
Comparison of LTL to Deterministic

Rabin Automata Translators�

Frantǐsek Blahoudek, Mojmı́r Křet́ınský, and Jan Strejček

Faculty of Informatics, Masaryk University, Brno, Czech Republic
{xblahoud,kretinsky,strejcek}@fi.muni.cz

Abstract. Increasing interest in control synthesis and probabilistic mo-
del checking caused recent development of LTL to deterministic ω-auto-
mata translation. The standard approach represented by ltl2dstar tool
employs Safra’s construction to determinize a Büchi automaton produced
by some LTL to Büchi automata translator. Since 2012, three new LTL to
deterministic Rabin automata translators appeared, namely Rabinizer,
LTL3DRA, and Rabinizer 2. They all avoid Safra’s construction and
work on LTL fragments only. We compare performance and automata
produced by the mentioned tools, where ltl2dstar is combined with
several LTL to Büchi automata translators: besides traditionally used
LTL2BA, we also consider LTL->NBA, LTL3BA, and Spot.

1 Introduction

Linear temporal logic (LTL) has proved to be an appropriate formalism for spec-
ification of systems behavior with major applications in the area of model check-
ing. Methods for LTL model checking of probabilistic systems [29,5,3] and for
LTL synthesis [4,24,19] mostly need to construct, for any given LTL formula,
a deterministic ω-automaton. As deterministic Büchi automata (DBA) cannot
express all the properties expressible in LTL, one has to choose deterministic ω-
automata with a more complex acceptance condition. The most common choice
is the Rabin acceptance.

There are basically two approaches to translation of LTL to deterministic
ω-automata. A traditional one translates LTL to nondeterministic Büchi au-
tomata (NBA) first and then it employs Safra’s construction [26] (or some of its
variants or alternatives like [23,27]) to obtain a deterministic automaton. This
approach is represented by the tool ltl2dstar [14] which uses an improved
Safra’s construction [16,17]. As every LTL formula can be translated into an
NBA and Safra’s construction can transform any NBA to a deterministic Rabin
automaton (DRA), ltl2dstar works for the whole LTL. However, the resulting
automata are sometimes unnecessarily big.

Since 2012, several translations avoiding Safra’s construction have been intro-
duced. The first one is presented in [18] and subsequently implemented in the tool

� Authors are supported by The Czech Science Foundation, grant no. P202/10/1469.

K. McMillan, A. Middeldorp, and A. Voronkov (Eds.): LPAR-19, LNCS 8312, pp. 164–172, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Comparison of LTL to Deterministic Rabin Automata Translators 165

Rabinizer [10]. The algorithm builds a generalized deterministic Rabin automa-
ton (GDRA) directly from a formula. A DRA is then produced by a degeneral-
ization procedure. Rabinizer often produces smaller automata than ltl2dstar.
The main disadvantage is that it works for LTL(F,G) only, i.e. the LTL fragment
containing eventually (F) and always (G) as the only temporal operators. This
method has been extended to a semantically larger fragment and reimplemented
in the experimental tool Rabinizer 2 [21]. In [1] we present a Safraless transla-
tion working with another LTL fragment subsuming LTL(F,G). Our translator
LTL3DRA transforms a given formula into a very weak alternating automaton
(in the same way as LTL2BA [11]) and then into a transition-based general-
ized deterministic Rabin automaton (TGDRA). The construction of generalized
Rabin pairs of TGDRA is inspired by [18]. A DRA is finally obtained by a de-
generalization procedure.

Here we provide a comparison of performance of the LTL to DRA translators
ltl2dstar, Rabinizer, Rabinizer 2, and LTL3DRA. The tool ltl2dstar is de-
signed to use an external LTL to NBA translator. To our best knowledge, the
last experimental comparison of performance of ltl2dstar with different LTL
to NBA translators has been done in 2005 [15]. The comparison shows that with
respect to automata sizes, LTL2BA and LTL->NBA [9] “have the lead and were
the only programs without failures to calculate the DRA.” Since 2005, significant
progress has been made in LTL to NBA translation (it can already be seen in the
comparison of LTL to NBA translators [25] published in 2007). Hence, we run
ltl2dstar with LTL2BA, LTL->NBA, and contemporary translators Spot [6,7]
and LTL3BA [2]. The experimental results obtained are briefly interpreted.

2 Compared Tools

Here we describe settings and restrictions of the considered translators.

– ltl2dstar [14] v0.5.1, http://www.ltl2dstar.de/
We keep the default setting (all optimizations enabled). We use only the
option --ltl2nba="<intf>:<tool>[@<params>]" to specify an external
<tool> for LTL to NBA translation (<intf> specifies if ltl2dstar com-
municates with the <tool> via the interface of lbtt [28] or Spin [13], and
<params> are parameters the <tool> is called with). We use four LTL to
NBA translators:
• LTL->NBA [9], http://www.ti.informatik.uni-kiel.de/~fritz/
We call it with --ltl2nba="lbtt:/pathtoLTL->NBA/script4lbtt.py".

• LTL2BA [11] v1.1, http://www.lsv.ens-cachan.fr/~gastin/ltl2ba/
We call it with --ltl2nba="spin:/pathtoLTL2BA/ltl2ba".

• LTL3BA [2] v1.0.2, http://sourceforge.net/projects/ltl3ba/
By default, LTL3BA aims to produce small NBAs. With the op-
tion -M, it aims to produce potentially larger, but more determinis-
tic automata. We have combined both modes with other optimizations
provided by LTL3BA. We have selected two settings with the best re-
sults, namely --ltl2nba="spin:/pathtoLTL3BA/ltl3ba" referenced as

http://www.ltl2dstar.de/
http://www.ti.informatik.uni-kiel.de/~fritz/
http://www.lsv.ens-cachan.fr/~gastin/ltl2ba/
http://sourceforge.net/projects/ltl3ba/


166 F. Blahoudek, M. Křet́ınský, and J. Strejček

LTL3BA and --ltl2nba="spin:/pathtoLTL3BA/ltl3ba@-M -S" refer-
enced as LTL3BAd. Option -S enables strong fair simulation reduction.

• Spot [6,7] v1.1.3, http://spot.lip6.fr/wiki/
Again, Spot can be set to produce either small or more deterministic Büchi
automata. We have combined ltl2dstar with both modes of Spot. The
resulting Rabin automata produced with the first mode are usually iden-
tical to (and sometimes slightly bigger than) the automata produced with
the latter mode. Computation times are also similar. To save some space,
we include only the results for the “more deterministic” mode invoked by
--ltl2nba="spin:/pathtoSpot/ltl2tgba@-sD".

– Rabinizer [10] v0.11, http://crab.in.tum.de/rabinizer/
Recall that Rabinizer works for LTL(F,G) only.

– Rabinizer 2 [21],
http://www.model.in.tum.de/~kretinsk/rabinizer2.html

Rabinizer 2 works with formulae of a fragment called LTL\GU which uses
not only F and G but also next (X) and until (U) temporal operators. The
fragment consists of formulae in the negation normal form (i.e. negations are
only in front of atomic propositions) such that no U is in the scope of any G.

– LTL3DRA [1] v0.1, http://sourceforge.net/projects/ltl3dra/
This tool works with formulae of a slightly less expressive fragment than
LTL\GU. More precisely, there is one more restriction on the scope of any
G: there are no U operators, and X can appear only in front of F or G, i.e. in
subformulae of the form XFϕ or XGϕ. We call this fragment LTL\GUX.
The difference is not important for specification formulae of software and
asynchronous systems as these usually contain no X operators, but it can play
some role in specification formulae of hardware and synchronous systems.

Before we run the translators, we transform input formulae to the expected
format (prefix notation for ltl2dstar and negation normal form for Rabinizer 2)
using the tool ltlfilt [7]. Note that Rabinizer, Rabinizer 2, and LTL3DRA are
called with default settings.

3 Experiments: Benchmarks and Results

All experiments were done on a server with 8 eight-core processors Intel� Xeon�

X7560, 2.26GHz, 448 GiB RAM and a 64-bit version of GNU/Linux. All the
translators are single-threaded. The timeout limit was set to 2 hours.

We run the tools on three benchmark sets: real specification formulae, para-
metric formulae, and random formulae. The benchmark sets can be downloaded
from the web pages of LTL3DRA.

Real Specification Formulae. We use specification formulae from two sources:
BEEM [22] and Spec Patterns [8]. After removing duplicates (typically cases
where an atomic proposition a is consistently replaced by its negation or by
a ∨ b), we have 67 formulae. These formulae are divided into three classes: 12

http://spot.lip6.fr/wiki/
http://crab.in.tum.de/rabinizer/
http://www.model.in.tum.de/~kretinsk/rabinizer2.html
http://sourceforge.net/projects/ltl3dra/


Comparison of LTL to Deterministic Rabin Automata Translators 167

formulae of LTL(F,G), 19 formulae of LTL\GUX not included in LTL(F,G), and
36 formulae outside LTL\GUX. Note that all the considered formulae outside
LTL\GUX are also outside LTL\GU.

Unlike standard model checking algorithms, applications requiring determin-
istic ω-automata usually need automata equivalent to specification formulae and
not to their negations. Hence, we do not negate the formulae before translation.

Table 1 presents cummulative results of the considered tools on the three
classes of specification formulae. Table 2 provides a cross-comparison of the tools
on the same formulae classes.

Parametric Formulae. We consider 8 parametric formulae of [12] and formulae
θ(n) of [11] and F (n) of [18]:

E(n) =
∧n

i=1 Fpi C1(n) =
∨n

i=1 GFpi
U(n) = (. . . ((p1 U p2)U p3)U . . .)U pn C2(n) =

∧n
i=1 GFpi

R(n) =
∧n

i=1(GFpi ∨ FGpi+1) Q(n) =
∧n

i=1(Fpi ∨ Gpi+1)
U2(n) = p1 U (p2 U (. . . (pn−1 U pn) . . .)) S(n) =

∨n
i=1 Gpi

θ(n) = ¬((∧n
i=1 GFpi) → G(q → Fr)) F (n) =

∧n
i=1(GFpi → GFqi)

Table 1. For each class of considered real formulae and for each tool, the table shows
cummulative numbers of states, edges, and accepting pairs of produced automata. Fur-
ther, we show the number of minimal automata produced by the tool (minimal means
that no other considered tool produced an automaton with less states for the same
formula). We also provide cummulative computation time (in seconds) and maximal
and average memory peaks (mem max and mem avg, measured in MiB) needed for the
construction of one automaton. The best results are emphasized.

Class Measure
ltl2dstar

Rabinizer Rabinizer 2 LTL3DRA
LTL->NBA LTL2BA LTL3BA LTL3BAd Spot

1
2
fo
rm

u
la
e

o
f
L
T
L
(F

,
G
)

states 55 49 47 45 52 45 59 43
edges 186 171 158 151 167 187 287 161
pairs 18 18 17 17 17 22 18 21

minimal 3 7 7 8 3 10 7 10
time [s] 0.70 0.12 0.14 0.13 0.72 3.08 3.05 0.12

mem max 22.53 8.02 18.66 18.69 91.06 240.75 465.09 19.02
mem avg 19.66 7.13 18.57 18.61 86.92 160.03 173.53 18.90

1
9
m
o
re

o
f
L
T
L
\G

U
X

states 180 191 184 167 132 — 160 137
edges 614 699 671 563 390 — 827 546
pairs 43 44 44 44 32 — 28 46

minimal 2 2 2 3 6 — 11 11
time [s] 2.83 0.24 0.32 0.30 2.11 — 5.98 0.19

mem max 33.81 8.72 18.80 18.83 92.94 — 1013.89 19.50
mem avg 22.29 7.44 18.67 18.72 87.95 — 256.50 19.13

3
6
m
o
re

o
f
L
T
L

states 34 985 135 250 33 927 2 768 386 — — —
edges 359 494 1 726 573 416 794 31 287 1936 — — —
pairs 100 114 97 83 49 — — —

minimal 9 8 9 13 34 — — —
time [s] 26.46 102.15 16.86 1.02 1.64 — — —

mem max 463.95 1 406.86 345.52 24.41 93.69 — — —
mem avg 35.34 65.53 27.77 18.90 89.29 — — —



168 F. Blahoudek, M. Křet́ınský, and J. Strejček

Table 2. Cross-comparison of considered tools on the three classes of real specification
formulae. The number in row indexed by r and column c represents in how many cases
the tool r produced a smaller automaton (in the number of states) than the tool c.
The column V shows the sum of these “victories”.

# Tool
12 formulae of LTL(F,G) 19 more of LTL\GUX 36 more of LTL

1 2 3 4 5 6 7 8 V 1 2 3 4 5 7 8 V 1 2 3 4 5 V
1

l
t
l
2
d
s
t
a
r LTL->NBA — 0 0 0 0 1 3 1 5 — 1 1 2 0 4 3 11 — 13 9 3 0 25

2 LTL2BA 6 — 0 0 5 1 5 1 18 4 — 0 1 0 4 3 12 12 — 0 2 0 14
3 LTL3BA 6 1 — 0 5 1 5 1 19 4 1 — 1 0 4 3 13 14 14 — 4 0 32
4 LTL3BAd 6 1 1 — 6 1 5 1 21 4 2 2 — 0 5 4 17 22 17 13 — 2 54
5 Spot 1 1 0 0 — 1 4 1 8 12 9 9 8 — 7 6 51 27 28 27 23 — 105

6 Rabinizer 8 4 4 3 8 — 5 1 33 — — — — — — — — — — — — — —
7 Rabinizer 2 6 3 3 3 6 0 — 1 22 15 15 15 14 10 — 4 73 — — — — — —
8 LTL3DRA 9 4 4 3 9 2 5 — 36 14 12 12 11 9 8 — 66 — — — — — —

Table 3. For each parametric formula and each tool, the table provides the size (num-
ber of states) of the automaton for the highest n such that all the considered tools finish
the computation within the limit (upper row), and the max imal n for which the tool
finishes the computation within the limit (lower row). The best values are emphasized.

Formula
size ltl2dstar

Rabinizer Rabinizer 2 LTL3DRA
max LTL->NBA LTL2BA LTL3BA LTL3BAd Spot

E(n)
n = 9 512 512 512 512 512 512 512 512
max n 9 11 11 11 12 10 9 10

U(n)
n = 5 17 17 17 17 17 — 17 24
max n 10 5 6 10 12 — 9 9

R(n)
n = 3 375 631 290 046 483 789 2 347 15 980 52 97 36
max n 3 3 3 4 3 4 3 6

U2(n)
n = 14 15 15 15 15 15 — 15 15
max n 15 15 15 15 15 — 19 14

C1(n)
n = 7 129 2 2 2 3 128 128 2
max n 11 23 23 23 22 8 7 24

C2(n)
n = 6 18 17 17 11 13 7 384 7
max n 8 11 17 17 16 8 6 15

Q(n)
n = 7 1 331 1 140 1 140 1 140 736 578 578 2 790
max n 7 8 8 8 9 8 7 7

S(n)
n = 9 513 513 513 513 513 512 512 512
max n 14 14 14 14 11 9 9 13

θ(n)
n = 5 21 20 15 5 444 5 444 11 480 7
max n 7 10 19 6 6 7 5 14

F (n)
n = 2 13 181 11 324 5 650 302 4 307 20 32 18
max n 2 2 2 2 2 3 2 4

The results are shown in Table 3. Note that U(n) and U2(n) are not in the
input fragment of Rabinizer. All the other formulae are from LTL(F,G).

Random Formulae. We use LTL formulae generator randltl [7] to get some
more formulae of length 15–30 from various fragments. More precisely, we gener-
ate 100 formulae from the LTL(F,G) fragment, 100 general formulae with higher
occurence of F and G operators, and 100 formulae with uniformly distributed
operators. These three sets are generated by the respective commands:



Comparison of LTL to Deterministic Rabin Automata Translators 169

– randltl -n 100 --tree-size=15..30 --ltl-priorities="ap=1,X=0,\

implies=0,false=0,true=0,R=0,equiv=0,U=0,W=0,M=0,xor=0" a b c d

– randltl -n 100 --tree-size=15..30 --ltl-priorities="ap=1,F=2,\

G=2,false=0,true=0,X=1,R=1,U=1,W=0,M=0,xor=0" a b c d

– randltl -n 100 --tree-size=15..30 --ltl-priorities="ap=1,\

false=0,true=0,W=0,M=0,xor=0" a b c d

We removed 10 formulae, out of the 300 generated ones, that were elementary
equivalent to true or false. The remaining formulae are divided into four classes
corresponding to the input LTL fragments of the considered tools: we have 97
formulae of LTL(F,G), 29 formulae of LTL\GUX not included in LTL(F,G),
1 formula of LTL\GU not included in LTL\GUX, and 163 formulae not in
LTL\GU. Unfortunately, ltl2dstar combined with LTL->NBA produces an
error message for one formula of LTL\GUX and two formulae outside LTL\GU.
These formulae were removed from the set. Further, there are 19 formulae (none
of them in LTL\GU), for which at least one tool does not finish before time-
out. These formulae are not included in the cummulative results to make them
comparable, but we show the number of timeouts in a separate line. To sum up,
Table 4 presents cummulative results for 97 formulae of LTL(F,G), 28 formu-
lae of LTL\GUX not included in LTL(F,G), and 142 formulae outside LTL\GU
(plus the numbers of timeouts for another 19 formulae outside LTL\GU). We do
not show the results on the single formula of LTL\GU not included in LTL\GUX
due to their low statistical significance.

Table 4. The cummulative results on random formulae. Semantics of the table is the
same as for Table 1. Moreover, the last line shows the number of timeouts of the tools
on additional 19 formulae outside LTL\GU.

Class Measure
ltl2dstar

Rabinizer Rabin. 2 LTL3DRA
LTL->NBA LTL2BA LTL3BA LTL3BAd Spot

9
7
fo
rm

u
la
e

o
f
L
T
L
(F

,
G
)

states 107 620 19 470 9 914 6 008 13 940 511 741 618
edges 949 094 165 856 76 827 48 440 137 977 2222 4 987 2 666
pairs 217 204 196 190 164 198 149 198

minimal 18 36 37 44 41 54 26 44
time [s] 743.66 13.47 10.15 3.42 18.09 48.81 79.92 1.21

mem max 6 561.89 151.16 99.75 24.86 94.03 406.66 6 712.00 22.89
mem avg 95.72 8.90 19.51 18.77 89.27 205.10 632.62 19.23

2
8
m
o
re

o
f
L
T
L
\G

U
X

states 1 183 6 670 6 375 1 509 633 — 451 512
edges 6 227 39 987 38 591 8 057 3 002 — 2422 2 810
pairs 66 68 69 54 48 — 71 70

minimal 9 14 13 15 17 — 11 18
time [s] 15.86 1.14 1.49 0.76 5.01 — 40.34 0.50

mem max 107.75 45.83 41.53 19.58 94.17 — 33 224.44 34.59
mem avg 39.80 9.23 19.63 18.87 89.72 — 1761.70 20.07

1
4
2
+
1
9
m
o
re

o
f
L
T
L

states 173 156 640 971 157 869 143 436 11780 — — —
edges 1 513 621 5 127 962 1 103 410 1 031 393 85476 — — —
pairs 523 625 499 438 354 — — —

minimal 54 41 57 72 126 — — —
time [s] 421.79 384.54 76.33 70.38 16.80 — — —

mem max 1 461.08 6 019.14 1 751.94 2 357.64 99.50 — — —
mem avg 92.59 96.75 37.61 35.45 91.13 — — —
timeouts 8 17 6 2 1 — — —



170 F. Blahoudek, M. Křet́ınský, and J. Strejček

Table 5. Cross-comparison of the considered tools on random formulae classes. The
table has a similar semantics to Table 2: each number says in how many cases the tool
in the corresponding row produces a better result than the tool in the corresponding
column. An automaton is better than other if it has less states. Any automaton is
better than timeout or a tool failure. Timeouts and failures are seen as equivalent
results here.

# Tool
97 formulae of LTL(F,G) 29 more of LTL\GUX 163 more of LTL

1 2 3 4 5 6 7 8 V 1 2 3 4 5 7 8 V 1 2 3 4 5 V
1

l
t
l
2
d
s
t
a
r LTL->NBA — 13 10 6 2 10 35 17 93 — 4 5 4 1 6 6 26 — 79 43 38 16 176

2 LTL2BA 44 — 5 4 9 12 41 22 137 14 — 3 2 0 12 6 37 38 — 13 22 7 80
3 LTL3BA 44 17 — 5 11 13 43 23 156 14 3 — 1 0 11 5 34 68 80 — 30 16 194
4 LTL3BAd 48 24 18 — 15 15 45 28 193 15 6 6 — 2 14 8 51 87 97 73 — 24 281
5 Spot 52 31 26 16 — 19 46 32 222 18 8 9 7 — 15 8 65 106 115 99 74 — 394

6 Rabinizer 62 44 43 36 35 — 57 37 314 — — — — — — — — — — — — — —
7 Rabinizer 2 42 23 19 20 19 2 — 26 151 17 10 10 6 7 — 5 55 — — — — — —
8 LTL3DRA 58 43 40 33 35 13 47 — 269 17 11 12 10 9 14 — 73 — — — — — —

Table 5 contains a cross-comparison of the tools on the same formulae sets. In
this case, the formulae previously removed because of a timeout or a tool failure
are included.

4 Observations

For each pair of tools, there are some formulae in our benchmarks, for which one
tool produces strictly smaller automata than the other (see Table 5). Hence, no
tool is fully dominated by another.

All the results for LTL(F,G) fragment show that the Safraless tools (especially
Rabinizer and LTL3DRA) usually perform better than ltl2dstar equipped with
any of the considered LTL to NBA translators. The best results for formulae
of LTL\GUX not included in LTL(F,G) are typically achived by ltl2dstar

combined with Spot, and the Safraless tools Rabinizer 2 and LTL3DRA. For
formulae outside LTL\GU, the current Safraless tools are not applicable. For
these formulae, by far the best results are produced by ltl2dstar combined
with Spot.

The results also provide information about particular tools or relations be-
tween them. For example, one can immediately see that Rabinizer outperforms
Rabinizer 2 on LTL(F,G) formulae. This is explained by an experimental na-
ture of the current version of Rabinizer 2. In particular, the tool misses some
optimizations implemented in Rabinizer [20]. Further, one can observe that Ra-
binizer performs significantly better than the other tools on random formulae of
LTL(F,G), while it is just comparable on real specification and parametric for-
mulae of LTL(F,G). We assume that this is due to the fact that Rabinizer builds
automata state-spaces according to semantics of LTL formulae rather than their
syntax. Thus it does not distinguish between equivalent subformulae which more
often appear in random formulae than in formulae written manually.

If we focus on usage of system resources, we observe that LTL3DRA is often
the fastest tool. The results also show that ltl2dstar in combination with
LTL2BA or LTL3BA has usually the lowest memory consumption.



Comparison of LTL to Deterministic Rabin Automata Translators 171

During our experimentation we found out that ltl2dstar does not check
whether an intermediate Büchi automaton is already deterministic or not: it
runs Safra’s construction in all cases. Running Safra’s construction only on non-
deterministic BA is profitable for two reasons:

1. Computation of Safra’s construction is expensive.
2. Each deterministic BA can be directly converted into a DRA with one Ra-

bin pair without any change in the state space, while Safra’s construction
typically produces a DRA larger than the intermediate deterministic BA.

For example, given the formula G(p1 → G¬p2), both Spot and LTL3BAd pro-
duce a deterministic BA with two states (and a partial transition function). All
considered LTL to DRA translators output DRA with four states (and total
transition functions), Rabinizer 2 even yields a DRA with five states. Hence, the
automaton produced by Spot or LTL3BAd is smaller even after the addition of
one state to make its transition function total.

5 Conclusions

We conclude that the situation with LTL to DRA translation changed substan-
tially since 2005. The former leading combinations of ltl2dstar with
LTL->NBA or LTL2BA are now surpassed by Safraless tools (on relevant frag-
ments) and ltl2dstar with Spot. However, there is still a space for further
improvements.

Acknowledgements. We would like to thank Alexandre Duret-Lutz for valu-
able suggestions and comments on a draft of this paper.

References

1. Babiak, T., Blahoudek, F., Křet́ınský, M., Strejček, J.: Effective translation of LTL
to deterministic Rabin automata: Beyond the (F,G)-fragment. In: Van Hung, D.,
Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 24–39. Springer, Heidelberg
(2013)

2. Babiak, T., Křet́ınský, M., Řehák, V., Strejček, J.: LTL to Büchi automata trans-
lation: Fast and more deterministic. In: Flanagan, C., König, B. (eds.) TACAS
2012. LNCS, vol. 7214, pp. 95–109. Springer, Heidelberg (2012)

3. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press (2008)
4. Church, A.: Logic, arithmetic, and automata. In: ICM 1962, pp. 23–35. Institut

Mittag-Leffler (1962)
5. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J.

ACM 42(4), 857–907 (1995)
6. Duret-Lutz, A.: LTL translation improvements in Spot. In: VECoS 2011, Electronic

Workshops in Computing. British Computer Society (2011)
7. Duret-Lutz, A.: Manipulating LTL formulas using Spot 1.0. In: Van Hung, D.,

Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 442–445. Springer, Heidelberg
(2013)

8. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: ICSE 1999, pp. 411–420. IEEE (1999)



172 F. Blahoudek, M. Křet́ınský, and J. Strejček

9. Fritz, C.: Constructing Büchi automata from linear temporal logic using simulation
relations for alternating Büchi automata. In: Ibarra, O.H., Dang, Z. (eds.) CIAA
2003. LNCS, vol. 2759, pp. 35–48. Springer, Heidelberg (2003)

10. Gaiser, A., Křet́ınský, J., Esparza, J.: Rabinizer: Small deterministic automata for
LTL(F,G). In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, vol. 7561,
pp. 72–76. Springer, Heidelberg (2012)

11. Gastin, P., Oddoux, D.: Fast LTL to Büchi Automata Translation. In: Berry, G.,
Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer,
Heidelberg (2001)

12. Geldenhuys, J., Hansen, H.: Larger automata and less work for LTL model check-
ing. In: Valmari, A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 53–70. Springer,
Heidelberg (2006)

13. Holzmann, G.: The Spin model checker: primer and reference manual, 1st edn.
Addison-Wesley Professional (2003)

14. Klein, J.: ltl2dstar – LTL to deterministic Streett and Rabin automata,
http://www.ltl2dstar.de

15. Klein, J.: Linear time logic and deterministic omega-automata. Master’s thesis,
University of Bonn (2005)

16. Klein, J., Baier, C.: Experiments with deterministic ω-automata for formulas of
linear temporal logic. Theor. Comput. Sci. 363(2), 182–195 (2006)

17. Klein, J., Baier, C.: On-the-fly stuttering in the construction of deterministic ω-
automata. In: Holub, J., Žďárek, J. (eds.) CIAA 2007. LNCS, vol. 4783, pp. 51–61.
Springer, Heidelberg (2007)

18. Křet́ınský, J., Esparza, J.: Deterministic automata for the (F, G)-fragment of LTL.
In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 7–22.
Springer, Heidelberg (2012)

19. Kupferman, O.: Recent challenges and ideas in temporal synthesis. In: Bieliková,
M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.) SOFSEM 2012.
LNCS, vol. 7147, pp. 88–98. Springer, Heidelberg (2012)

20. Křet́ınský, J.: Personal communication (2013)
21. Křet́ınský, J., Garza, R.L.: Rabinizer 2: Small deterministic automata for LTL\GU.

In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 446–450.
Springer, Heidelberg (2013)

22. Pelánek, R.: Beem: Benchmarks for explicit model checkers. In: Bošnački, D.,
Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 263–267. Springer, Heidelberg
(2007)

23. Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic
parity automata. Logical Methods in Computer Science 3(3) (2007)

24. Pnueli, A., Rosner, R.: On the synthesis of an asynchronous reactive module. In:
Ronchi Della Rocca, S., Ausiello, G., Dezani-Ciancaglini, M. (eds.) ICALP 1989.
LNCS, vol. 372, pp. 652–671. Springer, Heidelberg (1989)

25. Rozier, K.Y., Vardi, M.Y.: LTL Satisfiability Checking. In: Bošnački, D., Edelkamp,
S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 149–167. Springer, Heidelberg (2007)

26. Safra, S.: On the complexity of omega-automata. In: FOCS 1988, pp. 319–327.
IEEE Computer Society (1988)

27. Schewe, S.: Tighter bounds for the determinisation of Büchi automata. In: de Alfaro,
L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 167–181. Springer, Heidelberg (2009)

28. Tauriainen, H., Heljanko, K.: Testing LTL formula translation into Büchi
automata. International Journal on Software Tools for Technology Transfer
(STTT) 4(1), 57–70 (2002)

29. Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state pro-
grams. In: FOCS 1985, pp. 327–338. IEEE Computer Society (1985)

http://www.ltl2dstar.de

	Comparison of LTL to Deterministic 
Rabin Automata Translators
	1 Introduction
	2 ComparedTools
	3 Experiments: Benchmarks and Results
	4 Observations
	5 Conclusions
	References




