
Chapter 2
Some Theory of p-values

Abstract Many multiple test procedures are formalized and carried out in practice
by means of p-values. In this chapter, we formally introduce the notion of a p-value
and its usage for testing a statistical hypothesis. Methods for computing p-values
are discussed with respect to tests of Neyman-Pearson type and for discrete statisti-
cal models. In the context of testing multiple hypotheses, we introduce the concept
of local significance levels. Randomized p-values are discussed for situations with
multiple composite hypotheses and for discretely distributed test statistics. Some
p-value models commonly used in multiple testing literature are explained. In
view of stepwise rejective multiple test procedures, properties of order statistics of
p-values are discussed for some of these models.

Many (stepwise) multiple tests are formalized and carried out by means of p-values
corresponding to (marginal) test statistics. In the statistical literature, there exists an
overwhelming debate whether p-values are suitable decision tools, cf. the references
in Sect. 3.11 of Lehmann and Romano (2005). In this work, we pragmatically regard
a p-value as a deterministic transformation of a test statistic which is particularly
useful for multiple testing, because it provides a standardization. Every p-value is
supported on the unit interval [0, 1], even if test statistics have drastically different
scales.

Definition 2.1 (p-value). Let (X ,F , (Pϑ)ϑ∈Θ) a statistical model and ϕ a (one-
dimensional) non-randomized test for the single pair of hypotheses ∅ �= H ⊂ Θ

versus K = Θ\H . Assume thatϕ is based on a real-valued test statistic T : X → R.
More specifically, let ϕ be characterized by rejection regions Γα ⊂ R for any given
significance level α ∈ (0, 1), such that ϕ(x) = 1 ⇐⇒ T (x) ∈ Γα for x ∈ X . Then,
we define the p-value of an observation x ∈ X with respect to ϕ by

pϕ(x) = inf{α:T (x)∈Γα}P
∗(T (X) ∈ Γα),
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18 2 Some Theory of p-values

where the probability measure P∗ is chosen such that

P
∗(T (X) ∈ Γα) = sup

ϑ∈H
Pϑ(T (X) ∈ Γα),

if H is a composite null hypothesis.

Remark 2.1.

(i) If H contains only one single element ϑ0 (H is a simple hypothesis) and if
PH ≡ Pϑ0 is continuous, it (typically) holds

pϕ(x) = inf{α : T (x) ∈ Γα}.

(ii) In view of (3.3) in Lehmann and Romano (2005), we may regard the p-value
as the “observed size” of ϕ.

(iii) Let Ω denote the domain of X . The mapping pϕ(X) : Ω → [0, 1], ω �→
pϕ(X (ω)), can be regarded as a random variable (under measurability assump-
tions). Often, there is no clear-cut distinction between the value pϕ(x) ∈ [0, 1]
and the random variable pϕ(X). We will try to be as precise as possible with
respect to this.

Definition 2.2. Under the assumptions of Definition 2.1, let the test statistic T fulfill
the monotonicity condition

∀ϑ0 ∈ H : ∀ϑ1 ∈ K : ∀c ∈ R : Pϑ0(T (X) > c) ≤ Pϑ1(T (X) > c). (2.1)

Then, we call ϕ a test of (generalized) Neyman-Pearson type, if for all α ∈ (0, 1)
there exists a constant cα , such that

ϕ(x) =
{
1, T (x) > cα,

0, T (x) ≤ cα.

In practice, the constants cα are determined via cα = inf{c ∈ R : P
∗(T (X) >

c) ≤ α} with P
∗ as in Definition 2.1 (“at the boundary of the null hypothesis”). If

H is simple and PH continuous, we obtain cα = F−1
T (1− α), where FT denotes the

cdf. of T (X) under H .

Lemma 2.1. Let ϕ a test of Neyman-Pearson type and assume that P∗ does not
depend on α. Then it holds

pϕ(x) = P
∗(T (X) ≥ t∗) with t∗ = T (x).

Proof. The rejection regions Γα = (cα,∞) are nested. Therefore, inf{α : T (x) ∈
Γα} is attained in [t∗,∞). The assertion follows from Definition 2.1. ��
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If H is simple, PH continuous, and ϕ of Neyman-Pearson type, Lemma 2.1 yields
pϕ(x) = 1 − FT (t∗), with FT as in Definition 2.2.

Theorem 2.1 (p-values as decision tools). Let α ∈ (0, 1) a fixed given
significance level and assume that P∗ is continuous. Then we have the duality

ϕ(x) = 1 ⇐⇒ pϕ(x) < α.

Proof. We restrict the proof to the case of tests of Neyman-Pearson type. The map-
ping t �→ P

∗(T (X) > t) is decreasing in t . Moreover, due to the construction of cα

(see Definition 2.2), we must have P
∗(T (X) > cα) ≤ α and P

∗(T (X) > c) > α

for all c < cα . Altogether, this entails that pϕ(x) < α is equivalent to t∗ > cα . The
latter event characterizes rejection of H according to Definition 2.2. ��
Remark 2.2.

(i) The advantage of p-values for testing is that they can be computedwithout prior
specification of a significance levelα. This iswhy all common statistics software
systems implement statistical tests via the computation of p-values. However,
for the purpose of decision making, pre-specification of α is inevitable.

(ii) The p-value gives an answer to the question “How probable are the observed
data, given that the null hypothesis is true?”. However, it does not answer the
question “Howprobable is the validity of the null hypothesis, given the observed
data?”.

(iii) For some applications, it is more useful to consider isotone transformations of
test statistics rather than antitone ones. Therefore,we remark here that 1−pϕ(X)

is in the cases that are relevant for our work equal to the distributional transform
of T (X) as defined by Rüschendorf (2009). We will adopt this terminology in
the remainder of this work.

Theorem 2.2. Under the assumptions of Definition 2.1, assume that H is simple,
PH is continuous and ϕ is a test of Neyman-Pearson type. Then it follows

pϕ(X) ∼
H

UNI[0, 1].

Proof. The assertion is a consequence of the principle of quantile transformation.
Making use of Lemma 2.1, we easily calculate

PH (pϕ(X) ≤ t) = PH (1 − FT (T (X)) ≤ t)

= PH (FT (T (X)) ≥ 1 − t)

= P(U ≥ 1 − t) = 1 − P(U ≤ 1 − t)

= 1 − (1 − t) = t,

where U denotes a standard uniform variate. ��
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Remark 2.3. In general, it holds that pϕ(X) is under H stochastically not smaller
than a standard uniform variate, i.e.,

∀ϑ ∈ H : Pϑ(pϕ(X) ≤ t) ≤ t, t ∈ [0, 1]. (2.2)

Occasionally, p-values are even defined via property (2.2) in the literature, without
reference to test statistics or rejection regions at all; see, for instance, Definition
8.3.26 in the textbook by Casella and Berger (2002).

2.1 Randomized p-values

In Theorem 2.2, we assumed a simple null hypothesis H and that PH is continuous.
Hence, two potential sources of non-uniformity of p-values are discreteness of PH

and testing of composite null hypotheses. In this section, we demonstrate how ran-
domization techniques can be used to remove or at least to diminish the conservativity
that we have reported in (2.2) if the statistical model entails one of the aforemen-
tioned sources of non-uniformity of the p-values in the sense of Definition 2.1. As
we will point out later, this is important for multiple testing, especially because many
data-adaptivemultiple tests require exactly uniformly distributed p-values under null
hypotheses for a reasonable performance and fail to work properly if this assumption
is violated.

2.1.1 Randomized p-values in Discrete Models

Westartedwith non-randomized tests inDefinition 2.1. Especially in discretemodels,
this leads to p-values that are stochastically larger than UNI[0, 1]. To meet the
requirement of uniformity of the p-values under null hypotheses at least for the
case of testing point hypotheses, p-values can be slightly modified in analogy to
randomization of tests.

Definition 2.3 (Realized randomized p-value). Let a statistical model (X ,F ,

(Pϑ)ϑ∈Θ) be given. Consider the two-sided test problem H : {ϑ = ϑ0} versus
K : {ϑ �= ϑ0} and assume the decision is based on the realization x of a dis-
crete random variate X ∼ Pϑ with values in X . Moreover, let U denote a uni-
formly distributed random variable on [0, 1], stochastically independent of X . Then,
a realized randomized p-value for testing H versus K is a measurable mapping
prand. : X × [0, 1] → [0, 1] fulfilling that

Pϑ0(prand.(X, U ) ≤ t) = t for all t ∈ [0, 1]. (2.3)
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The property (2.3) is an abstract mathematical requirement. For practical applica-
tions, the following theorem which is due to Klaus Straßburger makes the concept of
realized randomized p-values fully usable. The proof of Theorem 2.3 can be found
in Appendix II of Dickhaus et al. (2012).

Theorem 2.3. Let T : X → R denote a statistic and let f : X → R+ be
the pmf. of a discrete random variate X with values in X , such that f (x) > 0
for all x ∈ X . Moreover, let U denote a UNI[0, 1]—distributed variate which is
stochastically independent of X. Define

pT (x) =
∑

y:T (y)≤T (x)

f (y), W = {pT (x) : x ∈ X }, and

prand.T (x, u) = pT (x) − u
∑

y:T (y)=T (x)

f (y). (2.4)

Then it holds

P(pT (X) ≤ t) ≤ t, for all t ∈ [0, 1],
P(pT (X) ≤ t) = t, for all t ∈ W ,

P(prand.T (X, U ) ≤ t) = t, for all t ∈ [0, 1]. (2.5)

If realized randomized p-values are constructed according to (2.4), the relation-
ship between p-value and distributional transform given in part (iii) of Remark 2.2
remains to hold.

2.1.2 Randomized p-values for Testing Composite Null Hypotheses

Dickhaus (2013) proposed randomized p-values for testing composite null hypothe-
ses as follows.

Definition 2.4 (Dickhaus (2013)). Let pLFC be a p-value which is constructed as in
Definition 2.1 and let u denote the realization of a UNI[0, 1]—distributed random
variable U which is stochastically independent of X . Then, the randomized p-value
prand. is given by

prand.(x, u) = u1H (θ̂(x)) + G(pLFC(x))1K (θ̂(x)),

where θ : Θ → Θ ′ denotes a one-dimensional (possibly derived) parameter, θ̂ a
consistent and (at least asymptotically for large sample sizes) unbiased estimator of
θ , and G the conditional cdf of pLFC(X) given θ̂ ∈ K under the (or: any) LFC for the
type I error probability of the test ϕ of H ⊂ Θ ′ versus K = H \ Θ ′ corresponding
to pLFC.
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At least for one-sided tests ofmeans inGaussianmodels, Dickhaus (2013) showed
that these p-values are valid and under null hypotheses stochastically not larger
than the traditional, LFC-based ones. Alternative methods for multiple testing of
composite null hypotheses are reviewed in the introduction of Dickhaus (2013).

2.2 p-value Models

In the context of multiple test problems, (marginal) p-values p1, . . . , pm can be
computed for every individual pair of hypotheses Hi versus Ki , if marginal mod-
els can, at least under null hypotheses, be specified exactly (which is often a hard
requirement). A broad class of multiple tests depend on the data only via p1, . . . , pm

and combine them in a suitable way in order to control errors, based on probabilistic
calculations. Hence, for the mathematical analysis of such multiple tests, it suffices
to model the distribution of the vector (p1(X), . . . , pm(X))� of (random) p-values
and to consider statistical models of the form ([0, 1]m,B([0, 1]m), (Pϑ : ϑ ∈ Θ)).
Especially in high-dimensional settings, often only qualitative assumptions on the
joint distribution of p1, . . . , pm (regarded as random variables) are made which lead
to a variety of standard p-value models which are frequently considered in multiple
hypotheses testing.

2.2.1 The iid.-Uniform Model

If one can assume that all m p-values p1, . . . , pm are stochastically independent
and that the marginal test problems Hi versus Ki , 1 ≤ i ≤ m, are such that
Theorem 2.2 applies for all of them, then the joint distribution of p1(X), . . . , pm(X)

under the global hypothesis H0 is fully specified, because under these assump-
tions p1(X), . . . , pm(X) are under H0 distributed as a vector (U1, . . . , Um)� of
m stochastically independent, identically UNI[0, 1]—distributed random variables.
Moreover, if only (without loss of generality) hypotheses H1, . . . , Hm0 are true
for some m0 = m0(ϑ) ∈ {1, . . . , m}, then p1(X), . . . , pm0(X) are distributed as
(U1, . . . , Um0)

�. We call this p-value model the iid.-uniform model.
For certain classes of multiple test procedures, the iid.-uniform model already

implies the distribution of Vm and hence suffices to calibrate such multiple tests with
respect to FWER control. To illustrate this, assume that themultiple test ϕ is such that
those hypotheses are rejected for which the corresponding p-value is smaller than
some given threshold αloc. ∈ (0, 1). We call αloc. a local significance level and such
multiple test procedures single-step tests, cf. Sect. 3.1.1. Then, assuming the iid.-
uniform model for p1(X), . . . , pm(X), Vm is under ϑ ∈ Θ binomially distributed
with parameters m0(ϑ) and αloc.. This leads to the following expression for the
FWER of ϕ under ϑ .

http://dx.doi.org/10.1007/978-3-642-45182-9_3
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FWERϑ(ϕ) = Pϑ(Vm > 0) = 1 − Pϑ(Vm = 0) = 1 − (1 − αloc.)
m0 . (2.6)

Obviously, the right-hand side of (2.6) is increasing in m0. Therefore, under the
iid.-uniform model, the FWER of a single-step test ϕ becomes largest for such ϑ for
which I0(ϑ) = I = {1, . . . , m}. In other words, all ϑ ∈ H0 are least favorable for
the FWER of ϕ under the iid.-uniformmodel. This allows for a precise calibration of
αloc. for strong FWER control (which is equivalent to weak FWER control here). The
resulting single-step test is known as Šidák test and will be presented in Example 3.2.
Since the full joint distribution of (pi (X) : i ∈ I0(ϑ)) is completely specified in the
iid.-uniformmodel, also the joint and the marginal distributions of the order statistics
of the latter sub-vector of p-values can be derived and expressed in closed form.These
distributions are important for calibrating step-up-down multiple test procedures.
Such multiple tests reject hypotheses whose p-values are below a threshold which is
determined data-dependently by the value of an order statistic of (pi (X) : 1 ≤ i ≤
m), see Sect. 3.1.2. Let us briefly recall the following facts.

Lemma 2.2. Let Y1, . . . , Ym denote stochastically independent, identically distrib-
uted random variables driven by the probability measureP, with cdf. F of Y1. Assume
that PY1 is absolutely continuous with respect to the Lebesgue measure λ and denote
the order statistics of (Y1, . . . , Ym)� by (Y1:m, . . . , Ym:m)�. Then the following asser-
tions hold true.

P(Yi :m ≤ y) =
m∑

j=i

(
m

j

)
F(y) j (1 − F(y))m− j ,

dPYi :m

dPY1
(y) = m

(
m − 1

i − 1

)
F(y)i−1(1 − F(y))m−i .

If P
Y1 has Lebesgue density f , then P

Yi :m has Lebesgue density fi :m, given by

fi :m(y) = m

(
m − 1

i − 1

)
F(y)i−1(1 − F(y))m−i f (y). (2.7)

Letting μ = P
Y1 , (Yi :m)1≤i≤m has joint μm-density

(y1, . . . , ym) �→ m!1{y1<y2<···<ym }.

If μ has Lebesgue density f , then (Yi :m)1≤i≤m has λm-density

(y1, . . . , ym) �→ m!
m∏

i=1

f (yi )1{y1<y2<···<ym }.

Remark 2.4. Considering iid. UNI[0, 1]—distributed random variablesU1, . . . , Um

in Lemma 2.2, Eq. (2.7) shows that the order statistic Ui :m has a Beta(i, m − i + 1)
distribution with

http://dx.doi.org/10.1007/978-3-642-45182-9_3
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E[Ui :m] = i

m + 1
, Var(Ui :m) = i(m − i + 1)

(m + 1)2(m + 2)
.

For computing the joint cumulative distribution function of (U1:m, . . . , Um:m), effi-
cient recursive algorithms exist, for instance Bolshev’s recursion and Steck’s recur-
sion (see Shorack and Wellner (1986), p. 362 ff.).

Lemma 2.2 can be used to calibrate a step-up-down multiple test procedure ϕ for
weak FWER control under the assumption of an iid.-uniform model for the p-values
p1(X), . . . , pm(X). However, if ϑ �∈ H0, the FWER of ϕ typically depends on the
distribution of (p j (X) : j ∈ I1(ϑ)), too. The same holds true for the FDR of ϕ,
because the distribution of Rm certainly relies on that of (p j (X) : j ∈ I1(ϑ)). This
shows that some assumptions on the p-value distribution under alternatives are also
needed to study the behavior of multiple tests operating on p-values, even for the
sole purpose of type I error rate control according to Definition 1.2. A generalization
of Steck’s recursion to two populations has been derived by Blanchard et al. (2014).
This generalization can for instance be used for calibrating multiple tests for FDR
control if a fixed alternative p-value distribution is assumed and all m p-values are
stochastically independent.

2.2.2 Dirac-Uniform Configurations

It seems that the term “Dirac-uniform configuration” was used for the first time by
Finner and Roters (2001). A Dirac-uniform configuration is characterized by three
distributional assumptions regarding the joint distribution of (p1, . . . , pm).

Definition 2.5 (Dirac-uniform configuration). The value of the parameter ϑ is
called a Dirac-uniform configuration if the following three distributional properties
hold.

1. Allm0 marginal p-values corresponding to true null hypotheses are stochastically
independent and identically distributed as UNI[0, 1].

2. The random vector (pi (X) : i ∈ I0(ϑ)) is stochastically independent of the
random vector (p j (X) : j ∈ I1(ϑ)).

3. For all j ∈ I1, p j (X) follows a Dirac distribution with point mass 1 in zero,
meaning that p j is almost surely equal to zero.

Of course, in practice it is unrealistic to assume that effect sizes are so large that
p-values are almost surely equal to zero under alternatives. Therefore, Dirac-uniform
configurations are not useful for modeling real-life data. This is why we do not term
them “models”. They are technical devices for deriving upper bounds for the FWER
or the FDR of multiple testing procedures. For the mathematical analysis of multiple
tests under independence assumptions, Dirac-uniform configurations are important
tools, because they are, for fixed m0, often LFCs for the FWER and/or the FDR of
multiple tests if p-values are independent. In particular, if ϕ is a step-up-down test, its
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FWER and FDR typically become maximum if parameter values under alternatives
are extreme in the sense that p-values under alternatives are as small as possible.
As a consequence, control of the respective error rate by ϕ under Dirac-uniform
configurations (which are LFCs) entails that ϕ controls the error rate also under all
other (often more realistic) values of the parameter ϑ of the model.

Furthermore, analytic calculations for the FWERand the FDRare very straightfor-
wardly possible under Dirac-uniform configurations, because it holds (almost surely)
that Rm = Vm + m1 for a stepwise rejective multiple test ϕ, if ϑ is a Dirac-uniform
configuration. This is because the m1 null hypotheses with indices in I1 are almost
surely rejected by ϕ due to their p-values which are almost surely equal to zero.
Consequently, the joint distribution of Vm and Rm is already determined by that of
Vm which in turn can be expressed in terms of the joint distribution of order statistics
of m0 iid. UNI[0, 1]—distributed random variables, and the respective Bolshev’s or
Steck’s recursions suffice for the type I error calibration of ϕ. The latter reasoning
will play an important role in Chap.5 where we will provide more details.

2.2.3 Two-Class Mixture Models

In contrast to the models discussed before, two-class mixture models are often used
as models for real-life data. They still have a tractable structure.

Definition 2.6. The joint distribution of (p1, . . . , pm) is called a two-class mixture
model, if the following two properties hold.

1. All m0 p-values corresponding to true null hypotheses are marginally distributed
with cdf. F0, where F0 is stochastically lower-bounded by UNI[0, 1].

2. Allm1 p-values corresponding to false null hypotheses aremarginally distributed
with cdf. F1.

At a first glance, this model seems very restrictive, because all p-values under
null hypotheses share the same marginal distribution and the same holds true for all
p-values under alternatives. However, the following trick, mentioned for instance
by Genovese and Wasserman (2004) and Farcomeni (2007), considerably extends
the applicability of two-class mixture models: Even if it can not be assumed that
all pi (X) with i ∈ I1 share the same marginal distribution, we may at least assume
that their marginal cdfs all belong to a class {Fξ : ξ ∈ Ξ}. In addition, we may
be able to put a prior distribution ν on �. If these two requirements are fulfilled,
let F1 be defined by F1(t) = ∫

�
Fξ (t)ν(dξ). In an analogous manner, one can

proceed for constructing themarginal distribution function F0 under null hypotheses,
if the multiple test problem does not already imply a fixed marginal distribution of
p-values under null hypotheses, for instance UNI[0, 1]. However, let us mention
here that putting a prior on the parameter space under null hypotheses is problematic
from the classical (frequentist) viewpoint toward statistics.

http://dx.doi.org/10.1007/978-3-642-45182-9_5
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Notice that Definition 2.6 only specifies themarginal distributions of p-values. As
far as the dependency structure in two-class mixture models is concerned, one often
assumes weak dependency in the sense of Definition 5.2, meaning that the ecdfs of
(pi : i ∈ I0) and (p j : j ∈ I1) converge for m → ∞ to F0 and F1, respectively, in
the Glivenko-Cantelli sense. This gives enough structure to the statistical model for
an asymptotic analysis of the behavior of multiple tests operating on such p-values.

2.2.4 Copula Models Under Fixed Margins

The followingwell-known theoremprovides a convenient way to separate themodels
for the marginal distributions of p1(X), . . . , pm(X) (which are, at least under null
hypotheses, often already implied by the test problems Hi versus Ki , 1 ≤ i ≤ m, see
Theorem 2.2) from a model regarding the dependency structure among the p-values.

Theorem 2.4 (Sklar (1959, 1996)). Let Y = (Y1, . . . , Ym)� denote a random vector
with values in R

m and with joint cdf FY and marginal cdfs FY1, . . . , FYm . Then there
exists a function C : [0, 1]m → [0, 1], called the copula of Y , such that for all
y = (y1, . . . , ym)� ∈ R̄

m, it holds

FY (y) = C(FY1(y1), . . . , FYm (ym)).

If all m marginal cdfs are continuous, then the copula C is unique.

According to Theorem 2.4, the dependency structure among p1(X), . . . , pm(X)

can be modeled by modeling their copula. Furthermore, if Theorem 2.2 applies for
all marginal test problems Hi versus Ki , 1 ≤ i ≤ m, the copula of the p-values
coincides under the global hypothesis H0 with the cdf of p1(X), . . . , pm(X). The
latter fact is extremely useful for constructing simultaneous test procedures based
on p-values, cf. Sect. 4.4. In particular, parametric copula models can be used as
regularized models for the dependency structure of p1(X), . . . , pm(X), especially
in caseswherem is large such that the “curse of dimensionality” prohibitsmodeling or
reliably estimating the full joint distribution of the data or the p-values, respectively.
Regularization here means that the copula parameter is of low dimension. Of course,
in practice this will typically only yield an approximation of the true dependency
structure.

2.2.5 Further Joint Models

Assume that all marginal tests ϕi , 1 ≤ i ≤ m, for a given multiple test problem
(X ,F , (Pϑ)ϑ∈Θ,Hm) are of (generalized) Neyman-Pearson type in the sense of
Definition 2.2, with (marginal) test statistics T1, . . . , Tm . Then, in order to calibrate

http://dx.doi.org/10.1007/978-3-642-45182-9_4
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the multiple test ϕ by multivariate techniques, it is often convenient to consider the
joint distribution of T1, . . . , Tm directly. On the p-value scale, however, the resulting
adjustment for multiplicity of the overall significance level α (for the FWER or the
FDR) is explicitly given, leading to a better interpretability of ϕ. Therefore, it may be
of interest to derive the joint distribution of the p-values p1, . . . , pm corresponding
to T1, . . . , Tm by transformation of measures. To give a specific example, assume
that X = (X1, . . . , Xm)� follows a multivariate normal distribution with mean μ =
(μ1, . . . , μm)� and covariance matrix Σ . For ease of exposition and without loss of
generality, assume that all diagonal elements of Σ are equal to one. Furthermore,
assume that the m null hypotheses Hi : {μi = 0} with two-sided alternatives Ki :
{μi �= 0} are of interest, 1 ≤ i ≤ m. Suitable test statistics are given by Ti = |Xi |,
1 ≤ i ≤ m. Following Lemma 2.1 and utilizing symmetry properties of the standard
normal law, the marginal p-values corresponding to the test statistics T1, . . . , Tm are
given by

pi (x) = 2(1 − Φ(Ti (x))), 1 ≤ i ≤ m, (2.8)

where Φ denotes the cdf. of the standard normal distribution.
Hence, if the calibration of ϕ results in a threshold cα for the Ti , then equivalently

ϕi rejects Hi if pi (x) < 2(1 − Φ(cα)) = αloc. (say). The value αloc. can thus be
regarded as a multiplicity-adjusted local significance level.

Under Hi , pi (X) is marginally UNI[0, 1]—distributed, see Theorem 2.2. More-
over, the joint cdf of (pi (X) : 1 ≤ i ≤ m) under μ and Σ is given by

u = (u1, . . . , um)� ∈ [0, 1]m �→ P(μ,Σ)(pi (X) ≤ u1, . . . , pm(X) ≤ um)

= P(μ,Σ)(∀1 ≤ i ≤ m : Ti ≥ Φ−1(1 − ui/2)).

The latter probability can easily be computed by employing numerical routines
for multivariate normal distributions, cf. Genz and Bretz (2009). Multiple tests for
Gaussian means play an important role in many practical applications, for instance
in the context of localized comparisons in analysis of variance models. Applications
in genetics are discussed in Chaps. 9 and 10.
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