
The Complexity of Clausal Fragments of LTL

Alessandro Artale1, Roman Kontchakov2, Vladislav Ryzhikov1,
and Michael Zakharyaschev2

1 KRDB Research Centre
Free University of Bozen-Bolzano

I-39100 Bolzano, Italy
{artale,ryzhikov}@inf.unibz.it

2 Department of Computer Science and Information Systems
Birkbeck, University of London

London WC1E 7HX, UK
{roman,michael}@dcs.bbk.ac.uk

Abstract. We introduce and investigate a number of fragments of propo-
sitional temporal logic LTL over the flow of time (Z, <). The fragments
are defined in terms of the available temporal operators and the struc-
ture of the clausal normal form of the temporal formulas. We determine
the computational complexity of the satisfiability problem for each of the
fragments, which ranges from NLogSpace to PTime, NP and PSpace.

1 Introduction

We consider the (PSpace-complete) propositional temporal logic LTL over the
flow of time (Z, <). Our aim is to investigate how the computational complexity
of the satisfiability problem for LTL-formulas depends on the form of their clausal
representation and the available temporal operators.

Sistla and Clarke [26] showed that satisfiability of LTL-formulas with all stan-
dard operators (‘next-time’, ‘always in the future’, ‘eventually’ and ‘until’) is
PSpace-complete; see also [18,19]. Ono and Nakamura [22] proved that for for-
mulas with only ‘always in the future’ and ‘eventually’ the satisfiability problem
becomes NP-complete. Since then a number of fragments of LTL of different
complexity have been identified. For example, Chen and Lin [10] observed that
the complexity does not change if we restrict attention to temporal Horn formu-
las. Demri and Schnoebelen [12] determined the complexity of fragments that
depend on three parameters: the available temporal operators, the number of
nested temporal operators, and the number of propositional variables in for-
mulas. Markey [21] analysed fragments defined by the allowed set of temporal
operators, their nesting and the use of negation. Dixon et al. [13] introduced a
XOR fragment of LTL and showed its tractability. Bauland et al. [7] systemati-
cally investigated the complexity of fragments given by both temporal operators
and Boolean connectives (using Post’s lattice of sets of Boolean functions).

In this paper, we classify temporal formulas according to their clausal normal
form. Recall [14] that any LTL-formula over (N, <) can be transformed into an
equisatisfiable formula in the so-called separated normal form that consists of
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Table 1. The complexity of clausal fragments of LTL

temporal operators �∗ ,�F ,�P , ©
F ,©P �∗ ,�F ,�P �∗

α LTL�,©
α LTL�

α LTL
∗�
α

bool PSpace (≤ [26]) NP (≤ [22]) NP

horn PSpace (≥ [10]) PTime [≤ Th. 3] PTime

krom NP [≤ Th. 1] NP [≥ Th. 5] NLogSpace

core NP [≥ Th. 2] NLogSpace [≤ Th. 4] NLogSpace

initial clauses (setting conditions at moment 0), step clauses (defining transi-
tions between consecutive states), and eventuality clauses (defining the states
that must be reached infinitely often). Our clausal normal form is a slight gen-
eralisation of the separated normal form. The main building blocks are positive
temporal literals λ given by the following grammar:

λ ::= ⊥ | p | ©
Fλ | ©

Pλ | �Fλ | �Pλ | �∗ λ, (1)

where p is a propositional variable, ©
F and ©

P are the next- and previous-time
operators, and �F , �P , �∗ are the operators ‘always in the future,’ ‘always in the
past’ and ‘always.’ We say that a temporal formula ϕ is in clausal normal form if

ϕ ::= λ | ¬λ | �∗ (¬λ1 ∨ · · · ∨ ¬λn ∨ λn+1 ∨ · · · ∨ λn+m) | ϕ1 ∧ϕ2. (2)

Conjunctions of positive and negative (¬λ) literals can be thought of as initial
clauses, while conjunctions of �∗ -formulas generalise both step and eventuality
clauses of the separated normal form. Similarly to [15] one can show that any
LTL-formula over (Z, <) is equisatisfiable to a formula in clausal normal form.

We consider twelve fragments of LTL that will be denoted by LTL�,©
α , LTL�α

and LTL
∗�
α , for α ∈ {bool, horn, krom, core}. The superscript in the language name

indicates the temporal operators that can be used in its positive literals. Thus,
LTL�,©

α uses all types of positive literals, LTL�α can only use the �-operators:

λ ::= ⊥ | p | �Fλ | �Pλ | �∗ λ,

and LTL
∗�
α only the �∗ -operator:

λ ::= ⊥ | p | �∗ λ.

The subscript α in the language name refers to the form of the clauses

¬λ1 ∨ · · · ∨ ¬λn ∨ λn+1 ∨ · · · ∨ λn+m (3)

(m,n ≥ 0) that can be used in the formulas ϕ:

– bool -clauses are arbitrary clauses of the form (3),
– horn-clauses have at most one positive literal (that is, m ≤ 1),
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– krom-clauses are binary (that is, n+m ≤ 2),
– core-clauses are binary with at most one positive literal (n+m ≤ 2, m ≤ 1).

The tight complexity bounds in Table 1 show how the complexity of the sat-
isfiability problem for LTL-formulas depends on the form of clauses and the
available temporal operators. The PSpace upper bound for LTL�,©

bool is well-
known [18,26,24,25]; the matching lower bound can be obtained already for
LTL�,©

horn without �F and �P by a standard encoding of deterministic Turing
machines with polynomial tape [10]. The NP upper bound for LTL�bool is also
well-known [22], and the PTime and NLogSpace lower bounds for LTL

∗�
horn and

LTL
∗�
core coincide with the complexity of the respective non-temporal languages.

The upper bounds for the LTL
∗�
α fragments can be obtained by embedding into

the the underlying propositional fragments; see the full paper [6] for details.
The main contributions of this paper are the remaining complexity results

in Table 1. The complexity of the LTL�α fragments matches the complexity of
the underlying non-temporal fragments except for the Krom case, where we can
use the clauses ¬p ∨ ¬�F q and q ∨ r to say that p → �Fr (if p then eventually
r), which allows one to encode 3-colourability and results in NP-hardness. It is
known that the addition of the operators ©

F and ©
P to the language with �F and

�P usually increases the complexity (note that the proofs of the lower bounds
for the LTL�,©

α fragments require only �∗ and ©
F ). It is rather surprising that

this does not happen in the case of the Krom fragment, while the complexity of
the corresponding core fragment jumps from NLogSpace to NP.

We prove the upper bounds using two different techniques. The existence of
models for LTL�,©

krom-formulas is checked in Section 3 by guessing a small number
of types and exponentially large distances between them (given in binary) and
then using unary automata (and the induced arithmetic progressions) to verify
correctness of the guess in polynomial time. In Section 4.1, we design a calculus
for LTL�core in which derivations can be thought of as paths in a graph over the
propositions labelled by moments of time. Thus, the existence of such derivations
is essentially the graph reachability problem and can be solved in NLogSpace.

2 The Clausal Normal Form for LTL

The propositional linear-time temporal logic LTL (see, e.g., [16,17] and references
therein) we consider in this paper is interpreted over the flow of time (Z, <).
LTL-formulas are built from propositional variables p0, p1, . . . , propositional con-
stants
 and⊥, the Boolean connectives ∧, ∨,→ and ¬, and two binary temporal
operators S (‘since’) and U (‘until’), which are assumed to be ‘strict.’ So, the other
temporal operators mentioned in the introduction can be defined via S and U as
follows:

©
Fϕ = ⊥ U ϕ, �Fϕ = 
 U ϕ, �Fϕ = ¬�F¬ϕ, �∗ ϕ = �P�Fϕ,

©
Pϕ = ⊥ S ϕ, �Pϕ = 
 S ϕ, �Pϕ = ¬�P¬ϕ, �∗ ϕ = �P�Fϕ.
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A temporal interpretation, M, defines a truth-relation between moments of time
n ∈ Z and propositional variables pi. We write M, n |= pi to indicate that pi is
true at the moment n in the interpretation M. This truth-relation is extended
to all LTL-formulas as follows (the Booleans are interpreted as expected):

M, n |= ϕ U ψ iff there is k > n with M, k |= ψ and M,m |= ϕ, for n < m < k,

M, n |= ϕ S ψ iff there is k < n with M, k |= ψ and M,m |= ϕ, for k < m < n.

An LTL-formula ϕ is satisfiable if there is an interpretationM such thatM, 0 |= ϕ;
in this case we call M a model of ϕ. We denote the length of ϕ by |ϕ|.

Recall that LTL-formulas of the form (2) were said to be in clausal normal
form, and the class of such formulas was denoted by LTL�,©

bool . The clauses (3)
will often be represented as λ1 ∧ · · · ∧λn → λn+1 ∨ · · · ∨λn+m (where the empty
disjunction is ⊥ and the empty conjunction is 
).

Lemma 1 (clausal normal form). For every LTL-formula, one can construct
an equisatisfiable LTL�,©

bool -formula. The construction requires logarithmic space.

The proof of this lemma is similar to the proof of [15, Theorem 3.3.1] and uses
fixed-point unfolding and renaming [15,23]. For example, we can replace every pos-
itive occurrence (that is, an occurrence in the scope of an even number of nega-
tions) of p U q in a given formula ϕ with a fresh propositional variable r and add
the conjuncts �∗ (r → ©

Fq ∨ ©
Fp), �∗ (r → ©

Fq ∨ ©
Fr) and �∗ (r → �Fq) to ϕ. The

result contains no positive occurrences of p U q and is equisatisfiable with ϕ: the
first two conjuncts are the fixed-point unfolding (pU q) → ©

F q∨
(
©

Fp∧©
F (pU q)

)
,

while the last conjunct ensures that the fixed-point is eventually reached.
The next lemma allows us to consider an even more restricted classes of for-

mulas. In what follows, we do not distinguish between a set of formulas and the
conjunction of its members, and we write �∗ Φ for the conjunction

∧
χ∈Φ �∗ χ.

Lemma 2. Let L be one of LTL�,©
α , LTL�α , LTL

∗�
α , for α ∈ {bool, horn, krom, core}.

For any L-formula ϕ, one can construct, in log-space, an equisatisfiable L-formula

Ψ ∧ �∗ Φ, (4)

where Ψ is a conjunction of propositional variables from Φ, and Φ is a conjunc-
tion of clauses of the form (3) containing only ©

F , �P , �F for LTL�,©
α , only

�P , �F for LTL�α, and only �∗ for LTL
∗�
α , in which the temporal operators are not

nested.

Proof. First, we take a fresh variable p and replace all the conjuncts of the form
λ and ¬λ in ϕ by �∗ (¬p ∨ λ) and �∗ (¬p ∨ ¬λ), respectively; we set Ψ = p.
For an LTL�,©

α or LTL�α-formula, we replace the temporal literals �∗ λ with
�F�Pλ. Then, for each ©

Pλ, we take a fresh variable, denoted ©
Pλ, replace

each occurrence of ©
Pλ with ©

Pλ and add the conjuncts �∗ (©F
©

Pλ → λ) and
�∗ (λ → ©

F
©

Pλ) to the resulting formula. In a similar manner, we use fresh
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Ψ0

Ψ�P

¬�P p1
¬�P p2 Ψ�0

Ψ�F

¬�F q1
¬�F q2 ΨK

ΨK = Ψ�FΨ�P = Ψ0

Ψi−1ΨiΨi+1¬p1¬p2 ¬q1¬q2

¬�F p ¬�F p ¬�F p �F p

¬p
�F p

p

�F p

p

�F p

p
Ψi−1

Ψi Θi Ψi+1

Fig. 1. The structure of a model in Lemma 3

propositional variables as abbreviations for nested temporal operators and obtain
the required equisatisfiable formula. Clearly, this can be done in logarithmic
space. ❑

We now characterise the structure of interpretations satisfying formulas ϕ∗ of
the form (4) in a way similar to other known descriptions of temporal models;
see, e.g., [16,17]. This characterisation will be used in the upper bound proofs
of Theorems 1 and 3. For each �Fp in Φ, we take a fresh propositional variable,
�Fp, and call it the surrogate of �Fp; likewise, for each �Pp in Φ we take its
surrogate �Pp. Let Φ be the result of replacing all the �-literals in Φ with their
surrogates. By a type for Φ we mean any set of literals that contains either p or
¬p (but not both), for each variable p in Φ (including the surrogates).

The proof of the following lemma is standard and can be found in [6]. The
reader may find useful Fig. 1 illustrating the conditions of the lemma.

Lemma 3 (structure of models). Let ϕ be an LTL�,©
bool -formula of the form (4)

and K = |ϕ| + 4. Then ϕ is satisfiable iff there exist integers m0 < m1 < · · · <
mK and types Ψ0, Ψ1, . . . , ΨK for Φ such that :

(B0) mi+1 −mi < 2|Φ|, for 0 ≤ i < K;

(B1) there exists 	0, 0 < 	0 < K, such that Ψ ⊆ Ψ�0 ;

(B2) �Fp ∈ Ψi ⇒ p,�Fp ∈ Ψi+1 and �Fp ∈ Ψi+1\Ψi ⇒ p /∈ Ψi+1 (0 ≤ i < K),
�Pp ∈ Ψi ⇒ p,�Pp ∈ Ψi−1 and �Pp ∈ Ψi−1 \ Ψi ⇒ p /∈ Ψi−1 (0 < i ≤ K);

(B3) there exist 	F < K and 	P > 0 such that

– Ψ�F = ΨK and, for each ¬�Fp ∈ Ψ�F , there is j ≥ 	F with ¬p ∈ Ψj,

– Ψ�P = Ψ0 and, for each ¬�Pp ∈ Ψ�P , there is j ≤ 	P with ¬p ∈ Ψj ;

(B4) the following formulas are consistent, for 0 ≤ i < K:

ψi = Ψi ∧
mi+1−mi−1∧

k=1

©k
FΘi ∧ ©mi+1−mi

F Ψi+1 ∧ �∗ Φ,
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where ©k
F
Ψ is the result of attaching k operators ©

F to each literal in Ψ and

Θi =
{
p, �Fp | �Fp ∈ Ψi

} ∪ {¬�Fp | ¬�Fp ∈ Ψi

} ∪
{
p, �Pp | �Pp ∈ Ψi+1

} ∪ {¬�Pp | ¬�Pp ∈ Ψi+1

}
.

The intuition behind this lemma is as follows (see Fig. 1). If ϕ is satisfiable,
then it has a model M that consists of the initial fragments of models Mi of
the formulas ψi: namely, the types of the moments mi, . . . ,mi+1 in M coincide
with the types of the moments 0, . . . , (mi+1 − mi) in Mi. By (B4), we have
M, 0 |= �∗ Φ. Then (B1) makes sure that M, 0 |= Ψ . Conditions (B2) and (B3)
guarantee that if �Fp ∈ Ψi then p ∈ Ψj for all types Ψj located to the right of Ψi

in Fig. 1 and, conversely, if �Fp /∈ Ψi then ¬p ∈ Ψj, for some Ψj to the right of
Ψi; and symmetrically for the �P -literals. It follows that M, 0 |= �∗ Φ.

3 Binary-Clause LTL and Arithmetic Progressions

In this section, we prove NP-completeness of the satisfiability problem for
LTL�,©

krom and LTL�,©
core. The key ingredient of the proof of the upper bound is

an encoding of condition (B4) for binary clauses by means of arithmetic pro-
gressions (via unary automata). The proof of the lower bound is by reduction of
the problem whether a given set of arithmetic progressions covers all the natural
numbers.

Let ϕ be an LTL�,©
krom-formula of the form (4). By Lemma 3, to check sat-

isfiability of ϕ it suffices to guess K + 1 types for Φ and K natural numbers
ni = mi+1−mi, for 0 ≤ i < K, whose binary representation, by (B0), is polyno-
mial in |Φ|. Evidently, (B1)–(B3) can be checked in polynomial time. Our aim
now is to show that (B4) can also be verified in polynomial time, which will
give a nondeterministic polynomial-time algorithm for checking satisfiability of
LTL�,©

krom-formulas.

Theorem 1. The satisfiability problem for LTL�,©
krom-formulas is in NP.

Proof. In view of Lemma 2, we write © in place of ©
F . We denote propositional

literals (p or ¬p) by L and temporal literals (p, ¬p, ©p or ¬©p) by D. We assume
that ©¬p is the same as ¬©p. We use ψ1 |= ψ2 as a shorthand for ‘M, 0 |= ψ2

whenever M, 0 |= ψ1, for any interpretation M.’ Thus, the problem is as follows:
given a set Φ of binary clauses of the form D1 ∨D2, types Ψ and Ψ ′ for Φ, a set
Θ of propositional literals and a number n > 0 (in binary), decide whether

Ψ ∧
∧n−1

k=1
©kΘ ∧ ©nΨ ′ ∧ �∗ Φ (5)

has a satisfying interpretation. For 0 ≤ k ≤ n, we set:

F k
Φ(Ψ) =

{
L′ | L ∧�∗ Φ |= ©kL′, for L ∈ Ψ

}
,

P k
Φ(Ψ

′) =
{
L | ©kL′ ∧ �∗ Φ |= L, for L′ ∈ Ψ ′}.
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Lemma 4. Formula (5) is satisfiable iff the following conditions hold :

(L1) F 0
Φ(Ψ) ⊆ Ψ , Fn

Φ (Ψ) ⊆ Ψ ′ and P 0
Φ(Ψ

′) ⊆ Ψ ′, Pn
Φ (Ψ

′) ⊆ Ψ ;
(L2) ¬L /∈ F k

Φ(Ψ) and ¬L /∈ Pn−k
Φ (Ψ ′), for all L ∈ Θ and 0 < k < n.

Proof. Clearly, if (5) is satisfiable then the above conditions hold. For the con-
verse direction, observe that if L′ ∈ F k

Φ(Ψ) then, since Φ is a set of binary clauses,
there is a sequence of ©-prefixed literals ©k0L0 � ©k1L1 � · · · � ©kmLm

such that k0 = 0, L0 ∈ Ψ , km = k, Lm = L′, each ki is between 0 and
n and the � relation is defined by taking ©kiLi � ©ki+1Li+1 just in one
of the three cases: ki+1 = ki and Li → Li+1 ∈ Φ or ki+1 = ki + 1 and
Li → ©Li+1 ∈ Φ or ki+1 = ki − 1 and ©Li → Li+1 ∈ Φ (we assume that,
for example, ¬q → ¬p ∈ Φ whenever Φ contains p → q). So, suppose condi-
tions (L1)–(L2) hold. We construct an interpretation satisfying (5). By (L1),
both Ψ ∧�∗ Φ and ©nΨ ′ ∧�∗ Φ are consistent. So, let MΨ and MΨ ′ be such that
MΨ , 0 |= Ψ∧�∗ Ψ and MΨ , n |= Ψ ′∧�∗ Ψ , respectively. Let M be an interpretation
that coincides with MΨ for all moments k ≤ 0 and with MΨ ′ for all k ≥ n; for
the remaining k, 0 < k < n, it is defined as follows. First, for each p ∈ Θ , we
make p true at k and, for each ¬p ∈ Θ, we make p false at k; such an assignment
exists due to (L2). Second, we extend the assignment by making L true at k
if L ∈ F k

Φ(Ψ) ∪ Pn−k
Φ (Ψ ′). Observe that we have {p,¬p} � F k

Φ(Ψ) ∪ Pn−k
Φ (Ψ ′):

for otherwise L ∧ �∗ Φ |= ©kp and ©n−kL′ ∧ �∗ Φ |= ¬p, for some L ∈ Ψ and
L′ ∈ Ψ ′, whence L ∧ �∗ Φ |= ©n¬L′, contrary to (L1). Also, by (L2), any as-
signment extension at this stage does not contradict the choices made due to Θ.
Finally, all propositional variables not covered in the previous two cases get their
values from MΨ (or MΨ ′). We note that the last choice does not depend on the
assignment that is fixed by taking account of the consequences of �∗ Φ with Ψ ,
Ψ ′ and Θ (because if the value of a variable depended on those sets of literals,
the respective literal would be among the logical consequences and would have
been fixed before). ❑

Thus, it suffices to show that conditions (L1) and (L2) can be checked in
polynomial time. First, we claim that there is a polynomial-time algorithm which,
given a set Φ of binary clauses of the form D1∨D2, constructs a set Φ∗ of binary
clauses that is ‘sound and complete’ in the following sense:

(S1) �∗ Φ∗ |= �∗ Φ;
(S2) if �∗ Φ |= �∗ (L→ ©kLk) then either k = 0 and L→ L0 ∈ Φ∗, or k ≥ 1 and

there are L0, L1, . . . , Lk−1 with L = L0 and Li → ©Li+1 ∈ Φ∗, for 0 ≤ i < k.

Intuitively, the set Φ∗ makes explicit the consequences of �∗ Φ and can be con-
structed in time (2|Φ|)2 (the number of temporal literals in Φ∗ is bounded by the
doubled length |Φ| of Φ as each of its literal can only be prefixed by ©). Indeed,
we start from Φ and, at each step, add D1 ∨D2 to Φ if it contains both D1 ∨D
and ¬D ∨ D2; we also add L1 ∨ L2 if Φ contains ©L1 ∨ ©L2 (and vice versa).
This procedure is sound since we only add consequences of �∗ Φ; completeness
follows from the completeness proof for temporal resolution [15, Section 6.3].
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Our next step is to encode Φ∗ by means of unary automata. Let L, L′ be
literals. Consider a nondeterministic finite automaton AL,L′ over {0} such that
the literals of Φ∗ are its states, with L being the initial state and L′ the only
accepting state, and

{
(L1, L2) | L1 → ©L2 ∈ Φ∗} is its transition relation.

By (S1) and (S2), for all k > 0, we have

AL,L′ accepts 0k iff �∗ Φ |= �∗ (L→ ©kL′).

Then both F k
Φ(Ψ) and P

k
Φ(Ψ

′) can be defined in terms of the language of AL,L′:

F k
Φ(Ψ) =

{
L′ | AL,L′ accepts 0k, for L ∈ Ψ

}
,

P k
Φ(Ψ

′) =
{
L | A¬L,¬L′ accepts 0k, for L′ ∈ Ψ ′}

(recall that ©kL′ → L is equivalent to ¬L → ©k¬L′). Note that the numbers
n and k in conditions (L1) and (L2) are in general exponential in the length of
Φ and, therefore, the automata AL,L′ do not immediately provide a polynomial-
time procedure for checking these conditions: although it can be shown that
if (L2) does not hold then it fails for a polynomial number k, this is not the
case for (L1), which requires the accepting state to be reached in a fixed (expo-
nential) number of transitions. Instead, we use the Chrobak normal form [11] to
decompose the automata into a polynomial number of polynomial-sized arith-
metic progressions (which can have an exponential common period; cf. the proof
of Theorem 2). In what follows, given a and b, we denote by a + bN the set
{a+ bm | m ∈ N} (the arithmetic progression with initial term a and common
difference b).

It is known that every N -state unary automaton A can be converted (in
polynomial time) into an equivalent automaton in Chrobak normal form (e.g.,
by using Martinez’s algorithm [28]), which has O(N2) states and gives rise to
M arithmetic progressions a1 + b1N, . . . , aM + bMN such that

(A1) M ≤ O(N2) and 0 ≤ ai, bi ≤ N , for 1 ≤ i ≤M ;
(A2) A accepts 0k iff k ∈ ai + biN, for some 1 ≤ i ≤M .

By construction, the number of arithmetic progressions is bounded by a quadratic
function in the length of Φ.

We are now in a position to give a polynomial-time algorithm for checking (L1)
and (L2), which requires solving Diophantine equations. In (L2), for example,
to verify that, for each p ∈ Θ, we have ¬p /∈ F k

Φ(Ψ), for all 0 < k < n, we take
the automata AL,¬p, for L ∈ Ψ , and transform them into the Chrobak normal
form to obtain arithmetic progressions ai + biN, for 1 ≤ i ≤M . Then there is k,
0 < k < n, with ¬p ∈ F k

Φ(Ψ) iff one of the equations ai + bim = k has an integer
solution, for some k, 0 < k < n. The latter can be verified by taking the integer
m = �−ai/bi� and checking whether either ai+ bim or ai+ bi(m+1) belongs to
the open interval (0, n), which can clearly be done in polynomial time.

This completes the proof of Theorem 1. ❑

The matching lower bound for LTL�,©
core-formulas, even without �F/�P , can be

obtained using NP-hardness of deciding inequality of regular languages over a
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
2 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
3 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
5 1 0 1 0 1 0 1 0 1 0 1 0

Fig. 2. Positive numbers encoding assignments for 3 variables p1, p2, p3 (shaded)

unary alphabet [27]. In the proof of Theorem 2, we give a more direct reduction
of the NP-complete problem 3SAT and repeat the argument of [27, Theorem
6.1] to construct a small number of arithmetic progressions (each with a small
initial term and common difference) that give rise to models of exponential size.

Theorem 2. The satisfiability problem for LTL�,©
core-formulas is NP-hard.

Proof. The proof is by reduction of 3SAT. Let f =
∧n

i=1 Ci be a 3CNF with vari-
ables p1, . . . , pm and clauses C1, . . . , Cn. By a propositional assignment for f we
understand a function σ : {p1, . . . , pm} → {0, 1}. We represent such assignments
by sets of positive natural numbers. More precisely, let P1, . . . , Pm be the first
m prime numbers; it is known that Pm does not exceed O(m2) [1]. A natural
number k > 0 is said to represent an assignment σ if k is equivalent to σ(pi)
modulo Pi, for all i, 1 ≤ i ≤ m. Clearly, not every natural number represents an
assignment since each element of

j + Pi · N, for 1 ≤ i ≤ m and 2 ≤ j < Pi, (6)

is equivalent to j modulo Pi with j ≥ 2. On the other hand, every natural
number that does not represent an assignment belongs to one of those arithmetic
progressions (see Fig. 2).

Let Ci be a clause in f , say, Ci = pi1 ∨ ¬pi2 ∨ pi3 . Consider
P 1
i1P

0
i2P

1
i3 + Pi1Pi2Pi3 · N. (7)

A natural number represents an assignment that makes Ci true iff it does not
belong to the progressions (6) and (7). In the same way we construct a progres-
sion of the form (7) for every clause in f . Thus, a natural number k > 0 does not
belong to the constructed progressions of the form (6) and (7) iff k represents a
satisfying assignment for f .

To complete the proof, we show that the defined progressions can be encoded
in LTL�,©

core. Take a propositional variable d (it will be shared by all formulas
below). Given an arithmetic progression a+ bN (with a ≥ 0 and b > 0), let

θa,b = u0 ∧
∧a

j=1
�∗ (uj−1 → ©

Fuj) ∧
�∗ (ua → v0) ∧

∧b

j=1
�∗ (vj−1 → ©

Fvj) ∧ �∗ (vb → v0) ∧ �∗ (v0 → d),

where u0, . . . , ua and v0, . . . , vb are fresh propositional variables. It is not hard to
see that, in every model of θa,b, if k belongs to a+bN, then d is true at moment k.
Thus, we take a conjunction ϕf of the θa,b for arithmetic progressions (6) and (7)
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Fig. 3. The minimal model of Σϕ and Kϕ

together with p∧�∗ (©Fp→ p)∧�∗ (p→ d)∧�∗ (¬�∗ d), where p is a fresh variable
(the last formula makes both p and d true at all moments k ≤ 0). The size of
the LTL�,©

core-formula ϕf is O(n ·m6). It is readily checked that ϕf is satisfiable
iff f is satisfiable. ❑

4 Core and Horn Fragments without Next-Time

Let ϕ be an LTL�horn-formula. By applying Lemma 2, we can transform ϕ to the
form Ψ ∧�∗ Φ+ ∧�∗ Φ−, where Ψ is a set of propositional variables while Φ+ and
Φ− are sets of positive and negative clauses of the form

λ1 ∧ λ2 ∧ · · · ∧ λk−1 → λk and ¬λ1 ∨ ¬λ2 ∨ · · · ∨ ¬λk, (8)

respectively. Trivially, Ψ ∧ �∗ Φ+ is satisfiable. Since all clauses in Φ+ have at
most one positive literal and are constructed from variables possibly prefixed by
�F or �P , the formula Ψ ∧ �∗ Φ+ has a canonical model Kϕ defined by taking

Kϕ, n |= p iff M, n |= p, for every model M of Ψ ∧ �∗ Φ+, n ∈ Z

(indeed, Kϕ, 0 |= Ψ ∧ �∗ Φ+ follows from the observation that Kϕ, n |= �Fp iff
M, n |= �Fp, for every model M of Ψ ∧ �∗ Φ+; and similarly for �Pp). If we
consider the canonical model Kϕ in the context of Lemma 3 then, since the
language does not contain ©

F or ©
P , we have mi+1 −mi = 1 for all i. Thus, Kϕ

can be thought of as a sequence of (	F − 	P + 1)-many states, the first and last
of which repeat indefinitely. Let K = |ϕ|+ 4.

Obviously, ϕ is satisfiable iff there is no negative clause ¬λ1 ∨ · · · ∨¬λk in Φ−

such that all the λi are true in Kϕ at some moment n with |n| ≤ K. This condition
can be encoded by means of propositional Horn clauses in the following way. For
each variable p, we take 2K + 1 variables pn, |n| ≤ K, and, for each �Fp and
�Pp, we take 2K+1 variables, denoted (�Fp)

n and (�Pp)
n, |n| ≤ K, respectively.

Consider the following set Σϕ of propositional Horn clauses, |n| ≤ K:

(H0) p0, if p ∈ Ψ,

(H1) λn1 ∧ · · · ∧ λnk−1 → λnk , if (λ1 ∧ · · · ∧ λk−1 → λk) ∈ Φ+,

(H2) (�Fp)
n → (�Fp)

n+1 if n < K, (�Pp)
n → (�Pp)

n−1 if n > −K,

(H3) (�Fp)
n → pn+1, (�Pp)

n → pn−1,

(H4) (�Fp)
n ∧ pn → (�Fp)

n−1 if n > −K, (�Pp)
n ∧ pn → (�Pp)

n+1 if n < K,

(H5) (�Fp)
K ↔ pK , (�Pp)

−K ↔ p−K ,

(H6) (�Fp)
−K ↔ p−K , (�Pp)

K ↔ pK .
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Clearly, |Σϕ| ≤ O(|ϕ|2). It is readily seen that the minimal model of Σϕ cor-
responds to the canonical model Kϕ as shown in Fig. 3. As propositional Horn
satisfiability is PTime-complete, we obtain the following:

Theorem 3. The satisfiability problem for LTL�horn-formulas is in PTime.

4.1 Temporal Derivations for LTL�
core in NLogSpace

In LTL�core-formulas, all clauses are binary: k = 2 in (8). Satisfiability of propo-
sitional binary clauses is known to be NLogSpace-complete. However, in the
reduction ϕ �→ Σϕ above, the clauses (H4) are ternary. In this section we show
how to modify the reduction to ensure membership in NLogSpace. More pre-
cisely, we define two types of derivation from Ψ∧�∗ Φ+: a 0-derivation of (λ, n) will
mean that Kϕ, n |= λ, while a ∀-derivation of λ from λ′ that Kϕ, 0 |= �∗ λ′ → �∗ λ.
We then show that these derivations define Kϕ and that satisfiability of ϕ can
be checked by a nondeterministic algorithm in logarithmic space.

Denote by→∗ the transitive and reflexive closure of the relation→ over literals
given by the clauses of Φ+. We require the following derivation rules over the
pairs (λ, n), where λ is a positive temporal literal in ϕ and n ∈ Z:

(R1) (λ1, n) ⇒ (λ2, n), if λ1 →∗ λ2,
(R2) (�Fp, n) ⇒ (�Fp, n+ 1), (�Pp, n) ⇒ (�Pp, n− 1),

(R3) (�Fp, n) ⇒ (p, n+ 1), (�Pp, n) ⇒ (p, n− 1),

(R4) (�Fp, 0) ⇒ (�Fp,−1), (�Pp, 0) ⇒ (�Pp, 1), if p′ →∗ p for p′ ∈ Ψ,

(R5) (p, n) ⇒ (�Fp, n− 1), (p, n) ⇒ (�Pp, n+ 1).

The rules in (R1)–(R4) mimic (H1)–(H4) above ((H4) at moment 0 only) and
reflect the semantics of LTL in the sense that whenever (λ, n) ⇒ (λ′, n′) and
Kϕ, n |= λ then Kϕ, n

′ |= λ′. For example, consider (R4). It only applies if p
follows (by →∗) from the initial conditions in Ψ , in which case Kϕ, 0 |= p, and so
Kϕ, 0 |= �Fp implies Kϕ,−1 |= �Fp. The rules in (R5) are different: for instance,
we can only apply (p, n) ⇒ (�Fp, n− 1) if we know that p holds at all m ≥ n.

A sequence d : (λ0, n0) ⇒ · · · ⇒ (λ�, n�), for 	 ≥ 0, is called a 0-derivation of
(λ�, n�) if λ0 ∈ Ψ , n0 = 0 and all applications of (R5) are safe in the following
sense: for any (p, ni) ⇒(R5) (�Fp, ni − 1), there is λj = �Fq, for some q and
0 ≤ j < i; similarly, for any (p, ni) ⇒(R5) (�Pp, ni + 1), there is λj = �Pq with
0 ≤ j < i. In this case we write Ψ ⇒0 (λ�, n�). For example, consider

ϕ = p ∧ �∗ (p→ �Fq) ∧ �∗ (q → r) ∧ �∗ (p → r).

Evidently, Kϕ,−1 |= �Fr. The following sequence is a 0-derivation of (�Fr,−1)
because the application of (R5) is safe due to �Fq:

(p, 0) ⇒(R1) (�Fq, 0) ⇒(R3) (q, 1) ⇒(R1) (r, 1) ⇒(R5) (�Fr, 0) ⇒(R4) (�Fr,−1).

Intuitively, if we can derive (r, 1) using (�F q, 0), then we can also derive (r, n)
for any n ≥ 1, and so we must also have (�Fr, 0), which justifies the application
of (R5). This argument is formalised in the following lemma:
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Fig. 4. Removing applications of (R4) (left) and shifting a 0-derivation by 2 (right):
dashed arrows show the original derivation and solid ones the resulting derivation

Lemma 5 (monotonicity). Let d be a 0-derivation of (λ�, n�) with a suffix

s : (�Fq, ns) ⇒ (λs+1, ns+1) ⇒ · · · ⇒ (λ�, n�), (9)

where none of the λi contains �F . Then Ψ ⇒0 (λ�,m), for all m ≥ n�. Similarly,
if there is a suffix beginning with some �Pq then Ψ ⇒0 (λ�,m), for all m ≤ n�.
Moreover, these 0-derivations only contain the rules used in d and (R2).

Proof. We first remove all applications of (R4) in s. Let (λi, ni)⇒(R4) (λi+1, ni+1)
be the first one. By definition, ni = 0 and, since �Fq is the last �F in d, we have
ni+1 = 1 and λi = λi+1 = �P r, for some r. So we can begin swith (�F q, ns)⇒(R2)

(�Fq, ns+1) ⇒ (λs+1, ns+1+1) ⇒ · · · ⇒ (λi, ni+1) ⇒ (λi+2, ni+2); see Fig. 4
on the left-hand side. We repeatedly apply this operation to obtain a suffix s of
the form (9) that does not use (R4). We then replace s in d with (�Fq, ns) ⇒(R2)

· · · ⇒(R2) (�Fq, ns+k) ⇒ (λs+1, ns+1+k) ⇒ · · · ⇒ (λ�, n�+k), where k = m−n�;
see Fig. 4 on the right-hand side. ❑

However, 0-derivations are not enough to obtain all literals that are true in
Kϕ. Indeed, consider the formula

ϕ = r ∧ �∗ (r → �Fq) ∧ �∗ (�Fq → q) ∧ �∗ (�P q → p).

Clearly, Kϕ, n |= p for all n ∈ Z, but neither (p, n) nor (�Pq, n) is 0-derivable.
On the other hand, for each n ∈ Z, there is a 0-derivation of (q, n): for example,

(r, 0) ⇒(R1) (�F q, 0) ⇒(R1) (q, 0) ⇒(R5) (�Fq,−1) ⇒(R1) (q,−1).

These 0-derivations correspond to Kϕ, 0 |= �∗ q, from which we can derive �∗ p by
means of the second type of derivations. A sequence d : (λ0, n0) ⇒ · · · ⇒ (λ�, n�)
is called a ∀-derivation of λ� from λ0 if it uses only (R1)–(R3) and (R5), whose
applications are not necessarily safe. So we write Ψ ⇒∀ λ if there is a ∀-derivation
of λ from some q such that Ψ ⇒0 (q, n), for all n ∈ Z. In the example above,
(q, 0) ⇒(R5) (�P q, 1) ⇒(R1) (p, 1) is a ∀-derivation of p from q, whence Ψ ⇒∀ p.
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Lemma 6 (soundness). If Ψ ⇒0 (λ, n) then Kϕ, n |= λ. If Ψ ⇒∀ λ then
Kϕ, 0 |= �∗ λ.

Proof. By induction on the derivation length, using Lemma 5 for (R5). ❑

Lemma 7 (completeness). If Kϕ, n |= λ then either Ψ ⇒0 (λ, n) or Ψ ⇒∀ λ.

Proof. LetM be an interpretation such that, for all p andn ∈ Z, we haveM, n |= p
iff Ψ ⇒0 (p, n) or Ψ ⇒∀ p. It suffices to show that M, 0 |= Ψ ∧ �∗ Φ+. Indeed, if
we assume that there are p′ and n′ such that Kϕ, n

′ |= p′ but neither Ψ ⇒0 (p′, n′)
nor Ψ ⇒∀ p′, we will obtain M, n′ |= ¬p′ contrary to our assumption (other types
of literals are considered analogously).

Thus, we have to show that M is a model of Ψ ∧�∗ Φ+. Suppose p ∈ Ψ . Then
trivially Ψ ⇒0 (p, 0), and so M, 0 |= p. Suppose λ1 → λ2 ∈ Φ+ and M, n |= λ1.
We consider three cases depending on the shape of λ1 and show that M, n |= λ2.

λ1 = p. If Ψ ⇒∀ p then, by (R1), Ψ ⇒∀ λ2. Otherwise, there is a 0-derivation
of (p, n), and so Ψ ⇒0 (λ1, n) ⇒(R1) (λ2, n).

λ1 = �Fp. Then M,m |= p for allm > n. Consider M, n+1 |= p. If Ψ ⇒∀ p then,
by (R5), (R1), Ψ ⇒∀ λ2. Otherwise, there is a 0-derivation d of (p, n+ 1).
(F) If �F occurs in d then Ψ ⇒0 (p, n+ 1) ⇒(R5) (�Fp, n) ⇒(R1) (λ2, n).
(P) If �P occurs in d then, by Lemma 5, Ψ ⇒0 (p,m) for each m ≤ n + 1.

Thus, Ψ ⇒0 (p,m) for all m ∈ Z, and so, by (R5) and (R1), Ψ ⇒∀ λ2.
(0) If d contains neither �F nor �P then n = −1 and λ →∗ p, for some

λ ∈ Ψ (by (R1)). As M, 1 |= p and we assumed Ψ �⇒∀ p, there is a
0-derivation d′ of (p, 1), which must contain �F or �P . If d

′ contains �F

then Ψ ⇒0 (p, 1) ⇒(R5) (�Fp, 0) ⇒(R4) (�Fp,−1) ⇒(R1) (λ2, n). If �P

occurs in d′ then, by the argument in (P), Ψ ⇒∀ λ2.
λ1 = �Pp. The proof is symmetric.

In each of these cases, we have either Ψ ⇒0 (λ2, n) or Ψ ⇒∀ λ2. Observe that
Ψ ⇒0 (λ2, n) impliesM, n |= λ2. Indeed, this clearly holds for λ2 = p. If λ2 = �Fp
then, by repetitive applications of (R2) and an application of (R3), we obtain
Ψ ⇒0 (p,m), for all m > n, which means M, n |= �Fp. The case λ2 = �Pp is
symmetric. If Ψ ⇒∀ λ2 then, independently of whether λ2 is p′, �Fp

′ or �Pp
′, we

have Ψ ⇒∀ p′, so M,m |= p′ for all m ∈ Z, whence, M, n |= λ2. ❑

Next, in Lemmas 8 and 9, we provide efficient criteria for checking the condi-
tions Ψ ⇒0 (λ, n) and Ψ ⇒∀ λ by restricting the range of numbers that can be
used in 0-derivations (numbers in ∀-derivations can simply be ignored). Given a
0-derivation d : (λ0, n0) ⇒ · · · ⇒ (λ�, n�), we define its reach as

r(d) = max{|ni| | 0 ≤ i ≤ 	}.
We say that d right-stutters, if there are v < w such that λv = λw, nv < nw and
ni > 0, for all i, v ≤ i ≤ w (in particular, (R4) is not applied between v and
w). Symmetrically, d left-stutters if there are v < w such that λv = λw , nv > nw

and ni < 0, for all i, v ≤ i ≤ w.
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Fig. 5. Left-stuttering: nv and nw occur between −1 and −|ϕ| − 1 (shaded) and
the fragment of the derivation from nv to nw can be repeated any number of times
(including 0)

Lemma 8 (checking ⇒0). Ψ ⇒0 (λ, n) iff there exists a 0-derivation d of
(λ,m) such that r(d) ≤ 2|ϕ| and one of the following conditions holds :

(C1) m = n;
(C2) d contains �F and either m ≤ n or d left-stutters ;
(C3) d contains �P and either m ≥ n or d right-stutters.

Proof. (⇒) Let d : (λ0, n0) ⇒ · · · ⇒ (λ�, n�) be a 0-derivation of (λ, n). If
r(d) ≤ |ϕ| then d satisfies (C1). Otherwise, we take the first �-literal in d, say
λt = �Fq (the case of �Pq is symmetric). Clearly, |nt| ≤ 1. Let u > t be the
smallest index with |nu| > |ϕ|. Since adjacent ni and ni+1 differ by at most
1, the segment between (λt, nt) and (λu, nu) contains a repeating literal: more
precisely, there exist v < w between t and u such that λv = λw and

– either nv > nw and ni < 0, for v ≤ i ≤ w,
– or nv < nw and ni > 0, for v ≤ i ≤ w.

In the former case d left-stutters, and we perform the following operations on
the suffix s : (λw, nw) ⇒ · · · ⇒ (λ�, n�) of d. First, we eliminate all applications
of (R4) in s: each suffix (�Fq, 0) ⇒(R4) (�F q,−1) ⇒ (λs, ns) ⇒ · · · ⇒ (λ�, n�)
is replaced by (�Fq, 0) ⇒ (λs, ns + 1) ⇒ · · · ⇒ (λ�, n� + 1); and similarly for
�P . If each time we eliminate the last application of (R4) then the result is
clearly a 0-derivation. Second, we remove all duplicating literals: each suffix
(λs, ns) ⇒ · · · ⇒ (λs′ , ns′) ⇒ (λs′+1, ns′+1) ⇒ · · · ⇒ (λ�, n�) with λs = λs′ is
replaced by (λs, ns) ⇒ (λs′+1, ns′+1+k) ⇒ · · · ⇒ (λ�, n�+k), where k = ns−ns′ .
This will give us a left-stuttering 0-derivation d′ of (λ,m), for somem. Since there
are at most |ϕ| distinct literals in s, we have r(d′) ≤ 2|ϕ|, thus satisfying the
second option of (C2); see Fig. 5.

In the latter case d right-stutters, and we construct a 0-derivation d′ of (p, n′)
by cutting out the segment (λv+1, nv+1) ⇒ · · · ⇒ (λw, nw) from d and ‘shifting’
the tail using the construction above: eliminate applications of (R4) and then
decrease all numbers by nw − nv > 0. We then consider the obtained d′ as the
original d. As the length of the derivations decreases and n′ ≤ n, by applying
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this procedure sufficiently many times, we shall finally construct a 0-derivation
of reach ≤ 2|ϕ| and satisfying either (C1) or the first option of (C2).

(⇐) is left to the reader. ❑

In a similar way we can show how to efficiently check the condition Ψ ⇒∀ p:

Lemma 9 (checking ⇒∀). Ψ ⇒0 (λ, n) holds for all n ∈ Z iff there are 0-
derivations d of (λ,m) and d′ of (λ,m′) of reach at most 2|ϕ| such that one of
the following conditions holds :

(C′
1) d contains �F , d

′ contains �P and m ≤ m′ + 1;
(C′

2) d contains �F and left-stutters ;
(C′

3) d contains �P and right-stutters.

Proof. (⇒) Take a 0-derivation of (q, 2|ϕ|+1). By Lemma 8, there is a derivation
d0 of (q, n0) with r(d0) ≤ 2|ϕ| satisfying either (C2) or (C3). If d0 left- or right-
stutters then we have (C′

2) or (C
′
3), respectively. Otherwise, d0 contains �F and

we can construct a finite sequence of 0-derivations d0, d1, d2, . . . , dk of reach at
most 2|ϕ|, where each di is a 0-derivation of (q, ni) containing �F , and such that
n0 > n1 > n2 > · · · > nk.

Suppose we have already constructed di. Since Ψ ⇒0 (q, n), for all n, we have
Ψ ⇒0 (q, ni − 1). By Lemma 8, there is a 0-derivation d of (q, ni+1), for some
ni+1, with one of (C1)–(C3). If (C2) and d left-stutters or (C3) and d right-
stutters then we obtain (C′

2) or (C
′
3), respectively. If (C2) and d contains�F with

ni+1 ≤ ni−1 then d becomes the next member di+1 in the sequence. If (C3) and d
contains�P with ni+1 ≥ ni−1 then di and d satisfy (C

′
1). Otherwise, we have (C1)

with ni+1 = ni − 1 (recall that ni > −2|ϕ|). Consider three cases. If d contains
�F then d becomes the next member di+1 in the sequence. If d contains �P then
di and d satisfy (C′

1). Otherwise, that is, if d contains neither �P nor �F , we must
have ni+1 = 0 and p →∗ q, for some p ∈ Ψ . Then we have ni = 1 and, as di
contains �F , we can append (q, 1) ⇒(R5) (�Fq, 0) ⇒(R4) (�Fq,−1) ⇒(R3) (q, 0)
to d to obtain the next member di+1 in the sequence.

(⇐) is left to the reader. ❑

We are now in a position to prove the main result of this section.

Theorem 4. The satisfiability problem for LTL�core-formulas is in NLogSpace.

Proof. An LTL�core-formula ϕ = Ψ ∧�∗ Φ+ ∧�∗ Φ− is unsatisfiable iff Φ− contains
a clause ¬λ1 ∨¬λ2 such that Kϕ, n |= λ1∧λ2, for some n with |n| ≤ K. For each
¬λ1 ∨ ¬λ2 in Φ−, our algorithm guesses such an n (in binary) and, for both λ1
and λ2, checks whether Ψ ⇒0 (λi, n) or Ψ ⇒∀ λi, which, by Lemmas 8 and 9,
requires only logarithmic space. ❑

The initial clauses of LTL�core-formulas ϕ are propositional variables. If we
slightly extend the language to allow for initial core-clauses (without �∗ ), then
the satisfiability problem becomes PTime-hard. This can be shown by reduction
of satisfiability of propositional Horn formulas with clauses of the form p, ¬p and
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p∧ q → r, which is known to be PTime-complete. Indeed, suppose f =
∧n

i=1 Ci

is such a formula. We define a temporal formula ϕf to be the conjunction of all
unary clauses of f with the following formulas, for each ternary clause Ci of the
form p ∧ q → r in f :

ci ∧ �∗ (p → �F ci) ∧ �∗ (q → �Pci) ∧ (�∗ ci → r),

where ci is a fresh variable. One can show that f is satisfiable iff ϕf is satisfiable.
We finish this section by an observation that if the language allows for non-

Horn clauses (e.g., p ∨ q) then the satisfiability problem becomes NP-hard:

Theorem 5. The satisfiability problem for LTL�krom-formulas is NP-hard.

Proof. By reduction of graph 3-colourability. Given a graph G = (V,E), consider
the following LTL�krom-formula ϕG with variables p0, . . . , p4 and vi, for vi ∈ V :

p0 ∧
∧

0≤i≤3
�∗ (pi → �Fpi+1) ∧

∧

vi∈V
�∗ (p0 → ¬�Fvi) ∧

∧

vi∈V
�∗ (p4 → vi) ∧

∧

(vi,vj)∈E
�∗ (vi ∨ vj).

Intuitively, the first four conjuncts of this formula choose, for each vertex vi of
the graph, a moment of time 1 ≤ ni ≤ 3; the last conjunct makes sure that
ni �= nj in case vi and vj are connected by an edge in G. It can be easily shown
that ϕG is satisfiable iff G is 3-colourable. ❑

5 Conclusion

We have investigated the computational complexity of the satisfiability problem
for the fragments of LTL over (Z, <) given by the form of the clauses—bool,
horn, krom and core—in the clausal normal form and the temporal operators
available for constructing temporal literals. Apart from LTL�,©

bool , whose formulas

are equisatisfiable to formulas in the full LTL, only LTL�,©
horn has PSpace-complete

satisfiability. For all other fragments, the complexity varies from NLogSpace
to PTime and NP.

The idea to consider sub-Boolean fragments of LTL comes from description
logic, where the DL-Lite family [9,3] of logics has been designed and investi-
gated with the aim of finding formalisms suitable for ontology-based data ac-
cess (OBDA). It transpired that, despite their low complexity, DL-Lite logics
were capable of representing basic conceptual data modelling constructs [8,2],
and gave rise to the W3C standard ontology language OWL 2 QL for OBDA.
One possible application of the results obtained in this paper lies in tempo-
ral conceptual modelling and temporal OBDA [5]. Temporal description logics
(and other many-dimensional logics) are notorious for their bad computational
properties [17,20]. We believe, however, that efficient practical reasoning can
be achieved by considering sub-Boolean temporal extensions of DL-Lite logics;
see [4] for first promising results.
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