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Abstract. Abduction is a type of logical inference that can be success-
fully combined with probabilistic reasoning. However, the role of integrity
constraints has not received much attention when performing logical-
probabilistic inference. The contribution of our paper is a probabilistic
abductive framework based on the distribution semantics for normal logic
programs that handles negation as failure and integrity constraints in the
form of denials. Integrity constraints are treated as evidence from the per-
spective of probabilistic inference. An implementation is provided that
computes alternative (non-minimal) abductive solutions, using an appro-
priately modified abductive system, and generates the probability of a
query, for given solutions. An example application of the framework is
given, where gene network topologies are abduced according to biological
expert knowledge, to probabilistically explain observed gene expressions.
The example shows the practical utility of the proposed framework.

Keywords: abductive logic programming, probabilistic abduction, dis-
tribution semantics.

1 Introduction

Abductive reasoning is a method of logical inference which explains observations
(or queries) by making assumptions on possible facts, called abducible atoms.
Abduction has been used in various applications [13], e.g. diagnosis, high-level
vision, natural language understanding, planning, knowledge assimilation, etc.
The choice of the assumptions is often filtered through integrity constraints,
i.e. rules which eliminate certain solutions. A solution of an abductive task is
therefore a set of abducible atoms that do not violate the integrity constraints
and that if true make the query valid. Abductive solutions are hypotheses and as
such are inherently uncertain. For a given abductive task there may be multiple
solutions which may be ranked according to some notion of plausibility.

In a model governed by uncertainty, it is reasonable to consider a probability
distribution over the truth values of each (ground) abducible. This probabilistic
perspective provides a method of quantitatively estimating the quality of the
abductive solutions, and, consequently, that of the solved query. Introducing
probability in abduction essentially redefines the notion of abductive solutions
as no longer the minimal but the most preferred (possibly non minimal) assump-
tions, based on their probability, needed to explain a given query. Most existing
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work in probabilistic abduction (cf. Section 5) does not discuss minimality, nor
the role of integrity constraints. In this paper, we treat integrity constraints as
evidence from the perspective of probabilistic inference (i.e. the goal is to com-
pute P (Q|E), where Q is the query, and E the evidence). Typically, the query
is a set of random variables, and the evidence is a set of random variables whose
outcome is observed. We extend this notion of evidence to a set of constraints
imposed on the model, expressed as a logical formula. To motivate the main fea-
tures of our probabilistic abductive approach, including dropping the minimality
requirement, consider the following example of an abductive task:

Example 1. In the rules below the abducible atoms are rained last night and
sprinkler was on.

grass is wet← rained last night

grass is wet← sprinkler was on

shoes are wet← grass is wet

The explanations of the observation that the shoes are wet are that either it
rained last night or the sprinkler was on.

In the above example, the explanation that it rained last night and the
sprinkler was on is non-minimal. We argue that if abduction is augmented with
probability using the distribution semantics, non-minimal solutions contribute to
the probability of the query, and thus cannot be discarded. Suppose that we know
that there is a probability 0.6 that it rained last night (with the complementary
probability if the abducible is false), and 0.7 that the sprinkler was on (with the
same remark). One might be tempted to choose the latter explanation, based
on its higher probability. However, if rained last night and sprinkler was on
are independent random events, the joint probability of rained last night and
sprinkler was on is computed as shown in Table 1. Under this assumption, the
most probable scenario is that it rained last night and the sprinkler was on. So
the explanation with highest probability is not necessarily the minimal one.

Table 1. Joint probability on the abducibles in Example 1

rained last night sprinkler was on P(rained last night, sprinkler was on)

false false 0.12

false true 0.28

true false 0.18

true true 0.42

Furthermore, most semantics for abduction would interpret the explanation
rained last night as rained last night is true and sprinkler was on is false, and
similarly for the explanation sprinkler was on, i.e. all the abducibles in the expla-
nation are true, and all that are not in it are false. The probability of the observa-
tion shoes are wet is 0.88 (i.e. sum of the join probabilities in the last three rows)
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as in the last three interpretations in Table 1 shoes are wet is true. Computing
this probability means, therefore, asking the probability that shoes are wet is
true under any explanation. This implies that choosing one explanation over
another is no longer arbitrary, or according to minimality or other criteria (e.g.
Example 2.1 in [13]). Instead, each explanation contributes with a probability
mass towards the probability of the observation and all possible explanations
should be considered. If a choice of particular explanations is required, then the
one with the highest probability should be preferred.

Example 1 shows also that to compute the correct probability of a given obser-
vation or query, the closed world assumption (CWA) on abducibles is insufficient.
In Table 1, the last interpretation would not be covered by the CWA over min-
imal explanations. In our approach, we propose an open world interpretation of
abducibles (cf. Section 3).

Let us now assume Example 1 to be extended with the integrity constraint
← sprinkler was on., expressing the statement that the sprinkler was off. This
implies that the only explanation will be rained last night. Treating integrity
constraints as evidence means computing the probabilistic inference P (Q|IC).

In our example Q = {shoes are wet} and the conditional probability P (Q,IC)
P (IC)

is, in this case, given by 0.18
0.18+0.12 = 0.6, which is indeed the expected result

of the probability of rained last night. If we, instead, extend Example 1 with
the integrity constraint ← not rained last night., meaning that we know that
it rained last night, then the probability of shoes are wet is 0.18+0.42

0.18+0.42 = 1. In
summary, the contributions of this papers are:

1. a probabilistic abductive framework, based on the distribution semantics for
normal logic programs [20,22], that handles negation as failure and integrity
constraints in the form of denials, and provides an open world interpretation
of abducibles;

2. a procedure for logical-probabilistic inference, based on the ASystem [14,17];
3. a practical application in the context of gene networks.

The paper is organized as follows. Section 2 introduces our framework and
define our probability model by adapting the distribution semantics for normal
logic programs under Fitting semantics [22]. In Section 3 we provide an imple-
mentation of our framework that uses an existing state-of-the-art abductive sys-
tem, appropriately modified in order to support the computation of non-minimal
abductive solutions. Section 4 illustrates the applicability of our framework to
the real world problem of gene network inference from observed data. Networks
are abduced as directed graphs with probabilistic edges to explain observed gene
expressions.We learn the probabilities of the edges (gene interactions) that would
maximize the probability of a given query and interpret the results. Section 5
discusses related work. In Section 6 we present future work and conclude.

2 Distribution Semantics for an Abductive Framework

An abductive framework is a tuple 〈P,AB, IC〉, where P is a normal logic pro-
gram, AB is a possibly infinite set of ground atoms called abducibles, and IC is a
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set of integrity constraints expressed as denials, each having the form ∀X ← Γ.,
where Γ is a set of literals and X is a set of variables. A query Q is a conjunction
of existentially quantified literals and denials. An abductive solution for a query
Q is a set of abducibles Δ, such that the ground instantiations of Δ, denoted
ground(Δ) are elements in AB and:

– comp3(P ∪Δ) |= Q.

– comp3(P ∪Δ) |= IC.

– comp3(P ∪Δ) |= CET

where CET denotes the Clark Equality Theory axioms [2], and comp3(Π) the
Fitting three-valued completion of a program Π [9].

We define our probabilistic abductive framework by integrating distribution
semantics [22] into the above notion of an abductive framework. Informally,
distribution semantics defines a probability distribution over the set of inter-
pretations over a set of facts F and extends it to a probability distribution
over interpretations of a program Π by applying the Fitting fixpoint operator
[9]. This extension implies that the probability of an interpretation of the facts
I ⊆ F will have the same value as the probability of an interpretation IΠ of
Π , given that IΠ is the fixpoint of I according to the rules in Π . In a similar
fashion, we consider a two-valued interpretation over abducibles I ⊆ AB and
extend it to interpretations IΠ of the Herbrand base of the whole program Π .
The interpretation IΠ is in general three-valued, however we impose the restric-
tion that IΠ is two-valued, and in what follows we will treat it as such. We
then consider a probability distribution PAB with the sample space the set of
all ground interpretations of abducibles (i.e. the powerset of AB) and we extend
PAB to a probability distribution PΠ with the sample space the set of all the
ground interpretations of the Herbrand base of Π . To compute PAB, we assume
that the assignments of truth values to an abducible are independent events, and
that all abducibles are basic, i.e. they do not appear in the heads of the rules in
Π [13]. If each abducible δ ∈ AB has a probability P (δ) of being true (and a
probability 1− P (δ) of being false), then PAB is computed as:

PAB(I) =
∏

δ∈I
P (δ)

∏

δ/∈I
(1− P (δ))

PAB is then extended to a probability distribution PΠ by applying Fitting’s
fixpoint operator ΦΠ to reach the fixpoint Φ∞Π [9].

PΠ(IΠ) =

{
PAB(I) if IΠ = Φ∞Π (I)

0 otherwise
(1)

Given the above probability distribution, it is possible to compute the proba-
bility of a two-valued interpretation IB of a set B of ground atoms in Π by
marginalization:
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PΠ(IB) =
∑

IΠ s.t. IB⊆IΠ
PΠ(IΠ)

For a single atom a, we write PΠ(a) with the meaning PΠ({a}) and PΠ(¬a)
with the meaning PΠ(∅).

In Example 1, PAB is the last column of Table 1, and the sample space is
given by the other columns. PΠ is obtained by extending PAB over grass is wet
and shoes are wet, with the appropriate truth values, i.e. the or function of
rained last night and sprinkler was on. For all other interpretations, PΠ is 0
(Equation 1).

The probability of a query Q given evidence expressed as integrity constraints
IC is then:

PΠ(Q|IC) =
PΠ(Q, IC)

PΠ(IC)
(2)

PΠ(Q, IC) =
∑

IΠ s.t. Q⊆IΠ
IΠ |=IC

PΠ(IΠ) (3)

PΠ(IC) =
∑

IΠ |=IC

PΠ(IΠ) (4)

Informally, PΠ(Q|IC) is the ratio of the probability of the interpretations that
agree with Q and do not violate the integrity constraints (Equation 3) over the
probability of the interpretations that do not violate the integrity constraints
(Equation 4).

The novel aspect of our approach is the definition of evidence as a set of in-
tegrity constraints, inspired by Markov Logic Networks [7] where the notions of
query and evidence are generalized to first-order formulae. This is more expres-
sive than traditional definitions of evidence (i.e. conjunction of random variables
taking particular values), because denials can express statements like “random
variables X and Y cannot take values x, respectively y at the same time”.

In the following section, we describe a logical-probabilistic procedure based
on the ASystem [14,17] which can be used for the inference of PΠ(Q|IC).

3 A Probabilistic Abductive System

This section describes the implementation of our probabilistic abductive frame-
work. It builds upon an existing abductive system, called ASystem [14,17], briefly
described in Section 3.1, and adapts it in Section 3.2 to allow non minimal ab-
ductive solutions. Section 3.3 shows how the abductive answers are used for
probabilistic inference.



764 C.-R. Turliuc et al.

3.1 A Brief Description of the ASystem

The proof procedure of the ASystem [14,17] can be viewed as a state rewrit-
ing process, where each state rewrite is driven by the application of inference
rules. The latter handle also finite domain and real constraints using a constraint
solver. The system can compute non-ground answers and uses constructive nega-
tion, instead of standard negation as failure. Its development was inspired by
other abductive systems such as SLDNFA [6], ACLP [12], IFF [10]. The seman-
tics used in the ASystem is the three-valued completion semantics (comp3) [9]:
an interpretation of the abducibles is implicitly two-valued, whereas the inter-
pretation of the predicates in P is three-valued. The proof procedure can be
viewed as a tree, where the nodes are ASystem states and each node generates
children nodes according to a set of inference rules and a selection strategy. The
root of the tree is the initial state, and the leaves are failure states or success
states.

Definition 1 (ASystem state). An ASystem state S is a tuple (G,ST ).

– G is a set of goals where each goal can be a literal or a denial. All the
variables except the ones universally quantified in the denials are existentially
quantified.

– ST is a tuple (Δ,N , E , C) of four stores: Δ is the abducible store, a set of
(non-ground) abducible atoms, N is the denial store, a set of denials (or
dynamic integrity constraints), E is a set of (in)equalities, C is a set of finite
domain or real constraints.

A selection strategy Ξ has a two-fold role: it selects a goal Gi from the set G,
and if the goal is a denial ∀Y ← Γ. it further selects a literal from Γ . A selection
strategy is called safe if, in a failure goal, it never selects a negative literal
or a constraint literal, if the arguments of the predicate include a universally
quantified variable. If a failure goal contains only universally quantified negative
literals and universally quantified constraint literals, the derivation using a safe
selection strategy flounders and fails.

Definition 2 (Meaning of an ASystem state). The meaning of an ASystem
stateM(S), S = (G, (Δ,N , E , C)) is the first-order formula:

M(S) = ∃X(
∧

g∈G
g ∧

∧

δ∈Δ
δ ∧

∧

∀YΓ←Γ∈N
(∀YΓ ← Γ.) ∧

∧

e∈E
e ∧

∧

c∈C
c)

YΓ is the set of the universally quantified variables in the denial body Γ , and X
is the set of all the other variables in M(S).

Definition 3 (ASystem derivation tree). Given an abductive framework 〈P ,
AB, IC〉, a query Q and a selection strategy Ξ, an ASystem derivation tree is
a tree such that:

– every node of the tree is an ASystem state.
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– children nodes are generated by selecting a goal (and if the goal is a denial,
further selecting a literal in the denial) according to Ξ, and then applying
the inference rules on the selected goal.

– the initial state is S0 = 〈Q ∪ IC,ST 0〉, and ST 0 = (∅, ∅, ∅, ∅).
– a success state is one in which G = ∅, and ST is consistent. If ST is incon-

sistent or the derivation flounders, then that state is a failure state. A state
is a leaf of the tree iff it is either a success or failure state.

Details of the inference rules and soundness and completeness results are de-
scribed in [16].

3.2 A Richer Set of Interpretations

According to the definition of our probabilistic semantics (cf. Section 2), every
interpretation of abducibles I ⊆ AB has a probability value. This implies that
the minimality of abductive solutions, as defined in [13], is no longer a desired
property. Since the ASystem incorporates minimality through its rules and inter-
pretations of abducibles, it needs to be modified in order to lift this restriction.
To achieve this goal, we will propose an open world interpretation of abducibles
via consistent extended interpretations (CEIs). Additionally, since probabilistic
inference is currently performed using ground predicates, the ASystem must also
be modified such that its success states contain only abducibles, since these are
groundable.

The latter modification will be realized using a new safe selection strategy. In
order to discuss it, we need to introduce the concept of ASystem types.

Definition 4 (ASystem types). We distinguish the following types of atoms
in the abductive context of the ASystem: (i) abducibles (ii) defined predicates and
(iii) constraints. The constraint predicates are of the form X = Y and X �= Y
for in/equality constraints, and X = Y , X > Y , X < Y , . . . for real constraints.

Given a denial ∀Y ← Γ , the set Γ of body literals is split into three disjoint
sets Γ = ABL ∪ NGL ∪ OL. The set ABL contains abducible literals. NGL
contains negative non-ground defined predicates and non-ground constraint lit-
erals. OL consists of the remaining literals: positive defined literals, negative
ground defined literals, and ground constraint literals. Let Y NGL denote the set
of variables appearing in the elements of NGL and Y ABL the set of variables in
the elements of ABL.

Definition 5 (Unfolding Safe Selection Strategy). An unfolding safe se-
lection strategy ξ is a safe selection strategy that given the current goal G =
G− ∪ {∀Y ← Γ} and the selected denial ∀Y ← Γ , safely selects a literal from Γ
in the following manner:

– if OL �= ∅, select an element from it.
– else, if Y NGL ∩ Y ABL �= ∅, (i) ground all the abducibles containing at

least a variable from Y NGL ∩ Y ABL; (ii) set the new goal to be G+ =
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G− ∪ {ground(∀Y ← Γ )}, where ground(∀Y ← Γ ) is the grounding of
the selected denial goal with respect to Y NGL ∩ Y ABL and the non-ground
negative abducible literals in NGL, (iii) apply the unfolding safe selection
strategy to the new goal G+.

– else (OL = ∅ and Y NGL ∩ Y ABL = ∅), if ABL �= ∅, select an element from
ABL. If the selected literal is negative and non-ground, we ground it and
apply the unfolding safe selection strategy to the newly generated goal.

– else fail.

The new safe selection strategy allows us to prove assumptions on what the
denial store N of any state would contain (see Proposition 1).

Proposition 1. Given an unfolding safe selection strategy ξ, the denial store in
a derivation tree is either empty or its denials have in their body only literals of
the following types: abducibles, universally quantified constraints or universally
quantified negative literals. Furthermore, for all denials ∀Y ← Γ in the denial
store it holds that there are no common variables between the abducible literals
and the negative non-ground literals and positive non-ground constraint literals
(Y NGL ∩ Y ABL = ∅).

Example 2. Consider an abductive task with the empty program P , integrity
constraints IC = {∀X,Y ← a(X), not p(X), not b(Y ).} where p is a defined
predicate, a is an abducible with domain {1, 2} and b/1 an abducible with domain
{3, 4}. Applying our system with an empty goal yields a success state in which
the denial is moved to the denial store, and nothing is abduced. Given our
abducible types and the unfolding selection strategy, our approach first grounds
the shared variable X , generating the new goal:

{∀Y ← a(1), not p(1), not b(Y )., ∀Y ← a(2), not p(2), not b(Y ).}
Let us assume that the first denial is selected as current denial goal1. The literal
not p(1) is selected, and since the predicate p has not definition not p(1) succeeds,
reducing the goal to ∀Y ← a(1), not b(Y ). In this new goal, we can either select
a(1), completing the proof with the denial store {∀Y ← a(1), not b(Y ).}, or
we can ground not b(Y ) to generate the goal {∀Y ← a(1), not b(3)., ∀Y ←
a(1), not b(4).}.

The unfolding safe selection strategy imposes an important restriction on the
denials: the variables that appear both in abducible and non-abducible atoms
have a finite domain, according to the domains of the abducible atoms. If one
were to lift this restriction, then the denial← a(X), not p(X). would always fail,
assuming that a(X) is an abducible and p(X) is a defined predicate.

Our goal is to have only states whose meanings are (groundable) formulae
containing only abducible predicates, since the success states and the probability
of the abducibles will be used for inference. The unfolding safe selection strategy
allows us to remove from the denial store any non-abducible, i.e. according to

1 The second one is handled similarly.
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Proposition 1, universally quantified constraints or negative literals. This is pos-
sible due to the second property stated by the proposition claiming that there
are no common variables between abducibles and non-abducibles. For example,
in a denial such as ∀Y ← a, not p(Y )., where a is an abducible and p(Y ) is
a defined predicate, p(Y ) cannot be failed for all Y , so not p(Y ) is true, and
the denial is equivalent to: ∀Y ← a. The same holds for universally quantified
constraints in denials. From now on, we assume the denial stores of all states
contain only abducibles.

The ASystem interpretations of a success state S = (∅, (Δ,N , E , C)) is simply:
ground(Δ), i.e. all the abducibles in ground(Δ) are true, and the rest are false.
We propose a different understanding of an abductive solution corresponding to
a success state, while assuming the use of an unfolding safe selection strategy.
The reason we introduce this concept is that the definition of an open world
interpretation of abducibles is necessary for correct inference in our probabilistic
semantics.

Definition 6 (Consistent Extended Interpretations (CEIs)). Let S be a
success state in the proof of a query Q using an unfolding safe selection strategy
and M(S) the meaning of that success state, a ground formula containing only
abducibles. The consistent extended interpretations (CEIs) of S, denoted by IS
is the set of models of M(S). Since Δ is part of the conjunction in M(S), all
CEIs make the abducibles in Δ true. However, there may be other abducibles
which are true in a CEI, hence the title extended. These extensions are not
arbitrary, instead they must not violate the integrity constraints, encoded in the
denial store N , which is part of M(S), hence the title consistent.

For a query Q, the CEIs IQ are simply the union of the all success states,

or equivalently, the models of

n∨

i=1

M(Si), assuming Si, i = 1, . . . , n are all the

success states for Q.

Changing the perspective on how interpretations of abductive solutions are
constructed requires a theoretical justification. Theorem 1 shows that a CEI
corresponds to an ASystem interpretation of a success state for an extended
query. The extended query is the original query plus the extended part of the
CEI, i.e. the abducibles that are true, but not in the abducible store.

Theorem 1. Consider an abductive framework 〈P , AB, IC〉 with query Q.
Let Δi, i = 1, . . . , n be the abductive solutions. Let IQ be the set of consis-
tent extended interpretations of Q. For every Δ∗i ⊆ AB \ ground(Δi) let I =

ground(Δi) ∪ Δ∗i be a interpretation for the abductive solution to query Q
′
=

Q ∪Δ∗i and let IΔ∗ be the set of all of all such interpretations.
Then IQ = IΔ∗ .

Due to Theorem 1, it is not difficult to extend and prove the notions of
soundness and completeness to CEIs.

Theorem 2 (Soundness for CEIs). Given an abductive framework 〈P , AB,
IC〉 with query Q, and the set IQ of consistent extended interpretations, then



768 C.-R. Turliuc et al.

∀I ∈ IQ, comp3(P ∪ I) |= Q, and comp3(P ∪ I) is consistent.

Theorem 3 (Completeness for CEIs). Given an abductive framework 〈P ,
AB, IC〉 with query Q, and the set IQ of consistent extended interpretations.
(1) If IQ = ∅, then comp3(P ) |= ∀X(¬Q); and
(2) If comp3(P ∪ ∃X(Q)) is satisfiable, then IQ �= ∅.

Example 3. We illustrate the concept of CEIs through the example of “Friends
and Smokers” social network analysis, in the variant presented in the ProbLog
2 tutorial2, using the standard Prolog syntax. Suppose there are 4 people:
person(i), ∀i = 1, . . . , 4 in a social network:

{friend(i,j)|(i, j) ∈ {(1, 2), (2, 1), (2, 4), (3, 2), (4, 2)}

Furthermore, people smoke either because they are stressed, or they are in-
fluenced by a friend who smokes, and smoking may cause asthma. We encode
this in Prolog as:

smokes(X) :- smokes(X, [X]).

smokes(X, _L) :- stress(X).

smokes(X, L) :-

friend(X,Y),

\+ member(Y,L),

influences(Y,X),

smokes(Y, [Y|L]).

asthma(X) :- smokes(X), smoke_asthma(X).

The abducibles in this problem are: stress/1, influences/2, and smoke asthma/1,
where the arguments are of type person.

Assume the query is asthma(1), and the evidence is:
{← not smokes(2).,← influences(4, 2).}. This means we are interested if person
1 has asthma, having observed that person 2 smokes, and person 4 has no in-
fluence on person 2. The proof procedure returns four success states, as possible
explanations for the query, with the following abducible and denial stores:
Δ1 = {stress(1), influences(1,2), smoke asthma(1), stress(2), influences(2,1)}
N1 = {← influences(4,2)}
Δ2 = {smoke asthma(1), stress(2), influences(2,1)}
N2 = {← influences(4,2)}
Δ3 = {smoke asthma(1), stress(1), influences(1,2)}
N3 = {← influences(4,2)}
Δ4 = {smoke asthma(1), stress(1), stress(2)}
N4 = {← influences(4,2)}

The CEIs for the second success state are the models of the meaning of the
state:

smoke asthma(1) ∧ stress(2) ∧ influences(2,1) ∧ ¬influences(4,2)
2 http://dtai.cs.kuleuven.be/problog/v2/tutorial.html#tut_part1_smokers

http://dtai.cs.kuleuven.be/problog/v2/tutorial.html#tut_part1_smokers
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instead of the single interpretation Δ2. The same holds for the other success
states, and the CEIs for the query are the models of the disjunction of all the
formulae. This allows the correct inference of the probability of the query, as
shown in the next section.

3.3 Probabilistic Inference

The previous subsection has presented the appropriate modification to the ASys-
tem to enable the computation of consistent extended interpretations (CEIs) for
a particular success state as the models of the meaning of that success state,
and, consequently, for an arbitrary query. The CEIs will be used to compute the
probability of a query, given the evidence as integrity constraints. The definition
of this quantity is given in Equation 2, Section2. At a first glance, it seems two
proofs are necessary, one in order to compute the numerator, using as initial goal
the query and the integrity constraints (Q ∪ IC) and one for the denominator,
using as initial goal just the integrity constraints. However, in this manner we
prove the integrity constraints twice. To avoid this redundancy, we refine the
unfolding safe selection strategy, such that the initial goals and the following
subgoals generated by the integrity constraints are solved before the goals and
subgoals obtained processing the query3.

The inference is divided into two parts. The initial goal is Q∪IC and we stop
expanding the proof tree once the integrity constraints are solved. This process
ends in pseudo-success states of the form: (Q, (Δ,N , E , C)). To compute the CEIs

needed for the denominator in Equation 2, we use the models of
∨

j

M(S′j), where

S′j = (∅, (Δj ,Nj , Ej, Cj)) is constructed from the pseudo-success state indexed j
by eliminating the query Q from the goal.

The second part of the proof, which is needed to compute Equation 3, resumes
the application of the inference rules on the partially developed tree from the
pseudo-success states (the other leaves are failure states). Finally, we obtain the
needed CEIs from the (true) success states.

We discuss the exact probability computation from the meaning of the success
states. In our current implementation, we use the idea of ProbLog I [15,4]: we

compile

n∨

i=1

M(Si) (and similarly for M(S′j) in the case of pseudo-success states)

to a BDD, and compute the probability of the BDD.

Example 4. Extending Example 3, suppose that there is 0.3 probability that a
person is stressed, 0.4 probability that smoke causes asthma, and 0.2 probability
that one friend influences another. Compiling the disjunction of the meaning of
the states in a BDD and computing its probability yields the value: 0.2035 as
the probability that person 1 has asthma under any explanation.

3 Note that this refinement concerns the goal selection rather than selecting a literal
from a denial, the main feature of an unfolding safe selection strategy.
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Furthermore, we can extend the example with more complex forms of evi-
dence. If one observes that in the studied social network, people with asthma
don’t influence other people to smoke, we can encode this as:
← asthma(X), influences(X,Y ).

Running the same query after adding this integrity constraint to the program
yields a probability of 0.0677, which, as expected, is lower than the probability
of person 1 having asthma without this observation. This can be explained also
by examining the two success states, with the abducible stores:
Δ1 = {smoke asthma(1), stress(2), influences(2,1)}
Δ2 = {stress(1), smoke asthma(1), stress(2)}

These solutions correspond to the second and fourth success states in Ex-
ample 3. The other two are no longer inferred since in both solutions person 1
influences person 2, and person 1 has asthma, thus violating the newly intro-
duced integrity constraint.

In principle, we could use different approaches to compile and evaluate the
ground formulae, such as weighted model counting on DNNFs used in ProbLog
2 [8], or, for approximate inference, the MaxWalkSAT procedure used in Markov
logic networks [7].

Probabilistic inference assumes that the probabilities of the abducibles are
known. Nevertheless, in many situations, these are not known. Instead, queries
or explanations are observed, and the probabilities of the abducibles are learned
to maximize the likelihood of the observed data. Based on the encoding of the
ground formulae, we can use existing algorithms for parameter learning, e.g. in
Section 4 we use the EM algorithm for BDDs proposed in [11] to rank abductive
solutions.

4 Evaluation

4.1 Friends and Smokers

In order to scale Examples 3 and 4, we simulate synthetic social networks by
generating power law random graphs using Python Web Graph Generator4. We
vary the maximum nodes from 5 to 200 with a step of 5, and the maximum
edges are double the maximum nodes. The obtained graphs are then parsed
into appropriate input files for our system, and for ProbLog 2. The initial files
contain only one random query atom with predicate asthma, which we enrich
with 10 random evidence literals, 5 with the smokers predicate name, and 5 with
smokers. We then run the abduction (without BDD compilation and evaluation)
and compare our performance with the ProbLog 2 counterpart, the grounding
step5.

4 http://pywebgraph.sourceforge.net/
5 ProbLog 2 has four steps: grounding, CNF conversion, compilation and evaluation,
and our modified ASystem can be used as an alternative to the first step. We run
ProbLog 2 with default parameters.

http://pywebgraph.sourceforge.net/


On Minimality and Integrity Constraints in Probabilistic Abduction 771

Without evidence, our probabilistic abductive system slightly outperforms
grounding on large graphs. This result is expected since our top-down proof
grounds only what is needed in the proof of the query, rather than the whole
program. In the presence of evidence, however, our current prototype implemen-
tation suffers from the lack of tabling, and the time for the proof of the denials
increases exponentially in the number of denials. The grounding step of ProbLog
2 has the same complexity when incorporating evidence as in the previous case,
since the evidence is treated in a different way6.

In future work, we plan to improve the runtime of handling integrity con-
straints by either developing a tabling mechanism for abduction, or solving each
integrity constraint separately and assembling the final ground formula as a
conjunction of the formulae of the query, resp. of each integrity constraint.

4.2 Gene Interaction

We further evaluate our probabilistic abductive system on the problem of find-
ing network structures in the context of gene interaction networks based on
observed data and constraints determined by biological expertise. Our appli-
cation is motivated by the availability of high-throughput data. The task of
analysing such complex data requires computational tools to automatically infer
networks from data. Key challenges in network inference include incomplete and
noisy input, detection of complex network structures that capture fundamen-
tal properties (e.g., robustness oscillations, bistability) of biological systems and
computational complexity. An abductive framework caters for constraint checks
and prior knowledge incorporation, thus partially dealing with the problems [18].

Our probabilistic abductive system has been used to generate a network of
11 genes, shaped by the nature of the interactions between genes. The differ-
ent types of interactions between any pair of genes represent our abducibles:
compatible regulator(G1,G2, E) and overpowered regulator(G2,G2, E2) (abbrevi-
ated to r(G1, G2, E) and or(G1, G2, E)). The first two arguments of these ab-
ducibles are genes, whereas the third argument E is a binary variable over the
set {1,−1} denoting the causal effect of the interaction between two genes. For
example, r(g1, g2, 1) (resp. r(g1, g2,−1)) means that gene g1 activates (resp.
inhibits) gene g2. Compatible regulators represent regulators that satisfy the
sign consistency principle which postulates that the state of a target gene G2 is
directly related to the state of an activator G1 and inversely related to the state
of an inhibitor. Overpowered regulators are regulators that are overpowered by
a compatible regulator acting on the same target and thus are inconsistent with
the sign consistency principle. The probability of the abducibles can be inter-
preted as the the strength of the knowledge that led to this link being present.
The higher the probability the higher the chance that the link is true.

Our perspective on probabilistic abduction as requiring non-minimal solutions
is reflected in this experiment as biologists are interested in maximal networks

6 If our understanding is correct, the truth values of the atoms are propagated in the
ground program.
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Fig. 1. Normal (resp. dashed) edges are r (resp. or) abducibles. Normal (resp. inverted)
arrow heads are activation (resp. inhibition).

to distinguish between interactions that are allowed and interactions which are
not biologically justified. During the inference process many different instances of
the abducibles can be generated and constraints expressing expert knowledge are
required to restrict the computation to possible biologically plausible networks.
For instance, abducibles have to satisfy existing knowledge of sets of potential
gene interactions:

← r(X,Y,E), not interactive potential(Y,X).
← or(X,Y,E), not interactive potential(Y,X).

It is also important to guarantee that a gene is not assumed to be at the same
time a compatible and an overpowered regulator of another gene, and that for
each overpowered regulator, there is at least one compatible regulator that can
overpower it. These are captured in our model by the constraints: ←
r(X,Y,E), or(X,Y,E).

← or(X,Y,E), not exists overpowered(X,Y ).
← or(X,Y,E), overpowered(Z,X, Y ), not r(Z, Y,W ).

The biological problem in hand has also insufficient known biological data to
provide reliable probabilities on the gene interactions. So instead of applying
direct inference, we have used the BDD-based expectation maximization (EM)
learning algorithm [11]. Using our probabilistic abductive system we obtain 36
plausible networks. Learning the probabilities of the interaction is done in order
to maximize the probability of each network (i.e. the success probability), and
this allows the ranking of the networks in terms of their likelihood. We initial-
ize the probabilities to 0.5 and the learning algorithm takes 135 iterations to
converge. In the abduced networks the compatible regulator links appear more
frequently than overpowered regulator, which is reflected in the learned parame-
ters and, consequently, the ranking of the networks. For example, the top ranked
network contains only compatible regulator links. Figure 1 shows a network vali-
dated by biological experiments.

A probabilistic abductive framework such as the one proposed in this paper
extends the benefits of abductive inference to capturing noise in the input data
and dealing with the problem of model selection. Given the number of variables
involved, there are a vast number of possible network topologies, and the problem
of model selection is combinatorial. Validating each of them would far exceed
practical resources. Our probabilistic approach provides preference measures over
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links within a network and over networks, thus helping in the design of follow
up experiments to discriminate between models.

5 Related Work

Logical-probabilistic reasoning has been defined in the context of deduction,
induction and abduction. In this section, we compare our approach to existing
work that focuses on probabilistic abduction or uses distribution semantics.

Probabilistic Horn abduction, later developed into the independent choice
logic (ICL) [19], is one of the first probabilistic abduction frameworks. ICL ac-
cepts as input normal logic programs, but does not support integrity constraints.
PRiSM [21] is a system created by the authors of distribution semantics that
allows negation as failure, yet probabilistic abduction in PRiSM does not handle
integrity constraints, and explanations are required to be mutually exclusive.
ProbLog [5,15] is defined in a deductive setting, so it does not feature integrity
constraints, and furthermore, the use of negation is limited to probabilistic facts
or predicates which are not defined based on probabilistic facts. The latter issue
has been addressed in ProbLog 2 [8], a system which, similarly to answer set
programming, relies on grounding. Our system postpones grounding as much as
possible, and the defined predicates in the program are not required to be ground-
able. Probabilistic abduction has also been defined in the context of constraint-
handling rules (CHR) systems [1] where clauses are definite, and the integrity
constraints can contain only abducibles. A probabilistic abduction method for
classical negation which allows the encoding of integrity constraints is introduced
in [11], but does not propose a probabilistic semantics in an abductive setting.

Markov logic networks (MLNs) [7] provide a different framework for combining
probabilistic and logical reasoning. Markov networks are used as a probabilistic
model and first-order theories encode the knowledge. Our approach is signifi-
cantly different in the sense that it is based on abductive logic programming
and the distribution semantics. In a MLN all formulas are treated as soft con-
straints, while in our approach we clearly distinguish between the rules in the
logic program and the integrity constraints expressed as denials. Furthermore,
we treat the integrity constraints as hard constraints: the consistent extended
interpretations never violate the constraints. The possibility of viewing denials
as soft constraints is a direction we wish to pursue in future work.

6 Conclusions

In this paper, we have proposed a method for applying distribution semantics in
an abductive framework and provided an implementation based on the abductive
procedure ASystem, showing how it can be adapted for probabilistic inference
by removing the requirement that an abductive solution should be minimal. We
have formally shown that our framework is correct with respect to distribution
semantics. Advantages of our approach include the ability to handle negation
as failure and integrity constraints as denials, as well as numerical constraints
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and term (in-)equality. We have evaluated our implementation by applying it to
the task of finding biologically plausible networks describing gene interactions,
which requires discovering non-minimal solutions.

Future work includes making probabilistic inference in our system feasible
for larger problems through improved efficiency by tabling mechanisms. Due to
the similarity between abduction and induction, the former can be used as an
inference mechanism in inductive logic programming (ILP). We plan to integrate
our probabilistic abduction framework in a probabilistic ILP context, building
on results in [3] where the ASystem is used to explore the hypothesis space in
order to find solutions to an ILP task.
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