
Simple and Efficient Time-Bound Hierarchical

Key Assignment Scheme

(Short Paper)

Naveen Kumar, Anish Mathuria, and Manik Lal Das

DA-IICT, Gandhinagar, India
{naveen kumar,anish mathuria,maniklal das}@daiict.ac.in

Abstract. We propose a simple and efficient hash-based time-bound
hierarchical key assignment scheme that requires a single key per user
per subscription. It is more efficient than existing schemes in terms of
public storage.

Keywords: Time-bound access, Hierarchical access control, Key
management.

1 Introduction

There exist many on-line applications where data access is restricted to a specific
time interval. The total system time is divided into distinct time slots. A time
slot is the smallest possible subscription period. Each time slot has a set of
data blocks associated with it. A contiguous sequence of time slots is called a
time interval. A user can subscribe for one or more time intervals (subscription
intervals).

A monthly subscription hierarchy with 3 time slots (one for each January,
February and March) is shown in Figure 1. For each possible subscription inter-
val, there is a distinct node in the hierarchy. Each leaf node represents a time
slot. A directed edge in the subscription hierarchy represents an access to a sub-
scription interval with a subsequence of time slots. For example, an edge from
node Jan − Mar to Jan − Feb implies that a user with subscription of node
Jan−Mar can access to node Jan− Feb.

To cryptographically enforce time-bound access control, each node in the sub-
scription hierarchy is assigned a key using appropriate Hierarchical Key Assign-
ment Scheme (HKAS) [1]. Resources associated with a time slot are encrypted
with its associated encryption key. User is given secret information using which
one can easily compute all authorized encryption keys. The secret information
must be distributed securely to the user by a trusted Central Authority (CA). An
edge in the hierarchy represents direction of key derivation. A user subscribed
for the month of Jan and Feb is given a single secret information KJan−Feb

through which he can compute encryption keys KJan and KFeb for the nodes
Jan and Feb respectively.

When designing an efficient scheme, the objective is to minimize the amount
of secret key storage, public storage and key derivation time. Tzeng [2] proposed

A. Bagchi and I. Ray (Eds.): ICISS 2013, LNCS 8303, pp. 191–198, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



192 N. Kumar, A. Mathuria, and M.L. Das

Fig. 1. An example subscription hierarchy

the first time-bound HKAS based on RSA [3] cryptosystem. However, Yi and
Ye [4] found a three party collusion attack on [2]. In a survey paper on time-
bound HKAS, Zhu et al [5] suggest that hash-based constructions are more
promising than expensive modular exponentiation based constructions.

Ateniese, Santis, Ferrara and Masucci [6][7] proposed two constructions, one
based on bilinear pairing and another based on symmetric encryption. First
requires large key storage (i.e. O(z) where z is the number of time slots) to a
user per subscription. Second uses worst case two-level structure to reduce key
derivation cost at the expense of huge public storage (O(z3)).

Atallah, Blanton and Frikken [8] proposed an improved construction that
requires at most z− 1 hash operations as key derivation cost and z(z− 1) public
edge values. Using 2−Hop shortcut edge scheme [8], it requires key derivation
cost as 4 hash operations with a cost of O(z2 log z) additional public shortcut
edge values. Shortcut edges are used to reduce key derivation cost. A 2 −Hop
shortcut edge scheme is such that distance between any two nodes in a linear
hierarchy is at most 2 edges (Hops). Using log z − Hop shortcut edge scheme
[8], it requires key derivation cost as 2 log z with O(z log z) additional public
shortcut edge values.

Crampton [9,10] exploits the fact that it is not necessary to derive keys for
non-leaf nodes in a subscription hierarchy. He proposed an improved time-bound
HKAS with single key per user where he divides the nodes in the subscription
hierarchy into triangle, rectangle and square blocks and edges are inserted be-
tween different blocks for key derivation. He was able to reduce key derivation
cost up to log z hash operations. Number of public edge values required with a
subscription hierarchy is z(z − 1) similar as in Atallah et al. [8]. In [9], he dis-
cussed one more construction (for single key/user), with key derivation cost of 2
hash operations but with a significant increase in public edge values (O(z3), sim-
ilar to [7]). Recently Crampton [11] proposed another similar (for single key per
user) construction with a reduced key derivation cost of log log z hash operations
but with a public storage cost of z2(1+(1/6) log log z). The aforementioned con-
structions illustrate the trade-offs between key derivation cost and public storage
cost.

In this work, we propose a new construction for time-bound HKAS with sin-
gle key storage per user per subscription. Our scheme uses indirect key deriva-
tion with dependent keys. As shown in Section 3, our scheme requires less public



Simple and Efficient Time-Bound Hierarchical Key Assignment Scheme 193

storage (z(z − 1) − �(1/8)z(3z + 2)�) and only one key private storage at CA.
It requires at most log z hash operations as key derivation cost. The security of
our scheme relies on the one-way property of cryptographic hash functions.

In the next section, we describe our proposed time-bound HKAS. We analyze
and compare performance of our proposed construction with other time-bound
HKAS in Section 3.

2 Proposed Scheme

We propose a time-bound HKAS that uses xor and hash functions. A time-
bound HKAS generates system public information and, secret information for
each existing subscription interval such that a user with a secret information
can derive any authorize subscription node’s key in the hierarchy. Time-bound
HKAS is said to be secure if it is sound, even if user’s collude. A scheme is
sound if a user will not have secret information using which he can compute
any unauthorized encryption key in the system. Our scheme uses indirect key
derivation with dependent keys. In indirect key derivation, a user can derive key
of any immediate successor node directly and hence can compute key of any
descendant node working along the path towards the target node ([12]). In case
of dependent keys, key of a node is dependent on the keys of its predecessor
nodes [1]. CA will generate, assign and maintain secret keys in the system.

Key Assignment. Keys are assigned using following steps.

Step 1. Let, system consists of z time slots t1, ..., tz. CA generates a subscription
hierarchy structure with z leaf nodes, one for each time slot ti, with 1 ≤ i ≤ z.
It contains a node for every possible subscription interval in a system of z time
slots. Nodes are arranged in such a way that at each level l in the subscription
hierarchy structure, there are l+ 1 nodes with subscription interval of size z − l
each. Therefore, at level l = 0 (root level) there is only one (0 + 1) node with
subscription interval size z, i.e., node with time interval (t1, tz) represented as
(1, z). An example subscription hierarchy structure (or a subscription hierarchy)
for z = 4 time slots is shown in Figure 2(a).

Fig. 2. (a) An example subscription hierarchy, (b) Arrow types in Fig.(c), (c) Key
derivation structure corresponding to subscription hierarchy in Fig.(a)



194 N. Kumar, A. Mathuria, and M.L. Das

Step 2. CA chooses a public cryptographic one-way hash function h() for key
generation. h() is also used by the subscribers for key derivation purpose. A secret
key Ks is generated and stored by the CA. CA assigns a random public label
l(a,b) to each node (ta, tb) in the subscription hierarchy. In order to assign keys to
the nodes in subscription hierarchy, CA will call procedure Key Assignment(),
defined in Algorithm 1. Step 1 in Algorithm 1, moves to each level from top to
bottom in the subscription hierarchy. Step 2 initializes counter i to one, to point
left most node in a level. Step 3 moves to each node from left to right in a level.
If no key is assigned to the selected node, it compute and assign key to the node
using h() and Ks (Step 4− 6). Steps 7, 8 computes two child nodes named left
and right child nodes respectively of the selected node. In steps 9− 13, if key to
left child node is Null, then compute and assign dependent key K(i,left) as in
Step 10. Else, compute public edge value r(i,j),(i,left) for key derivation between
nodes (Step 12). Steps 14 − 18 gives similar treatment to right child. Step 19
will increment i by one, to move next node in same level.

Algorithm 1. Key Assignment(SH, z,Ks, h())

DESCRIPTION: Given a subscription hierarchy SH , number of time slots z, secret key
Ks associated with SH and h(), assign keys to nodes in SH .

1: for l = 0 → (z − 2) do
2: i = 1
3: for j = (z − l) → z do
4: if (K(i,j) = Null) then
5: K(i,j) = h(Ks, l(i,j))
6: end if
7: left = �(i+ j)/2�
8: right = left+ 1
9: if K(i,left) = Null then
10: K(i,left) = h(K(i,j), l(i,left))
11: else
12: r(i,j),(i,left) = h(K(i,j), l(i,left))⊕K(i,left)

13: end if
14: if K(right,j) = Null then
15: K(right,j) = h(K(i,j), l(right,j))
16: else
17: r(i,j),(right,j) = h(K(i,j), l(right,j))⊕K(right,j)

18: end if
19: i = i+ 1
20: end for
21: end for
22: return

Figure 2(c) shows output of Key Assignment() (Algorithm 1) considering sub-
scription hierarchy shown in Figure 2(a). In Figure 2(c), a smooth directed edge
denotes a public edge value between two end nodes and dotted directed edge



Simple and Efficient Time-Bound Hierarchical Key Assignment Scheme 195

denotes a dependent key generation as shown in Figure 2(b). A dotted directed
edge from node u to v shows that the key of node v is computed using key of
node u. Table 1 shows output of Key Assignment() (Algorithm 1) with respect
to subscription hierarchy shown in Figure 2(c).

Table 1. Key assignment to the subscription hierarchy given in Figure 2(c)

node Key left child right child public edge values
left child right child

(1, 4) h(Ks, l(1,4)) (1, 2) (3, 4) − −
(1, 3) h(Ks, l(1,3)) (1, 2) (3, 3) r(1,3),(1,2) −
(2, 4) h(Ks, l(2,4)) (2, 3) (4, 4) − −
(1, 2) h(K(1,4), l(1,2)) (1, 1) (2, 2) − −
(2, 3) h(K(2,4), l(2,3)) (2, 2) (3, 3) r(2,3),(2,2) r(2,3),(3,3)
(3, 4) h(K(1,4), l(3,4)) (3, 3) (4, 4) r(3,4),(3,3) r(3,4),(4,4)
(1, 1) h(K(1,2), l(1,1)) − − − −
(2, 2) h(K(1,2), l(2,2)) − − − −
(3, 3) h(K(1,3), l(3,3)) − − − −
(4, 4) h(K(2,4), l(4,4)) − − − −

Key Derivation. A user with a subscription key can derive any authorize en-
cryption key within its subscription using procedure Key Derivation(), defined
in Algorithm 2. Suppose that there is a user with secret information K(ta,tb) cor-
responding to a subscription interval (ta, tb). To derive an encryption key K(t,t)

with ta ≤ t ≤ tb, the user will do the following.

Step 1. Let (ta < tb), user will find two nodes with subscription (ta, tmid) and
(tmid+1, tb) where tmid = �(ta + tb)/2�.
(a). Let t∈(ta, tmid). To compute keyK(ta,tmid), if public edge value r(ta,tb),(ta,tmid)

exists then user will compute K(ta,tmid) = h(K(ta,tb), l(ta,tmid)) ⊕ r(ta,tb),(ta,tmid)

where h() and l(ta,tmid) are public. Otherwise, user will compute K(ta,tmid) =
h(K(ta,tb), l(ta,tmid)).

(b). Let t ∈ (tmid+1, tb). To compute key K(tmid+1,tb), if public edge
value r(ta,tb),(tmid+1,tb) exists then user will compute K(tmid+1,tb) =
h(K(ta,tb), l(tmid+1,tb)) ⊕ r(ta,tb),(tmid+1,tb). Otherwise, he will compute
K(tmid+1,tb) = h(K(ta,tb), l(tmid+1,tb)).

Step 2. User will repeat Step 1 using fresh computed key K(tx,ty) ((tx, ty) is
either (ta, tmid) or (tmid+1, tb)) with tx ≤ t ≤ ty until get target encryption key
K(t,t).

Since, there is a path from each subscription node to its all descendant leaf
nodes in the subscription hierarchy; one will surely get any authorize leaf node
encryption key following above steps.



196 N. Kumar, A. Mathuria, and M.L. Das

Algorithm 2. Key Derivation(K(i,j), i, j, t, Pub)

DESCRIPTION: Given a subscription key K(i,j), subscription start time slot i, sub-
scription expiry time slot j, target time slot t with i ≤ t ≤ j and public information,
it returns target node encryption key K(t,t).

1: if (t < i) or (t > j) or (j < i) then
2: return Null
3: end if
4: while j > i do
5: m = �(i+ j)/2�
6: if (t ≤ m) then
7: if r(i,j),(i,m) then
8: K(i,m) = h(K(i,j), l(i,m))⊕ r(i,j),(i,m)

9: else
10: K(i,m) = h(K(i,j), l(i,m))
11: end if
12: j = m
13: else
14: if r(i,j),(m+1,j) then
15: K(m+1,j) = h(K(i,j), l(m+1,j))⊕ r(i,j),(m+1,j)

16: else
17: K(m+1,j) = h(K(i,j), l(m+1,j))
18: end if
19: i = m+ 1
20: end if
21: end while
22: return K(i,j)

3 Performance Analysis

Each node in the subscription hierarchy excluding leaf nodes has at most two
outgoing edges and each edge has one associated public edge value. Hence, there
are at most z(z − 1) public edge values. The nodes in lower half levels of the
subscription hierarchy are having dependent keys and hence each such node has
one incoming edge which does not have associated public edge value. The number
of nodes (X) in lower half levels is computed below,

X = # nodes in full hierarchy - # nodes in upper half levels

= (1/2)z(z+1) - (1/2)(z/2)((z/2)+1)

= (1/8)z(3z+2)

Hence, out of z(z − 1) edges, up to (1/8)z(3z + 2) (nodes in lower half levels
of subscription hierarchy) nodes have dependent incoming edges without public
edge value. Hence, a total of z(z − 1) − (1/8)z(3z + 2) public edge values are
required.

In our scheme, each key in the subscription hierarchy is computed with single
key (e.g. Ks). Hence, only one key is required with CA to derive all other keys.
In [9,10], since keys are independently assigned to the nodes in the subscription



Simple and Efficient Time-Bound Hierarchical Key Assignment Scheme 197

hierarchy, there are many nodes whose parent does not exists (are root nodes).
A key for each root node must be stored at CA. We can see in their hierarchy
that at least upper half of the levels do not have parents (hence are root nodes.
Therefore, (1/2)(z/2)((z/2) + 1) = (z/8)(z + 2) keys must be stored at CA.
In [8], since using root node key, CA can derive every key in the hierarchy, it
requires only one key to store. In [7], there are two levels. Upper level will have a
node corresponding to each subscription interval with more than one time slots.
In other way, it includes all nodes in the considered subscription hierarchy other
than leaf nodes (nodes in upper z − 1 levels) i.e. (z/2)(z − 1).

Table 2 compares cost associated with a subscription hierarchy in the existing
time-bound HKAS. Ateniese et al [7] scheme requires one decryption operation
for key derivation with an expense of huge (O(z3)) public storage. Atallah et al
base scheme [8] requires at most z hash operations as a key derivation. When
using log z −Hop shortcut edge scheme, Atallah et al improved scheme reduces
key derivation cost up to 2 log z with an expense of additional (> z2) public edge
values. Crampton [9,10] was able to reduce key derivation cost up to logz without
using any additional (shortcut) public edge value by using independent keys. In
our scheme, we use dependent keys and are able to further reduce public storage
by a factor of (1/8)z(3z + 2). Key derivation cost in our scheme is similar (at
most log z steps) to [9,11], as a user can jump half of the existing levels towards
target leaf node in every step.

Table 2. Comparison of single key time-bound HKAS

Scheme Type of keys Public Secret storage Key derivation
edge values at CA cost

Ateniese et al independent z(z − 1)(z + 4)/6 z(z − 1)/2 1
Scheme [7] decryption

Atallah et al base independent z(z − 1) 1 z
Scheme [8]

Atallah et al Impv. independent > z(z − 1) + z2 1 2.log z
Scheme [8] with

log z −Hop scheme

Crampton independent z(z − 1) > z/8(z + 2) log z
Scheme [9]

Our proposed dependent z(z − 1)− 1 log z
Scheme �(1/8)z(3z + 2)�

Note that, allowing more number of outgoing edges to a node in subscription
hierarchy will reduce key derivation cost. There is a trade-off between outgoing
edges to a node and key derivation cost. In our scheme, if we allow log z outgoing
edges to a node (with the same spirit as in [11]), key derivation cost will be
reduced to log log z as in [11]. Public storage cost in our construction will be
still less with a factor of (1/8)z(3z + 2) since these number of nodes are still
require an incoming edge with dependent key derivation i.e. without any public
edge value.



198 N. Kumar, A. Mathuria, and M.L. Das

4 Future Work

Future direction to this work includes: extending system hierarchy to consider
dynamic operations like add or delete user subscription in the system and formal
security analysis with appropriate adversary model.

References

1. Akl, S.G., Taylor, P.D.: Cryptographic solution to a problem of access control in
a hierarchy. ACM Trans. on Computer Systems 1(3), 239–248 (1983)

2. Tzeng, W.G.: A time-bound cryptographic key assignment scheme for access con-
trol in the hierarchy. IEEE Trans. on Know. and Data Eng. 14, 182–188 (2002)

3. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM 21(2), 120–126 (1978)

4. Yi, X., Ye, Y.: Security of Tzeng time-bound key assignment scheme for access
control in hierarchy. IEEE Trans. on Know. and Data Eng. 15(4), 1054–1055 (2003)

5. Zhu, W.T., Deng, R.H., Zhou, J., Bao, F.: Time-bound hierarchical key assignment:
An overview. IEICE Trans. 93-D(5), 1044–1052 (2010)

6. Ateniese, G., De Santis, A., Ferrara, A.L., Masucci, B.: Provably-secure time-bound
hierarchical key assignment schemes. In: ACM Conference on Computer and Com-
munications Security, pp. 288–297 (2006)

7. Ateniese, G., De Santis, A., Ferrara, A.L., Masucci, B.: Provably-secure time-bound
hierarchical key assignment schemes. Journal of Cryptology 25(2), 243–270 (2012)

8. Atallah, M.J., Blanton, M., Frikken, K.B.: Incorporating temporal capabilities in
existing key mgmt. schemes. In: Biskup, J., López, J. (eds.) ESORICS 2007. LNCS,
vol. 4734, pp. 515–530. Springer, Heidelberg (2007)

9. Crampton, J.: Trade-offs in cryptographic implementations of temporal access
control. In: Jøsang, A., Maseng, T., Knapskog, S.J. (eds.) NordSec 2009. LNCS,
vol. 5838, pp. 72–87. Springer, Heidelberg (2009)

10. Crampton, J.: Time-storage trade-offs for cryptographically-enforced access con-
trol. In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 245–261.
Springer, Heidelberg (2011)

11. Crampton, J.: Practical and efficient cryptographic enforcement of interval-based
access control policies. ACM Trans. on Inf. Syst. Secur. 14(1), 14 (2011)

12. Atallah, M.J., Frikken, K.B., Blanton, M.: Dynamic and efficient key management
for access hierarchies. In: ACM Conference on Computer and Communications
Security, pp. 190–202 (2005)


	Simple and Efficient Time-Bound Hierarchical Key Assignment Scheme(Short Paper)
	1 Introduction
	2 ProposedScheme
	3 Performance Analysis
	4 Future Work
	References




