
Chapter 3
Classes of Multiple Test Procedures

Abstract The aim of this chapter is a systematic overview of different classes
of multiple tests. Procedures are distinguished by their structure, by the degree of
detail of the underlying statistical model and by the type of error control that they
provide. Major categories comprise margin-based multiple tests, multivariate multi-
ple test procedures and closed test procedures. Subcategories are introduced where
appropriate.We discuss specific examples and indicate computer implementations by
means of flow diagrams and pseudo-code. Applications and references to later chap-
ters illustrate which kind of multiple test procedure can be utilized for some standard
types of multiple test problems which are relevant in practice. Precise references to
the literature are collected for a deeper study of specific methods.

Although the literature on multiple test procedures (MTPs) is nowadays exponen-
tially increasing over time, it is still possible to systematize the proposed methods
according to some general categories. For instance, one class ofmethods onlymodels
the marginal distributions of the involved test statistics explicitly and combines these
test statistics or, equivalently, corresponding p-values following probabilistic calcu-
lations. We call resulting procedures margin-based multiple test procedures. Differ-
ent margin-basedMTPs employ different qualitative assumptions on the dependency
structure between test statistics or p-values, cf. our Chap.2. Examples of this kind
of procedures are discussed in Sect. 3.1.

Another class of MTPs considers the full joint distribution of all test statistics
and relies on calculating or approximating quantiles of this joint distribution, for
instance by resampling or by proving asymptotic normality by means of central limit
theorems.We term such procedures multivariate multiple test procedures and discuss
them in Sect. 3.2. A class of in a certain sense hybrid (neither purely margin-based
nor entirely multivariate) multiple test procedures, which are specifically tailored to
control the FWER in structured systems of hypotheses, is constituted by closed test
procedures, which we will treat in Sect. 3.3.

Further criteria to distinguish MTPs are their structure (single-step or stepwise
rejective), and the type of error control (k-FWER-controlling, FDR-controlling,
FDX-controlling, etc.) that theyprovide.Weexclude adistinctionbetween frequentist
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30 3 Classes of Multiple Test Procedures

and Bayesian procedures here, because this work is not considered with Bayesian
approaches to multiple hypotheses testing. As far as frequentist procedures are con-
cerned, the aforementioned criteria in our opinion allow us to treat the majority of
the most popular MTPs up to present.

One type of procedures which do not fit in a clear-cut way into the categories
defined above is constituted by so-called augmentation procedures. Augmentation
procedures for control of the k-FWER, the FDR or the FDX work in two stages: In
the first stage, an FWER-controlling MTP is applied. In the second stage, a certain
number of hypotheses not rejected by the procedure employed in the first stage is
rejected additionally, whereby this number in general depends on the data and on
probabilistic bounds. Although augmentation procedures have attracted some atten-
tion recently, we do not cover them in the present work. References for augmentation
procedures include van der Laan et al. (2004; 2005), and Farcomeni (2009).

3.1 Margin-Based Multiple Test Procedures

The multiple tests discussed in this section only require that each marginal test ϕi

can be calibrated to keep a local significance level αloc. (say). The multiple test ϕ =
(ϕi : 1 ≤ i ≤ m) is then built up from these marginal tests by adjusting αloc. for the
multiplicity of the problem. This adjustment may be given by an explicit “correction
formultiplicity” based on probabilistic considerations or in a data-dependentmanner,
for instance by defining αloc. by the value of an order statistic of marginal p-values
p1, . . . , pm .

3.1.1 Single-Step Procedures

Single-step multiple test procedures carry out each individual test ϕi , 1 ≤ i ≤ m, at
(local) significance level αloc., where αloc. is the result of a multiplicity correction of
α. In view of Theorem 2.1, single-step multiple tests are extremely easy to carry out
in practice: Just calculate marginal p-values p1, . . . , pm and reject Hi if and only if
pi < αloc.. The choice of αloc. depends on qualitative assumptions regarding the joint
distribution of (p1, . . . , pm). Two classical procedures are the Bonferroni correction
(or Bonferroni test) and the Šidák correction (or Šidák test).

Example 3.1 (Bonferroni correction, cf. Bonferroni (1935; 1936)). The Bonferroni
correction is based on the union bound and consists in choosing αloc. = α/m. It
provides strong control of the FWER without any assumptions on the dependency
structure among (p1, . . . , pm), because for a Bonferroni test ϕ, it holds for all ϑ ∈ Θ

that
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FWERϑ(ϕ) = Pϑ(
⋃

i∈I0(ϑ)

{ϕi = 1})

≤
∑

i∈I0(ϑ)

Pϑ({ϕi = 1})

≤ m0α/m ≤ α.

The inequality P(
⋃m

i=1 Ai ) ≤∑m
i=1 P(Ai ) is referred to as Bonferroni inequality in

the multiple testing literature.

The disadvantage of Bonferroni tests is that α/m is very small for large m. There-
fore, Bonferroni tests have low multiple power if m is large. If joint independence
of all m marginal p-values can be assumed, αloc. can be chosen slightly larger than
α/m.

Example 3.2 (Šidák correction, cf. Šidák 1967). The Šidák correction consists in
choosing αloc. = 1 − (1 − α)1/m . It provides strong control of the FWER if
(p1, . . . , pm) are jointly stochastically independent, because for a Šidák test ϕ, it
then holds for all ϑ ∈ Θ that

FWERϑ(ϕ) = Pϑ(
⋃

i∈I0(ϑ)

{ϕi = 1})

= 1 − Pϑ(
⋂

i∈I0(ϑ)

{ϕi = 0})

= 1 −
∏

i∈I0(ϑ)

Pϑ({ϕi = 0})

≤ 1 −
∏

i∈I0(ϑ)

(1 − α)1/m

= 1 − (1 − α)m0/m

≤ 1 − (1 − α) = α.

Asmentioned before, for allm ∈ N it holdsα/m < 1−(1−α)1/m , so that themore
restrictive model assumptions made for a Šidák test allow one to increase multiple
power uniformly. We may remark here that Šidák tests control the FWER under
certain forms of positive dependence among (p1, . . . , pm), too. More details are
provided inChap.4.Also asymptotically, it holdsm[1−(1−α)1/m ] → − ln(1−α) >

α = mα/m, m → ∞, for any α ∈ (0, 1). However, also for the Šidák correction,
we have αloc. → 0, m → ∞.

In the particular context of testing linear contrasts in Gaussian models, Scheffé
(1953) obtained the following result.

Theorem 3.1 (Scheffé (1953)). Let k ≥ 3 and ni ≥ 2 for all 1 ≤ i ≤ k be
given integers and X = (Xi j : 1 ≤ i ≤ k, 1 ≤ j ≤ ni ). Assume that all Xi j

are stochastically independent and normally distributed, Xi j ∼ N (μi , σ
2), where

http://dx.doi.org/10.1007/978-3-642-45182-9_4
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μi ∈ R, 1 ≤ i ≤ k, and σ 2 > 0. For notational convenience, denote n. =∑k
i=1 ni .

Consider the linear subspace

L =
⎧
⎨

⎩

q∑

j=1

h j a
( j)

⎫
⎬

⎭

of Rk of dimension q ≤ k, where h j ∈ R for all 1 ≤ j ≤ q and a(1), . . . , a(q) ∈ R
k

are linearly independent vectors. Then it holds for all μ ∈ R
k and for all σ 2 > 0

that

P(μ,σ 2)

(
∀c ∈ L : cT μ ∈

[
cT μ̂ ∓

√
qV̂ar(cT μ̂)Fq,n.−k;α

])
= 1 − α, (3.1)

where μ = (μ1, . . . , μk)

, μ̂ = (X1., . . . , Xk.)

T (vector of empirical group means),
and V̂ar(cT μ̂) = s2

∑k
i=1(c

2
i /ni ), with s2 denoting the pooled unbiased estimator of

σ 2, and Fq,n.−k;α the upper α-quantile of Fisher’s F-distribution with q and n. − k
degrees of freedom.

Equation (3.1) yields a simultaneous 1−α confidence region forall linear contrasts
of group means defined by L in the considered analysis of variance model. By
duality of tests and confidence regions (see Theorem 1.1), this also entails a multiple
single-step test for such contrasts.

3.1.2 Stepwise Rejective Multiple Tests

An interesting other class of multiple test procedures are stepwise rejective tests.
In contrast to single-step tests, here the hypotheses are ordered by a pre-defined
criterion and tested one after the other, where testing can stop at every step due to
the occurrence of a rejection or a non-rejection. This means that the test result for a
particular pair of hypotheses Hi versus Ki depends on the data not only directly via
the test statistic Ti or the p-value pi , but also indirectly via potentially all other test
statistics or p-values. The way the ordering among the hypotheses is defined leads
to different subtypes of stepwise rejective multiple tests.

3.1.2.1 Step-Up-Down Tests

Step-up-down tests, introduced by Tamhane et al. (1998), rely on an ordering of the
hypotheses H1, . . . , Hm which is induced by the order statistics of marginal p-values
p1, . . . , pm .
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reject all Hi retain all Hi

Fig. 3.1 Decision rule of an SUD test. If κ = m (SU test) and pm:m ≤ αm:m , all m null hypotheses
are rejected. If κ = 1 (SD test) and p1:m > α1:m , all m null hypotheses are retained

Definition 3.1 (Step-up-down test of order κ , cf. Finner et al. (2012)). Let
p1:m < p2:m < · · · < pm:m denote the ordered marginal p-values for a multiple
test problem. For a tuning parameter κ ∈ {1, . . . , m} a step-up-down (SUD) test
ϕκ = (ϕκ

1 , . . . , ϕκ
m) of order κ based on some critical values α1:m ≤ · · · ≤ αm:m

is defined as follows. If pκ:m ≤ ακ:m , set j∗ = max{ j ∈ {κ, . . . , m} : pi :m ≤
αi :m for all i ∈ {κ, . . . , j}}, whereas for pκ:m > ακ:m , put j∗ = sup{ j ∈
{1, . . . , κ − 1} : p j :m ≤ α j :m} (sup∅ = −∞). Define ϕκ

i = 1 if pi ≤ α j∗:m
and ϕi = 0 otherwise (α−∞:m = −∞).

A step-up-down test of order κ = 1 or κ = m, respectively, is called step-down
(SD) or step-up (SU) test, respectively. If all critical values are identical, we obtain
a single-step test.

Figure3.1 illustrates the decision rule of an SUD test schematically.
As we will discuss in Chap.5, many commonly used step-up-down tests are

margin-based and only employ qualitative assumptions regarding the joint distri-
bution of test statistics or p-values. For instance, this holds true for the multiple tests
byHolm (1979) (which are FWER-controlling step-down tests) and the famous linear
step-up test by Benjamini and Hochberg (1995) for FDR control. However, there are

http://dx.doi.org/10.1007/978-3-642-45182-9_5
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remarkable exceptions, especially shortcuts of closed test procedures, cf. Sect. 3.3.
The following obvious lemma can be used to compare different SUD tests which
keep the same type I error criterion.

Lemma 3.1. Consider two SUD testsϕ(1) andϕ(2) for the same multiple test problem
(X ,F , (Pϑ)ϑ∈Θ,Hm). Assume that one of the following properties holds true.

(a) The two tests ϕ(1) and ϕ(2) employ the same set of critical values and the tuning
parameter κ2 of ϕ(2) is larger than the tuning parameter κ1 of ϕ(1).

(b) The two tests ϕ(1) and ϕ(2) employ the same tuning parameter κ and the critical
values utilized in ϕ(2) are index-wise not smaller than the ones utilized in ϕ(1).

(c) Both tests ϕ(1) and ϕ(2) are single-step tests and the critical value utilized in
ϕ(2) is larger than that utilized in ϕ(1).

Then, for any realization of (p1, . . . , pm)
, ϕ(2) rejects all hypotheses that are
rejected by ϕ(1), and possibly more.

Hence, under the constraint of type I error control of given type and at given level,
an optimal SUD test (with respect to multiple power, cf. Definition 1.4) is given
by choosing κ and α1:m, . . . , αm:m as large as possible. For instance, SU tests have
higher (not smaller) multiple power than the corresponding SD tests (with the same
set of critical values). On the other hand, the same holds true for the comparison
with respect to the FWER. Let us mention that additional assumptions are required
in order that more rejections entail larger FDR, cf. Theorem 5.7.

Notice that we implicitly used part (c) of Lemma 3.1 for the comparison of
Bonferroni tests and Šidák tests. In Chap.5, Lemma 3.1 will be used for discussing
relationships between the dependency structure among p1, . . . , pm and the choice
of tuning parameters and critical values for SUD tests.

3.1.2.2 Fixed Sequence Multiple Tests

Similarly to step-up-down tests, fixed sequencemultiple tests also rely on an ordering
of the hypotheses H1, . . . , Hm . However, the ordering is now not data-dependently
given by the ordering of p-values or test statistics, but is pre-defined before testing
starts, for instance by weighting the hypotheses for importance. With respect to
control of the FWER, the following fixed sequence procedure is widely used.

Theorem 3.2. Let (X ,F ,P,H ) withH = (Hi : 1 ≤ i ≤ m) denote a multiple
test problem and assume that valid marginal p-values p1, . . . , pm are at hand. Let
α ∈ (0, 1) be a given constant and consider the multiple test ϕ defined by the
following rule: Reject exactly hypotheses H1, . . . , Hk∗ , where

k∗ = max{1 ≤ i ≤ m : p j ≤ α for all j = 1, . . . , i}.

If k∗ does not exist, retain allm null hypotheses. Then, ϕ strongly controls the FWER
at level α.

http://dx.doi.org/10.1007/978-3-642-45182-9_5
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Proof. First, consider the case m = 2. We have to distinguish four cases.

1. If both H1 and H2 are false, no type I error can occur, hence FWERϑ(ϕ) = 0 for
such ϑ .

2. If only H1 is true, FWERϑ(ϕ) = Pϑ(p1(X) ≤ α) ≤ α.
3. If only H2 is true, FWERϑ(ϕ) = Pϑ({p1(X) ≤ α} ∩ {p2(X) ≤ α}) ≤

Pϑ(p2(X) ≤ α) ≤ α.
4. If both H1 and H2 are true, FWERϑ(ϕ) = Pϑ(p1(X) ≤ α) ≤ α.

It is easy to check that the latter reasoning remains to hold true for m > 2. �

The obvious drawback of the multiple test ϕ from Theorem 3.2 is that, once a
particular hypothesis cannot be rejected, the remaining not yet rejected hypotheses
have to be retained without being tested explicitly.Wiens (2003) developed a method
based on a Bonferroni-type adjustment of α that allows for continuing testing after
potential non-rejections. Other related testing strategies for fixed sequences of (pre-
ordered) hypotheses ensuring strict FWER control have been discussed by Westfall
and Krishen (2001) and Bauer et al. (1998), among many others. Such methods are
particularly important for clinical trials with multiple endpoints.

3.1.3 Data-Adaptive Procedures

From the calculations in Examples 3.1 and 3.2, it follows that the realized k-FWER
of the investigated margin-based multiple tests crucially depends on the proportion
π0 = m0/m of true null hypotheses. In Chap.5, wewill show that the same holds true
for the realized FDR of many classical step-up-down tests. Data-adaptive procedures
aim at adapting to the unknown quantity π0 in order to exhaust the type I error level
better and, consequently, increase multiple power of standard procedures. Explicitly
adaptive (plug-in) procedures employ an estimate π̂0 and plug π̂0 into critical values,
typically replacing m by m · π̂0. In view of Definition 1.4 and Lemma 3.1, this
increases multiple power at least on parameter subspaces on which Pϑ(π̂0 < 1) is
large.

Maybe, the still most popular though, as well, the most ancient estimation tech-
nique for π0 is the one of Schweder and Spjøtvoll (1982). It relies on a tuning
parameter λ ∈ [0, 1). Denoting the empirical cumulative distribution function (ecdf)
of m marginal p-values by F̂m , the proposed estimator from Schweder and Spjøtvoll
(1982) can be written as

π̂0 ≡ π̂0(λ) = 1 − F̂m(λ)

1 − λ
. (3.2)

Among others, Storey et al. (2004), Langaas et al. (2005), Finner and Gontscharuk
(2009), Dickhaus et al. (2012) and Dickhaus (2013) have investigated theoretical
properties of π̂0 and slightly modified versions of this estimator. There exist several
possible heuristic motivations for the usage of π̂0. The simplest one considers a

http://dx.doi.org/10.1007/978-3-642-45182-9_5


36 3 Classes of Multiple Test Procedures

(a)

1λ

F̂m(λ )
1− F̂m(λ ) π̂0(λ )

(b)

λ 1

1

π̂1

π̂1(λ ) = 1− π̂0(λ )

= F̂m(λ )− λ
1− λ

Fig. 3.2 Two graphical representations of the Schweder-Spjøtvoll estimator π̂0(λ)

histogram of the marginal p-values with exactly two bins, namely [0, λ] and (λ, 1].
Then, the height of the bin associated with (λ, 1] equals π̂0(λ), see graph (a) in
Fig. 3.2. A graphical algorithm for computing π̂0 connects the point (λ, F̂m(λ)) with
the point (1, 1). The offset of the resulting straight line at t = 0 equals π̂1 = π̂1(λ) =
1 − π̂0(λ), see graph (b) in Fig. 3.2.

The following lemma is due to Dickhaus et al. (2012), see Lemma 1 in their paper.

Lemma 3.2. Whenever (p1, . . . , pm) are valid p-values, i.e., marginally stochasti-
cally not smaller than UNI[0, 1] under null hypotheses, the value of π̂0 is a conser-
vative estimate of π0, meaning that π̂0 has a non-negative bias. More specifically, it
holds

Eϑ [π̂0(λ)] − π0 ≥ 1

m(1 − λ)

∑

i∈I1

Pϑ(pi > λ) ≥ 0.

Thedata-adaptiveBonferroni plug-in (BPI) test byFinner andGontscharuk (2009)
replaces m by m · π̂0 in the Bonferroni-corrected threshold for marginal p-values
and the asymptotic version of the data-adaptive multiple test procedure by Storey
et al. (2004) (STS test) replaces m by m · π̂0 in Simes’ critical values, cf. Sect. 5.3.

http://dx.doi.org/10.1007/978-3-642-45182-9_5
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Another class of data-adaptive multiple tests is constituted by two-stage or
multistage adaptive procedures, see Benjamini and Hochberg (2000) or Benjamini et
al. (2006), for example. Suchmethods employ the number of rejections of a multiple
test applied in the first stage in an estimator for m0. This estimator is then used to
calibrate the second stage test which leads to the actual decisions, where this prin-
ciple may be applied iteratively. A third of class of methods is given by implicitly
adaptive procedures. Here, the idea is to find critical values that automatically (for
as many values of π0 as possible) lead to full exhaustion of the type I error level. To
this end, worst-case situations (i.e., LFCs) build the basis for the respective calcu-
lations. We will present some of such implicitly adaptive multiple tests in Sect. 5.5.
Further estimation techniques for π0 have also been proposed in the multiple testing
literature. We defer the reader to the introduction in Finner and Gontscharuk (2009)
for an overview.

3.2 Multivariate Multiple Test Procedures

The basic idea behind multivariate multiple test procedures is to incorporate the
dependency structure of the data explicitly into the multiple test and thereby opti-
mizing its power. The general reason why this is often possible is that margin-based
procedureswhich control a specificmultiple type I error rate have to provide thismul-
tiple type I error control generically over a potentially very large family of dependency
structures. Hence, if it is possible to derive or to approximate the particular depen-
dency structure for the data-generating distribution at hand, this information may be
helpful to fine-tune a multiple test for this specific case. This is particularly impor-
tant for applications from modern life sciences, because the data there are often
spatially, temporally, or spatio-temporally correlated as we will demonstrate in later
chapters. Three alternative ways to approximate dependency structures are resam-
pling (Sect. 3.2.1), proving asymptotic normality by means of central limit theorems
(Sect. 3.2.2), and fitting copula models (Sect. 3.2.3).

3.2.1 Resampling-Based Methods

It is fair to say that the basic reference for resampling-basedFWERcontrol is the book
byWestfall and Young (1993), who introduced simultaneous and step-downmultiple
tests based on resampling under the assumption of subset pivotality (see Definition
4.3, basicallymeaning that the joint distribution of test statistics corresponding to true
null hypotheses does not depend on the distribution of the remaining test statistics
such that resampling under the global hypothesis H0 is not only providing weak, but
also strongFWERcontrol). This assumption has been criticized as too restrictive such
that (among others) Troendle (1995) and Romano and Wolf (2005a, b) generalized
the methods of Westfall and Young (1993) to dispense with subset pivotality.

http://dx.doi.org/10.1007/978-3-642-45182-9_5
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FDR-controlling (asymptotic) multiple tests based on resampling have been
derived by Yekutieli and Benjamini (1999), Troendle (2000), and Romano et al.
(2008). The resampling methods developed by Dudoit and van der Laan (2008)
(see also the references therein) provide a general framework for controlling a vari-
ety of error rates (some of which we have introduced in Definitions 1.2 and 1.3),
with particular emphasis on applications in genetics. While resampling often only
asymptotically (for the sample size n tending to infinity) reproduces the true data
distribution, Arlot et al. (2010) provide an in-depth study of resampling methods that
control the FWER strictly for finite n.

3.2.2 Methods Based on Central Limit Theorems

Asymptotic normality of moment and maximum likelihood estimators are classi-
cal results in mathematical statistics, see, for instance, Chap.12 by Lehmann and
Romano (2005) or Chap.5 by Van der Vaart (1998). We will discuss the special cases
of multiple linear regression models and of generalized linear models in Chap. 4. If
the vector T of test statistics for a given multiple test problem is (a transforma-
tion of) such an asymptotically normal point estimator, the asymptotic distribution
of T can be derived and utilized for calibrating the multiple test. This has been
demonstrated, for instance, by Hothorn et al. (2008) and Bretz et al. (2010) in gen-
eral parametric models. For particular applications in genetic association studies (cf.
Chap. 9), central limit theorems for multinomial distributions, together with positive
dependency properties of multivariate chi-square distributions, have been exploited
by Moskvina and Schmidt (2008) and Dickhaus and Stange (2013) (see also the
references therein).

3.2.3 Copula-Based Methods

As discussed in Chap. 2, p-values are under certain assumptions uniformly distrib-
uted on [0, 1] under null hypotheses. In particular, this holds true in many models
which are typically used in life science applications. One example is the problem
of multiple testing for differential gene expression, see Chap.10. Hence, according
to Theorem 2.4, in such cases it suffices to estimate the (often unknown) copula
of p1(X), . . . , pm(X) in order to calibrate a multivariate multiple test procedure
operating on these p-values. In particular, parametric copula models are convenient,
because the dependency structure can in such models be condensed into a low-
dimensional copula parameter. A flexible class of copula models is constituted by
the family of Archimedean copulae.

Definition 3.2 (Archimedean copula). The joint distribution of the random vector
(pi (X) : 1 ≤ i ≤ m) under ϑ ∈ Θ is given by an Archimedean copula with copula
generator ψ , if for all (t1, . . . , tm)
 ∈ [0, 1]m ,

http://dx.doi.org/10.1007/978-3-642-45182-9_12
http://dx.doi.org/10.1007/978-3-642-45182-9_5
http://dx.doi.org/10.1007/978-3-642-45182-9_4
http://dx.doi.org/10.1007/978-3-642-45182-9_9
http://dx.doi.org/10.1007/978-3-642-45182-9_2
http://dx.doi.org/10.1007/978-3-642-45182-9_10
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Pϑ,ψ(p1(X) ≤ t1, . . . , pm(X) ≤ tm) = ψ

(
m∑

i=1

ψ−1 (Fpi (X)(ti )
)
)

, (3.3)

where Fpi (X) denotes the marginal cdf of pi (X) under ϑ ∈ Θ .

Dickhaus andGierl (2013) demonstrated the usage ofArchimedean copulamodels
for FWER control, while Bodnar andDickhaus (2013) are considered with FDR con-
trol underArchimedean p-value copulae. If the generatorψ only depends on a copula
parameter η (say), standard parametric estimation approaches can be employed to
estimate η. Two plausible estimation strategies are the maximum likelihood method
(see, e. g., Hofert et al. (2012)) or the method of moments (referred to as “real-
ized copula” method by Fengler and Okhrin (2012)). For the latter approach, the
“inversion formulas” provided in the following lemma are helpful.

Lemma 3.3. Let X and Y two real-valued random variables with marginal cdfs FX

and FY and bivariate copula Cη, depending on a copula parameter η. Let σX,Y ,
ρX,Y and τX,Y denote (the population versions of) the covariance, Spearman’s rank
correlation coefficient and Kendall’s tau, respectively, of X and Y . Then it holds:

σX,Y = f1(η) =
∫

R2

[
Cη{FX (x), FY (y)} − FX (x)FY (y)

]
dx dy, (3.4)

ρX,Y = f2(η) = 12
∫

[0,1]2
Cη(u, v) du dv − 3, (3.5)

τX,Y = f3(η) = 4
∫

[0,1]2
Cη(u, v) dCη(u, v) − 1. (3.6)

Proof. Equation (3.4) is due to Höffding (1940), Eq. (3.5) is Theorem 5.1.6. in
Nelsen (2006) and (3.6) is Theorem 5.1.3 in Nelsen (2006). �

The “realized copula” method for empirical calibration of a one-dimensional
parameter η of an m-variate copula essentially considers every of the m(m − 1)/2
pairs of the m underlying random variables X1, . . . , Xm , inverts (3.4) each time
with respect to η, replaces the population covariance by its empirical counterpart
and aggregates the resulting m(m − 1)/2 estimates in an appropriate way. More
specifically, Fengler and Okhrin (2012) define for 1 ≤ i < j ≤ m: gi j (η) =
σ̂i j − f1(η), set g(η) = (gi j (η))1≤i< j≤m , and propose to estimate

η̂ = argmin
η

g
(η)Wg(η)

for an appropriate weight matrix W ∈ R(m
2)×(m

2). In this, σ̂i j denotes the empirical
covariance of Xi and X j . Indeed, any of the functions f�, � = 1, 2, 3 corresponding to
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relationships (3.4)–(3.6) may be employed in this realized copula method.Moreover,
they may be combined to estimate two- or three-dimensional copula parameters η.

In the particular context of estimating p-value copulae in multiple testing models,
it is infeasible to actually draw independent replications of the vector (pi (X) : 1 ≤
i ≤ m) from the target population, because this would essentially mean to carry out
the entire experiment several times. Hence, one typically employs resampling meth-
ods for estimating the dependency structure among the p-values, namely the para-
metric bootstrap or permutations if H1, . . . , Hm correspond to marginal two-sample
problems. Pollard and van der Laan (2004) compared both approaches and argued
that the permutation method reproduces the correct null distribution only under some
conditions. However, if these conditions are met, the permutation approach is often
superior to bootstrapping (see alsoWestfall andYoung (1993) andMeinshausen et al.
(2011)). Furthermore, it is important to notice that both bootstrap and permutation-
based methods estimate the joint distribution of (pi (X) : 1 ≤ i ≤ m) under the
global null hypothesis H0. Hence, the assumption that η is a nuisance parameter
which does not depend on ϑ is an essential prerequisite for the applicability of such
resampling methods for estimating η.

3.3 Closed Test Procedures

An important class of FWER-controlling multiple tests which do not exactly fall into
one of the categories “margin-based” and “multivariate” is constituted by closed test
procedures, introduced by Marcus et al. (1976).

Theorem 3.3. Let H = {Hi : i ∈ I } denote a ∩-closed system of hypotheses and
ϕ = (ϕi : i ∈ I ) a coherentmultiple test for (X ,F ,P,H ) at local levelα. Then,ϕ
is a strongly FWER-controlling multiple test at FWER level α for (X ,F ,P,H ).

Proof. Let ϑ ∈ Θ with I0(ϑ) �= ∅. SinceH is ∩-closed, there exists an i ∈ I with
Hi = ⋂ j∈I0(ϑ) Hj , and ϑ ∈ Hi . Hence, for all j ∈ I0(ϑ), we have Hj ⊇ Hi . Now,
coherence of ϕ entails {ϕi = 1} ⊇⋃ j∈I0(ϑ){ϕ j = 1}. We conclude that

FWERϑ(ϕ) = Pϑ

⎛

⎝
⋃

j∈I0(ϑ)

{ϕ j = 1}
⎞

⎠ ≤ Pϑ({ϕi = 1}) ≤ α,

because ϕi is a level α test. �

Notice that there is no restriction at all regarding the explicit form of the local level
α testsϕi in Theorem 3.3. One is completely free in choosing these tests. The decisive
property of ϕ, however, is coherence. Not all multiple tests fulfill this property in
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the first place. This leads to the closed test principle, a “general solution to multiple
testing problems” (Sonnemann (2008)).

Theorem 3.4 (Closure Principle, see Marcus et al. (1976), Sonnemann (2008)).
LetH = {Hi : i ∈ I } denote a ∩-closed system of hypotheses and ϕ = (ϕi : i ∈ I )
an (arbitrary) multiple test for (X ,F ,P,H ) at local level α. Then, we define the
closed multiple test procedure (closed test) ϕ̄ = (ϕ̄i : i ∈ I ) based on ϕ by

∀i ∈ I : ϕ̄i (x) = min
j :Hj ⊆Hi

ϕ j (x).

It holds:

(a) The closed test ϕ̄ strongly controls the FWER at level α.
(b) For all ∅ �= I ′ ⊂ I , the “restricted” closed test ϕ̄′ = (ϕ̄i : i ∈ I ′) is a strongly

(at level α) FWER-controlling multiple test forH ′ = {Hi : i ∈ I ′}.
(c) Both tests ϕ̄ and ϕ̄′ are coherent.

Proof. The assertions follow immediately from the definitions of ϕ̄ and ϕ̄′ bymaking
use of Theorem 3.3. �

Remark 3.1.

(a) The closed test ϕ̄ based on ϕ rejects a particular hypothesis Hi ∈ H if and
only if ϕ rejects Hi and all hypotheses Hj ∈ H of which Hi is a superset
(implication).

(b) If H is not ∩-closed, then one can extend H by adding all missing intersec-
tion hypotheses, leading to the ∩-closed system of hypotheses H̄ . If there are
� elementary hypotheses in H , then H̄ can consist of up to 2� − 1 hypothe-
ses. However, as we will demonstrate by specific examples, it is typically not
necessary to test all elements in H̄ explicitly.

(c) Theorem 3.3 shows that under certain assumptions a multiple test at local level
α is a strongly FWER-controlling multiple test at level α. Of course, the reverse
statement is always true.

(d) If H is disjoint in the sense that ∀i, j ∈ I, i �= j : Hi ∩ Hj = ∅, and ϕ is a
multiple test for (X ,F ,P,H ) at local level α, then ϕ automatically strongly
controls the FWER at level α, because ϕ is coherent and H is ∩-closed by the
respective definitions. Often, there exist many possibilities for partitioning Θ in
disjoint subsets, leading to the more general partitioning principle, see Finner
and Strassburger (2002).

(e) If I = Θ and Hϑ = {ϑ} for all ϑ ∈ Θ , and if ϕ = (ϕϑ : ϑ ∈ Θ) is a multiple
test at local level α, then ϕ strongly controls the FWER at level α.

A nice application of the closed test principle is the problem of directional or type
III errors, cf. Finner (1999) and references therein.

Example 3.3 (Two-sample t-test). Assume that we can observe X = (Xi j ) for
i = 1, 2 and j = 1, . . . , ni , that all Xi j are stochastically independent and
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”‘μ1 < μ2”’

)

”‘μ1 > μ2”’

(

. . . t

− tν ; α
2

− tν ;α 0 tν;α tν ; α
2

{ϕ̄ ≥= 1} {ϕ̄= = ϕ= = 0}

{ϕ ≥= 1} {ϕ≥= 0}

Fig. 3.3 Closed test for {H=, H≤, H≥} in the two-sample Gaussian model

Xi j ∼ N (μi , σ
2) with unknown variance σ 2 > 0. Consider the hypothesis

H= : {μ1 = μ2}. The two-sample t-test ϕ= (say) for testing H= is based on the
test statistic

T (X) =
√

n1n2
n1 + n2

X̄1. − X̄2.

S
, where S2 = 1

ν

2∑

i=1

ni∑

j=1

(Xi j − X̄i.)
2, ν = n1 + n2 − 2,

and is given by

ϕ=(x) =
⎧
⎨

⎩

1 >

|T (x)| tν;α/2
0 ≤

⎫
⎬

⎭ ,

where tν;α/2 denotes the upperα/2-quantile of Student’s t-distributionwith ν degrees
of freedom. Let us restrict our attention to the case α ∈ (0, 1/2). The problem of
directional or type III errors can be stated as follows. Assume that H= is rejected by
ϕ=. Can one then infer that μ1 < μ2 (μ1 > μ2) if T (x) < −tν;α/2 (T (x) > tν;α/2)?
There is the possibility of an error of the third kind, namely, that μ1 < μ2 and
T (x) > tν;α/2 (μ1 > μ2 and T (x) < −tν;α/2). The formal mathematical solution
to this problem is given by the closed test principle. We add the two hypotheses
H≤ : {μ1 ≤ μ2} and H≥ : {μ1 ≥ μ2} and notice that H= = H≤ ∩ H≥. Level α tests
for H≤ and H≥ are given by one-sided t-tests, say

ϕ≤(x) =
⎧
⎨

⎩

1 >

T (x) tν;α
0 ≤

⎫
⎬

⎭ , ϕ≥(x) =
⎧
⎨

⎩

1 <

T (x) −tν;α
0 ≥

⎫
⎬

⎭ .

We construct the closed test ϕ̄ = (ϕ̄≤, ϕ̄=, ϕ̄≥), given by ϕ̄= = ϕ=, ϕ̄≤ = ϕ=ϕ≤,
ϕ̄≥ = ϕ=ϕ≥.

Due to the nestedness of the rejection regions of ϕ≤ and ϕ̄≤ (ϕ≥ and ϕ̄≥), see
Fig. 3.3, it follows from Theorem 3.4 that type III errors are automatically controlled
at level α, hence, one-sided decisions after two-sided testing are allowed in this
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model. The argumentation further shows that this is generally true for likelihood
ratio test statistics, provided that the model implies an isotone likelihood ratio.

The presumably most intensively studied application of closed test procedures,
however, is the context of analysis of variance models, where linear contrasts
regarding the group-specific means are of interest. Since this field of application
has already deeply been studied in earlier books (Hochberg and Tamhane (1987),
Hsu (1996)), we abstain from covering it here. Closed test-related multiple testing
strategies for systems of hypotheses with a tree structure have been worked out by
Meinshausen (2008) and Goeman and Finos (2012); see also the references in these
papers. In the latter case, power can be gained by exploiting the logical restrictions
among the hypotheses which are given by the tree structure. This has some similar-
ities to the methods considered by Westfall and Tobias (2007).
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