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Abstract The haematopoietic system is established early during embryonic devel-

opment and is maintained throughout adult life by haematopoietic stem cells. The

cellular intermediates leading to the formation of mature blood cells are now fairly

well characterised; from the mesoderm germ layer, successive steps of commitment

give rise to haemangioblast, haemogenic endothelium, and haematopoietic stem

and progenitor cells. Key transcription factors, such as ETV2, SCL, GATA2 or

RUNX1, have been shown to specifically control some of these cell fate decisions.

However, an integrated view of the transcriptional network controlling

haematopoietic specification still remains to be established. Furthermore, it has

become clear over the last decade that the transcriptional control of cell fate

specification is globally regulated by epigenetic mechanisms. While the chromatin

landscape is starting to be unravelled in adult haematopoiesis, virtually nothing is

known about the epigenetic processes regulating the onset of haematopoiesis in the

developing embryo. In this chapter, we describe the current state of our knowledge

on the onset of mammalian haematopoiesis, focusing on murine development as it

is by far the best characterised organism.
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4.1 Ontogeny of the Haematopoietic System in Mammals

Over the last century, detailed analyses of embryonic tissues have allowed to define

a spatiotemporal map of haematopoiesis during development. These analyses

revealed that haematopoiesis occurs at multiple sites during development, but that

only some of these sites are able to de novo generate haematopoietic cells. Despite

numerous studies, the developmental origin of haematopoietic stem cells (HSCs)

which maintain the haematopoietic system throughout adult life still remains

unclear and controversial.

4.1.1 Anatomical Sites of Haematopoiesis During
Development

In the mouse embryo, the first blood cells appear in the yolk sac (YS), an extra-

embryonic supporting tissue, from embryonic day (E)7.5 before the vasculature

connections are established with the embryo proper. Early haematopoietic produc-

tion from the YS is referred to as the first wave of haematopoiesis or primitive

haematopoiesis, as it mainly produces primitive erythrocytes (nucleated erythro-

cytes expressing embryonic globins), macrophages and megakaryocytes (Wong

et al. 1986; Palis et al. 1999). It is believed that these cells will not contribute to

the pool of haematopoietic cells found in the adult organism. A second wave of

haematopoiesis arises shortly after and is called definitive haematopoiesis as it

produces adult-type progenitor cells from E8.5 (Godin et al. 1995). During this

second wave of haematopoiesis, HSCs which will give rise to the adult

haematopoietic system are produced from E10.5. Based on milestone experiments

performed with the avian model, it is now widely accepted that the first definitive

HSCs originate from an intra-embryonic region (Dieterlen-Lievre 1975) and not

from the YS as previously thought (Moore and Owen 1965). In the murine embryo,

the AGM region (which encompasses the aorta together with the gonads and the

mesonephros) was shown to contain multipotent progenitors between E9 and E12

(Medvinsky et al. 1993) and from E10 the first HSCs as defined by their ability to

reconstitute the haematopoietic system of adult mouse recipients upon transplan-

tation (Muller et al. 1994; Medvinsky and Dzierzak 1996). From E10.5 to E11,

HSCs were also detected in the placenta (Gekas et al. 2005; Ottersbach and

Dzierzak 2005) and the YS (Muller et al. 1994; Kumaravelu et al. 2002; Gekas

et al. 2005), where they are thought to proliferate before reaching the foetal liver,
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the main site of HSC expansion from E12.5, then the bone marrow from E17.5

onward (reviewed by Mikkola and Orkin 2006).

The anatomical origin of HSCs has been the subject of intensive studies.

Because the YS can produce adult-type progenitors just before the blood circulation

is established (Palis et al. 1999), organ explants experiments have been used to

confirm the intra-embryonic origin of HSCs previously suggested in the avian

model. When explanted before the establishment of blood circulation, it has been

shown that the presumptive AGM region contains developmental precursors of

HSCs, while the YS is devoid of HSC activity (Cumano et al. 2001). Although these

results confirm the theory of the intra-embryonic origin of HSCs, it has been

suggested that the early YS might independently generate precursors requiring a

specialised microenvironment such as the AGM to develop into definitive HSCs

(Matsuoka et al. 2001). This hypothesis has recently gained further support through

lineage tracing experiments demonstrating that the early YS contains precursors of

adult HSCs (Samokhvalov et al. 2007; Tanaka et al. 2012a), although technical

issues surrounding the experimental strategies undermine these studies. The allan-

tois, which gives rise to the umbilical cord, has also been proposed as a site of de

novo generation of multipotent haematopoietic progenitors, either using organ

explants strategies (Zeigler et al. 2006; Corbel et al. 2007), or using mouse model

devoid of heart beat (Rhodes et al. 2008).

4.1.2 Cellular Origin of Haematopoiesis

The cellular origin of haematopoietic precursors has also long been a subject of

controversy. A first theory was proposed in the early twentieth century based on the

anatomical studies of the first erythrocytes observed within the YS. These blood

cells were surrounded by endothelial cells in histological structures called “blood

islands” which seem to develop from a uniform mass of mesodermal cells. This

observation led to the hypothesis that haematopoietic and endothelial cells from the

YS shared a common developmental precursor (Maximov 1909; Sabin 1920), later

termed the haemangioblast. This precursor was eventually identified using the

embryonic stem (ES) cell differentiation model in which the blast colony-forming

cell (BL-CFC), the in vitro equivalent of the putative haemangioblast, was identi-

fied as a tri-potential precursor which can differentiate into haematopoietic, endo-

thelial and smooth muscle lineages and which can be enriched based on its

expression of FLK1 (VEGF-receptor 2, KDR) and brachyury (Choi et al. 1998;

Ema et al. 2003; Fehling et al. 2003). Using these markers, the haemangioblast was

later isolated from the gastrulating embryo (Huber et al. 2004), where it was shown

to localise within the primitive streak, and not within the mesodermal masses

developing into blood islands, as first hypothesised. It is now believed that the

haemangioblast is a transient mesodermal precursor which develops very quickly

into the haematopoietic or endothelial lineages while migrating from the primitive
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streak to the extra-embryonic YS, and that as a result of both rapid commitment and

migration, blood islands are polyclonal (Ferkowicz and Yoder 2005; Ueno and

Weissman 2006).

Contemporary to the observation of the YS blood islands was the observation of

blood cell clusters attaching to the endothelial wall of the dorsal aorta, which led to

the theory of an endothelial origin of these haematopoietic cells (Jordan 1917).

Phenotypic analysis of these clusters revealed a co-expression of both endothelial

and haematopoietic markers (Garcia-Porrero et al. 1998; reviewed by Cumano and

Godin 2007), suggesting a direct lineage relationship between blood and vascula-

ture. It was later shown that sorted endothelial cells from E9.5 embryos can produce

haematopoietic cells in vitro (Nishikawa et al. 1998). More convincing evidence

demonstrating the production of haematopoietic cells from the endothelium in vivo

came from lineage tracing experiments. The first strategy showed that Ac-LDL

labelling of cells of the endothelial tree in living embryos resulted in production of

labelled haematopoietic cells (Sugiyama et al. 2003, 2005). Another strategy

involving inducible lineage-specific expression of a reporter gene demonstrated

that part of the adult haematopoietic system was derived from an endothelial

ancestor (Zovein et al. 2008). Recent technologies have now made possible the

direct visualisation of “budding” haematopoietic cells from the endothelium in the

AGM region (Boisset et al. 2010). This was also observed using the ES cell

differentiation model (Eilken et al. 2009; Lancrin et al. 2009). The intra-aortic

clusters are thought to contain the HSCs present within the AGM region, and it is

hypothesised that these clusters are produced from the haemogenic endothelium

although this remains to be formally demonstrated (Taoudi and Medvinsky 2007;

Taoudi et al. 2008). Of interest, arterial haematopoietic activity is not restricted to

the dorsal aorta as the vitelline and umbilical arteries also harbour HSCs at the same

time as the aorta (de Bruijn et al. 2000) and contain intra-artery clusters (North

et al. 2002). Haemogenic endothelial cells have also been isolated from the YS

(Nishikawa et al. 1998; Li et al. 2005; Lancrin et al. 2009).

Although the theories of the haemangioblast and the haemogenic endothelium

have been considered mutually exclusive, a unifying theory has been proposed

where the haemangioblast produces haematopoietic cells through a haemogenic

endothelial step (Fig. 4.1) [reviewed by Lancrin et al. (2010)]. This cellular

hierarchy has been defined for the first wave of haematopoiesis; the cellular origin

of the second wave of embryonic haematopoiesis is in contrast still not fully

understood. It remains to be determined whether the haemogenic endothelium

found within the AGM is directly derived from the first wave of already committed

mesoderm or whether it is de novo specified from mesoderm via a haemangioblast

intermediate. Defining the cellular origin of this second wave of haematopoiesis is

critically important if one wants to understand how HSCs are generated.
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4.2 Transcriptional Regulation of Haematopoietic

Specification During Development

The spatiotemporal emergence of the haematopoietic system is a tightly controlled

process orchestrated by multiple transcription factors. Several master regulators

have been shown to coordinate the sequential steps leading to the production of

mature blood cells. The complex transcriptional network controlling these cell fate

decisions from mesoderm to haematopoietic cells is slowly been unravelled

(Fig. 4.1).

4.2.1 From the Haemangioblast to the Haemogenic
Endothelium

4.2.1.1 SCL

SCL (SCL/TAL1), a member of the bHLH (basic helix–loop–helix) transcription

factor family, was initially identified as a target of chromosomal translocation in

T-cell leukaemia (reviewed by Begley and Green 1999). In the developing embryo,

SCL is expressed from E7.5 in the extra-embryonic mesoderm, and thereafter in the

Haemogenic endothelium Mesoderm / Haemangioblast Blood precursor

ETV2

SCL RUNX1 GATA2

Extra- / Intra-embryonic
mesoderm Haemogenic endothelium Haematopoietic progenitors

Fig. 4.1 The generation of embryonic blood cells. Mouse embryonic haematopoietic precursors

are generated from extra- and intra-embryonic mesodermal cell populations through a transient

haemogenic endothelium. Key transcription factors regulate the transitional steps involved in

blood generation: ETV2 acts upstream of SCL and both proteins regulate the differentiation of

mesoderm/haemangioblasts into haemogenic endothelial cells; RUNX1 is subsequently required

for the emergence of blood precursors from the haemogenic endothelium; GATA2 is implicated in

the maintenance and proliferation of the newly formed haematopoietic progenitor cells
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haematopoietic and endothelial cells of the YS and the embryo proper (Kallianpur

et al. 1994; Silver and Palis 1997; Elefanty et al. 1999), but also in some neurons of

the central nervous system (van Eekelen et al. 2003). SCL-deficient embryos die

around E9.5 with a complete absence of YS haematopoiesis likely to be the cause of

this early embryonic lethality (Robb et al. 1995; Shivdasani et al. 1995). Analysis of

the contribution of scl�/� ES cells to mouse chimaeras showed that they do not

contribute to primitive or definitive haematopoiesis, suggesting that SCL is neces-

sary for haematopoiesis during development (Porcher et al. 1996; Robb et al. 1996).

Despite being expressed in endothelial cells, SCL does not seem to be necessary for

the emergence of endothelial cells, as null embryos display a capillary network in

the YS. However, these embryos lack a complete endothelial network, indicating

that SCL is involved in vascular remodelling (Visvader et al. 1998; Elefanty

et al. 1999). Using the in vitro model of ES differentiation, it was shown that

SCL is dispensable for haemangioblast specification, but is necessary to drive the

haemangioblast toward haematopoietic fate (Ema et al. 2003; D’Souza et al. 2005).

More recently, it was shown that SCL is specifically required for the transition from

the haemangioblast to the haemogenic endothelium stage (Lancrin et al. 2009).

Recent studies have shown that SCL is also a regulator of mesoderm patterning:

SCL can induce haematopoietic specification at the expense of other lineages such

as cardiac or paraxial mesoderm (Ismailoglu et al. 2008), and YS endothelial cells

are mis-specified toward cardiac fate in the absence of SCL (Van Handel

et al. 2012).

4.2.1.2 LMO2

LMO2 (RTBN2) is a LIM domain transcription factor involved in chromosomal

translocation in T-cell leukaemia (Boehm et al. 1991; Royer-Pokora et al. 1991).

During development, LMO2 displays a similar pattern of expression as SCL, being

detected in the mesoderm, the haemogenic sites of the cardiovascular system

(Silver and Palis 1997; Manaia et al. 2000; Minko et al. 2003) and the nervous

system (Hinks et al. 1997; Herberth et al. 2005). LMO2 is also expressed transiently

in some somite derivatives and in the intra-embryonic endoderm (Manaia

et al. 2000). Embryos deficient for LMO2 present a phenotype similar to SCL

null embryos. They die around E10.5 from the absence of YS erythropoiesis

(Warren et al. 1994), and null ES cells do not contribute to adult haematopoiesis

cells in chimaera experiments (Yamada et al. 1998). Interestingly, LMO2 does not

bind to DNA directly but has been shown to interact with transcriptional regulatory

complexes involved in haematopoietic differentiation (Warren et al. 1994;

Wadman et al. 1997; Rabbitts 1998; Xu et al. 2003). More specifically, a transcrip-

tional complex involving LMO2, SCL, GATA-1, LDB1 and E2A was described in

erythroid lineage. It is proposed that LMO2 acts as a scaffold to link SCL and

GATA factors both of which are involved in DNA binding (Wadman et al. 1997).

Since LMO2 is required for haematopoietic emergence, it is very likely that this
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factor is also involved in transcriptional complexes regulating haematopoietic

specification, as it was recently suggested (Nottingham et al. 2007; Landry

et al. 2008; Wilson et al. 2010).

4.2.1.3 ETV2

ETV2 (ETSRP71) is a member of the ETS family of transcription factors which was

recently identified in zebrafish (Sumanas et al. 2005), mouse and human (Sumanas

et al. 2008). ETV2 is expressed transiently in the developing embryo; it is first

detected in the extra-embryonic mesoderm around E7.0, in the endothelial and

haematopoietic cells of the blood island at E8.5, then in the endothelial cells of the

developing vasculature of the embryo proper but is virtually absent after E11.5 (Lee

et al. 2008; Kataoka et al. 2011; Koyano-Nakagawa et al. 2012; Wareing

et al. 2012a).

Ectopic expression of ETV2 during ES cell differentiation promotes the forma-

tion of endothelial and haematopoietic progenitors (Lee et al. 2008; Koyano-

Nakagawa et al. 2012; Liu et al. 2012). Embryos deficient for ETV2 die by E10.5

with a complete absence of blood progenitors and severe vascular defects (Lee

et al. 2008; Kataoka et al. 2011; Koyano-Nakagawa et al. 2012; Wareing

et al. 2012b), and null ES cells do not contribute to haematopoiesis or endothelial

cells in chimaera experiments (Liu et al. 2012). Taken together, these data suggest a

requirement of ETV2 in the establishment of haematopoietic and endothelial

lineages. Supporting this theory, endogenous ETV2 expression is correlated with

haematopoietic potential in the embryo and in the ES differentiation model

(Kataoka et al. 2011; Koyano-Nakagawa et al. 2012; Wareing et al. 2012a). In

particular, ETV2 expression marks the haemogenic endothelium population in vitro

and in vivo and is required for its formation (Wareing et al. 2012a).

Interestingly, ETV2-deficient ES cells display increased cardiogenic potential

(Liu et al. 2012) and ETV2 overexpression supresses development of the cardiac

lineage (Rasmussen et al. 2011), a phenotype reminiscent of SCL activity. In line

with these findings, it has been shown that SCL is a direct transcriptional target of

ETV2 (Kataoka et al. 2011; Wareing et al. 2012b). Considering that ETV2 is

expressed in primitive mesodermal precursors and only required until FLK1

expression as shown by conditional deletion experiments (Wareing et al. 2012a),

it is proposed that ETV2 directs early mesoderm to differentiate toward

haematopoietic and endothelial lineages and that its action is mediated by the

induction of SCL.
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4.2.2 From the Haemogenic Endothelium
to the Haematopoietic Progenitors

4.2.2.1 RUNX1

RUNX1 (Acute Myeloid Leukaemia (AML-1), CBFα) is a member of the family of

Runt-domain transcription factors and heterodimerizes with CBFβ to form the core-

binding factor (CBF). Both subunits have been frequently found involved in

chromosomal translocation in leukaemia and myelodysplasic syndromes (Look

1997). RUNX1 is expressed from E7.5 in the YS mesoderm and blood islands,

and in haemogenic sites in the embryo later on. In the embryo proper, RUNX1 is

expressed in endothelial cells of the aorta and vitelline artery as early as E8.5 and in

the endothelial cells and haematopoietic clusters of the aorta and umbilical artery at

E10.5 (North et al. 1999; Lacaud et al. 2002).

Embryos deficient for RUNX1 die around E12.5–E13.5, most likely due to

haemorrhages in the central nervous system. Primitive erythropoiesis is observed

in the YS, but no definitive haematopoiesis is present in the foetal liver (Okuda

et al. 1996), suggesting a role for RUNX1 in the establishment of definitive but not

primitive haematopoiesis. This hypothesis was confirmed using the ES cell differ-

entiation model, where it was shown that runx1�/� ES cells generate primitive

haematopoiesis in vitro (Lacaud et al. 2002), but do not contribute to definitive

haematopoiesis in vivo in chimaeras embryos (Okuda et al. 1996). Deficient

embryos are devoid of HSCs in the foetal liver and the YS but also in the AGM

region (Cai et al. 2000; Mukouyama et al. 2000), suggesting a requirement of

RUNX1 during the early steps of HSCs specification. This hypothesis was

supported by the observation that intra-aortic clusters, believed to contain the

emerging HSCs, are absent in RUNX1-deficient embryos (North et al. 1999).

Further studies showed that RUNX1 is actually necessary for the generation of

haematopoietic cells from the haemogenic endothelium. Indeed, endothelial cells

sorted from E10.5 runx1�/� embryos do not generate haematopoietic cells in vitro

(Yokomizo et al. 2001). Moreover, using a conditional KO mouse model, it was

shown that RUNX1 expression is required in endothelial cells for HSCs emergence,

but dispensable in cells already engaged in the haematopoietic lineage

(Li et al. 2006; Chen et al. 2009). In vitro, it was shown that RUNX1 is required

for the transition from the haemogenic endothelium population to haematopoietic

cells (Lancrin et al. 2009).

Altogether, these studies revealed that RUNX1 is necessary for the emergence of

definitive HSCs from the haemogenic endothelium during development. Further-

more, RUNX1 activity seems to be dose dependent since haploinsufficient embryos

display HSC activity from E10, 1 day earlier than WT embryos. But at E11.5,

although runx1+/� AGM contain the same number of HSCs, they are not able to

amplify during ex vivo culture, suggesting that RUNX1 could also regulate the

maintenance/expansion of HSCs in the embryo (Cai et al. 2000).
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4.2.2.2 GATA2

GATA2 is a member of the zinc finger transcription factor and is part of the GATA

family. During development, GATA2 is expressed at E7.5 in extra- and intra-

embryonic mesoderm and in the YS blood islands (Minegishi et al. 1999;

Kobayashi-Osaki et al. 2005). Later during development, GATA2 is expressed in

the endothelial and haematopoietic cells of the AGM and foetal liver (Minegishi

et al. 1999, 2003; Kobayashi-Osaki et al. 2005). GATA2 is also expressed in

non-haematopoietic tissues such as the central nervous system and the uro-genital

compartment (Nardelli et al. 1999; Siggers et al. 2002).

GATA2-deficient embryos die in utero around E10.5 with severe anaemia (Tsai

et al. 1994). They display a markedly reduced primitive haematopoiesis. In chi-

maera experiments, null ES cells do participate in primitive haematopoiesis,

although in a very low proportion, but are unable to contribute to definitive

haematopoiesis (Tsai et al. 1994). Interestingly, deficient ES cells can produce

definitive haematopoietic cells in vitro, but GATA2 is likely involved in the

subsequent survival and/or proliferation of these haematopoietic progenitors (Tsai

et al. 1994; Tsai and Orkin 1997). This hypothesis was further supported when it

was shown that GATA2 haploinsufficiency leads to a decrease in HSCs number in

the AGM, YS and foetal liver between E10 and E12 and that these HSCs display

reduced proliferation during AGM explant culture. Compensatory mechanisms are

likely to rescue GATA2 deficiency since older embryos and adult gata2+/� mice

have normal numbers of HSCs. These HSCs, however, have a proliferative defect

revealed in non-steady state physiology such as competitive engraftment experi-

ments (Ling et al. 2004; Rodrigues et al. 2005).

4.2.3 Reconstruction of Gene Regulatory Networks

As described above, the emergence and specification of haematopoietic cells during

development is regulated by transcription factors. Using loss and gain of function

approaches, the systematic analysis of individual transcription factor has allowed to

identify master regulators of this process and to understand at which specific time

and stages they are acting. However, how these factors interact together within

wider regulatory networks to orchestrate the tightly regulated process of

haematopoietic development is still largely unknown. Gene regulatory networks

are described as the functional interplay between transcription factor proteins and

the ‘cis-regulatory modules’ (CRM) associated with their target genes (reviewed by

Pimanda and Gottgens 2010). Current strategies to decipher regulatory networks

fall into two categories: the ‘bottom-up’ and the ‘top-down’ approaches.
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4.2.3.1 Bottom-up Approaches

Bottom-up approaches start from one identified component of a specific network,

such as a CRM or a transcription factor, and reconstruct the regulatory mechanisms

upstream of this component within the network. An example of a bottom-up

approach is the study of the transcriptional regulation of the Scl gene during

haematopoietic development. Using in vivo transgenic reporter assays, several

enhancers have been identified in the Scl locus, some of which have been shown

to specifically direct the expression of a reporter gene in the haematopoietic and

endothelial cells during development (Sanchez et al. 1999; Gottgens et al. 2002,

2004; Silberstein et al. 2005). Interestingly, the +19 enhancer, a 600-bp core

sequence 19 kb downstream of the transcription start site, was shown to contain

three binding motifs which were necessary for its activation (Gottgens et al. 2002).

These motifs, two conserved ETS-binding sites and one conserved GATA-binding

site, were bound by FLI1, ELF1 and GATA2 and it was shown that these three

transcription factors formed a transcriptional complex regulating SCL expression.

This Ets/Ets/Gata motif was the first CRM identified in the haematopoietic spec-

ification process. This CRM was then used in a genome-wide screening to identify

new enhancers of other genes putatively involved in haematopoietic development,

three of which (namely Fli1, Hex and Smad6) were found to display an expression

pattern similar to the Scl +19 enhancer in vivo (Donaldson et al. 2005; Pimanda

et al. 2007a).

Further studies of the Fli1 enhancer lead to the identification of the first fully

connected triad of HSC transcription factors, the SCL/FLI1/GATA2 triad (Pimanda

et al. 2007b). This triad consists of genes encoding transcription factors regulating

each other, thus forming a powerful feedforward loop stabilising the stem cell state.

This activation is likely to take place early during haematopoietic specification as

all three factors are co-expressed in presumptive HSCs of the AGM intra-aortic

clusters. A network model was recently proposed where the triad is initiated by

NOTCH and BMP4 signalling and modulated by RUNX1 in the haemogenic

endothelium (Narula et al. 2010, 2013).

4.2.3.2 Top-Down Approaches

Top-down approaches are used to identify downstream targets of specific transcrip-

tion factors. They are usually based on genome-wide expression profiling of cell

populations following induction or inactivation of a transcription factor of interest.

This approach generates a list of potential transcriptional targets based on func-

tional relevance and the presence of predicted binding sites in the regulatory

sequences of the candidates (as performed for ETV2 in Wareing et al. 2012b).

Combining analyses for multiple transcription factors should then allow to high-

light interconnections between transcriptional programmes and help reconstructing

regulatory networks.
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The main drawbacks of such approaches are the need to validate the direct

binding of the transcription factor on its target and the risk of missing potential

candidates because of lack of proper annotations of genomic sequences. These

limitations are now being bypassed with the use of the ChIP-seq technology

(chromatin immunoprecipitation combined with high-throughput sequencing). It

is not yet possible to use this technology with low number of cells, thus precluding

analysis of rare cell populations in the developing embryos. Nonetheless, this

strategy was recently used to identify members of the transcriptional network

controlled by SCL during haematopoietic development. A screen of direct tran-

scriptional targets of SCL was conducted using a haematopoietic stem/progenitor

cell line and 11 of these candidates were validated in vivo using ChIP and

transgenic reporter assays for the corresponding enhancer region (Wilson

et al. 2009). Using this strategy, the same group generated genome-wide binding

profiles for ten major haematopoietic transcriptional regulators: SCL, LYL1,

LMO2, GATA2, RUNX1, MEIS1, PU.1, ERG, FLI-1 and GFI1b (Wilson

et al. 2010). This study suggested the existence a heptamer complex (containing

SCL, LYL1, LMO2, GATA2, RUNX1, FLI-1 and ERG) acting to regulate the

haematopoietic programme. Of interest, a collaboration involving RUNX1 with

SCL, LYL1, LMO2 or GATA2 had not been described previously.

More recently, two studies have investigated the direct transcriptional targets of

RUNX1 during haematopoietic development. In the first study, the combination of

gene expression profiling and ChIP-seq analysis in differentiating ES cells identi-

fied a small number of direct transcriptional targets of RUNX1 during the

haematopoietic specification. Among those, only 29 genes were shown to be

affected by the loss of RUNX1 during haematopoietic emergence in the E7.5 YS

(Tanaka et al. 2012b). Interestingly, 23 of these genes were previously described as

direct transcriptional targets of the SCL/FLI1/GATA2 triad, thus reinforcing the

hypothesis of transcriptional collaboration of these factors within an early

haematopoietic regulatory network. In another study, the binding profile of SCL,

FLI1 and RUNX1 were compared during the endothelial to haematopoietic transi-

tion in the ES cell differentiation model (Lichtinger et al. 2012). This study

suggested that the binding profiles of SCL and FLI1 were altered during the

transition, although most of the redistribution occurred within the same gene

locus or in its vicinity; this shift in binding activity was shown to be in part a

consequence of RUNX1 binding at the same locus. This study along with previous

work from the same group demonstrated the implication of RUNX1 in modulating

chromatin remodelling and epigenetic changes at the onset of haematopoiesis

(Hoogenkamp et al. 2009; reviewed by Lichtinger et al. 2010).

While transcription factors implicated in haematopoietic development are fur-

ther characterised, their role defined and their places within transcriptional net-

works uncovered, it becomes essential to integrate this wealth of knowledge into

the higher levels of regulation encompassing the epigenetic control of genome-wide

chromatin landscape.
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4.3 Epigenetic Regulation of Transcription

Epigenetics describes the chromatin-based events regulating gene expression in a

heritable manner. These events include DNA methylation and histone modifica-

tions. Changes in the DNA methylation pattern or alterations in the histone mod-

ifications landscape can modulate gene expression, either directly or by facilitating

the recruitment of additional chromatin-modifying enzymes. The key role of

chromatin modifying enzymes in haematopoiesis is highlighted by the fact that

the function or expression of several of these enzymes is deregulated in leukaemia

and other haematological malignancies (Fig. 4.2).

4.3.1 Post-translational Histone Modifications

The complexity of histone code is highlighted by the large range of possible

modifications including acetylation, methylation, phosphorylation, ubiquitylation

and SUMOylation, amongst others. Combinations of different modifications are

thought to induce structural changes in the chromatin, and therefore modify the

accessibility of transcription factors to regulatory sequences, allowing the regula-

tion of gene expression in a time and tissue-specific manner. Our understanding of

the specific functions of the proteins that direct chromatin modifications at different

stages of the development or maintenance of the haematopoietic system still

remains very limited.

4.3.1.1 Histone Acetyltransferases and Histone Deacetylases

The transfer of an acetyl group to specific lysine residues located at the histone tails

is catalysed by histone acetyltransferases (HATs). This modification reduces the

stability of the interaction between histone and DNA (Hong et al. 1993; Puig

et al. 1998) relaxing the chromatin structure and thereby affecting gene expression

(Shogren-Knaak et al. 2006; Campos and Reinberg 2009). In addition, this acety-

lated residue could also act as a docking site for bromodomain containing regula-

tory factors.

Among this group, the Monocytic Leukaemia Zinc Finger protein (MOZ,

MYST3 or KAT6) is a member of the MYST family of HATs and transcription

co-activators and was first identified as a translocation partner in various forms of

AML (Borrow et al. 1996; Carapeti et al. 1998; Chaffanet et al. 2000; Esteyries

et al. 2008). MOZ is the catalytic component of a large multi-subunit protein

complex also harbouring ING5 (Inhibitor of Growth 5), the bromodomain

PHD-finger protein (BRPF1) and EAF6 (Esa1-associated factor 6) (Doyon

et al. 2006). Genetic deletion of MOZ results in severe defects in the development

and maintenance of HSCs and the development of erythroid cells thus leading to
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embryonic lethality (Thomas et al. 2006; Katsumoto et al. 2008). A more specific

abrogation of the HAT activity of MOZ (MOZHAT�/�) indicated that the HAT

activity of MOZ is critical for HSCs function (Perez-Campo et al. 2009).

MOZHAT�/� embryos also display defects in the numbers and functionality of

HSCs and committed progenitors as well as lower numbers of immature B cells

(Perez-Campo et al. 2009). This phenotype is a direct consequence of the inability

of HSCs and progenitor cells to proliferate, suggesting that MOZ-driven acetylation

controls the appropriate balance between proliferation and differentiation in HSCs

and progenitor cells. Beside this function, MOZ also acts as a co-activator for

Histone methylation and demethylation DNA methylationHistone acetylation and deacetylation

Me

Me MeAc Ac

MOZ

HBO1
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Fig. 4.2 Epigenetic modulators of haematopoietic development. Histone and DNA-modifying

enzymes tightly control the proliferation and differentiation of haematopoietic cells. Histone

acetylation: while MOZ acetylates lysine (K) residues of histone tails to promote haematopoietic

stem cells (HSCs) proliferation and lymphoid differentiation, HBO1-mediated acetylation is

required for erythroid progenitor differentiation; on the other hand, HDAC1 removes acetyl groups

from histone tails and regulates erythroid and megakaryocyte differentiation. Histone methylation:

ASH1 and DOT1L catalyse the methylation of histone 3 (H3) K36 and K79 and are involved in

myeloid and erythroid progenitor differentiation, respectively; EZH2 and MLL methylate H3K27

and H3K4, respectively, and play crucial roles in HSCs proliferation; LSD1 removes methyl

groups from H3K4 and H3K9 and it has been associated with HSCs proliferation and erythroid

differentiation. DNA methylation: DNMT enzymes are responsible for the cytosine methylation in

CpG islands of DNA; whilst DNMT3a and DNMT3b have been implicated in HSCs proliferation

and differentiation, DNMT1 regulates HSCs proliferation and the differentiation of lymphoid

cells. White solid and dashed arrows indicate addition and removal of modification groups,

respectively; black straight and circular arrows indicate differentiation and proliferation of

haematopoietic cells, respectively
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several transcription factors with haematopoietic specificity, such as RUNX1

(Kitabayashi et al. 2001; Holbert et al. 2007), MLL1 (Paggetti et al. 2010) and

PU.1 (Katsumoto et al. 2006), further highlighting the relevance of this HAT in the

control of haematopoiesis (Perez-Campo et al. 2013).

Another member of the MYST family of HATs, HBO1 (HAT Bound to ORC

1, MYST2 or KAT7), has a key role in the regulation of genes responsible for

embryonic patterning and foetal erythropoiesis (Kueh et al. 2011). Similarly to

MOZ, HBO1 is also able to form a complex with a bromodomain-containing

protein, BRD1. Highlighting the importance of these bromodomain-containing

proteins for the activity of HAT complexes, BRD1 null embryos, also displayed

an important defect in foetal liver erythropoiesis, similar to that of embryos lacking

the HBO1 protein. This defect is due to the inability of HBO1 to bind to its target

genes (such as GATA1, GATA2, SCL/TAL1, STAT5a and ETO2), as BRD1 is

thought to act as a bridging protein between HBO1 and its activator protein ING4

(Mishima et al. 2011) to form an active HAT complex. In the absence of BRD1, the

complex is not functional, resulting in a substantial decrease in H3K14 acetylation

levels at target promoters and the subsequent defects in foetal liver haematopoiesis.

Histone deacetylases (HDACs) are in charge of reversing the activity of HAT

proteins (Yang and Seto 2008). In mammals, there are four groups of HDACs based

on sequence and domain similarities. Of those, group I (HDACs1, 2, 3 and 8)

encompasses proteins involved in the growth and differentiation of mammalian

cells (Lagger et al. 2002). The expression of group I HDACs is very low in

haematopoietic progenitor cells, but is induced in more differentiated progenitors

and then either down-regulated during myeloid differentiation or retained during

erythroid and megakaryocytic differentiation (Wada et al. 2009). Transcription of

HDAC1 has been shown to be regulated by haematopoietic transcription factors.

Indeed, GATA1 mediates the transcription of HDAC1 driving the differentiation of

myeloid progenitors into erythroid–megakaryocytic lineages. In contrast, when

HDAC1 transcription is down-regulated by members of the C/EBP transcription

factors, myeloid progenitors differentiate into myeloid cells (Wada et al. 2009).

Therefore, HDAC1 is implicated in early cell fate decisions during haematopoiesis.

Due to the negative role of HDAC1 on myeloid differentiation, inhibitors of

HDACs have been used, in conjunction with other agents, with good results to

treat certain haematological disorders (Quintas-Cardama et al. 2011).

4.3.1.2 Histone Methyltransferases and Histone Demethylases

Histone methylation can take place on both lysine (K) and arginine (R) residues

(Zhang and Reinberg 2001; Martin and Zhang 2005). Two groups of Histone

Methyltransferases (HMTs) with opposing activities have a crucial role in the

regulation of haematopoiesis and HSCs proliferation. One of them, the polycomb

family (PcG) carries out the methylation at lysine 27 of histone H3 (H3K27), a

mark linked to gene silencing, whereas the other group, the Trithorax (TrxG)
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methylates H3K4, a mark related to gene activation. These two groups of proteins

regulate the expression of HOX genes among other targets.

EZH2 (Enhancer of Zeste homolog 2), a component of the Polycomb Repressor

Complex 2 (PRC2), catalyses the di- and tri-methylation of H3K27. This modifi-

cation is then bound by the Polycomb Repressor Complex 1 (PRC1), resulting in

the transcriptional repression of the targeted genes. Ezh2 is essential for foetal liver

HSCs proliferation and erythropoiesis, whereas its role in adult HSCs seems less

important (Mochizuki-Kashio et al. 2011). Conversely, it has been shown that the

forced expression of EZH2 enhances the number and proliferative potential of

HSCs (Herrera-Merchan et al. 2012). A more detailed description of polycomb

function in adult haematopoiesis and development can be found in the following

Chaps. 5 and 6.

With the exception of MLL (Mixed Lineage Leukaemia) proteins, little is known

about the role of TrxG genes in haematopoiesis. MLL plays a crucial role in the

proliferation and differentiation of haematopoietic progenitors and maintains

appropriate expression level of genes such as HOXA7 and HOXA9 during embry-

onic development. It has been proposed that the role of MLL in maintaining rather

than in initiating HOX genes expression could be related to the fact that binding of

MLL to specific clusters of CpG residues within HOXA9 locus protects this area

from DNA methylation and subsequent silencing (Erfurth et al. 2008). Besides its

role as a regulator of HOX genes expression, MLL can interact with other proteins

with important roles in haematopoiesis, such as RUNX1 (Huang et al. 2011) or

MOZ (Paggetti et al. 2010). Another member of the TrxG family, MLL5, has been

shown to have an important role in haematopoiesis and HSC self-renewal (Heuser

et al. 2009; Madan et al. 2009). In MLL5 null mice, HSCs display multiple

haematopoietic defects, such as impairment in neutrophil function and in erythro-

poiesis, but more importantly in competitive repopulation capacity. Interestingly,

HSCs from MLL5 null mice have a dramatically increased sensitivity to DNA

demethylation-induced differentiation with 5 azadeoxycytidine indicating that

MLL5 could be implicated in the regulation of HSC proliferation by a mechanism

that involves DNA methylation (Heuser et al. 2009). For more details about MLL

function in haematopoiesis, see the Chap. 7.

ASH1 (Absent small and homeotic disks protein 1 homologue) is a unique HMT

that catalyses the methylation of H3K36 (Tanaka et al. 2007; An et al. 2011; Yuan

et al. 2011). ASH1 is specifically expressed in HSCs in the bone marrow (Sung

et al. 2006) and undifferentiated precursors of T cells in the thymus (Tanaka

et al. 2008). ASH1 was recently shown to regulate HOX gene transcription

synergizing with MLL, although this regulator activity seems to be independent

of the HMTs catalytic domain (Tanaka et al. 2011). Knockdown of ASH1 in murine

HSCs results in decreased number of macrophages and granulocytes, a phenotype

similar to that induced by loss of MLL1 function indicating that this protein is a key

epigenetic regulator of normal haematopoiesis.

DOT1L (disruptor of telomere silencing 1-like or KMT4) was shown to specif-

ically methylate H3K79 as knockdown of this protein in mice results in a total loss

of H3K79 methylation (Jones et al. 2008). Dot1L null mutant mice die between
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E10.5 and E13.5 with severe and selective defects in erythroid, but not myeloid,

differentiation (Feng et al. 2010). DOT1L methylation is a critical regulator of

GATA2 and PU.1 transcription; mice lacking this HMT show an increase in PU.1

levels together with a decrease in GATA2 levels. Therefore, DOTL1 has a key role

in early haematopoiesis, controlling the numbers of erythroid and myeloid cells

(Feng et al. 2010). The role for DOT1L in erythropoiesis is also supported by a

previous report showing that H3K79 methylation is enriched at the promoter of the

β-globin locus (Im et al. 2003). DOT1L also seems to play a role in the development

of leukaemia harbouring translocations of the MLL gene, as targets of the

MLL-AF9 translocation display an alteration of their histone methylation pattern,

specifically affecting the dimethylation of H3K79 (Bernt et al. 2011).

Histone lysine methylation is a dynamic process also regulated by the action of

histone demethylases (HDMTs). LSD1 (Lysine-specific demethylase 1) which

catalyses the demethylation of both H3K4 and H3K9, was the first HDMTs to be

identified. Depletion of LSD1 in mice not only exacerbates the proliferation of

HSCs and progenitor cells but also leads to severe defects in the differentiation of

erythroid cells (Sprussel et al. 2012). LSD1 has also been shown to cooperate with

the transcriptional repressor GFI1 to regulate differentiation of diverse

haematopoietic lineages (Saleque et al. 2007).

4.3.2 DNA Methylation

DNA methylation consists in the addition of a methyl group to cytosines that

precede guanines (CpGs). This process is catalysed by DNA methyltransferases

(DNMTs) using S-adenosyl-methionine as donor of methyl groups (Hermann

et al. 2004). A recent study showed that DNA methylation was extensively

reprogrammed during early development in mammals with important changes

taking place in the transition from the blastocyst to the post-implantation epiblast

(Borgel et al. 2010). De novo methylation in the epiblast would be targeted to

lineage-specific haematopoietic genes (such as Pou2af1, a gene that encodes a

transcriptional co-activator involved in B-cell development, or Cytip, a gene

expressed in leukocytes, among others). The promoters of these lineage-specific

genes would be subsequently de-methylated during terminal differentiation. Both

DNMT3a and DNMT3b are considered to be responsible for “de novo” methylation

as they act preferably on un-methylated DNA substrates (Jaenisch and Bird 2003).

DNMT3a and DNMT3b show different expression patterns and targets (Jaenisch

and Bird 2003) and DNMT3b seems to be the main enzyme required for promoter

methylation during implantation (Borgel et al. 2010). Initial studies on DNMT3a

indicated that Dnmt3a Dnmt3b double-deficient HSCs, but not Dnmt3a or Dnmt3b
single-deficient HSCs, were incapable of long-term reconstitution in transplantation

assays (Tadokoro et al. 2007). However, in contrast to these studies where Dnmt3a-
null HSCs contributed normally to haematopoiesis, the use of a conditional knock-

out model to study the functions of DNMT3a (Challen et al. 2012) revealed that this
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protein is required to silence the HSCs self-renewal programme, thus permitting

haematopoietic differentiation.

The importance of DNA methylation during haematopoiesis was initially

suggested by gene deletion studies targeting Dnmt1. DNMT1 reproduces cytosine

methylation patterns from a hemi-methylated substrate after DNA replication, and

therefore is considered responsible for the maintenance and propagation of the

methylation pattern (Jaenisch and Bird 2003). The ablation of DNMT1 expression

in HSCs resulted in these cells undergoing apoptosis, whereas the expression of a

hypomorphic allele lead to reduced repopulation capacity and decreased production

of lymphoid progenitors while the development of myelo-erythroid progenitors

remained normal (Broske et al. 2009). There is also evidence that DNMT1 interacts

with GATA1, GFI1 and ZBP-89 in mouse erythro-leukemic cells (MEL).

Recent studies analysing DNA methylation during HSCs ontogeny have shown

that, although overall DNA methylation landscape is essentially maintained during

this process, the largest number of genes undergoing changes in their methylation

pattern were highly expressed in downstream progenitors but not in HSCs. Indeed,

only a few genes expressed in HSCs were differentially methylated (Beerman

et al. 2013). These latest results suggest that DNA methylation in HSCs regulates

the expression of genes that are activated during the differentiation of HSCs to

defined lineages.

4.4 Concluding Remarks

The molecular and cellular control of haematopoietic development is an intricate

process regulated at multiple levels. In this chapter, we have discussed the cellular

complexity of haematopoietic specification, the transcriptional control regulating

key steps of this differentiation process and how transcription factors may integrate

into wider regulatory networks. To date, little is known about the epigenetic

regulation of embryonic haematopoiesis and our understanding is mostly limited

to the description of the phenotypes observed upon gene deletion of specific

chromatin modifier proteins. Furthermore, the inaccessibility of the developing

embryo and the low number of cells undergoing haematopoietic specification in

these embryos hamper the biochemical study of the complexes of transcription

factors and epigenetic regulators orchestrating haematopoietic development and

maintenance. Devising novel technologies and experimental strategies will allow us

to further push the boundaries to decipher the chromatin landscape during blood

cell formation. By integrating together these multiple layers of regulation, we will

further our understanding of haematopoietic specification. Ultimately, for a com-

plete picture, this knowledge will have to be generated at the single cell level and

linked to the extrinsic signals provided by the micro-environment which guides and

instructs the developing blood cells.

4 Epigenetic and Transcriptional Mechanisms Regulating the Development of. . . 83



References

An S, Yeo KJ, Jeon YH, Song JJ (2011) Crystal structure of the human histone methyltransferase

ASH1L catalytic domain and its implications for the regulatory mechanism. J Biol Chem

286:8369–74. doi:10.1074/jbc.M110.203380

Beerman I, Bock C, Garrison BS, Smith ZD, Gu H, Meissner A, Rossi DJ (2013) Proliferation-

dependent alterations of the DNA methylation landscape underlie hematopoietic stem cell

aging. Cell Stem Cell 12:413–25. doi:10.1016/j.stem.2013.01.017

Begley CG, Green AR (1999) The SCL gene: from case report to critical hematopoietic regulator.

Blood 93:2760–70

Bernt KM, Zhu N, Sinha AU, Vempati S, Faber J, Krivtsov AV, Feng Z, Punt N, Daigle A,

Bullinger L, Pollock RM, Richon VM, Kung AL, Armstrong SA (2011) MLL-rearranged

leukemia is dependent on aberrant H3K79 methylation by DOT1L. Cancer Cell 20:66–78.

doi:10.1016/j.ccr.2011.06.010

Boehm T, Foroni L, Kaneko Y, Perutz MF, Rabbitts TH (1991) The rhombotin family of cysteine-

rich LIM-domain oncogenes: distinct members are involved in T-cell translocations to human

chromosomes 11p15 and 11p13. Proc Natl Acad Sci U S A 88:4367–71

Boisset JC, van Cappellen W, Andrieu-Soler C, Galjart N, Dzierzak E, Robin C (2010) In vivo

imaging of haematopoietic cells emerging from the mouse aortic endothelium. Nature

464:116–20. doi:10.1038/nature08764

Borgel J, Guibert S, Li Y, Chiba H, Schubeler D, Sasaki H, Forne T, Weber M (2010) Targets and

dynamics of promoter DNA methylation during early mouse development. Nat Genet

42:1093–100. doi:10.1038/ng.708

Borrow J, Stanton VP Jr, Andresen JM, Becher R, Behm FG, Chaganti RS, Civin CI, Disteche C,

Dube I, Frischauf AM, Horsman D, Mitelman F, Volinia S, Watmore AE, Housman DE (1996)

The translocation t(8;16)(p11;p13) of acute myeloid leukaemia fuses a putative

acetyltransferase to the CREB-binding protein. Nat Genet 14:33–41. doi:10.1038/ng0996-33

Broske AM, Vockentanz L, Kharazi S, Huska MR, Mancini E, Scheller M, Kuhl C, Enns A,

Prinz M, Jaenisch R, Nerlov C, Leutz A, Andrade-Navarro MA, Jacobsen SE, Rosenbauer F

(2009) DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid

restriction. Nat Genet 41:1207–15. doi:10.1038/ng.463

Cai Z, de Bruijn M, Ma X, Dortland B, Luteijn T, Downing RJ, Dzierzak E (2000) Haploinsuf-

ficiency of AML1 affects the temporal and spatial generation of hematopoietic stem cells in the

mouse embryo. Immunity 13:423–31

Campos EI, Reinberg D (2009) Histones: annotating chromatin. Annu Rev Genet 43:559–99.

doi:10.1146/annurev.genet.032608.103928

Carapeti M, Aguiar RC, Goldman JM, Cross NC (1998) A novel fusion between MOZ and the

nuclear receptor coactivator TIF2 in acute myeloid leukemia. Blood 91:3127–33

Chaffanet M, Gressin L, Preudhomme C, Soenen-Cornu V, Birnbaum D, Pebusque MJ (2000)

MOZ is fused to p300 in an acute monocytic leukemia with t(8;22). Genes Chromosomes

Cancer 28:138–44

Challen GA, Sun D, Jeong M, Luo M, Jelinek J, Berg JS, Bock C, Vasanthakumar A, Gu H, Xi Y,

Liang S, Lu Y, Darlington GJ, Meissner A, Issa JP, Godley LA, Li W, Goodell MA (2012)

Dnmt3a is essential for hematopoietic stem cell differentiation. Nat Genet 44:23–31. doi:10.

1038/ng.1009

Chen MJ, Yokomizo T, Zeigler BM, Dzierzak E, Speck NA (2009) Runx1 is required for the

endothelial to haematopoietic cell transition but not thereafter. Nature 457:887–91

Choi K, Kennedy M, Kazarov A, Papadimitriou JC, Keller G (1998) A common precursor for

hematopoietic and endothelial cells. Development 125:725–32

Corbel C, Salaun J, Belo-Diabangouaya P, Dieterlen-Lievre F (2007) Hematopoietic potential of

the pre-fusion allantois. Dev Biol 301:478–88. doi:10.1016/j.ydbio.2006.08.069

Cumano A, Godin I (2007) Ontogeny of the hematopoietic system. Annu Rev Immunol 25:745–85

84 M. Fleury et al.

http://dx.doi.org/10.1074/jbc.M110.203380
http://dx.doi.org/10.1016/j.stem.2013.01.017
http://dx.doi.org/10.1016/j.ccr.2011.06.010
http://dx.doi.org/10.1038/nature08764
http://dx.doi.org/10.1038/ng.708
http://dx.doi.org/10.1038/ng0996-33
http://dx.doi.org/10.1038/ng.463
http://dx.doi.org/10.1146/annurev.genet.032608.103928
http://dx.doi.org/10.1038/ng.1009
http://dx.doi.org/10.1038/ng.1009
http://dx.doi.org/10.1016/j.ydbio.2006.08.069


Cumano A, Ferraz JC, Klaine M, Di Santo JP, Godin I (2001) Intraembryonic, but not yolk sac

hematopoietic precursors, isolated before circulation, provide long-term multilineage recon-

stitution. Immunity 15:477–85

de Bruijn MF, Speck NA, Peeters MC, Dzierzak E (2000) Definitive hematopoietic stem cells first

develop within the major arterial regions of the mouse embryo. EMBO J 19:2465–74

Dieterlen-Lievre F (1975) On the origin of haemopoietic stem cells in the avian embryo: an

experimental approach. J Embryol Exp Morphol 33:607–19

Donaldson IJ, Chapman M, Kinston S, Landry JR, Knezevic K, Piltz S, Buckley N, Green AR,

Gottgens B (2005) Genome-wide identification of cis-regulatory sequences controlling blood

and endothelial development. Hum Mol Genet 14:595–601. doi:10.1093/hmg/ddi056
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