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Abstract. Many research works had been done in order to define a semantics
for logic programs. The well know is the stable model semantics which selects
for each program one of its canonical models. The stable models of a logic pro-
gram are in a certain sens the minimal Herbrand models of its reduct programs.
On the other hand, the notion of symmetry elimination had been widely studied
in constraint programming and shown to be useful to increase the efficiency of
the associated solvers. However symmetry in non monotonic reasoning still not
well studied in general. For instance Answer Set Programming (ASP) is a very
known framework but only few recent works on symmetry breaking are known in
this domain. Ignoring symmetry breaking in the answer set systems could make
them doing redundant work and lose on their efficiency. Here we study the notion
of local and global symmetry in the framework of answer set programming. We
show how local symmetries of a logic program can be detected dynamically by
means of the automorphisms of its graph representation. We also give some prop-
erties that allow to eliminate theses symmetries in SAT-based answer set solvers
and show how to integrate this symmetry elimination in these methods in order
to enhance their efficiency.

Keywords: symmetry, logic programming, stable model semantics, answer set
programming, non-monotonic reasoning.

1 Introduction

The work we propose here to investigate the notion of symmetry in Answer Set Pro-
gramming (ASP). The (ASP) framework can be considered as a sub-framework of
the default logic [37]. One of the main questions in ASP, is to define a semantics to
logic programs. A logic program π is a set of first order (formulas) rules of the form
r : concl(r) ← prem(r), where prem(r) is the set of premises of the rule given
as a conjunction of literals that could contain negations and negations as failure. The
right part concl(r) is the conclusion of the rule r which is generally, a single atom,
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or in some cases a disjunction of atoms for logic programs with disjunctions. Some
researchers considered prem(r) as the body of the rule r and concl(r) as its head
(r : head(r)← body(r)). Each logic program π is translated into its equivalent ground
logic program ground(π) by replacing each rule containing variables by all its ground
instances, so that each literal in ground(π) is ground. This technique is used to elimi-
nate the variables even when the program contains function symbols and its Herbrand
universe is infinite. Among the influential semantics that had been given for these logic
programs with negation and negation as failure are the completion semantics [15] and
the stable model or the answer set semantics [25]. It is well know that each answer set
for a logic program is a model of its completion, but the converse, is in general not true.
Fages in his paper [21] showed that both semantics are equivalent for free loops logic
programs that are called tight programs. A generalization of Fage’s results to logic pro-
grams with eventual nested expressions in the bodies of their rules was given in [20].
On the other hand Fangzhen Lin and Yutin Zhao proposed in [31] to add what they
called loop formulas to the completion of a logic program and showed that the set of
models of the extended completion is identical to the program’s answer sets even when
the program is not tight.

On the other hand, symmetry is by definition a multidisciplinary concept. It ap-
pears in many fields ranging from mathematics to Artificial Intelligence, chemistry and
physics. It reveals different forms and uses, even inside the same field. In general, it
returns to a transformation, which leaves invariant (does not modify its fundamental
structure and/or its properties) an object (a figure, a molecule, a physical system, a for-
mula or a constraints network...). For instance, rotating a chessboard up to 180 degrees
gives a board that is indistinguishable from the original one. Symmetry is a fundamental
property that can be used to study these various objects, to finely analyze these complex
systems or to reduce the computational complexity when dealing with combinatorial
problems.

As far as we know, the principle of symmetry has been first introduced by Krish-
namurthy [29] to improve resolution in propositional logic. Symmetries for Boolean
constraints are studied in depth in [5,6]. The authors showed how to detect them and
proved that their exploitation is a real improvement for several automated deduction
algorithms efficiency. Since that, many research works on symmetry appeared. For in-
stance, the static approach used by James Crawford et al. in [16] for propositional logic
theories consists in adding constraints expressing global symmetry of the problem. This
technique has been improved in [1] and extended to 0-1 Integer Logic Programming in
[2]. The notion of interchangeability in Constraint Satisfaction Problems (CSPs) is in-
troduced in [22] and find a good exploitation in [27], and symmetry for CSPs is studied
earlier in [36,4].

Within the framework of the Artificial Intelligence, an important paradigm is to take
into account incomplete information (uncertain information, revisable information...).
Contrary to the mode of reasoning formalized by a conventional or a classical logic, a
result deducible from information (from a knowledge, or from beliefs) is not true but
only probable in the sense that it can be invalidated further, and can be revised when
adding new information.
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To manage the problem of exceptions, several logical approaches in Artificial In-
telligence had been introduced. Many non-monotonic formalisms were presented since
about thirty years. But, the notion of symmetry within this framework was not well stud-
ied. The principle of symmetry had been extended recently in [8,9,11] to non-monotonic
reasoning. Symmetry had been defined and studied for three known non-monotonic
logics: the preferential logic [13,14,12,28], the X-logic [38] and the default logic [38].
More recently, global symmetry had been studied for the Answer Set Programming
framework [18,19]. In the same spirit as what it is done in [16,1,2] for the satisfiability
problem, the authors of [18,19] showed how to break the global symmetry statically in a
pre-processing phase for the ASP system Clasp[24]. They did that by adding symmetry
breaking predicates to the considered logic program. They showed that global symme-
try elimination in Clasp improves dramatically its efficiency on several problems. In
this work, we investigate dynamic local symmetry detection and elimination and static
global symmetry exploitation in SAT-based answer set programming systems. Local
symmetry is the symmetry that we can discover at each node of the search tree during
search. Global symmetry is the particular local symmetry corresponding to the root of
the search tree (the symmetry of the initial problem). Almost all of the known works on
symmetry are on global symmetry. Only few works on local symmetry [5,6,7,10] are
known in the literature. Local symmetry breaking remains a big challenge. As far as we
know, local symmetry is not studied yet in ASP.

The rest of the paper is structured as follows: in Section 2, we give some neces-
sary background on answer set programming and permutations. We study the notion of
symmetry for answer set programming in Section 3. In Section 4 we show how local
symmetry can be detected by means of graph automorphism. We show how both global
and local symmetry can be eliminated in Section 5. Section 6 shows how local sym-
metry elimination is implemented in a SAT-based answer set programming Method.
Section 7 investigates the first implementation and experiments. We give a conclusion
in Section 8.

2 Background

We summarize in this section some background on both the answer set programming
framework and permutation theory.

2.1 Answer Set Programming

A ground general logic program π is a set of rules of the form r : L0 ← L1, L2, . . . , Lm,
notLm+1, . . . , notLn, (0 ≤ m < n) where Li (0 ≤ i ≤ n) are atoms, and not is the
symbol expressing negation as failure. The positive body of r is denoted by body+(r) =
{L1, L2, . . . , Lm}, and the negative body by body−(r) = {Lm+1, . . . , Ln}. The word
general expresses the fact that the rules are more general than Horn clauses, since
they contain negations as failure. The sub-rule r+ : L0 ← L1, L2, . . . , Lm expresses
the positive projection of the rule r. Intuitively the rule r means ”If we can prove
all of {L1, L2, . . . , Lm} and we can not prove all of {Lm+1, . . . , Ln}, then we de-
duce L0“. Given a set of atoms A, we say that a rule r is applicable (active) in A if
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body+(r) ⊆ A and body−(r) ∩ A = ∅. The reduct of the program π with respect to
a given set A of atoms is the positive program πA where we delete each rule con-
taining an expression notLi in its negative body such that Li ∈ A and where we
delete the other expressions notLi in the bodies of the other rules. More precisely,
πA = {r+/r ∈ π, body−(r) ∩ A = ∅}. The most known semantics for general logic
programs is the one of stable models defined in [25] which could be seen as an improve-
ment of the negation as failure of Prolog. A set of atoms A is a stable model (an answer
set) of π if and only if A is identical to the minimal Herbrand model of πA which is
called its canonical model (denoted by CM(πA)). That is, if only if A = CM(πA).
The stable model semantics is based on the closed world assumption, an atom that is
not in the stable model A is considered to be false.

An extended logic program is a set of rules as the ones given for general programs
which could contain classical negation. The atoms Li could appear in both positive and
negative parity. In other words, the atoms Li become literals. A logic program is said to
be disjunctive when at least one of its rules contains a disjunction of literals in its head
part. In the sequel, we will use indifferently the words stable model and answer set to
designate a stable model of a general logic program.

2.2 Permutations

LetΩ = {1, 2, . . . , N} for some integerN , where each integer might represent a propo-
sitional variable or an atom. A permutation of Ω is a bijective mapping σ from Ω to
Ω that is usually represented as a product of cycles of permutations. We denote by
Perm(Ω) the set of all permutations of Ω and ◦ the composition of the permutation
of Perm(Ω). The pair (Perm(Ω), ◦) forms the permutation group of Ω. That is, ◦ is
closed and associative, the inverse of a permutation is a permutation and the identity
permutation is a neutral element. A pair (T, ◦) forms a sub-group of (S, ◦) iff T is a
subset of S and forms a group under the operation ◦.

The orbit ωPerm(Ω) of an element ω of Ω on which the group Perm(Ω) acts is
ωPerm(Ω)={ωσ : ωσ = σ(ω), σ ∈ Perm(Ω)}.

A generating set of the group Perm(Ω) is a subset Gen of Perm(Ω) such that each
element of Perm(Ω) can be written as a composition of elements of Gen. We write
Perm(Ω)=< Gen >. An element of Gen is called a generator. The orbit of ω ∈ Ω
can be computed by using only the set of generators Gen.

3 Symmetry in Logic Programs

Since Krishnamurthy’s [29] symmetry definition and the one given in [5,6] in proposi-
tional logic, several other definitions are given in the CP community.

We will define in the following both semantic and syntactic symmetries in answer set
programming and show their relationship. In the sequel π could be the logic program or
its completion [15] Comp(π), the symmetry definitions and properties remain valuable.
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Definition 1. (semantic symmetry of the logic program) Let π be a logic program and
Lπ its complete 1 set of literals. A semantic symmetry of π is a permutation σ defined
on Lπ such that π and σ(π) have the same answer sets.

Definition 2. (semantic symmetry of the completion) Let Comp(π) be the Clark com-
pletion of a logic program π and LComp(π) its complete 2 set of literals. A semantic
symmetry of Comp(π) is a permutation σ defined on LComp(π) such that Comp(π)
and σ(Comp(π)) have the same answer sets.

In other words a semantic symmetry is a literal permutation that conserves the set of
answer sets of the logic program π. We adapt in the following the definition of syntactic
symmetry given in [5,6] for satisfiability to logic programs.

Definition 3. (syntactic symmetry of the logic program) Let π be a logic program and
Lπ its complete set of literals. A syntactic symmetry of π is a permutation σ defined on
Lπ such that the following conditions hold:

1. ∀� ∈ Lπ, σ(¬�) = ¬σ(�),
2. ∀� ∈ Lπ, σ(not�) = not{σ(�)},
3. σ(π) = π

Definition 4. (syntactic symmetry of the completion) Let Comp(π) be a logic program
and LComp(π) its complete set of literals. A syntactic symmetry of Comp(π) is a per-
mutation σ defined on LComp(π) such that the following conditions hold:

1. ∀� ∈ Lπ, σ(¬�) = ¬σ(�),
2. σ(Comp(π)) = Comp(π)

In other words, a syntactical symmetry of a logic program or its completion is a literal
permutation that leaves the logic program or the completion invariant. If we denote by
Perm(Lπ) the group of permutations of Lπ and by Sym(Lπ) ⊂ Perm(Lπ) the subset
of permutations of Lπ that are the syntactic symmetries of π, then Sym(Lπ) is trivially
a sub-group of Perm(Lπ).

Theorem 1. Each syntactical symmetry of a logic program π is a semantic symmetry
of π.

Proof. It is trivial to see that a syntactic symmetry of a logic program π is always a
semantic symmetry of π. Indeed, if σ is a syntactic symmetry of π, then σ(π) = π, thus
it results that π and σ(π) have the same set of answer sets.

In a similar way, we can prove the following theorem :

Theorem 2. Each syntactical symmetry of the completionComp(π) is a semantic sym-
metry of Comp(π).

1 The set of literals containing each literal of π and its negation as failure.
2 The set of literals containing each literal of Comp(π) and its negation.
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Example 1. consider the logic program π = {d ←; c ←; b ← c, nota; a ← d, notb}
and the permutation σ=(a, b)(c, d)(nota, notb) defined on the complete set Lπ of liter-
als occurring in π. We can see that σ is a syntactic symmetry of π (σ(π)=π).

Remark 1. The converse of each of the previous theorems is not true. That is, it is not
true that a semantic symmetry is always a syntactical symmetry.

Now, we give an important property which establishes a relationship between the
symmetries of a logic program and its completion.

Proposition 1. Each syntactical symmetry of a logic program π is a semantic symmetry
of its completion Comp(π).

Proof. Let σ be a syntactical symmetry of the program π and I a model of Comp(π)
which is an answer set of π. We have to prove that σ(I) is also a model of Comp(π)
which is an answer set of π. The permutation σ is a syntactical symmetry of π, thus
by Theorem 1 we deduce that σ is also a semantic symmetry of π. It results that σ(I)
is also an answer set of π. Since each model of a logic program π is also a model of
its Clark completion, it follows that σ(I) is a model of Comp(π) which is in fact an
answer set of π.

Remark 2. The previous proposition allows to use the syntactical symmetries of a logic
program π in its Clark completion Comp(π) in order to detect symmetrical answer sets
of π. This gives an important alternative for symmetry detection in SAT-based ASP sys-
tems that use the the Clark completion. Indeed, we can just calculate the symmetries of
the logic program π instead of calculating those of its completion. This could accelerate
the symmetry detection as the size of the program π is generally substantially smaller
than the size of its completion.

In the sequel we give some symmetry properties only in the case of logic programs
π, but the considered properties are also valid in the case of the completion Comp(π).

Definition 5. Two literals � and �′ of a logic π are symmetrical if there exists a symme-
try σ of π such that σ(�) = �′.

Definition 6. Let π be a logic program, the orbit of a literal � ∈ Lπ on which the group
of symmetries Sym(Lπ) acts is �Sym(Lπ)={σ(�) : σ ∈ Sym(Lπ)}
Remark 3. All the literals in the orbit of a literal � are symmetrical two by two.

Example 2. In Example 1, the orbit of the literal a is aSym(Lπ)= {a, b}, the orbit
of the literal c is cSym(Lπ)= {c, d} and the one of the literal nota is notaSym(Lπ)=
{nota, notb} All the literals of a same orbit are all symmetrical.

If I is an answer set of π and σ a syntactic symmetry, we can get another answer
set of π by applying σ on the literals which appear in I. Formally we get the following
property.

Proposition 2. I is an answer set of π iff σ(I) is an answer set of π .
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Proof. Suppose that I is an answer set of π, then I is a minimal Herbrand model of the
reduct πI . It follows that σ(I) is a minimal model of σ(π)σ(I). We can then deduce that
σ(I) is a minimal model of πσ(I) since π is invariant under σ. We conclude that σ(I) is
an answer set of π. The converse can be shown by considering the converse permutation
of σ.

For instance, in Example 1 there are two symmetrical answer sets for the logic pro-
gram π. The fist one is I = {d, c, a} and the second is σ(I) = {d, c, b}. These are what
we call symmetrical answer sets of π. A symmetry σ transforms each answer set into
an answer set and each no-good (not an answer set) into a no-good.

Theorem 3. Let � and �′ be two literals of π that are in the same orbit with respect to the
symmetry group Sym(Lπ), then � participates in an answer set of π iff �′ participates
in an answer set of π.

Proof. If � is in the same orbit as �′ then it is symmetrical with �′ in π. Thus, there exists
a symmetry σ of π such that σ(�) = �′. If I is an answer set of π then σ(I) is also an
answer set of σ(π) = π, besides if � ∈ I then �′ ∈ σ(I) which is also an answer set of
π. For the converse, consider � = σ−1(�′), and make a similar proof.

Corollary 1. Let � be a literal of π, if � does not participate in any answer set of π,
then each literal �′ ∈ orbit� = �Sym(Lπ) does not participate in any answer set of π.

Proof. The proof is a direct consequence of Theorem 3

Corollary 1 expresses an important property that we will use to break local symmetry
at each node of the search tree of a SAT-based answer set procedure. That is, if a no-
good is detected after assigning the value True to the current literal �, then we compute
the orbit of � and assign the value false to each literal in it, since by symmetry the value
true will not lead to any answer set of the logic program.

For instance, consider the program of Example 1, and the partial interpretation I =
{a, b, c} where c is the current literal under assignation. It is trivial that I is not a stable
model of the program. By corollary 1, we can deduce that the set I ′ = {a, b, d} is not a
stable model of the program too. Indeed, I ′ is obtained by replacing the current literal c
in I by its symmetrical literal d. I is a no-good and by symmetry (without duplication
of effort) we infer that I ′ is a no-good.

4 Symmetry Detection

The most known technique to detect syntactic symmetries for CNF formulas in satis-
fiability is the one consisting in reducing the considered formula into a graph [16,3,2]
whose the automorphism group is identical to the symmetry group of the original for-
mula. We adapt the same approach here to detect the syntactic symmetries of the com-
pletion of a program π. That is, we represent the CNF formula corresponding to the
completion (Compl(π)) of the logic program π by a graph Gπ that we use to compute
the symmetry group of π by means of its automorphism group. When this graph is built,
we use a graph automorphism tool like Saucy [3], Nauty [32], AUTOM [35] or the one
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described in [33] to compute its automorphism group which gives the symmetry group
of Comp(π). Following the technique used in [16,3,2] to represent CNF formulas, we
summarize bellow the construction of the graph which represent the completion of the
logic program π. Here we focus on the case of general logic programs, but the technique
could be generalized to other classes of logic programs like extended logic programs
or disjunctive logic programs. Given the completion of a general logic program π, the
associated colored graph Gπ(V,E) of its completion is defined as follows:

– Each positive literal �i of Compl(π) is represented by a vertex �i ∈ V of the color
1 in Gπ . The negative literal not�i associated with �i is represented by a vertex
not�i of color 1 in Gπ. These two literal vertices are connected by an edge of E in
the graph Gπ.

– Each clause ci of Compl(π) is represented by a vertex ci ∈ V (a clause vertex) of
color 2 in Gπ. An edge connects this vertex ci to each vertex representing one of
its literals.

This technique could be extended to extended and disjunctive logic programs in a
natural way.

This is different from the approach which uses a body-atom graph [18]. Since our
study is oriented to SAT-based ASP using the completion, we do not need to manage an
oriented body-atom graph.

An important property of the graph Gπ is that it preserves the syntactic group of
symmetries of Compl(π). That is, the syntactic symmetry group of the logic program
Compl(π) is identical to the automorphism group of its graph representation Gπ , thus
we could use a graph automorphism system like Saucy on Gπ to detect the syntac-
tic symmetry group of Comp(π). The graph automorphism system returns a set of
generators Gen of the symmetry group from which we can deduce each symmetry of
Compl(π).

5 Symmetry Elimination

There are two ways to break symmetry. The first one is to deal with the global symmetry
which is present in the formulation of the given problem. Global symmetry can be elim-
inated in a static way in a pre-processing phase of an answer set solver by just adding
the symmetry predicates. For instance, a method for global symmetry elimination is
introduced in [18] for the Clasp ASP system [24]. The second way is the elimination
of local symmetry that could appear in the sub-problems corresponding to the different
nodes of the search tree of an answer set solver. Global symmetry can be considered as
the local symmetry corresponding to the root of the search tree.

Local symmetries have to be detected and eliminated dynamically at some decision
node of the search tree. Dynamic symmetry detection in satisfiability had been studied
in [5,6] where a local syntactic symmetry search method had been given. However, this
method is not complete, it detects only one symmetry σ at each node of the search
tree when failing in the assignment of the current literal �. As an alternative to this
incomplete symmetry search method, a complete method which uses the tool Saucy [3]
had been introduced in [10] to detect and break all the syntactic local symmetries of a
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constraint satisfaction problem (CSP) [34] during search and local symmetry had been
detected and eliminated dynamically in a SAT solver [7].

Consider the completion Compl(π) of a logic program π, and a partial assignment
I of a SAT-based answer set solver applied to Compl(π). Suppose that � is the current
literal under assignment. The assignment I simplifies Compl(π) into a sub-completion
Compl(π)I which defines a state in the search space corresponding to the current node
nI of the search tree. The main idea is to maintain dynamically the graph GπI of the
sub-completion Compl(π)I corresponding to the current node nI , then color the graph
GπI as shown in the previous section and compute its automorphism group Aut(πI).
The sub-completion Compl(π)I can be viewed as the remaining sub-problem corre-
sponding to the unsolved part. By applying an automorphism tool on this colored graph
we can get the generator set Gen of the symmetry sub-group existing between literals
from which we can compute the orbit of the current literal � that we will use to make
the symmetry cut.

After this, we use Corollary 1 to break dynamically the local symmetry and then
prune search spaces of tree search answer set methods. Indeed, if the assignment of the
current literal � defined at a given node nI of the search tree is shown to be a failure,
then by symmetry, the assignment of each literal in the orbit of � will result in a failure
too. Therefore, the negated literal of each literal in the orbit of � has to be assigned
in the partial assignment I . Thus, we prune in the search tree, the sub-space which
corresponds to the assignment of the literals of the orbit of �. That is what we call the
local symmetry cut.

6 Local Symmetry Exploitation in SAT-Based ASP Solvers

The solver ASSAT [31] has some drawbacks: it can compute only one answer set and
the formula could blow-up in space. Taking into account these disadvantages of AS-
SAT and the fact that each answer set of a program π is a model of its completion
Compl(π), Guinchiglia et al. in [26] do not use SAT solvers as black boxes, but imple-
mented a method which is based on the DLL [17] procedure and where they include a
function which checks if a generated model is an answer set or not. This method had
been implemented in the Cmodels-2 system [30] and has the following advantages:
it performs the search on Compl(π) without introducing any extra variable except
those used by the clause transformation of Compl(π), deals with tight and not tight
programs, and works in a polynomial space. Global symmetry breaking do not need
any extra-implementation, a SAT-based answer set solver is used as a black box on
the completion of the logic program and the generated symmetry breaking predicates.
More recently the ASP solvers like the conflict-driven Clasp solver [24] include some
materials of modern SAT solvers such as: conflict analysis via the First UIP scheme,
no-good recording and deletion, backjumping, restarts, conflict-driven decision heuris-
tics, unit propagation via watched literals, equivalence reasoning and resolution-based
pre-processing [23] have shown dramatic improvements in their efficiency and compete
with the best SAT solvers.

We give in the following a DLL-based answer set method in which we implement dy-
namic local symmetry breaking. We used as a baseline method the DLL-based answer
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set procedure given in [26] to show the implementation of local symmetry eliminations
(local symmetry cuts).

If I is an inconsistent partial interpretation in which the assignment of the value
true to the current literal � is shown to be a no-good, then, all the literals in the orbit
of � computed by using the group Sym(πI) returned by the graph automorphism tool
are symmetrical to �. Thus, we assign the value false to each literal in �Sym(Lπ) since
the value true is shown to be contradictory, and then we prune the sub-space which
corresponds to the value true assignments. The other case of local symmetry cut happen
when the assignment I is shown to be a model of Compl(π), but is not an answer set
of π. In this case, the algorithm makes a backtracking on the last decision literal � in I ,
then according to corollary 1 assigns the value false to each literal in the orbit �Sym(Lπ)

since the value true does not lead to an answer set of π. If Γ = Compl(π), then the
resulting procedure called DLLAnswerSet, is given in Figure 1.

Procedure DLLAnswerSet(Γ, I);
begin

if Γ = ∅ then return AnswerSetCheck(I, π)
else return False

else if Γ contains the empty clause, then return False
else

if there exists a mono-literal or a monotone literal � then
return DLLAnswerSet(Γ�, I ∪ {�})

begin
Choose an unsigned literal � of Γ
Gen=AutomorphismTool(ΓI );
�Sym(LπI

)=orbit(�,Gen)={�1, �2, ..., �n};
return DLLAnswerSet(Γ�, I ∪ {�}) or
DLLAnswerSet(Γ¬�∧¬�1∧¬�2∧...∧¬�n ,

I ∪ {¬�,¬�1, . . . ,¬�n})
end

end

Fig. 1. The DLL-based answer set procedure with local symmetry elimination

The function AutomorphismTool(πI) is a call to the automorphism tool which return
the set of generators in the variable GEN . The function orbit(�,Gen) is elementary, it
computes the orbit (the symmetrical literals) of the literal � from the set of generators
Gen returned by AutomorphismTool(πI). The set Γ� is the set of clauses obtained from
Γ by removing the clauses to which � belongs, and by removing ¬� from the other
clauses of Γ .

The function AnswerSetCheck(I, π) is also elementary:

– it computes the set A = I ∩ {head(r) : r ∈ π} of positive literals (atoms) in I and
returns True if A is an answer set or π, and

– return False, otherwise.
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7 Experiments

Now we shall investigate the performances of our search techniques by experimental
analysis. We choose for this first implementation the graph coloring problem to show
the local symmetry behavior on answer sets search vs the global symmetry. Graph col-
oring problem is expressed naturally as a set of rules of a general problem. For more
details, the reader can refer to the Lparse user’s manual given on line on the Cmodels
site (http://www.cs.utexas.edu/ tag/cmodels/). Here, we tested and compared on some
random graph coloring instances two methods:

1. Global-sym: search with global symmetry breaking. This method uses in a pre-
processing phase the program SHATTER [1,2] that detects and eliminates the global
symmetries of the considered instance by adding to it symmetry breaking clauses,
then apply the SAT based answer set solver defined in [26] to the resulting instance.
The CPU time of Global-sym includes the time that SHATTER spends to compute
the global symmetry. A disadvantage of this method is that it could significantly in-
crease the size of the considered instance. Its advantage is that its implementation
requires no modification of the solver.

2. Local-sym: search with local symmetry breaking. This method implements in the
SAT based answer set solver defined in [26] the dynamic local symmetry detection
and elimination strategy described in this work. The resulting method is depicted in
figure 1 (the DLLAnswerSet procedure). The CPU time of Local-sym includes local
symmetry search time. A disadvantage of this method is that it could significantly
increase the time of execution in the case of instances which contain few local
symmetries. Its advantage is that its application does not require any increase in the
size of the instance, changing the solver is simple and it detects more symmetries.

The common baseline answer set search method for both previous methods is the one
given in [26]. The complexity indicators are the number of nodes of the search tree
and the CPU time. Both the time needed for computing local symmetry and global
symmetry are added to the total CPU time of search. The source codes are written in C
and compiled on a Pentium 4, 2.8 GHZ and 1 Gb of RAM.

7.1 The Results on the Graph Coloring Instances

Random graph coloring problems are generated with respect to the following param-
eters: (1) n : the number of vertices, (2) Colors: the number of colors and (3) d: the
density which is a number between 0 and 1 expressed by the ratio : the number of con-
straints (the number of edges in the graph) to the number of all possible constraints
(the number of possible edges in the graph). For each test corresponding to some fixed
values of the parameters n, Colors and d, a sample of 100 instances are randomly
generated and the measures (CPU time, nodes) are taken on the average.

We reported in Figure 2 the practical results of the methods: Global-sym, and Local-
sym, on the random graph coloring problem where the number of variables is n = 30
and where the density is (d = 0.5). The curves give the number of nodes respectively
the CPU time with respect to the number of colors for each search method.
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Fig. 2. Node and Time curves of the two symmetry methods on random graph coloring where
n = 30 and d = 0.5

We can see on the node curves (the curves on the left of the figure) that Local-sym
detects and eliminates more symmetries than the Global-sym method and Global-sym
is not stable for graph coloring. From the CPU time curves (the curves on the right
of the figure), we can see that Local-sym is in average faster than Global-sym even
that Saucy is run at each contradictory decision node. Local symmetry elimination is
profitable for solving random graph coloring instances and outperforms dramatically
global symmetry breaking on these problems.

These are just our first results, our implementation and experiments are still in
progress, we need to experiment much more and greater size instances than the ones
presented here in order to further confirm the advantage of local symmetry breaking.

8 Conclusion

We studied in this work the notions of global and local symmetry for logic programs
in the answer set programing framework . We showed how a logic program or its com-
pletion is represented by a colored graph that can be used to compute symmetries. The
syntactic symmetry group of the completion is identical to the automorphism group of
the corresponding graph. Graph automorphism tools like SAUCY can be naturally used
on the obtained graph to detect the syntactic symmetries. Global symmetry is elimi-
nated statically by adding in pre-processing phase the well known lex order symmetry
breaking predicates to the program completion and applying as a black box a SAT-
based answer set solver on this resulting encoding. We showed how local symmetry
can be detected and eliminated dynamically during search. That is, the symmetries of
each sub-problem defined at a given contradictory decision node of the search tree and
which is derived from the initial problem by considering the partial assignment cor-
responding to that node. We showed that graph automorphism tools can be adapted to
compute this local symmetry by maintaining dynamically the graph of the sub- program
or the sub-completion defined at each node of the search tree. We proved some prop-
erties that allow us to make symmetry cuts that prune the search tree of a SAT-based
answer set method. Finally, we showed how to implement these local symmetry cuts in
a DLL-based answer set method.
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The proposed local symmetry detection method is implemented and exploited in the
tree search method DLLAnswerSet to improve its efficiency. The first experimental
results confirmed that local symmetry breaking is profitable for answer set solving and
improves global symmetry breaking on the considered problems.

As a future work, we are looking to experiment other problems and combine both
the global symmetry and local symmetry eliminations in a DLL-based answer set solver
and compare the performances of the obtained methods to existing methods.

Another alternative of symmetry detection that we want to do in the future is to
detect symmetries of the logic program by means of a body-atom graph, instead of
those of its completion, then use Proposition 1 to make cuts in the search tree of the
considered ASP solver. This could accelerated the symmetry detection then get a fastest
solver.

We studied the notion of symmetry for the general logic programs, but the study
could naturally be generalized for extended logic programs, disjunctive logic programs
or other extensions. This is another important point that we are looking to investigate in
future.
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