
1 and P2 ∈ G

×
2 ; for elements R1 ∈

G1 and R2 ∈ G2, the notation R1 ∼ R2 indicates that dlogP1
R1 = dlogP2

R2.
The fixed generators P1 and P2 will be clear from the context.

2.3 Complexity Assumptions

Described here are certain hardness assumptions in Type-3 setting that are
needed for the security reductions. Let G = (p,G1,G2,GT , e, P1, P2) be an asym-
metric pairing and A , a probabilistic polynomial time (PPT) algorithm A that
outputs 0 or 1. We will first define a generic static decision problem Π over a G.
Denote by D, a distribution consisting of a constant number of elements from
G1 and G2. Let T1, T2 be two elements chosen (according to some distributions)
from one of the three groups. The goal of A is to distinguish between the two
distributions – (D, T1) and (D, T2). The advantage of A in solving Π is given
by

AdvΠG (A) = |Pr[A (D, T1) = 1]− Pr[A (D, T2) = 1]|.
We say that (ε, t)-Π assumption holds if for any t-time algorithm A , AdvΠG (A) ≤
ε.

Next the required assumptions are stated as instantiations of Π by suitably
defining D and T1, T2.

Assumption LW1 [15]

F1
U←− G

×
1 ; F2

U←− G
×
2 , a, b, s

U←− Zp, Y1
U←− G1;

D = (G, F1, bsF1, sF1, aF1, ab
2F1, bF1, b

2F1, asF1, b
2sF1, b

3F1, b
3sF1, F2, bF2),

T1 = ab2sF1, T2 = Y1.

Anonymous Constant-Size Ciphertext HIBE from Asymmetric Pairings 349

Assumption LW2 [15]

F1
U←− G

×
1 ; F2

U←− G
×
2 , d, b, c, x

U←− Zp, Y2
U←− G2;

D = (G, F1, dF1, d
2F1, bxF1, dbxF1, d

2xF1, F2, dF2, bF2, cF2),
T1 = bcF2, T2 = Y2.

Decisional Bilinear Diffie-Hellman in Type-3 pairings (DBDH-3) [5]

F1
U←− G

×
1 ; F2

U←− G
×
2 ; x, y, z

U←− Zp; YT
U←− GT ;

D = (G, F1, xF1, yF1, zF1, F2, xF2, yF2),
T1 = e(F1, F2)

xyz, T2 = YT .

Assumption A1.

F1
U←− G

×
1 ; F2

U←− G
×
2 ; a, z, d, s, x

U←− Zp;
D = (G, F1, zF1, dzF1, azF1, adzF1, szF1, F2, zF2, aF2, xF2, (dz − ax)F2),
T1 = sdzF1, T2 = Y1.

Discussion. We introduce assumption A1 to show anonymity of LW-IBE as
well as our HIBE scheme. The challenge in A1 is an element Z1 ∈ G1; the
task is to decide whether Z1 = sdzF1 or random. Suppose we can successfully
create e(F1, F2)

sdzδ (for some δ such that δF2 is given in the instance) using
elements in the instance, then the problem becomes easy to solve – just check
for equality with e(Z1, δF2). If they are equal then Z1 is real; otherwise Z1 is
random. Since s and d appear in separate elements in G1, the only possible way
is to compute e(Z1, zF2) and compare it to e((dz− ax)F2, szF1) after cancelling
out e(F1, F2)

axsz . But this extra term cannot be cancelled since a and x appear
in separate elements of G2. So our assumption is meaningful and there does not
seem to be any way of efficiently solving A1.

Let DDH1 (resp. DDH2) be the decision Diffie-Hellman assumption in group
G1 (resp. G2). It is well-known that in Type-3 setting these problems are com-
putationally hard. The problem LW1 contains an embedded instance of DDH1.
The elements sF1 and ab2F1 are provided in the instance and it is required to
determine whether Y1 equals ab2sF1 or Y1 is random. Similarly, LW2 contains
an embedded instance of DDH2: the elements bF2 and cF2 are provided in the
instance and it is required to determine whether Y2 equals bcF2 or Y2 is random.
As a result, an algorithm to solve DDH1 (resp. LW1) implies an algorithm to
solve LW1 (resp. LW2) so that we can say that LW1 (resp. LW2) is no harder
than DDH1 (resp. DDH2). The other direction, however, is not clear and it is
due to this reason that the assumptions are considered non-standard.

Similar to the above, the problem A1 contains an embedded instance of DDH1.
If P1 = zF1, P2 = zF2, then the elements P1, dP1, sP1, Z1, P2 (present in the A1-
instance) will form a proper DDH1 instance where it is required to determine
whether Z1 = sdP1 = sdzF1 or not. Hence a DDH1 solver can be used to solve
A1. On the other hand, the converse is not known to hold.

350 S.C. Ramanna and P. Sarkar

2.4 Hierarchical Identity-Based Encryption

A HIBE scheme consists of five probabilistic polynomial time (in the security
parameter) algorithms – Setup, Encrypt, KeyGen, Delegate and Decrypt.

– Setup: based on an input security parameter κ, generates and outputs the
public parameters PP and the master secretMSK.

– KeyGen: inputs an identity vector id and master secretMSK and outputs
the secret key SKid corresponding to id.

– Encrypt: inputs an identity id, a message M and returns a ciphertext C.
– Delegate: takes as input a depth � identity vector id = (id1, . . . , id�), a secret

key SKid and an identity id�+1; returns a secret key for the identity vector
(id1, . . . , id�+1).

– Decrypt: inputs a ciphertext C, an identity vector id, secret key SKid and
returns either the corresponding message M or ⊥ indicating failure.

2.5 Anonymous CPA-Secure HIBE

The security game defined below captures both anonymity and security against a
chosen plaintext attack for HIBE schemes. This model, which we call ano-ind-cpa,
is equivalent to the standard security notions for CPA-security and anonymity
and has been used earlier in [8,7].

Setup: The challenger runs the Setup algorithm of the HIBE and gives the
public parameters to A .

Phase 1: A makes a number of key extraction queries adaptively. For a query
on an identity vector id, the challenger responds with a key SKid.

Challenge: A provides two message-identity pairs (M0, îd0) and (M1, îd1) as

challenge with the restriction that neither îd0, îd1 nor any of their prefixes should
have been queried in Phase 1. The challenger then chooses a bit β uniformly at
random from {0, 1} and returns an encryption Ĉ of Mβ under the identity îdβ
to A .

Phase 2: A issues more key extraction queries as in Phase 1 with the restric-
tion that no queried identity id is a prefix of either îd0 or îd1.

Guess: A outputs a bit β′.
If β = β′, then A wins the game. The advantage of A in breaking the security

of the HIBE scheme in the game ano-ind-cpa given by

Advano-ind-cpaHIBE (A) =

∣
∣
∣
∣Pr[β = β′]− 1

2

∣
∣
∣
∣ .

The HIBE scheme is said to be (ε, t, q)-ANO-IND-ID-CPA secure if every t-time

adversary making at most q queries has Advano-ind-cpaHIBE (A) ≤ ε.

Anonymous Constant-Size Ciphertext HIBE from Asymmetric Pairings 351

3 Lewko-Waters IBE

This section reviews the asymmetric pairing-based IBE construction of Lewko-
Waters [15]. The description in [15] consists of the usual ciphertexts and keys
as well as the so-called semi-functional ciphertexts and keys. We use a compact
notation to denote normal and semi-functional ciphertexts and keys. The group
elements shown in curly brackets { } are the semi-functional components. To get
the scheme itself, these components should be ignored.

Let G = (p,G1,G2,GT , e, P1, P2) be an asymmetric pairing. Pick Q1, U1 ∈U
G1 and Q2, U2 ∈ G2 be such that Q2 ∼ Q1 and U2 ∼ U1. Choose F2

U←− G
×
2 ,

a, v, v′ U←− Zp and define V2 = vF2, V
′
2 = v′F2. Let τ = v + av′ so that τF2 =

V2+aV
′
2 . Identities are elements of Zp. The public parameters and master secret

are given by

PP : (P1, aP1, τP1, Q1, aQ1, τQ1, U1, aU1, τU1, e(P1, P2)
α)

MSK: (αP2, P2, V2, V
′
2 , Q2, U2, F2).

The randomisers for the ciphertext and key are s and w, r1, r2 respectively.
These are elements of Zp. For the semi-functional components, μ, σ and γ, π are
chosen at random from Zp. Elements V ′1 , F1 ∈ G1 are such that V ′1 ∼ V ′2 and
F1 ∼ F2.

Ciphertext

C0 =M · e(P1, P2)
αs

C1,1 = s(idQ1 + U1), C1,2 = as(idQ1 + U1){+μσF1},
C1,3 = −τs(idQ1 + U1){−μσV ′1}
C2,1 = sP1, C2,2 = asP1{+μF1}, C2,3 = −τsP1{−μV ′1}

Key

K1,1 = wP2 + r1V2{−aγF2}, K1,2 = r1V
′
2{+γF2}, K1,3 = r1F2

K2,1 = αP2 + w(idQ2 + U2) + r1V2{−aγπF2},
K2,2 = r2V

′
2{+γπF2}, K2,3 = r2F2

Lewko andWaters show that this scheme is adaptively secure without random or-
acles under three non-standard but static assumptions – LW1, LW2 and DBDH-
3. Since the elements Q2, U2 are in the master secret there seems to be no way
to check whether a given ciphertext is encrypted to a particular identity or not.
In other words, this scheme is anonymous. The proof will be similar to the
anonymity proof of the HIBE scheme we describe next. A depth-1 HIBE is sim-
ilar to LW-IBE except for the public parameters and master secret key. Due to
space constraints we omit the proof. It can be found in the full version of this
paper [17].

4 Anonymous HIBE from LW-IBE

In this section, we present our HIBE scheme, LW -AHIBE , resulting from a BBG-
type extension of the LW-IBE scheme. A straightforward BBG-type extension

352 S.C. Ramanna and P. Sarkar

would lead to problems in adopting the dual system methodology. We introduce
some new elements to overcome this problem. The construction is based on a
Type-3 prime-order pairing with group order p. Identities are variable length
tuples of elements from Z

×
p with maximum length h.

The first step towards obtaining constant-size ciphertexts is to add elements
(Q1,j)j∈[1,h], U1 ∈ G1 to the public parameters. These are used to create the iden-

tity hash – for an identity id = (id1, . . . , id�), the hash is given by
∑�

j=1 idjQ1,j+
U1. This replaces the hash in LW-IBE without affecting the number of ele-
ments in the ciphertext. To facilitate key extraction, the corresponding ele-
ments in G2 also are provided. We introduce some notation here: the tuple
(P1, (Q1,j)j∈[1,h], U1) is denoted Q1 and let its G2 counterpart be Q2. Also
present in the master secret of LW-IBE are the elements V2, V

′
2 , F2 that pro-

vide cancellation analogous to the composite order setting. In the HIBE setting,
these elements along with Q2, must be made public to assist in re-randomisation
during delegation. Once these are made public, nothing is kept secret except for
α. This acts as a stumbling block against a dual system proof. In a proof within
the dual system framework, some secret elements are needed to create the so-
called semi-functional components that are central to this proof methodology.
In the composite order setting, this is achieved by keeping one subgroup hidden
from the attacker which essentially forms the semi-functional space. Similarly,
schemes based on dual pairing vector spaces have some vectors in the dual bases
hidden that assist in generating the semi-functional space. But the strategy for
HIBE extension of LW-IBE chalked out above, requires everything to be made
public (except α), which in turn limits our ability to define a semi-functional
space.

Our solution to this problem is to keep Q2 in the master secret. In a way, some
elements of the group G2 are hidden and provide the basis for generating semi-
functional components. To support delegation, suitably randomised copies of the
key components are provided in the key itself. This technique was introduced
by Boyen and Waters [4] to construct an anonymous HIBE scheme. V2, V

′
2 , F2

are public to help in re-randomisation during delegation; this ensures proper
distribution of the delegated key. Note that Q2 contains precisely the elements
required to check whether a ciphertext is encrypted to a particular identity or
not. A by-product of keeping this tuple secret is anonymity. Thus our scheme is
secure in the ANO-IND-ID-CPA security model (refer to Section 2.5).

Construction of LW -AHIBE
Setup(κ): Let h denote the maximum depth of the HIBE. Choose random gen-

erators P1 ∈ G1 and P2 ∈ G2; elements Q1,j, U1
U←− G1 and Q2,j , U2 ∈ G2 such

that Q2,j ∼ Q1,j for all 1 ≤ j ≤ h and U2 ∼ U1. Let F2 ∈ G2 be chosen at
random and v, v′ be chosen randomly from Zp. Set V2 = vF2, V

′
2 = v′F2. Pick

α, a at random from Zp. Set τ = v + av′ so that τF2 = V2 + aV ′2 .

PP : (P1, aP1, τP1, U1, aU1, τU1, (Q1,j , aQ1,j, τQ1,j)j∈[1,h],
V2, V

′
2 , F2, e(P1, P2)

α).
MSK: (αP2, P2, Q2,1, . . . , Q2,h, U2).

Anonymous Constant-Size Ciphertext HIBE from Asymmetric Pairings 353

Encrypt(M, id = (id1, . . . , id�),PP): Choose s U←− Zp. Let Hi(id) = id1Qi,1 +
· · · + id�Qi,� + Ui for i = 1, 2. The ciphertext is given by
C = (C0, C1,1, C1,2, C1,3, C2,1, C2,2, C2,3) where the elements are computed as
follows.

C0 =M × e(P1, P2)
αs,

C1,1 = sH1(id), C1,2 = asH1(id), C1,3 = −τsH1(id)
C2,1 = sP1, C2,2 = asP1, C2,3 = −τsP1

KeyGen(id = (id1, . . . , id�),MSK,PP): The key consists of 6(n − � + 2) group

elements computed as follows. Choose w1, w2, r1, r2, r3, r4, (z1,j , z2,j)j∈[�+1,h]
U←−

Zp.

K1,1 = w1P2 + r1V2, K1,2 = r1V
′
2 , K1,3 = r1F2

K2,1 = αP2 + w1H2(id) + r2V2, K2,2 = r2V
′
2 , K2,3 = r2F2

Dj,1 = w1Q2,j + z1,jV2, Dj,2 = z1,jV
′
2 , Dj,3 = z1,jF2 for �+ 1 ≤ j ≤ h

J1,1 = w2P2 + r3V2, J1,2 = r3V
′
2 , J1,3 = r3F2

J2,1 = w2H2(id) + r4V2, J2,2 = r4V
′
2 , J2,3 = r4F2

Ej,1 = w2Q2,j + z2,jV2, Ej,2 = z2,jV
′
2 , Ej,3 = z2,jF2 for �+ 1 ≤ j ≤ h.

The secret key for id is given by SKid = (S1,S2), where
S1 = (K1,i,K2,i, Dj,i)j∈[�+1,h],i=1,2,3 and S2 = (J1,i, J2,i, Ej,i)j∈[�+1,h],i=1,2,3.
Notice that S2-components are almost same as S1-components except that
the secret α is not embedded in S2. The set S2 is exclusively used for re-
randomisation.

Delegate(id = (id1, . . . , id�),SKid, id�+1,PP): Let id : id�+1 denote the � + 1-
length identity vector (id1, . . . , id�, idell+1) obtained by appending id�+1 to id.

Choose r′1, r
′
2, r
′
3, r
′
4, (z

′
1,j , z

′
2,j)j∈[�+2,h]

U←− Zp and w′1, w
′
2

U←− Z
×
p . The compo-

nents of the key for the identity id : id�+1 are computed as follows.

K1,1 ← K1,1 + w′1J1,1 + r′1V2
K1,2 ← K1,2 + w′1J1,2 + r′1V

′
2

K1,3 ← K1,3 + w′1J1,3 + r′1F2

K2,1 ← K2,1 + id�+1D�+1,1 + w′1(J2,1 + id�+1E�+1,1) + r′2V2
K2,2 ← K2,2 + id�+1D�+1,2 + w′1(J2,2 + id�+1E�+1,2) + r′2V

′
2

K2,3 ← K2,3 + id�+1D�+1,3 + w′1(J2,3 + id�+1E�+1,3) + r′2F2

J1,1 ← w′2J1,1 + r′3V2 J2,1 ← w′2(J2,1 + id�+1E�+1,1) + r′4V2
J1,2 ← w′2J1,2 + r′3V ′2 J2,2 ← w′2(J2,2 + id�+1E�+1,2) + r′4V ′2
J1,3 ← w′2J1,3 + r′3F2 J2,3 ← w′2(J2,3 + id�+1E�+1,3) + r′4F2

For j = � + 2, . . . , h,
Dj,1 ← Dj,1 + w′1Ej,1 + z′1,jV2 Ej,1 ← w′2Ej,1 + z′2,jV2
Dj,2 ← Dj,2 + w′1Ej,2 + z′1,jV

′
2 Ej,2 ← w′2Ej,2 + z′2,jV

′
2

Dj,3 ← Dj,3 + w′1Ej,3 + z′1,jF2 Ej,3 ← w′2Ej,3 + z′2,jF2

354 S.C. Ramanna and P. Sarkar

The above procedure essentially re-randomises all components of the key. As
a result the distribution of a key obtained using delegation is the same as the
distribution of a key obtained using the key generation procedure. To note the
re-randomisation consider the following change of scalars for the modified key.

w1 ← w1 + w′1w2;
r1 ← r1 + r′1 + w′1r3;
r2 ← r2 + r′2 + id�+1z1,�+1 + w′2(r4 + id�+1z2,�+1);
z1,j ← z1,j + z′1,j + w′1z2,j+1 for j = �+ 2, . . . , h

w2 ← w′2w2;
r3 ← w′2r3 + r′3;
r4 ← w′2(r4 + id�+1z2,�+1) + r′4;
z2,j ← w′2z2,j + z′2,j for j = �+ 2, . . . , h

Due to the choice of w′1, w
′
2, r
′
1, r
′
2, r
′
3, r
′
4, (z

′
1,j), (z

′
2,j), these new randomisers are

properly distributed.

Decrypt(C, id = (id1, . . . , id�),SKid,PP): Decryption is done as follows.

M = C0 × e(C1,1,K1,1)e(C1,2,K1,2)e(C1,3,K1,3)

e(C2,1,K2,1)e(C2,2,K2,2)e(C2,3,K2,3)
(1)

Correctness of decryption of the HIBE scheme follows directly from that of LW-
IBE since the decryption procedure remains the same – the additional delegation
components do not play any role in decryption. Observe that computing the ratio
of pairings in Equation (1) using J1,i, J2,i (i = 1, 2, 3) instead of K1,i,K2,i results
in 1T (the identity of GT). Hence decryption with S2 components provides a test
for the recipient identity of a ciphertext.

5 Security of LW -AHIBE

We first provide some basic intuition underlying the proof with respect to differ-
ent stages of security analysis (within the dual system framework), highlighting
the similarities and differences with LW-IBE security proof. Then, a detailed
security analysis of LW -AHIBE is presented in Section 5.2.

5.1 Ideas Underlying the Security Proof

The first step is to define semi-functional (sf) ciphertexts and keys. The defini-
tion of sf-ciphertext remains the same as LW-IBE. The keys of LW -AHIBE are
significantly different from LW-IBE. We formulate the definition of sf-keys on
the basis of the following observations.

– Sf-components for (K1,i,K2,i)i=1,2 are identical to LW-IBE since only these
components participate in decryption.

– It is required to define sf-components for (Dj,1, Dj,2)j∈[�+1,h] though they are
only used during delegation to create the identity-hash. This is because they
share the randomiser w1 with K1,i,K2,i and this randomiser comes from a
problem instance in the reductions.

Anonymous Constant-Size Ciphertext HIBE from Asymmetric Pairings 355

– Once sf-components are defined for S1, it is natural to ask: is it necessary to
define sf-parts for S2? The answer is yes since otherwise the fourth reduction
fails – the simulator can test the identity to which the challenge ciphertext
is encrypted by decrypting with S2-components.

We would like to emphasise that the definition of semi-functional components
(in both ciphertexts and keys), complexity assumptions and the reductions are
all inter-linked. Changing the structure of sf-keys may determine the assumption
required or affect simulation in some reduction. Also, for the reductions to go
through, the sf-components may have to be defined in a particular way. The
structure of sf-components we have is in a sense, optimal, subject to assumptions
and simulations we provide.

An outline of the four main reductions in the augmented security proof (in-
cluding anonymity) of LW-IBE is as follows.

First reduction: The goal of this reduction is to show that an attacker cannot
distinguish between a normal ciphertext and an sf-ciphertext. It is achieved
via a reduction from the LW1 problem. An LW1 instance is embedded in the
challenge ciphertext attempting to exploit the adversary’s ability to detect
the change in order to solve the problem.

Second reduction: In this reduction, it is shown that if the adversary can de-
cide whether the response to the k-th key extraction query is normal or
semi-functional, then LW2 problem can be solved. The k-th key is con-
structed from an instance of LW2 problem in such a way that the key is
normal if the instance is ‘real’ and semi-functional otherwise.

Third reduction: Here, the message that the challenge ciphertext encrypts,
is changed to a random element of GT . It is shown that solving the DBDH-3
problem is no harder than distinguishing between an sf-encryption of the
real message from an sf-encryption of a random element of GT .

Fourth reduction: Challenge ciphertext encrypts a random message under
a random identity. The identity-hash is created using the challenge in an
instance of A1 problem thus making it real or random according to the
distribution of the challenge.

This strategy does not directly extend to the hierarchical setting. Several chal-
lenges/restrictions emerge as we try to prove security of LW -AHIBE .

The first and the third reductions for LW -AHIBE are the closest to the cor-
responding reductions for LW-IBE appearing in [15]. In these reductions, the
simulations of the public parameters; the ciphertext elements; and the com-
ponents of the key which are present in LW-IBE; are exactly the same as for
LW-IBE. The only technicality is to ensure that the extra components of the
key can be properly simulated without changing the corresponding assumptions
(LW1 for the first reduction and DBDH-3 for the third reduction).

The second reduction presents some technical novelty. Compared to the LW-
IBE, the key has additional components required for delegation and
re-randomisation; moreover, these have semi-functional parts. To simulate these
additional components we need a modification of the game sequence.

356 S.C. Ramanna and P. Sarkar

Partial Semi-functionality: Consider the second reduction where the k-th
key is made semi-functional. LW-IBE reduction embeds a pairwise independent
function in the k-th key as well as the challenge ciphertext to ensure independent
distribution of the scalars involved in the respective sf-components. This function
is determined by the parameters used to create the identity-hash. An attempt
to use the same strategy for LW -AHIBE , however, causes a problem. The reason
is that the identity-hash is now present in three places – challenge ciphertext,
S1 and S2. In addition, all these have sf-components. One possible way to deal
with this is to embed a 3-wise independent function i.e., a degree-2 polynomial
in the identity. As result the one extra group element is required in PP as
well asMSK. Also, encryption and key generation would each require an extra
scalar multiplication and a squaring in the underlying field. The other way to get
around the problem is to use two separate instances to generate the two hashes
in the key. We follow the latter approach since the efficiency of the scheme
remains unaffected although the degradation is increased by a factor of 2. The
key is changed from normal to semi-functional in two steps – first make S1
semi-functional followed by S2. We call a key partial semi-functional if S1 is
semi-functional and S2 is normal.

The second step of the dual-system technique changes the key in the k-th
response from normal to semi-functional (without the adversary noticing this).
In our case, this is done in two sub-steps – the first step changes from normal to
partial semi-functional and the second step changes from partial semi-functional
to semi-functional. This leads to a slight degradation in the security bound by
a factor of 2.

In the fourth reduction, we prove anonymity of the HIBE scheme based on
the assumption A1.

5.2 Detailed Proof

As is typical in the dual-system technique, we first describe semi-functional ci-
phertexts and keys. These are required only in the reductions and not in the
actual scheme.

Semi-functional Ciphertext: Let C′0, C′1,1, C′1,2, C′1,3, C′2,1, C′2,2, C′2,3 be ci-
phertext elements normally generated by the Encrypt algorithm for message M
and identity id. Let V ′1 , F1 be elements of G1 such that V ′1 ∼ V ′2 and F1 ∼ F2.
Choose μ, σ ∈ Zp at random. The semi-functional ciphertext generation algo-
rithm will modify the normal ciphertext as: C0 = C′0, C1,1 = C′1,1, C2,1 = C′2,1
and

C1,2 = C′1,2 + μσF1, C1,3 = C′1,3 − μσV ′1 , C2,2 = C′2,2 + μF1, C2,3 = C′2,3 − μV ′1 .
Semi-functional Key: Let (S1,S2) be a key generated by the KeyGen algo-
rithm for identity id = (id1, . . . , id�) with S1 = (K1,i,K2,i, Dj,i)j∈[�+1,h],i=1,2,3,
S2 = (J1,i, J2,i, Ej,i)j∈[�+1,h],i=1,2,3. Let γ1, π, γ2, η, (πj , ηj)j∈[�+1,h] be uniform
random elements chosen from Zp. The semi-functional key generation algorithm
will modify the normal key as:

Anonymous Constant-Size Ciphertext HIBE from Asymmetric Pairings 357

K1,1 = K1,1 − aγ1F2, K1,2 = K1,2 + γ1F2,
K2,1 = K2,1 − aγ1πF2, K2,2 = K2,2 + γ1πF2,
J1,1 = J1,1 − aγ2F2, J1,2 = J1,2 + γ2F2,
J2,1 = J2,1 − aγ2ηF2, J2,2 = J2,2 + γ2ηF2,

For j = �+ 1, . . . , h
Dj,1 = Dj,1 − aγ1πjF2, Dj,2 = Dj,2 + γ1πjF2,
Ej,1 = Ej,1 − aγ2ηjF2, Ej,2 = Ej,2 + γ2ηjF2.

The rest of the components remain unchanged.

Partial Semi-functional Key: In a partial semi-functional key, S2 is normal
and S1 is semi-functional.

Note that definitions are similar to [15] except for the delegation and re-
randomisation components. Since decryption is not affected by these components
of the key, all the requirements for semi-functional keys and ciphertexts are
satisfied. A pair of semi-functional ciphertext and key is called nominally semi-
functional if σ = π (condition that makes decryption successful).

Structure of the Proof. We consider the security model defined in Section 2.5.
The proof is organised as a hybrid over a sequence of 2q + 4 games defined as
follows.

Gamereal: ano-ind-cpa game defined in Section 2.5.
Game0,1: the challenge ciphertext is semi-functional and all the keys returned

to the adversary are normal.
Gamek,0 (for 1 ≤ k ≤ q): k-th key is partial semi-functional, the first k−1 keys

are semi-functional; the rest of the keys are normal.
Gamek,1 (for 1 ≤ k ≤ q): similar to Gamek,0 except that the k-th key is (fully)

semi-functional.
GameM-rand: all keys are semi-functional and the challenge ciphertext encrypts

a random message to the challenge identity.
Gamefinal: similar to GameM-rand except that the challenge ciphertext now

encrypts to a random identity vector.

These games are ordered as Gamereal, Game0,1, Game1,0, Game1,1, . . . ,Gameq,0,
Gameq,1, GameM-rand, Gamefinal in our hybrid argument. Let X� be events
that A wins in Game�.

For the proof it will be convenient to use the following short-hand: denote
by h(id) the sum

∑�
j=1 yj idj + u and by g(id) the sum

∑�
j=1 λj idj + ν, where

y1, . . . , yn, u, λ1, . . . , λn, ν are elements of Zp to be chosen in the proofs.

Theorem 1. If the (εLW1, t
′)-LW1, (εLW2, t

′)-LW2, (εDBDH-3, t
′)-DBDH-3 and

(εA1, t
′)-A1 assumptions hold, then LW -AHIBE is (ε, t, q)-ANO-IND-ID-CPA se-

cure where
ε ≤ εLW1 + 2qεLW2 + εDBDH-3 + εA1

and t = t′−O(qρ), where ρ is an upper bound on the time required for one scalar
multiplication in G1 or G2.

358 S.C. Ramanna and P. Sarkar

Proof. For any t-time adversary A against LW -AHIBE in the ano-ind-cpa, its
advantage in winning the game is given by

Advano-ind-cpaLW -AHIBE (A) =

∣
∣
∣
∣Pr[Xreal]− 1

2

∣
∣
∣
∣ .

We know that Pr[Xfinal] =
1
2 and hence we have

Advano-ind-cpaLW -AHIBE (A) = |Pr[Xreal]− Pr[Xfinal]|

≤ |Pr[Xreal]− Pr[X0]|+
q∑

k=1

(|Pr[Xk−1,1]− Pr[Xk,0]|)

+

q∑

k=1

(|Pr[Xk,0]− Pr[Xk,1]|) + |Pr[Xq,1]− Pr[XM-rand]|

+ |Pr[XM-rand]− Pr[Xfinal]|
≤ εLW1 + 2qεLW2 + εDBDH-3 + εA1

The last inequality follows from the lemmas 1, 2, 3, 4 and 5. In all the lemmas,
A is a t-time adversary against LW -AHIBE and B is an algorithm running in
time t′ that interacts with A and solves one of the three problems LW1, LW2,
DBDH-3 or A1. ��
Lemma 1. |Pr[Xreal]− Pr[X0,1]| ≤ εLW1.

This proof is similar to that of LW-IBE and hence we omit it. See the full
version [17] for details.

Lemma 2. |Pr[Xk−1,1]− Pr[Xk,0]| ≤ εLW2 for 1 ≤ k ≤ q.
Proof. Let (F1, dF1, d

2F1, bxF1, dbxF1, d
2xF1, F2, dF2, bF2, cF2, Z2) be the LW2

instance that B receives. Let Z2 = (bc + γ)F2. B’s task is to decide whether
γ = 0 (Z2 is real) or γ ∈U Zp (Z2 is random).

Set-Up: B chooses α, a, yv, y1, . . . , yh, u, λ1, . . . , λh, ν
U←− Zp and computes

parameters as follows. P1 = dF1, Q1,j = λj(dF1) + yjF1 for 1 ≤ j ≤ h,
U1 = ν(dF1) + uF1, V2 = −a(bF2) + dF2 + yvF2 and V ′2 = bF2 setting v =
−ab + d + yv, v

′ = b and τ = d + yv. The element τP1 can be computed
as τP1 = d2F1 + yv(dF1). The parameters τQ1,j for 1 ≤ j ≤ h and τU1

are given by τQ1,j = λj(d
2F1) + yj(dF1) + yvλj(dF1) + yvyjF1 and τU1 =

ν(d2F1) + u(dF1) + yvν(dF1) + yvuF1. The remaining parameters required to
provide PP to A are computed using a, α and elements of the problem in-
stance. Elements of the master secret key can also be obtained from the instance
and randomisers chosen at setup.

Phases 1 and 2: The key extraction queries for identities id1, . . . , idq are an-
swered in the following way. If i < k, a semi-functional key is returned and if
i > k a normal key is returned. B creates semi-functional keys using the master
secret, a and F2.

Anonymous Constant-Size Ciphertext HIBE from Asymmetric Pairings 359

For i = k, B computes of S1 using the problem instance in the following

manner. Let idk = (id1, . . . , id�). B chooses w′1, r′2, z′1,�+1, . . . , z
′
1,h

U←− Zp.

K1,1 = w′1P2 − aZ2 + yv(cF2), K1,2 = Z2, K1,3 = cF2

K2,1 = αP2 + w′1(g(idk)(dF2) + h(idk)F2) + r′2V2 − ag(idk)Z2

+yvg(idk)(cF2)− h(idk)cF2

K2,2 = r′2V
′
2 + g(idk)Z2, K2,3 = r′2F2 + g(idk)(cF2)

and for j = �+ 1, . . . , h, set

Dj,1 = w′1Q2,j + z′1,jV2 − yj(cF2)− aλjZ2 + yvλj(cF2)
Dj,2 = z′1,jV

′
2 + λjZ2, Dj,3 = z′1,jF2 + λj(cF2)

thus implicitly setting w1 = w′1−c, r1 = c, r2 = r′2+g(idk)c and z1,j = z′1,j+λjc
for �+ 1 ≤ j ≤ h.

Let S1 = (K1,i,K2,i, Dj,i)j∈[�+1,h],i=1,2,3. The second set of components S2 =
(J1,i, J2,i, Ej,i)j∈[�+1,h],i=1,2,3 is created normally. B returns SKidk

= (S1,S2)
as the key for idk. If Z2 = bcF2 then the key for idk is normal. It can be easily
verified that the components are well-formed (for details, refer to [17]).

If Z2 = (bc + γ)F2 the key will be partial semi-functional with γ1 = γ,
π = g(idk) and πj = λj for � + 1 ≤ j ≤ h. It is straightforward to check
that SKidk

is a properly formed partial sf-key. Also, since (λj)j∈[1,h], ν are in-
formation theoretically hidden from the adversary, π, (πj)j∈[�+1,h] are uniformly
and independently distributed in A ’s view.

B could attempt checking whether SKidk
is semi-functional by creating a

sf-ciphertext for idk. Since V
′
1 = bF1 is not available to B, the only way of doing

this will lead to σ being the same as π (challenge ciphertext is created via this
method). The ciphertext-key pair will be nominally semi-functional and thus
provides no information to B.

Challenge: A provides two message-identity pairs, (M0, îd0) and (M1, îd1) to
B. It chooses β ∈U {0, 1}, generates the challenge ciphertext as shown below.

C0 =Mβ · e(dbxF1, dF2)
α

C1,1 = g(îdβ)(dbxF1) + h(îdβ)(bxF1)

C1,2 = ag(îdβ)(dbxF1) + ah(îdβ)(bxF1)− g(îdβ)(d2xF1)

C1,3 = −yvg(îdβ)(dbxF1)− h(îdβ)(dbxF1)− yvh(îdβ)(bxF1)
C2,1 = dbxF1, C2,2 = a(dbxF1)− d2xF1, C2,3 = −yv(dbxF1).

This sets s = bx, μ = −d2x and σ = g(îdβ). Since λ1, . . . , λh and ν are chosen
uniformly at random from Zp, λ1X1 + · · ·+λhXh+ ν is a pairwise independent
function for variables X1, . . . , Xh over Zp. As a result, π = λ1id1+ · · ·+λ�id�+ν
and σ = λ1 îd1 + · · · + λ

̂� îd̂� + ν are independent and uniformly distributed.

B returns Ĉ = (C1,i, C2,i)i=1,2,3. Clearly, Ĉ is distributed properly since the
individual components are well-formed [17].

Guess: A returns a bit β′ as its guess for β.
When the instance is real, B simulates Gamek−1,1 and otherwise simulates

Gamek,0. B returns 1 if A wins the game i.e., β = β′; otherwise it returns 0.

360 S.C. Ramanna and P. Sarkar

Hence, B can solve the LW2 instance with advantage

AdvLW2
G (B) = |Pr[β = β′|Z2 is real]− Pr[β = β′|Z2 is random]|

= |Pr[Xk−1,1]− Pr[Xk,0]|.
from which the statement of the lemma follows. ��
Lemma 3. |Pr[Xk,0]− Pr[Xk,1]| ≤ εLW2 for 1 ≤ k ≤ q.
The proof is reminiscent of Lemma 2. The reason is as follows: the structure of S2
is identical to S1 if the αP2 term is removed from K2,1. Moreover, the simulator
chooses α and creates αP2 independent of the instance. Hence the simulation
will be similar except that the instance is now embedded in S2 and S1 is made
semi-functional independent of the instance.

Lemma 4. |Pr[Xq,1]− Pr[XM-rand]| ≤ εDBDH-3.

As mentioned earlier, the third reduction closely follows the corresponding re-
duction in LW-IBE. The proof can be found in the full version of this paper [17].

Lemma 5. |Pr[XM-rand]− Pr[Xfinal]| ≤ εA1.

Proof. B receives the following instance of A1 –

(G, F1, zF1, dzF1, azF1, adzF1, szF1, F2, zF2, aF2, xF2, (dz − ax)F2, Z1).

Suppose Z1 = c · sdzF1 and B has to determine whether c = 1 or c ∈U Zp. The
game is simulated as follows.

Set-Up: Pick α, v, v′, y1, . . . , yh, u
U←− Zp and set the parameters as

P1 = zF1, V2 = vF2, V
′
2 = v′F2, Q1,j = yj(dzF1), U1 = u(dzF1),

aP1 = azP1, aQ1,j = yj(adzF1), aU1 = u(adzF1),

where j = 1, . . . , h and similarly the elements τP1, τQ1,j and τU1. Compute
e(P1, P2)

α = e(zF1, zF2)
α. B returns PP to A . B knows P2 = zF2 and α but

not Q2,j’s and U2. The main idea is to mask the components required to create
identity-hash in G2 by a scalar multiple of aF2 so that only semi-functional keys
can be created.

Key Extraction Phases 1 and 2: B computes the key for the i-th identity
vector idi = (id1, . . . , id�) as follows.

w1, w2, r1, r2, r3, r4, (z1,j , z2,j)
h
j=1

U←− Zp, γ1, γ2
U←− Z

×
p ,

π′, (π′j)
h
j=1, η

′, (η′j)
h
j=1

U←− Zp,
K1,1 = w1(zF2) + r1V2 − γ1aF2, K1,2 = r1V

′
2 + γ1F2, K1,3 = r1F2

K2,1 = αzF2 + w1h(idi)(dz − ax)F2 + r2V2 − γ1π′(aF2),
K2,2 = r2V

′
2 + w1h(idi)xF2 + γ1π

′F2, K2,3 = r2F2,

Anonymous Constant-Size Ciphertext HIBE from Asymmetric Pairings 361

J1,1 = w2(zF2) + r3V2 − γ2aF2, J1,2 = r3V
′
2 + γ2F2, J1,3 = r3F2

J2,1 = w2h(idi)(dz − ax)F2 + r4V2 − γ2η′(aF2),
J2,2 = r4V

′
2 + w2h(idi)xF2 + γ2η

′F2, J2,3 = r4F2,

For �+ 1 ≤ j ≤ h,
Dj,1 = w1yj(dz − ax)F2 + z1,jV2 − γ1π′j(aF2),
Dj,2 = z1,jV

′
2 + w1yj(xF2) + γ1π

′
jF2, Dj,3 = z1,jF2

Ej,1 = w2yj(dz − ax)F2 + z2,jV2 − γ2η′j(aF2),
Ej,2 = z2,jV

′
2 + w2yj(xF2) + γ2η

′
jF2, Ej,3 = z2,jF2

setting π = π′ + γ−11 w1h(idi)x, πj = π′j + γ−11 w1yjx, η = η′ + γ−12 w2h(idi)x

and ηj = η′j + γ−12 w2yjx. Since all these scalars are additively randomised they
remain properly distributed in the adversary’s view. We show that Dj,1, Dj,2 are
well-formed; the rest can be verified in a similar fashion.

Dj,1 = w1yj(dz − ax)F2 + z1,jV2 − γ1π′j(aF2)

= w1yjdzF2 − w1yjaxF2 + z1,jV2 − γ1(πj − γ−11 w1yjx)(aF2)

= w1yjdzF2 − w1yjaxF2 + z1,jV2 − aγ1πjF2 + w1yjaxF2

= w1yjdzF2 + z1,jV2 − aγ1πjF2

Dj,2 = z1,jV
′
2 + w1yj(xF2) + γ1π

′
jF2

= z1,jV
′
2 + w1yj(xF2) + γ1(πj − γ−11 w1yjx)F2

= z1,jV
′
2 + w1yjxF2 + γ1πjF2 − w1yjxF2

= z1,jV
′
2 + γ1πjF2

Challenge: B receives two pairs of messages and identity vectors (M0, îd0)

and (M1, îd1) from A . It chooses β
U←− {0, 1} and a′, ξ U←− Zp at random and

generates a semi-functional challenge ciphertext as follows.

C0
U←− GT

C1,1 = h(îdβ)Z1, C1,2 = a′h(îdβ)Z1 + ξF1,

C1,3 = −vh(îdβ)Z1 − v′a′h(îdβ)Z1 − v′ξF1,
C2,1 = szF1, C2,2 = a′szF1, C2,3 = −v(szF1)− v′a′(szF1),

where a′ = a + μ′, μ = μ′sz and ξ = μσ′. The challenge ciphertext Ĉ =
(C0, C1,1, C1,2, C1,3, C2,1, C2,2, C2,3) is returned to A . The computation below

illustrates that Ĉ is a semi-functional encryption with σ = σ′ + cdh(îdβ).

C1,2 = a′h(îdβ)Z1 + ξF1

= (a+ μ′)h(îdβ)csdzF1 + μσ′F1

= ah(îdβ)csdzF1 + μ′h(îdβ)csdzF1 + μσ′F1

= asH1(îdβ) + (μ′sz)(cdh(îdβ))F1 + μσ′F1

= asH1(îdβ) + μ(cdh(îdβ))F1 + μσ′F1

= asH1(îdβ) + μσF1

362 S.C. Ramanna and P. Sarkar

Observe that C1,1 = sH1(îdβ) = (c · h(îdβ))(sdzF1). If c = 1, then σ = σ′ +
dh(îdβ) and Ĉ is encrypted under îdβ . Otherwise, c is random, causing h(îdβ)
and consequently the target identity and σ to be random quantities.

Guess: A returns its guess β′ of β.
If the algorithm B returns 1 when β = β′ and 0 otherwise, it can solve the A1
instance with advantage

AdvA1
G (B) = |Pr[β = β′|Z1 is real]− Pr[β = β′|Z1 is random]|

= |Pr[XM-rand]− Pr[Xfinal]|.
��

6 Conclusion

We have extended the Lewko-Waters IBE scheme using asymmetric pairings to
a constant-size ciphertext HIBE. In addition to CPA-security the HIBE scheme
possesses anonymity. Security is based on the assumptions LW1, LW2, DBDH-3
and a new assumption A1 that we introduce. This HIBE is the first example of
an anonymous, adaptive-id secure, constant-size ciphertext HIBE which can be
instantiated using Type-3 pairings. The assumptions used are static but non-
standard. It would be interesting to explore constructions that obtain security
under standard assumptions.

Note

A recent work by Lee, Park and Lee [13] proposes a construction identical to
ours. Their proof of anonymity, however, relies on different assumptions namely,
SXDH and asymmetric 3-party Diffie-Hellman which is a non-standard assump-
tion (while our proof is based on A1). We would like to mention that this ap-
peared in DCC August 2013 issue and was made publicly available after we
submitted to IMACC 2013.

Acknowledgement. We thank the reviewers of IMACC 2013 for providing
useful comments.

References

1. Abdalla, M., et al.: Searchable encryption revisited: Consistency properties, rela-
tion to anonymous IBE, and extensions. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 205–222. Springer, Heidelberg (2005)

2. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with con-
stant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 440–456. Springer, Heidelberg (2005); full version available at Cryptology
ePrint Archive; Report 2005/015

3. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. SIAM
J. Comput. 32(3), 586–615 (2003); earlier version appeared in the proceedings of
CRYPTO 2001 (2001)

Anonymous Constant-Size Ciphertext HIBE from Asymmetric Pairings 363

4. Boyen, X., Waters, B.: Anonymous hierarchical identity-based encryption (without
random oracles). In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 290–307.
Springer, Heidelberg (2006)

5. Chatterjee, S., Menezes, A.: On cryptographic protocols employing asymmetric
pairings – the role of ψ revisited. Discrete Applied Mathematics 159(13), 1311–
1322 (2011)

6. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363.
Springer, Heidelberg (2001)

7. De Caro, A., Iovino, V., Persiano, G.: Fully secure anonymous HIBE and secret-key
anonymous IBE with short ciphertexts. In: Joye, M., Miyaji, A., Otsuka, A. (eds.)
Pairing 2010. LNCS, vol. 6487, pp. 347–366. Springer, Heidelberg (2010)

8. Ducas, L.: Anonymity from asymmetry: New constructions for anonymous HIBE.
In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 148–164. Springer, Hei-
delberg (2010)

9. Freeman, D.M.: Converting pairing-based cryptosystems from composite-order
groups to prime-order groups. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 44–61. Springer, Heidelberg (2010)

10. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete
Applied Mathematics 156(16), 3113–3121 (2008)

11. Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002)

12. Horwitz, J., Lynn, B.: Toward hierarchical identity-based encryption. In: Knudsen,
L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481. Springer, Heidelberg
(2002)

13. Lee, K., Park, J.H., Lee, D.H: Anonymous hibe with short ciphertexts: full security
in prime order groups. In: Designs, Codes and Cryptography, pp. 1–31 (2013)

14. Lewko, A.: Tools for simulating features of composite order bilinear groups in the
prime order setting. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 318–335. Springer, Heidelberg (2012)

15. Lewko, A., Waters, B.: New techniques for dual system encryption and fully secure
HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978,
pp. 455–479. Springer, Heidelberg (2010)

16. Park, J.H., Lee, D.H.: Anonymous hibe: Compact construction over prime-order
groups. IEEE Transactions on Information Theory 59(4), 2531–2541 (2013)

17. Ramanna, S.C., Sarkar, P.: Anonymous constant-size ciphertext HIBE from
asymmetric pairings. Cryptology ePrint Archive, Report 2012/057 (2012),
http://eprint.iacr.org/

18. Seo, J.H., Kobayashi, T., Ohkubo, M., Suzuki, K.: Anonymous hierarchical
identity-based encryption with constant size ciphertexts. In: Jarecki, S., Tsudik,
G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 215–234. Springer, Heidelberg (2009)

19. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

20. Smart, N.P., Vercauteren, F.: On computable isomorphisms in efficient asymmetric
pairing-based systems. Discrete Applied Mathematics 155(4), 538–547 (2007)

21. Waters, B.: Dual system encryption: Realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–
636. Springer, Heidelberg (2009)

http://eprint.iacr.org/

Author Index

Aguilar-Melchor, Carlos 99
Alwen, Joël 65

Barbosa, Manuel 65
Bettaieb, Slim 99
Bos, Joppe W. 45

Castagnos, Guilhem 193
Clark, John A. 120
Cohen, Gérard D. 85

Damg̊ard, Ivan 270

Farshim, Pooya 65
Fouque, Pierre-Alain 158, 252

Gaborit, Philippe 99
Galindo, David 173
Gardner, David 16
Gennaro, Rosario 65
Ghadafi, Essam M. 304
Gordon, S. Dov 65

Hirose, Shoichi 213

Jakobsen, Thomas P. 270

Karpman, Pierre 252
Kölbl, Stefan 141
Kuwakado, Hidenori 213

Lauter, Kristin 45
Loftus, Jake 45

McLaughlin, James 120
Mella, Silvia 28
Mendel, Florian 141
Mennink, Bart 232
Mesnager, Sihem 1, 85

Nad, Tomislav 141
Naehrig, Michael 45
Nakano, Rintaro 324
Nielsen, Jesper Buus 270

Pagter, Jakob I. 270
Patey, Alain 85
Phan, Raphael C.-W. 16
Pol, Joop van de 290

Ramanna, Somindu C. 344
Renner, Soline 193

Sălăgean, Ana 16
Sarkar, Palash 344
Schläffer, Martin 141
Schrek, Julien 99
Shikata, Junji 324
Smart, Nigel P. 290
Susella, Ruggero 28

Tessaro, Stefano 65
Tibouchi, Mehdi 158

Vivek, Srinivas 173

Wilson, David A. 65

Zapalowicz, Jean-Christophe 158
Zémor, Gilles 193

	Preface
	14th IMA International Conference onCryptography and Coding
	Table of Contents
	Semi-bent Functions from Oval Polynomials
	1 Introduction
	2 Notation and Preliminaries
	2.1 Background on Theory of Boolean Functions and Basic Definitions.
	2.2 Some Background on Finite Geometry and Basic Definitions

	3 Explicit Constructions of Classes of Semi-bent Functions from o-polynomials
	4 Conclusion
	References

	Efficient Generation of Elementary Sequences
	1 Introduction
	2 Preliminaries
	3 Fibonacci and Galois LFSRs
	4 Efficient Generation of Elementary Sequences for Interleaving
	4.1 Using Several Galois LFSRs
	4.2 Using One LFSR and Linear Combinations of Its Registers

	5 Conclusion
	References

	On the Homomorphic Computationof Symmetric Cryptographic Primitives
	1 Introduction
	2 TheBGVScheme
	3 Homomorphic Evaluation of AES-128
	3.1 Evaluation of AES-128 Encryption Function

	4 Homomorphic Evaluation of SHA-256
	4.1 Encoding Choice and Carry-lookahead Adders
	4.2 Evaluation of SHA-256 Function

	5 Homomorphic Evaluation of Salsa20
	5.1 Evaluation of Salsa20

	6 Homomorphic Evaluation of
	6.1 Evaluation of

	7 Implementation Results Using HElib
	7.1 AES-128
	7.2 SHA-256 and Salsa20
	7.3 KECCAK

	8 Conclusions
	References

	Improved Security for a Ring-Based FullyHomomorphic Encryption Scheme
	1 Introduction
	2 Preliminaries
	3 Basic Scheme
	4 Leveled Homomorphic Scheme
	4.1 Correctness
	4.2 Security
	4.3 From Leveled to Fully Homomorphic Encryption

	5 A More Practical Variant of the Scheme
	5.1 Correctness and Security of
	5.2 Parameters
	5.3 Implementation
	5.4 Truncating Ciphertext Words
	5.5 Encoding Input Data via the CRT

	6 Conclusions
	References

	On the Relationship between Functional Encryption, Obfuscation, and Fully Homomorphic Encryption
	1 Introduction
	2 Functional Encryption
	3 Randomized Functional Encryption
	4 Entropic Security
	5 Relating Homomorphic and Functional Encryption Schemes
	6 Relation to Obfuscated Re-encryption
	References

	On Minimal and Quasi-minimal Linear Codes
	1 Introduction
	2 Minimal Codes – Bounds and Constructions
	2.1 Definitions – Notations
	2.2 Generic Bounds
	2.3 Minimal Codes and Intersecting Codes
	2.4 Constructions

	3 Constructions of Minimal Linear Codes via Trace Functions
	3.1 A Construction of a Class of
	3.2 A Construction of a Class of Linear Minimal 2h-ary Codes

	4 Quasi-minimal Codes
	4.1 Definitions and Properties
	4.2 Infinite Constructions

	References

	A Code-Based Undeniable Signature Scheme
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Syndrome Decoding Problem
	2.3 Definitions
	2.4 Security Model

	3 General Overview
	3.1 Undeniable One-Time Signature: Basic Idea
	3.2 One-Time Undeniable Signature: Confirmation and Disavowal Protocols
	3.3 One-Time Signature to Full-Time Signature

	4 Undeniable Signature Scheme
	4.1 Key Generation
	4.2 The Signature
	4.3 The Verification

	5 Security
	5.1 Completeness
	5.2 Soundness
	5.3 Zero-Knowledge
	5.4 Impersonation
	5.5 Unforgeability
	5.6 Invisibility

	6 Parameters
	8 Conclusion
	References

	Filtered Nonlinear Cryptanalysis ofReduced-Round Serpent, and the Wrong-KeyRandomization Hypothesis
	1 Introduction
	1.1 Linear Cryptanalysis – The Algorithm 2 Attack

	2 Finding and Utilising Nonlinear Approximations
	2.1 Finding the Approximations
	2.2 The “Related” Approximations
	2.3 Increasing the Signal/Noise Ratio – “Filtering” Nonlinear
	2.4 How Unbalanced Nonlinear Components in the Approximation Affect the Attack

	3 The New Cryptanalysis Algorithm
	3.1 Adapting the New Analysis Phase to Nonlinear Cryptanalysis of SPNs
	3.2 The Complexity of the Method
	3.3 Other Issues Affecting the Complexity of the New Attack

	4 Cryptanalysing Reduced-Round Serpent
	4.1 Survey of Existing Attacks
	4.2 Nonlinear Attacks on 11-round Serpent-192 and Serpent-256.

	5 Conclusion
	References

	Differential Cryptanalysis of Keccak Variants
	1 Introduction
	2 Description of Keccak
	2.1 Keccak-

	3 Differential Cryptanalysis of Keccak
	4 Finding Colliding High-Probability Characteristics
	4.1 Differential Characteristics and Coding Theory
	4.2 Finding Low-Weight Codewords

	5 Non-linear Characteristics and Message Modification
	5.1 Search for Differential Characteristics and Message Pairs
	5.2 Improved Linear Propagation in Keccak
	5.3 Finding Solutions for 2 Rounds of Keccak

	6 Results
	References

	Recovering Private Keys Generated with Weak PRNGs
	1 Introduction
	2 Preliminaries
	2.1 Linear Congruential Generator
	2.2 Multipoint Evaluation of Univariate Polynomials

	3 The Discrete Logarithm Case
	3.1 Attack for Non-truncated Linear Congruential Generators
	3.2 Attack for Truncated Linear Congruential Generators

	4 TheFactoringCase
	4.1 Basic Prime Generation
	4.2 Improved Prime Generation

	5 Complexity Estimates for Concrete Parameter Sizes
	6 Conclusion
	References

	A Leakage-Resilient Pairing-Based Variant of the Schnorr Signature Scheme
	1 Introduction
	2 Definitions
	2.1 Leakage Model
	2.2 Bilinear Groups
	2.3 Generic Bilinear Group Model
	2.4 Min-entropy

	3 Basic Signature Scheme
	4 A Leakage-Resilient Signature Scheme
	5 Conclusions
	References

	High-order Masking by Using Coding Theory and Its Application to AES
	1 Introduction
	2 Secret Sharing Scheme and
	Order Masking
	2.1 Definitions
	2.2 Shamir’s Secret Sharing Scheme

	3 Coding Theory Generalisation
	3.1 Basic Definitions and Results from Coding Theory
	3.2 Construction of a Linear Secret Sharing Scheme from a Linear
	3.3 Operations on Masked Data
	3.4 Application to Boolean Masking and to Shamir’s Secret Sharing

	4 Our Contribution
	4.1 Linear Secret Sharing Schemes Based on Self-Dual Codes
	4.2 Improvement of Secure Multiplication
	4.3 Code Switching to Perform Efficient Linear Operations
	4.4 Comparison with Other Masking Schemes

	5 Application to AES
	5.1 Secure Implementation of Linear AES Transformations
	5.2 Secure Implementation of
	5.3 Implementation Results and Comparisons

	6 Conclusion
	References

	Hashing Mode Using a Lightweight Blockcipher
	1 Introduction
	2 Construction
	3 Security Definition
	3.1 Preimage Resistance
	3.2 Pseudorandom Function
	3.3 Pseudorandom Permutation

	4 Preimage Resistance
	4.1 Main Theorem
	4.2 Proof of Theorem1 and Lemmas

	5 Pseudorandom Function
	5.1 Main Theorem
	5.2 Lemmas for Theorem2

	6 Concluding Remarks
	References

	Indifferentiability of Double Length Compression Functions
	1 Introduction
	2 Indifferentiability
	3 Stam’s, Tandem-DM, Abreast-DM, Hirose’s, and Hirose-Class
	4 ¨Ozen-Stam-Class
	5 MDC-2 and MJH
	6 JOS
	7 Mennink’s
	7.1 Differentiability
	7.2 Indifferentiability

	8 MDC-4
	8.1 Differentiability
	8.2 Indifferentiability

	9 Conclusions
	References

	Security Amplification against Meet-in-the-Middle Attacks Using Whitening
	1 Introduction
	2 A Model for Meet-in-the-Middle Attacks
	2.1 Generic Constructions
	2.2 The Model

	3 A Construction Resistant to Meet-in-the-Middle Attacks
	4 Resistance of the EF Construction to Meet-in-the-Middle Attacks
	4.1 Security Model
	4.2 The Result
	4.3 Proof Sketch

	5 Discussion
	5.1 About Ideal Ciphers
	5.2 The Splice-and-Cut Exception
	5.3 Taking Advanced Attack Techniques into Account
	5.4 Alternatives for the Construction

	6 Practical Instantiation
	References

	Secure Key Management in the Cloud
	1 Introduction
	2 The Model
	3 Related Work
	4 Fully Autonomous Servers
	4.1 What Cannot Be Done
	4.2 What Can Be Done

	5 Semi-autonomous Servers
	6 A Prototype Implementation
	References

	Estimating Key Sizes for High Dimensional Lattice-Based Systems
	1 Introduction
	2 Lattice Background
	3 Estimating BKZ
	4 Estimating LWE Parameters
	5 Application of Our Method to Two Examples
	References

	Sub-linear Blind Ring Signatures without Random Oracles
	1 Introduction
	2 Preliminaries
	3 Blind Ring Signatures
	4 Sub-linear Size Set Membership Proof over Prime-Order Groups
	5 Blind Ring Signature Construction
	6 Generic Construction of Ring Signatures over Prime-Order Bilinear Groups
	References

	Constructions of Signcryption in the Multi-user Setting from Identity-Based Encryption
	1 Introduction
	1.1 Background
	1.2 Our Contribution

	2 Preliminaries
	2.1 Identity-Based Encryption (IBE)
	2.2 Digital Signatures (DS)
	2.3 Message Authentication Code (MAC)
	2.4 Encapsulation

	3 Signcryption
	4 Our Constructions
	4.1 Construction 1
	4.2 Construction 2

	5 Comparison
	5.1 Comparison of Generic Constructions
	5.2 Comparison of Direct Constructions

	6 Concluding Remarks
	References

	Anonymous Constant-Size Ciphertext HIBE from Asymmetric Pairings
	1 Introduction
	1.1 Our Contributions

	2 Preliminaries
	2.1 Notation
	2.2 Bilinear Pairings
	2.3 Complexity Assumptions
	2.4 Hierarchical Identity-Based Encryption
	2.5 Anonymous CPA-Secure HIBE

	3 Lewko-Waters IBE
	4 Anonymous HIBE from LW-IBE
	5 Securityof
	5.1 Ideas Underlying the Security Proof
	5.2 Detailed Proof

	6 Conclusion
	References

	Author Index

