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Abstract. Subset spaces constitute a relatively new semantics for bi-
modal logic. This semantics admits, in particular, a modern, computer
science oriented view of the classic interpretation of the basic modalities
in topological spaces à la McKinsey and Tarski. In this paper, we look
at the relationship of both semantics from an opposite perspective as it
were, by asking for a consideration of subset spaces in terms of topology
and topological modal logic, respectively. Indeed, we shall finally ob-
tain a corresponding characterization result. A third semantics of modal
logic, namely the standard relational one, and the associated first-order
structures, will play an important part in doing so as well.
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1 Introduction

Nowadays, successful applications of modal logic to computer science are abun-
dant. We focus on a particular system from the realm of formal reasoning here,
which may be seen as a cross-disciplinary framework for dealing with spatial as
well as epistemic scenarios: the talk is of Moss and Parikh’s bi-modal logic of
subset spaces; see [12], [5], or Ch. 6 of [2].

We shall now indicate how the interrelation of the underlying ideas, knowledge
and spatiality, is correspondingly revealed. The epistemic state of an agent under
discussion, i.e., the set of all those states that cannot be distinguished by what
the agent topically knows, can be viewed as a neighborhood U of the actual state
x of the world. Formulas are then interpreted with respect to the resulting pairs
x, U called neighborhood situations. Thus, both the set of all states and the set of
all epistemic states constitute the relevant semantic domains as particular subset
structures. The two modalities involved, K and �, quantify over all elements of U
and ‘downward’ over all neighborhoods contained in U , respectively. This means
that K captures the notion of knowledge as usual (see [7]), and � reflects effort
to acquire knowledge since gaining knowledge goes hand in hand with a shrinkage
of the epistemic state. In fact, knowledge acquisition is this way reminiscent of a
topological procedure. The appropriate logic for ‘real’ topological spaces, called
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topologic, was first determined by Georgatos in his thesis [8]. Meanwhile, a lot
of work has been done on the development of a modal logical theory of subset
spaces and, in particular, topological spaces on this basis; see [2] for a guide to
the earlier literature. (To our knowledge, [10], [3], and [13], are the most recent
papers in this field, with the last two forging links between subset spaces and
Dynamic Epistemic Logic (DEL); see [6].)

The topological semantics of modal logic dates back to the late 1930s; see the
respective notes in the paper [11]. In recent years, the research into logics based
on this semantics has considerably been ramped up to satisfy requirements relat-
ing to spatial modelling and reasoning tasks in computer science; the handbook
[5] contains lots of references regarding this as well (see, in particular, Ch. 5 and
Ch. 10 there). The characteristic feature is the following interpretation of the
modal box here: for every formula α, the validity domain of �α is defined to
be the interior of the validity domain of α. With that, the well-known modal
system S4 has been proved to be the logic of the class of all topological spaces;
see [11] again. – This is all that must be said about topological modal logic for
the moment; more facts will be given in Section 3 below.

There is a translation from mono-modal to bi-modal formulas which conveys
the already rather transparent connection between the two interpretations in
topological spaces just mentioned. Its decisive clause reads �α �→ �Kα; see
[5], Proposition 3.5. This translation even gives rise to an embedding of S4 into
topologic; see [5], Theorem 3.7. Thus, the elder, purely spatial formalism may be
retrieved from a more comprehensive framework regarding epistemic issues, too.

Conversely, can subset spaces be identified in a purely topological way? – As
it stands, this question is not raised precisely enough. So we must say that we
are not looking for a somehow good-natured translation in the other direction
here; this issue has already been discussed in [5], Sect. 3.2. Instead, our topic
is the following. Subset spaces are closely related to certain bi-modal Kripke
models having the same logic; see [5], Sect. 2.3. These structures of course are
bi-topological since they validate, in particular, two modal logics containing S4.
Thus, our initial question is to be specified as follows: can a topological char-
acterization of all those bi-topological structures that originate from a subset
space be given and, should the situation arise, up to what extent in terms of
topological modal logic? – The goal of this paper is to give an affirmative answer
and a corresponding description, respectively.

The present paper grew out of a remark of Anil Nerode at LFCS 2013. It
makes a contribution in several respects. First, it clarifies the interplay of the
three semantics involved to a greater extent. Second, it facilitates an alternative
view of subset spaces. In fact, it is generally very desirable (and common in
mathematics) to have at hand different ways of seeing a subject, in order to be
able to react on varying problems flexibly. Third, the crucial axiom schema of
the logic of subset spaces, called the Cross Axioms in [5], is given a topological
reading as a certain cover property here. And finally, a topological formulation
of the properties defining subset spaces as first-order structures is supplied. All
this makes this paper a theoretical one on a system being, on the other hand,
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of practical relevance to the reasoning process. The latter has been taken as a
justification to submit the paper to LPAR.

We now proceed to the technical issues. In the following section, we first intro-
duce the language for subset spaces, and we recapitulate the known relationship
between subset spaces and Kripke models. Later on in this section, we review
the logic arising from that language. Section 3 then deals with the basics of
topological modal logic in more detail. In Section 4, the topological effect of the
Cross Axioms is illuminated. The final technical section contains the characteri-
zation theorem announced above, before the paper is finished by some concluding
remarks.

2 The Language and the Logic of Subset Spaces

In this section, we first fix the language for subset spaces, L. After that, we link
the semantics of L with the common relational semantics of modal logic. Finally,
we recall some facts on the logic of subset spaces needed subsequently.

To begin with, we define the syntax of L. Let Prop = {p, q, . . .} be a denumer-
ably infinite set of symbols called proposition variables (which should represent
the basic facts about the states of the world). Then, the set Form of all L-
formulas1 over Prop is defined by the rule α ::= � | p | ¬α | α ∧ α | Kα | �α.
The mono-modal fragment MF of Form is obtained by disregarding the clause
for K in this rule. Later on, the boolean connectives that are missing here are
treated as abbreviations, as needed. The dual operators of K and � are denoted
by L and �, respectively; K is called the knowledge operator and � the effort
operator.

We now turn to the semantics of L. For a start, we define the relevant domains.
We let P(X) designate the powerset of a given set X .

Definition 1 (Semantic Domains).

1. Let X be a non-empty set (of states) and O ⊆ P(X) a set of subsets of X.
Then, the pair S = (X,O) is called a (subset) frame.

2. Let S = (X,O) be a subset frame. Then the set

NS := {(x, U) | x ∈ U and U ∈ O}

is called the set of neighborhood situations of S.
3. Let S = (X,O) be a subset frame. An S-valuation is a mapping V :

Prop → P(X).
4. Let S = (X,O) be a subset frame and V an S-valuation. Then, M :=

(X,O, V ) is called a subset space (based on S).

Note that neighborhood situations denominate the semantic atoms of our bi-
modal language. The first component of such a situation indicates the actual
state of the world, while the second reflects the uncertainty of the agent in

1 The prefix ‘L’ will be omitted provided there is no risk of confusion.
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question about it. Furthermore, Definition 1.3 shows that values of proposition
variables depend on states only. This is in accordance with the common practice
in epistemic logic; cf. [7].

For a given subset space M, we now define the relation of satisfaction, |=M ,
between neighborhood situations of the underlying frame and formulas from
Form. Based on that, we define the notion of validity of L-formulas in subset
spaces and in subset frames. In the following, neighborhood situations are often
written without parentheses.

Definition 2 (Satisfaction and Validity). Let S = (X,O) be a subset frame.

1. Let M = (X,O, V ) be a subset space based on S, and let (x, U) ∈ NS be a
neighborhood situation. Then

x, U |=M � is always true
x, U |=M p : ⇐⇒ x ∈ V (p)
x, U |=M ¬α : ⇐⇒ x, U 
|=M α
x, U |=M α ∧ β : ⇐⇒ x, U |=M α and x, U |=M β
x, U |=M Kα : ⇐⇒ ∀ y ∈ U : y, U |=M α
x, U |=M �α : ⇐⇒ ∀U ′ ∈ O : [x ∈ U ′ ⊆ U ⇒ x, U ′ |=M α] ,

where p ∈ Prop and α, β ∈ Form. In case x, U |=M α is true we say that α
holds in M at the neighborhood situation x, U.

2. Let M = (X,O, V ) be a subset space based on S. An L-formula α is called
valid in M iff it holds in M at every neighborhood situation of S.

3. An L-formula α is called valid in S iff it is valid in every subset space M
based on S; in this case, we write S |= α.

Note that the idea of knowledge and effort described in the introduction is
made precise by Item 1 of this definition. In particular, knowledge is defined as
validity at all states that are indistinguishable to the agent; cf. [7].

Obviously, subset spaces are on the same level of language as are Kripke
models in common modal logic (whereas subset frames correspond to Kripke
frames).

Subset frames and spaces might be considered from a different perspective, as
is known since [5] and reviewed in the following. Let a subset frame S = (X,O)
and a subset space M = (X,O, V ) based on S be given. Take WS := NS as a
set of worlds, and define two accessibility relations RK

S and R�
S on WS by

(x, U)RK
S (x′, U ′) : ⇐⇒ U = U ′ and

(x, U)R�
S (x′, U ′) : ⇐⇒ (x = x′ and U ′ ⊆ U),

for all (x, U), (x′, U ′) ∈ WS . Moreover, let VM(p) := {(x, U) ∈ WS | x ∈ V (p)},
for every p ∈ Prop. Then, bi-modal Kripke structures SS :=

(
WS , {RK

S , R
�
S }

)

and MM :=
(
WS , {RK

S , R
�
S }, VM

)
result in such a way that MM is equivalent

to M in the following sense.

Proposition 1. For all α ∈ Form and (x, U) ∈ WS , we have that x, U |=M α
iff MM, (x, U) |= α.



Characterizing Subset Spaces as Bi-topological Structures 377

Here (and later on as well), the symbol ‘|=’ denotes the usual satisfaction
relation of modal logic. – The proposition is easily proved by induction on α.
We call SS and MM the Kripke structures induced by S and M, respectively.

The question to what extent one can go the other way round, i.e., associate
subset spaces to suitable Kripke structures so that the latter are the induced
ones, will play an important part below. Some significant information on what
‘suitable’ means in this connection, is provided by looking at the logic of subset
spaces (referred to as LSS later). Here is a sound and complete axiomatization
(cf. [5], Sect. 2.2):

1. All instances of propositional tautologies
2. K(α → β) → (Kα → Kβ)
3. Kα → (α ∧ KKα)
4. Lα → KLα
5. (p → �p) ∧ (�p → p)
6. � (α → β) → (�α → �β)
7. �α → (α ∧��α)
8. K�α → �Kα,

where p ∈ Prop and α, β ∈ Form; note that the last schema represents the
aforementioned Cross Axioms. As a result, we obtain that LSS is sound and
complete also with respect to the class of all Kripke models M such that

– the accessibility relation R of M belonging K is an equivalence (in other
words, where K is an S5-modality),

– the accessibility relation R′ of M belonging to � is reflexive and transitive
(i.e., � is S4-like),

– the composite relation R′ ◦ R is contained in R ◦ R′ (this is usually called
the cross property), and

– the valuation of M is constant along every R′-path, for all proposition
variables.

The most interesting fact is the cross property here, formalizing the interplay
between knowledge and effort. Thus, a bi-modal Kripke frame is called a cross
axiom frame, iff its relations satisfy all these conditions apart from the last one;
and a bi-modal Kripke model is called a cross axiom model, iff it is based on a
cross axiom frame and the final requirement is satisfied, too. Now, it is easy to see
that every induced Kripke frame is a cross axiom frame and every induced Kripke
model is a cross axiom model. Hence we should find the candidates relating to
the above question among these structures.

We are going to change from first-order to topological properties for now.
However, we shall return to those later on.

3 Topological Modal Logic

The paper [1] as well as van Benthem and Bezhanishvili’s chapter of the hand-
book [2] (that is, Ch. 5 there) contain all the facts from topological modal logic
that are relevant for our purposes; these are freely quoted below.
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First in this section, we revisit the topological semantics of modal logic. Let
T = (X, τ) be a topological space, V a T -valuation in the sense of Definition 1, and
M := (X, τ, V ). Then, the topological satisfaction relation |=t is defined canoni-
cally for�, the proposition variables, and in the boolean cases, whereas the clause
for the �-operator reads

M, x |=t �α : ⇐⇒ ∃U ∈ τ : [x ∈ U ∧ ∀ y ∈ U : M, y |=t α] ,

for all x ∈ X and every mono-modal formula α ∈ MF.2

We now connect |=t to the common relational semantics. As is known, a
reflexive and transitive binary relation R on a setW is called a quasi-order onW .
Quasi-ordered non-empty sets (W,R) are also called S4-frames since the modal
logic S4 is sound and complete with respect to this class of structures. Given
an S4-frame (W,R), a subset U ⊆ W is called R-upward closed iff w ∈ U and
wRv imply v ∈ W , for all w, v ∈ W . (Correspondingly, R-downward closed sets
are defined.) The set of all R-upward closed subsets of W is, in fact, a topology
on W (with the R-downward closed sets being topologically closed ones). This
topology, denoted by τR, is Alexandroff, i.e., the intersection of arbitrarily many
open sets is again open. With that, we obtain the following correlation (which
is easy to prove again).

Proposition 2. Let M = (W,R, V ) be an S4-model and MM := (W, τR, V ) be
based on the associated Alexandroff space. Then, for all α ∈ MF and w ∈ W , we
have that M,w |= α iff MM , w |=t α.

And vice versa, starting from an Alexandroff space T = (X, τ) yields an
equivalent S4-frame ST := (X,Rτ ) by taking the specialization order Rτ of τ
for the accessibility relation (i.e., xRτ y : ⇐⇒ x belongs to the closure {y} of
{y}, for all x, y ∈ X); as for the equivalence just asserted, note that we have
τ = τRτ in this case (while R = RτR is always true).

Restricting the just established one-to-one correspondence to spaces satisfying
the separation axiom T0 additionally (i.e., for any two distinct points there is an
open neighborhood of either of them not containing the other one), yields a one-
to-one correspondence between partially ordered sets and Alexandroff T0-spaces;
this is recorded for later purposes here.

The next topic to be treated is the topological impact of the modal system
S5. It is well-known that the accessibility relation of a Kripke frame validating
this logic is an equivalence. The topological counterpart of the class of all such
frames is given by the next proposition.

Proposition 3. Let T = (X, τ) be a topological space. Then, all S5-sentences
are (topologically) valid in T iff every τ-closed set is open.

Here, we have used the obvious notion of topological frame validity. A proof
of Proposition 3 only making recourse to the satisfaction relation |=t is given

2 This formulation and the one given in the introduction are easily seen to be
equivalent.
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in [2], p. 253. However, one can also argue with the aid of the accessibility
relation and the specialization order, respectively. For that, note that the R-
upward closed sets are precisely the unions of equivalence classes whenever R
is an equivalence relation. This implies that every τR-closed set is open in this
case. On the other hand, the latter demand on τ entails that Rτ is symmetric
and thus an equivalence, as can be seen easily.

Finally in this section, we deal with the question of topological completeness,
which has been touched upon in the introduction already. Concerning S4, several
ways to establish this property can be found in the literature quoted so far.

We focus on our bi-modal setting now, in view of subsequent applications. It
turns out that the most straightforward proceeding will do here, at least for the
time being.

Definition 3 (Bi-topological Structures).

1. Let X be a non-empty set and σ, τ topologies on X. Then, the tuple S :=
(X, σ, τ) is called a bi-topological space.

2. Let S = (X, σ, τ) be a bi-topological space and V an S-valuation. Then
M := (X, σ, τ, V ) is called a bi-topological model.

Unless stated otherwise, formulas from Form will be interpreted in bi-topol-
ogical structures by use of the bi-topological satisfaction relation |=t as from
now;3 the modality K should correspond to σ and the modality � to τ in
doing so.

Proposition 2 has an obvious bi-modal analogue which is formulated for the
more special structures we are interested in here.4

Proposition 4. Let M = (W, {R,R′}, V ) be a Kripke model such that R is an
equivalence relation, R′ a quasi-order, and, for all proposition variables, V is
constant along every R′-path. Moreover, let MM := (W, τR, τR′ , V ). Then, for
all α ∈ Form and w ∈ W , we have that M,w |= α iff MM , w |=t α.

Let LS denote the bi-modal logic determined by the axiom schemata 1 – 7
from above (and having modus ponens as well as the necessitation rules for both
modalities as proof rules). Then, we obtain the following theorem.

Theorem 1. The logic LS is sound and complete with respect to the class of all
bi-topological models (X, σ, τ, V ) satisfying the following requirements.

1. Every σ-closed set is open.
2. The topology τ is Alexandroff.
3. For every point x ∈ X, the valuation V is constant throughout the least

τ-open set containing x.

3 Concerning notations in this regard, we do not distinguish between the common
mono-modal case and the bi-modal one considered here; this should not lead to
confusion.

4 Some later auxiliary results too could have been stated in a more general form.
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Proof. First note that, for every point x ∈ X , a least τ -open neighborhood of x
really exists in case τ is Alexandroff. Now, the soundness of the axioms is clear
from the above, except for Axiom 5. However, the validity of Axiom 5 can be
established directly (i.e., by using the definition of |=t).

As to completeness, note that the canonical model MLS of the logic LS satisfies
all the conditions that are stated forM in Proposition 4. Thus, it suffices to prove
that MMLS

meets the three requirements given in the theorem. Since the first
and the second item are clear from the above again, an argument is needed for
the third one only. For it, note that, in general, the least τR′ -open neighborhood
of any point x is contained in the union of all R′-paths through x, provided
that R′ is a quasi-order. The path-constancy of the proposition variables, which
is satisfied on the canonical model, therefore implies the validity of the third
condition. This completes the proof of the theorem.

Can the preceding theorem be extended (in the correctly understood sense)
to the logic LSS? – Among other things, this question will be discussed in the
next section.

4 Topological Cross Axiom Spaces

It is not immediately clear how a topological counterpart of the cross property
looks like. The ‘näıve’ LSS-analogue of Theorem 1 should, therefore, apply to
the specialization orders of the topologies involved. We state the corresponding
result at the beginning of this section. Afterwards, we show that a particular
correspondence between topological concepts and the Cross Axioms appears
nevertheless. – We need a certain converse of Proposition 4.

Proposition 5. Let M := (X, σ, τ, V ) be a bi-topological model, and let MM :=
(X, {Rσ, Rτ}, V ). Then, for all α ∈ Form and x ∈ X, we have that M, x |=t α
iff MM, x |= α.

With that, the just announced theorem can be proved easily.

Theorem 2. The logic LLS is sound and complete with respect to the class of
all bi-topological models (X, σ, τ, V ) satisfying the following requirements.

1. Every σ-closed set is open.
2. The topology τ is Alexandroff.
3. The specialization orders Rσ and Rτ satisfy the cross property (i.e., Rτ ◦

Rσ ⊆ Rσ ◦Rτ ).
4. For every point x ∈ X, the valuation V is constant throughout the least

τ-open set containing x.

Proof. Only the third item must be considered yet. First, note that the canon-
ical relations of LLS (see [4], Definition 4.18) satisfy the cross property.5 Hence

5 A direct argument for this is given in [5], Proposition 2.2. Note that a simpler
argument would do in case of a normal modal logic, since the Cross Axioms K�p →
�Kp with p a proposition variable are Sahlqvist formulas; see [4], Theorem 4.42.
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completeness ensues in the same way as in the proof of Theorem 1. On the
other hand, the soundness of LLS for the given class of structures follows from
Proposition 5. This proves the theorem.

We now introduce a certain cover property for bi-topological spaces. Then
we show that this property corresponds to the Cross Axioms in the same way
as, for example, the transitivity of the accessibility relation associated with the
operator � corresponds to the formula schema �α → ��α (as related to the
most basic modal logic).

Definition 4 (Cover Property). Let S = (X, σ, τ) be a bi-topological space.
Then, S is said to satisfy the cover property iff, for all points x ∈ X, every
τ-open cover C of any σ-open neighborhood of x contains a σ-open cover C′ of
some τ-open neighborhood of x (to the effect that

⋃
C ⊇

⋃
C′).

The desired correspondence between the cover property and the Cross Axioms
is established by the following proposition (cf. Proposition 3).

Proposition 6. Let S = (X, σ, τ) be a bi-topological space. Then, all the Cross
Axioms are (topologically) valid in S iff S satisfies the cover property.

Proof. First, we prove that every Cross Axiom is valid in S whenever S satisfies
the cover property. To this end, take any bi-topological model M = (X, σ, τ, V )
based on S and any point x ∈ X , and assume that M, x |=t K�α (with α ∈
Form). Then there exists a σ-open neighborhood U of x such that �α holds in
M throughout U . Thus, for all y ∈ U there is a τ -open neighborhood Uy of y
such that α holds in M throughout Uy. Evidently, C := {Uy | y ∈ U} is a τ -
open cover of the σ-open neighborhood U of x. According to the cover property,
C contains a σ-open cover C′ of some τ -open neighborhood Ux of x. Take any
z ∈ Ux. Then there is a σ-open set U ′ ∈ C′ containing z. We have M, z |=t Kα
because U ′ ⊆

⋃
C′ ⊆

⋃
C. From that we obtain that M, x |=t �Kα, as z has

been chosen arbitrarily. This shows that K�α → �Kα is valid in S.
Second, suppose that the cover property is violated in S. Then there is a point

x ∈ X and a τ -open cover C of some σ-open neighborhood U of x such that no
σ-open cover C′ of any τ -open neighborhood U ′ of x is contained in C. Define
an S-valuation V as follows. Fix any p ∈ Prop, let V (p) :=

⋃
C, and let V be

arbitrary for the proposition variables different from p. Let M := (X, σ, τ, V ).
Then, M, x |=t K�p. On the other hand, for all τ -open neighborhoods U ′ of x
there is a point y ∈ U ′ such that every σ-open neighborhood U ′′ of y contains a
point z /∈

⋃
C, since otherwise we could construct a good-natured σ-open cover

C′ of some τ -open neighborhood of x. This implies that M, x |=t �L¬p. It follows
that some of the Cross Axioms are invalid in S.

Note that, in a sense, the just given argument is incompatible with the re-
quirement on the constance of proposition variables as stated, e.g., in the fourth
item of Theorem 2.

With a view to canonicity (and to the topological characterization result we
have in mind), we now connect the cover property with the cross property (in
the fashion of our reasoning after Proposition 3).
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Proposition 7. 1. Let S = (W, {R,R′}) be a cross axiom frame, and let SS :=
(W, τR, τR′). Then SS satisfies the cover property.

2. Let S = (X, σ, τ) be a bi-topological space with σ and τ being Alexandroff.
Suppose that S satisfies the cover property. Then the associated Kripke frame
SS := (X, {Rσ, Rτ}) satisfies the cross property.

Proof. 1. For every u ∈ W , let R(u) := {v ∈ W | uRv} and R′(u) := {v ∈
W | uR′ v}. Obviously, R(u) and R′(u) are the least τR-open and τR′ -open
neighborhoods of u, respectively; moreover, R(u) equals the R-equivalence
class of u. Now, let w ∈ W be any point, and let C be any τR′ -open cover
of some τR-open neighborhood Uw of w. Take the τR′ -open neighborhood
R′(w) of w and define C′ := {R(v) | v ∈ R′(w)}. Then, C′ clearly is a τR-
open cover of R′(w). We argue that

⋃
C′ ⊆

⋃
C. For this, take any x ∈

⋃
C′.

Then, x ∈ R(v) for some v ∈ R′(w). Thus we have wR′ v Rx. Due to the
cross property, it follows that wRyR′ x, for some y ∈ W . We obtain y ∈
R(w) ⊆ Uw because of the minimality of R(w). And we get x ∈ R′(y) ⊆ U
for some U ∈ C because of the minimality of R′(y) and the fact that y ∈ Uw.
This shows that x ∈

⋃
C, as desired.

2. Let xRτ y Rσ z be satisfied for any x, y, z ∈ X . We have σ = σRσ and
τ = τRτ , since σ and τ are Alexandroff; this was mentioned right after
Proposition 2 above. Thus, it makes sense to speak about the minimal τ -
open cover C of the minimal σ-open neighborhood Ux of the point x on the
one hand, on the other hand, we have Ux = Rσ(x) and C = {Rτ (u) | u ∈ Ux}.
According to the cover property, C contains a σ-open cover C̃ of some τ -open
neighborhood of x. For reasons of minimality, this means that C contains the
cover C′ of the minimal τ -open neighborhood of x defined in the first part
of the proof (here with Rσ instead of R and Rτ instead of R′ though) as
well. From xRτ y Rσ z we now infer z ∈

⋃
C′. Hence z ∈

⋃
C. This implies

that there exists a point v ∈ X such that xRσ v Rτ z, due to the choice of
C. Thus, the cross property is established.

As a consequence, we obtain the following characterization of bi-topological
spaces arising from cross axiom frames.

Theorem 3. Let S = (X, σ, τ) be a bi-topological space. Then there is a cross
axiom frame S = (W, {R,R′}) such that σ = τR and τ = τR′ iff

1. every σ-closed set is open,
2. the topology τ is Alexandroff, and
3. S satisfies the cover property.

Proof. The necessity of the three conditions follows from both Proposition 7.1
and some of the results quoted in Section 3. Now, assume that these conditions
are satisfied. Then σ is clearly Alexandroff. By Proposition 7.2, the frame SS =
(X, {Rσ, Rτ}) satisfies the cross property. Moreover,Rσ is an equivalence and Rτ

a quasi-order; see Section 3 again. Additionally, we have σ = τRσ and τ = τRτ .
This proves the theorem.
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In the next section, we will prove a similar (but more complex) statement
with regard to Kripke structures induced by subset spaces. This will be the
main outcome of this paper.

By virtue of Theorem 3, a bi-topological space S = (X, σ, τ) is called a topo-
logical cross axiom space iff those three requirements are satisfied. And a bi-
topological model M = (X, σ, τ, V ) based on a topological cross axiom space is
called a topological cross axiom model iff, for every point x ∈ X , the valuation
V is constant throughout the least τ -open set containing x.

We conclude this section with a version of Theorem 2 having a purely topo-
logical reading.

Theorem 4. The logic LLS is sound and complete with respect to the class of
all topological cross axiom models.

Proof. The soundness of LLS with respect to the given class of structures is clear
from (the uncritical part of) Proposition 6. Concerning completeness, we must
give reasons respecting just the cover property. We proceed as in the proof of
Theorem 2 relating to this, and apply Proposition 7.1 additionally.

Theorem 3 and Theorem 4 comprise, in particular, all that we can achieve with
regard to our characterization problem on the (modal-)logical side. However,
more turns out to be possible on the topological one.

5 The Characterization Theorem

We shall now specify a couple of further requirements for bi-topological Alexan-
droff spaces to arise from induced cross axiom frames. This puts us in a position
to state and prove the main result of this paper subsequently.

Definition 5 (Minimal Basis; Orthogonality).

1. Let S = (X, σ, τ) be a bi-topological space such that σ and τ are Alexandroff.
For any x ∈ X, let Rσ(x) := {y ∈ X | xRσ y} (as above), and let Rτ (x)
be defined analogously. Then, the sets Bσ := {Rσ(x) | x ∈ X} and Bτ :=
{Rτ (x) | x ∈ X} are called the minimal bases of σ and τ , respectively.

2. Let S, x, and Rτ (x), be as above. Then we let R−1
τ (x) := {y ∈ X | y Rτ x}

and Bτ := {R−1
τ (x) | x ∈ X}. The latter set is called the set of minimal

τ -closed sets.
3. Let A,B ⊆ P(X) be two sets of subsets of X. These sets are said to be

orthogonal iff any two members A ∈ A and B ∈ B intersect in at most one
point.

Note that Bσ and Bτ are indeed bases of σ and τ , respectively. Moreover, note
that, for every x ∈ X , the set R−1

τ (x) is downward closed (see Section 3) and
equals the closure {x} of {x} actually; this justifies the naming in Definition
5.2. Finally, the condition stated in the third item reflects, at least in part, the
geometric idea of orthogonality.

We obtain the following criterion resting on the just introduced notations.
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Proposition 8. Let S = (X, σ, τ) be a bi-topological space with σ and τ being
Alexandroff.

1. The minimal bases Bσ and Bτ are orthogonal iff, for all x, y ∈ X, there exists
at most one Rτ -successor of x inside Rσ(y).

2. The minimal base Bσ and the set Bτ of minimal τ-closed sets are orthogonal
iff, for all x, y ∈ X, there exists at most one Rτ -predecessor of x inside
Rσ(y).

Proof. 1. First, assume that Bσ and Bτ are orthogonal. Let x, y be any points
of X and suppose that two different Rτ -successors z1, z2 of x are contained
in Rσ(y). Then, however, a contradiction to the orthogonality of the minimal
bases immediately results, since both z1, z2 ∈ Rτ (x). – The sufficiency of the
condition can be seen easily as well.

2. This assertion can be proved in a similar manner.

For brevity, we say that a bi-topological space S satisfies the orthogonality
properties iff both conditions stated in Proposition 8 are met.

Our next requirement concerns a certain binary relation �S on the minimal
base Bσ of a bi-topological Alexandroff space S = (X, σ, τ). This relation should
be a quasi-order and, in a sense, without a gap. The precise definitions follow
right away.

Definition 6 (�S ; Density Property). Let S = (X, σ, τ) be a bi-topological
space with σ and τ being Alexandroff.

1. For all x, y ∈ X, put Rσ(x) �S Rσ(y) : ⇐⇒ there are x′ ∈ Rσ(x) and
y′ ∈ Rσ(y) such that y′ ∈ Rτ (x

′).
2. The just defined relation �S is said to satisfy the density property iff, when-

ever Rσ(x) �S Rσ(y) �S Rσ(z), then, for any x′ ∈ Rσ(x) and z′ ∈ Rσ(z)
such that z′ ∈ Rτ (x

′), there exists y′ ∈ Rσ(y) satisfying y′ ∈ Rτ (x
′) and

z′ ∈ Rτ (y
′).

With that, we obtain the following result with the aid of standard arguments
from the logic of subset spaces.

Proposition 9. Let S = (X, σ, τ) be a topological cross axiom space. Then, the
corresponding relation �S is

1. a quasi-order in any case, and
2. even a partial order if, in addition, the relation Rτ is antisymmetric and the

minimal bases Bσ and Bτ are orthogonal.

Proof. 1. The reflexivity of �S is obvious. In order to establish the transitivity
of this relation, we take advantage of the cross property, which is satisfied
by the frame SS = (X, {Rσ, Rτ}) according to Proposition 7.2.

2. This follows from the definitions with the aid of the cross property again.6

6 Note that this result can under certain conditions be obtained ‘purely logically’, by
adding a particular axiom schema for tree-like structures; see [9], Proposition 3.5.
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Finally, we introduce a condition that may appear somewhat odd to the reader
at first glance. However, its significance will become clear from the construction
in the proof of Theorem 5 below.

Definition 7 (Tamely Ramified). Let S = (X, σ, τ) be a bi-topological space
such that σ and τ are Alexandroff. Moreover, let Bσ and Bτ be the minimal bases
of σ and τ , respectively. Then we say that Bσ is tamely ramified across Bτ , iff
the following is satisfied for any two Rσ(x), Rσ(y) ∈ Bσ : if every point of Rσ(y)
is contained in the symmetric closure, taken with respect to Rτ , of Rσ(x), then
Rσ(x) �S Rσ(y).

It turns out that tame ramification in the sense of the previous definition is
always factual for spaces that are derived from induced Kripke frames.

Proposition 10. Let S = (X, σ, τ) be a bi-topological space and S = (X,O)
a subset frame such that σ = τRK

S
and τ = τR�

S
. Then Bσ is tamely ramified

across Bτ .

Proof. Due to the fact that R�
S originates from the containment relation, the

correctness of the assertion can be seen rather easily.

The preparatory work towards our main result has been completed by the
last proposition. Thus, we are in a position to prove our final theorem now.

Theorem 5. Let S = (X, σ, τ) be a bi-topological space. Then there is a subset
frame S = (X,O) such that σ = τRK

S
and τ = τR�

S
iff

1. every σ-closed set is open,
2. the topology τ is Alexandroff and satisfies the separation property T0,
3. S satisfies the cover property,
4. S satisfies the orthogonality properties,
5. the relation �S is a quasi-order satisfying the density property,
6. the minimal basis Bσ of σ is tamely ramified across the minimal basis Bτ

of τ , and
7. every element of the minimal basis Bσ contains a τ-open point.

Proof. The left-to-right direction is easy to prove. Let S = (X,O) be a subset
frame such that σ = τRK

S
and τ = τR�

S
. Items 1 and 2 then follow from topological

modal logic; see Section 3. Item 3 is clear from Proposition 7.1, since RK
S and R�

S
satisfy the cross property; see the end of Section 2. Furthermore, one is quickly
convinced that the first-order conditions corresponding to the orthogonality and
the density properties are applicable to RK

S and R�
S . By Proposition 8, S sat-

isfies the orthogonality properties, and by Proposition 9.1, the relation �S is
a quasi-order which, in particular, satisfies the density property. Proposition 10
guarantees that the last but one item is satisfied. For the last one, note that the
openness of {x} exactly means that x has no Rτ -successor apart from x itself.

For the other direction, assume that the seven requirements are met by S.
It suffices to show that SS = (X, {Rσ, Rτ}) is isomorphic to the Kripke frame
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SS =
(
WS , {RK

S , R
�
S }

)
induced by some subset frame S = (Y,O), for we will have

σ = τRσ = τRK
S
and τ = τRτ = τR�

S
in this case (after identifying isomorphic

structures). – The following is clear from our previous statements and results.

(a) The relation Rσ is an equivalence (see Proposition 3 and the remark there-
after), and the relation Rτ is a partial order (see the remarks after Proposi-
tion 2).

(b) SS satisfies the cross property (see Proposition 7.2).
(c) For all x, y ∈ X , there exists at most one Rτ -successor of x inside the

equivalence class Rσ(y) of y, and there exists at most one Rτ -predecessor of
x inside Rσ(y) (see Proposition 8).

(d) The relation �S is a partial order (see Proposition 9.2).

The set Y will be obtained as a certain set of partial functions on Bσ shortly.7

For this purpose, let x, y ∈ X be given and suppose that Rσ(x) �S Rσ(y).
It can be concluded from (b) and (c) that the relation Rτ restricted to Rσ(x)
in the domain and Rσ(y) in the range, is an injective and surjective partial
function, say fRσ(x),Rσ(y). This function is, in fact, strictly partial because of
the last condition stated in the theorem. Now, let Y be the set of all partial
functions f : Bσ → X having a domain dom(f) that is maximal with respect to
the following three conditions:

– f(Rσ(x)) ∈ Rσ(x), for all Rσ(x) ∈ dom(f);
– f(Rσ(y)) = fRσ(x),Rσ(y)◦f(Rσ(x)), for all Rσ(x), Rσ(y) ∈ dom(f) satisfying

Rσ(x) �S Rσ(y);
– the range of f is Rτ -connected, i.e., for all x, y ∈ range(f), xRs

τ y is valid,
where Rs

τ denotes the symmetric closure of Rτ .

Note that (d) and the density property imply the coherence of the second con-
dition, whence the process of maximizing the domain is really possible.

For every x ∈ X , let URσ(x) := {f ∈ Y | f(Rσ(x)) exists}, and let O :=
{URσ(x) | x ∈ X}. Then, SS

∼= SS is valid for the subset frame S := (Y,O). To
see this, note that a one-to-one mapping h from the set NS of all neighborhood
situations of S onto the set of all points of X is mediated by f, URσ(x) �→ fRσ(x),
where fRσ(x) := f(Rσ(x)), in such a way that, for all f, g ∈ Y and x, y ∈ X with
f ∈ URσ(x), we have that

g ∈ URσ(x) ⇐⇒ gRσ(x)Rσ fRσ(x).

All this is rather easy to prove, and the claimed isomorphism is established with
regard to the K-component thus. As to the �-part, we prove that, for all f ∈ Y
and x, y ∈ X such that f ∈ URσ(x) ∩ URσ(y),

URσ(y) ⊆ URσ(x) ⇐⇒ fRσ(x)Rτ fRσ(y),

showing the compatibility of the containment relation ⊆ with the accessibility
relation Rτ . The right-to-left direction is more or less obvious. For the left-to-
right direction, assume that URσ(y) ⊆ URσ(x). This means that, for all f ∈ Y , if

7 We once more note that Bσ equals the set of all Rσ-equivalence classes.
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fRσ(y) is defined, then fRσ(x) is defined as well. According to the way the elements
of Y have been obtained, we conclude that every point of Rσ(y) is contained in
the symmetric closure, taken with respect to Rτ , of Rσ(x) from that. Now, the
ramification condition applies, ensuring the existence of points x′ ∈ Rσ(x) and
y′ ∈ Rσ(y) which materialize Rσ(x) �S Rσ(y). Since f ∈ URσ(x) ∩ URσ(y), it
follows that fRσ(x) Rτ fRσ(y) holds as well, whence the left-to-right direction is
proved, too. Consequently, h is an isomorphism, as desired.

The proof of Theorem 5 lights up the relative proximity of the topological
and the relational semantics of modal logic once again.

Finally in this section, we fix the analogue of Theorem 5 for bi-topological
models. In fact, the following corollary is obtained as an immediate consequence
of that theorem.

Corollary 1. A bi-topological model M is determined by a subset space in the
sense of the preceding theorem, iff

1. the bi-topological space underlying M satisfies all the conditions stated there,
and

2. the valuation of M meets the constancy property as formulated, e.g., in the
third item of Theorem 1.

6 Concluding Remarks

Investigations into multi-topological structures appear rather unfrequent in topo-
logical modal logic; see [2], Sect. 2 and Sect. 3 of Ch. 5, for some hints. The
present paper adds a new facet to this field by working out a hitherto undis-
covered connection between bi-modal logic and bi-topological spaces. We have,
actually, given a bi-modally oriented characterization of bi-topological spaces
arising from subset spaces here.

The second contribution of this paper is Theorem 4, stating the soundness and
completeness of the logic of subset spaces, LLS, with respect to the class of all
topological cross axiom spaces. In this connection, the question arises whether
this theorem can also be proved in a ‘more topological’ way, i.e., by means of
the approach to topological canonicity undertaken, e.g., in [1], Sect. 3.1.

Our new approach raises several issues that should be treated by future re-
search. We only mention two of the questions coming up here, in particular, by
confining ourselves to the framework of subset spaces. What is the bi-topological
effect of those additional schemata that are relevant to the logic of special classes
of subset spaces? And can notably topological spaces be characterized along the
lines followed in this paper? – Here is a concrete starting point towards a possible
answer. The Weak Directedness Axioms of common modal logic, ��α → ��α,
come along with the closure of the open sets under finite intersections in topo-
logic; see [5]. In topological modal logic, we have a corresponding class of spaces:
the extremally disconnected ones (where the closure of each open set is clopen by
definition); see [2], Sect. 2.6 of Ch. 5. But we neither know up to now whether the
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latter property is sufficient for the closure under finite intersections (as related
to the subset space semantics), nor how the Union Axioms of topologic can be
captured within the new framework.
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