
Partial Backtracking in CDCL Solvers

Chuan Jiang and Ting Zhang

Iowa State University, Ames IA 50011, USA
{cjiang,tingz}@iastate.edu

Abstract. Backtracking is a basic technique of search-based satisfia-
bility (SAT) solvers. In order to backtrack, a SAT solver uses conflict
analysis to compute a backtracking level and discards all the variable as-
signments made between the conflicting level and the backtracking level.
We observed that, due to the branching heuristics, the solver may re-
peat lots of previous decisions and propagations later. In this paper, we
present a new backtracking strategy, which we refer to as partial back-
tracking. We implemented this strategy in our solver Nigma. Using this
strategy, Nigma amends the variable assignments instead of discarding
them completely so that it does not backtrack as many levels as the clas-
sic strategy. Our experiments show that Nigma solves 5% more instances
than the version without partial backtracking.

Keywords: satisfiability, backtracking, conflict-driven conflict learning.

1 Introduction

Most modern SAT solvers are based on conflict-driven clause learning (CDCL).
As a basic technique of CDCL solvers, backtracking helps the solver jump out of
a local search space where no solution could ever be found [1]. In CDCL solvers,
backtracking is non-chronological and guided by conflict analysis to determine
how far the solver would jump back. The first non-chronological backtracking
strategy was introduced in GRASP [1]. When GRASP meets a conflict, it keeps
the current level and flips the value of the most recent decision variable. Back-
tracking only occurs if the flipping still leads to a conflict. Later, random back-
tracking was proposed to introduce randomness into selecting the backtracking
level [2,3]. Essentially, the learnt clause is used for randomly deciding which
variable is to be flipped. Nowadays, most solvers utilize a non-randomized back-
tracking strategy [4], which is referred to as classic backtracking in this paper.
This strategy is more aggressive than that used in GRASP, since backtracking is
always carried out after each conflict, making the resulting assignment trail al-
ways look like the one obtained when the learnt clause has already been included
in the formula.

No matter what kind of backtracking a solver takes, it is observed that some-
times the solver backtracks quite far, which is almost equivalent to a restart.
However, due to the wide adoption of VSIDS [4] and phase saving [5], the solver
may make similar decisions as the ones before backtracking and hence repeat

K. McMillan, A. Middeldorp, and A. Voronkov (Eds.): LPAR-19, LNCS 8312, pp. 490–502, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Partial Backtracking in CDCL Solvers 491

some propagations. In this paper, we present a new backtracking strategy, re-
ferred to as partial backtracking. We implemented this strategy in our solver
Nigma. Using this strategy, Nigma amends the variable assignments between the
conflicting level and the assertion level instead of discarding them completely.
Nigma still backtracks after each conflict, but it does not have to backtrack as
many levels as those solvers using classic backtracking. Our experiments show
that Nigma backtracks 10% ∼ 60% fewer levels than the version with classic
backtracking.

This paper is organized as follows. Section 2 introduces the basic notions
in SAT solving and CDCL solvers. Section 3 analyzes the classic backtracking
strategy and the phenomenon of repeated propagation. Section 4 presents the
implementation details of the partial backtracking strategy. Several optimiza-
tions on the implementation are discussed in Section 5. Section 6 presents the
experiment results, showing the performance of our solver Nigma is improved
after adopting the partial backtracking strategy. Section 7 concludes with some
discussion on the future work.

2 Preliminaries

In this section, we introduce the basic notations and terminology on SAT solving
and CDCL solvers.

A literal is either a Boolean variable x or its negation ¬x, and a clause is a
disjunction of literals. A formula is said in conjunction normal form (CNF) if
it is a conjunction of clauses. The satisfiability problem is to determine if there
exists an assignment that evaluates a given Boolean formula to TRUE.

We say a variable or literal is free if it is unassigned and a clause is unit if it
only contains one free literal and all other literals have been assigned FALSE. A
unit clause essentially asserts that the sole free literal must be assigned TRUE.
We call this assertion an implication, written as l@dl, indicating that the literal
l is implied to be TRUE at the decision level dl (the definition of decision level
is given below).

CDCL solvers check the satisfiability of Boolean formulas through Boolean
constraint propagation (BCP) and conflict analysis. BCP is an iterative process
of searching for unit clauses and obtaining implications until reaching a fixed
point or encountering a conflict, that is, a clause whose literals are all assigned
FALSE. We call the clause with all literals being assigned FALSE a conflicting
clause. Most solvers store implications in the implication queue and propagate
them one by one in FIFO manner. Algorithm 1 shows the propagation of an
implication with two watched literals [4] and Algorithm 2 shows the iterative
process of propagation.

If BCP terminates with a conflict, then the solver extracts the reason as a
clause and adds it into the Boolean formula to avoid recurrence of the same
conflict in the future. This process is called conflict analysis or learning and
the new added clause is called a learnt clause. It is always desirable for a learnt
clause to become unit after backtracking to some level.

492 C. Jiang and T. Zhang

Algorithm 1. Propagate(l@dl)

1: wl1 ← ¬l
2: for all clause c where wl1 is watched do
3: Search for a non-FALSE unwatched literal l′ in c
4: if Exists l′ then
5: Unwatch wl1
6: Watch l′

7: else
8: wl2 ← the other watched literal in c
9: if wl2 is FALSE then
10: ImplicationQueue.Clear()
11: ConflictAnalysis()
12: return
13: else if wl2 is TRUE then
14: continue
15: else
16: ImplicationQueue.Push(wl2@dlcurr) {dlcurr is the current level}
17: end if
18: end if
19: end for

Algorithm 2. BCP ()

1: while ImplicationQueue is not empty do
2: l@dl ← ImplicationQueue.Pop()
3: Propagate(l@dl)
4: end while

If BCP terminates without conflicts, then the solver selects a free variable and
gives it a value heuristically. This variable assignment is referred to as a decision
and pushed into a stack. A decision level is associated with each decision to
denote the its depth in that stack.

We refer the readers to [6] for more information on SAT solving and CDCL
solvers.

3 Classic Backtracking

In this section, we present the classic backtracking and identify the phenomenon
of repeated propagation.

According to the classic backtracking, the solver resolves conflicts by back-
tracking to the assertion level dlasrt, which is the second highest level among
the literals in the learnt clause (we say a level dl1 is higher than dl2 if dl1 > dl2),
and hence erasing all the variable assignments between dlasrt and the conflicting
level dlconf , which is the level where the conflict occurs. After backtracking, the
learnt clause becomes unit and the solver invokes BCP. This kind of backtracking
unavoidably discards all the propagations between dlasrt and dlconf .

Partial Backtracking in CDCL Solvers 493

¬x1 ∨ x2

¬x3 ∨ ¬x4

¬x1 ∨ x4 ∨ x5 ∨ x6

x5 ∨ x13

¬x7 ∨ x8

¬x7 ∨ x9

¬x2 ∨ ¬x8 ∨ x10

¬x8 ∨ ¬x9 ∨ ¬x10

x4 ∨ x7 ∨ ¬x11

x7 ∨ x11 ∨ x12

x6 ∨ x11

(a) Clauses

Variable Activity Score Last Value

x1 10 TRUE
x3 8.1 TRUE
x2 7.2 TRUE
x5 6.4 FALSE
x12 6 FALSE
x7 5.5 TRUE
x6 3.7 FALSE
x13 2.5 TRUE
x10 2.2 TRUE
x8 1.5 TRUE
x4 0.5 FALSE
x9 0 FALSE
x11 0 FALSE

(b) Variables

Level Assignments

1 x1, x2

2 x3, ¬x4

3 ¬x5, x6, x13

4 ¬x12

5 x7, x8, x9, x10

(c) Assignments

Fig. 1. The status before backtracking

Peter van der Tak et al. observed that CDCL solvers may reassign the same
variables to the same Boolean values after a restart, and proposed the partial
restart strategy [7]. One important reason of reassignments is the wide adoption
of VSIDS [4] and phase saving [5]. We observed that backtracking exhibits a
similar phenomenon, which we refer to as repeated propagation (note that a
restart is a special form of backtracking). We give an example to illustrate this
phenomenon.

Consider the clauses and variable assignments in Figure 1a and Figure 1b.
Since the solver tends to select the most active free variables and their last
values as decisions, we have the resulting assignment trail shown in Figure 1c.
Then the solver encounters a conflict while propagating x8 at the level 5 (the
conflicting clause is framed in Figure 1a). The clause ¬x7 ∨ ¬x2 is learnt by
1-UIP [8] and thus dlasrt = 1. According to VSIDS, the solver will only increase
the activity scores (assuming the increment is 1) of the variables involving in
the conflict, namely, {x2, x7, x8, x9, x10}. Therefore, the activity scores of the
variables assigned between dlconf and dlasrt, {x3, x4, x5, x6, x12, x13}, remain the
same. As shown in Figure 2c, in the decision immediately after backtracking to
dlasrt, x3 will be chosen and assigned TRUE again at the level 2. Note that the
resulting set of variable assignments at the level 2 is a superset of that before
backtracking. The set of variable assignments at the level 3 is also similar to
that before backtracking, except that x6 has been “lifted” to the level 2.

494 C. Jiang and T. Zhang

¬x1 ∨ x2

¬x3 ∨ ¬x4

¬x1 ∨ x4 ∨ x5 ∨ x6

x5 ∨ x13

¬x7 ∨ x8

¬x7 ∨ x9

¬x2 ∨ ¬x8 ∨ x10

¬x8 ∨ ¬x9 ∨ ¬x10

x4 ∨ x7 ∨ ¬x11

x7 ∨ x11 ∨ x12

x6 ∨ x11

¬x7 ∨ ¬x2

(a) Clauses

Variable Activity Score Last Values

x1 10 TRUE
x2 8.2 TRUE
x3 8.1 TRUE
x7 6.5 TRUE
x5 6.4 FALSE
x12 6 FALSE
x6 3.7 TRUE
x10 3.2 TRUE
x8 2.5 TRUE
x13 2.5 TRUE
x9 1 TRUE
x4 0.5 FALSE
x11 0 FALSE

(b) Variables

Level Assignments

1 x1, x2, ¬x7

2 x3, ¬x4, ¬x11, x12, x6

3 ¬x5, x13

4 x10

5 x8, ¬x9

(c) Assignments

Fig. 2. The status after backtracking

By comparing the variable assignments before and after each backtracking,
we have Figure 3 that shows the percentage of discarded variable assignments
that are chosen as decisions or propagated again before the next backtracking.
It is interesting to see that the solver tends to either enter a totally different
search space or stubbornly stick to its previous choices. But for a majority of
backtrackings, a large proportion of discarded variable assignments are repeated.
Note that we only consider those backtrackings that go back more than 10
levels and do not take account of restarts. Also, the variable assignments on the
conflicting level are not counted in computing this percentage.

4 Partial Backtracking

In this section, we present the partial backtracking strategy that allows the solver
to backtrack to some level dlback such that dlconf > dlback ≥ dlasrt, therefore
saving the propagations between dlback and dlasrt.

There are two reasons that classic backtracking prefers to use the assertion
level as the backtracking level. First, after each backtracking, the learnt clause
becomes unit and hence BCP can be invoked. Second, the succeeding BCP will
not cause any consistency issue. To adopt the partial backtracking strategy, we
need to update BCP procedure so that the two conditions are still met.

Partial Backtracking in CDCL Solvers 495

20 40 60 80 100

0

1,000

2,000

3,000

Repeated Variable Assignment %

B
a
ck
tr
a
ck
in
g
#

Fig. 3. Repeated variable assignment percentage while solving ACG-15-5p1.cnf from
SAT Challenge 2012

The first condition can be easily satisfied by backtracking to any level lower
than dlconf but higher than or equal to dlasrt. We note that the assertion level
is the lowest level that the solver can backtrack to while keeping the learnt
clause unit. The main complications come from maintaining the second condi-
tion. There are four kinds of issues BCP may encounter after backtracking to a
level higher than dlasrt. In Section 4.1, we will discuss these issues and give the
corresponding solutions at clause level. The complete solution will be given in
Section 4.2.

4.1 Complications and Solutions for Partial Backtracking

Unusual Implication. Classic backtracking guarantees that the solver always
obtains implications at the current level dlcurr, that is, for any implication l@dl
in the implication queue, dl = dlcurr (see Algorithm 1). However, this is not true
for partial backtracking. A simple counterexample is the implication obtained
from the learnt clause. This implication is at dlasrt, which is lower than or equal
to dlcurr after backtracking partially (dlcurr = dlback ≥ dlasrt). Moreover, this
implication may result in more implications, which can be scattered at any level
between dlasrt and dlcurr.

To the best of our knowledge, no existing solver exploits this guarantee in any
essential way. In the implementation of Nigma, we simply relax this restriction.

Inappropriate Watched Literal. Generally, if a clause becomes unit and its sole
free literal gets assigned according to this implication, its watched literals are

496 C. Jiang and T. Zhang

certainly assigned at the highest decision level among all its literals. This con-
dition may be violated after backtracking partially.

Consider a clause x1 ∨ ¬x2 ∨ x3. Suppose x3 is assigned FALSE at the level
10, and x1 and x2 are free. So x1 and ¬x2 are watched for this clause. During
BCP after backtracking partially, x1 may be assigned FALSE at the level 6. In
this case, it is inappropriate to still watch x1. Since the level of x3 is higher than
the level of x1, x3 should be watched instead.

In order to solve this issue, we use the following procedure, where δ(l) is a
function that returns the decision level where the literal l gets assigned.

– AdjustWatchedLiteral(wl, c)
Pre-condition: The literal wl is watched in the clause c; All the unwatched
literals in c are FALSE.
Description: Search for an unwatched literal l in c such that δ(l) > δ(wl)
and for any unwatched literal l′ in c, δ(l) ≥ δ(l′). If successful, unwatch wl,
watch l and return l. Otherwise, return wl.

Spurious Conflict. As we noted before, BCP may lead to conflicts. A standard
conflict has the following implicit feature: the two FALSE literals with the highest
levels in the conflicting clause are assigned at the same level. However, during
BCP after backtracking partially, the solver might encounter a spurious conflict
where these two literals are assigned at different levels.

We give a simple example to illustrate the spurious conflict. Consider a clause
x1 ∨ ¬x2. After backtracking partially, we may have two implications ¬x1@10
and x2@15 at the same time. This is a conflict (as all the literals are FALSE),
but it is different from the standard one.

The spurious conflict cannot be resolved by the standard learning proce-
dure. From another perspective, the spurious conflict essentially implies that
the FALSE literal with the highest level should have been implied at the second
highest level among the literals in the conflicting clause. In other words, without
learning, we can immediately obtain an implication by simply backtracking to
a level between the highest level and the second highest level in the conflicting
clause. That level can also be but not necessary the second highest level be-
cause we are able to handle the unusual implication now. We have the following
procedure to resolve spurious conflicts.

– ResolveSpuriousConflict(c)
Pre-condition: All the literals in the clause c are FALSE; The literals wl1
and wl2 are watched in c; δ(wl1) �= δ(wl2).
Description: If δ(wl1) > δ(wl2), backtrack to the level δ(wl1) − 1 and push
the implication wl1@δ(wl2) into the implication queue. If δ(wl1) < δ(wl2),
backtrack to the level δ(wl2)− 1 and push the implication wl2@δ(wl1) into
the implication queue.

Wrong Decision Level. After backtracking partially, some assigned variables
need to update their decision levels. For example, consider a clause x1 ∨ x2.

Partial Backtracking in CDCL Solvers 497

Initially, x1 is assigned TRUE at the level 18 and x2 is free. Suppose at the
level 20, a conflict is identified and the solver backtracks to the level 19 while
dlasrt = 5. Further suppose that the succeeding BCP induces the implication
¬x2@15. As a result, the decision level of x1 should be modified to 15. The issue
can be solved by backtracking to the level 17 and get the implication x1@15.
The following procedure is used for this purpose.

– ResolveWrongDecisionLevel(c)
Pre-condition: All the unwatched literals in the clause c are FALSE; c
has a TRUE watched literal wltrue and a FALSE watched literal wlfalse;
δ(wltrue) > δ(wlfalse).
Description: Backtrack to the level δ(wltrue) − 1 and push the implication
wltrue@δ(wlfalse) into the implication queue.

Both processes of resolving spurious conflict and wrong decision level might
trigger further backtracking. A helper procedure, ClearInvalidImplications, is
defined to adjust the implication queue accordingly.

– ClearInvalidImplications()
Description: Remove invalid implications from the implication queue. An
implication l@dl is invalid if dl > dlcurr.

In spite of the possible chained backtracking, whenever BCP terminates, the
current decision level is always higher than or equal to the assertion level.

4.2 BCP after Partial Backtracking

As mentioned before, the standard BCP needs an adjustment if the solver takes
a partial backtracking. Algorithm 3 shows the procedure PropagateAmending
that is a special propagating procedure to be used after backtracking partially.
Algorithm 4 shows the procedure BCPAmending that replaces the standard
BCP procedure.

Let us revisit the example in Section 3. At this time, when the conflict occurs
at the level 5, the solver takes a partial backtracking to the level 4 (see Figure 4a).
While propagating the implication ¬x7@1, the solver obtains ¬x11@2 (unusual
implication) (see Figure 4b) due to x4 ∨ x7 ∨ ¬x11. In the next iteration of
propagation, the solver identifies a spurious conflict (x7 ∨ x11 ∨ x12) and has to
go back one level to resolve it (see Figure 4c). Due to the existence of x6∨x11, x6

should have been implied at the level 2 (wrong decision level), so the solver goes
back one level again (see Figure 4d). Then BCP terminates because no more
implication or conflict can be found. It is clearly seen that the solver amends
the existing assignment trail conservatively, not simply discarding a significant
portion of it. We note that under this strategy, it is possible that the solver
enters a search space which is quite different from the one resulting from the
classic backtracking.

We shall point out that, when the implication to be propagated happens to
be at the current level, the effect of PropagateAmending is exactly the same as

498 C. Jiang and T. Zhang

Algorithm 3. PropagateAmending(l@dl)

1: wl1 ← ¬l
2: for all clause c where wl1 is watched do
3: Search for a non-FALSE unwatched literal l′ in c
4: if Exists l′ then
5: Unwatch wl1
6: Watch l′

7: else
8: wl1 ← AdjustWatchedLiteral(wl1, c)
9: wl2 ← the other watched literal in c
10: if wl2 is FALSE then
11: if δ(wl1) > δ(wl2) then
12: wl2 ← AdjustWatchedLiteral(wl2, c)
13: end if
14: if δ(wl1) == δ(wl2) then
15: Backtrack to δ(wl1)
16: ConflictAnalysis() {Standard conflict}
17: ClearInvalidImplications()
18: return
19: else
20: ResolveSpuriousConflict(c) {Spurious conflict}
21: ClearInvalidImplications()
22: end if
23: else if wl2 is TRUE then
24: if δ(wl2) > δ(wl1) then
25: ResolveWrongDecisionLevel(c) {Wrong decision level}
26: ClearInvalidImplications()
27: end if
28: else
29: ImplicationQueue.Push(wl2@δ(wl1))
30: end if
31: end if
32: end for

Algorithm 4. BCPAmending()

1: while ImplicationQueue is not empty do
2: l@dl ← ImplicationQueue.pop()
3: PropagateAmending(l@dl)
4: end while

Partial Backtracking in CDCL Solvers 499

Level Assignments

1 x1, x2, ¬x7

2 x3, ¬x4

3 ¬x5, x6, x13

4 ¬x12

(a)

Level Assignments

1 x1, x2, ¬x7

2 x3, ¬x4, ¬x11

3 ¬x5, x6, x13

4 ¬x12

(b)

Level Assignments

1 x1, x2, ¬x7

2 x3, ¬x4, ¬x11, x12

3 ¬x5, x6, x13

4

(c)

Level Assignments

1 x1, x2, ¬x7

2 x3, ¬x4, ¬x11, x12, x6

3
4

(d)

Fig. 4. The status after backtracking partially

Propagate. This indicates that PropagateAmending is essentially a generaliza-
tion of Propagate.

5 Optimization

In this section, we discuss optimizations applicable to PropagateAmending and
BCPAmending.

First, the implication queue can be constructed as a priority queue. As we
described before, most CDCL solvers organize implications in a queue and prop-
agates them in FIFO manner. However, since the implications in the queue can
be scattered on different levels, unnecessary propagations can be avoided by
giving higher priority to the implication at the lowest level in the queue. The in-
tuition is that propagation may induce backtracking due to spurious conflict and
wrong decision level, making some implications invalid and removed from the
queue. For example, suppose that we have the implications x1@10 and ¬x2@20
in the implication queue. If propagating x1@10 incurs a backtracking to some
level lower than 20, ¬x2@20 becomes invalid and the solver needs not propagate
it.

Second, even if encountering a standard conflict in PropagateAmending, it
is possible to postpone the conflict analysis. Suppose, while propagating x1@10,
the solver meets a standard conflict at the level 20. If the solver does not analyse
the conflict immediately but continues propagating, it may backtrack to some
level lower than 20 later due to spurious conflict or wrong decision level, making
that conflict disappear automatically.

Third, it is unnecessary to call PropagateAmending in each iteration of
BCPAmending. As mentioned before, PropagateAmending is a generalization
of Propagate and it is more expensive than Propagate. If the implication to
be propagated happens to be at the current level, calling Propagate directly
instead of PropagateAmending will not cause any issue.

500 C. Jiang and T. Zhang

Solver SAT UNSAT Solved #

Nigma-PB 222 251 473
Nigma-CB 212 240 452
Glucose-2.2 212 246 458

(a) The Number of Solved Instances

200 250 300 350 400 450 500

0

200

400

600

800

Solved #

T
im

e(
s)

Nigma-PB

Nigma-CB

Glucose-2.2

(b) Runtime Cactus Plot

Fig. 5. Experiment results of Nigma-PB, Nigma-CB and Glucose 2.2 on the benchmark
suite from the application track of SAT Challenge 2012

Fourth, it is also unnecessary to backtrack partially every time a conflict
occurs. The motivation of partial backtracking is to save propagations. Thus this
strategy should be more efficient if a large number of propagations are going to
be discarded or repeated. In Nigma, we measure the saving by the number of
levels the solver would go back by classic backtracking, namely, dlconf − dlasrt.
According to our experiments, when we set the triggering condition to dlconf −
dlasrt > 10, around 5% ∼ 30% of conflicts will trigger partial backtracking.

6 Experiment Results

In this section, we present experiment results using our solver Nigma, which is a
CDCL solver based on MiniSat 2.2 [9]. The benchmark suite consists of the 600
instances from the application track of SAT Challenge 2012 [10]. We conducted
experiments on a 3.40GHz × 8 Intel Core i7-2600K processor with 900 second
timeout and 7GB memory limit per instance.

The versions of Nigma with partial backtracking and with classic backtracking
are denoted by Nigma-PB and Nigma-CB, respectively. Nigma-PB is configured
as follows: if dlconf−dlasrt ≤ 10, the solver simply follows the classic backtracking

Partial Backtracking in CDCL Solvers 501

20 40 60 80 100

0

20

40

60

80

100

Fewer Levels %

In
st
a
n
ce

#

Fig. 6. Nigma backtracks fewer levels with partial backtracking

strategy; otherwise, the solver backtracks only one level, that is, it backtracks
to the level dlconf − 1. We use Glucose 2.2 [11] as an additional reference.

Figure 5a shows the number of instances solved by the three solvers and
Figure 5b is the cactus plot of the results. It is clearly seen that when applying
partial backtracking, Nigma-PB solved 21 more instances than Nigma-CB, and
it also performs better than Glucose 2.2.

An in-depth view of the effect of partial backtracking is given in Figure 6,
showing the percentage of fewer levels the solver backtracks for each solved
instance. We note that, for a majority of instances, when the solver takes a
partial backtracking, it backtracks 10% ∼ 60% fewer levels finally, compared
with classic backtracking.

We also compare two additional metrics in the experiment, in order to explain
the performance improvement by partial backtracking from a different perspec-
tive. The first metric is the number of decisions to solve an instance. Generally
speaking, fewer decisions indicate the solver explores the search space in a better
way [8]. According to the experiment, among the 439 instances solved by both
Nigma-PB and Nigma-CB, 317 instances are solved by Nigma-PB with fewer
decisions than by Nigma-CB.

The second metric is the number of decisions per conflict for a solved in-
stance. We are interested in this metric because the power of CDCL solvers
stems from identifying and learning from conflicts. The number of decisions per
conflict reflects how frequently the solver identifies a conflict. The smaller this
number is, the more often the solver detects and corrects its fault in making
decisions. Partial backtracking has the potential to reduce this number as the
solver might detect a standard conflict at a level higher than dlasrt (see Line
14-18 in Algorithm 3) while retaining the ability to detect a standard conflict at

502 C. Jiang and T. Zhang

dlasrt. The experiment result confirms our conjecture: 387 instances are solved
by Nigma-PB with fewer decisions per conflict than by Nigma-CB.

7 Conclusions

In this paper, we presented the partial backtracking strategy which is essen-
tially an extension of classic backtracking. This strategy amends the assignment
trail instead of simply discarding a portion of it. As a result, some propagations
need not to be repeated and the solver can go deeper in certain search space.
Our experiments show that this new kind of backtracking improves the perfor-
mance of CDCL solvers. Besides the optimizations mentioned in Section 5, we
are investigating the following two aspects to further improve its efficiency.

First, in our current implementation, the solver backtracks to dlasrt − 1 first.
In fact, any level higher than dlasrt can be used for the initial backtracking, as
going back to that level still keeps the learnt clause unit. We are interested in
designing a better heuristic to select the initial backtracking level.

Second, we would explore other criteria to trigger a partial backtracking. A
promising candidate is the number of variable assignments the solver would
discard by taking a classic backtracking.

References

1. Marques-Silva, J.P., Sakallah, K.A.: Grasp: A search algorithm for propositional
satisfiability. IEEE Transactions on Computers 48(5), 506–521 (1999)

2. Lynce, I., Baptista, L., Marques-Silva, J.P.: Stochastic systematic search algorithms
for satisfiability. Electronic Notes in Discrete Mathematics 9, 190–204 (2001)

3. Lynce, I., Marques-Silva, J.P.: Random backtracking in backtrack search algo-
rithms for satisfiability. Discrete Applied Mathematics 155(12), 1604–1612 (2007)

4. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engi-
neering an efficient sat solver. In: Proceedings of the 38th Conference on Design
Automation, New York, USA, pp. 530–535 (2001)

5. Pipatsrisawat, K., Darwiche, A.: A lightweight component caching scheme for sat-
isfiability solvers. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS,
vol. 4501, pp. 294–299. Springer, Heidelberg (2007)

6. Marques-Silva, J.P., Lynce, I., Malik, S.: Conflict-driven clause learning sat solvers.
In: Handbook of Satisfiability, pp. 131–154 (2009)

7. van der Tak, P., Ramos, A., Heule, M.: Reusing the assignment trail in cdcl solvers.
Journal on Satisfiability, Boolean Modeling and Computation 7, 133–138 (2011)

8. Zhang, L., Madigan, C.F., Moskewicz, M.H., Malik, S.: Efficient conflict driven
learning in a boolean satisfiability solver. In: Proceedings of the 2001 IEEE/ACM
International Conference on Computer-Aided Design, pp. 279–285. IEEE Press
(2001)

9. Eén, N., Sörensson, N.: Minisat 2.2, http://minisat.se/
10. Balint, A., Belov, A., Järvisalo, M., Sinz, C.: Sat challenge (2012),

http://baldur.iti.kit.edu/SAT-Challenge-2012/index.html

11. Audemard, G., Simon, L.: Glucose 2.2,
https://www.lri.fr/~simon/?page=glucose

http://minisat.se/
http://baldur.iti.kit.edu/SAT-Challenge-2012/index.html
https://www.lri.fr/~simon/?page=glucose

	Partial Backtracking in CDCL Solvers
	1 Introduction
	2 Preliminaries
	3 Classic Backtracking
	4 Partial Backtracking
	4.1 Complications and Solutions for Partial Backtracking
	4.2 BCP after Partial Backtracking

	5 Optimization
	6 Experiment Results
	7 Conclusions
	References

