
Correctness Verification in Outsourced

Databases: More Reliable Fake Tuples Approach

Ganugula Umadevi and Ashutosh Saxena

Infosys Labs, Infosys Limited, Hyderabad, India
{Uma Ganugula,Ashutosh Saxena01}@Infosys.Com

Abstract. Enterprises outsource data to storage service providers in or-
der to avail resources at lower costs and for ensuring economy of scale.
Prime concerns of organizations are privacy of data and quality of service
provided, which include correctness of query results and integrity of data.
In earlier works, integrity of data is verified by preserving hash of tuple
data as header attribute and completeness is assured by inserting and
retrieving fake tuples. In this work, we propose a secret sharing based
approach for deterministic generation of fake tuples used for verifying
completeness and integrity of data, where we eliminate the dependency
on header attribute. Our integrity check mechanisms work faster than
existing approaches in this direction as depicted in our experimental
results. Furthermore, we show that our approach is information theo-
retically secure, where an adversary without knowledge of underlying
security parameters can never be able to break the scheme.

Keywords: Database Outsourcing, Query Integrity, Fake Tuples.

1 Introduction

The necessity for economical solutions for organizations drive them towards op-
tions like Storage as a Service (SaaS) [1]. SaaS provides the opportunity to
preserve the organization’s data in external servers at a reasonable cost for stor-
age. However, the benefits of this facility do not stop the organizations from
being skeptical about the security and privacy issues of their outsourced data.
To provide security to the data, organizations usually opt for encrypting critical
data before it is uploaded to the third party servers. They employ indices to
search upon the encrypted data. Another aspect of concern for organizations is
the integrity of query results, which means the results are accurate and data
is not altered at the server’s end. This process of checking for data integrity is
referred to as correctness verification of the outsourced databases.

In correctness verification of outsourced databases, three aspects are consid-
ered: a) Completeness b) Freshness c) Integrity. Completeness ensures that the
query results are correct and complete. Freshness ensures that the query results
are up to date. Integrity ensures that the data is not tampered in transit or at
rest. In the literature, there are multiple approaches for addressing the prob-
lem of verifying correctness of query results in outsourced databases. In [2–4],

A. Bagchi and I. Ray (Eds.): ICISS 2013, LNCS 8303, pp. 121–132, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

122 G. Umadevi and A. Saxena

hash of encrypted data is computed and stored, for checking integrity. Since,
any change in the encrypted data is reflected in the hash, changes in original
data are detected. In [5], the database is restructured as a Merkle-Hash tree
for verification. In [6], hash of the tuple is computed and stored as an extra
attribute in each tuple. For verifying correctness, the solution proceeds by in-
sertion of check points in the database. These check points, which are referred
to as fake tuples or artificial tuples, are created and inserted into the database
along with the original data. When query results are retrieved, the number of
fake tuples returned are compared against the number of tuples originally in-
serted; change in the count value of fake tuples indicate adversarial changes to
original data [6]. In [7], random and deterministic ways to generate fake tuples
are proposed. There are techniques which use secret sharing [8] for generating
fake tuples. Hash based techniques are mainly used for integrity check. The fake
tuple techniques are used for completeness verification of query results.

The drawbacks of the solutions discussed in literature are (a) approaches
discussed in [5, 13] are computationally heavy or (b) fail to ensure integrity
for complete query results. In [6], an extra attribute holding hash is used to
identify tuple/data integrity. An adversary who has knowledge of this scheme
can delete the entire attribute and disturb the integrity check process completely.
Approaches for completeness discussed in [7], focus on the verification of the
retrieved fake tuples for completeness check and discusses majorly on building
trust on the storage server. Approaches discussed in [5] require fake tuples be
stored at the organization’s desk, which is space-consuming and is conflicting
with the idea of using SaaS.

In the data outsourcing scenario, we propose an approach to ensure integrity
for the entire query result set. Unlike existing approaches, data for integrity
check is not stored as an explicit attribute but is stored as a tuple along with
the original data; so that it can not be easily tampered. We ensure information
theoretic strength for the approach, when the security parameters are not dis-
closed to an adversary. The computation and communication overhead of our
approach are comparable to existing works [6]. For completeness, we use the fake
tuple based approach which can be used to build trust [7]. Unlike the work of [8],
we use data available in the database along with the concept of secret sharing
to generate fake tuples which can be used for integrity and completeness check;
and the proposed approach is storage-efficient.

Paper Organization. In section 2, we explain the notations and well-known tech-
niques that we have used in the work. Section 3 explains the approach for correct-
ness verification, where we discuss how integrity and completeness are checked
for outsourced databases. In section 4, we analyze the functionality of the ap-
proach, in formal terms for strength and security aspects, cost and computation
effort and also in terms of features and limitations with respect to handling
database updates. We conclude and discuss future work in section 5.

Correctness Verification in Outsourced Databases 123

2 Notations and Preliminaries

We refer to the SaaS providers as servers S and organizations storing data at S
as the client C. Let Q be test query, which is associated with the fake tuples. We
denote the result set of query Q as RQ. T1, T2, . . . , Tn are the tuples returned
by Q, where n is a symbolic indication of the number of tuples returned by
Q. A1, A2, . . . , Aω are the attributes, where Ap is the primary key attribute
of the table. Without loss of generality, we assume that values of attributes
A1, A2, . . . , Aω ∈ R, where R is the set of real numbers and the domain for
A1, A2, . . . , Aω . Table 1 gives the list of notations used in rest of the paper.

Table 1. Notations

Notation Description

PRG Pseudo random number generator
VFT Verifier Fake Tuple
SFT Supporting Fake Tuples
L Set of storage locations of the supporting fake tuples
k Count of tuples used for VFT generation
δ Count of supporting fake tuples inserted into the database

Shamir Secret Sharing: Shamir Secret Sharing(SSS)[11] is a cryptographic tech-
nique where a secret value is distributed among a group of players. Each player
gets a share which is computed by evaluating a polynomial at the unique player
id. In SSS, a polynomial f(.) is considered such that, for the threshold of k
players (k players can reconstruct the secret), a k− 1 degree polynomial is con-
structed such that f(0) = s, where s is the secret to be shared amongst the
players. When k players come together, the polynomial is reconstructed and
secret value is retrieved from the polynomial. SSS is information theoretically
secure. The strength of SSS comes from theorem 1. The proof of the theorem
discussed in [9, 10] plays a critical role for ensuring unique reconstruction prop-
erty of Shamir secret sharing scheme [11]. We use the secret sharing technique
in our fake tuple generation process discussed in the later sections.

Theorem 1. (Lagrange interpolation theorem). Let R be a field and a0, . . . , an,
y0, . . . , yn ∈ R so that all values ai are distinct. Then there exists only one
polynomial f over R so that deg(f) ≤ n and f(ai) = yi, (i = 0; . . . ;n).

3 Query Integrity Verification: The Approach

The idea is to insert fake tuples along with original data in the database, such
that integrity and completeness of result set for a given query (RQ) is verified. In
this section, we discuss the approach for generating the fake tuples for numeric
data in a deterministic way. For non-numeric data types like varchar, char, string,

124 G. Umadevi and A. Saxena

Fig. 1. Query Integrity and Completeness Verification

blob, they can be converted to numeric by doing a character-wise ascii conversion
for char datatypes and by doing base conversion for blob datatypes, based on
design requirements.

Figure 1 shows the outline of the approach. When the client C submits the
query Q to the server S, then the server returns the result set RQ. We create
a set PA = {Ap1, Ap2, . . . , Apτ}, where the elements Api are the primary key
values of of ith tuple of RQ, and τ indicates the number of tuples in RQ. We
pick a non-empty subset of the result set RQ using a pseudo random generator
PRG to get some indices in PA. We observe that, dependency on PA and Ap

can be reduced by associating a dummy id to the chosen tuples and by storing
the hash of the tuple for its unique identification from RQ. In detail, the PRG
generates a stream of indices, from which we select first k values (i1, i2, . . . , ik)
which lie in the set PA. From the result set RQ, the tuples corresponding to these
indices are retrieved. These tuples are input to the Fake Tuple Generator, which
produces the verifier fake tuple VFT . VFT is used to generate the supporting
fake tuples SFT . This VFT is split into supporting fake tuples SFT according
to a deterministic function. These supporting fake tuples are inserted into the
database at locations L. The query Q, the PRG with its seed, the value k, the
fake tuple VFT , location set L and functions associated with SFT are stored at C.

Correctness Verification in Outsourced Databases 125

In the verification phase, V ′
FT

is generated and checked against the stored
values for query completeness and integrity as explained in tables 2,3 and 4.
While computing VFT and SFT , the queries of generic nature are chosen, such
that they can be applied anytime for insert into a given table. An example query
is, SELECT * FROM Table where Ai ≥ V1 and Ai ≤ V2, where V1 and V2 are
values in the range of Ai. When an integrity check needs to be performed, a
random query can be given to the database along with the clause on Ai. Since
the results returned by random query has the data used for VFT and SFT , the
returned results can be verified. Based on this kind of range queries, for every
instance of database insert update, fake tuples can be created and included into
the original data before inserting into the original database. C being the owner
of the data, decides the queries applicable for integrity check.

Table 2. Verifier Fake Tuple Generation

Method for generating Verifier Fake tuple

1. For each of Ti1, Ti2, . . . , Tik, C collects the Ax,Ap

value pairs to form points Pi1, Pi2, . . . , Pik; where
point Pij = (attribute Ap value of Rij , attribute Ax value of Rij).
2. F1 can be explained as: Using a curve fitting
algorithm, C interpolates these points to get a k − 1 degree
polynomial.
3. Ax of VFT is assigned the value of the constant term of the resulting polynomial.

3.1 Fake Tuple Generator

Verifier Fake Tuple Generation. Given the result set of the query Q, RQ and
the chosen indices from the stream of indices generated from the PRG, we explain
the deterministic approach used by the client C to generate the fake tuple.
Let Ti1, Ti2, . . . , Tik be the tuples chosen for creating the fake tuple. As defined
earlier, A1, A2, . . . , Aω are the attributes of the table, where Ap is the primary
key attribute. To generate attribute Ax for VFT , the function F1 : (R,R)k → R,
where x ∈ {1, . . . , ω}\{p} is an indicator of the location in the list of attributes,
the method used by C is given in table 2.

Supporting Fake Tuple Generation. Once the verifier fake tuple is con-
structed, C uses this VFT to construct the supporting fake tuples. In table 3,
we discuss the supporting fake tuple generation using secret sharing schemes,
whereas in table 4, we use PRG for generating SFT . Here V Ax

FT
is the Ax at-

tribute of VFT .

3.2 Integrity Check of Database

In the scenario where the database has not undergone any updates, the process
for verifying the result set for query Q is explained as follows:

126 G. Umadevi and A. Saxena

Table 3. Secret Sharing Based SFT Generation

Method for generating Supporting Fake tuples

1. C chooses a random value δ based on his choice
of number of supporting fake tuples.

2. C computes SAx
FT

= fAx(i), where

fAx(0) = V Ax
FT

. SAx
FT

are shares generated by SSS

using fAx (.), which is a
polynomial of degree δ − 1 defined over Zp, where p is the prime closer to max(Ax).
3. These SFTi form the supporting fake tuples,
which are inserted into the database.
Reconstructing VFT : For the chosen query Q, C gets RQ

from the database and using the secret reconstructing
algorithm, VFT is reconstructed from δ SFT s.

1. C submits the query Q and obtains the result set RQ. C gathers all the Ap

values of tuples in the resulting set.
2. Using the PRG definition along with the seed, it generates and gathers k

indices falling in the Ap set in a deterministic way. Using the Fake Tuple
Generator, it generates the fake tuple V ′

FT
.

3. Once the original verifier fake tuple VFT is extracted, it is compared against
V ′
FT

. For each of the attributes, other than Ap, if V
′
FT

= VFT , it indicates
that the integrity of query results is preserved.

3.3 Completeness Check of Database

Completeness of the query results is checked using the supporting fake tuples.
In the scenario where the database has not undergone any updates, we explain
the completeness verification process for result set of Q.

1. C fires the query Q and obtains the result set RQ.
2. Using the location information L, C gathers all supporting tuples, SFTi , and

reconstructs V ′
FT

using the techniques discussed in table 3 and table 4.
3. C verifies V ′

FT
against VFT , which is stored at his end. For each of the at-

tributes if VFT and V ′
FT

has same values, it indicates that the query results
are complete.

In both the cases, where some of the tuples are modified or removed at the
database end, it can be observed at step 3 of the verification process, where V ′Ax

FT

generated is different from the stored V Ax

FT
.

4 Analysis

4.1 Functioning of Proposed Approach

We use the following lemmas to prove that the proposed approach is functionally
correct as per the requirements.

Correctness Verification in Outsourced Databases 127

Table 4. PRG Based SFT Generation

Method for generating Supporting Fake tuples

1. C chooses a random value δ based on his choice of number of supporting fake tuples.

2. C represents V Ax
FT

= ⊕δ
i=1S

Ax
FTi

,where SFTi are random value chosen from R, for each

attribute Ax in VFT .
3. These SFTi form the supporting fake tuples,
which are inserted into the database.
Reconstructing VFT : For the chosen query Q, C gets RQ

from the database and using the Step 2, VFT is
reconstructed from δ SFT s.

Lemma 1. Changes in RQ will result in changes in VFT .

Proof. Assume to the contrary, that even if the tuples in RQ change, the values in
VFT remain same. This means different points can end up at the same polynomial
which contradicts Theorem 1. This proves that changes in RQ results in changes
in VFT .However, since we consider constant term of the resulting polynomial,
there is a negligible probability that the constants remain the same for different
unique polynomials. The probability is 1

(q−1)(q)k−2 , for a k-degree polynomial

and q is the field size which is |R| in our case. ��
Lemma 2. When VFT = V ′

FT
then the database records preserve integrity.

Proof. Without chance in notations, VFT is the verifier fake tuple originally
stored at C’s end and V ′

FT
is the fake tuple generated at a later point of time,

to verify integrity of database records. In this setup, if VFT �= V ′
FT

, it indicates
that at least one of the tuples have been tampered with. This indicates that
the data is not same as the original data and hence, database records lost their
integrity. ��
Lemma 3. When VFT can be reconstructed from SFT , RQ is complete.

Proof. When secret sharing approach is used, theorem 1 ensures that for a given
set of δ SFT s, VFT is unique. Hence, with the same success probability of integrity
check as discussed in section 4.2, RQ is complete. ��

4.2 Success Probability

In this part of work, we discuss the success probabilities of the integrity check
mechanism as well as successful escape probability of the adversary.

Success of Integrity Check: There are two levels at which integrity check
success can be discussed: a) query result integrity b) database integrity. In a
given instance, when k out of n of RQ are used for generating VFT , query results
preserve integrity with probability k

n . For sure verification, all the n tuples in RQ

need to be used to generate VFT . In the case, where entire database integrity has

128 G. Umadevi and A. Saxena

to be verified, instead of a single query, multiple queries have to be considered
for VFT generation. Let r be number of tuples covered by all the possible queries
in VFT generation process from y tuples present in the database, then database
record integrity is preserved with probability of r

y .

Fig. 2. Escape Probability of Adversary

Escape Probability of Adversary: An adversary can modify(update or
delete) some tuples from the database and still get unnoticed. The escape prob-
ability of the adversary is the success with which he can delete a tuple from
the database which does not belong to the k tuples associated with VFT gener-
ation, and also which do not belong to SFT s. For a given instance, if Q returns
n tuples, which has δ SFT s and k out of n are used to construct VFT , then the
escape probability of adversary for deleting one tuple and being unnoticed is
n−k
n+δ . This value decreases exponentially when multiple fake tuples are deleted,
depending on both k and δ. Figure. 2 shows how the escape probability reduced
to negligible value when |SFT | varies as a percentage of n. In figure 2(a), the
number of fake tuples deleted is fixed and the security parameters are varied;
and the decrease in escape probability is observed. It can be observed the when
both the security parameters k and δ are set to a small percentage of count of
original tuples, the escape probability of adversary becomes negligible. Similarly
in figure 2(b), the security parameters are fixed and increasing the number of
fake tuple deletions, escape probability is observed.

4.3 Cost Analysis

Here, we analyze the communication and computation cost incurred at C using
the proposed approach.

Correctness Verification in Outsourced Databases 129

Communication Cost: The cost of communication is the cost incurred in sending
a tuple to a outsourced database. If Φ is the cost incurred for sending a tuple
to a outsourced database and if C decides to have δ fake tuples for a query Q,
then the cost incurred in δ.Φ.

Computation Cost: At C’s end, the following computation costs are involved.
Some computations like generation are performed once in the query integrity
process whereas other computations like verification are performed everytime
integrity check is done.

Verifier Fake tuple Generation: For a given query, the computing for VFT is
equivalent to getting the constant term for the polynomial coming from a set of
points. Getting the constant term involves evaluating a simple expression, which
involves mere substitution of x and y values.

constant =

k∑

i=1

(−1)k.
∏k;j �=i

j xj
∏k;j �=i

j (xi − xj)
∗ yi

Supporting Fake tuple Generation: For a given query Q, the number of fake
tuples inserted depends on the client’s demand for robustness. For a given query,
computing δ fake tuples as discussed in table 3 and table 4 involves two types
of computations. Using the first technique involves triggering δ − 1 PRGs with
their respective seeds to produce δ− 1 random values, identifying the remaining
SFT value involves simple xor of generated random values with corresponding
value in VFT . This is also a constant time operation. Using the second technique
of using secret sharing polynomial, generating supporting fake tuples involves
evaluating various polynomials at different values. Evaluating a polynomial is
also a constant time operation.

Verifier Fake Tuple Verification: For any given query Q, cost of retrieving RQ

is a communication cost. After retrieving RQ, the fake tuple generation involves
constant time operation as explained in fake tuple generation process.

Supporting Fake Tuple Verification: After retrieving RQ which has the sup-
porting fake tuples, using the same operations discussed in supporting fake tuple
generation process, verification is done. This verification involves performing ex-
or or constructing VFT , which are constant time operations.

4.4 Security Analysis

In this section, we prove the security of our system in an ideal setting. The
data outsourcing scheme is considered broken if an adversary can reconstruct
the polynomial used either in the generation of the verifier fake tuple or in the
generation of supporting fake tuples.

Lemma 4. The scheme is information-theoretically secure, that is, an adversary
with unlimited computing power also, can not break the scheme.

130 G. Umadevi and A. Saxena

Proof. It is well known that the secret sharing schemes such as Shamir’s are in-
formation theoretically secure, in that, less than the requisite number of shares
of the secret provide no information about the secret or equivalently the polyno-
mial used in the generation of the shares. As the number of shares required for
reconstructing the polynomial used either in the verifier fake tuple/supporting
fake tuples is unknown to the adversary (both k and δ are secret), even an
adversary with unlimited computational power cannot break the scheme. Even
if we assume that k and δ are known to the adversary, he cannot distinguish
whether the value of an attribute in a tuple is a share or any arbitrary value in
the domain of that attribute. Therefore, our scheme is information-theoretically
secure. ��

In the case of outsourced databases, the possible adversary is a curious server
who would like to differentiate between the fake tuples and normal data. Since
the server could not differentiate the tuples without the knowledge of δ and k,
the SFT tuples are indistinguishable from the normal data and hence, the server
can not treat the fake tuples seperately. For a new query, when the fake tuples
are inserted along with the normal data, following this theorem, the server can
not differentiate between a normal data insert and insert with fake tuples.

4.5 Empirical Evaluation

We used a PC with AMD Athlon IIX2 processor and 4GB RAM to act as C and
S. The approach is simulated using Java language and Microsoft SQL Server
DBMS is used to store the outsourced tuples. A table with medical records is
used as test table with five attributes namely Record-ID, BP-Observed, Sugar-
Observed, Weight and Height. C fires the queries to S, which hosts the table
having 1 million tuples. Fake tuple sets of different sizes are constructed with re-
spect to different range queries and inserted into the database. We implemented
our approach and Hash Attribute approach discussed in [6] and observed the
difference in processing time at C’s end for completeness check which is seen in
Figure 3(b). Our approach has comparable results for processing time at client.
We also analyzed the efforts for generating supporting fake tuples at the client
using the two deterministic approaches discussed in table 3 and table 4, results
on computation effort at C are shown in Figure 3(a).

4.6 Features and Limitations

Here, we discuss the limitations and features of our approach.

Handling Database Updates: Updates to a database include insert, delete and
drop. The client has to ensure that the appropriate update is reflected at the
server. We discuss how each update affects the query integrity process and how
to ensure integrity despite running updates on database.

Insert Update. In insert operation, new tuples are inserted into the database.
This process may not effect the existing integrity related tuples. However, the

Correctness Verification in Outsourced Databases 131

process discussed in section 2 , should be applied again for these tuples as well,
if there is a noticeable amount of data inserted into the database. If the insert
changes will be reflected in the result set RQ of a query Q which is covered by
C, then supporting fake tuples can be inserted according to technique (a) or (b)
discussed in generating supporting fake tuples. Since this leads to a change from
δ to δ1, C updates the new δ1 along with Q.

Fig. 3. Computation Effort at Client

Delete Update. Delete is a complex operation to incorporate in the existing setup,
because delete could lead to deletion of SFT tuple associated with VFT at C.
Since locations associated with SFT are known to C, it can verify the delete
query before executing and exclude deletion of fake tuples.

5 Conclusion and Future Work

Earlier works in completeness verification in outsourced databases ensured query
integrity by adding an extra attribute to the table. However, deleting this at-
tribute hinders integrity check. In this work, we eliminated the dependency on
adding new attribute. Integrity check and also, completeness check are ensured
by using fake tuples. We proposed two deterministic ways to generate fake tuples.
These generated fake tuples are used for completeness check. Our integrity check
mechanism works faster than existing approaches, as depicted in our empirical
evaluation. And also discussed the aspects of cost and computation complexity
of the approach along with its features and limitations as well. We showed that
our approach is information theoretically secure, where an adversary without
knowledge of the underlying security parameters can never be able to break the
scheme. Future work involves utilization of the proposed approach for public
auditing in cloud.

132 G. Umadevi and A. Saxena

References

1. Hacigumus, H., Iyer, B.: Providing Database as a Service. In: International Con-
ference of Data Engineering (2002)

2. Narasimha, M., Tsudik, G.: Authentication of Outsourced Databases Using Signa-
ture Aggregation and Chaining. In: Li Lee, M., Tan, K.-L., Wuwongse, V. (eds.)
DASFAA 2006. LNCS, vol. 3882, pp. 420–436. Springer, Heidelberg (2006)

3. Noferesti, M., Hadavi, M.A., Jalili, R.: A Signature-Based Approach of Correctness
Assurance in Data Outsourcing Scenarios. In: Jajodia, S., Mazumdar, C. (eds.)
ICISS 2011. LNCS, vol. 7093, pp. 374–378. Springer, Heidelberg (2011)

4. Zhu, Y., Wang, H., Hu, Z., Ahn, G.-J., Hu, H., Yau, S.S.: Dynamic audit services
for integrity verification of outsourced storages in clouds. In: Proceedings of the
ACM Symposium on Applied Computing (SAC 2011), pp. 1550–1557. ACM, New
York (2011)

5. Goodrich, M.T., Tamassia, R., Triandopoulos, N.: Super-Efficient Verification
of Dynamic Outsourced Databases. In: Malkin, T. (ed.) CT-RSA 2008. LNCS,
vol. 4964, pp. 407–424. Springer, Heidelberg (2008)

6. Xie, M., Wang, H., Yin, J.: Integrity Auditing of Outsourced Data. In: Conference
on Very Large Databases, VLDB (2007)

7. Ghasemi, S., Noferesti, M., Hadavi, M.A., Dorri Nogoorani, S., Jalili, R.: Cor-
rectness Verification in Database Outsourcing: A Trust-Based Fake Tuples Ap-
proach. In: Venkatakrishnan, V., Goswami, D. (eds.) ICISS 2012. LNCS, vol. 7671,
pp. 343–351. Springer, Heidelberg (2012)

8. Hadavi, M.A., Jalili, R.: Secure Data Outsourcing Based on Threshold Secret Shar-
ing; Towards a More Practical Solution. In: Proceeding of VLDB PhD Workshop,
pp. 54–59 (2010)

9. Waring, E.: Problems concerning interpolations. Philosophical Transactions of
Royal Society 69, 59–67 (1779)

10. Lagrange, J.L.: Leons Imentaires sur les mathamatiques donnes a lcole normale.
In: Serret, J. (ed.) OEuvres de Lagrange, Paris, France, vol. 7, pp. 183–287 (1877)

11. Shamir, A.: How to share a secret. Communications of the ACM 22, 612–613 (1979)
12. Shacham, H., Waters, B.: Compact Proofs of Retrievability. In: Pieprzyk, J. (ed.)

ASIACRYPT 2008. LNCS, vol. 5350, pp. 90–107. Springer, Heidelberg (2008)
13. Wang, C., Wang, Q., Ren, K., Lou, W.: Privacy-Preserving Public Auditing

for Data Storage Security in Cloud Computing. In: Proceedings of INFOCOM,
pp. 1–9 (2010)

	Correctness Verification in Outsourced Databases: More Reliable Fake Tuples Approach
	1 Introduction
	2 Notations and Preliminaries
	3 Query Integrity Verification: The Approach
	3.1 Fake Tuple Generator
	3.2 Integrity Check of Database
	3.3 Completeness Check of Database

	4 Analysis
	4.1 Functioning of Proposed Approach
	4.2 Success Probability
	4.3 Cost Analysis
	4.4 Security Analysis
	4.5 Empirical Evaluation
	4.6 Features and Limitations

	5 Conclusion and Future Work
	References

