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It can’t be all coincidence
Too many things are evident

(Iron Maiden, Infinite Dreams, 1988)



Preface

The more questions you ask, the more wrong answers you are expected to
receive—even if every single source of your information is quite trustworthy. In
this work, the sources of information are data, and the questions are formalized by
statistical hypothesis-alternative pairs. From the mathematical point of view, this
leads to multiple test problems. We will discuss criteria and methods (in particular
multiple tests) which ensure that with high probability not too many wrong
decisions are made, even if many hypotheses are of interest under the scope of one
and the same statistical model, i.e., regarding one and the same dataset.

High-throughput technologies in different fields of modern life sciences have
led to massive multiplicity and given rise to multiple test problems with more
hypotheses than observations. Driven by these developments, also new statistical
paradigms have arisen. It is fair to say that a new era of multiple testing began
when Yoav Benjamini and Yosef Hochberg formally introduced the false dis-
covery rate (FDR) and the linear step-up test for FDR control in 1995. In this book,
apart from classical methods controlling the family-wise error rate (FWER),
theory and important life science applications of the FDR are presented in a
systematic way, presumably for the first time in this depth in a monograph. In this,
focus is on frequentist approaches aiming at FDR control at a fixed level. Other
type I and type II error rates are mentioned and discussed where appropriate, but
focus is on FWER and FDR. Chapters 6 and 7 broaden the view and show how
multiple testing methodology can be used in the context of binary classification
and model selection, respectively, with life science applications provided in Parts
II and III. Further relationships between multiple testing and other simultaneous
statistical inference problems are discussed in Chap. 1 and at respective occasions.

The book is primarily meant to be a research monograph and an introduction to
simultaneous inference for applied statisticians and practitioners from the life
sciences. To this end, presentation is with emphasis on applicability and we
provide a couple of hints concerning which multiple test to use for which type of
data. Furthermore, Chap. 8 deals with software implementing the theoretically
treated procedures. However, the mainly theoretical Part I of the book may also
serve as the basis for a graduate course on simultaneous statistical inference with
emphasis on multiple testing for mathematical statisticians. I used parts of
Chaps. 2, 4 and 5 for such a course at Humboldt-University Berlin and a couple of
diploma theses in mathematics originated from this teaching.
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Chapter 1
The Problem of Simultaneous Inference

Abstract We introduce the problem of simultaneous statistical inference, with
particular emphasis on testing multiple hypotheses. After a historic overview, gen-
eral notation for the whole work is set up and different sources of multiplicity are
distinguished. We define a variety of classical and modern type I and type II error
rates in multiple hypotheses testing, analyze some relationships between them, and
consider different ways to cope with structured systems of hypotheses. Relationships
between multiple testing and other simultaneous statistical inference problems, in
particular the construction of confidence regions for multi-dimensional parameters,
as well as selection, ranking and partitioning problems, are elucidated. Finally, a
general outline of the remainder of the work is given.

Simultaneous statistical inference is concerned with the problem of making several
decisions simultaneously based on one and the same dataset. In this work, simultane-
ous statistical decision problems will mainly be formalized by multiple hypotheses
andmultiple tests. Not all simultaneous statistical decision problems are given in this
formulation in the first place, but they can often be re-formulated in terms of mul-
tiple test problems. General relationships between multiple testing and other kinds
of simultaneous statistical decision problems will briefly be discussed in Sect. 1.3.
Moreover, we will refer to specific connections at respective occasions. For instance,
we will elucidate connections between multiple testing and binary classification in
Chap.6 and discuss multiple testing methods in the context of model selection in
Chap.7.

The origins of multiple hypotheses testing can at least be traced back to Bon-
ferroni (1935, 1936). The “Bonferroni correction”(cf. Example 3.1) is a generic
method for evaluating several statistical tests simultaneously and ensuring that the
probability for at least one type I error is bounded by a pre-defined significance
level α. The latter criterion is nowadays referred to as (strong) control of the family-
wise error rate (FWER) at level α and will be defined formally in Definition 1.2
below. In well-defined model classes, the Bonferroni method can be improved. In
the 1950s, especially analysis of variance (ANOVA) models have been studied with
respect to multiple comparisons of group-specific means. For instance, Tukey (1953)
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2 1 The Problem of Simultaneous Inference

developed a multiple test for all pairwise comparisons of means in ANOVA models
based on the studentized range distribution. Keuls (1952) applied this technique to a
ranking problem of ANOVAmeans in an agricultural context. The works of Dunnett
(1955, 1964) treated the problem ofmultiple comparisonswith a control group, while
Scheffé (1953) provided a method for testing general linear contrasts simultaneously
in the ANOVA context.Concepts from multivariate analysis and probability theory,
in particular multivariate dependency concepts, have also been used for multiple test-
ing, cf. for instance the works by Šidák (1967, 1968, 1971, 1973). These concepts
allow for establishing probability bounds which in turn can be used for adjusting
significance levels for multiplicity. We will provide details in Sect. 4.3. While all the
aforementioned historical methods lead to single-step tests (meaning that the same,
multiplicity-adjusted critical value is used for all test statistics corresponding to the
considered tests), the formal introduction of the closed test principle byMarcus et al.
(1976) paved the way for stepwise rejective multiple tests (for a detailed description
of these different classes of multiple test procedures, see Chap.3). These stepwise
rejective tests are often improvements of the classical single-step tests with respect
to power, meaning that they allow (on average) for more rejections of false hypothe-
ses while controlling the same type I error criterion (namely, the FWER at a given
level of significance). Stepwise rejective FWER-controlling multiple tests have been
developed in the late 1970s, the 1980s and early 1990s; see, for example, Holm
(1977, 1979), Hommel (1988) (based on Simes (1986)), Hochberg (1988), and Rom
(1990). Around this time, the theory of FWER control had reached a high level of
sophistication and was treated in the monographs by Hochberg and Tamhane (1987)
and Hsu (1996).

It is fair to say that a new era of multiple testing began when Benjamini and
Hochberg (1995) introduced a new type I error criterion, namely control of the false
discovery rate (FDR), see Definition 1.2. Instead of bounding the probability of one
or more type I errors, the FDR criterion bounds the expected proportion of false pos-
itives among all significant findings, which typically implies to allow for a few type I
errors; see also Seeger (1968) and Sorić (1989) for earlier instances of this idea. Dur-
ing the past 20years, simultaneous statistical inference and, in particular, multiple
statistical hypothesis testing has become amajor branch of mathematical and applied
statistics, cf. Benjamini (2010) for some bibliometric details. Even for experts it is
hardly possible to keep track of the exponentially (over time) growing literature in
the field. This growing importance is not least due to the data-analytic challenges
posed by large-scale experiments in modern life sciences such as, for instance,
genetic association studies (cf. Chap.9), gene expression studies (Chap.10),
functional magnetic resonance imaging (Chap.11), and brain-computer interfacing
(Chap.12). Hence, the present work is attempting to explain some of the most impor-
tant theoretical basics of simultaneous statistical inference, togetherwith applications
in diverse areas of the life sciences.

http://dx.doi.org/10.1007/978-1-4614-9602-1_4
http://dx.doi.org/10.1007/978-1-4614-9602-1_3
http://dx.doi.org/10.1007/978-1-4614-9602-1_9
http://dx.doi.org/10.1007/978-1-4614-9602-1_10
http://dx.doi.org/10.1007/978-1-4614-9602-1_11
http://dx.doi.org/10.1007/978-1-4614-9602-1_12


1.1 Sources of Multiplicity 3

1.1 Sources of Multiplicity

The following definition is fundamental for the remainder of this work.

Definition 1.1 (Statistical model). A statistical model is a triple (X ,F ,P). In
this,X denotes the sample space (the set of all possible observations),F a σ -field
on X (the set of all events that we can assign a probability to) and P a family
of probability measures on the measurable space (X ,F ). Often, we will write P
in the form (Pϑ)ϑ∈Θ , such that the family is indexed by the parameter ϑ of the
model which can take values in the parameter space Θ , where Θ may have infinite
dimension. Unless stated otherwise, an observation will be denoted by x ∈ X ,
and we think of x as the realization of a random variate X which mathematically
formalizes the data-generating mechanism. The target of statistical inference is the
parameter ϑ which we regard as the unknown and unobservable state of nature.

Once the statistical model for the data-generating process at hand is defined, two
general types of resulting multiplicity can be labeled as “one- or two- sample prob-
lemswithmultiple endpoints” and “k-sample problemswith localized comparisons”,
where k > 2, respectively. In one- or two- sample problems with multiple endpoints,
the sample space is often of the form X = R

m×n . The same n observational units
are measured with respect to m different endpoints, where we assumed for ease of
presentation that every measurement results in a real number. The transfer to mea-
surements of other type (for instance, allele pairs at genetic loci) is straightforward.
For every of them endpoints, an own scientific question can be of interest. On the con-
trary, in k-sample problemswith localized comparisons, the sample space is typically

of the form X = R

∑k
i=1 ni , meaning that k > 2 different groups of observational

units (for instance, corresponding to k different doses of a drug) are considered, and
that ni observations are made in group i , where 1 ≤ i ≤ k. In this, all

∑k
i=1 ni

measurements concern one and the same endpoint (for instance, a disease status).
The scientific questions in the latter case typically relate to differences between the
k groups. Multiplicity arises, if not (only) general homogeneity or heterogeneity be-
tween the groups shall be assessed, but if differences, if any, are to be localized in the
sense that we want to find out which groups are different. Two classical examples
are the “all pairs” problem (all m = k(k − 1)/2 pairwise group comparisons are
of interest) and the “multiple comparisons with a control” problem (group k is a
reference group and all other m = k − 1 groups are to be compared with group k).

We will primarily focus on these two kinds of problems. However, it has to be
mentioned that they do not cover the whole spectrum of simultaneous statistical
inference problems. For instance, flexible (group-sequential and adaptive) study
designs induce a different type of multiplicity problem that we will not consider
in the present work.

Throughout the remainder, we will try to stick to the notation developed in this
section: m is the number of comparisons (the multiplicity of the problem), n or a
subscripted n denotes a sample size and k refers to the total number of groups in a
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k-sample problem or to the dimensionality of the parameter ϑ . Often, the two latter
quantities are identical.

1.2 Multiple Hypotheses Testing

In what follows, we (sometimes implicitly) identify statistical hypotheses with non-
empty subsets of the parameter space Θ . The tuple (X ,F , (Pϑ)ϑ∈Θ,H ) denotes
a multiple test problem, where H = (Hi : i ∈ I ) for an arbitrary index set I
defines a family of null hypotheses. The resulting alternative hypotheses are denoted
by Ki = Θ \ Hi , i ∈ I . The intersection hypothesis H0 =⋂i∈I Hi will be referred
to as global hypothesis. Throughout the work, we assume that H0 is non-empty.With
very few exceptions, we will consider the case of finite families of hypotheses,
meaning that |I | = m ∈ N. In such cases, we will often writeHm instead ofH and
index the hypotheses such that I = {1, . . . , m}. A (non-randomized) multiple test for
(X ,F , (Pϑ)ϑ∈Θ,Hm) is a measurable mapping ϕ = (ϕi )1≤i≤m : X → {0, 1}m

the components of which have the usual interpretation of a statistical test for Hi

versus Ki . Namely, Hi is rejected if and only if ϕi (x) = 1, where x ∈ X denotes
the observed data.

1.2.1 Measuring and Controlling Errors

The general decision pattern of a multiple test for m hypotheses is summarized in
Table1.1. In contrast to usual, one-dimensional test problems, it becomes apparent
that type I and type II errors can occur simultaneously. In Table1.1, type I errors are
counted by Vm and type II errors are counted by Tm . The total number of rejections
is denoted by Rm . Notice that the quantities Um , Vm , Tm , Sm and m0, m1 all depend
on the unknown value of the parameter ϑ (although we suppressed this dependence
on ϑ notationally in Table1.1) and are therefore unobservable. Only m and Rm can
be observed.

For a given ϑ ∈ Θ , we denote the index set of true null hypotheses in Hm by
I0 ≡ I0(ϑ) = {1 ≤ i ≤ m : ϑ ∈ Hi }. Analogously, we define I1 ≡ I1(ϑ) = I \ I0.
With this notation, we can formally define Vm ≡ Vm(ϑ) = |{i ∈ I0(ϑ) : ϕi = 1}|,
Sm ≡ Sm(ϑ) = |{i ∈ I1(ϑ) : ϕi = 1}|, and Rm ≡ Rm(ϑ) = |{i ∈ I : ϕi =

Table 1.1 Decision pattern
of a multiple test procedure

Test decisions

Hypotheses 0 1
True Um Vm m0

False Tm Sm m1

Wm Rm m
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1}| = Vm + Sm . Based on these quantities, the following definition is concerned with
measuring and controlling type I errors of a multiple test ϕ.

Definition 1.2 (Multiple type I error rates). Let (X ,F , (Pϑ)ϑ∈Θ,Hm) denote
a multiple test problem and ϕ = (ϕi : i ∈ I ) a multiple test for (X ,F , (Pϑ)ϑ∈Θ,

Hm).

(a) The number

FWERϑ(ϕ) = Pϑ(Vm > 0) = Pϑ

⎛

⎝
⋃

i∈I0(ϑ)

{ϕi = 1}
⎞

⎠

is called the family-wise error rate (FWER) of ϕ under ϑ .
(b) The random variable

FDPϑ(ϕ) = Vm

max(Rm, 1)

is called the false discovery proportion (FDP) of ϕ under ϑ .
(c) The number

FDRϑ(ϕ) = Eϑ [FDPϑ(ϕ)] = Eϑ

⎨
Vm

max(Rm, 1)

⎩

is called the false discovery rate (FDR) of ϕ under ϑ .
(d) The number

pFDRϑ(ϕ) = Eϑ

⎨
Vm

Rm
| Rm > 0

⎩

is called the positive false discovery rate (pFDR) of ϕ under ϑ .
(e) The multiple test ϕ is called a multiple test at local level α ∈ (0, 1), if each ϕi is

a level α test for Hi versus Ki .
(f) The multiple test ϕ is said to control the FWER in the strong sense (strongly) at

level α ∈ (0, 1), if
sup
ϑ∈Θ

FWERϑ(ϕ) ≤ α. (1.1)

(g) The multiple test ϕ is said to control the FWER in the weak sense (weakly) at
level α ∈ (0, 1), if

∀ϑ ∈ H0 : FWERϑ(ϕ) ≤ α. (1.2)

(h) The multiple test ϕ is said to control the FDR at level α ∈ (0, 1), if

sup
ϑ∈Θ

FDRϑ(ϕ) ≤ α. (1.3)
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(i) We call a parameter value ϑ∗ a least favourable parameter configuration (LFC)
for the FWER or the FDR, respectively, of a given multiple test ϕ, if ϑ∗ yields
the supremum in (1.1) or (1.3), respectively.

The following lemma, though obvious,will be useful for the construction of closed
test procedures, see Sect. 3.3.

Lemma 1.1. Let (X ,F , (Pϑ)ϑ∈Θ,H ) denote a multiple test problem and ϕ =
(ϕi : i ∈ I ) a multiple test for (X ,F , (Pϑ)ϑ∈Θ,H ).

(a) Strong FWER control of ϕ implies weak FWER control of ϕ.
(b) Assume that ϕ controls the FWER weakly at level α. Then, a level α test for the

(single) global hypothesis H0 is given by the following rule: Reject H0 if there
exists an i ∈ I such that ϕi (x) = 1.

For the relationships between the FWER, the FDR, and the pFDR, the following
assertions hold true.

Lemma 1.2 (Relationships between FWER, FDR and pFDR). Under the
assumptions of Definition 1.2, we get:

(a) FDRϑ(ϕ) = pFDRϑ(ϕ)Pϑ(Rm > 0).
(b) If m0(ϑ) = m, then FDRϑ(ϕ) = FWERϑ(ϕ).
(c) For any ϑ ∈ Θ , it holds FDRϑ(ϕ) ≤ FWERϑ(ϕ).

Proof. To prove part (a), we calculate straightforwardly

FDRϑ(ϕ) = Eϑ

⎨
Vm

Rm ∨ 1

⎩

= Eϑ

⎨
Vm

Rm ∨ 1
|Rm > 0

⎩

Pϑ (Rm > 0)

+ Eϑ

⎨
Vm

Rm ∨ 1
|Rm = 0

⎩

Pϑ (Rm = 0)

= pFDRϑ(ϕ)Pϑ (Rm > 0) + 0.

For the proof of part (b),we notice that, ifm0 = m,Vm = Rm . Hence, pFDRϑ(ϕ) ≡ 1
in this case and, making use of part (a),

FDRϑ(ϕ) = Pϑ (Rm > 0) = Pϑ (Vm > 0) = FWERϑ(ϕ).

In the general case,we easily verify that FDPϑ(ϕ) ≤ 1{Vm>0}. Thus,Eϑ [FDPϑ(ϕ)] ≤
Eϑ

⎫
1{Vm>0}

⎬
, which is equivalent to the assertion of part (c). ∓∝

Notice that the proof of part (b) of Lemma 1.2 implies that the pFDR cannot be
controlled in the frequentist sense. The pFDR is only useful in Bayesian consider-
ations (cf., e.g., Chap. 6). Throughout the remainder of this work, we will restrict
our attention to the type I error rates defined in Definition 1.2. This is mainly due to

http://dx.doi.org/10.1007/978-1-4614-9602-1_3
http://dx.doi.org/10.1007/978-1-4614-9602-1_6


1.2 Multiple Hypotheses Testing 7

the fact that they are most commonly applied in practice. However, let us mention a
few additional type I error rates that are occasionally found in multiple testing liter-
ature. While the terms in Definition 1.2 are quite standard, the following quantities
have been introduced under a variety of different names and acronyms by different
authors.

Definition 1.3 (Further type I error rates). Under the assumptions of Definition
1.2, the following quantities are alternative type I error rates in multiple hypotheses
testing.

(i) For a fixed positive integer k, the number

k-FWERϑ(ϕ) = Pϑ(Vm > k)

is called the generalized family-wise error rate (k-FWER) of ϕ under ϑ .
(ii) The number

ENFRϑ(ϕ) = Eϑ [Vm]

is called the expected number of false rejections (ENFR) of ϕ under ϑ .
(iii) The number

EERϑ(ϕ) = Eϑ [Vm/m] = ENFRϑ(ϕ)/m

is called the expected (type I) error rate (EER) of ϕ under ϑ .
(iv) For a given constant c ∈ (0, 1), the number

FDXϑ(ϕ) = Pϑ(FDPϑ(ϕ) > c)

is called the false discovery exceedance rate (FDX) of ϕ under ϑ .

In order to compare concurringmultiple test procedures (which should control the
same type I error rate at the same level), also a type II error measure or, equivalently,
a notion of power is required under themultiple testing framework. Themost popular
notion of multiple power is defined as follows.

Definition 1.4. Under the assumptions of Definition 1.2, we call

powerϑ(ϕ) = Eϑ [Sm/max(m1, 1)] (1.4)

the multiple power of ϕ under ϑ .

We may remark here that our Definition 1.4 is in conflict with the nomenclature
of Maurer and Mellein (1988) who referred to the right-hand side of (1.4) as the
expected average power of ϕ.
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1.2.2 Structured Systems of Hypotheses

Identifying hypotheses with subsets of the parameter space allows us to apply set-
theoretic operations to them. In particular, we can analyze subset/superset relations
among the elements inHm .

Definition 1.5 (Structured systems of hypotheses). Let Hm = {Hi : i ∈ I =
{1, . . . , m}} denote a finite system of hypotheses.

(a) A hypothesis Hi ∈ Hm is called an elementary hypothesis, if Hi cannot be
written as an intersection of strict supersets of Hi inHm .

(b) A hypothesis Hi ∈ Hm is called a minimal hypothesis, if Hi does not possess
strict supersets in Hm .

(c) A hypothesis Hi ∈ Hm is called a maximal hypothesis, if Hm contains no
element of which Hi is a strict superset.

(d) The systemHm is called closed under intersection (∩-closed), if ∀∅ = J ⊆ I :
HJ = ∩ j∈J Hj = ∅ or HJ ∈ Hm .

(e) The system Hm is called hierarchically structured (hierarchical for short) if at
least one element of Hm has a strict superset inHm .

Throughout the remainder, we will graphically illustrate hierarchies in structured
systems of hypotheses in the following two ways.

Example 1.1. Let m = 3 and H = {H1, H2, H3}.
(a) Averyusefulway to illustrate subset/superset relations inH is an arrowdiagram.

The arrows point to the hypotheses which are the corresponding supersets
(implications).

(b) Alternatively, one may also draw a Venn diagram.

H3

H1

H2
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If logical restrictions (subset/superset relations) exist inHm , then a suitable mul-
tiple test procedure for (X ,F , (Pϑ)ϑ∈Θ,Hm) should not lead to decision patterns
which contradict this logical structure. Two important properties are coherence and
consonance.

Definition 1.6 (Gabriel (1969)). Let ϕ denote a multiple test for (X ,F ,P,Hm).

(a) The test ϕ is called coherent, if

∀i, j ∈ I with Hi ⊆ Hj : {ϕ j = 1} ⊆ {ϕi = 1}.

Thus, if a coherent multiple test rejects a particular hypothesis Hj , then it nec-
essarily also rejects all subsets of Hj . Otherwise, ϕ is called incoherent.

(b) The test ϕ is called consonant, if

∀i ∈ I with ∃ j ∈ I : Hi ⊂ Hj : {ϕi = 1} ⊆
⋃

j :Hj ⊃Hi

{ϕ j = 1}.

Thus, if a particular hypothesis Hi is rejected by a consonant multiple test and
it possesses strict supersets in Hm , then necessarily at least one of these strict
supersets is also rejected. Otherwise, ϕ is called dissonant.

In practice, coherence is an indispensable requirement which any multiple test
should fulfill. Consonance is generally desirable, too, but enforcing it can lead to
very conservative procedures (with very few rejections, if any). In Sect. 3.3, we will
introduce a general construction principle for coherent FWER-controlling multiple
test procedures, namely, the closure principle.However, closed test procedures are in
general not consonant.

1.3 Relationships to Other Simultaneous Statistical
Inference Problems

Multiple testingmethodology is not only useful in itself (i.e., for actually testingmul-
tiple hypotheses), but also for solving other, related simultaneous statistical decision
problems. The Habilitationsschrift of Finner (1994) provides an in-depth analysis of
connections between multiple testing and such other problems.

Maybe, the most straightforward connection can be drawn to the problem of
constructing (simultaneous) confidence regionsfor multi-dimensional parameters.
The general solution to this problem by multiple testing methodology is given in
Theorem 1.1.

Theorem 1.1 (Extended Correspondence Theorem, see Sect.4.1 inFinner (1994)).
LetH = {Hi : i ∈ I } denote an arbitrary family of hypotheses and (X ,F ,P,H )

a multiple test problem.

http://dx.doi.org/10.1007/978-1-4614-9602-1_3
http://dx.doi.org/10.1007/978-1-4614-9602-1_4
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(a) If ϕ = (ϕi : i ∈ I ) is a strongly FWER-controlling multiple test at FWER level
α for (X ,F ,P,H ) and we define C(x) = ⋂ j :ϕ j (x)=1 K j , x ∈ X , with the

convention
⋂

j∈∅ K j = Θ , then C = C (ϕ) = (C(x) : x ∈ X ) constitutes a
family of confidence regions for ϑ ∈ Θ at confidence level 1 − α.

(b) Assume that a family C = (C(x) : x ∈ X ) of confidence regions at confidence
level 1−α for ϑ ∈ Θ is given. Define the multiple test ϕ by ϕ(C ) = (ϕi : i ∈ I ),
where ϕi (x) = 1Ki (C(x)) for all x ∈ X and all i ∈ I . Then, ϕ(C ) is a strongly
FWER-controlling multiple test at FWER level α for (X ,F ,P,H ).

For instance, part (b) of Theorem 1.1 is the basis for Scheffé tests, see Theorem
3.1. Further connections exist to selection, partitioning and ranking problems, cf., for
instance, Gupta and Panchapakesan (1979), Liese andMiescke (2008) and references
within. Let us briefly discuss one example of a selection problem.

Example 1.2. Consider the model of the one-factorial analysis of variance with bal-
anced design, meaning that the data-generating mechanism can be represented by a
randommatrix X = (Xi j ), where 1 ≤ i ≤ k and1 ≤ j ≤ n, with k denoting the num-
ber of groups and n the common sample size per group.Assume that all Xi j are jointly
stochastically independent, real-valued random variables with Xi j ∼ N (μi , σ

2). In
this,μi ∈ R for 1 ≤ i ≤ k denotes the group-specific mean and σ 2 > 0 the common
(known or unknown) variance. Assume that k ≥ 3 and n ≥ 2. In the notation of a
statistical model, we consequently have X = R

k·n , F = B
k·n (the Borel σ -field

on R
k·n), and Θ = R

k × [0,∞) with parameter ϑ = (μ1, . . . , μk, σ
2)�. For ease

of argumentation, assume that the k groups correspond to k different treatments and
thatμi quantifies the i-th mean treatment effect. Let the aim of the statistical analysis
be to find (select) the best treatment(s) (with largestμi ). For example, we may define
the set of good treatments as

G(ϑ) = {i : max
1≤ j≤k

μ j − μi ≤ εσ }

for some given constant ε ≥ 0; see equation (1.3) in Finner and Giani (1994),
for example. Bechhofer (1954) studied the case of ε = 0 and known σ 2. Letting
Yi = X̄i., 1 ≤ i ≤ k, denote the empirical group means and Y1:k ≤ · · · ≤ Yk:k their
order statistics, it is near at hand to select the treatment corresponding to Yk:k . The
question arises if one can guarantee (for instance, by choosing n large enough) that
this decision rule selects the actually best treatment with a probability at least equal
to a given bound P∗ (say). The answer to this question is in general negative, as can
be seen by multiple testing considerations. Let μ[i] ≤ · · · ≤ μ[k] denote the ordered
theoretical means and Y(i) ∼ N (μ[i], σ 2/n) for 1 ≤ i ≤ k the correspondingly
re-arranged empirical means. Furthermore, let Zi , 1 ≤ i ≤ k, denote iid. standard
normal randomvariables. Thenwe can explicitly calculate the probability of a correct
selection (PCS) by
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Pϑ(∀1 ≤ i ≤ k − 1 : Y(k) ≥ Y(i))

= P(0,1)(∀1 ≤ i ≤ k − 1 : σ√
n

Zk + μ[k] ≥ σ√
n

Zi + μ[i])

=
⎭ ∞

−∞
P(0,1)

(

∀1 ≤ i ≤ k − 1 : Zi ≤ Zk +
√

n

σ
(μ[k] − μ[i])|Zk = z

)

dPZk (z)

=
⎭ ∞

−∞

k−1∏

i=1

Φ

(

z +
√

n

σ
(μ[k] − μ[i])

)

φ(z)dz, (1.5)

where Φ and φ denote the cdf and the pdf of the standard normal distribution on R,
respectively. It is easy to check that (1.5) is equal to 1/k independently of σ 2 > 0
and n ≥ 2 if μ1 = · · · = μk . Hence, in general it is only possible to keep a PCS
level of 1/k which is clearly unsatisfactory. Thus, Bechhofer (1954) restricted his
attention to a parameter subspaceΘ∗ = {ϑ : μ[k]−μ[k−1] ≥ εσ } for a fixed constant
ε ≡ ε(n) > 0, the so-called “preference zone”.

1.4 Contributions of this Work

After this introductory chapter, we divide the material into three parts. The first part
contributes to mathematical statistics and contains general methodological ideas.
We first discuss the concept of p-values which is important for multiple hypotheses
testing (Chap. 2). In Chap.3 we attempt to provide a general overview in terms of
a systematization of multiple test procedures with respect to error control, structure
of the decision rule and degree of detail of the underlying statistical model. Then,
we investigate specific classes of multiple tests in more detail, namely, simultaneous
test procedures (Chap.4) and stepwise rejective multiple tests (Chap. 5). To provide
some applications in and draw connections to other areas of statistics, we describe
relationships between multiple testing and binary classification (Chap.6) and model
selection (Chap. 7), respectively.WeconcludePart Iwith somecomments on software
solutions for multiple hypotheses testing (Chap.8) for a smooth transition to the
following parts.

Parts II and III are then devoted to practical applications of multiple test pro-
cedures in the life sciences. Part II considers statistical genetics and, in particular,
the problem of detecting associations between a binary phenotype and genetic pro-
files in humans. We describe three stages of decreasing biological distance between
genotype and phenotype: (i) association analysis based on genetic markers (Chap.9),
(ii) gene expression analysis (Chap.10), (iii) functional confirmation (in particular
functional magnetic resonance imaging, see Chap.11). In all three stages, multiple
testing methodology is a helpful tool, but the specific characteristics of the stages
require different fine-tuning of multiple tests for the respective purposes. In Part III,
we investigate several other application areas from the life sciences. This collection

http://dx.doi.org/10.1007/978-1-4614-9602-1_2
http://dx.doi.org/10.1007/978-1-4614-9602-1_3
http://dx.doi.org/10.1007/978-1-4614-9602-1_4
http://dx.doi.org/10.1007/978-1-4614-9602-1_5
http://dx.doi.org/10.1007/978-1-4614-9602-1_6
http://dx.doi.org/10.1007/978-1-4614-9602-1_7
http://dx.doi.org/10.1007/978-1-4614-9602-1_8
http://dx.doi.org/10.1007/978-1-4614-9602-1_9
http://dx.doi.org/10.1007/978-1-4614-9602-1_10
http://dx.doi.org/10.1007/978-1-4614-9602-1_11


12 1 The Problem of Simultaneous Inference

is neither meant to be exhaustive nor representative, but is merely due to the author’s
experience in applications.

This work is addressed to mathematical statisticians and practitioners from the
life sciences. Therefore, we will precisely state and, where appropriate, prove the
general results in Part I. Nevertheless, we also explain all main results and techniques
in verbal form, such that practitioners who do not want to study the mathematics in
all detail can follow the exposition. However, we have to assume that the reader has
basic knowledge in statistical test theory. In particular, she should be familiar with
the concepts of type I and type II errors, significance level, power, Neyman-Pearson
tests and likelihood ratio tests.

Acknowledgments Some parts of this chapter were inspired by material from unpublished lecture
notes by Helmut Finner and Iris Pigeot. I thank Klaus Straßburger for many fruitful discussions,
especially about simultaneous confidence regions. Special thanks are due to Mareile Große Ruse
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General Theory



Chapter 2
Some Theory of p-values

Abstract Many multiple test procedures are formalized and carried out in practice
by means of p-values. In this chapter, we formally introduce the notion of a p-value
and its usage for testing a statistical hypothesis. Methods for computing p-values
are discussed with respect to tests of Neyman-Pearson type and for discrete statisti-
cal models. In the context of testing multiple hypotheses, we introduce the concept
of local significance levels. Randomized p-values are discussed for situations with
multiple composite hypotheses and for discretely distributed test statistics. Some
p-value models commonly used in multiple testing literature are explained. In
view of stepwise rejective multiple test procedures, properties of order statistics of
p-values are discussed for some of these models.

Many (stepwise) multiple tests are formalized and carried out by means of p-values
corresponding to (marginal) test statistics. In the statistical literature, there exists an
overwhelming debate whether p-values are suitable decision tools, cf. the references
in Sect. 3.11 of Lehmann and Romano (2005). In this work, we pragmatically regard
a p-value as a deterministic transformation of a test statistic which is particularly
useful for multiple testing, because it provides a standardization. Every p-value is
supported on the unit interval [0, 1], even if test statistics have drastically different
scales.

Definition 2.1 (p-value). Let (X ,F , (Pα)α∈σ) a statistical model and ϑ a (one-
dimensional) non-randomized test for the single pair of hypotheses ≤ →= H ≡ σ

versus K = σ\H . Assume thatϑ is based on a real-valued test statistic T : X ∀ R.
More specifically, let ϑ be characterized by rejection regions Θϕ ≡ R for any given
significance level ϕ ∈ (0, 1), such that ϑ(x) = 1 ∗∨ T (x) ∈ Θϕ for x ∈ X . Then,
we define the p-value of an observation x ∈ X with respect to ϑ by

pϑ(x) = inf{ϕ:T (x)∈Θϕ}P
∓(T (X) ∈ Θϕ),

T. Dickhaus, Simultaneous Statistical Inference, 17
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© Springer-Verlag Berlin Heidelberg 2014

http://dx.doi.org/10.1007/978-3-642-45182-9_3


18 2 Some Theory of p-values

where the probability measure P∓ is chosen such that

P
∓(T (X) ∈ Θϕ) = sup

α∈H
Pα(T (X) ∈ Θϕ),

if H is a composite null hypothesis.

Remark 2.1.

(i) If H contains only one single element α0 (H is a simple hypothesis) and if
PH ∝ Pα0 is continuous, it (typically) holds

pϑ(x) = inf{ϕ : T (x) ∈ Θϕ}.

(ii) In view of (3.3) in Lehmann and Romano (2005), we may regard the p-value
as the “observed size” of ϑ.

(iii) Let ε denote the domain of X . The mapping pϑ(X) : ε ∀ [0, 1], Φ ∩∀
pϑ(X (Φ)), can be regarded as a random variable (under measurability assump-
tions). Often, there is no clear-cut distinction between the value pϑ(x) ∈ [0, 1]
and the random variable pϑ(X). We will try to be as precise as possible with
respect to this.

Definition 2.2. Under the assumptions of Definition 2.1, let the test statistic T fulfill
the monotonicity condition

∅α0 ∈ H : ∅α1 ∈ K : ∅c ∈ R : Pα0(T (X) > c) ≤ Pα1(T (X) > c). (2.1)

Then, we call ϑ a test of (generalized) Neyman-Pearson type, if for all ϕ ∈ (0, 1)
there exists a constant cϕ , such that

ϑ(x) =
{
1, T (x) > cϕ,

0, T (x) ≤ cϕ.

In practice, the constants cϕ are determined via cϕ = inf{c ∈ R : P
∓(T (X) >

c) ≤ ϕ} with P
∓ as in Definition 2.1 (“at the boundary of the null hypothesis”). If

H is simple and PH continuous, we obtain cϕ = F−1
T (1− ϕ), where FT denotes the

cdf. of T (X) under H .

Lemma 2.1. Let ϑ a test of Neyman-Pearson type and assume that P∓ does not
depend on ϕ. Then it holds

pϑ(x) = P
∓(T (X) ⊆ t∓) with t∓ = T (x).

Proof. The rejection regions Θϕ = (cϕ,∃) are nested. Therefore, inf{ϕ : T (x) ∈
Θϕ} is attained in [t∓,∃). The assertion follows from Definition 2.1. ⊂⊃
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If H is simple, PH continuous, and ϑ of Neyman-Pearson type, Lemma 2.1 yields
pϑ(x) = 1 − FT (t∓), with FT as in Definition 2.2.

Theorem 2.1 (p-values as decision tools). Let ϕ ∈ (0, 1) a fixed given
significance level and assume that P∓ is continuous. Then we have the duality

ϑ(x) = 1 ∗∨ pϑ(x) < ϕ.

Proof. We restrict the proof to the case of tests of Neyman-Pearson type. The map-
ping t ∩∀ P

∓(T (X) > t) is decreasing in t . Moreover, due to the construction of cϕ

(see Definition 2.2), we must have P
∓(T (X) > cϕ) ≤ ϕ and P

∓(T (X) > c) > ϕ

for all c < cϕ . Altogether, this entails that pϑ(x) < ϕ is equivalent to t∓ > cϕ . The
latter event characterizes rejection of H according to Definition 2.2. ⊂⊃
Remark 2.2.

(i) The advantage of p-values for testing is that they can be computedwithout prior
specification of a significance levelϕ. This iswhy all common statistics software
systems implement statistical tests via the computation of p-values. However,
for the purpose of decision making, pre-specification of ϕ is inevitable.

(ii) The p-value gives an answer to the question “How probable are the observed
data, given that the null hypothesis is true?”. However, it does not answer the
question “Howprobable is the validity of the null hypothesis, given the observed
data?”.

(iii) For some applications, it is more useful to consider isotone transformations of
test statistics rather than antitone ones. Therefore,we remark here that 1−pϑ(X)

is in the cases that are relevant for our work equal to the distributional transform
of T (X) as defined by Rüschendorf (2009). We will adopt this terminology in
the remainder of this work.

Theorem 2.2. Under the assumptions of Definition 2.1, assume that H is simple,
PH is continuous and ϑ is a test of Neyman-Pearson type. Then it follows

pϑ(X) ∼
H

UNI[0, 1].

Proof. The assertion is a consequence of the principle of quantile transformation.
Making use of Lemma 2.1, we easily calculate

PH (pϑ(X) ≤ t) = PH (1 − FT (T (X)) ≤ t)

= PH (FT (T (X)) ⊆ 1 − t)

= P(U ⊆ 1 − t) = 1 − P(U ≤ 1 − t)

= 1 − (1 − t) = t,

where U denotes a standard uniform variate. ⊂⊃
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Remark 2.3. In general, it holds that pϑ(X) is under H stochastically not smaller
than a standard uniform variate, i.e.,

∅α ∈ H : Pα(pϑ(X) ≤ t) ≤ t, t ∈ [0, 1]. (2.2)

Occasionally, p-values are even defined via property (2.2) in the literature, without
reference to test statistics or rejection regions at all; see, for instance, Definition
8.3.26 in the textbook by Casella and Berger (2002).

2.1 Randomized p-values

In Theorem 2.2, we assumed a simple null hypothesis H and that PH is continuous.
Hence, two potential sources of non-uniformity of p-values are discreteness of PH

and testing of composite null hypotheses. In this section, we demonstrate how ran-
domization techniques can be used to remove or at least to diminish the conservativity
that we have reported in (2.2) if the statistical model entails one of the aforemen-
tioned sources of non-uniformity of the p-values in the sense of Definition 2.1. As
we will point out later, this is important for multiple testing, especially because many
data-adaptivemultiple tests require exactly uniformly distributed p-values under null
hypotheses for a reasonable performance and fail to work properly if this assumption
is violated.

2.1.1 Randomized p-values in Discrete Models

Westartedwith non-randomized tests inDefinition 2.1. Especially in discretemodels,
this leads to p-values that are stochastically larger than UNI[0, 1]. To meet the
requirement of uniformity of the p-values under null hypotheses at least for the
case of testing point hypotheses, p-values can be slightly modified in analogy to
randomization of tests.

Definition 2.3 (Realized randomized p-value). Let a statistical model (X ,F ,

(Pα)α∈σ) be given. Consider the two-sided test problem H : {α = α0} versus
K : {α →= α0} and assume the decision is based on the realization x of a dis-
crete random variate X ∼ Pα with values in X . Moreover, let U denote a uni-
formly distributed random variable on [0, 1], stochastically independent of X . Then,
a realized randomized p-value for testing H versus K is a measurable mapping
prand. : X × [0, 1] ∀ [0, 1] fulfilling that

Pα0(prand.(X, U ) ≤ t) = t for all t ∈ [0, 1]. (2.3)
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The property (2.3) is an abstract mathematical requirement. For practical applica-
tions, the following theorem which is due to Klaus Straßburger makes the concept of
realized randomized p-values fully usable. The proof of Theorem 2.3 can be found
in Appendix II of Dickhaus et al. (2012).

Theorem 2.3. Let T : X ∀ R denote a statistic and let f : X ∀ R+ be
the pmf. of a discrete random variate X with values in X , such that f (x) > 0
for all x ∈ X . Moreover, let U denote a UNI[0, 1]—distributed variate which is
stochastically independent of X. Define

pT (x) =
∑

y:T (y)≤T (x)

f (y), W = {pT (x) : x ∈ X }, and

prand.T (x, u) = pT (x) − u
∑

y:T (y)=T (x)

f (y). (2.4)

Then it holds

P(pT (X) ≤ t) ≤ t, for all t ∈ [0, 1],
P(pT (X) ≤ t) = t, for all t ∈ W ,

P(prand.T (X, U ) ≤ t) = t, for all t ∈ [0, 1]. (2.5)

If realized randomized p-values are constructed according to (2.4), the relation-
ship between p-value and distributional transform given in part (iii) of Remark 2.2
remains to hold.

2.1.2 Randomized p-values for Testing Composite Null Hypotheses

Dickhaus (2013) proposed randomized p-values for testing composite null hypothe-
ses as follows.

Definition 2.4 (Dickhaus (2013)). Let pLFC be a p-value which is constructed as in
Definition 2.1 and let u denote the realization of a UNI[0, 1]—distributed random
variable U which is stochastically independent of X . Then, the randomized p-value
prand. is given by

prand.(x, u) = u1H (φ̂(x)) + G(pLFC(x))1K (φ̂(x)),

where φ : σ ∀ σ ≥ denotes a one-dimensional (possibly derived) parameter, φ̂ a
consistent and (at least asymptotically for large sample sizes) unbiased estimator of
φ , and G the conditional cdf of pLFC(X) given φ̂ ∈ K under the (or: any) LFC for the
type I error probability of the test ϑ of H ≡ σ ≥ versus K = H \ σ ≥ corresponding
to pLFC.
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At least for one-sided tests ofmeans inGaussianmodels, Dickhaus (2013) showed
that these p-values are valid and under null hypotheses stochastically not larger
than the traditional, LFC-based ones. Alternative methods for multiple testing of
composite null hypotheses are reviewed in the introduction of Dickhaus (2013).

2.2 p-value Models

In the context of multiple test problems, (marginal) p-values p1, . . . , pm can be
computed for every individual pair of hypotheses Hi versus Ki , if marginal mod-
els can, at least under null hypotheses, be specified exactly (which is often a hard
requirement). A broad class of multiple tests depend on the data only via p1, . . . , pm

and combine them in a suitable way in order to control errors, based on probabilistic
calculations. Hence, for the mathematical analysis of such multiple tests, it suffices
to model the distribution of the vector (p1(X), . . . , pm(X))∞ of (random) p-values
and to consider statistical models of the form ([0, 1]m,B([0, 1]m), (Pα : α ∈ σ)).
Especially in high-dimensional settings, often only qualitative assumptions on the
joint distribution of p1, . . . , pm (regarded as random variables) are made which lead
to a variety of standard p-value models which are frequently considered in multiple
hypotheses testing.

2.2.1 The iid.-Uniform Model

If one can assume that all m p-values p1, . . . , pm are stochastically independent
and that the marginal test problems Hi versus Ki , 1 ≤ i ≤ m, are such that
Theorem 2.2 applies for all of them, then the joint distribution of p1(X), . . . , pm(X)

under the global hypothesis H0 is fully specified, because under these assump-
tions p1(X), . . . , pm(X) are under H0 distributed as a vector (U1, . . . , Um)∞ of
m stochastically independent, identically UNI[0, 1]—distributed random variables.
Moreover, if only (without loss of generality) hypotheses H1, . . . , Hm0 are true
for some m0 = m0(α) ∈ {1, . . . , m}, then p1(X), . . . , pm0(X) are distributed as
(U1, . . . , Um0)

∞. We call this p-value model the iid.-uniform model.
For certain classes of multiple test procedures, the iid.-uniform model already

implies the distribution of Vm and hence suffices to calibrate such multiple tests with
respect to FWER control. To illustrate this, assume that themultiple test ϑ is such that
those hypotheses are rejected for which the corresponding p-value is smaller than
some given threshold ϕloc. ∈ (0, 1). We call ϕloc. a local significance level and such
multiple test procedures single-step tests, cf. Sect. 3.1.1. Then, assuming the iid.-
uniform model for p1(X), . . . , pm(X), Vm is under α ∈ σ binomially distributed
with parameters m0(α) and ϕloc.. This leads to the following expression for the
FWER of ϑ under α .

http://dx.doi.org/10.1007/978-3-642-45182-9_3
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FWERα(ϑ) = Pα(Vm > 0) = 1 − Pα(Vm = 0) = 1 − (1 − ϕloc.)
m0 . (2.6)

Obviously, the right-hand side of (2.6) is increasing in m0. Therefore, under the
iid.-uniform model, the FWER of a single-step test ϑ becomes largest for such α for
which I0(α) = I = {1, . . . , m}. In other words, all α ∈ H0 are least favorable for
the FWER of ϑ under the iid.-uniformmodel. This allows for a precise calibration of
ϕloc. for strong FWER control (which is equivalent to weak FWER control here). The
resulting single-step test is known as Šidák test and will be presented in Example 3.2.
Since the full joint distribution of (pi (X) : i ∈ I0(α)) is completely specified in the
iid.-uniformmodel, also the joint and the marginal distributions of the order statistics
of the latter sub-vector of p-values can be derived and expressed in closed form.These
distributions are important for calibrating step-up-down multiple test procedures.
Such multiple tests reject hypotheses whose p-values are below a threshold which is
determined data-dependently by the value of an order statistic of (pi (X) : 1 ≤ i ≤
m), see Sect. 3.1.2. Let us briefly recall the following facts.

Lemma 2.2. Let Y1, . . . , Ym denote stochastically independent, identically distrib-
uted random variables driven by the probability measureP, with cdf. F of Y1. Assume
that PY1 is absolutely continuous with respect to the Lebesgue measure λ and denote
the order statistics of (Y1, . . . , Ym)∞ by (Y1:m, . . . , Ym:m)∞. Then the following asser-
tions hold true.

P(Yi :m ≤ y) =
m∑

j=i

(
m

j

)

F(y) j (1 − F(y))m− j ,

dPYi :m

dPY1
(y) = m

(
m − 1

i − 1

)

F(y)i−1(1 − F(y))m−i .

If P
Y1 has Lebesgue density f , then P

Yi :m has Lebesgue density fi :m, given by

fi :m(y) = m

(
m − 1

i − 1

)

F(y)i−1(1 − F(y))m−i f (y). (2.7)

Letting μ = P
Y1 , (Yi :m)1≤i≤m has joint μm-density

(y1, . . . , ym) ∩∀ m!1{y1<y2<···<ym }.

If μ has Lebesgue density f , then (Yi :m)1≤i≤m has λm-density

(y1, . . . , ym) ∩∀ m!
m∏

i=1

f (yi )1{y1<y2<···<ym }.

Remark 2.4. Considering iid. UNI[0, 1]—distributed random variablesU1, . . . , Um

in Lemma 2.2, Eq. (2.7) shows that the order statistic Ui :m has a Beta(i, m − i + 1)
distribution with

http://dx.doi.org/10.1007/978-3-642-45182-9_3
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E[Ui :m] = i

m + 1
, Var(Ui :m) = i(m − i + 1)

(m + 1)2(m + 2)
.

For computing the joint cumulative distribution function of (U1:m, . . . , Um:m), effi-
cient recursive algorithms exist, for instance Bolshev’s recursion and Steck’s recur-
sion (see Shorack and Wellner (1986), p. 362 ff.).

Lemma 2.2 can be used to calibrate a step-up-down multiple test procedure ϑ for
weak FWER control under the assumption of an iid.-uniform model for the p-values
p1(X), . . . , pm(X). However, if α →∈ H0, the FWER of ϑ typically depends on the
distribution of (p j (X) : j ∈ I1(α)), too. The same holds true for the FDR of ϑ,
because the distribution of Rm certainly relies on that of (p j (X) : j ∈ I1(α)). This
shows that some assumptions on the p-value distribution under alternatives are also
needed to study the behavior of multiple tests operating on p-values, even for the
sole purpose of type I error rate control according to Definition 1.2. A generalization
of Steck’s recursion to two populations has been derived by Blanchard et al. (2014).
This generalization can for instance be used for calibrating multiple tests for FDR
control if a fixed alternative p-value distribution is assumed and all m p-values are
stochastically independent.

2.2.2 Dirac-Uniform Configurations

It seems that the term “Dirac-uniform configuration” was used for the first time by
Finner and Roters (2001). A Dirac-uniform configuration is characterized by three
distributional assumptions regarding the joint distribution of (p1, . . . , pm).

Definition 2.5 (Dirac-uniform configuration). The value of the parameter α is
called a Dirac-uniform configuration if the following three distributional properties
hold.

1. Allm0 marginal p-values corresponding to true null hypotheses are stochastically
independent and identically distributed as UNI[0, 1].

2. The random vector (pi (X) : i ∈ I0(α)) is stochastically independent of the
random vector (p j (X) : j ∈ I1(α)).

3. For all j ∈ I1, p j (X) follows a Dirac distribution with point mass 1 in zero,
meaning that p j is almost surely equal to zero.

Of course, in practice it is unrealistic to assume that effect sizes are so large that
p-values are almost surely equal to zero under alternatives. Therefore, Dirac-uniform
configurations are not useful for modeling real-life data. This is why we do not term
them “models”. They are technical devices for deriving upper bounds for the FWER
or the FDR of multiple testing procedures. For the mathematical analysis of multiple
tests under independence assumptions, Dirac-uniform configurations are important
tools, because they are, for fixed m0, often LFCs for the FWER and/or the FDR of
multiple tests if p-values are independent. In particular, if ϑ is a step-up-down test, its
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FWER and FDR typically become maximum if parameter values under alternatives
are extreme in the sense that p-values under alternatives are as small as possible.
As a consequence, control of the respective error rate by ϑ under Dirac-uniform
configurations (which are LFCs) entails that ϑ controls the error rate also under all
other (often more realistic) values of the parameter α of the model.

Furthermore, analytic calculations for the FWERand the FDRare very straightfor-
wardly possible under Dirac-uniform configurations, because it holds (almost surely)
that Rm = Vm + m1 for a stepwise rejective multiple test ϑ, if α is a Dirac-uniform
configuration. This is because the m1 null hypotheses with indices in I1 are almost
surely rejected by ϑ due to their p-values which are almost surely equal to zero.
Consequently, the joint distribution of Vm and Rm is already determined by that of
Vm which in turn can be expressed in terms of the joint distribution of order statistics
of m0 iid. UNI[0, 1]—distributed random variables, and the respective Bolshev’s or
Steck’s recursions suffice for the type I error calibration of ϑ. The latter reasoning
will play an important role in Chap.5 where we will provide more details.

2.2.3 Two-Class Mixture Models

In contrast to the models discussed before, two-class mixture models are often used
as models for real-life data. They still have a tractable structure.

Definition 2.6. The joint distribution of (p1, . . . , pm) is called a two-class mixture
model, if the following two properties hold.

1. All m0 p-values corresponding to true null hypotheses are marginally distributed
with cdf. F0, where F0 is stochastically lower-bounded by UNI[0, 1].

2. Allm1 p-values corresponding to false null hypotheses aremarginally distributed
with cdf. F1.

At a first glance, this model seems very restrictive, because all p-values under
null hypotheses share the same marginal distribution and the same holds true for all
p-values under alternatives. However, the following trick, mentioned for instance
by Genovese and Wasserman (2004) and Farcomeni (2007), considerably extends
the applicability of two-class mixture models: Even if it can not be assumed that
all pi (X) with i ∈ I1 share the same marginal distribution, we may at least assume
that their marginal cdfs all belong to a class {Fξ : ξ ∈ Ξ}. In addition, we may
be able to put a prior distribution ν on �. If these two requirements are fulfilled,
let F1 be defined by F1(t) = ∫

�
Fξ (t)ν(dξ). In an analogous manner, one can

proceed for constructing themarginal distribution function F0 under null hypotheses,
if the multiple test problem does not already imply a fixed marginal distribution of
p-values under null hypotheses, for instance UNI[0, 1]. However, let us mention
here that putting a prior on the parameter space under null hypotheses is problematic
from the classical (frequentist) viewpoint toward statistics.

http://dx.doi.org/10.1007/978-3-642-45182-9_5
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Notice that Definition 2.6 only specifies themarginal distributions of p-values. As
far as the dependency structure in two-class mixture models is concerned, one often
assumes weak dependency in the sense of Definition 5.2, meaning that the ecdfs of
(pi : i ∈ I0) and (p j : j ∈ I1) converge for m ∀ ∃ to F0 and F1, respectively, in
the Glivenko-Cantelli sense. This gives enough structure to the statistical model for
an asymptotic analysis of the behavior of multiple tests operating on such p-values.

2.2.4 Copula Models Under Fixed Margins

The followingwell-known theoremprovides a convenient way to separate themodels
for the marginal distributions of p1(X), . . . , pm(X) (which are, at least under null
hypotheses, often already implied by the test problems Hi versus Ki , 1 ≤ i ≤ m, see
Theorem 2.2) from a model regarding the dependency structure among the p-values.

Theorem 2.4 (Sklar (1959, 1996)). Let Y = (Y1, . . . , Ym)∞ denote a random vector
with values in R

m and with joint cdf FY and marginal cdfs FY1, . . . , FYm . Then there
exists a function C : [0, 1]m ∀ [0, 1], called the copula of Y , such that for all
y = (y1, . . . , ym)∞ ∈ R̄

m, it holds

FY (y) = C(FY1(y1), . . . , FYm (ym)).

If all m marginal cdfs are continuous, then the copula C is unique.

According to Theorem 2.4, the dependency structure among p1(X), . . . , pm(X)

can be modeled by modeling their copula. Furthermore, if Theorem 2.2 applies for
all marginal test problems Hi versus Ki , 1 ≤ i ≤ m, the copula of the p-values
coincides under the global hypothesis H0 with the cdf of p1(X), . . . , pm(X). The
latter fact is extremely useful for constructing simultaneous test procedures based
on p-values, cf. Sect. 4.4. In particular, parametric copula models can be used as
regularized models for the dependency structure of p1(X), . . . , pm(X), especially
in caseswherem is large such that the “curse of dimensionality” prohibitsmodeling or
reliably estimating the full joint distribution of the data or the p-values, respectively.
Regularization here means that the copula parameter is of low dimension. Of course,
in practice this will typically only yield an approximation of the true dependency
structure.

2.2.5 Further Joint Models

Assume that all marginal tests ϑi , 1 ≤ i ≤ m, for a given multiple test problem
(X ,F , (Pα)α∈σ,Hm) are of (generalized) Neyman-Pearson type in the sense of
Definition 2.2, with (marginal) test statistics T1, . . . , Tm . Then, in order to calibrate

http://dx.doi.org/10.1007/978-3-642-45182-9_4
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the multiple test ϑ by multivariate techniques, it is often convenient to consider the
joint distribution of T1, . . . , Tm directly. On the p-value scale, however, the resulting
adjustment for multiplicity of the overall significance level ϕ (for the FWER or the
FDR) is explicitly given, leading to a better interpretability of ϑ. Therefore, it may be
of interest to derive the joint distribution of the p-values p1, . . . , pm corresponding
to T1, . . . , Tm by transformation of measures. To give a specific example, assume
that X = (X1, . . . , Xm)∞ follows a multivariate normal distribution with mean μ =
(μ1, . . . , μm)∞ and covariance matrix Σ . For ease of exposition and without loss of
generality, assume that all diagonal elements of Σ are equal to one. Furthermore,
assume that the m null hypotheses Hi : {μi = 0} with two-sided alternatives Ki :
{μi →= 0} are of interest, 1 ≤ i ≤ m. Suitable test statistics are given by Ti = |Xi |,
1 ≤ i ≤ m. Following Lemma 2.1 and utilizing symmetry properties of the standard
normal law, the marginal p-values corresponding to the test statistics T1, . . . , Tm are
given by

pi (x) = 2(1 − Δ(Ti (x))), 1 ≤ i ≤ m, (2.8)

where Δ denotes the cdf. of the standard normal distribution.
Hence, if the calibration of ϑ results in a threshold cϕ for the Ti , then equivalently

ϑi rejects Hi if pi (x) < 2(1 − Δ(cϕ)) = ϕloc. (say). The value ϕloc. can thus be
regarded as a multiplicity-adjusted local significance level.

Under Hi , pi (X) is marginally UNI[0, 1]—distributed, see Theorem 2.2. More-
over, the joint cdf of (pi (X) : 1 ≤ i ≤ m) under μ and Σ is given by

u = (u1, . . . , um)∞ ∈ [0, 1]m ∩∀ P(μ,Σ)(pi (X) ≤ u1, . . . , pm(X) ≤ um)

= P(μ,Σ)(∅1 ≤ i ≤ m : Ti ⊆ Δ−1(1 − ui/2)).

The latter probability can easily be computed by employing numerical routines
for multivariate normal distributions, cf. Genz and Bretz (2009). Multiple tests for
Gaussian means play an important role in many practical applications, for instance
in the context of localized comparisons in analysis of variance models. Applications
in genetics are discussed in Chaps. 9 and 10.
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Chapter 3
Classes of Multiple Test Procedures

Abstract The aim of this chapter is a systematic overview of different classes
of multiple tests. Procedures are distinguished by their structure, by the degree of
detail of the underlying statistical model and by the type of error control that they
provide. Major categories comprise margin-based multiple tests, multivariate multi-
ple test procedures and closed test procedures. Subcategories are introduced where
appropriate.We discuss specific examples and indicate computer implementations by
means of flow diagrams and pseudo-code. Applications and references to later chap-
ters illustrate which kind of multiple test procedure can be utilized for some standard
types of multiple test problems which are relevant in practice. Precise references to
the literature are collected for a deeper study of specific methods.

Although the literature on multiple test procedures (MTPs) is nowadays exponen-
tially increasing over time, it is still possible to systematize the proposed methods
according to some general categories. For instance, one class ofmethods onlymodels
the marginal distributions of the involved test statistics explicitly and combines these
test statistics or, equivalently, corresponding p-values following probabilistic calcu-
lations. We call resulting procedures margin-based multiple test procedures. Differ-
ent margin-basedMTPs employ different qualitative assumptions on the dependency
structure between test statistics or p-values, cf. our Chap.2. Examples of this kind
of procedures are discussed in Sect. 3.1.

Another class of MTPs considers the full joint distribution of all test statistics
and relies on calculating or approximating quantiles of this joint distribution, for
instance by resampling or by proving asymptotic normality by means of central limit
theorems.We term such procedures multivariate multiple test procedures and discuss
them in Sect. 3.2. A class of in a certain sense hybrid (neither purely margin-based
nor entirely multivariate) multiple test procedures, which are specifically tailored to
control the FWER in structured systems of hypotheses, is constituted by closed test
procedures, which we will treat in Sect. 3.3.

Further criteria to distinguish MTPs are their structure (single-step or stepwise
rejective), and the type of error control (k-FWER-controlling, FDR-controlling,
FDX-controlling, etc.) that theyprovide.Weexclude adistinctionbetween frequentist
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and Bayesian procedures here, because this work is not considered with Bayesian
approaches to multiple hypotheses testing. As far as frequentist procedures are con-
cerned, the aforementioned criteria in our opinion allow us to treat the majority of
the most popular MTPs up to present.

One type of procedures which do not fit in a clear-cut way into the categories
defined above is constituted by so-called augmentation procedures. Augmentation
procedures for control of the k-FWER, the FDR or the FDX work in two stages: In
the first stage, an FWER-controlling MTP is applied. In the second stage, a certain
number of hypotheses not rejected by the procedure employed in the first stage is
rejected additionally, whereby this number in general depends on the data and on
probabilistic bounds. Although augmentation procedures have attracted some atten-
tion recently, we do not cover them in the present work. References for augmentation
procedures include van der Laan et al. (2004; 2005), and Farcomeni (2009).

3.1 Margin-Based Multiple Test Procedures

The multiple tests discussed in this section only require that each marginal test αi

can be calibrated to keep a local significance level σloc. (say). The multiple test α =
(αi : 1 ∈ i ∈ m) is then built up from these marginal tests by adjusting σloc. for the
multiplicity of the problem. This adjustment may be given by an explicit “correction
formultiplicity” based on probabilistic considerations or in a data-dependentmanner,
for instance by defining σloc. by the value of an order statistic of marginal p-values
p1, . . . , pm .

3.1.1 Single-Step Procedures

Single-step multiple test procedures carry out each individual test αi , 1 ∈ i ∈ m, at
(local) significance level σloc., where σloc. is the result of a multiplicity correction of
σ. In view of Theorem 2.1, single-step multiple tests are extremely easy to carry out
in practice: Just calculate marginal p-values p1, . . . , pm and reject Hi if and only if
pi < σloc.. The choice of σloc. depends on qualitative assumptions regarding the joint
distribution of (p1, . . . , pm). Two classical procedures are the Bonferroni correction
(or Bonferroni test) and the Šidák correction (or Šidák test).

Example 3.1 (Bonferroni correction, cf. Bonferroni (1935; 1936)). The Bonferroni
correction is based on the union bound and consists in choosing σloc. = σ/m. It
provides strong control of the FWER without any assumptions on the dependency
structure among (p1, . . . , pm), because for a Bonferroni test α, it holds for all ϑ ≤ Θ

that
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FWERϑ(α) = Pϑ(
⋃

i≤I0(ϑ)

{αi = 1})

∈
∑

i≤I0(ϑ)

Pϑ({αi = 1})

∈ m0σ/m ∈ σ.

The inequality P(
⎛m

i=1 Ai ) ∈⎝m
i=1 P(Ai ) is referred to as Bonferroni inequality in

the multiple testing literature.

The disadvantage of Bonferroni tests is that σ/m is very small for large m. There-
fore, Bonferroni tests have low multiple power if m is large. If joint independence
of all m marginal p-values can be assumed, σloc. can be chosen slightly larger than
σ/m.

Example 3.2 (Šidák correction, cf. Šidák 1967). The Šidák correction consists in
choosing σloc. = 1 − (1 − σ)1/m . It provides strong control of the FWER if
(p1, . . . , pm) are jointly stochastically independent, because for a Šidák test α, it
then holds for all ϑ ≤ Θ that

FWERϑ(α) = Pϑ(
⋃

i≤I0(ϑ)

{αi = 1})

= 1 − Pϑ(
⋂

i≤I0(ϑ)

{αi = 0})

= 1 −
⎞

i≤I0(ϑ)

Pϑ({αi = 0})

∈ 1 −
⎞

i≤I0(ϑ)

(1 − σ)1/m

= 1 − (1 − σ)m0/m

∈ 1 − (1 − σ) = σ.

Asmentioned before, for allm ≤ N it holdsσ/m < 1−(1−σ)1/m , so that themore
restrictive model assumptions made for a Šidák test allow one to increase multiple
power uniformly. We may remark here that Šidák tests control the FWER under
certain forms of positive dependence among (p1, . . . , pm), too. More details are
provided inChap.4.Also asymptotically, it holdsm[1−(1−σ)1/m ] → − ln(1−σ) >

σ = mσ/m, m → ≡, for any σ ≤ (0, 1). However, also for the Šidák correction,
we have σloc. → 0, m → ≡.

In the particular context of testing linear contrasts in Gaussian models, Scheffé
(1953) obtained the following result.

Theorem 3.1 (Scheffé (1953)). Let k ∀ 3 and ni ∀ 2 for all 1 ∈ i ∈ k be
given integers and X = (Xi j : 1 ∈ i ∈ k, 1 ∈ j ∈ ni ). Assume that all Xi j

are stochastically independent and normally distributed, Xi j ∗ N (μi , ϕ
2), where

http://dx.doi.org/10.1007/978-3-642-45182-9_4
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μi ≤ R, 1 ∈ i ∈ k, and ϕ 2 > 0. For notational convenience, denote n. =⎝k
i=1 ni .

Consider the linear subspace

L =
⎠
⎨

⎩

q∑

j=1

h j a
( j)

⎫
⎬

⎭

of Rk of dimension q ∈ k, where h j ≤ R for all 1 ∈ j ∈ q and a(1), . . . , a(q) ≤ R
k

are linearly independent vectors. Then it holds for all μ ≤ R
k and for all ϕ 2 > 0

that

P(μ,ϕ 2)

(

∨c ≤ L : cT μ ≤
[

cT μ̂ ∓
√

qV̂ar(cT μ̂)Fq,n.−k;σ
])

= 1 − σ, (3.1)

where μ = (μ1, . . . , μk)
∝, μ̂ = (X1., . . . , Xk.)

T (vector of empirical group means),
and V̂ar(cT μ̂) = s2

⎝k
i=1(c

2
i /ni ), with s2 denoting the pooled unbiased estimator of

ϕ 2, and Fq,n.−k;σ the upper σ-quantile of Fisher’s F-distribution with q and n. − k
degrees of freedom.

Equation (3.1) yields a simultaneous 1−σ confidence region forall linear contrasts
of group means defined by L in the considered analysis of variance model. By
duality of tests and confidence regions (see Theorem 1.1), this also entails a multiple
single-step test for such contrasts.

3.1.2 Stepwise Rejective Multiple Tests

An interesting other class of multiple test procedures are stepwise rejective tests.
In contrast to single-step tests, here the hypotheses are ordered by a pre-defined
criterion and tested one after the other, where testing can stop at every step due to
the occurrence of a rejection or a non-rejection. This means that the test result for a
particular pair of hypotheses Hi versus Ki depends on the data not only directly via
the test statistic Ti or the p-value pi , but also indirectly via potentially all other test
statistics or p-values. The way the ordering among the hypotheses is defined leads
to different subtypes of stepwise rejective multiple tests.

3.1.2.1 Step-Up-Down Tests

Step-up-down tests, introduced by Tamhane et al. (1998), rely on an ordering of the
hypotheses H1, . . . , Hm which is induced by the order statistics of marginal p-values
p1, . . . , pm .
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Start

Reject . . . and STOP pκ:m ≤ ακ:m

yes no

Retain . . . and STOP

H1:m, . . . , Hκ:m pκ+ 1:m ≤ ακ+ 1:m
no

yes

pκ− 1:m ≤ ακ− 1:m
yes

no

Hκ:m, . . . , Hm:m

H1:m, . . . , Hκ+ 1:m pκ+ 2:m ≤ ακ+ 2:m
no

yes

pκ− 2:m ≤ ακ− 2:m
yes

no

Hκ− 1:m, . . . , Hm:m

...

yes

...

no

...

H1:m, . . . , Hκ+ − 1:m pκ+ :m ≤ ακ+ :m
no

yes

pκ− :m ≤ ακ− :m
yes

no

Hκ− + 1:m, . . . , Hm:m

...

yes

...

no

...

H1:m, . . . , Hm− 1:m pm:m ≤ αm:m
no

yes

p1:m ≤ α1:m
yes

no

H2:m, . . . , Hm:m

reject all Hi retain all Hi

Fig. 3.1 Decision rule of an SUD test. If ε = m (SU test) and pm:m ∈ σm:m , all m null hypotheses
are rejected. If ε = 1 (SD test) and p1:m > σ1:m , all m null hypotheses are retained

Definition 3.1 (Step-up-down test of order ε , cf. Finner et al. (2012)). Let
p1:m < p2:m < · · · < pm:m denote the ordered marginal p-values for a multiple
test problem. For a tuning parameter ε ≤ {1, . . . , m} a step-up-down (SUD) test
αε = (αε

1 , . . . , αε
m) of order ε based on some critical values σ1:m ∈ · · · ∈ σm:m

is defined as follows. If pε:m ∈ σε:m , set j∩ = max{ j ≤ {ε, . . . , m} : pi :m ∈
σi :m for all i ≤ {ε, . . . , j}}, whereas for pε:m > σε:m , put j∩ = sup{ j ≤
{1, . . . , ε − 1} : p j :m ∈ σ j :m} (sup∅ = −≡). Define αε

i = 1 if pi ∈ σ j∩:m
and αi = 0 otherwise (σ−≡:m = −≡).

A step-up-down test of order ε = 1 or ε = m, respectively, is called step-down
(SD) or step-up (SU) test, respectively. If all critical values are identical, we obtain
a single-step test.

Figure3.1 illustrates the decision rule of an SUD test schematically.
As we will discuss in Chap.5, many commonly used step-up-down tests are

margin-based and only employ qualitative assumptions regarding the joint distri-
bution of test statistics or p-values. For instance, this holds true for the multiple tests
byHolm (1979) (which are FWER-controlling step-down tests) and the famous linear
step-up test by Benjamini and Hochberg (1995) for FDR control. However, there are

http://dx.doi.org/10.1007/978-3-642-45182-9_5
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remarkable exceptions, especially shortcuts of closed test procedures, cf. Sect. 3.3.
The following obvious lemma can be used to compare different SUD tests which
keep the same type I error criterion.

Lemma 3.1. Consider two SUD testsα(1) andα(2) for the same multiple test problem
(X ,F , (Pϑ)ϑ≤Θ,Hm). Assume that one of the following properties holds true.

(a) The two tests α(1) and α(2) employ the same set of critical values and the tuning
parameter ε2 of α(2) is larger than the tuning parameter ε1 of α(1).

(b) The two tests α(1) and α(2) employ the same tuning parameter ε and the critical
values utilized in α(2) are index-wise not smaller than the ones utilized in α(1).

(c) Both tests α(1) and α(2) are single-step tests and the critical value utilized in
α(2) is larger than that utilized in α(1).

Then, for any realization of (p1, . . . , pm)∝, α(2) rejects all hypotheses that are
rejected by α(1), and possibly more.

Hence, under the constraint of type I error control of given type and at given level,
an optimal SUD test (with respect to multiple power, cf. Definition 1.4) is given
by choosing ε and σ1:m, . . . , σm:m as large as possible. For instance, SU tests have
higher (not smaller) multiple power than the corresponding SD tests (with the same
set of critical values). On the other hand, the same holds true for the comparison
with respect to the FWER. Let us mention that additional assumptions are required
in order that more rejections entail larger FDR, cf. Theorem 5.7.

Notice that we implicitly used part (c) of Lemma 3.1 for the comparison of
Bonferroni tests and Šidák tests. In Chap.5, Lemma 3.1 will be used for discussing
relationships between the dependency structure among p1, . . . , pm and the choice
of tuning parameters and critical values for SUD tests.

3.1.2.2 Fixed Sequence Multiple Tests

Similarly to step-up-down tests, fixed sequencemultiple tests also rely on an ordering
of the hypotheses H1, . . . , Hm . However, the ordering is now not data-dependently
given by the ordering of p-values or test statistics, but is pre-defined before testing
starts, for instance by weighting the hypotheses for importance. With respect to
control of the FWER, the following fixed sequence procedure is widely used.

Theorem 3.2. Let (X ,F ,P,H ) withH = (Hi : 1 ∈ i ∈ m) denote a multiple
test problem and assume that valid marginal p-values p1, . . . , pm are at hand. Let
σ ≤ (0, 1) be a given constant and consider the multiple test α defined by the
following rule: Reject exactly hypotheses H1, . . . , Hk∩ , where

k∩ = max{1 ∈ i ∈ m : p j ∈ σ for all j = 1, . . . , i}.

If k∩ does not exist, retain allm null hypotheses. Then, α strongly controls the FWER
at level σ.

http://dx.doi.org/10.1007/978-3-642-45182-9_5
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Proof. First, consider the case m = 2. We have to distinguish four cases.

1. If both H1 and H2 are false, no type I error can occur, hence FWERϑ(α) = 0 for
such ϑ .

2. If only H1 is true, FWERϑ(α) = Pϑ(p1(X) ∈ σ) ∈ σ.
3. If only H2 is true, FWERϑ(α) = Pϑ({p1(X) ∈ σ} ∩ {p2(X) ∈ σ}) ∈

Pϑ(p2(X) ∈ σ) ∈ σ.
4. If both H1 and H2 are true, FWERϑ(α) = Pϑ(p1(X) ∈ σ) ∈ σ.

It is easy to check that the latter reasoning remains to hold true for m > 2. �

The obvious drawback of the multiple test α from Theorem 3.2 is that, once a
particular hypothesis cannot be rejected, the remaining not yet rejected hypotheses
have to be retained without being tested explicitly.Wiens (2003) developed a method
based on a Bonferroni-type adjustment of σ that allows for continuing testing after
potential non-rejections. Other related testing strategies for fixed sequences of (pre-
ordered) hypotheses ensuring strict FWER control have been discussed by Westfall
and Krishen (2001) and Bauer et al. (1998), among many others. Such methods are
particularly important for clinical trials with multiple endpoints.

3.1.3 Data-Adaptive Procedures

From the calculations in Examples 3.1 and 3.2, it follows that the realized k-FWER
of the investigated margin-based multiple tests crucially depends on the proportion
Φ0 = m0/m of true null hypotheses. In Chap.5, wewill show that the same holds true
for the realized FDR of many classical step-up-down tests. Data-adaptive procedures
aim at adapting to the unknown quantity Φ0 in order to exhaust the type I error level
better and, consequently, increase multiple power of standard procedures. Explicitly
adaptive (plug-in) procedures employ an estimate Φ̂0 and plug Φ̂0 into critical values,
typically replacing m by m · Φ̂0. In view of Definition 1.4 and Lemma 3.1, this
increases multiple power at least on parameter subspaces on which Pϑ(Φ̂0 < 1) is
large.

Maybe, the still most popular though, as well, the most ancient estimation tech-
nique for Φ0 is the one of Schweder and Spjøtvoll (1982). It relies on a tuning
parameter φ ≤ [0, 1). Denoting the empirical cumulative distribution function (ecdf)
of m marginal p-values by F̂m , the proposed estimator from Schweder and Spjøtvoll
(1982) can be written as

Φ̂0 ⊆ Φ̂0(φ) = 1 − F̂m(φ)

1 − φ
. (3.2)

Among others, Storey et al. (2004), Langaas et al. (2005), Finner and Gontscharuk
(2009), Dickhaus et al. (2012) and Dickhaus (2013) have investigated theoretical
properties of Φ̂0 and slightly modified versions of this estimator. There exist several
possible heuristic motivations for the usage of Φ̂0. The simplest one considers a

http://dx.doi.org/10.1007/978-3-642-45182-9_5
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(a)

1λ

F̂m(λ )
1− F̂m(λ ) π̂0(λ )

(b)

λ 1

1

π̂1

π̂1(λ ) = 1− π̂0(λ )

= F̂m(λ )− λ
1− λ

Fig. 3.2 Two graphical representations of the Schweder-Spjøtvoll estimator Φ̂0(φ)

histogram of the marginal p-values with exactly two bins, namely [0, φ] and (φ, 1].
Then, the height of the bin associated with (φ, 1] equals Φ̂0(φ), see graph (a) in
Fig. 3.2. A graphical algorithm for computing Φ̂0 connects the point (φ, F̂m(φ)) with
the point (1, 1). The offset of the resulting straight line at t = 0 equals Φ̂1 = Φ̂1(φ) =
1 − Φ̂0(φ), see graph (b) in Fig. 3.2.

The following lemma is due to Dickhaus et al. (2012), see Lemma 1 in their paper.

Lemma 3.2. Whenever (p1, . . . , pm) are valid p-values, i.e., marginally stochasti-
cally not smaller than UNI[0, 1] under null hypotheses, the value of Φ̂0 is a conser-
vative estimate of Φ0, meaning that Φ̂0 has a non-negative bias. More specifically, it
holds

Eϑ [Φ̂0(φ)] − Φ0 ∀ 1

m(1 − φ)

∑

i≤I1

Pϑ(pi > φ) ∀ 0.

Thedata-adaptiveBonferroni plug-in (BPI) test byFinner andGontscharuk (2009)
replaces m by m · Φ̂0 in the Bonferroni-corrected threshold for marginal p-values
and the asymptotic version of the data-adaptive multiple test procedure by Storey
et al. (2004) (STS test) replaces m by m · Φ̂0 in Simes’ critical values, cf. Sect. 5.3.

http://dx.doi.org/10.1007/978-3-642-45182-9_5
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Another class of data-adaptive multiple tests is constituted by two-stage or
multistage adaptive procedures, see Benjamini and Hochberg (2000) or Benjamini et
al. (2006), for example. Suchmethods employ the number of rejections of a multiple
test applied in the first stage in an estimator for m0. This estimator is then used to
calibrate the second stage test which leads to the actual decisions, where this prin-
ciple may be applied iteratively. A third of class of methods is given by implicitly
adaptive procedures. Here, the idea is to find critical values that automatically (for
as many values of Φ0 as possible) lead to full exhaustion of the type I error level. To
this end, worst-case situations (i.e., LFCs) build the basis for the respective calcu-
lations. We will present some of such implicitly adaptive multiple tests in Sect. 5.5.
Further estimation techniques for Φ0 have also been proposed in the multiple testing
literature. We defer the reader to the introduction in Finner and Gontscharuk (2009)
for an overview.

3.2 Multivariate Multiple Test Procedures

The basic idea behind multivariate multiple test procedures is to incorporate the
dependency structure of the data explicitly into the multiple test and thereby opti-
mizing its power. The general reason why this is often possible is that margin-based
procedureswhich control a specificmultiple type I error rate have to provide thismul-
tiple type I error control generically over a potentially very large family of dependency
structures. Hence, if it is possible to derive or to approximate the particular depen-
dency structure for the data-generating distribution at hand, this information may be
helpful to fine-tune a multiple test for this specific case. This is particularly impor-
tant for applications from modern life sciences, because the data there are often
spatially, temporally, or spatio-temporally correlated as we will demonstrate in later
chapters. Three alternative ways to approximate dependency structures are resam-
pling (Sect. 3.2.1), proving asymptotic normality by means of central limit theorems
(Sect. 3.2.2), and fitting copula models (Sect. 3.2.3).

3.2.1 Resampling-Based Methods

It is fair to say that the basic reference for resampling-basedFWERcontrol is the book
byWestfall and Young (1993), who introduced simultaneous and step-downmultiple
tests based on resampling under the assumption of subset pivotality (see Definition
4.3, basicallymeaning that the joint distribution of test statistics corresponding to true
null hypotheses does not depend on the distribution of the remaining test statistics
such that resampling under the global hypothesis H0 is not only providing weak, but
also strongFWERcontrol). This assumption has been criticized as too restrictive such
that (among others) Troendle (1995) and Romano and Wolf (2005a, b) generalized
the methods of Westfall and Young (1993) to dispense with subset pivotality.

http://dx.doi.org/10.1007/978-3-642-45182-9_5
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FDR-controlling (asymptotic) multiple tests based on resampling have been
derived by Yekutieli and Benjamini (1999), Troendle (2000), and Romano et al.
(2008). The resampling methods developed by Dudoit and van der Laan (2008)
(see also the references therein) provide a general framework for controlling a vari-
ety of error rates (some of which we have introduced in Definitions 1.2 and 1.3),
with particular emphasis on applications in genetics. While resampling often only
asymptotically (for the sample size n tending to infinity) reproduces the true data
distribution, Arlot et al. (2010) provide an in-depth study of resampling methods that
control the FWER strictly for finite n.

3.2.2 Methods Based on Central Limit Theorems

Asymptotic normality of moment and maximum likelihood estimators are classi-
cal results in mathematical statistics, see, for instance, Chap.12 by Lehmann and
Romano (2005) or Chap.5 by Van der Vaart (1998). We will discuss the special cases
of multiple linear regression models and of generalized linear models in Chap. 4. If
the vector T of test statistics for a given multiple test problem is (a transforma-
tion of) such an asymptotically normal point estimator, the asymptotic distribution
of T can be derived and utilized for calibrating the multiple test. This has been
demonstrated, for instance, by Hothorn et al. (2008) and Bretz et al. (2010) in gen-
eral parametric models. For particular applications in genetic association studies (cf.
Chap. 9), central limit theorems for multinomial distributions, together with positive
dependency properties of multivariate chi-square distributions, have been exploited
by Moskvina and Schmidt (2008) and Dickhaus and Stange (2013) (see also the
references therein).

3.2.3 Copula-Based Methods

As discussed in Chap. 2, p-values are under certain assumptions uniformly distrib-
uted on [0, 1] under null hypotheses. In particular, this holds true in many models
which are typically used in life science applications. One example is the problem
of multiple testing for differential gene expression, see Chap.10. Hence, according
to Theorem 2.4, in such cases it suffices to estimate the (often unknown) copula
of p1(X), . . . , pm(X) in order to calibrate a multivariate multiple test procedure
operating on these p-values. In particular, parametric copula models are convenient,
because the dependency structure can in such models be condensed into a low-
dimensional copula parameter. A flexible class of copula models is constituted by
the family of Archimedean copulae.

Definition 3.2 (Archimedean copula). The joint distribution of the random vector
(pi (X) : 1 ∈ i ∈ m) under ϑ ≤ Θ is given by an Archimedean copula with copula
generator λ , if for all (t1, . . . , tm)∝ ≤ [0, 1]m ,

http://dx.doi.org/10.1007/978-3-642-45182-9_12
http://dx.doi.org/10.1007/978-3-642-45182-9_5
http://dx.doi.org/10.1007/978-3-642-45182-9_4
http://dx.doi.org/10.1007/978-3-642-45182-9_9
http://dx.doi.org/10.1007/978-3-642-45182-9_2
http://dx.doi.org/10.1007/978-3-642-45182-9_10
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Pϑ,λ(p1(X) ∈ t1, . . . , pm(X) ∈ tm) = λ

(
m∑

i=1

λ−1 (Fpi (X)(ti )
)
)

, (3.3)

where Fpi (X) denotes the marginal cdf of pi (X) under ϑ ≤ Θ .

Dickhaus andGierl (2013) demonstrated the usage ofArchimedean copulamodels
for FWER control, while Bodnar andDickhaus (2013) are considered with FDR con-
trol underArchimedean p-value copulae. If the generatorλ only depends on a copula
parameter ξ (say), standard parametric estimation approaches can be employed to
estimate ξ. Two plausible estimation strategies are the maximum likelihood method
(see, e. g., Hofert et al. (2012)) or the method of moments (referred to as “real-
ized copula” method by Fengler and Okhrin (2012)). For the latter approach, the
“inversion formulas” provided in the following lemma are helpful.

Lemma 3.3. Let X and Y two real-valued random variables with marginal cdfs FX

and FY and bivariate copula Cξ, depending on a copula parameter ξ. Let ϕX,Y ,
ΞX,Y and νX,Y denote (the population versions of) the covariance, Spearman’s rank
correlation coefficient and Kendall’s tau, respectively, of X and Y . Then it holds:

ϕX,Y = f1(ξ) =
∫

R2

[
Cξ{FX (x), FY (y)} − FX (x)FY (y)

]
dx dy, (3.4)

ΞX,Y = f2(ξ) = 12
∫

[0,1]2
Cξ(u, v) du dv − 3, (3.5)

νX,Y = f3(ξ) = 4
∫

[0,1]2
Cξ(u, v) dCξ(u, v) − 1. (3.6)

Proof. Equation (3.4) is due to Höffding (1940), Eq. (3.5) is Theorem 5.1.6. in
Nelsen (2006) and (3.6) is Theorem 5.1.3 in Nelsen (2006). �

The “realized copula” method for empirical calibration of a one-dimensional
parameter ξ of an m-variate copula essentially considers every of the m(m − 1)/2
pairs of the m underlying random variables X1, . . . , Xm , inverts (3.4) each time
with respect to ξ, replaces the population covariance by its empirical counterpart
and aggregates the resulting m(m − 1)/2 estimates in an appropriate way. More
specifically, Fengler and Okhrin (2012) define for 1 ∈ i < j ∈ m: gi j (ξ) =
ϕ̂i j − f1(ξ), set g(ξ) = (gi j (ξ))1∈i< j∈m , and propose to estimate

ξ̂ = argmin
ξ

g∝(ξ)Wg(ξ)

for an appropriate weight matrix W ≤ R(m
2)×(m

2). In this, ϕ̂i j denotes the empirical
covariance of Xi and X j . Indeed, any of the functions f�, � = 1, 2, 3 corresponding to
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relationships (3.4)–(3.6) may be employed in this realized copula method.Moreover,
they may be combined to estimate two- or three-dimensional copula parameters ξ.

In the particular context of estimating p-value copulae in multiple testing models,
it is infeasible to actually draw independent replications of the vector (pi (X) : 1 ∈
i ∈ m) from the target population, because this would essentially mean to carry out
the entire experiment several times. Hence, one typically employs resampling meth-
ods for estimating the dependency structure among the p-values, namely the para-
metric bootstrap or permutations if H1, . . . , Hm correspond to marginal two-sample
problems. Pollard and van der Laan (2004) compared both approaches and argued
that the permutation method reproduces the correct null distribution only under some
conditions. However, if these conditions are met, the permutation approach is often
superior to bootstrapping (see alsoWestfall andYoung (1993) andMeinshausen et al.
(2011)). Furthermore, it is important to notice that both bootstrap and permutation-
based methods estimate the joint distribution of (pi (X) : 1 ∈ i ∈ m) under the
global null hypothesis H0. Hence, the assumption that ξ is a nuisance parameter
which does not depend on ϑ is an essential prerequisite for the applicability of such
resampling methods for estimating ξ.

3.3 Closed Test Procedures

An important class of FWER-controlling multiple tests which do not exactly fall into
one of the categories “margin-based” and “multivariate” is constituted by closed test
procedures, introduced by Marcus et al. (1976).

Theorem 3.3. Let H = {Hi : i ≤ I } denote a ∩-closed system of hypotheses and
α = (αi : i ≤ I ) a coherentmultiple test for (X ,F ,P,H ) at local levelσ. Then,α
is a strongly FWER-controlling multiple test at FWER level σ for (X ,F ,P,H ).

Proof. Let ϑ ≤ Θ with I0(ϑ) ∃= ∅. SinceH is ∩-closed, there exists an i ≤ I with
Hi = ⋂ j≤I0(ϑ) Hj , and ϑ ≤ Hi . Hence, for all j ≤ I0(ϑ), we have Hj ⊂ Hi . Now,
coherence of α entails {αi = 1} ⊂⎛ j≤I0(ϑ){α j = 1}. We conclude that

FWERϑ(α) = Pϑ




⋃

j≤I0(ϑ)

{α j = 1}


 ∈ Pϑ({αi = 1}) ∈ σ,

because αi is a level σ test. �

Notice that there is no restriction at all regarding the explicit form of the local level
σ testsαi in Theorem 3.3. One is completely free in choosing these tests. The decisive
property of α, however, is coherence. Not all multiple tests fulfill this property in
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the first place. This leads to the closed test principle, a “general solution to multiple
testing problems” (Sonnemann (2008)).

Theorem 3.4 (Closure Principle, see Marcus et al. (1976), Sonnemann (2008)).
LetH = {Hi : i ≤ I } denote a ∩-closed system of hypotheses and α = (αi : i ≤ I )
an (arbitrary) multiple test for (X ,F ,P,H ) at local level σ. Then, we define the
closed multiple test procedure (closed test) ᾱ = (ᾱi : i ≤ I ) based on α by

∨i ≤ I : ᾱi (x) = min
j :Hj ⊃Hi

α j (x).

It holds:

(a) The closed test ᾱ strongly controls the FWER at level σ.
(b) For all ∅ ∃= I ∼ ≥ I , the “restricted” closed test ᾱ∼ = (ᾱi : i ≤ I ∼) is a strongly

(at level σ) FWER-controlling multiple test forH ∼ = {Hi : i ≤ I ∼}.
(c) Both tests ᾱ and ᾱ∼ are coherent.

Proof. The assertions follow immediately from the definitions of ᾱ and ᾱ∼ bymaking
use of Theorem 3.3. �

Remark 3.1.

(a) The closed test ᾱ based on α rejects a particular hypothesis Hi ≤ H if and
only if α rejects Hi and all hypotheses Hj ≤ H of which Hi is a superset
(implication).

(b) If H is not ∩-closed, then one can extend H by adding all missing intersec-
tion hypotheses, leading to the ∩-closed system of hypotheses H̄ . If there are
� elementary hypotheses in H , then H̄ can consist of up to 2� − 1 hypothe-
ses. However, as we will demonstrate by specific examples, it is typically not
necessary to test all elements in H̄ explicitly.

(c) Theorem 3.3 shows that under certain assumptions a multiple test at local level
σ is a strongly FWER-controlling multiple test at level σ. Of course, the reverse
statement is always true.

(d) If H is disjoint in the sense that ∨i, j ≤ I, i ∃= j : Hi ∩ Hj = ∅, and α is a
multiple test for (X ,F ,P,H ) at local level σ, then α automatically strongly
controls the FWER at level σ, because α is coherent and H is ∩-closed by the
respective definitions. Often, there exist many possibilities for partitioning Θ in
disjoint subsets, leading to the more general partitioning principle, see Finner
and Strassburger (2002).

(e) If I = Θ and Hϑ = {ϑ} for all ϑ ≤ Θ , and if α = (αϑ : ϑ ≤ Θ) is a multiple
test at local level σ, then α strongly controls the FWER at level σ.

A nice application of the closed test principle is the problem of directional or type
III errors, cf. Finner (1999) and references therein.

Example 3.3 (Two-sample t-test). Assume that we can observe X = (Xi j ) for
i = 1, 2 and j = 1, . . . , ni , that all Xi j are stochastically independent and
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”‘μ1 < μ2”’

)

”‘μ1 > μ2”’

(

. . . t

− tν ; α
2

− tν ;α 0 tν;α tν ; α
2

{ϕ̄ ≥= 1} {ϕ̄= = ϕ= = 0}

{ϕ ≥= 1} {ϕ≥= 0}

Fig. 3.3 Closed test for {H=, H∈, H∀} in the two-sample Gaussian model

Xi j ∗ N (μi , ϕ
2) with unknown variance ϕ 2 > 0. Consider the hypothesis

H= : {μ1 = μ2}. The two-sample t-test α= (say) for testing H= is based on the
test statistic

T (X) =
√

n1n2
n1 + n2

X̄1. − X̄2.

S
, where S2 = 1

Σ

2∑

i=1

ni∑

j=1

(Xi j − X̄i.)
2, Σ = n1 + n2 − 2,

and is given by

α=(x) =
⎠
⎨

⎩

1 >

|T (x)| tΣ;σ/2
0 ∈

⎫
⎬

⎭
,

where tΣ;σ/2 denotes the upperσ/2-quantile of Student’s t-distributionwith Σ degrees
of freedom. Let us restrict our attention to the case σ ≤ (0, 1/2). The problem of
directional or type III errors can be stated as follows. Assume that H= is rejected by
α=. Can one then infer that μ1 < μ2 (μ1 > μ2) if T (x) < −tΣ;σ/2 (T (x) > tΣ;σ/2)?
There is the possibility of an error of the third kind, namely, that μ1 < μ2 and
T (x) > tΣ;σ/2 (μ1 > μ2 and T (x) < −tΣ;σ/2). The formal mathematical solution
to this problem is given by the closed test principle. We add the two hypotheses
H∈ : {μ1 ∈ μ2} and H∀ : {μ1 ∀ μ2} and notice that H= = H∈ ∩ H∀. Level σ tests
for H∈ and H∀ are given by one-sided t-tests, say

α∈(x) =
⎠
⎨

⎩

1 >

T (x) tΣ;σ
0 ∈

⎫
⎬

⎭
, α∀(x) =

⎠
⎨

⎩

1 <

T (x) −tΣ;σ
0 ∀

⎫
⎬

⎭
.

We construct the closed test ᾱ = (ᾱ∈, ᾱ=, ᾱ∀), given by ᾱ= = α=, ᾱ∈ = α=α∈,
ᾱ∀ = α=α∀.

Due to the nestedness of the rejection regions of α∈ and ᾱ∈ (α∀ and ᾱ∀), see
Fig. 3.3, it follows from Theorem 3.4 that type III errors are automatically controlled
at level σ, hence, one-sided decisions after two-sided testing are allowed in this
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model. The argumentation further shows that this is generally true for likelihood
ratio test statistics, provided that the model implies an isotone likelihood ratio.

The presumably most intensively studied application of closed test procedures,
however, is the context of analysis of variance models, where linear contrasts
regarding the group-specific means are of interest. Since this field of application
has already deeply been studied in earlier books (Hochberg and Tamhane (1987),
Hsu (1996)), we abstain from covering it here. Closed test-related multiple testing
strategies for systems of hypotheses with a tree structure have been worked out by
Meinshausen (2008) and Goeman and Finos (2012); see also the references in these
papers. In the latter case, power can be gained by exploiting the logical restrictions
among the hypotheses which are given by the tree structure. This has some similar-
ities to the methods considered by Westfall and Tobias (2007).
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Chapter 4
Simultaneous Test Procedures

Abstract We are considered with simultaneous test procedures (STPs) in the sense
of Gabriel (1969). All marginal test statistics are compared with the same critical
value, which is calculated under the global null hypothesis. We provide sufficient
conditions for strong FWER control of STPs. Connections to multivariate analy-
sis are drawn by introducing three families of multivariate distributions which play
important roles in statistical models for multiple test problems. Models entailing
a multivariate central limit theorem for least squares or maximum likelihood esti-
mators, respectively, are investigated with respect to projection methods, leading to
STPs. Probability bounds are employed to formalize the concept of effective num-
bers of tests. We discuss copula-based approaches to the construction of STPs and
recall results from modern random field theory for constructing STPs by utilizing
the topological structure of the underlying sample space.

At least since Gabriel (1969), a broad class of single-step multiple tests, so-called
simultaneous test procedures (STPs), is established and systematically developed in
the statistical literature.

Definition 4.1 (Simultaneous test procedure, Gabriel (1969)). Consider the
(extended) multiple test problem (X ,F , (Pα)α∈σ,Hm+1) with Hm+1 = {Hi, i ∈
I≤ := {0, 1, . . . , m}}. Assume real-valued test statistics Ti, i ∈ I≤, which tend to
larger values under alternatives. Then we call

(a) the pair (Hm+1,T ) with T = {Ti : i ∈ I≤} a testing family.
(b) the multiple test ϑ = (ϑi : i ∈ I≤) a simultaneous test procedure, if

→0 ≡ i ≡ m : ϑi =
{
1, if Ti > cΘ,

0, if Ti ≡ cΘ,

where the critical value cΘ is determined such that →α ∈ H0 : Pα ({ϑ0 = 1}) =
Pα ({T0 > cΘ}) ≡ Θ.
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Typical choices for T0 are the sum-type statistic T sum
0 = ∑m

i=1 aiTi for non-
negative real constants ai, and the max-statistic Tmax

0 = max1≡i≡m Ti. In this work,
we will restrict our attention mainly to Tmax

0 . Notice that {Tmax
0 ≡ cΘ} = {→1 ≡ i ≡

m : Ti ≡ cΘ}. Hence, for determining the critical value cΘ with respect to FWER
control, we get for an STP ϑ based on Tmax

0 and for α≤ ∈ H0 that

FWERα≤(ϑ) = Pα≤(Vm > 0) = 1 − Pα≤(Vm = 0)

= 1 − Pα≤(→1 ≡ i ≡ m : Ti ≡ cΘ)

= 1 − F(T1,...,Tm)(cΘ, . . . , cΘ) (4.1)

= 1 − FT0(cΘ) = Pα≤ (T0 > cΘ) ,

whereF(T1,...,Tm) andFT0 denote the cdf. of (T1, . . . , Tm)∀ andT0, respectively, under
α≤. Equation (4.1) shows that cΘ can equivalently be defined as an equi-coordinate
(1 − Θ)-quantile of the joint distribution of the test statistics (Ti : 1 ≡ i ≡ m) under
the global hypothesis and thatwe can thus dispensewithTmax

0 in the sequel. Often, the
latter joint distribution is unique, even ifH0 is composite. By these considerations, the
theory of STPs is closely related to multivariate analysis. Therefore, we discuss three
families of multivariate probability distributions which are important for practical
applications in the next section.

Before doing so, we may briefly discuss justifications for calibrating cΘ under
the global hypothesis H0. Of course, this yields weak FWER control of ϑ. However,
often it also entails strong FWER control, namely, if the LFC for the STP ϑ is located
inH0. Several sufficient conditions for the latter have been discussed in the literature.

Definition 4.2.

(a) A testing family (H ,T ) is called monotone if for all i, j ∈ I≤ with Hi ∗ Hj

and for almost all x ∈ X , Ti(x) ∨ Tj(x).
(b) A testing family (H ,T ) is called joint if → J ∗ I : →α ∈ ⎛j∈J Hj the joint

distribution of {Tj : j ∈ J} is the same.
(c) A testing family (H ,T ) is called closed ifH is closed under intersection.

Remark 4.1. Monotonicity in the sense of Definition 4.2.(a) is fulfilled if all Ti,
i ∈ I≤, are likelihood ratio statistics.

Theorem 4.1 (Theorem 2 in Gabriel (1969)). Assume that (H ,T ) is a monotone
testing family and that ϑ = (ϑi : i ∈ I≤) is an STP for the multiple test problem
(X ,F ,P,H = {Hi, i ∈ I≤}) based on (H ,T ). If (H ,T ) is closed or joint,
then ϑ controls the FWER strongly at level Θ.

A slightly less restrictive distributional assumption than (H ,T ) being joint is
given by the subset pivotality condition which has been introduced and extensively
been made use of by Westfall and Young (1993) for resampling.

Definition 4.3 (Subset pivotality condition, cf. Westfall and Young (1993)). The
vector T = (T1, . . . , Tm)∀ is said to satisfy the subset pivotality condition (SPC), if
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→α ∈ ϕ : ∓ α≤ ∈ H0 : P
TI0(α)

α = P
TI0(α)

α≤ ,

where the subvector TI0(α) corresponds to the indices of true hypotheses inH under
α ∈ ϕ .

Lemma 4.1. Let (X ,F , (Pα)α∈ϕ,H ) be a multiple test problem with a simple
global hypothesis H0 = {α≤} (say). Let T = (T1, . . . , Tm)∀ fulfill the SPC. Then,
α≤ is the unique LFC for the STP ϑ induced by T, i. e.,

→α ∈ ϕ : FWERα(ϑ) ≡ FWERα≤(ϑ).

Consequently, ϑ strongly controls the FWER at level Θ.

Proof. Let α ∈ ϕ be an arbitrary parameter value with resulting index set of true
hypotheses I0 ∝ I0(α). Let OI0 = ⎛i∈I0(α){Ti ≡ cΘ} denote the event that none of
the true null hypotheses is falsely rejected by the STP ϑ.

Utilizing the SPC, we obtain

Pα(OI0) = Pα

⎝


⎞

i∈I0(α)

{Ti ≡ cΘ}
⎠

⎨ = Pα≤

⎝


⎞

i∈I0(α)

{Ti ≡ cΘ}
⎠

⎨ = Pα≤(OI0),

and, consequently,

FWERα(ϑ) = 1 − Pα(OI0) = 1 − Pα≤(OI0) = Pα≤

⎝


⎩

i∈I0(α)

{ϑi = 1}
⎠

⎨ .

From the fact that I0(α) ∗ I , we conclude

FWERα(ϑ) ≡ Pα≤

⎫
m⎩

i=1

{ϑi = 1}
⎬

= FWERα≤(ϑ) ≡ Θ,

completing the proof. ∩∅
As outlined before, if Lemma 4.1 applies, the critical value cΘ for the STP ϑ can

be determined as an equi-coordinate (1 − Θ)-quantile of the (joint) distribution PT
α≤

of T = (T1, . . . , Tm)∀ under the global hypothesis. Uniqueness of α≤ can often be
achieved by reparametrization. We will explain this by examples in Sect. 4.2.
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4.1 Three Important Families of Multivariate
Probability Distributions

As a matter of fact, simultaneous test procedures rely on results from multivariate
analysis, in particular on distribution theory on R

m. In this section, we briefly sum-
marize properties of three families of multivariate probability distributions which
are of importance for the multiple test problems that we investigate deeper in this
work.

4.1.1 Multivariate Normal Distributions

A book-length treatment of multivariate normal distributions is provided by Tong
(1990). Here, we only give a definition and the basic linearity properties. We refer
to more specific properties at the respective occasions in the remainder of this work.

Definition 4.4 (Multivariate normal distribution). Let X1, . . . , Xd iid. standard
normal random variables on R. Then we say that the random vector X =
(X1, . . . , Xd)∀ has a standard normal distribution on Rd . Moreover, if ε = QQ∀ ∈
R

m×m denotes a positive definite, symmetric matrix with Q ∈ R
m×d and we let

Y = QX + μ, μ ∈ R
m, then the random vector Y = (Y1, . . . , Ym)∀ possesses a

(general) multivariate normal distribution on Rm, and we write Y ∼ Nm(μ,ε).

Theorem 4.2. If Y ∼ Nm(μ,ε), then Y has the density

Φμ,ε(y) = (2φ)−m/2| detε |−1/2 exp

⎭

−1

2
(y − μ)∀ε−1(y − μ)

)

with respect to the Lebesgue measure on R
m. Furthermore, the first two moments of

Y are given by

→1 ≡ j ≡ m : E[Yj] = μj, →1 ≡ i, j ≡ m : Cov
(
Yi, Yj

) = εi,j.

Proof. See Sect. 3.2 in Tong (1990). ∩∅
Theorem 4.3 (Affine transformations). Let Y ∼ Nm(μ,ε), k ≡ m, A ∈ R

k×m a
matrix with maximum rank, and b ∈ R

k. Then, the random vector Z = AY + b has
the k-dimensional normal distribution Nk(Aμ + b, AεA∀).

Proof. Theorem 3.3.3 in Tong (1990). ∩∅

http://dx.doi.org/10.1007/978-3-642-45182-9_3
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4.1.2 Multivariate t-distributions

Acomprehensive resource formultivariate t-distributions and their applications is the
book by Kotz and Nadarajah (2004). Multivariate t-distributions are generalizations
of Student’s t-distribution on R to higher dimensions. In this, several possible gen-
eralizations exist. For our work, the version which considers a joint Studentization
of an m-variate, normally distributed random vector is most important.

Definition 4.5. LetY be anm-variate, centered randomvectorwhich is normally dis-
tributed with covariance matrix ε ∈ R

m×m, where εii ∝ λ 2 > 0 for all 1 ≡ i ≡ m.
Let S with ξS2/λ 2 ∼ Ξ2

ξ for ξ ∨ 1 be stochastically independent of Y . Then, letting
R denote the correlation matrix corresponding to ε , the distribution of

X = Y/S + μ, μ ∈ R
m, (4.2)

is called a multivariate t-distribution with ξ degrees of freedom, mean vector μ and
correlation matrix R, and the pdf fX of X is given by

fX(x) = ν ((ξ + m)/2)

(φξ)m/2ν (ξ/2)| det R|1/2
[
1 + ξ−1(x − μ)∀R−1(x − μ)

]−(ξ+m)/2
, x ∈ R

m.

4.1.3 Multivariate Chi-Square Distributions

Another extremely important family of probability distributions, which will be used
at various places in the present work, is the family of multivariate chi-square distri-
butions. Similarly to the situation for multivariate t-distributions, there exist several
definitions of multivariate chi-square distributions in the literature, each of which
has its respective origin in different models for real-life data. For our purposes, the
following definition is most useful.

Definition 4.6 (Multivariate chi-square distribution). Let m ∨ 2 and ⊆ξ =
(ξ1, . . . , ξm)∀ a vector of positive integers. Let (Z1,1, . . . , Z1,ξ1 , Z2,1, . . . ,

Z2,ξ2 , . . . , Zm,1, . . . , Zm,ξm) denote
∑m

k=1 ξk jointly normally distributed random
variables with joint correlation matrix R = (ρ(Zk1,Σ1 , Zk2,Σ2) : 1 ≡ k1, k2 ≡
m, 1 ≡ Σ1 ≡ ξk1 , 1 ≡ Σ2 ≡ ξk2) such that for any 1 ≡ k ≡ m the random
vector Zk = (Zk,1, . . . , Zk,ξk )

∀ has a standard normal distribution on R
ξk . Let

Q = (Q1, . . . , Qm)∀, where

→1 ≡ k ≡ m : Qk =
ξk∑

Σ=1

Z2
k,Σ. (4.3)
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Marginally, each Qk is chi-square distributed with ξk degrees of freedom. Hence,
the distribution of the random vector Q is some multivariate (central) chi-square
distribution with parameters m, ⊆ξ and R, and we write Q ∼ Ξ2(m, ⊆ξ, R).

Well-known special cases arise if all marginal degrees of freedom are identical,
i. e., ξ1 = ξ2 = . . . = ξm ∝ ξ and the vectors (Z1,1, . . . , Zm,1)

∀, (Z1,2, . . . , Zm,2)
∀,

. . ., (Z1,ξ , . . . , Zm,ξ)
∀ are stochastically independent random vectors. If, in addition,

the correlation matrices among the m components of these latter ξ random vectors
are all identical and equal to ε ∈ R

m×m (say), then the distribution of Q is that
of the diagonal elements of a Wishart-distributed random matrix S ∼ Wm(ξ,ε).
This distribution is for instance given in Definition 3.5.7 of the textbook by Timm
(2002). The case of potentially different correlation matrices ε1, . . . , εξ has been
studied by Jensen (1970). From a practical perspective, it is remarkable that multi-
variate chi-square probabilities can exactly be computed, even for high dimensions,
if the underlying correlation matrix R fulfills certain structural properties. We refer
the reader to the article by Royen (2007) and references therein. Furthermore, the
stochastic representation (4.3) allows to approximate multivariate chi-square proba-
bilities by means of computer simulations up to (in principle) any precision.

The following lemma shows that among the components of a (generalized) mul-
tivariate chi-square distribution only non-negative correlations can occur.

Lemma 4.2. Let Q ∼ Ξ2(m, ⊆ξ, R). Then, for any pair of indices 1 ≡ k1, k2 ≡ m, it
holds

0 ≡ Cov(Qk1, Qk2) ≡ 2
∃

ξk1 ξk2 . (4.4)

Proof. Without loss of generality, assume k1 = 1 and k2 = 2. Simple probabilistic
calculus now yields

Cov(Q1, Q2) = Cov

⎝


ξ1∑

i=1

Z2
1,i,

ξ2∑

j=1

Z2
2,j

⎠

⎨

=
ξ1∑

i=1

ξ2∑

j=1

Cov(Z2
1,i, Z2

2,j) = 2
ξ1∑

i=1

ξ2∑

j=1

ρ2(Z1,i, Z2,j) ∨ 0.

The upper bound in (4.4) follows directly from the Cauchy-Schwarz inequality,
because the variance of a chi-square distributed random variable with ξ degrees of
freedom equals 2ξ. ∩∅

4.2 Projection Methods Under Asymptotic Normality

For a broad class of statistical models which are relevant for practical applications,
the maximum likelihood estimator for the vector of unknown model parameters is
(at least asymptotically for large sample sizes) unbiased and normally distributed.
Let us discuss a few examples.
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Definition 4.7 (Multiple linear regression model). Consider the sample space
(Rn,B(Rn)) and real-valued, stochastically independent observables Y1, . . . , Yn

such that

→1 ≡ i ≡ n : Yi = f (xi,1, . . . , xi,k) + Δi =
k∑

j=1

αjxi,j + Δi. (4.5)

In this, X = (xij)1≡i≡n,1≡j≡k is a deterministic (n × k) matrix, where k ≡ n,
called the design matrix. The vector α = (α1, . . . , αk)

∀ ∈ R
k is the parame-

ter of interest. Abbreviating Y = (Y1, . . . , Yn)
∀ ∈ R

n (the response vector) and
Δ = (Δ1, . . . , Δn)

∀ ∈ R
n (the vector of error terms), we obtain the matrix represen-

tation of (4.5), given by

Y = Xα + Δ. (4.6)

We make the following additional assumptions.

(a) The designmatrix hasmaximum rank, such thatX∀X ∈ R
k×k is positive definite

and invertible.
(b) The error terms are iid. with E[Δ1] = 0 and 0 < λ 2 = Var(Δ1) < ⊂.

Notice that Definition 4.7 covers analysis of variance models by choosing X
appropriately (containing group membership indicators). The components αj, 1 ≡
j ≡ k, then correspond to group-specific means. Hence, k-sample problems with
localized comparisons can be modeled with (4.6).

Theorem 4.4. Under the multiple linear regression model from Definition 4.7, the
least squares estimator of α ∈ R

k is given by

α̂ = (X∀X)−1X∀Y .

Using (4.6), this leads to
α̂ − α = (X∀X)−1X∀Δ.

If Δ ∼ Nn(0, λ 2In), then α̂ is the maximum likelihood estimator of α and it holds α̂ ∼
Nk(α, λ 2(X∀X)−1). In the general case, assume that the following two conditions
hold true.

(i) n− 1
2 max
1≡i≡n,1≡j≡k

|xi,j| ⊃ 0, n ⊃ ⊂.

(ii) n−1X∀
n Xn ⊃ V, V ∈ R

k×k symmetric and positive definite.

Then, for n ⊃ ⊂,

L
(∃

n {α̂(n) − α}
)

w−⊃ Nk

(
0, λ 2V−1

)
.
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Definition 4.8 (Generalized linear model (GLM)). Let (Y n,F n,
⊗n

i=1 Pξi)

denote a product model with unknown parameters ξi ∈ Ξ ∗ R for all 1 ≡ i ≡ n. De-
note the stochastically independent observables by Y1, . . . , Yn, where each Yi takes
values in Y ∗ R. Then, (Y n,F n,

⊗n
i=1 Pξi) is called a generalized linear model

(GLM) if the following three conditions hold true.

(i) For any 1 ≡ i ≡ n, Pξi is an element of an exponential family with likelihood
function of the form

L(ξi, yi) = a(ξi)b(yi) exp(yi · T(ξi)).

The quantity T(ξ) is called the natural parameter of the exponential family,
ξ ∈ Ξ .

(ii) A design matrix X ∈ R
n×k is given, leading to the vector η = (η1, . . . , ηn)

∀ of
linear predictors, where ηi =∑k

j=1 αjxij, 1 ≡ i ≡ n, for (unknown) coefficients
α1, . . . , αk , which are the parameters of interest. In matrix form, we have η =
Xα , α = (α1, . . . , αk)

∀.
(iii) Let μi = E[Yi|Xi = xi] denote the (conditional) expected value of Yi given

Xi = xi = (xi1, . . . , xik). It exists a link function g such that

→1 ≡ i ≡ n : ηi = g(μi) ∼ g(μi) =
k∑

j=1

αjxij.

The canonical link maps μi onto the natural parameter of the exponential
family, i. e.,

g(μi) = T(ξi) ∼ T(ξi) =
k∑

j=1

αjxij.

In general, the maximum likelihood estimator (MLE) α̂ of the parameter vector
α = (α1, . . . , αk)

∀ of a GLM cannot be written in closed form. However, existence
and uniqueness of α̂ are guaranteed and efficient numerical algorithms exist for its
computation. The following theorem establishes the limiting distribution of α̂ when
the sample size n tends to infinity.

Theorem 4.5 (Multivariate central limit theorem). Let α̂(n) denote the MLE of
the parameter vector α = (α1, . . . , αk)

∀ of a GLM with canonical link, depending
on the sample size n. If all k covariates (corresponding to the columns of X) have
compact support and if (X∀

n Xn)
−1 ⊃ 0, n ⊃ ⊂, then it holds

α̂(n) ∼
asympt.

Nk(α, F−1
n (α)), where Fn(α) = X∀

n Covn(Y)Xn.

The result remains to hold true if Fn(α) is replaced by Fn(α̂(n)).

Proof. Satz 2.2 in Chap.7 of Fahrmeir and Hamerle (1984).

http://dx.doi.org/10.1007/978-3-642-45182-9_7
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Remark 4.2. Since the response variables are stochastically independent, it holds

Covn(Y) = diag
(
Var(Yi| ⊆Xi = ⊆xi) : 1 ≡ i ≡ n

)
. These (conditional) variances

depend on α (via ξi which is modeled as a function of α).

By virtue of Theorem 4.3, Theorems 4.4 and 4.5 also imply the (asymptotic)
distribution of the vector T = Cα̂ − d of test statistics for the system Hm of linear
hypotheses

Cα = d, (4.7)

where C ∈ R
m×k is called a contrast matrix and d ∈ R

m a given vector. Notice
that we interpret (4.7) here as a system of m hypotheses, meaning that we define
Hi by line i of the system of equations in (4.7), where 1 ≡ i ≡ m. Each Hi en-
codes one linear restriction concerning (components of) α . In contrast, the classical
F-test in multiple linear regression analysis considers (4.7) as one single hypothesis,
namely, the global hypothesis H0 =⎛m

i=1 Hi. Although each Hi and even H0 may be
a composite hypothesis (with respect to α), the (asymptotic) joint distribution of T
is under any α ∈ H0 a centered m-variate normal distribution the covariance matrix
of which depends on the model and on the contrast matrix C. If a linear model with
normally distributed error terms is assumed, then the exact distribution of a Studen-
tized version of T under H0 is given by a multivariate t-distribution, cf. Section 4.1.2.
Hence, inmodels forwhich Theorem4.4 or Theorem4.5 applies, STPs for systems of
linear hypotheses at (asymptotic) FWER level Θ can be derived by computing equi-
coordinate (1 − Θ)-quantiles of multivariate normal or multivariate t-distributions.
This is leads to the projection tests derived by Hothorn et al. (2008). Denoting the
two-sided equi-coordinate (1 − Θ)-quantile of the (asymptotic) joint distribution of
T under H0 by cΘ , Hi gets rejected if |Ti| exceeds cΘ . Figure 4.1 displays the situation
for m = 2, standard normal marginal distributions of T1 and T2, and three different
values of the correlation ρ(T1, T2). One observes that with growing correlation the
necessary adjustment for multiplicity (i. e., the value cΘ) decreases in comparison to
the independent case (which corresponds to a Šidák correction).

Remark 4.3.

(a) If hypotheses shall be weighted for importance, one can consider a rectangle
instead of a square in Fig. 4.1.

(b) In cases where Theorem 4.5 applies, the limiting covariance matrix of α̂ and,
hence, that of T may depend on α , cf. Remark 4.2. In such cases, one will in
practice apply Theorem 4.5 with the estimate Fn(α̂(n)) of Fn(α). In the strictest
sense, the resulting multiple test is not an STP according to Definition 4.1,
because cΘ is not calibrated under the assumption that the (limiting) covariance
matrix of α̂ is as under α≤ ∈ H0.
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Correlation = 0 , Quantile =  2.236 Correlation = 0.5 , Quantile =  2.212
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Fig. 4.1 Graphical illustration of two-sided equi-coordinate 95%-quantiles for a bivariate normal
distribution with standard normal margins and correlation coefficient ρ, for ρ = 0 (left panel)
ρ = 0.5 (middle panel), and ρ = 0.99 (right panel). Both the respectively displayed square and
ellipse contain 95% of the distributional mass of the respective bivariate normal distribution

(c) Multivariate central limit theorems for maximum likelihood estimators can be
established for further parametric model classes, too.

Applications of the projectionmethods under (asymptotic) normality discussed in
this section to the field of genetics have been exemplified by Conneely and Boehnke
(2007).

4.3 Probability Bounds and Effective Numbers of Tests

If m is large, it will often be infeasible to work with the full joint distribution of
T under H0, even if it is unique and exactly known. For example, the R-package
mvtnorm computes multivariate t- and normal probabilities up to dimension 1000,
but not for higher dimensions. In cases wherePT

α≤ is intractable, one often works with
conservative approximations of the probability Pα≤(→1 ≡ i ≡ m : Ti ≡ cΘ) which
has to be computed in order to determine cΘ , leading to the theory of probability
bounds.
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4.3.1 Sum-Type Probability Bounds

Assume that the (or: an) LFC α≤ for an STP ϑ is located in the global hypothesis
H0. Then, for any α ∈ ϕ , the FWER of ϑ under α is upper-bounded by

FWERα≤(ϑ) = Pα≤

⎫
m⎩

i=1

Ai

⎬

,

where Ai = {Ti > cΘ}. Now suppose you can find an upper bound b(Pα≤ , Θloc.) such
that

Pα≤

⎫
m⎩

i=1

Ai

⎬

≡ b(Pα≤ , Θloc.), (4.8)

where Θloc. has the interpretation of a multiplicity-adjusted local significance level
to be used in every marginal test problem Hi versus Ki, 1 ≡ i ≡ m, as explained in
Sect. 2.2.5. Then, ϑ can (conservatively) be calibrated for strong FWER control at
level Θ by solving the equation b(Pα≤ , Θloc.) = Θ for Θloc.. This connects the theory
of STPs with that of probability bounds. Determining bounds b(P) such that

P

⎫
m⎩

i=1

Ai

⎬

≡ b(P) (4.9)

for an arbitrary probability measure P and P-measurable events (Ai)1≡i≡m is a classi-
cal topic in probability theory, see, e. g., Rényi (1961), Galambos and Rényi (1968),
Hunter (1976), Worsley (1982), Efron (1997), Ninomiya and Fujisawa (2007), and
Naiman and Wynn (1992, 1997, 2001, 2005).

The union structure of the event
⋃m

i=1 Ai suggests bounds of sum-type. The cer-
tainly most basic of such sum-type probability bounds is the Bonferroni bound, i. e.,
b(P) = ∑m

i=1 P(Ai), leading to the Bonferroni correction Θloc. = Θ/m as explained
in Example 3.1. Since there exist examples where this bound yields equality in (4.9),
an improved bound can only be derived if the joint distribution PT

α≤ of test statistics
under α≤ possesses certain properties. In particular, the dependency structure among
T1, . . . , Tm under α≤ crucially matters. Hence, we discuss some improved sum-type
probability bounds for dependent test statistics in the remainder of this section.

Theorem 4.6 (Corollary 1 by Worsley (1982)). Let (X ,F ,P) be a probability
space and (Ai)1≡i≡m a finite sequence of P-measurable events. Then it holds

P

⎫
m⎩

i=1

Ai

⎬

≡
m∑

i=1

P(Ai) −
m−1∑

i=1

P(Ai ≥ Ai+1). (4.10)

http://dx.doi.org/10.1007/978-3-642-45182-9_2


58 4 Simultaneous Test Procedures

Application of the bound on the right-hand side of (4.10) to events of the form
Ai = {Ti > cΘ} exploits the bivariate marginal distributions of the random variables
T1, . . . , Tm, in contrast to theBonferroni boundwhich only considers them univariate
marginal distributions. In the special case that T = (T1, . . . , Tm)∀ has an (asymp-
totic) normal distribution, bivariate distributions are characterized by the correlations
coefficients between the components in T and the “length heuristic” considered by
Efron (1997) is a useful tool, at least for positive pairwise correlations.

Theorem 4.7 (W formula by Efron (1997)). Let T = (T1, . . . , Tm)∀ denote a
vector of (correlated) standard normal random variables. For 2 ≡ j ≡ m, let ρj

denote the correlation coefficient of Tj−1 and Tj. Furthermore, let c = c(Θloc.) for
Θloc. ∈ (0, 1) denote the upper Θloc.-quantile of the standard normal law on R. Then
it holds

P

⎝


m⎩

j=1

{Tj > c}
⎠

⎨ ≡ Θloc. + Φ(c)
m∑

j=2

2Φ(cLj/2) − 1

c
, (4.11)

where Lj = arccos(ρj).

Theorem 4.7 may be used in cases where Theorem 4.4 or Theorem 4.5 applies,
but the dimensionality m prohibits calculation of the full joint distribution of T .

4.3.2 Product-Type Probability Bounds

As discussed around (4.1), the FWER of an STP ϑ with LFC α≤ located in H0 has
the maximum

FWERα≤(ϑ) = 1 − Pα≤

⎫
m⎞

i=1

{Ti ≡ cΘ}
⎬

and hence,

FWERα≤(ϑ) ≡ Θ ∞⇒ Pα≤

⎫
m⎞

i=1

{Ti ≡ cΘ}
⎬

∨ 1 − Θ. (4.12)

Somewhat conversely to the methods discussed in Sect. 4.3.1, we can therefore
conservatively calibrate ϑ by finding a bound β(Pα≤ , Θloc.) such that

Pα≤

⎫
m⎞

i=1

{Ti ≡ cΘ}
⎬

∨ β(Pα≤ , Θloc.) (4.13)

and solving the equation β(Pα≤ , Θloc.) = 1 − Θ for Θloc.. Here, the intersection
structure of the event

⎛m
i=1{Ti ≡ cΘ} suggests bounds of product-type. It turns out that

such bounds can naturally be derived if the joint distribution PT
α≤ possesses positive
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dependency properties of certain kinds. If T1, . . . , Tm are jointly independent under
α≤, then, for any cutoff cΘ ∈ R, the Šidák bound β(Pα≤ , Θloc.) =∏m

i=1 Pα≤(Ti ≡ cΘ)

is exact and therefore valid for calibrating ϑ. This bound remains valid under the
positive dependency concepts in the following definition.

Definition 4.9 (Concepts of positive dependence). Let (X ,F ,P)be a probability
space and let T = (T1, . . . , Tm)∀ : X ⊃ Sm be a random vector, where (S,S ) is
a measurable space with S a subset of R. In all definitions below, t = (t1, . . . , tm)∀
denotes an arbitrary element of Sm.

(i) For 1 ≡ j ≡ m, let Pj ∝ Pj(t) = P

(⎛j
h=1{Th ≡ th}

)
,

γj,1 ∝ γj,1(t) = P(Tj ≡ tj), and

γj,i ∝ γj,i(t) = P

⎝

Tj ≡ tj |
j−1⎞

h=j−i+1

{Th ≡ th}
⎠

⎨ , 1 < i ≡ j.

Due to chain factorization, it holds Pm = Pi ·∏m
j=i+1 γj,j for every fixed 1 ≡

i ≡ m − 1. Following Block et al. (1992), we call

βi = Pi ·
m∏

j=i+1

γj,i (4.14)

the product-type probability bound of order i. Moreover, we call T sub-
Markovian of order i (SMi), if γk,k ∨ γk,i for all i + 1 ≡ k ≡ m, entailing
that Pm ∨ βi. We call T monotonically sub-Markovian of order i (MSMi), if
γk,k ∨ γk,i ∨ γk,i−1 ∨ · · · ∨ γk,1 for k ∨ i and γk,k ∨ γk,k−1 ∨ · · · ∨ γk,1 for
i > k ∨ 1, entailing Pm ∨ βi ∨ βi−1 ∨ · · · ∨ β1.

(ii) T is called positive lower orthant dependent (PLOD), if

P(T1 ≡ t1, . . . , Tm ≡ tm) ∨
m∏

j=1

P(Tj ≡ tj).

In other words, PLOD is equivalent to Pm ∨ β1.
(iii) T is called multivariate totally positive of order 2 (MTP2), if its distribution PT

on (Sm,S √m) has a probability density function f : Sm ⊃ [0,⊂)with respect
to a measure λ√m, such that for all u, v ∈ Sm:

f (u) · f (v) ≡ f (min(u, v)) · f (max(u, v)),

where theminimum ormaximum, respectively, is being taken component-wise.
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Part (i) of the latter definition shows the usefulness of the MSMi property for
deriving product-type probability bounds. The following proposition shows that there
exists a hierarchy in the concepts of positive dependence introduced inDefinition 4.9.

Proposition 4.1. Under the assumptions of Definition 4.9, it holds

(i) MTP2 implies MSMm−1.
(ii) MSMi implies MSMh for all 1 ≡ h ≡ i. In particular, MSMi for i ∨ 2 implies

PLOD.

Proof. The assertions under (ii) are obvious and the assertion under (i) has been
proven by Glaz and Johnson (1984). ∩∅

CombiningProposition4.1 and the reasoning in part (i) ofDefinition4.9,weobtain
that nested product-type probability bounds Pm ∝ βm ∨ βi ∨ βi−1 ∨ · · · ∨ β1 for
calibrating the STP ϑ can immediately be derived in terms of the i-variate marginal
distributions of T = (T1, . . . , Tm)∀ whenever Pα≤ is MTP2. Furthermore, some
characterizations of MTP2 andMSMi exist for the important families of multivariate
distributions that we have introduced in Sect. 4.1.

Proposition 4.2.

(a) Let X = (X1, . . . , Xm) denote a centered multivariate Gaussian random vector,
X ∼ Nm(0,ε), with ε positive definite and let |X| = (|X1|, . . . , |Xm|).
(i) If all entries of ε are non-negative, then X is MTP2.

(ii) Independently of ε , |X| is PLOD.
(iii) Independently of ε , β2 ∨ β1 for T = |X|.
(iv) |X| is MTP2 if and only if there exists a diagonal matrix D with diagonal

elements ±1 such that the off-diagonal elements of −Dε−1D are all non-
negative.

(b) Assume that X = (X1, . . . , Xm) has a centered multivariate t-distribution with
ξ degrees of freedom and correlation matrix R = (ρij)1≡i,j≡m.

(i) If ρij ∨ 0 for all i ◦= j, then X is PLOD.
(ii) Independently of R, |X| is PLOD, where |X| is defined in analogy to part

(a).
(iii) Independently of R, β2 ∨ β1 for T = |X|.

(c) Let T = (T1, . . . , Tm) follow a multivariate central chi-square distribution with
ξ degrees of freedom in every marginal.

(i) If the distribution of T is as in Definition 3.5.7 in Timm (2002), and all
diagonal elements of ε are equal to 1, then, independently of the off-
diagonal elements of ε , T is PLOD.

(ii) For T as in part (i), it holds β2 ∨ β1.
(iii) Under exchangeability (entailing equi-correlation) in the sense that each

Tj can be represented as Tj = Zj + Z0 for stochastically independent, chi-
square distributed variates Z0, Z1, . . . , Zm, T is MTP2.



4.3 Probability Bounds and Effective Numbers of Tests 61

Proof. Part (a).(i) follows from Sect. 4.3.3 in Tong (1990). Part (a).(ii) is Corollary 1
in Šidák (1967). To prove part (a).(iii), we first notice that all bivariate marginal dis-
tributions of an m-variate normal distribution are bivariate normal, m ∨ 2. Since the
PLOD property for the absolute values of a Gaussian random vector is valid without
any assumptions on the dimension or on ε , we have that every pair (|Xk|, |XΣ|) is
PLOD. This entails β2 ∨ β1. Part (a).(iv) is Theorem 3.1 in Karlin and Rinott (1980).
Part (b).(i) is Corollary 9.2.2 and part (b).(ii) is Corollary 9.2.3 in Tong (1990).
Part (b).(iii) can be proved in analogy to part (a).(iii). To prove part (c).(i), we notice
that the distribution of T is equal to the joint distribution of the diagonal elements
S1,1, . . . , Sm,m of a Wishart-distributed random matrix S ∼ Wm(ξ,ε). Corollary
4.1 in Das Gupta et al. (1972) yields the assertion. Part (c).(ii) can again be proved
in analogy to part (a).(iii). Finally, part (c).(iii) is a consequence of Example 3.5. in
Karlin and Rinott (1980). ∩∅

4.3.3 Effective Numbers of Tests

An interesting technique that has received much attention in the context of multiple
testing for genetic applications is to transform probability bounds into “effective
numbers of tests”. We define the effective number of tests corresponding to a sum-
type (product-type) probability bound as follows.

Definition 4.10. Let (X ,F , (Pα)α∈ϕ,Hm+1) denote an (extended) multiple test
problem in the sense of Definition 4.1 and ϑ = (ϑi : 1 ≡ i ≡ m) an STP for
(X ,F , (Pα)α∈ϕ,Hm+1). Furthermore, let an FWER level Θ be given.

(i) Assume that ϑ can (conservatively) be calibrated by a sum-type probability
bound b(Pα≤ , Θloc.). Then, the effective number of tests Meff. ∝ Meff.(Θ) is
defined as the unique solution of the equation

Meff.Θloc. = b(Pα≤ , Θloc.) = Θ. (4.15)

(ii) Assume that ϑ can (conservatively) be calibrated by a product-type probability
bound β(Pα≤ , Θloc.). Then, the effective number of tests Meff. ∝ Meff.(Θ) is
defined as the unique solution of the equation

(1 − Θloc.)
Meff. = β(Pα≤ , Θloc.) = 1 − Θ. (4.16)

Example 4.1 (Effective numbers of tests).

(i) For the Bonferroni bound b(Pα≤ , Θloc.) as well as for the Šidák bound β(Pα≤ ,
Θloc.) it holds Meff. = m.

(ii) Let T = (T1, . . . , Tm) be such that the product-type probability bound β2
defined in (4.14) applies. Define cut-offs c = (c1, . . . , cm) ∈ R

m such that
→j ∈ {1, . . . , m} : Pα≤

j
(ϑ = 1) = Pα≤

j
(Tj > cj) = Θloc. for a local significance
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level Θloc. ∈ (0, 1) in each marginal. Then it holds

Meff. = 1 +
m∑

j=2

κj, κj = log(Pα≤(Tj ≡ cj|Tj−1 ≡ cj−1))

log(1 − Θloc.)
,

see Moskvina and Schmidt (2008).
(iii) Under the assumptions of part (ii), assume now that βi applies for some i > 2.

Then it holds

Meff. = 1 + ξ(i) +
m∑

j=i

κ
(i)
j ,

where

ξ(i) =
i−1∑

Σ=2

log(γΣ,Σ(c))

log(1 − Θloc.)
, κ

(i)
j = log(γj,i(c))

log(1 − Θloc.)
,

see Dickhaus and Stange (2013).

4.4 Simultaneous Test Procedures in Terms of p-value Copulae

As shown by Dickhaus and Gierl (2013), simultaneous test procedures based on
max-statistics can equivalently be described by p-value copulae, cf. also Sect. 2.2.4.

Theorem 4.8. Let ϑ denote an STP for (X ,F , (Pα)α∈ϕ,Hm) which is based on
test statistics (T1, . . . , Tm). Assume that the following three structural properties
hold true.

(S1) Any α ∈ H0 is an LFC for the FWER of any STP for (X ,F , (Pα)α∈ϕ,Hm)

that is based on (T1, . . . , Tm).
(S2) Every null hypothesis Hi, 1 ≡ i ≡ m, is of the form Hi : {θi(α) = θ≤

i }, where
θ : ϕ ⊃ ϕ ′ denotes a derived parameter, i indexes components of θ , and the
θ≤

i are fixed given values in ϕ ′.
(S3) The marginal cumulative distribution function of Ti under Hi, Fi (say), is con-

tinuous and strictly increasing.

Then, for arbitrary α ∈ ϕ and α≤ ∈ H0, it holds

FWERα(ϑ) ≡ 1 − Cα≤(1 − Θ
(1)
loc., . . . , 1 − Θ

(m)
loc.), (4.17)

with Cα≤ denoting the copula of the distributional transforms (1 − pi : 1 ≡ i ≡ m)

of T1, . . . , Tm under α≤, Θ
(i)
loc. = 1 − Fi(cΘ), and cΘ as in Definition 4.1.

http://dx.doi.org/10.1007/978-3-642-45182-9_2
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To control the FWER at level Θ with the STP ϑ, one can therefore equivalently
compare the (marginal) distributional transforms with a suitable (1 − Θ)-quantile
of their copula under α≤. As outlined in Sect. 2.2.5, this has the advantage that the
local significance levels (Θ

(i)
loc. : 1 ≡ i ≡ m) express the adjustment for multiplicity

of the FWER level Θ explicitly. Furthermore, the rich and growing field of copula-
based modeling of multivariate dependency structures becomes usable for multiple
testing by means of Theorem 4.8. The possibility to employ copula-based models
for constructing multiple tests has been mentioned in Sarkar (2008), but we are not
aware of other references realizing this suggestion.

Example 4.2 (Dunnett contrasts under ANOVA1). Fix an integer k (number of treat-
ment groups) and sample sizes (ni)1≡i≡k , and model the observation x ∈ X =
R

∑k
i=1 ni as a realization of X = (Xi,j : 1 ≡ i ≡ k, 1 ≡ j ≡ ni). In this, assume that

(i) all Xi,j are stochastically independent,
(ii) Xi,j ∼ N (μi, 1) (or with unknown, but common variance).

The parameter of this model is the unknown mean vector μ = (μ1, . . . , μk)
∀ ∈

R
k . Consider the “multiple comparisons with a control group” problem, i. e., the

hypotheses Hi : μi = μk , 1 ≡ i ≡ k − 1, leading to m = k − 1. Equivalently, we
can express Hi as θi = 0, where θi = μi − μk is a derived parameter. In a compact
matrix notation, we can expressHk−1 = (H1, . . . , Hk−1) as

CDunnett μ = 0. (4.18)

Line i of the latter system of equations is equal to Hi, 1 ≡ i ≡ k − 1. The contrast
matrix CDunnett is Dunnett’s contrast matrix with k −1 rows and k columns, where in
each row j the jth entry equals +1, the kth entry equals −1 and all other entries are
equal to zero. This is a classical multiple test problem which has been considered in
the pioneering works of Charles W. Dunnett, cf. Dunnett (1955, 1964).

Denoting the empirical mean in group i by X̄i., suitable (standard) test statistics for
the two-sided comparisons defined by (4.18) are given by |Ti|, 1 ≡ i ≡ k − 1, where
Ti = ∃

nink/(ni + nk)(X̄i. − X̄k.). According to Theorem 4.4, the joint distribution
of T = (T1, . . . , Tk−1)

∀ is multivariate normal (or multivariate t) with a covariance
matrix ε which only depends on the sample sizes n1, . . . , nk . More specifically, we
have that T ∼ Nk−1(μ̃,ε) with

μ̃i =
√

nink

ni + nk
(μi − μk) and ε = DCDunnettMC∀

DunnettD,

where D = diag
(√

nink
ni+nk

: 1 ≡ i ≡ k − 1
)

∈ R
k−1×k−1 and M = diag(n−1

i : 1 ≡
i ≡ k) ∈ R

k×k . For ease of graphical illustration, let us now consider the case of
k = 3 and, consequently, m = 2. We obtain that

http://dx.doi.org/10.1007/978-3-642-45182-9_2
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Fig. 4.2 Contour lines of Cμ≤ in the case of (n1, n2, n3) = (90, 80, 70) for the STP from
Example 4.2

ε =
⎝


1

√
n1n2

(n1+n3)(n2+n3)√
n1n2

(n1+n3)(n2+n3)
1

⎠

⎨ .

Thus, since the joint distribution of T under the global hypothesis is exactly
known here, the copula Cμ≤ of the distributional transforms under H0 can simply be
calculated by transformation of measures. For (u1, u2) ∈ [0, 1]2, we obtain

Cμ≤(u1, u2) = F|T |(Φ−1((u1 + 1)/2),Φ−1((u2 + 1)/2)),

where F|T | denotes the joint cdf. of the absolute values of T under μ≤, which is
easily evaluable by numerical routines for multivariate normal distributions like the
mvtnorm package in R, cf. Genz and Bretz (2009) and Sect. 2.2.5.

Figure 4.2 depicts contour lines of Cμ≤ in the case of (n1, n2, n3) = (90, 80, 70)
for contour levels 0.3, 0.5, 0.7, and 0.9. For control of the FWER at level Θ = 0.3
(say) with the STP defined by T , Fig. 4.3 represents our findings from Theorem 4.8
graphically: An STP is constructed by determining the point of intersection of the
diagonal on [0, 1]2 with the contour line of Cμ≤ at contour level 1 − Θ. Projection

http://dx.doi.org/10.1007/978-3-642-45182-9_2
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Fig. 4.3 Graphical representation of the construction of an STP according to Theorem 4.8

onto the coordinate axes yields the multiplicity-adjusted marginal copula arguments
1−Θ

(i)
loc., i = 1, 2. In the example, one could consequently choose local significance

levels Θ
(1)
loc. = Θ

(2)
loc. = 0.1812.

Since every bivariate (1− Θ)-quantile of Cα≤ is a solution to the problem of STP
construction according to Theorem 4.8, Fig. 4.3 furthermore shows how an impor-
tance weighting of the individual hypotheses can be incorporated straightforwardly
into the method: the only thing that has to be changed is the slope of the line through
the origin.

4.5 Exploiting the Topological Structure of the Sample
Space via Random Field Theory

In many applications from modern life sciences, the observational units are geomet-
rically related, and the scientific questions relate to aggregated quantities defining
topological regions. One example is functional magnetic resonance imaging (fMRI),
where the blood oxygen level is measured in voxels, but brain activity is assumed
to be constituted by spatial clusters of voxels (brain regions). We will provide more
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details in Chap.11. Another example is given by association or quantitative trait loci
analyses in genetics, where genetic loci are used as markers for genomic regions,
cf. Chaps. 9 and 10. A mathematical tool for incorporating the topological structure
of the sample space into the construction of simultaneous test procedures for such
types of problems is the theory of random fields.

For the purpose of indicating the incorporation of the geometry of the sample
space into the analysis, we denote in this section the index set for the system of
hypotheses H which is of interest by S (a finite-dimensional manifold). More
specifically, we assume that the data sample results in a realization of a stochastic
process (called random field) T with values in RS , meaning that a real number (the
value of a test statistic) can be observed at every location s ∈ S , when hypotheses
are formulated for every such location. An important branch of random field theory
is considered with computing or approximating excursion probabilities of the form

P

⎭

max
s∈S

T(s) ∨ t

)

, t ∈ R, (4.19)

where P is the probability measure driving the random field T . In the context of
simultaneous test procedures, P will be a probability measure corresponding to the
global hypothesis H0 = ⎛

s∈S Hs. For instance, in the fMRI example, s ∈ S
would indicate a spatial position in the brain, while it would indicate a locus on
the genome in the aforementioned examples from genetics. The purpose then is to
calibrate t = t(Θ) with respect to (multiple) type I error control or, equivalently, to
evaluate the probability in (4.19) at the observed data points in order to provide a
multiplicity-adjusted p-value for each hypothesis Hs, s ∈ S . The theory is well-
developed for cases in which each T(s) is Gaussian or its distribution is related to
the normal distribution (for example, Student’s t, chi-squared, or Fisher’s F) under
Hs. One particularly useful approximation of the excursion probability in (4.19) is
given by the so-called "Euler characteristic heuristic" (cf., e. g., Sect. 5.1 in Adler
and Taylor (2011)), meaning that

P

⎭

max
s∈S

T(s) ∨ t

)

≈ E[Ξ{s ∈ S : T(s) ∨ t}]. (4.20)

The quantity Ξ{s ∈ S : T(s) ∨ t} is the (random) Euler characteristic (EC) of the
excursion set of T over the threshold t onS . Although the EC itself is a complicated
object depending on the geometry of S and the distributional properties of T , its
expectation can in Gaussian or Gaussian-related cases be computed explicitly by the
Gaussian kinematic formula derived by Taylor (2006). In particular, the following
result holds true.

Lemma 4.3. (Theorem 4.8.1 in Adler and Taylor (2011)). Assume that S and
D ⊂ R are regular stratified manifolds and that T : S ⊃ R is a Gaussian random
field on S with mean zero and constant unit variance. Then it holds

http://dx.doi.org/10.1007/978-3-642-45182-9_11
http://dx.doi.org/10.1007/978-3-642-45182-9_9
http://dx.doi.org/10.1007/978-3-642-45182-9_10
http://dx.doi.org/10.1007/978-3-642-45182-9_5
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E[Ξ{S ≥ T−1(D)}] =
dimS∑

j=0

(2φ)−j/2Lj(S )MN (0,1)
j (D), (4.21)

where Lj(S ) denotes the j-th Lipschitz-Killing curvature of S with respect to the

variogram metric induced by T andMN (0,1)
j the j-th Gaussian Minkowski functional

on R.

For a general probability measure P on R, the numbers M P

j (D) can implicitly
be defined as the coefficients of the power series expansion of the P-volume of the
δ-tube around D, i. e., via the equation

P(Tube(D, δ)) =
⊂∑

j=0

δj

j!M
P

j (D), where Tube(D, δ) = {u ∈ R : inf
v∈D

|u − v| ≡ δ}.

For the special case of excursion sets as in (4.19), we notice that

MN (0,1)
j ([t,⊂)) = 1∃

2φ
Hj−1(t) exp(−t2/2),

with HΣ, Σ ∨ 0, denoting the Σ-th Hermite polynomial and H−1 defined by

H−1(t) = ∃
2φ exp(t2/2)(1 − Φ(t)),

leading toMN (0,1)
0 ([t,⊂)) = 1 − Φ(t) and

E[Ξ{s ∈ S : T(s) ∨ t}] = exp(−t2/2)
dimS∑

j=0

(2φ)−
j+1
2 Lj(S )Hj−1(t). (4.22)

Furthermore, as explained in Sect. 5.2 of Adler and Taylor (2011), formula (4.21)
remains to hold true if the distribution of T(s) is not Gaussian, but Gaussian-related,
with the only difference that the set D has to be replaced by a different set D′ which
expresses the form of relatedness of the distribution of T(s) to the standard normal
distribution. In essence, one has to compute theN (0, 1)-volume of a geometrically
different object than just a half-open interval, which can in practically relevant cases
be done by means of standard methods from stochastics; see, for instance, Worsley
(1994). Hence, in practice all that remains is to calculate or to estimate the Lipschitz-
Killing curvatures Lj(S ), 0 ≡ j ≡ dimS , appearing in (4.21) and (4.22). These
numbers depend on the geometry of the manifold S and on the local correlation
structure among (T(s) : s ∈ S ). We will return to the estimation task for theLj(S )

in the special context of fMRI analyses in Chap.11.

http://dx.doi.org/10.1007/978-3-642-45182-9_5
http://dx.doi.org/10.1007/978-3-642-45182-9_11
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Chapter 5
Stepwise Rejective Multiple Tests

Abstract We are considered with step-up-down tests for control of the family-wise
error rate (FWER) and the false discovery rate (FDR), respectively. FWER-
controlling step-down tests are derived by applying the closed test principle in con-
nection with Bonferroni and Šidák corrections. FWER-controlling step-up tests are
based on Simes’ global test, again in connection with the closed test principle. The
theory of step-up tests for control of the FDR is developed by taking the famous linear
step-up procedure by Benjamini and Hochberg (1995) as the starting point. Explic-
itly and implicitly adaptive FDR-controlling step-up-down tests are finally treated.
A precise discussion about the underlying (dependency) assumptions of each proce-
dure is provided and summarized in a table, guiding the user to appropriate methods
for an actual multiple test problem at hand.

In this chapter, we investigate margin-based step-up-down tests, cf. Definition 3.1.
They are particularly suitable for large systems of hypotheses when modeling or
reliably estimating the full joint distribution of test statistics or p-values, respec-
tively, is infeasible due to the “curse of dimensionality”, meaning that the parameter
space is of higher dimensionality than the sample size. If only marginal distributions
of test statistics are modeled explicitly, one is particularly interested in “generic”
multiple test procedures that provide the desired error control over a broad class
of joint distributions. However, sometimes some qualitative assumption regarding
the dependency structure is available and the multiple tests are constructed to be
generic over the subclass of all multivariate distributions fulfilling this assumption,
which typically leads to more powerful multiple tests in comparison to cases with
completely unspecified dependencies.

For orientation, the following table lists all multiple test procedures treated in
this chapter. They can be systematized by their structure (step-up (SU), step-down
(SD), step-up-down (SUD)), by the type of error control they provide, and by their
respective assumptions regarding dependency among p-values.
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72 5 Stepwise Rejective Multiple Tests

Table 5.1 Overview of
stepwise rejective multiple
tests

Multiple Structure Error Dependency
test control

Bonferroni-Holm SD FWER Arbitrary
Šidák-Holm SD FWER Independence
Hommel SU FWER MTP2

Hochberg SU FWER MTP2

Rom SU FWER Independence
Benjamini-Hochberg SU FDR PRDS
Storey-Taylor-Siegmund SU FDR weak dependency
Benjamini-Yekutieli SU FDR Arbitrary
Blanchard-Roquain SU FDR Arbitrary
AORC SUD FDR Independence

We will define the concepts of dependency listed in Table 5.1 in Sect. 5.1 below.
From the practical perspective, it is essential to notice that type I error control of
the respective procedures can only be guaranteed if the corresponding assumptions
regarding dependency of test statistics or p-values, respectively, hold true. Hence,
Table 5.1 may be used as a guideline to choose a multiple test procedure for a par-
ticular problem at hand. We will discuss the appropriateness of the positive depen-
dency assumptions given in Table 5.1 in the context of genetic association studies
(Sect. 9.5), in the context of gene expression analysis (Sect. 10.2) and in the con-
text of functional magnetic resonance imaging (Sect. 11.1); see also Sect. 12.2 for an
application in proteomics.

5.1 Some Concepts of Dependency

Definition 5.1 (MTP2 and PRDS). Let (X ,F ,P) be a probability space and let
T = (T1, . . . , Tm)∈ : X ≤ Sm be a random vector, where (S,S ) is a measurable
space with S a subset of R.

(i) The vector T is called multivariate totally positive of order 2 (MTP2), if its
distribution P

T on (Sm,S →m) has a probability density function f : Sm ≤
[0,≡) with respect to a measure α→m, such that for all u, v ∀ Sm:

f (u) · f (v) ∗ f (min(u, v)) · f (max(u, v)),

where the minimum or maximum, respectively, is being taken component-wise.
(ii) The vector T is called positive regression dependent on a subset I0 of the set

of indices {1, . . . , m} (PRDS on I0), if for every increasing set D ∨ Sm and for
every index i ∀ I0

P(T ∀ D | Ti = u) is non-decreasing in u.

http://dx.doi.org/10.1007/978-3-642-45182-9_9
http://dx.doi.org/10.1007/978-3-642-45182-9_10
http://dx.doi.org/10.1007/978-3-642-45182-9_11
http://dx.doi.org/10.1007/978-3-642-45182-9_12
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Therein, the set D is called increasing if u1 ∀ D and u2 ∓ u1 (jointly) imply
u2 ∀ D.

In Definition 5.1, the dependency concepts are formulated in terms of test statistics
T1, . . . , Tm. However, we will use them in this chapter mainly in connection with p-
values p1, . . . , pm. Since p-values are typically deterministic, monotone transforma-
tions of test statistics, this distinction is essentially void, meaning that the dependency
concept holds for the p-values if and only if it holds for the test statistics.

Examples of MTP2 and PRDS distributions are given by, e.g., Karlin and Rinott
(1980); Sarkar and Chang (1997); Sarkar (1998); Benjamini and Yekutieli (2001),
and Sarkar (2002). For the multivariate t-distribution, see also the recent result by
Block et al. (2013). Here, we mention three examples of MTP2 families explicitly.

Lemma 5.1.
(a) Let X = (X1, . . . , Xm) denote a multivariate Gaussian random vector, i. e.,

X ∝ Nm(μ,σ) with μ ∀ R
m and σ ∀ R

m×m. If σ is positive definite and all
its entries are non-negative, then X is MTP2.

(b) Let X = (X1, . . . , Xm) denote a centered multivariate Gaussian random vector,
X ∝ Nm(0, σ) with σ positive definite and let |X| = (|X1|, . . . , |Xm|). Then,
|X| is MTP2 if and only if there exists a diagonal matrix D with diagonal elements
±1 such that the off-diagonal elements of −Dσ−1D are all non-negative.

(c) Let Q = (Q1, . . . , Qm) follow a multivariate central chi-squared distribution
with ϑ degrees of freedom in every marginal. Under exchangeability (entailing
equi-correlation) in the sense that each Qj can be represented as Qj = Xj + X0
for stochastically independent, chi-squared distributed variates X0, X1, . . . , Xm,
Q is MTP2.

Proof. Part (a) follows from Sect. 4.3.3. in Tong (1990), part (b) is Theorem 3.1 in
Karlin and Rinott (1980) and part (c) is a consequence of Example 3.5. in Karlin and
Rinott (1980). ∩∅
Lemma 5.2 (cf., e.g., Hu et al. (2006)). MTP2 implies PRDS on any subset of
{1, . . . , m}.
Definition 5.2 (Weak dependency, cf. Storey et al. (2004)). Let p1, . . . , pm denote
(random) marginal p-values for a multiple test problem (X ,F , (PΘ)Θ∀ϕ,Hm) with
index set I0 of true hypotheses and index set I1 = {1, . . . , m} \ I0 of false hypotheses
in Hm under Θ , and m0 = |I0|, m1 = |I1|. Then, p1, . . . , pm are called weakly
dependent under Θ , if ε0 = limm≤≡ m0/m exists and

m−1
0

∑

i∀I0

1[0,t](pi) ≤ F0(t), m ≤ ≡, (5.1)

m−1
1

∑

i∀I1

1[0,t](pi) ≤ F1(t), m ≤ ≡, (5.2)

http://dx.doi.org/10.1007/978-3-642-45182-9_4
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where convergence in (5.1) and (5.2) is uniformly in t ∀ [0, 1] and almost surely,
and F0 and F1 are continuous functions with 0 < F0(t) ∗ t for all t ∀ (0, 1].

5.2 FWER-Controlling Step-Down Tests

FWER-controlling step-down tests naturally arise in connection with the closed
test principle by a technique called "shortcut". Plainly phrased, a shortcut of a
closed test procedures avoids explicit testing of all intersection hypotheses in the
∩-closed system of hypotheses H̄ induced by H . This is done by traversing the
closure H̄ in a group-wise manner. A nice general theory of shortcuts can be
found in Hommel et al. (2007). Here, we demonstrate the principle by identifying
the Bonferroni-Holm test and the Šidák-Holm test as shortcuts of the Bonferroni and
Šidák single-step test, respectively (see Sect. 3.1.1).

Definition 5.3 (Bonferroni-Holm and Šidák-Holm tests, see Holm (1977, 1979)).
Let (X ,F ,P,Hm) denote a multiple test problem with finite system of hypotheses
Hm = {Hi, i ∀ I = {1, . . . , m}}. Without loss of generality, assume that H1, . . . , Hk
are the elementary hypotheses in Hm, for some 1 ∗ k ∗ m. Assume that p-values
pi : 1 ∗ i ∗ k are available for every marginal test problem Hi versus Ki, i ∀
{1, . . . , k} = Ik (say). Let p1:k ∗ p2:k ∗ · · · ∗ pk:k denote the order statistics of
these p-values and H1:k, . . . , Hk:k the correspondingly sorted elementary hypotheses
in Hm. Define, for i ∀ Ik ,

Φi =
{

1 − (1 − Φ)1/i, if (pi(X), i ∀ Ik) are stochastically independent,

Φ/i, otherwise.

Then, the Šidák-Holm test (independent case) or the Bonferroni-Holm test (case
of general dependencies) φHolm (say) rejects (exactly) the elementary hypotheses
H1:k, . . . , Hi⊆:k , where

i⊆ = max{i ∀ Ik : pj:k ∗ Φk−j+1 for all j = 1, . . . , i}.

Furthermore, an intersection hypothesis Hλ, where λ ∀ {k + 1, . . . , m}, gets rejected
if and only if at least one elementary hypothesis which is used for intersection has
been rejected.

Theorem 5.1. The multiple test φHolm for (X ,F ,P,Hm) is coherent and con-
sonant, and it strongly controls the FWER at level Φ. If the system of hypotheses is
complete, meaning that |H̄m| = 2k − 1, then φHolm is equivalent to a closed test φ̄

(say). The multiple test φ which induces φ̄ tests every intersection hypothesis HJ in
H̄m by applying a “local” Bonferroni correction or Šidák correction, respectively, to
the p-values pi, i ∀ J, where J denotes the set of indices of the elementary hypotheses
used for intersection.

http://dx.doi.org/10.1007/978-3-642-45182-9_3
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Proof. Coherence and consonance of φHolm follow directly from Definition 5.3. For
proving strong FWER control of φHolm, we investigate the closed test φ̄ and show
that it rejects all hypotheses which are rejected by φHolm, possibly more. Since φ̄ is
strongly FWER-controlling, this implies strong FWER control of φHolm. For ease of
argumentation, we write H̄m in the form H̄m = {HJ : J ∀ Ī} for the appropriate
index set Ī ∃ 2{1,...,k}, where HJ =⎛j∀J Hj. Obviously, for an elementary hypothesis
Hr, Hr ⊂ HJ implies r ∀ J . The multiple test φ which induces φ̄ is with this notation
given by (“local” Bonferroni or Šidák correction)

φJ(x) =
{

1, if minj∀J pj ∗ Φ|J|,
0, if minj∀J pj > Φ|J|.

From Lemma 1.1 it follows that φ is a multiple test at local level Φ. Following the
closed test principle from Theorem 3.4, we get that φ̄ is defined by

φ̄J(x) =
{

1, if ⊃L ⊂ J, L ∀ Ī : φL(x) = 1,

0, otherwise.

Without loss of generality, assume p1 ∗ · · · ∗ pk . Abbreviating φ̄i := φ̄{i}, i ∀ Ik ,
it holds that φ̄i(x) = 1 if and only if for all J ∀ Ī with i ∀ J, minj∀J pj ∗ Φ|J|.
Equivalently, it holds

⊃r ∀ {1, . . . , k} : ⊃J ∀ Ī with i ∀ J and |J| = r : min
j∀J

pj ∗ Φr . (5.3)

However, (5.3) is also fulfilled for φHolm. To see this, assume that pi ∗ Φk−i+1
for all 1 ∗ i ∗ i⊆. Then, it obviously holds for all indices 1 ∗ i ∗ i⊆ of rejected
elementary hypotheses in Hm that

⊃r ∀ {1, . . . , k} : ⊃J ∀ Ī with i ∀ J and |J| = r : min
j∀J

pj = pmin{j∀J} ∗ Φk−min{j∀J}+1.

Furthermore, Φk−min{j∀J}+1 ∗ Φr , because min{j ∀ J} ∗ k − r +1 and Φλ decreases
in λ. Finally, easy combinatorial considerations show that min{j ∀ J} = k − r + 1 if
Hm is complete, completing the proof. ∩∅

Remark 5.1.
(a) The condition |H̄m| = 2k − 1 is also occasionally referred to as the “free

combinations” condition regarding the hypotheses in Hm, see, e.g., Troendle
and Westfall (2011).

(b) Holm’s tests are uniform improvements over the corresponding Bonferroni or
Šidák correction with respect to multiple power. However, constructing compati-
ble simultaneous confidence regions is much less straightforward for a step-down
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test like φHolm than for a single-step (for instance, Bonferroni or Šidák) test. The
latter task has been independently addressed only recently by Strassburger and
Bretz (2008) and by Guilbaud (2008), see also Guilbaud (2012) and Guilbaud
and Karlsson (2011).

5.3 FWER-Controlling Step-Up Tests

The starting point for the development of FWER-controlling step-up tests is Simes’
global test.

Lemma 5.3 (Simes (1986)). Let U1, . . . , Um denote stochastically independent,
identically UNI[0, 1]-distributed random variables and U1:m ∗ · · · ∗ Um:m their
order statistics. Define Φi:m = iΦ/m, 1 ∗ i ∗ m, for Φ ∀ [0, 1]. Then it holds

P(U1:m > Φ1:m, . . . , Um:m > Φm:m) = 1 − Φ. (5.4)

The constants Φi:m = iΦ/m, 1 ∗ i ∗ m, are referred to as Simes’ critical values
and play an important role in multiple testing, see also Definition 5.6. Recall from
Chap. 2 that valid p-values are stochastically lower-bounded by UNI [0, 1] under null
hypotheses. If the distribution of the Ui is stochastically larger than UNI[0, 1], then
1 − Φ is a lower bound for the probability on the left-hand side of (5.4).

Simes’ result has been extended by Sarkar (1998) to treat MTP2 families of p-
values.

Lemma 5.4 (Sarkar (1998)). Under the assumptions of Lemma 5.3, but with joint
independence of U1, . . . , Um replaced by requiring that U1, . . . , Um are MTP2, it
holds

P(U1:m > Φ1:m, . . . , Um:m > Φm:m) ∓ 1 − Φ. (5.5)

Corollary 5.1 (Simes’ global test). Consider a multiple test problem (X ,F ,P,

Hm) and marginal p-values pi, i ∀ I, which are MTP2 under the global hypothesis
H0 =⎛m

i=1 Hi. Then, a level Φ test for H0 is given by

φSimes(x) = 1 ∼ ≥i ∀ I : pi:m ∗ i

m
Φ.

We refer to φSimes as Simes’ global test.

Remark 5.2. Under the assumptions of Corollary 5.1, Simes’ global test can also
be used as the basis for a closed test procedure φ̄ = (φ̄i, i ∀ I) for Hm. To this
end, denote an intersection hypothesis by HJ = ⎛j∀J Hj and let p1:J ∗ · · · ∗ p|J|:J
denote the order statistics of (pj : j ∀ J). Then, the closed test procedure φ̄ is given
by

φ̄i(x) = 1 ∼ ⊃J ∞ i : ≥j ∀ J : pj:J ∗ Φj:|J|.

http://dx.doi.org/10.1007/978-3-642-45182-9_2
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A shortcut version of the closed test procedure outlined in Remark 5.2 has been
derived by Hommel (1988).

Definition 5.4 (Hommel (1988)). Under the assumptions of Corollary 5.1, assume
without loss of generality that p1 ∗ · · · ∗ pm. Let

J⊆ = {i ∀ I : pm−i+k >
kΦ

i
for all k = 1, . . . , i},

j⊆ =
{

max{i : i ∀ J⊆}, if J⊆ �= √,

1, if J⊆ = √.

Then, the test φHommel = (φHommel
i , i ∀ I) is given by

φHommel
i (x) =

{
1, i ∗ m⊆ := max{j : pj ∗ Φ/j⊆},
0, otherwise.

As shown by Hommel (1988), it holds that φHommel
i = φ̄i for all i ∀ I , where φ̄i is

as in Remark 5.2. However, the formulation via φHommel reduces the computational
effort in comparison to the explicit consideration of all intersection hypotheses.
Notice that, although derived from the closed test principle, φHommel has the structure
of a step-up test.

A second example of an FWER-controlling step-up test is the procedure by
Hochberg (1988).

Definition 5.5 (Hochberg (1988)). Let

m̃ = max{i ∀ I : pi:m ∗ Φ

m − i + 1
}.

Then the step-up test of Hochberg (1988), say φHochberg = (φ
Hochberg
i , i ∀ I), is given

by
φ

Hochberg
i (x) = 1 ∼ pi ∗ pm̃:m.

Remark 5.3.
(a) Regarded as a function of the data, φHochberg is component-wise not larger than

φHommel. Hence, φHochberg controls the FWER at level Φ under the MTP2 assump-
tion regarding the joint distribution of p1, . . . , pm.

(b) The multiple test φHochberg employs the same set of critical values as the
Bonferroni-Holm test which is FWER-controlling under arbitrary dependency
among the p-values. However, the MTP2 assumption allows to change the struc-
ture of the test from step-down (Bonferroni-Holm) to the more powerful step-up
(Hochberg), cf. Lemma 3.1.

As the final example, we derive a step-up test with FWER exactly equal to Φ for
independent p-values which are uniformly distributed on [0, 1]under null hypotheses.
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To this end, we recall the following result concerning the recursive computation of
the joint cdf of order statistics of iid. random variables.

Lemma 5.5 (see, e.g., Shorack and Wellner (1986), p. 366). Let X1, . . . , Xm denote
iid. random variables with cdf F of X1, such that F(x) = P(X1 ∗ x), x ∀ R, and
denote their order statistics by X1:m, . . . , Xm:m. Let c1 ∗ · · · ∗ cm denote real
constants and let Φj = 1 − F(cj), j = 1, . . . , m. Let Fj(c1, . . . , cj) = P(X1:j ∗
c1, . . . , Xj:j ∗ cj), j = 1, . . . , m, with F0 ◦ 1. Then it holds

Fm(c1, . . . , cm) = 1 −
m−1∑

j=0

⎝
m

j

)

Fj(c1, . . . , cj)Φ
m−j
j+1 . (5.6)

Proof.

Fm(c1, . . . , cm) = P(X1:m ∗ c1, . . . , Xm:m ∗ cm) = 1 − P(≥j ∀ {1, . . . , m} : Xj:m > cj)

= 1 −
m−1∑

j=0

P(X1:j ∗ c1, . . . , Xj:j ∗ cj, Xj+1:m > cj+1)

= 1 −
m−1∑

j=0

Fj(c1, . . . , cj)Φ
m−j
j+1

⎝
m

j

)

. ∩∅

We will use this result, with Xi = 1 − pi, 1 ∗ i ∗ m, in order to compute exact
critical values for an FWER-controlling step-up test under joint independence of
p-values recursively. Notice that the ordering of the p-values p1, . . . , pm is reverse to
the ordering of the so defined variates X1, . . . , Xm. The following theorem guarantees
the existence of a solution for any value of m.

Theorem 5.2 (Dalal and Mallows (1992)). Under the assumptions of Lemma 5.5,
assume that F is a continuous cdf on R and that (Xm)m∀N is an iid sequence with
X1 ∝ F. Then, for all Φ ∀ (0, 1), there exists a sequence (cm)m∀N of real numbers
fulfilling

⊃i ∀ N : ci < ci+1 and ⊃m ∀ N : Fm(c1, . . . , cm) = 1 − Φ, (5.7)

where Fm is as in Lemma 5.5.

For the computation of Φj, j ∀ I , notice that, trivially, Φ1 = Φ. Requiring

Fm(c1, . . . , cm) = 1 − Φ and (5.8)

Fj(c1, . . . , cj) = 1 − Φ for all j = 1, . . . , m − 1, (5.9)

we conclude with (5.6) that, for all m ∓ 2,
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1 − Φ = 1 −
m−1∑

j=0

⎝
m

j

)

Fj(c1, . . . , cj)Φ
m−j
j+1 =1 − Φm −

m−1∑

j=1

⎝
m

j

)

Fj(c1, . . . , cj)Φ
m−j
j+1 ,

leading to

Φ − Φm =
m−1∑

j=1

⎝
m

j

)

Fj(c1, . . . , cj)Φ
m−j
j+1 .

Making use of (5.9), we obtain

Φ − Φm

1 − Φ
=

m−1∑

j=1

⎝
m

j

)

Φ
m−j
j+1 ⇐≈

m−1∑

j=1

Φj =
m−2∑

j=1

⎝
m

j

)

Φ
m−j
j+1 + mΦm,

hence, finally,

Φm = 1

m

⎞

⎠
m−1∑

j=1

Φj −
m−2∑

j=1

⎝
m

j

)

Φ
m−j
j+1

⎨

⎩ , m ∓ 2. (5.10)

For example, it holds Φ2 = Φ/2, Φ3 = Φ/3 + Φ2/12, Φ4 = Φ/4 + Φ2/12 +
Φ3/24 − Φ4/96. These critical values have been derived by Rom (1990).

Corollary 5.2 (Exact FWER-controlling step-up test under independence).
Consider a multiple test problem (X ,F ,P,Hm) and assume stochastically inde-
pendent marginal p-values p1, . . . , pm. Let p1:m, . . . , pm:m denote the ordered p-
values and H1:m, . . . , Hm:m the correspondingly sorted null hypotheses. Let Φ =
Φ1 ∓ · · · ∓ Φm denote the critical values defined by (5.10). Then, the step-up test
rejecting exactly H1:m, . . . , Hm⊆:m, where

m⊆ = max{i ∀ I : pi:m ∗ Φm−i+1},

controls the FWER at level Φ, and it exhausts the FWER level if p-values are exactly
uniform under null hypotheses.

Proof. Exact FWER control of this step-up test follows immediately from the con-
struction of Φ1, . . . , Φm and by considering each possible value of m0 separately. ∩∅

We observe that Φ/i ∗ Φi ∗ 1 − (1 − Φ)1/i for all i ∀ I . This illustrates the
interrelation of the structure of the test procedure, the size of the critical values, and
the structural assumptions regarding the joint distribution of p-values (by comparing
with Bonferroni-Holm and Šidák-Holm).
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5.4 FDR-Controlling Step-Up Tests

The by far most popular FDR-controlling multiple test procedure is the linear step-up
test φLSU (say), considered in the pioneering article by Benjamini and Hochberg
(1995). Sometimes it is even referred to as the FDR procedure. The test φLSU is a
step-up test with Simes’ critical values.

Definition 5.6. Denote by p1:m ∗ p2:m ∗ . . . ∗ pm:m the ordered p-values for a
multiple test problem (X ,F , (PΘ)Θ∀ϕ,Hm = {Hi, i ∀ I = {1, . . . , m}}) and by
H1:m, . . . , Hm:m the re-ordered null hypotheses in Hm, according to the ordering
of the p-values. Then, the linear step-up test φLSU rejects exactly the hypotheses
H1:m, . . . , Hk:m, where

k = max{i ∀ I : pi:m ∗ iΦ/m}. (5.11)

If the maximum in (5.11) does not exist, then no hypothesis is rejected.

The linear step-up test controls the FDR under the PRDS assumption regarding
the joint distribution of p1, . . . , pm, including cases with independent p-values. More
precisely, the following theorem characterizes FDR control of φLSU .

Theorem 5.3 (Finner et al. (2009)). Consider the following assumptions.

(D1) ⊃Θ ∀ ϕ : ⊃j ∀ I : ⊃i ∀ I0(Θ) : PΘ(Rm ∓ j|pi ∗ t) is non-increasing in
t ∀ (0, Φj:m].

(D2) ⊃Θ ∀ ϕ : ⊃i ∀ I0(Θ) : pi ∝UNI[0, 1].
(I1) ⊃Θ ∀ ϕ : The p-values (pi(X) : i ∀ I0(Θ)), are iid.
(I2) ⊃Θ ∀ ϕ: The random vectors (pi(X) : i ∀ I0(Θ)) and (pi(X) : i ∀ I1(Θ)) are

stochastically independent.

Then, the following two assertions hold true.

Under(D1),⊃Θ ∀ ϕ : FDRΘ(φLSU) ∗ m0(Θ)

m
Φ. (5.12)

Under(D2) − (I2),⊃Θ ∀ ϕ : FDRΘ(φLSU) = m0(Θ)

m
Φ. (5.13)

Theorem 5.3 implies that φLSU controls the FDR under PRDS, see (5.12). Another
remarkable property of φLSU is that its FDR under (D2) - (I2) depends on Θ only
via m0 = m0(Θ), see (5.13). The latter fact suggests a data-adaptive modification of
φLSU , leading to the step-up test φSTS (say), introduced by Storey et al. (2004).

Definition 5.7. Denote the ecdf of the p-values p1, . . . , pm by F̂m and consider the
following estimator for the proportion ε0 = m0/m of true hypotheses.

ε̂STS
0 ◦ ε̂STS

0 (ξ) = 1 − F̂m(ξ) + 1/m

1 − ξ
, ξ ∀ [0, 1).
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Then, the data-adaptive step-up test φSTS is given by replacing Φ by Φ/ε̂STS
0 in the

definition of φLSU .

Notice the similarity of ε̂STS
0 and the Schweder-Spjøtvoll estimator ε̂0 defined in

(3.2). In fact, the extra term 1/m in the numerator of ε̂STS
0 can be regarded as a

finite-sample adjustment of ε̂0 and becomes negligible for large m.

Theorem 5.4 (Storey et al. (2004)).

(a) Under (I1) - (I2) from Theorem 5.3, it holds

sup
Θ∀ϕ

FDRΘ(φSTS) ∗ (1 − ξm0)Φ ∗ Φ,

if hypotheses with p-values larger than ξ are removed from the set of rejected
hypotheses.

(b) Under weak dependency and assuming that limm≤≡ m0/m exists, φSTS controls
the FDR asymptotically (as m ≤ ≡).

For the case of arbitrary dependency among p-values, the Benjamini-Yekutieli
step-up test has been derived according to the following general construction method.

1. Assume there exists a multiple test procedure φ that can be calibrated such
that it controls the FDR at level Φ over some parameter space ϕ⊆, i. e.,
supΘ∀ϕ⊆ FDRΘ(φ) ∗ Φ.

2. Derive a bound for the FDR of φ over the actual parameter space of interest, i. e.,
find a constant Φ′ such that supΘ∀ϕ FDRΘ(φ) ∗ Φ′.

3. If there exists an invertable function h : [0, 1] ≤ [0, 1] such that Φ′ = h(Φ) and
if h does not depend on unknown parameters, then substitute Φ by h−1(Φ) in the
calibration of φ.

Theorem 5.5 (Benjamini and Yekutieli (2001)). Let φLSU denote the linear step-
up test considered by Benjamini and Hochberg (1995). Then, for any dependency
structure among p1, . . . , pm, it holds

⊃Θ ∀ ϕ : FDRΘ(φLSU) ∗ m0(Θ)

m
Φ

m∑

j=1

1

j
∗ Φ

m∑

j=1

1

j
.

Hence, defining the function h by h(Φ) = Φ
⎫m

j=1 j−1, the test φLSU with Φ replaced

by h−1(Φ) = Φ/
⎫m

j=1 j−1 controls the FDR under arbitrary dependency among

p1, . . . , pm. We denote this modified version of φLSU by φBY .

Guo and Rao (2008) have shown that there indeed exists a multivariate distribution
of p-values p1, . . . , pm such that φBY fully exhausts the FDR level Φ. Hence, in the
class of step-up tests with fixed critical values, φBY cannot be improved uniformly
if the dependency structure is completely unknown.

http://dx.doi.org/10.1007/978-3-642-45182-9_3
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A different way to construct FDR-controlling step-up tests has been proposed by
Blanchard and Roquain (2008).

Theorem 5.6 (Blanchard and Roquain (2008)). Let φϑ denote a step-up test with
critical values of the form Φj:m = ΦΞ(j)/m, where

Ξ(j) ◦ Ξϑ(j) =
⎬ j

0
xdϑ(x) (5.14)

for an arbitrarily chosen probability distribution ϑ on (0,≡). Then, φϑ controls the
FDR under arbitrary dependency among p1, . . . , pm.

The class of step-up tests defined by Theorem 5.6 contains φBY as a special
member. To see this, consider the probability distribution ϑBY (say) which is sup-
ported on {1, . . . , m} and defined by ϑBY ({k}) = (k

⎫m
λ=1 λ−1)−1, k ∀ {1, . . . , m}.

As shown by Blanchard and Roquain (2008), also other FDR-controlling step-up tests
proposed in the literature can be obtained as special cases of φϑ (for appropriately
chosen ϑ).

5.5 FDR-Controlling Step-Up-Down Tests

Since the set of hypotheses which are rejected by a step-up-down test φν1 of order ν1
is contained in the set of hypotheses which are rejected by φν2 whenever ν2 > ν1 and
the critical values Φ1:m, . . . , Φm:m are kept fixed (see Lemma 3.1), it is natural to ask if
FDR control of φν2 implies FDR control of φν1 . In particular, by setting ν2 = m and
making use of the step-up tests derived in the previous section, the question arises
if the critical values employed in these step-up tests can also be utilized to control
the FDR with a corresponding step-up-down test. Sufficient conditions for a positive
answer to this question have been provided by Zeisel et al. (2011).

Theorem 5.7 (Theorem 4.1 by Zeisel et al. (2011)). Under the scope of a two-class
mixture model, assume that all m p-values are stochastically independent. If F1 is
a concave cdf. and φ1 and φ2 are two multiple tests such that the set of hypotheses
which are rejected by φ1 is contained in the set of hypotheses which are rejected by
φ2 for any realization of the vector of p-values, then the FDR of φ1 is upper-bounded
by the FDR of φ2.

Hence, under the assumption of joint independence of the p-values in a two-class
mixture model, FDR-controlling step-up-down tests can be derived from the pro-
cedures investigated in Sect. 5.4, provided F1 is concave. In the remainder of this
section, we discuss a different class of FDR-controlling step-up-down tests which
make use of FDR monotonicity for a fixed, given multiple test with respect to the dis-
tribution of p-values under alternatives. The starting point is the following monotonic-
ity theorem for step-up tests.
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Theorem 5.8 (Benjamini and Yekutieli (2001)). Let conditions (D1) - (I2) from
Theorem 5.3 be fulfilled. Then, an SU-procedure φ with critical values Φ1:m ∗ · · · ∗
Φm:m has the following properties.

(a) If the ratio Φi:m/i is increasing in i, as (pi : i ∀ I1) increases stochastically, the
FDR of φ decreases.

(b) If the ratio Φi:m/i is decreasing in i, as (pi : i ∀ I1) increases stochastically, the
FDR of φ increases.

Hence, if p-values are independent, φ is a step-up test and the associated critical
values Φ1:m ∗ · · · ∗ Φm:m fulfill the important condition

Φi:m/i is increasing in i, (5.15)

then Dirac-uniform configurations are least favourable for the FDR of φ, provided
that Dirac-uniform configurations are elements of the statistical model under con-
sideration or limiting elements thereof. Often, extreme values of the parameter of
a statistical model under alternatives lead to p-values which are arbitrarily close to
zero such that the latter reasoning applies. Sets of critical values fulfilling condition
(5.15) are called feasible critical values by Finner et al. (2012). Theorem 5.8 suggests
the following method for constructing an FDR-exhausting step-up test.

Algorithm 5.1
(i) For every 1 ∗ m0 ∗ m, consider the Dirac-uniform configuration DUm0,m

and the equation FDRm0,m(Φ1:m, . . . , Φm:m) = Φ, where Φ1:m, . . . , Φm:m are the
critical values that should be optimized for usage in a step-up test. Recall that
the joint point mass function of Vm and Rm can exactly be computed under
DUm0,m.

(ii) Solve the resulting system of m equations for the m unknowns Φ1:m, . . . , Φm:m.
(iii) Check if the solution is feasible in the sense that the optimized values Φ1:m, . . . ,

Φm:m fulfill condition (5.15).

This strategy has been pursued by Kwong and Wong (2002) and refined by Finner
et al. (2012). However, it turns out that the formal solution of the system of equation
is often not feasible. For instance, if Φ = 0.05, solutions are only feasible for m ∗ 6.
Hence, the formal solution typically has to be modified to fulfill (5.15).

However, Finner et al. (2009) have shown that the general reasoning of Algorithm
5.1 applies in an asymptotic sense when m ≤ ≡. To this end, it is important to notice
that many stepwise rejective multiple tests can be described in terms of critical value
functions and rejection curves.

Definition 5.8. We call a non-decreasing, continuous function r : [0, 1] ≤ [0, 1] a
rejection curve. Its generalized inverse ρ = r−1 is called the corresponding critical
value curve.

Using these definitions, we observe that critical values may be defined by Φi:m =
ρ(i/m), 1 ∗ i ∗ m. Feasibility of these critical values can be assured by requiring
that
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Fig. 5.1 Graphical illustration of φLSU in terms of Simes’ line

q(t) = ρ(t)/t is non-decreasing in t ∀ [0, 1]. (5.16)

In general, r and ρ depend on m. However, in asymptotic considerations we will
assume that they are fixed, given objects. The following important result establishes
the link between ordered p-values, the ecdf. F̂m of p-values, critical values and the
rejection curve formally.

Lemma 5.6 (Sen (1999)).

pi:m ∗ Φi:m if and only if F̂m(pi:m) ∓ r(pi:m).

Hence, the rejection threshold t⊆ (say) for the p-values can equivalently be
expressed as the abscissa of a crossing point of F̂m and r, yielding a useful graphical
illustration to see how a particular step-up-down test works, namely, to draw F̂m and
r in one graph. Furthermore, the ordinate of this crossing point equals the proportion
Rm/m of rejected hypotheses. For instance, the linear step-up test φLSU can equiva-
lently be defined in terms of the rejection curve r(t) = t/Φ, called Simes’ line, see
Fig. 5.1. Notice that step-up means that the largest crossing point determines t⊆.
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More generally, the choice of the parameter ν of a step-up-down test corresponds
to choosing a point ξ ∀ [0, 1] in the vicinity of which the crossing point of F̂m

and r is determined to derive t⊆. More formally, we obtain the following equivalent
formulation of a step-up-down test in terms of this tuning parameter ξ.

Lemma 5.7. The rejection threshold t⊆ for p-values generated by a step-up-down
test with tuning parameter ξ ∀ [0, 1] is given by

t⊆ =
{

inf{pi > ξ : F̂m(pi) < r(pi)}, if F̂m(ξ) ∓ r(ξ), (SD − branch)

sup{pi < ξ : F̂m(pi) ∓ r(pi)}, if F̂m(ξ) < r(ξ), (SU − branch)

with the additional conventions that all hypotheses are rejected if ξ = 1 (i. e., in the
case of a step-up test) and F̂m(1) ∓ r(1) as well as that no hypotheses are rejected
if ξ = 0 (i. e., in the case of a step-down test) and F̂m(0) < r(0).

Of course, the parameter ν ∀ {1, . . . , m} appearing in the original formulation
of a step-up-down test (see Definition 3.1) can be translated into the corresponding
parameter ξ ∀ [0, 1] once the rejection curve is fixed.

In the case that p-values are independent and the rejection curve r is (at least
asymptotically) a fixed, given object, the alternative formulation of step-up-down
tests provided in Lemma 5.7 is a very helpful tool for the mathematical analysis of
step-up-down tests. The reason is that the ecdf F̂m converges almost surely due to
the extended Glivenko-Cantelli theorem.

Theorem 5.9 (Shorack and Wellner (1986), p.105f.). Let p1, . . . , pm denote sto-
chastically independent p-values, with marginal cdfs F1, . . . , Fm respectively. Let
F = m−1⎫m

i=1 Fi. Then, it holds

||F̂m − F||≡ ≤ 0 almost surely as m ≤ ≡.

Corollary 5.3. Under DUm0,m, assume that m0/m ≤ ε0 = 1 − ε1 ∀ (0, 1]. Then,

F̂m(t) ≤ F(t) = ε1 + ε0 t uniformly in t ∀ [0, 1] and almost surely as m ≤ ≡.

(5.17)

Based on these considerations, a (heuristic) asymptotic analogue of Algorithm 5.1
consists of finding an “asymptotically optimal rejection curve” (AORC) rΦ (say) such
that for any value of ε0 > Φ, an appropriate crossing point of rΦ and F from (5.17)
is such that limm≤≡ FDRm0,m(φ) = Φ, where φ is a stepwise rejective multiple
test based on rΦ . We recall that the ordinate of such a crossing point (the abscissa
of which equals the p-value threshold t⊆) equals the proportion Rm/m of rejected
hypotheses. Since under DUm0,m, Rm = Vm + m1 almost surely, we obtain that

lim
m≤≡ FDRm0,m(φ) = ε0t⊆

ε1 + ε0t⊆
.
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Thus, the optimal threshold t⊆(ε0) fulfills the relationship

ε0t⊆(ε0)

ε1 + ε0t⊆(ε0)
= Φ ∼ t⊆(ε0) = Φε1

ε0(1 − Φ)

and the AORC rΦ is given by

rΦ(t⊆(ε0)) = ε1 + ε0t⊆(ε0) ⇐≈ rΦ(u) = u

Φ + (1 − Φ)u
, u ∀ [0, 1],

by substituting u = t⊆(ε0) = Φ(1 − ε0)/(ε0(1 − Φ)). Since the asymptotically
optimal threshold t⊆(ε0) is generated by the AORC automatically for every ε0 > Φ,
procedures based on rΦ are called implicitly adaptive, in contrast to (explicitly)
adaptive procedures like φSTS which pre-estimate ε0.

The critical value curve associated with rΦ is given by

r−1
Φ (t) = Φt

1 − (1 − Φ)t
= 1 − rΦ(1 − t), t ∀ [0, 1]

leading to the AORC-induced critical values

Φi:m = r−1
Φ (i/m) =

i
mΦ

1 − i
m (1 − Φ)

= iΦ

m − i(1 − Φ)
, 1 ∗ i ∗ m.

These critical values are feasible for all Φ ∀ (0, 1). However, unfortunately, Φm:m ◦ 1
such that a step-up test based on the AORC would always reject all hypotheses, hence
not controlling the FDR. Actually, for any ε0 ∀ (Φ, 1], there are exactly two crossing
points of rΦ and F from (5.17), the larger of which is equal to (1, 1), cf. Fig. 5.2.

Any AORC-based procedure that excludes (1, 1) as the crossing point determining
the rejection threshold t⊆ asymptotically controls the FDR at level Φ under joint
independence of all p-values. In particular, the following result holds true for step-
up-down tests induced by rΦ .

Theorem 5.10 (Finner et al. (2009)). Assume the distributional assumptions (D2)–
(I2) from Theorem 5.3 hold true. Then, any SUD-procedure with parameter ξ ∀ [0, 1)

based on rΦ asymptotically controls the FDR at level Φ.

Notice that the proof of Theorem 5.10 can not straightforwardly make use of
Theorem 5.8, because the latter theorem is exclusively dealing with step-up tests.
As shown recently by Blanchard et al. (2014), Dirac-uniform configurations are in
general not least favorable for step-up-down tests with parameter ξ ∀ [0, 1) for finite
m, but the difference between the FDR under the least favorable configurations and
the FDR under Dirac-uniform configurations asymptotically vanishes for any value
of ε0 ∀ [0, 1] if ξ > 0 and for any value of ε0 ∀ [0, 1) if ξ = 0.

Moreover, the maximum FDR under Dirac-uniform configurations of an SUD-
procedure with parameter ξ ∀ [0, 1) based on rΦ often approaches Φ from above,
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Fig. 5.2 Simes’ line (black),
AORC (blue) and F from
(5.17) for different values of
ε0 (red), where Φ = 0.05

meaning that the FDR level is violated for finite systems of hypotheses, at least if the
Dirac-uniform configurations belong to the considered model class or are limiting
elements thereof, see Fig. 5.3 for an illustration.

Hence, an adjustment of Φ1:m, . . . , Φm:m is necessary if m is small or moderate.
Finner et al. (2012) investigate several possible adjustment methods. Other mod-
ifications of AORC-based critical values are discussed by Blanchard and Roquain
(2009). Since Dirac-uniform configurations are in general not least favorable for step-
up-down tests with ν < m (see the counterexamples by Blanchard et al. (2014)), some
other FDR bounds for step-up-down tests are required to calibrate critical values for
the case of finite m. Such bounds have been derived by Finner et al. (2009) and Finner
et al. (2012).

Theorem 5.11 (Finner et al. (2012)). A Θ-free upper bound for the FDR of a
step-up-down test φν with parameter ν ∀ {1, . . . , m} based on critical values
Φ1:m, . . . , Φm:m is for fixed 1 ∗ m0 ∗ m given by

b(m, m0|ν) = m0

m
Em0−1,m[q(Rm/m)]

= m0

m0∑

j=1

Φm1+j:m
m1 + j

Pm0−1,m(Vm = j − 1). (5.18)

Hence, the FDR of φν is bounded by

b(m|ν) = max
1∗m0∗m

b(m, m0|ν). (5.19)
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Fig. 5.3 FDR under Dirac-uniform configurations of an SUD-procedure with parameter ξ = 1/2
based on rΦ , where Φ = 0.05, as a function of m0. The four different curves correspond to m = 50
(red), m = 75 (blue), m = 100 (brown), and m = 200 (black). Discrete FDR values have been
interpolated and FDR values for m0 > 100 in the case of m = 200 have been omitted, for a better
visualization

In the case of step-up, that is ν = m, the bound b(m, m0|ν) equals FDRm0,m(φm),
which results in the alternative formula

b(m, m0|ν = m) =
m0∑

j=1

j

m1 + j
Pm0,m(Vm = j), (5.20)

and it even holds equality in every summand of (5.18) and (5.20), yielding the nice
recursive formula

⊃1 ∗ j ∗ m0 : Pm0,m(Vm = j) = m0

j
Φm1+j:mPm0−1,m(Vm = j − 1). (5.21)

Theorem 5.11 provides a convenient way to adjust critical values for strict FDR
control for finite m. All that has to be done is checking that b(m|ν) does not exceed Φ.
For the special case of AORC-induced critical values, the following modification can
easily be implemented for practical usage. One tries to find a constant Ξm > 0 such
that the set of critical values

Φi:m = iΦ

m + Ξm − i(1 − Φ)
, 1 ∗ i ∗ m, (5.22)
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which are always feasible, yield that b(m|ν) ∗ Φ. A nice analytical result in this
direction has been derived by Gavrilov et al. (2009). They show that for step-down,
i. e., in the case of ν = 1, the choice Ξm ◦ 1 leads to strict FDR control for any
number m of hypotheses. For ν ∀ {2, . . . , m}, optimal values for Ξm are tabulated or
computer programs exist to compute Ξm, cf. Finner et al. (2012).
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Chapter 6
Multiple Testing and Binary Classification

Abstract We describe connections between multiple testing and binary classifica-
tion. Under certain sparsity assumptions, classical multiple tests controlling a type
I error rate at a fixed level α can, at least asymptotically as the number of classifi-
cation trials tends to infinity, achieve the optimal (Bayes) classification risk. Under
non-sparsity, combinations of type I and type II error rates are discussed as appro-
priate proxies for the (weighted) misclassification risk, and we provide algorithms
for binary classification which are based on multiple testing. The problem of feature
selection for binary classification is addressed by the higher criticism criterion, a
concept originally introduced for testing the global null hypothesis in a multiple test
problem.

Binary classification denotes the problem of assigning random objects to one of
exactly twoclasses.This problem is often addressedby statistical learning techniques,
see, for instance, Hastie et al. (2009) and Vapnik (1998) for introductions. Binary
classification and multiple testing are related statistical fields. The decision pattern
of a multiple test for a family of m hypotheses has the same structure as the output
of a binary classifier for m data points to be classified, namely, a vector in {0, 1}m

indicating the m binary decisions. Moreover, in both problems typically realizations
xi, 1 ∈ i ∈ m, of random vectors Xi with values inRk build the basis for the decision
rule (the multiple test or the classifier) which is thus chosen according to statistical
criteria. In the testing context, xi has the interpretation of a data sample (or the value
of a sufficient statistic) for the i-th individual test, while xi is referred to as the i-th
feature vector to be classified in the classification terminology. On the other hand,
usual loss functions for binary classification differ from the ones that are typically
utilized in multiple testing.

Definition 6.1. Let (X1, Y1), . . . , (Xm, Ym) denote stochastically independent and
identically distributed random tuples, where Xi takes values in Rk and Yi is a binary
indicator with values in {0, 1}, 1 ∈ i ∈ m. Let the data-generating process be
modeled by a (joint) probability measure P, where some systematic relationship
between Y1 and X1 is assumed. Namely, the random vectors X1, . . . , Xm are assumed
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92 6 Multiple Testing and Binary Classification

to be continuously distributed with class-conditional cdfs given by Fj(x) = P(Xi ∈
x|Yi = j) for x ≤ R

k , j = 0, 1 and i = 1, . . . , m. Assume that the “labels” Y1, . . . , Ym

can not be observed. Formally, we describe the classification task by the pairs of
hypotheses Hi : Yi = 0 versus Ki : Yi = 1, 1 ∈ i ∈ m.

(a) For a given cost parameter c ≤ (0, 1) and a rejection region σ → R
k , the Bayes

risk associated with the action ai = 1σ (xi) is given by

R(i)
Bayes(σ ) = (1 − c)P(Xi ≤ σ, Yi = 0) + cP(Xi ≡≤ σ, Yi = 1). (6.1)

Under the additive risk assumption, this entails that the Bayes risk for all m
classification tasks together is given by

RBayes(σ ) =
m∑

i=1

R(i)
Bayes(σ )

= (1 − c)E[Vm] + cE[Tm], (6.2)

where the multiple testing error quantities Vm and Tm are as in Table1.1 and
refer to a multiple test with fixed rejection region σ for every marginal test.

(b) Let a data-dependent classification rule be given by a measurable random map-
ping ĥm : Rk ∀ {0, 1}, where we use the observed data X1 = x1, . . ., Xm = xm

to construct the rule ĥm. Then, the transductive and the inductive risk of ĥm,
respectively, are given by

R(T)(ĥm) = m−1
m∑

i=1

P(ĥm(Xi) ≡= Yi), (6.3)

R(I)(ĥm) = P(ĥm(Xm+1) ≡= Ym+1), (6.4)

where the tuple (Xm+1, Ym+1) ∗ (X1, Y1) is stochastically independent of all
(Xi, Yi) for 1 ∈ i ∈ m.

Similarly as in the Neyman-Pearson fundamental lemma, a set of best rejection
regions σ = σc considered in part (a) of Definition 6.1 is given by (see, for instance,
Sect. 5.3.3 in Berger 1985)

σc =
{

x ≤ R
k : ϑ0f0(x)

ϑ0f0(x) + ϑ1f1(x)
∈ c

}

=
{

x ≤ R
k : Θ(x) ∨ ϑ0(1 − c)

ϑ1c

}

, (6.5)

where fj is the pdf (or likelihood function) corresponding to Fj, j = 0, 1, Θ(x) =
f1(x)/f0(x) denotes the likelihood ratio, and ϑ0 = 1 − ϑ1 = P(Y1 = 0). The
interpretation of part (b) of Definition 6.1 is that P is typically unknown or only
partially known in practice and that the data-dependent classifier ĥm “learns” a
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rejection region σ from the observed data. Notice that (at least for non-extreme
values of c) the classification risk measures introduced in Definition 6.1 do not
imply a fixed bound on a multiple type I error rate like the FWER or the FDR, but are
of different type in the sense that type I and type II errors are treated (more or less)
symmetrically. Weighting of type I and type II errors (i. e., misclassifying a member
of the “0”-class as “1” and vice versa) is possible by choosing c appropriately. On
the other hand, the data themselves implicitly also induce a weighting, namely by the
relative frequencies of the true, but unobserved labels (m0 = |{1 ∈ i ∈ m : yi = 0}|
and m1 = m − m0).

6.1 Binary Classification Under Sparsity

From the preceding discussion, it becomes clear that multiple tests controlling a type
I error rate like the FWER or the FDR at a fixed significance level are in general
not good classifiers, because they treat null hypotheses and alternatives asymmetri-
cally in the underlying risk criterion. Remarkable exceptions are sparse cases where
class probabilities are highly unbalanced. Under sparsity, multiple tests can, at least
asymptotically (m ∀ ∓), achieve optimal classification risks. As noted by Neuvial
and Roquain (2012), the optimal rejection region σc in (6.5) simplifies to a threshold
for the data point xi itself if k = 1 and the likelihood ratio Θ is increasing in its
argument x. The label ŷi = 1 is chosen if xi exceeds a certain value. If a model for
F0 is available, this rule can equivalently be formalized by deciding ŷi = 1 if the
p-value pi(x) = 1 − F0(xi) falls below the corresponding threshold on the p-value
scale. This connects the theory of binary classification with that of p-value based
multiple hypotheses testing that we have considered in the previous chapters of the
present work.

It seems that Abramovich et al. (2006) were the first to realize that the linear
step-up test ϕLSU from Definition 5.6, which has originally been developed for
FDR control under independence, has remarkable properties with respect to a broad
range of risk measures under sparsity assumptions, meaning that m1 is small. While
Abramovich et al. (2006) considered the particular problem of estimation under εr

loss in high dimensions by employing thresholding estimators, their findings have
also been the basis for studying classification risk properties of ϕLSU under sparsity.
Bogdan et al. (2011) defined the concept of “Asymptotic Bayes optimality under
sparsity” (ABOS) in a normal scale mixture model.

Definition 6.2. (Bogdan et al. (2011)). Under the assumptions of Definition 6.1, let
k = 1. For the distribution of the independent observables Xi : 1 ∈ i ∈ m, consider
the Bayesian model

Xi|μi ∗ N (μi, Φ
2
φ ),

μi ∗ ϑ0N (0, Φ 2
0 ) + ϑ1N (0, Φ 2

0 + λ 2),

http://dx.doi.org/10.1007/978-3-642-45182-9_6
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where theμi, 1 ∈ i ∈ m, are stochastically independent and Φ 2
0 may be equal to zero.

Hence, marginally, Xi ∗ ϑ0N (0, Φ 2) + ϑ1N (0, Φ 2 + λ 2), with Φ 2 = Φ 2
φ + Φ 2

0 .
Assuming Φ 2 to be known, the optimal rejection region σc from (6.5) is such that
ŷi = 1 if and only if x2i /Φ 2 ∨ K2, where the cutoff K2 is given by

K2 = (1 + 1/u){log(v) + log(1 + 1/u)}, (6.6)

with u = (λ/Φ )2 and v = u(ϑ0/ϑ1)
2ξ2, ξ = (1 − c)/c. Denote the Bayes risk

RBayes(σ ), evaluated at this best rejection region, byRopt . In practice,K2 can typically
not be computed exactly, becauseϑ0 and/or λ 2 may be unknown. For a givenmultiple
test procedure ϕ operating on x1, . . . , xm, let RBayes(ϕ) denote the risk functional
defined in (6.2), with Vm and Tm now referring to ϕ. Assume that the model is such
that

ϑ1 = ϑ1(m) ∀ 0, u = u(m) ∀ ∓, v = v(m) ∀ ∓, and log(v)/u ∀ C ≤ (0, ∓),

(6.7)
as m ∀ ∓ (where convergence or divergence, respectively, may be along a subse-
quence indexed by t = 1, 2, . . .). Notice that the dependence of v on m may imply
that c depends on m, too. Then, ϕ is called asymptotically Bayes optimal under
sparsity (ABOS), if

RBayes(ϕ)

Ropt
∀ 1, t ∀ ∓. (6.8)

It is clear that, under the conditions given in (6.7), eventually (for largem) the type
I error component of the Bayes risk will dominate the type II error component, due
to sparsity. Consequently, it turns out that classical multiple tests which are targeted
towards type I error control are ABOS in the sense of Definition 6.2, at least for
particular parameter configurations.

Theorem 6.1 (Bogdan et al. (2011)). Under the model assumptions from Definition
6.2, the following assertions hold true.

(a) Consider the Bonferroni test ϕBonf = (ϕ
Bonf
i : 1 ∈ i ∈ m) (cf. Example 3.1)

operating on x1, . . . , xm, the FWER level α = α(m) of which fulfills α(m) ∀
α∓ ≤ [0, 1) such that α(m)/(1 − α(m)) ∝ (ξ

∩
u)−1. Then, ϕBonf is ABOS if

ϑ1(m) ∝ m−1. The condition imposed on αm means that the Bayesian FDR (see
Efron and Tibshirani (2002)) of ϕBonf is proportional to αm.

(b) Consider the linear step-up test ϕLSU from Definition 5.6 operating on x1, . . . ,
xm, the FDR level α = α(m) of which fulfills α(m) ∀ α∓ ≤ [0, 1) such that
α(m)/(1− α(m)) ∝ (ξ

∩
u)−1. Then, ϕLSU is ABOS whenever ϑ1(m) ∀ 0 such

that mϑ1(m) ∀ s ≤ (0,∓] as m ∀ ∓. In this sense, ϕLSU adapts to the
unknown degree of sparsity in the data.

Neuvial and Roquain (2012) generalized the findings of Bogdan et al. (2011)
concerning ϕLSU to a broader class of distributions of X1. Namely, they assumed that

http://dx.doi.org/10.1007/978-3-642-45182-9_6
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the (conditional) distribution of X1 given Y1 = 0 belongs to the parametric family
considered by Subbotin (1923).

Definition 6.3. For a given shape parameter Ξ ∨ 1, the distribution with Lebesgue
density fΞ , given by

fΞ (x) = exp(−|x|Ξ /Ξ ){2σ (1/Ξ )Ξ 1/Ξ−1}−1, x ≤ R, (6.9)

is called Ξ -Subbotin distribution.

The family of Ξ -Subbotin distributions is closely related to the family of gener-
alized error distributions (GEDs), cf., e.g., Nelson (1991) and references therein. In
fact, the Lebesgue density of the GED with shape parameter equal to Ξ is a scaled
version of the Ξ -Subbotin density fΞ . In case of Ξ = 2, both distributions coincide
with the standard normal. The 1-Subbotin distribution is equal to the Laplace (or
double-exponential) distribution, while the GED with shape parameter equal to 1
has the same shape, but lighter tails.

Theorem 6.2 (Neuvial and Roquain (2012)). Assume that the (conditional) distri-
bution of X1 onR, given Y1 = 0, is the Ξ -Subbotin distribution with Lebesgue density
fΞ as in (6.9) and that the (conditional) distribution of X1 given Y1 = 1 is a shifted or
scaled Ξ -Subbotin distribution with Lebesgue density given by fshift(x) = fΞ (x −μm)

or fscaled(x) = fΞ (x/Φm)/Φm, where (μm)m≤N or (Φm)m≤N, respectively, is a sequence
of unknown parameters. For all m ≤ N, assume that μm or Φm, respectively, is such
that the density of the (random) p-value pi corresponding to Xi has under Yi = 1
a continuously decreasing Lebesgue density fm, fulfilling fm(0+) > λm > fm(1−),
where

λm = ϑ0(m)

ϑ1(m)
= mν, 0 < ν ∈ 1.

Denoting the cdf corresponding to the p-value density fm by Fm, assume that there
exist constants C− and C+ such that 0 < C− ∈ Fm(f −1

m (λm)) ∈ C+ < 1. Let
the FDR level α = αm in the definition of ϕLSU be chosen such that αm ∀ 0 and
log(αm) = o((logm)γ ) as m ∀ ∓, where γ = 1 − 1/Ξ for Ξ > 1 in case of
shift alternatives and γ = 1 for Ξ ∨ 1 in case of scale alternatives. Then, ϕLSU is
asymptotically optimal in the sense that it fulfills

Rm(ϕLSU) ∗ Ropt
m , m ∀ ∓. (6.10)

In (6.10), Rm is either one of the risk measures introduced in (6.3) and (6.4),
and Ropt

m is the corresponding risk of the Bayes-optimal classifier with respect to Rm

(which thresholds p-values at the fixed cutoff f −1
m (λm)).

In addition, Neuvial and Roquain (2012) derived exact convergence rates at which
the relative excess risk (Rm(ϕLSU)−Ropt

m )/Ropt
m vanishes as m ∀ ∓. As in Theorem

6.1, also under the assumptions of Theorem 6.2 it turns out that ϕLSU , regarded as

http://dx.doi.org/10.1007/978-3-642-45182-9_6
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a classifier, is highly adaptive to the amount of sparsity in the data, because the
assertion holds true for any 0 < ν ∈ 1. However, the fine-tuning of the nominal
FDR level α = αm is a bottleneck in practice. Both under the model considered in
Theorem 6.1 and under that considered in Theorem 6.2, even the (asymptotically)
optimal order of magnitude of α = αm depends on unknown model parameters.

Remark 6.1.

(a) The risk measures R(T)(ĥm) and R(I)(ĥm) from part (b) of Definition 6.1 are
defined without a weighting by a cost parameter c. As argued by Neuvial and
Roquain (2012), the results ofTheorem6.2 remain to hold true if such aweighting
is considered in R(T)(ĥm) and R(I)(ĥm).

(b) The sparsity assumptions regarding ϑ1 = ϑ1(m) in Theorems 6.1 and 6.2 are
appropriate for signal detection problems, where a small amount of signals (cor-
responding to Yi = 1) is assumed within a huge amount of data points.

(c) Some further analytical results on FDR-controlled classification can be found in
the works by Scott et al. (2009) and Genovese and Wasserman (2004). Cohen
and Sackrowitz (2005a, b) studied the classes of single-step, step-down and
step-up multiple tests with respect to admissibility and Bayes optimality in the
classification context. In particular, they showed that step-up tests like ϕLSU are
in general inadmissible under additive loss, meaning that uniformly better (and
feasible) classification procedures exist, in particular in non-sparse models.

6.2 Binary Classification in Non-Sparse Models

For applications inwhich the class probabilitiesϑ0 andϑ1 are assumed to be (roughly)
balanced, as for instance in brain-computer interfacing research that we will consider
in Chap.12, the Bayes risk decomposition given in (6.2) suggests to study multiple
tests that control a weighted average of type I and type II error rates. In this direction,
Storey (2003) pointed out that among the sets considered in (6.5) there is also a
rejection region that minimizes the weighted average of the pFDR and its type II
analogue, the positive false non-discovery rate (pFNR). This means, for a given
weight parameter w ≤ (0, 1) it exists a constant c(w) such that

min
σ →Rk

(A(w)) = (1 − w) · pFDR(σc(w)) + w · pFNR(σc(w)), where (6.11)

A(w) = (1 − w) · pFDR(σ ) + w · pFNR(σ ). (6.12)

Under the distributional assumptions of Definition 6.1, pFDR(σ ) and pFNR(σ ) are
given by

http://dx.doi.org/10.1007/978-3-642-45182-9_12
http://dx.doi.org/10.1007/978-3-642-45182-9_6
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pFDR(σ ) = P(H0|X1 ≤ σ ) = E

[
Vm

Rm
|Rm > 0

]

,

pFNR(σ ) = P(H1|X1 ≡≤ σ ) = E

[
Tm

Wm
|Wm > 0

]

,

where Vm, Rm, Tm and Wm are again as in Table 1.1 and refer to a multiple test with
fixed rejection region σ for every marginal test. A particularly convenient scalability
property is that pFDR(σ ) and pFNR(σ ) do not depend on m, in contrast to E[Vm]
and E[Tm].

In practice, it remains to determine or at least to approximate the optimal cost para-
meter c(w). Several possible methods for this have been discussed in the literature.
As typical in the statistical learning context, manymethods rely on utilizing a training
sample ((xtraini , ytraini ))1∈i∈mtrain with known labels, where these training data points
are assumed to be generated independently of ((Xi, Yi))1∈i∈m from the distributionP.
To this end, it is useful to notice that pFDR(σ ) and pFNR(σ ) can be computed in
terms of the densities f0 and f1 by

pFDR(σ ) = ϑ0I0(σ )

ϑ0I0(σ ) + ϑ1I1(σ )
, pFNR(σ ) = ϑ1[1 − I1(σ )]

ϑ1[1 − I1(σ )] + ϑ0[1 − I0(σ )]
(6.13)

with Ij(σ ) = ∫
σ

fj(u)Θk(du), j = 0, 1. Representation (6.13) shows that the Bayes
risk defined in (6.1) can be regarded as a local version of the risk functional A(w)

from (6.12). Based on these considerations, in Sect. 7 of Storey (2003) the following
algorithm for approximating c(w) is outlined.

Algorithm 6.1

1. Utilizing training data ((xtrain
i , ytrain

i ))1∈i∈mtrain , estimate the pdfs f0 and f1 by

f̂j, j = 0, 1.

2. Approximate the sets σc for given c ≤ (0, 1) by plugging f̂j into (6.5) instead of
fj, j = 0, 1. The prior probability ϑ0 can either be chosen explicitly or also be
estimated from the training data.

3. Estimate pFDR(σc) and pFNR(σc) by numerical integration in (6.13) with fj
replaced by f̂j, j = 0, 1.

4. Choose w ≤ (0, 1) and minimize the numerical approximation of (1 − w) ·
pFDR(σc) + w · pFNR(σc) with respect to c.

This approach automatically also delivers an estimate of the optimal rejection
region σc(w), see the second step of the algorithm.

Remark 6.2.

(a) Actually, Storey (2003) describes a slightly different approach, namely, to esti-
mate f0 from training data drawn from the zero class and to estimate the marginal
density f = ϑ0f0 +ϑ1f1 from possibly unlabeled data. This relates the statistical

http://dx.doi.org/10.1007/978-3-642-45182-9_1
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model from Definition 6.1 also to the statistical learning task of semi-supervised
novelty detection as in Blanchard et al. (2010).

(b) In contrast to the methods discussed in Sect. 6.1, Algorithm 6.1 is not restricted
to feature vector dimensionality k = 1. In cases with k > 1, estimation methods
for multivariate densities are applicable. Excellent textbook references for non-
parametric density estimation are Silverman (1986) and Härdle et al. (2004).

Dickhaus et al. (2013) demonstrated that Algorithm 6.1 also works for stationary,
but non-trivially auto-correlated feature vectors, at least under weak dependency
assumptions. This generalization is important for the classification of multivariate
time series data, cf.Chap. 12.

A second plausible approach for approximation of c(w) in (6.11) relies on direct
estimation of the likelihood ratio Θ, which avoids plug-in of estimated densities.
In a series of papers (cf. Sugiyama et al. (2009) and references therein), a group
of Japanese researchers developed methods for and discussed applications of such
direct estimation of density ratios. In Sects. 2.8 and 4 of Sugiyama et al. (2009), espe-
cially the so-called uLSIF algorithm is propagated. Hence, the following alternative
algorithm has been investigated by Dickhaus et al. (2013), too.

Algorithm 6.2

1. Utilizing training data ((xtrain
i , ytrain

i ))1∈i∈mtrain , estimate the density ratio Θ

by Θ̂.
2. Approximate the set σc for given c ≤ (0, 1) by plugging Θ̂ instead of Θ into the

right-hand side of (6.5). The prior probability ϑ0 can either be chosen explicitly
or be estimated from the training data.

3. Estimate pFDR(σc) and pFNR(σc) by calculating the relative frequencies of
events {ytrain

i = 0} in the training sub-dataset with xtrain
i ≤ σc and {ytrain

i = 1} in
the training sub-dataset with xtrain

i ≡≤ σc, respectively.
4. Choose w ≤ (0, 1) and minimize the approximation of (1− w) · pFDR(σc) + w ·

pFNR(σc) with respect to c.

The general finding of Dickhaus et al. (2013) was that Algorithm 6.1 seems to be
more time-consuming, but that it had slightly better classification performance than
Algorithm 6.2, both on computer-simulated and on real multivariate time series data.
In the first step of Algorithm 6.1, the authors employed fixed-width kernel density
estimators with Gaussian kernels and empirically sphered data, while in the first step
of Algorithm 6.2 the proposed uLSIF algorithm of Sugiyama et al. (2009) was used.

An interesting direction for future research would be to study the general class of
multiple testing based cost functions of the form

(1 − w)g1(P
(V ,R)) + wg2(P

(T ,W)),

where g1 and g2 are given functionals, with respect to binary classification in non-
sparse models.

http://dx.doi.org/10.1007/978-3-642-45182-9_12
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6.3 Feature Selection for Binary Classification
via Higher Criticism

In cases where the feature vector dimension k is larger than 1, the explicit determina-
tion of the optimal rejection region σc in (6.5) requires multivariate techniques. The
presumably most well-known case is that of Fisher discrimination, meaning that the
densities f0 and f1 are those of multivariate normal distributions on R

k , k > 1, with
common covariance matrix Σ , but class-specific mean vectors μ0 and μ1 (say). In
this case, the Bayes-optimal rejection region is given by

σc =
{

x ≤ R
k :

[

x − 1

2
(μ1 + μ0)

]∅
Σ−1(μ1 − μ0) ∨ log

(
ϑ0(1 − c)

ϑ1c

)}

.

(6.14)

This classification rule has a simple structure, because it is linear in the data.
Hence, it is easy to apply in practice, provided that the parameters μj, j = 0, 1, and
Σ are known. In case of unknown parameters, one typically estimates them from a
training sample (cf. the first steps in Algorithms 6.1 and 6.2), leading to the so-called
linear discriminant analysis (LDA). However, this approach causes severe issues if
k > mtrain, because in such cases the empirical covariance matrix is not invertible.
The latter situation often occurs in modern life sciences, where typically a large
set of features is at hand. Motivated by this example, Donoho and Jin (2008) were
concerned with the problem of feature selection for classification based on multiple
testing. Notice that this has close similarities to the problem of model selection that
we will treat in Chap.7.

Theorem 6.3 (Central limit theorem for order statistics). Let U1:k, . . . , Uk:k
denote the order statistics of k stochastically independent, identically UNI[0, 1]-
distributed random variables U1, . . . , Uk. Let q ≤ (0, 1) be such that i/k − q =
o(k−1/2) as k ∀ ∓ for some integer-valued sequence (i = i(k) : k ≤ N). Then, for
all t ≤ R,

P

(∩
k

Ui:k − q∩
q(1 − q)

∈ t

)

∀ Δ(t), k ∀ ∓.

Proof. See, for instance, Chap. 4 of Reiss (1989). �

Loosely formulated, the assertion of Theorem 6.3 means that for given 1 ∈ i ∈ k,
where k is large, Ui:k is approximately normally distributed with mean i/k and
variance (i/k(1−i/k))/k. It seems that JohnWilderTukeywas thefirstwho suggested
to apply this result tomultiple test problemswith k marginal p-valueswhich are under
the global hypothesis H0 distributed as U1, . . . , Uk in Theorem 6.3, see Donoho and
Jin (2004) and references therein.

Definition 6.4. (Higher criticism). Let p1:k, . . . , pk:k denote ordered marginal
p-values for a multiple test problem (X ,F ,P,Hk). Then, the higher criticism

http://dx.doi.org/10.1007/978-3-642-45182-9_6
http://dx.doi.org/10.1007/978-3-642-45182-9_7
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(HC) objective at index 1 ∈ i ∈ k is given by

HC(i, pi:k) = ∩
k

i/k − pi:k∩
pi:k(1 − pi:k)

. (6.15)

Alternatively and asymptotically equivalently, one may use i/k instead of pi:k in the
denominator of HC(i, pi:k), see Donoho and Jin (2008). For a given tuning parameter
Θ ≤ (0, 1), the HC test statistic is given by

HC∗
k = max

1∈i∈Θk
HC(i, pi:k). (6.16)

Asymptotic (k ∀ ∓) distributional results concerning HC∗
k have been derived

by Donoho and Jin (2004). These results allow for utilizing HC∗
k as a test statistic for

the global hypothesis H0 in Hk , provided that the number k of hypotheses is large.
For the specific task of feature selection (where the number k of features is large),
Donoho and Jin (2008) proposed the following algorithm.

Algorithm 6.3 Under the assumptions of Definition 6.1, assume that k >> 1 and
that a training sample ((xtrain

i , ytrain
i ))1∈i∈mtrain as described before Algorithm 6.1

is at hand. Furthermore, assume that there are some features (corresponding to
components of the vector X1) which are actually uninformative for the classification
task. Then, selection of the informative features can be performed as follows.

1. For every feature 1 ∈ j ∈ k, construct a statistic Zj : Rmtrain × {0, 1}mtrain ∀ R

such that Z = (Z1, . . . , Zk)
∅ is an (at least asymptotically) Gaussian ran-

dom vector with stochastically independent components and mean vector μ =
(μ1, . . . , μk)

∅, where μj = 0 if and only if feature j is uninformative for the
classification task.

2. For all 1 ∈ j ∈ k, compute the p-value pj corresponding to the two-sided Z-test
of the hypothesis Hj : {μj = 0} based on Zj.

3. With these p-values, evaluate HC(j, pj:k) for all 1 ∈ j ∈ k, as well as HC∗
k , see

Definition 6.4. Denote the index yielding the maximum in the definition of HC∗
k

by j∗.
4. Select those features j for which |Zj| exceeds |Zj∗ |.

Under certain assumptions regarding the asymptotic (k ∀ ∓) order ofmagnitude
of the (common)mean of those random variables Zj for which feature j is informative
and the proportion of informative features, Donoho and Jin (2008) demonstrated (and
outlined a rigorous proof) that Algorithm 6.3 leads to asymptotically optimal error
rate classifiers.
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Chapter 7
Multiple Testing and Model Selection

Abstract This chapter deals with interrelations between multiple testing and model
selection. We describe (modifications of) classical multiple test procedures that lead
to consistent model selection. Optimization of information criteria is formalized as a
multiple test problem and addressed by discussing appropriatemultiple testing-based
thresholding schemes. Furthermore, the important topic of multiple testing after
model selection is treated. We provide distributional results concerning regularized
estimators and present two-stage procedures which apply multiple testing in a stage
of analysis following the model selection stage. Finally, we are concerned with the
problem of selective inference, meaning that model selection and multiple testing is
performed in parallel.

Model selection is a highly relevant step in the statistical analysis of high-dimensional
data as typically generated by applications from modern life sciences. The problem
of model selection occurs if a set of possible models, which are in concurrence to
each other, is assumed and the ascertained data shall not (only) be utilized to calibrate
these models, but (also) to choose from this set the model that describes the data best
according to some pre-specified criteria. In particular, parsimoniousmodels are often
preferred, meaning that, in addition to mere model fit characteristics, the complexity
of the chosen model shall be as small as possible. This is a challenge in high-
dimensional settings where often a large set of potential covariates is considered, but
it is assumed that only a small to moderate number of them actually have an influence
on the (mean) response. A nice recent overview of model selection techniques for
such high-dimensional feature spaces is provided in the invited review article by
Fan and Lv (2010). Here, we only mention methods that have a close connection
to multiple testing methods that we have discussed in previous chapters, and we
discuss the problem of simultaneous inference after or along with model selection
(also referred to as selective inference in the literature). In particular, despite their
practical relevance, we exclude model selection methods based on cross-validation
(cf. Shao (1993, 1997)).

Many of the methods considered in this chapter have originally been derived
under the assumption of a linear model in the sense of Definition 4.7, meaning that
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real-valued, stochastically independent variables Y = (Y1, . . . , Yn)
∈ are observed

such that
Y = Xα + σ. (7.1)

In this,X denotes the (n×k) designmatrix. In contrast toChap.4,we consider here
the cases of fixed and of random designs. In the latter case, X is a random matrix the
columns of which correspond to realizations of predictors (covariates) X1, . . . , Xk .
Also, we consider cases where the dimensionality k may exceed the sample size n. In
any case, α ≤ R

k is the target of statistical inference and σ with values inRn denotes
a vector of random errors or noise variables. A typical distributional assumption is
that σ → Nn(0, ϑ 2In), but for many asymptotic results the assumption of stochasti-
cally independent, identically distributed, centered error terms with bounded second
moment ϑ 2 is sufficient.

7.1 Multiple Testing for Model Selection

In a generic manner, Bauer et al. (1988) describe the model selection problem as
follows. Under a statistical model (X ,F , (Pα)α≤Θ) (that may contain further nui-
sance parameters which we suppress notationally), assume that Θ = R

k such that
α = (α1, . . . , αk)

∈. Typical examples of such parameters are vectors of regression
coefficients in a linear model of the form (7.1) or in a generalized linear model, see
Definition 4.8. Now, assume that there exists a subset of indices I0 ≡ {1, . . . , k}
such that αi = 0 for all i ≤ I0. Then, the problem of model selection consists in
estimating I0 from the data, i. e., to construct an estimator Î0 : X ∀ 2{1,...,k} for
I0 based on the data x ≤ X , according to some decision-theoretic criteria. In the
linear model context, αi = 0 has the interpretation that the i-th covariate, which
corresponds to column i in the design matrix, has no effect on the (mean) response.
Thus, also the term variable selection is often used instead of model selection. For-
mulating the model selection problem in this way, its close relationship to multiple
testing becomes clear. Namely, we consider the system H = (Hi : 1 ∗ i ∗ k) of
hypotheses, where Hi : {αi = 0} with alternative Ki : {αi ∨= 0}. Then, any multi-
ple test ϕ = (ϕi : 1 ∗ i ∗ k) can also be regarded as an estimator Î0 by setting
Î0(x) = {1 ∗ i ∗ k : ϕi(x) = 0}. Indeed, one class of model selection procedures is
targeted towards control of the FWER. In themodel selection context, FWER control
means to construct Î0 or ϕ, respectively, such that

Pα

(
|Î1 ∓ I0| ∝ 1

)
∗ ε, Î1 = {1, . . . , k} \ Î0, (7.2)

where this condition may only be fulfilled asymptotically (for the sample
size n tending to infinity); cf., e.g., Wasserman and Roeder (2009) and
Meinshausen et al. (2009).

http://dx.doi.org/10.1007/978-3-642-45182-9_4
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Somewhat contrarily, a model selection procedure is referred to as conservative, if

lim sup
n∀∩

Pα

(
Î1 ∅ I1

)
= 1, (7.3)

see, for instance, Sect. 7.2 in Leeb and Pötscher (2009). Conservativity of Î1 there-
fore means that, at least with high probability, no non-zero effect (in terms of the
coefficients in α) is excluded from themodel. In the testing terminology, both criteria
(7.2) and (7.3) can be regarded as multiple type I error criteria (where the interpreta-
tion of Hi and Ki may be switched in case of (7.3)) such that standard multiple test
calibration can be performed for constructing an estimator Î0 fulfilling these criteria.

However, there exists at least one further popular model selection criterion which
balances type I and type II error probabilities.

Definition 7.1. A model selection procedure Î0 is called consistent, if

lim
n∀∩Pα

(
Î0 = I0

)
= 1, (7.4)

at least on a suitable subset Θ∗ of Θ .

Construction of consistent model selection procedures can therefore not straight-
forwardly be performed by means of standard multiple tests discussed in previous
chapters.

Bauer et al. (1988) derived a single-step multiple testing scheme for the model
selection problem as follows.

Theorem 7.1 (Bauer et al. (1988)). Assume that point estimators α̂i for the model
parameters αi exist, 1 ∗ i ∗ k. Furthermore, let ϑi,n denote positive real numbers,
with corresponding estimators ϑ̂i,n, 1 ∗ i ∗ k. For all 1 ∗ i ∗ k, let (ci(n) : n ≤ N)

denote a sequence of real numbers such that ci(n) ∀ ∩, n ∀ ∩. Consider the
following estimator of I0, derived from a single-step multiple test:

Î0 = {1 ∗ i ∗ k : |α̂i|/ϑ̂i,n ∗ ci(n)}. (7.5)

Then, either of the following two sets of conditions is sufficient for Î0 being a consistent
estimator of I0.

(a) For all 1 ∗ i ∗ k, Eα [(α̂i − αi)
2]/ϑ 2

i,n is bounded, ϑ̂i,n/ϑi,n tends to one in
probability as n ∀ ∩, and ϑi,nci(n) ∀ 0, n ∀ ∩.

(b) For all 1 ∗ i ∗ k, ϑ̂i,n > 0 almost surely for all n ≤ N, (α̂i −αi)
2/ϑ̂ 2

i,n converges
in distribution and ϑ̂i,nci(n) ∀ 0 in probability, n ∀ ∩.

Corollary 7.1. Assume a multiple linear regression model as in (7.1). If the multi-
variate central limit theorem from Theorem 4.4 applies, a consistent variable selec-
tion procedure is given by a family of t-tests (ϕi : 1 ∗ i ∗ k) for the parameters
αi, 1 ∗ i ∗ k, where the critical values ci(n) are diverging to infinity such that
ci(n)n−1/2 ∀ 0, n ∀ ∩, for all 1 ∗ i ∗ k.
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Along similar lines, Bunea et al. (2006) proved consistency of variable selection
procedures in linear models based on standard multiple test procedures, where the
dimension k of the parameter space is allowed to grow with n.

Theorem 7.2 (Bunea et al. (2006)). Assume a linear model of the form considered
in (7.1), where E

⎛|σ1|4+Φ
⎝

< ∩ for some Φ > 0 and the following three additional
assumptions hold true.

(A1) The dimensionality k fulfills k ∗ ⊆
n/ log(n).

(A2) The quantity φ = max1∗j∗k(X∈X)−1
jj tends to zero, n ∀ ∩, with φ ∗

1/ log(n) for all n ≤ N.
(A3) The quantity r = max1∗j∗n(X(X∈X)−1X∈)jj fulfills rk2 ∀ 0, n ∀ ∩.

Let p-values (pi : 1 ∗ i ∗ k) be defined by pi(x) = 2(1 − λ(|Ti(x)|)), where

Ti(x) = α̂i/

√

Var(α̂i)

and α̂i denotes the least squares estimator of αi, 1 ∗ i ∗ k, cf. Theorem 4.4.
Then, the Bonferroni t-test given by Example 3.1 as well as the multiple test ϕBY

from Theorem 5.5 operating on these p-values lead to a consistent variable selection
procedure, provided that the significance level ε = εn ≤ (0, 1) tends to 0 for n ∀ ∩,
such that εn ∝ exp(−n) for all n ≤ N and kεn/ log(k) ∀ 0, n ∀ ∩.

7.2 Multiple Testing and Information Criteria

A general framework for variable selection based on information criteria has been
presented by George (2000), see in particular Sect. 7.2 in that article. An information
criterion in the context of the linear model (7.1) penalizes the number of explanatory
variables (corresponding to columns in the designmatrixX) that are included. Hence,
model complexity is penalized (subject to a good fit of the data Y ), and parsimonious
models are preferred. The general formof an information criterion as given byGeorge
(2000) assumes that all possible models (corresponding to subsets of {1, . . . , k}) are
indexed by an index vector φ , which contains the indices of the explanatory variables
(covariates) that are included. Then, for a tuning parameter ξ > 0 (occasionally
referred to as the penalization intensity), the information criterion can be expressed as

RSS(ξ)
φ = RSSφ /ϑ̂ 2

full + ξ|φ |, (7.6)

where RSSφ is the sum of squared residuals under the model indexed by φ , ϑ̂ 2
full an

estimate of the error variance in the full model (based on the entire design matrix X),
and |φ | the number of elements in φ . Model selection based on information criteria
chooses the model for which RSS(ξ)

φ is minimum. Table7.1, taken from Zuber and
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Table 7.1 Information
criteria for model selection

Criterion Reference Penalization intensity

AIC Akaike (1974) ξ = 2
Cp Mallows (1973) ξ = 2
BIC Schwarz (1978) ξ = log(n)

RIC Foster and George (1994) ξ = 2 log(k)

Strimmer (2011), lists some choices of the penalization intensity ξ that have been
proposed in the literature.

As noted by George (2000), AIC and Cp are essentially equivalent. They lead
to consistent model selection if the dimensionality of the true model increases with
n at a suitable rate. The BIC criterion leads to consistent model selection if the
latter dimensionality is fixed. More general penalty functions, depending both on the
sample size n and on |φ |, have been discussed by Zheng and Loh (1995).

Assuming random design, Zuber and Strimmer (2011) related minimization of
RSS(ξ)

φ to multiple testing. They defined correlation-adjusted (marginal) correlation
(CAR) scores as

Ξ = R−1/2RXY ≤ R
k,

where R denotes the k × k correlation matrix of the explanatory variables and RXY ≤
R

k the vector of marginal correlations of each of the predictors with the response Y .
Then, as shown in Sect. 4.8 of Zuber and Strimmer (2011), minimizing RSS(ξ)

φ is (at
least approximately) equivalent to thresholding the squared empirical CAR scores at
the fixed value Ξ2

c = ξ(1− r2)/n, where r2 denotes the coefficient of determination
in the full model. Predictors for which Ξ̂2

j is smaller than Ξ2
c are removed from the

full model by the information criterion. In cases with k > n, where the empirical
correlation matrix R̂ is not invertible, the authors propose to replace R̂ by a shrinkage
estimator, cf., e. g., Schäfer and Strimmer (2005).

By these considerations, (approximate) minimization of RSS(ξ)
φ can equivalently

be expressed as a single-step multiple test. It is therefore near at hand to investigate
further multiple testing schemes for these scores or, again equivalently, to choose
the penalty parameter ξ = ξ(k, n, |φ |) adaptively based on a (stepwise rejective)
multiple test procedure. This proposal has been advocated by Abramovich et al.
(2006) and Benjamini and Gavrilov (2009). Specifically, Abramovich et al. (2006)
suggested the penalty

ξ ∃ ξ(k, |φ |) =
|φ |⎞

ν=1

λ−2
⎠

ε

2

ν

k

⎨

, (7.7)

whereλ−2(β) denotes the squared upper β-quantile of the standard normal distribu-
tion and ε ∗ 1/2 is a given constant. Utilizing this penalty in a backward elimination
scheme (i. e., starting with the full model, decide to remove covariates step-by-step,
until the first local minimum of RSS(ξ)

φ is found) is equivalent to applying the linear

http://dx.doi.org/10.1007/978-3-642-45182-9_4
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step-up test ϕLSU from Definition 5.6 at FDR level ε to p-values which correspond
to the squared standardized estimators α̂2

ν /Var(α̂ν), 1 ∗ ν ∗ k. For a wide range of
truemodel dimensionalities, Abramovich et al. (2006) showed that this selection rule
is asymptotically optimal in the minimax sense. By means of computer simulations,
Benjamini and Gavrilov (2009) demonstrated that forward selection of covariates
(i.e., starting with the null model, decide to include covariates step-by-step, until the
first local minimum of RSS(ξ)

φ is found) in connection with the penalty

ξ ∃ ξ(k, |φ |) =
|φ |⎞

ν=1

λ−2
⎠

ε

2

ν

k + 1 − ν(1 − ε)

⎨

(7.8)

performs well over a broad range of parameter settings. This procedure is equivalent
to applying the step-down test with AORC-based critical values given by (5.22) with
βm ∃ 1 at FDR level ε to the aforementioned p-values.

7.3 Multiple Testing After Model Selection

In this section, we are considered with the problem of effect size quantification after
model selection. More specifically, assume that a model selection procedure Î1 is
applied to the data sample at hand and m̂1 = |Î1(x)| parameters get selected for the
observed data x. Then, a problem of practical interest is to assign a p-value to each
of the m̂1 selected components or to construct a (simultaneous) confidence region
for α based on point estimators α̂i, i ≤ Î1(x). To this end, at least two different
strategies are possible: (a) employ a multivariate (regularized) estimation technique
that implicitly performs model selection by estimating some (potentially many) of
the αi, 1 ∗ i ∗ k, to be exactly zero, (b) apply first Î1 to the sample and estimate
(αi : i ≤ Î1(x)) in a second step of analysis.

7.3.1 Distributions of Regularized Estimators

One particularly popular method for penalized regression is the LASSO (least
absolute shrinkage and selection operator) introduced by Tibshirani (1996) and
motivated as a Bayesian maximum a posteriori estimator by Park and Casella (2008).
In contrast to the rest of this work, we denote an observation in a regression analysis,
i.e., the vector of response values (yi : 1 ∗ i ∗ n), by y ≤ Y (instead of x ≤ X )
in this section. Denoting the likelihood function of the (regression) model under
α ≤ R

k evaluated at the observed data y by l(α, y), the LASSO estimator is given by

α̂ (LASSO) = arg min
α≤Rk

{− ln (l(α, y)) + ξ ⊂α⊂1} (7.9)

http://dx.doi.org/10.1007/978-3-642-45182-9 _5
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for given penalization intensity ξ > 0. The estimator α̂ (LASSO) is said to perform
an implicit variable selection, because it involves an L1-penalty for the vector of
regression coefficients, which often leads to sparse solutions in the sense that only
few estimated components are non-zero. As mentioned before, an interesting and
challenging task is to provide post-hoc effect size quantification for these non-zero
components in terms of p-values or confidence regions. Notice that the usual (mar-
ginal) confidence regions based onWald- or t-tests are prone not to keep the nominal
coverage probability, both because they do not account for multiplicity and because
they are not compatible with the estimation procedure in the sense that they are not
based on the distribution of the estimator α̂ (LASSO), but on that of the ordinary MLE
(or least squares estimator) α̂ .

Asymptotic distributions of regularized estimators have been derived by Knight
and Fu (2000) under the assumption of a multiple linear regression model as consid-
ered in (7.1). Notice that under this type ofmodel, the term− ln (l(α, y)) is an isotone
transformation of the sum of squares of residuals under α , i. e.,

⎩n
i=1(yi − xiα)2,

where xi denotes the i-th row of the design matrix X. In particular, one of the results
of Knight and Fu (2000) regarding α̂ (LASSO) is as follows.

Theorem 7.3 (Theorem 2 of Knight and Fu (2000)). Under the multiple linear
regression model from (7.1), assume that the following two regularity assumptions
hold true.

(i) n−1 max
1∗i∗n

xix
∈
i ∀ 0, n ∀ ∩, where xi denotes the i-th row of the design matrix

Xn for sample size n.
(ii) n−1X∈

n Xn ∀ V, V ≤ R
k×k symmetric and positive definite.

Then, if the penalization intensity ξ = ξn in (7.9) fulfills ξn/
⊆

n ∀ ξ0 ∝ 0, n ∀ ∩,
it holds ⊆

n
(
α̂ (LASSO)(n) − α

)
d∀ argmin(f ), n ∀ ∩, (7.10)

where

f (u) = −2u∈W + u∈Vu + ξ0

k⎞

j=1

⎛
uj sgn(αj)1(αj ∨= 0) + |uj|1(αj = 0)

⎝
, u ≤ R

k,

and W → Nk(0, ϑ 2V).

As argued by the authors, the limiting distribution in (7.10) puts positive point
mass at the value uj = 0 if αj = 0, an interesting property in view of consistent
model selection. Conditions for actual model selection consistency of α̂ (LASSO) have
been provided by Zhao and Yu (2006).

Pötscher and Leeb (2009) extended the findings of Knight and Fu (2000) by
providing the finite-sample distribution of α̂ (LASSO). From the practical point of view,
it is inconvenient that the limiting distribution given in Theorem 7.3 itself depends
on α . Hence, Knight and Fu (2000) considered bootstrap methods for approximating
it. However, a further point worth mentioning is that the assertion of Theorem 7.3
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is a pointwise one with respect to α ≤ Θ . As shown by Leeb and Pötscher (2006,
2008) and Pötscher andLeeb (2009), uniformly (overΘ) consistent estimators for the
cdf of a post-model selection estimator, including α̂ (LASSO), do not exist in general.
This is one of the reasons why one may restrict attention to parameter subspaces in
Definition 7.1.

Feasible LASSO-based confidence regions for α have been developed by Zhang
andZhang (2014) andBühlmann (2013) in the context of linearmodelswithGaussian
noise. The general idea is to correct the bias of α̂ (LASSO) (or a related regularized
estimator like the solution of ridge regression, where an L2-penalty is involved).
van de Geer et al. (2013) generalized this method to non-Gaussian settings and gen-
eralized linear models. For the particular task of multiple testing, Bühlmann (2013)
defines asymptotically valid p-values based on bias-corrected ridge regression.

Theorem 7.4 (Bühlmann (2013)). Assume a multiple linear regression model as
in (7.1), where σ → Nn(0, ϑ 2In). The ridge estimator is given by

α̂Ridge = arg min
α≤Rk

{⊂Y − Xα⊂22/n + ξ ⊂α⊂22}. (7.11)

Assuming k > n, define the projection matrix PX = X∈(XX∈)+X, where (XX∈)+
denotes the Moore-Penrose pseudo inverse of XX∈, and the bias-corrected ridge
estimator by

α̂corr.
j = α̂

Ridge
j −

⎞

ν∨=j

(PX)j,να̂
(LASSO)
ν , 1 ∗ j ∗ k. (7.12)

Then, a stochastic representation of α̂corr. is given by

α̂corr.
j

(PX)j,j
− αj

d= Zj

(PX)j,j
−
⎞

ν∨=j

(PX)j,ν

(PX)j,j

(
α̂

(LASSO)
ν − αν

)
+ bj(ξ)

(PX)j,j
,

where Z = (Z1, . . . , Zk)
∈ → Nk(0, ϑ 2Σ), Σ denotes the covariance matrix of

α̂Ridge, and bj(ξ) = Eα [α̂Ridge] − (PXα)j . Consequently, for appropriately chosen
penalization intensity ξ = ξn, it holds

⊃u ≤ R : lim sup
n∀∩

(
Pα(an,k;j(ϑ̂ )|α̂corr.

j | > u) − Pα(|W | + Δj > u)
)

∗ 0, (7.13)

where an,k;j(ϑ )−1 is the standard deviation of Zj, W → N (0, 1), and Δj denotes an
upper bound such that

Pα

⎫

⎬
k⎭

j=1





|an,k;j(ϑ )

⎞

ν∨=j

(PX)j,ν

(
α̂

(LASSO)
ν − αν

)
| ∗ Δj








∀ 1, n ∀ ∩.
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Hence, an asymptotically valid p-value for the hypothesis Hj : {αj = 0} with two-
sided alternative Kj : {αj ∨= 0} based on (7.13) is given by

pj = 2(1 − λ((an,k;j(ϑ̂ )|α̂corr.
j | − Δj)+)).

Since (Δj : 1 ∗ j ∗ k) can be constructed explicitly, Theorem 7.4 provides a
convenient way to perform multiple testing or to construct confidence regions after
L2-penalized least squares regression. The methods by Zhang and Zhang (2014) and
van de Geer et al. (2013) work in the same spirit.

7.3.2 Two-Stage Procedures

Two-stage procedures that calculate p-values in a data analysis step succeeding a first
selection step of promising candidate variables have been discussed by Wasserman
and Roeder (2009) and Meinshausen et al. (2009). The drawback of such methods is
that they rely on sample splitting such that selection and p-value calculation is per-
formed on independent data sub-samples. While this ensures mathematical validity
of such procedures in a straightforward manner, it leads to low power for detecting
true effects in practice, due to the drastically reduced sample size for effect size esti-
mation. A promising alternative is given by sample-splitting and rejoining, meaning
that the full sample is used to screen candidate variables and the full samples for
these screened variables are also used in the second (p-value calculation and mul-
tiple testing) step. However, calibration of such sample-splitting and rejoining tests
for multiple type I error control of given type and level is extremely challenging,
in particular because the subset pivotality condition (see Definition 4.3) is prone to
be violated such that resampling under the global hypothesis H0 may lead to invalid
p-value thresholds. In practice, one may conduct extensive computer simulations to
assess if a given resampling scheme leads to a conservative p-value threshold.

Berk et al. (2013) showed that the full sample may be used in the second step
of analysis, provided that p-values are appropriately adjusted for multiplicity. In
this respect, simultaneous inference implies valid post-selection inference. However,
notice that, in contrast to Sect. 7.3.1, the underlying interpretation here is that “the
coefficients of excluded predictors are not zero; they are not defined and therefore
do not exist” (Berk et al. (2013), Sect. 2.1).

Theorem 7.5 (Berk et al. (2013)). Assume a normally distributed response vec-
tor Y = (Y1, . . . , Yn)

∈ with values in R
n, where Y → Nn(μ, ϑ 2In). Assume that

the mean vector μ is of interest, while ϑ 2 is a nuisance parameter. Let a design
matrix X ≤ R

n×k be given, the columns of which are denoted by X1, . . . , Xk. Any
model M ≤ M is identified with a subset of {1, . . . , k}, where M is the space
of all considered models (not necessarily equal to the power set of {1, . . . , k}).
Denoting d = min{n, k}, it is assumed that for any model M ≤ M , M =
{j1, . . . , jm}, the submatrix XM = (Xj1 , . . . , Xjm) has rank m ∗ d. In model M,

http://dx.doi.org/10.1007/978-3-642-45182-9_2
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let αM = argminβ≤Rm ⊂μ − XMβ⊂22 denote the target of statistical inference and

α̂M = (X∈
MXM)−1X∈

MY the least squares estimator of αM. Assume that an estimator
ϑ̂ 2 exists which is stochastically independent of all α̂M and fulfills rϑ̂ 2/ϑ 2 → χ2

r for
r degrees of freedom. Let the t-ratio for component j in model M be given by

tj·M = α̂j·M − αj·M
(
(X∈

MXM)−1
)1/2

jj ϑ̂

and define K = K(X,M , ε, r) as the minimal value that satisfies

P

⎠

max
M≤M

max
j≤M

|tj·M | ∗ K

⎨

∝ 1 − ε, (7.14)

where the probability measure P in (7.14) is pivotal. Then, for any model selection
procedure, defined as a measurable map M̂ : Rn ∀ M , Y ∼∀ M̂(Y), the following
assertions hold true.

(a) P

(
maxj≤M̂ |tj·M̂ | ∗ K

)
∝ 1 − ε.

(b) Letting CIj·M(K) =
[
α̂j·M ≥ K

(
(X∈

MXM)−1
)1/2

jj ϑ̂
]
, it holds for all μ and ϑ 2

that P(μ,ϑ 2)

(
⊃j ≤ M̂ : CIj·M(K) ∞ αj·M

)
∝ 1 − ε.

(c) For all μ and ϑ 2, P(μ,ϑ 2)

(
∃j ≤ M̂ : αj·M = 0 and |t(0)j·M | > K

)
∗ ε, where t(0)j·M

denotes the t-statistic for testing Hj : {αj·M = 0}.
Moreover, K(X,M , ε, r) ∗ √dFd,r;ε for all X and M . Hence, a Scheffé correction
(cf. Theorem 3.1) ensures valid post-selection inference.

It appears that the general reasoning of Theorem 7.5 can be applied to a variety of
further models, too.

7.4 Selective Inference

Here, we discuss procedures which combine selection and multiple testing. In par-
ticular, we assume a model with m real-valued parameters and that the researcher is
interested in confidence regions for k < m selected parameters, which typically cor-
respond to the k empirically largest effect sizes estimates. It is clear that the reduced
dimensionality should allow for a relaxed multiplicity correction compared with the
Bonferroni adjustment ε/m, where 1−ε is the nominal coverage probability for the
confidence region in R

k . However, a Bonferroni-type adjustment of the form ε/k
will typically not lead to a correct coverage probability, because it ignores the fact
that selection has taken place. Along these lines, Qiu and Hwang (2007) proposed si-
multaneous confidence intervals for selected parameters in Gaussian random effects
models.
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Theorem 7.6 (Qiu and Hwang (2007)). Consider the model Xi = αi + σi, 1 ∗
i ∗ m, where αi → N (0, τ 2), σi → N (0, ϑ 2), and αi and σi are stochastically
independent. Let X1:m ∗ X2:m ∗ · · · ∗ Xm:m denote the order statistics of the Xi.
Assuming ϑ 2 as known, define for any 1 ∗ j ∗ m and fixed ε ≤ (0, 1) the constant
qj by

P(|Z| < qj) = 1 − ε/j, Z → N (0, 1)

and let

CIi;k =
[
M̂Xi:m ≥ vk(M̂)

]
, where

M̂ = max

⎫

⎬0, 1 − (N − 2)ϑ 2
√⎩m

i=1 X2
i



 ,

v2k(M̂) = ϑ 2M̂(q2k − log(M̂))1(M̂ > 0).

Then it holds for any given (non-random) subset S √ {1, . . . , m} with |S| = k that

⊃τ 2 > 0 : lim
m∀∩Pτ 2

(⊃i ≤ S : αi:m ≤ CIi;k
)

> 1 − ε,

where αi:m corresponds to observation Xi:m.

The case of unknown error variance ϑ 2 in Theorem 7.6 can be treated by Stu-
dentization. For finite m, Qiu and Hwang (2007) proposed to use a truncated version
of M̂, namely, M̂∗

k = max(M̂, Mk), where Mk = 1 − F−1
χ2

m
(ε/k)/(m − 2), ensuring

that M̂∗
k > 0 with high probability. They also treat the case that αi has a mixture

distribution with point mass in 0 and the case of data-dependent selection rules. By
evaluating real data from a microarray experiment, they demonstrate the usefulness
of their methodology for gene expression analyses that we will treat in Chap. 10 of
the present work. Recently, Hwang and Zhao (2013) extended the methodology of
Qiu and Hwang (2007) to cases where error variances may be unequal.

Notice that the methodology of Qiu and Hwang (2007) is targeted towards an
analogue of FWER control, where the family is constituted by the selected para-
meters. Hence, it may be natural to consider also a criterion which is analogous to
FDR control, in particular for cases with high-dimensional parameter spaces. The
latter approach has been introduced by Benjamini and Yekutieli (2005) (see also
Benjamini et al. (2009)).

Definition 7.2. (Benjamini and Yekutieli (2005)). Assume a statistical model with
m real-valued parameters αi, 1 ∗ i ∗ m and corresponding point estimators T =
(T1, . . . , Tm)∈. Consider any measurable selection rule S : Rm ∀ 2{1,...,m}, T ∼∀
S (T) ≡ {1, . . . , m}. DenoteRCI = |S (T)| and assume that for a given realization of
T exactly theRCI confidence intervals for the αi with i ≤ S (T) are to be constructed.
Let VCI ∗ RCI denote the (random) number of these RCI confidence intervals which
fail to cover the associated parameter value. Then, the false coverage-statement rate

http://dx.doi.org/10.1007/978-3-642-45182-9_10
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(FCR) is defined by

FCR = ET

[
VCI

max(RCI , 0)

]

.

Theorem 7.7 (Benjamini and Yekutieli (2005)). Under the assumptions of Defi-
nition 7.2, assume that the components of T are jointly stochastically independent.
Denote by p1, . . . , pm valid p-values corresponding to T1, . . . , Tm. Then, the follow-
ing algorithm controls the FCR at level ε ≤ (0, 1).

1. Let R = max{1 ∗ i ∗ m : pi:m ∗ iε/m}.
2. Select the R parameters for which pi:m ∗ Rε/m.
3. For each selected parameter, construct a (1 − Rε/m) confidence interval.

Notice that the selection criterion in Theorem7.7means to apply the linear step-up
test ϕLSU from Definition 5.6 to p1, . . . , pm and to let R denote the observed number
of rejections of ϕLSU . In this sense, ϕLSU is a selection rule which is compatible
with FCR control for the selected parameters. Benjamini and Yekutieli (2005) also
provided additional conditions under which the algorithm fromTheorem 7.7 controls
the FCR under the PRDS assumption on T . General dependencies can be addressed
by an adjustment factor in analogy to Theorem 5.5. Bayesian and empirical Bayesian
approaches to FCR control have been discussed by Yekutieli (2012) and Zhao and
Hwang (2012).
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Chapter 8
Software Solutions for Multiple
Hypotheses Testing

Abstract As a link between the theoretical Part I and the application-oriented Parts
II and III of the present book, this chapter is concerned with software solutions for
multiple hypotheses testing. In this, we restrict our attention to packages and routines
for the R software environment for statistical computing. In particular, we introduce
theR packagesmultcomp andmulttest, aswell as theR-basedμTOSS software.
The μTOSS software provides unifying interfaces to multcomp and multtest
functions, as well as a graphical user interface. Virtually all multiple tests that are
theoretically described in Part I of this book are implemented in the aforementioned
software packages.Hence, real-life datasets in Parts II and III can andwill be analyzed
by employing μTOSS.

For a smooth transition to Parts II and III of our work, we review some software
solutions for multiple hypotheses testing in this chapter. In this, we restrict our atten-
tion to routines andpackages for the software environmentR for statistical computing.
The R software has become a quasi-standard in research and education, because it
is source-open and freely available for many operating systems. Furthermore, many
contributors from all fields of statistics regularly extend theR software bywriting and
publishing individual R packages which implement specific statistical procedures.
A quality control for these contributed packages is provided by the Comprehensive
R Archive Network (CRAN). Before a new contributed package is released on the
CRAN server, it has to pass a variety of test runs.

The real data applications that we are going to discuss in the following chapters
of the present work will be evaluated by making use of software that we describe
here. In particular, virtually all multiple tests that we have theoretically described in
previous chapters are implemented in the following software packages.
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8.1 The R Package multcomp

The multcomp package provides FWER-controlling simultaneous test procedures
for testing linear hypotheses in (rather) general parametric models which fulfill
certain regularity assumptions entailing a central limit theorem for an estimator
ϑ̂ of the parameter ϑ of interest, cf., among many others, Hothorn et al (2008)
and our Sect. 4.2. The backbone of all multcomp procedures is constituted by
numerical integration routines for multivariate t- and normal distributions taken
from the mvtnorm package, see the book by Genz and Bretz (2009) for details. A
multcomp manual with several real data examples, together with some method-
ological descriptions of the covered multiple test procedures, has been published by
Bretz et al. (2010).

The general mechanism for computing a multiplicity-adjusted critical value cα

(say) to which the components of an estimator or a (linear) transformation thereof
have to be compared is in the multcomp package (in a nutshell) as follows: a broad
class of model objects in R allows for estimating the vector ϑ of model parameters
by some estimator ϑ̂ , for instance by maximum likelihood or by the method of
moments. The estimated coefficients ϑ̂1, . . . , ϑ̂k can be read out by utilizing the
coef function. In addition, a numerical approximation of the (limiting) covariance
matrix of the estimator ϑ̂ is available by utilizing the vcov function. Then, assuming
that the model fulfills the regularity assumptions entailing a central limit theorem
for ϑ̂ , the results of these two function calls are piped into the appropriate function
from the mvtnorm package which in turn computes cα in a numerically stable and
efficient manner. The linear hypotheses that have to be tested can be specified by
means of contrast matrices and right-hand side vectors as described around (4.7).
Some standard contrast matrices (corresponding, for example, to the problems of
multiple comparisons with a control or all pairwise comparisons) are already pre-
defined and available in the software. For this entire workflow, the rather generic
wrapper routine glht (general linear hypotheses testing) is convenient to use.

A further convenient feature of the multcomp package is the possibility to illus-
trate the decision pattern of the multiple test procedure graphically by the compact
letter display based on the algorithm by Piepho (2004). This display facilitates the
interpretation and the communication of the test results. The corresponding
multcomp routine for plotting the compact letter display is called plot.cld.

8.2 The R Package multtest

The packagemulttest is a valuable tool for performing resampling-basedmultiple
hypotheses testing according to themethods described byWestfall and Young (1993)
and Dudoit and van der Laan (2008), respectively. Since the package is no longer
available via CRAN, but has been integrated into the Bioconductor bundle, it has to
be installed via the R console by typing the following commands.

http://dx.doi.org/10.1007/978-3-642-45182-9_4
http://dx.doi.org/10.1007/978-3-642-45182-9_4
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source("http://bioconductor.org/biocLite.R")
biocLite("multtest")

The threemain functions in themulttestpackage aremt.maxT and mt.minP
on the one hand and MTP on the other hand. The functions mt.maxT and mt.minP
implement the maxT and minP permutation procedures by Westfall and Young
(1993), respectively. With respect to the marginal models per individual compar-
ison, two-sample t-tests (for equal variances and according to Welch (1938)), the
nonparametric Mann-Whitney-Wilcoxon two-sample test (cf. Mann and Whitney
(1974), Wilcoxon (1945)) and different F-tests for cases with more than two groups
are available, together with nonparametric counterparts like the Kruskal-Wallis test
and the Friedman test (see, for instance, Chaps. 6 and 7 in the textbook by Hollander
and Wolfe (1973) for details of the latter tests).

The function MTP can be used for a variety of multiple one- and k-sample tests
that have been described by Dudoit and van der Laan (2008) and in the references
therein. In addition to permutation-based methods, the latter function also includes
several nonparametric bootstrap procedures. Furthermore, the multtest package
also implements a variety of p-value based multiple tests that we have described
in Chaps. 3 and 5, including Bonferroni and Šidák corrections (cf. Examples 3.1
and 3.2), Bonferroni-Holm and Šidák-Holm tests (see Definition 5.3) and Hom-
mel’s step-up test (see Definition 5.4) for FWER control, as well as linear step-
up tests for control of the false discovery rate as described in Definition 5.6 and
Theorem 5.5, among others. The way of implementation of these p-value based pro-
cedures in the multtest package is by means of adjusted p-values in the function
mt.rawp2adjp. This means that the function mt.rawp2adjp takes marginal,
“raw” (unadjusted) p-values p1, . . . , pm as input and transforms them into adjusted
p-values, such that the adjusted p-value padj.i (say) corresponding to the original
p-value pi , where 1 ≤ i ≤ m, is smaller than α if and only if the chosen multiple
test procedure would reject hypothesis Hi at FWER- or FDR-level α, respectively.

8.3 The R-based µTOSS Software

The μTOSS (multiple hypothesis testing in an open software system) software has
been programmed in 2010 at Berlin Institute of Technology as a project within
the Harvest programme of the PASCAL2 European Network of Excellence. It is
constituted by the two R packages mutoss (for running multiple tests on the R
console) and mutossGUI (implementing a graphical user interface, see Sect. 8.3.2
below for details). This provides an easy-to-extend platform for multiple hypotheses
testing.

For researchers, the console oriented mutoss package features a convenient uni-
fication of interfaces for multiple test procedures, in particular including standard-
ized wrapper functions to access the routines from the multcomp and multtest
packages that we have described in Sects. 8.1 and 8.2, respectively. Furthermore,

http://dx.doi.org/10.1007/978-3-642-45182-9_6
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the software provides implementations of recent multiple test procedures that are to
the best of our knowledge not available elsewhere, for example AORC-based step-
up-down tests, see Sect. 5.5. Every includedmethod comes with a precise description
of its usage, its assumptions and appropriate references, cf. our discussion around
Fig. 8.3 below. This is meant to be of help both to programmers who want to extend
μTOSS and to end users who are typically not experts in the vast diversity of existing
multiple test procedures.

Another convenient feature of μTOSS is that it provides helper functions facil-
itating the setup of benchmark simulations for comparison of competing methods,
see Sect. 8.3.1. An extended user’s guide to the μTOSS software has been published
by Blanchard et al. (2010). In particular, Blanchard et al. (2010) explain in detail
how exactly to use the aforementioned wrapper functions for accessing existing R
packages for multiple testing via μTOSS and how to integrate own R implementa-
tions of specific multiple tests into the μTOSS software and into the graphical user
interface automatically, i. e., without having to contact the μTOSS programmers.

8.3.1 The µTOSS Simulation Tool

It is fair to say that up to now every research group in the multiple testing com-
munity uses their own implementations, making (simulation) study evaluations and
related results not entirely comparable. Hence, a standardization of input and output
parameters for multiple test procedures of the same type (for instance, step-up-down
tests) is of primary importance in order to set up comparison benchmarks between
different procedures in an easy manner. This is of use both for users wanting to
explore the output of different methods on a given dataset, and for developers of
new methodology who want to compare the performance of their method against
reference procedures on simulated data.

Given the importance of the latter use cases, functions for facilitating the setup of
large computer simulations are included as part of μTOSS. The simulation platform
consists of just two functions, simulation() and gatherStatistics(),
which are essentially automating loop work for the user.

To illustrate the simplicity of this approach, consider the following R code.

#############################
# Perform simulations #
#############################
my_sim <- simulation(replications = 1000,

DataGen = list(funName="AR1",
fun=generate_AR1_p_values,
m=my_m, m0=my_m0, rho=my_rho),
listOfProcedures =
list(list(funName="Hommel",

fun = hommel,

http://dx.doi.org/10.1007/978-3-642-45182-9_5


8.3 The R-based μTOSS Software 121

alpha = 0.05,
silent = TRUE),

list(funName="LSU",
fun=BH, alpha = 0.05,
silent = TRUE)))

result <- gatherStatistics(my_sim,
listOfStatisticFunctions =
list(V.ge.0 = V.greater.Zero, FDP=FDP),
listOfAvgFunctions = list(MEAN = mean))

#############################
# Simulation results #
#############################
print(result)

Without going into too much detail, the aim of this computer simulation is to
compare the performance of Hommel’s step-up test (see Definition 5.4) for FWER
control and the linear step-up test for control of the false discovery rate (seeDefinition
5.6) in the case that marginal p-values p1, . . . , pm are generated by some autore-
gressive time series model of order 1, the implementation of which is not displayed
here, but hidden in the function generate_AR1_p_values. In this, the number
m0 of true hypotheses and the value ρ of the AR(1) parameter vary, whereas the
total number m = 5 of hypotheses to be tested stays fixed. After the execution of the
two mutoss functions simulation() and gatherStatistics() with the
respective parameter lists as input as shown in the R code from above, the mutoss
software automatically outputs a list of the simulation results as follows (only partly
shown).

$statisticDF
funName m m0 rho method alpha V.ge.0.MEAN FDP.MEAN

1 AR1 5 1 0.1 Hommel 0.05 0.041 0.00820000
2 AR1 5 1 0.1 LSU 0.05 0.041 0.00820000
3 AR1 5 3 0.1 Hommel 0.05 0.054 0.01826667
4 AR1 5 3 0.1 LSU 0.05 0.090 0.03043333
5 AR1 5 5 0.1 Hommel 0.05 0.054 0.05400000
6 AR1 5 5 0.1 LSU 0.05 0.054 0.05400000
7 AR1 5 1 0.25 Hommel 0.05 0.054 0.01080000
8 AR1 5 1 0.25 LSU 0.05 0.054 0.01080000
9 AR1 5 3 0.25 Hommel 0.05 0.053 0.01816667
10 AR1 5 3 0.25 LSU 0.05 0.091 0.03166667
11 AR1 5 5 0.25 Hommel 0.05 0.052 0.05200000
12 AR1 5 5 0.25 LSU 0.05 0.052 0.05200000

This list can then be written into a file or included into a manuscript, etc.
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Fig. 8.1 Screenshot of the μTOSS graphical user interface when initially invoked

8.3.2 The µTOSS Graphical User Interface

The μTOSS graphical user interface is designed on the one hand to facilitate the
usage of mutoss functions without having to program on the R console and on the
other hand as some kind of online user’s guide for finding appropriate methods for
a given specification of a multiple testing problem.

To explain the latter approach, Fig. 8.1 displays a screenshot of theμTOSS graph-
ical user interface when started by executing the mutossGUI() command on the R
console. The panel of buttons on the left-hand side ismeant to be traversed from top to
bottom, leading the user through the entire workflow of reading in the data, defining
the statistical model and the multiple test problem at hand, choosing an appropriate
multiple test for the defined multiple test problem and displaying and saving the test
results. Buttons subsequently only become clickable once the respectively required
information has been provided. Furthermore, once themultiple test problem has been
defined, all mutoss functions which are unsuitable for this problem are hidden from
the user and can thus not be invoked by choosing a method from the displayed menu
list, see Fig. 8.2.

In the example displayed in Fig. 8.2, the user loaded a family of marginal p-values
into the mutoss system and specified that FDR control at level 0.05 is targeted.
Hence, only FDR-controllingmultiple tests operating onmarginal p-values are listed
when clicking the button labeled “Rejected”.

Finally, before the chosen multiple test procedure is actually executed, a pop-up
window informs the user about the procedure and its underlying assumptions and
provides references to underlying publications, see Fig. 8.3. Thus, the user can check
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Fig. 8.2 Screenshot of the μTOSS graphical user interface: Selection of appropriate multiple test
procedures

if the chosen multiple test is really appropriate and potentially choose another one if
this is not the case.

The right subwindow of the μTOSS graphical user interface displays the results
of the application of the chosen multiple test procedure to the user’s dataset and
further diagnostic plots and model parameters. We will provide examples of this in
later chapters based on concrete datasets.

The implementation of mutossGUI is based on the rJava package, guarantee-
ing ahighdegree of platform independence,meaning thatwhenever a Java installation
is present on the user’s operating system, mutossGUI should work with a more or
less unified look and feel.
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Fig. 8.3 Screenshot of the μTOSS graphical user interface: Information about Tukey’s HSD test
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Chapter 9
Genetic Association Studies

Abstract In genetic association studies, one analyzes associations between a (poten-
tially very large) set of genetic markers and a phenotype of interest. This is a par-
ticular multiple test problem which has several challenging aspects, for instance the
high dimensionality of the statistical parameter and the discreteness of the statisti-
cal model. In this chapter, we discuss how to fine-tune multiple tests that we have
described theoretically in Part I in order to address these challenges. In particular,
we propose the usage of realized randomized p-values in data-adaptive multiple tests
and show how linkage disequilibrium among genetic markers can be employed to
construct simultaneous test procedures and to establish probability bounds which
lead to effective numbers of tests. Finally, we analyze (positive) dependency prop-
erties among test statistics and the applicability of standard margin-based multiple
tests. The methods are applied to two real-life datasets.

From the statistical point of view, genetic association studies lead to the problem of
simultaneous categorical data analysis. Here, we focus on specific study designs
in which associations between a set of bi-allelic genetic markers (typically sin-
gle nucleotide polymorphisms, SNPs for short) and a dichotomous phenotype (also
referred to as endpoint, typically a disease indicator) are to be analyzed in a case-
control setup based on a sample of unrelated individuals. Furthermore, we assume
that data have already been pre-processed, including quality control steps like for
instance tests for Hardy-Weinberg equilibrium in controls, cf., among others, Finner
et al. (2010).

The association analysis will be formalizedmathematically by a family of tests for
association in (2× 2) or (2× 3) contingency tables. For a detailed discussion of the
appropriate choice of table layout according to genetic modeling, see, for instance,
Chap. 10 in the textbook by Ziegler and König (2006). Our proposed methodology
takes into account the discreteness of the test problem, the dependency structure
among geneticmarkers which can technically be described by linkage disequilibrium
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(LD) matrices, and the fact that (particularly in replication studies) the existence of
a non-negligible proportion of false null hypotheses can be assumed.

9.1 Statistical Modeling and Test Statistics

In what follows, m denotes the number of considered markers. In this, markers can
be both genotyped (observed) or imputed (i.e., estimated using population genetics
techniques and a priori information from a reference population, see Marchini et al.
(2007), Willer et al. (2008)). Imputed marker genotypes usually have a very high
degree of certainty, so that they are widely considered as regular observed genotypes
(cf. Howie et al. (2009), Li et al. (2012), The 1000 Genomes Consortium (2010)).
Hence, we will not distinguish between actually observed and imputed genotypes.

The data for one specific genetic locus can be organized in a contingency table.
Let us assume that the two rows of this table correspond to the phenotype and its
(two or three) columns contain the marker counts. Since we want to treat the cases
of (2 × 2) and (2 × 3) tables simultaneously all along the way, we will denote
by n the vector containing all the marginals of the table. Therefore, n can have
different dimensionality depending on the context. In the (2×2) table case, we have
n = (n1., n2., n.1, n.2) ∈ N

4 while we have n = (n1., n2., n.1, n.2, n.3) ∈ N
5 in the

(2 × 3) table case. In both cases, we define the number of observational units by
N = n1. + n2.. In the case of a (2 × 3) table, N is therefore equal to the number
of individuals in the study, while it equals the number of alleles (twice the number
of study participants) in the case of a (2 × 2) table. Accordingly, an observed table

x (say) takes the form x =
(

x11 x12
x21 x22

)

∈ N
2×2 in case of a (2 × 2) table and

x =
(

x11 x12 x13
x21 x22 x23

)

∈ N
2×3 in the (2 × 3) case, see Table9.1 for a schematic

representation.
Aim of the analysis is to test the null hypothesis H of no association of pheno-

type and the genetic marker corresponding to x against its (two-sided) alternative
hypothesis K that phenotype and marker are associated.

The conditional probability of observing x given n under H will be denoted by
f (x|n) and is (in a compact, self-explaining notation) given by

Table 9.1 Schematic representation of data for an association test problem at one genetic locus,
where the two possible alleles are denoted by A1 and A2

Genotype/Allele A1A1 A1A2 A2A2 A1 A2

Phenotype 1 x11 x12 x13 n1. x11 x12 n1.
Phenotype 0 x21 x22 x23 n2. x21 x22 n2.
Absolute count n.1 n.2 n.3 N n.1 n.2 N

The left part of the table corresponds to a genotypic association test problem and the right part to
an allelic association test problem
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f (x|n) =
∏

n∈n n!
N !∏x∈x x! . (9.1)

One classical chi-square statistic for assessing association of the phenotype and
the genetic marker from the observed data x is given by

Qassoc.(x) =
∑

r

∑

c

(xrc − erc)
2

erc
, (9.2)

where r runs over the rows and c over the columns of x. In (9.2), the numbers
erc = nr.n.c/N denote the (under H) expected cell counts given N and the marginal
counts contained in n. The statistic Qassoc. is commonly referred to as Pearson’s
chi-squared statistic for association.

Notice that the exact (non-asymptotic) distribution of Qassoc.(X), conditional to
n, is implied by (9.1). Among others, Weir (1996) and Wigginton et al. (2005) have
proposed to utilize this conditional distribution for the calculation of an “exact”
p-value which is given by

passoc.(x) =
∑

x̃

f (x̃|n), (9.3)

where the summation is carried out over all tables x̃ with marginals n for which
Qassoc.(x̃) ≤ Qassoc.(x).

However, for the calculationof effective numbers of tests basedon theLDstructure
in the target population (see Sect. 9.3 below), unconditional asymptotic distributions
are more tractable. Under the null hypothesis H, the asymptotic (N → ≡) distrib-
ution of Qassoc.(X) is chi-squared with α degrees of freedom, where α = 1 for the
(2×2) table case and α = 2 for the (2×3) table case. Hence, an asymptotic p-value
can be calculated as p̃assoc.(x) = 1 − Fσ2

α
(Qassoc.(x)).

In the case of a genotypic association test problem (where the three possible allele
pairs are of interest), often trend tests are considered instead ofmere association tests.
The corresponding (Cochran-Armitage) trend test statistic Qtrend is given by

Qtrend(x) =
[∑3

c=1 x1c(wc − w̄)
]2

p(1 − p)
∑3

c=1 n.c(wc − w̄)2
. (9.4)

In (9.4), p = n1./N denotes the relative frequency of cases, the weights (wc :
1 ∀ c ∀ 3) are used to quantitatively express the influence of the occurrence of
the risk allele on the disease risk and w̄ = ∑3

c=1 n.cwc/N . It is worth noticing that
Qtrend(x) = Nr2wy, where rwy is Pearson’s correlation coefficient of the two vectors
w and y, each of length N . Each element in w and y, respectively, corresponds to one
observational unit. The vector w ∈ R

N contains the weights associated with the cells
(columns) towhich the observational units belong and the elements in y ∈ {0, 1}N are
disease indicators, so that yi = 1 if and only if observational unit i corresponds to a
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case. Since, by definition of w̄,
∑3

c=1 x1c(wc − w̄) = −∑3
c=1 x2c(wc − w̄), the value

Qtrend(x) is invariant to the coding with respect to the disease status. Furthermore,
Qtrend is the score statistic for testing the hypothesis {ϑ = 0} in the model Θc = ϕ +
ϑwc, 1 ∀ c ∀ 3, as noted byAgresti (2002), p. 182. In this,Θc denotes the probability
that a randomly chosen individual from the target population is positive with respect
to the target event (i.e., is a case), given that his/her genotype corresponds to column c.
Popular choices for the weights are w = (w1, w2, w3)

∗ = (0, 1, 2)∗ (coding an
additive risk allele contribution) or w1 = ∑n.1

k=1 k/n.1, w2 = ∑n.1+n.2
k=n.1+1 k/n.2, w3 =

∑N
k=n.1+n.2+1 k/n.3 (average rank scores).
In total analogy to (9.3), an exact p-value corresponding toQtrend can be computed.

Moreover, the asymptotic distribution of Qtrend(X) is chi-squared with one degree of
freedom under H.

The two statistics Qassoc. and Qtrend are very widely considered in practice, but
they are by far not the only possible choices. Several other test statistics and p-values
for the association test problem are discussed in Chap.3 of Zheng et al. (2012), by
Langaas and Bakke (2013) and by Dickhaus et al. (2012); see also the references
therein.

To keep notation feasible, we restricted our attention up to now to one specific
genetic locus. However, for the subsequent discussion it is necessary to introduce
notation for the practically relevant case that m > 1 markers are simultaneously
under investigation. To this end, Definition 9.1 extends the sampling model to this
case.

Definition 9.1. Consider a statisticalmodel (X ,F , (Pε)ε∈Φ)which canbedecom-
posed into local statistical models (Xj,Fj, (Pεj )εj∈Φj )1∀j∀m, such that

X = m×
j=1

Xj, F = m∨
j=1

Fj, Φ = m×
j=1

Φj, Pεj (Aj) = Pε(Θ−1
j (Aj)) for Aj ∈ Fj,

where Θj : (X ,F ) → (Xj,Fj) denotes the projection on the j-th coordinate.

(a) Assume that for all 1 ∀ j ∀ m, Xj = N
2×2 and Fj = 2Xj . An observation

xj =
(

x(j)
11 x(j)

12

x(j)
21 x(j)

22

)

∈ Xj necessarily fulfills x(j)
11 + x(j)

12 = n1. and x(j)
21 + x(j)

22 = n2.

by experimental design. Denoting themultinomial distributionwith c categories,
sample size n and vector of probabilities p byMc(n, p), we have that, for every
j, the pair of random variables (X(j)

11 , X(j)
12 ) is distributed as M2(n1., pj), with

pj = (p1j, p2j)
∗ taking the role of εj in our general setup. We are considered

with the point null hypothesis Hj : pj = Pj, where Pj = (P1j, P2j)
∗ denotes the

vector of (expected) allele frequencies at position j in the entire target population
(which is unknown in practice). Canonical estimators for P1j and P2j are given

by p̂1j = n(j)
.1 /N , p̂2j = n(j)

.2 /N , where n(j)
.1 = x(j)

11 + x(j)
21 and n(j)

.2 = x(j)
12 + x(j)

22
denote the column counts in the j-th contingency table. We refer to the resulting
multiple test problem as a multiple allelic association test problem.

http://dx.doi.org/10.1007/978-3-642-45182-9_3
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(b) Assume that for all 1 ∀ j ∀ m, Xj = N
2×3 and Fj = 2Xj . An observation

xj =
(

x(j)
11 x(j)

12 x(j)
13

x(j)
21 x(j)

22 x(j)
23

)

∈ Xj again fulfills x(j)
11 + x(j)

12 + x(j)
13 = n1. and x(j)

21 + x(j)
22 +

x(j)
23 = n2. by experimental design. For every j, the triple of random variables

(X(j)
11 , X(j)

12 , X(j)
13 ) is distributed as M3(n1., pj), with unknown parameter vector

pj = (p1j, p2j, p3j)
∗. The point hypothesis Hj that we are concerned with is

then given by Hj : pj = Pj = (P1j, P2j, P3j)
∗, where Pj denotes the vector of

expected genotype frequencies at position j in the entire target population, in
analogy to part (a). We let n(j)

.1 = x(j)
11 + x(j)

21 , n(j)
.2 = x(j)

12 + x(j)
22 , n(j)

.3 = x(j)
13 + x(j)

23 ,

and p̂ij = n(j)
.i /N , i = 1, 2, 3, and refer to the resulting multiple test problem as

a multiple genotypic association test problem.

Notice that Definition 9.1 suggests to re-formulate the association test problem
at locus j as a goodness-of-fit test problem, where the empirical distribution of the
observed genotype frequencies in cases is compared with the vector (p̂ij : i ≤ 1) of
relative column counts. In practice, in particular for large sample sizes N and n2./N
not too small, this re-formulation will typically not make a decisive difference, but
it facilitates the mathematical treatment of the multiple association test problems,
as remarked by Moskvina and Schmidt (2008), cf. Appendix A in their paper. To
illustrate this, consider the (2 × 2) table case. Let Θ = (Θ1, Θ2)

∗ with Θ2 = 1− Θ1
denote the vector containing the (true unknown) probabilities for cases to exhibit the
alleles corresponding to columns 1 or 2, respectively. Then, the statistic

QPearson(X(j)) = (X(j)
11 − n1.p̂1j)

2

n1.p̂1j
+ (X(j)

12 − n1.p̂2j)
2

n1.p̂2j
= (X(j)

11 − n1.p̂1j)
2

n1.p̂1j p̂2j
(9.5)

is formally identical to Pearson’s chi-squared statistic for goodness-of-fit. It is
asymptotically equivalent to the likelihood ratio statistic for the point hypothesis
Θ = (p̂1j, p̂2j)

∗ (see, e.g., Spokoiny and Dickhaus (2014), Sect. 6.3). While Qassoc.
involves four summands,QPearson only involves two,making themathematical analy-
sis much simpler, especially with respect to the (asymptotic) correlation structure
among different chi-square statistics corresponding to different genomic positions.
Notice that Qassoc.(x(j)) = NQPearson(x(j))/n2., both in the (2 × 2) table case and in the
(2 × 3) table case.

9.2 Estimation of the Proportion of Informative Loci

Often, genetic association studies are planned to consist of two stages: A screening
stage and a validation stage, with independent data. From the statistical perspective,
this two-stage approach has already been described in detail by Wasserman and
Roeder (2009) and Meinshausen et al. (2009), cf. Sect. 7.3.2. For instance, one may

http://dx.doi.org/10.1007/978-3-642-45182-9_6
http://dx.doi.org/10.1007/978-3-642-45182-9_7
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apply a screening criterion (for example, FDR control at level 1/2 as applied by
Dickhaus et al. (2012)) to the data from the first stage. Only markers that are selected
by a multiple test employing this screening criterion are considered in the second
(validation) stage. This may be considered as some kind of model selection. Then,
in the validation stage, the total number m of (remaining) hypotheses will typically
be much smaller than the number of markers that have initially been considered.
Furthermore, the proportion Θ0 of true hypotheses among the m (remaining) ones
will also be much smaller than 1, making the usage of data-adaptive multiple tests
relying on a pre-estimation of Θ0 a natural choice; cf. Sect. 3.1.3.

However, if this strategy is pursued in connection with exact (conditional)
p-values as defined in (9.3), it is recommendable to transform these p-values into
realized randomized p-values according to Theorem 2.3. Let us illustrate the advan-
tage of realized randomized p-values in this context by a real-data example. The
underlying dataset has been generated by the study reported by The Wellcome Trust
Case Control Consortium (2007). Here, we restrict attention to the substudy for
Crohn’s disease and mimic the situation of a replication study. To this end, we first
split the full dataset comprising N = 4,688 individuals into two halves of size N/2
each. To the first split, we apply a screening for candidate loci by applying the linear
step-up test from Definition 5.6 at FDR level 1/2. This leads to 1,778 rejections
(candidates). Then, in the second split, we calculate p-values only for these pre-
screened positions. Fig. 9.1 displays ecdfs of realized randomized and nonrandom-
ized p-values corresponding toQassoc. for them = 175 pre-screened lociwhich are on
chromosome 1.

The advantage of working with realized randomized p-values (solid curve in
Fig. 9.1) can clearly be observed. For the standard choice φ = 1/2 for the Schweder-
Spjøtvoll estimator cf. (3.2), we obtain Θ̂ rand.

0 (1/2) = 0.777 in the case that we utilize
realized randomized p-values in this estimation procedure, while utilization of the
non-randomized counterparts results in Θ̂non-rand.

0 (1/2) = 0.937.
Qualitatively, the same behavior of the ecdfs of randomized and non-randomized

p-values can be observed if all 1,778 pre-screened loci on autosomes are analyzed
together, see Fig. 9.1 of Dickhaus et al. (2012). A counter-argument against the
strategyof estimatingΘ0 byutilizing realized randomizedp-valuesmaybe that results
depend on pseudo random numbers and are therefore not entirely reproducible. If
fully reproducible results are wanted, it is possible to replace Θ̂ rand.

0 by its conditional
expectation with respect to randomization, as described in Appendix III of Dickhaus
et al. (2012).

9.3 Effective Numbers of Tests via Linkage Disequilibrium

The underlying biological (inheritance) mechanism entails strong (positive)
correlations between chi-square statistics corresponding to loci which are in linkage
disequilibrium with each other. Linkage disequilibrium is the technical way to refer
to correlations between the allelic states of different genetic markers in the same

http://dx.doi.org/10.1007/978-3-642-45182-9_3
http://dx.doi.org/10.1007/978-3-642-45182-9_3
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Fig. 9.1 Empirical cumulative distribution functions of realized randomized and nonrandomized
p-values corresponding to Qassoc.. Data are taken from the Crohn’s disease substudy of The Well-
come Trust Case Control Consortium (2007), Chromosome 1

chromosome, see Lewontin and Kojima (1960). In human populations some com-
binations of alleles along the same chromosome (haplotypes) occur at frequencies
that are different from what would be expected out of random combinations of the
markers’ allelic frequencies. As discussed in Chap.4, strong positive correlations
among test statistics help to reduce the “effective multiplicity” of the multiple test
problem.

The following results are taken from Dickhaus and Stange (2013). They refer to
the notation developed in Definition 9.1 and provide a stochastic representation for
the asymptotic distribution of the vector of m chi-square statistics for association
at m genomic positions under the global hypothesis H0, both in the multiple allelic
association test model (Lemma 9.1) and in the multiple genotypic association test
model (Lemma 9.2). With these asymptotic distributions at hand, a simultaneous test
procedure for FWER control can precisely be calibrated, at least for large sample
sizes N . We may remark here that Lemma 4.1 applies, entailing that the resulting
simultaneous test procedure controls the FWER strongly (at least asymptotically).

Lemma 9.1. Consider the multiple allelic association test model with m (2 × 2)-
contingency tables. Let Z = (Z1, . . . , Zm)∗, where, for all 1 ∀ j ∀ m,

http://dx.doi.org/10.1007/978-3-642-45182-9_4
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Zj =
√

N

n2.

X(j)
11 − n1.p̂1j
√

n1.p̂1j p̂2j
.

Then, the distribution of Z converges weakly toNm(0,λ) under the global hypothesis
H0 as N → ≡. In this, λij = ξij (say), and ξij is equal to Pearson’s haplotypic cor-
relation coefficient of markers i and j (which is referred to as linkage disequilibrium
coefficient in the genetics literature and is tabulated for several target populations).
Notice that Qassoc.(X(j)) = Z2

j , 1 ∀ j ∀ m.

Lemma 9.2. Consider the multiple genotypic association test model with m (2×3)-
contingency tables. Let, for 1 ∀ j ∀ m,

Z1,j = X(j)
11 − n1.P1j

√
n1.P1j(1 − P1j)

, (9.6)

Z2,j = P2j(X
(j)
11 − n1.P1j) + (1 − P1j)(X

(j)
12 − n1.P2j)

√
n1.P2j(1 − P1j)(1 − P1j − P2j)

. (9.7)

Then, for N → ≡, (Z1,j, Z2,j)
∗ converges under Hj in distribution to (Z1, Z2)

∗
with (Z1, Z2)

∗ ∓ N2(0, E2), the standard normal distribution on R
2. Furthermore,

Qassoc.(X(j)) converges in distribution to Z2
1+Z2

2 . Finally, under the global hypothesis
H0, it holds for all1 ∀ j, k ∀ m: For any tuple (Ξ1, Ξ2) ∈ {1, 2}2, the joint distribution
of (ZΞ1,j, ZΞ2,k)

∗ converges weakly to a bivariate normal distribution with correlation
coefficient given by

lim
N→≡ Cov(ZΞ1,j, ZΞ2,k) = rj,k(Ξ1, Ξ2) (say). (9.8)

Consequently, the vector Qassoc.(X) = (Qassoc.(X(1)), . . . , Qassoc.(X(m)))∗ asymp-
totically follows a (generalized) multivariate central chi-squared distribution under
H0, with correlation structure given by

lim
N→≡ Cov(Qassoc.(X(j)), Qassoc.(X(k))) = 2

2∑

Ξ1=1

2∑

Ξ2=1

r2j,k(Ξ1, Ξ2). (9.9)

The correlations rj,k(Ξ1, Ξ2) in (9.8) only depend on the expected genotype frequen-
cies Pij, Pik, i = 1, 2, 3 and on the second-order joint probabilities of genotype
pairs.

The results of Lemmas 9.1 and 9.2 can straightforwardly be used to calculate
effective numbers of tests based on probability bounds as described in Sect. 4.3. To
give numerical examples, Dickhaus et al. (2012) applied the product-type probability
bound ϑ2 from (4.14) to the Crohn’s disease sub-dataset from The Wellcome Trust
Case Control Consortium (2007) and obtained based on Lemma 9.1 an effective
number of 329,079.66 association tests, whereas the total number of markers under

http://dx.doi.org/10.1007/978-3-642-45182-9_4
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consideration in this sub-study is (after quality control) equal to m = 455,086.
Application of the same bound to the small-scale replication study reported byHerder
et al. (2008), comprising m = 44 SNPs on ten different genes, led to an effective
number of 16.73 tests. The explicit numerical formula for the effective number of
tests based on Lemma 9.1 in connection with ϑ2 from (4.14) has originally been
derived by Moskvina and Schmidt (2008), see part (ii) of Example 4.1.

9.4 Combining Effective Numbers of Tests
and Pre-estimation of π0

Based on the considerations in Sects. 9.2 and 9.3, it is near at hand to construct a
simultaneous test procedure that takes into account both the effective number of tests
and the estimated proportion of informative loci. Along these lines, Dickhaus et al.
(2012) proposed the following algorithm.

Algorithm 9.1

1. For j = 1, . . . , m, build the contingency table xj carrying the information gath-
ered for association of marker j and the phenotype under investigation.

2. For j = 1, . . . , m, compute the realized randomized p-value prand.(xj, uj) and the
non-randomized version p(xj) (say) by making use of one of the testing strategies
described in Sect.9.1 and the realization uj of an UNI[0, 1]-distributed random
variable which is stochastically independent of Xj .

3. Compute Θ̂0(φ) by calculating the ecdf. of (prand.(xj, uj), j = 1, . . . , m). In
practice, it is convenient to use the value φ = 0.5 for the tuning parameter.

4. Determine the effective number of tests by utilizing correlation values obtained
from an appropriate LD matrix of the m markers. Denote the resulting (estimated)
effective number of tests by Eff.

5. For a pre-defined FWER level ϕ, determine the list of associated markers by
performing the multiple test ν = (νj, j = 1, . . . , m), where νj(xj) = 1p(xj)∀t∝
with t∝ = ϕ/(Eff · Θ̂0(φ)).

Remark 9.1.

(a) Notice that the realized randomized p-values are only used in the third step of
Algorithm 9.1 for estimation of Θ0, while for final decision making in the fifth
step the non-randomized p-values are used. This ensures accurate estimation of
Θ0 on the one hand and reproducibility of the test result on the other hand.

(b) The underlying assumption of Algorithm 9.1 is that the pairwise marker corre-
lations are on average of not smaller magnitude in the group of markers which
are not associated with the phenotype under investigation than in the group of
informative markers. This assumption can be formalized as the relationship

Θ0 = M0

M
≤ Eff(I0)

Eff
or, equivalently, Θ0Eff ≤ Eff(I0), (9.10)

http://dx.doi.org/10.1007/978-3-642-45182-9_4
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where Eff(I0) denotes the effective number of tests within the subset of markers
for which the null hypothesis of no association with the phenotype holds. Of
course, assumption (9.10) cannot be verified in practice, because I0 is unobserv-
able. However, it appears natural, because informative markers are assumed to
be sparsely distributed among the genome and consequently most of their pair-
wise LD values should be of low magnitude. Non-associated markers (with the
phenotype), however, lie dense and should have on average a higher pairwise
correlation.

By means of computer simulations, Dickhaus et al. (2012) demonstrated that
Algorithm 9.1 keeps the FWERaccurately and outperforms previousmethods, which
only make use of the LD structure or the estimated proportion of true/false null
hypotheses, in terms of multiple power.

9.5 Applicability of Margin-Based Methods

AlthoughLDdatabases like the one byThe InternationalHapMapConsortium (2005)
become more and more reliable and technical developments allow for larger and
larger studies such that LDmatrices may be estimated from the data in controls of the
actual study at hand, one may nevertheless want to resort on margin-based multiple
tests which do not utilize LD information explicitly, in particular because standard
implementations make their application very easy in practice. Especially when the
number m of considered markers is very large, the asymptotic p-values based on
chi-square approximations are convenient to use in SUD tests, because they can be
computed very fast. In view of Lemma 4.2, one resulting question of interest is if for
instance the multiple test νHommel from Definition 5.4 or the linear step-up test νLSU

from Definition 5.6 control the FWER or the FDR, respectively, for such p-values.
These tests have guaranteed control of the FWER or the FDR, respectively, if the
p-values exhibit higher-order positive dependency properties like PRDS orMTP2, cf.
Sect. 5.1. Moreover, due to Lemma 3.1, they have higher multiple power than their
counterparts for the totally generic case of arbitrary dependency structure among
p-values. Unfortunately, however, pairwise positive correlations are not sufficient for
proving PRDS or MTP2, see e.g. Example 3.2. of Karlin and Rinott (1980). Hence,
at least assumptions on the structure of the underlying LD matrix and maybe also on
their actual entries have to be imposed for these concepts to hold true. For this reason,
Dickhaus (2012) carried out an extensive simulation study of the FWER and FDR
behavior, respectively, of νHommel and νLSU for various cases with multivariate chi-
square distributed test statistics under null hypotheses. It turned out that νHommel and
νLSU keep the respective type I error rate accurately, for several correlation matrices
R as in Definition 4.6. These results indicate that the answer to the question of
applicability of these multiple tests to asymptotic p-values originating from genetic
association analyses is positive. In particular for screening purposes based on the
FDR criterion, νLSU appears to be an appropriate choice.

http://dx.doi.org/10.1007/978-3-642-45182-9_5
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Chapter 10
Gene Expression Analyses

Abstract This chapter is considered with multiple tests for differential gene
expression. We first formalize this multiple test problem for a variety of different
study designs, including two-group models with unrelated individuals and paired
groups models. Then, we analyze positive dependency properties among test statis-
tics. The proposed multiple tests are applied to two real-life datasets from cancer
research by making use of the μTOSS software. Regularized estimators for the full
high-dimensional model parameter and statistical machine learning models for ana-
lyzing differential gene expression are discussed. Finally, we review some methods
for incorporating functional meta information and gene set structures into the statis-
tical methodology.

Multiple testing for differential gene expression is one of the prototypical examples
of a two-sample problem with multiple endpoints. The aim of the statistical analysis
is to find out which genes from a (typically large) set of m genes is (on average)
differentially expressed between two groups (for instance, cases and controls or
cancer tissue and healthy tissue from the same patients). This life science application
had and continues to have an enormous influence on the development of modern
multiple testing methods. It is impossible to provide a full account of all or even
of all major approaches that have been pursued in the literature. In this chapter, we
therefore restrict our attention mainly to easy-to-implement methods which allow
for the application of inferential theory that we have developed in earlier chapters.

10.1 Marginal Models and p-values

As already mentioned in Chap.9, an appropriate pre-processing of genetic data is
an essential prerequisite for valid data analysis. However, this is not primarily in the
focus of the present work. Here, we assume that data have been preprocessed and
normalized before inference is initiated. In Definition 10.1 below, the observables
“will usually be log-ratios for two-color data or log-intensities for single channel data,
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although other transformations are possible” (Smyth 2004). For instance, cube-root
transformationswere employed byTusher et al. (2001). Furthermore, we consider the
simplest possible linear model in Definition 10.1, where just a two-group comparison
per gene is the aim of the statistical analysis. More sophisticated linear models, for
instance incorporating adjustments for covariates, can also be considered without
changing the essential argumentation.

Definition 10.1 We consider the sample spaceX = R
m×n , equipped with its Borel

σ-field.Thedata-generatingmechanism ismathematically representedby the random
matrix X = (Xi j ), where 1 ∈ i ∈ m indexes genes and 1 ∈ j ∈ n indexes the
observational units (which are assumed to be the same for each gene). Assume
that observational units 1, . . . , n1 belong to the first group and observational units
n1 + 1, . . . , n to the second group, and let n2 = n − n1.

(a) Assume that all n observational units correspond to unrelated individuals, such
that X1, . . . , Xn can be assumed to be stochastically independent random vec-
tors, where X j denotes the j th column of X , 1 ∈ j ∈ n. For each gene
1 ∈ i ∈ m, consider the group-specific means X̄i,1 = n−1

1

∑n1
j=1 Xi j and

X̄i,2 = n−1
2

∑n
j=n1+1 Xi j . We assume that X̄i,1 ≤ N (μi,1,σ

2
i,1/n1) and

X̄i,2 ≤ N (μi,2,σ
2
i,2/n2), where σ2

i,1 and σ2
i,2 denote the group-specific vari-

ances of individual observational units. The system of hypotheses of interest is
given byHm = (Hi : 1 ∈ i ∈ m), where Hi = {μi,1 = μi,2}, 1 ∈ i ∈ m.

(i) Assuming σ2
i,1 = σ2

i,2, the statistic

Ti (X) =
√

n1n2

n1 + n2

Xi,1 − Xi,2

S
, where

S2 = 1

n − 2

⎛
⎝



n1⎞

j=1

(Xi j − Xi,1)
2 +

n⎞

j=n1+1

(Xi j − Xi,2)
2

⎠
⎨

⎩
,

is under Hi distributed as tn−2, leading to the two-sided marginal p-value
pi = 2(1 − Ftn−2(|Ti (x)|)), where x denotes the actually observed data.

(ii) If σ2
i,1 →= σ2

i,2 has to be assumed, we consider the approximate version of
the two-sample t-test proposed by Welch (1938). The underlying statistic is
given by

Ti (X) = Xi,1 − Xi,2
√

S2i,1
n1

+ S2i,2
n2

, where

S2
i,1 = 1

n1 − 1

n1⎞

j=1

(Xi j − Xi,1)
2,

S2
i,2 = 1

n2 − 1

n⎞

j=n1+1

(Xi j − Xi,2)
2.
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Under Hi , the distribution of Ti (X) can be approximated by a tν -distribution,
where the degrees of freedom ν are computed either by the method of Hsu
(1938) or by theWelch–Satterthwaite formula, see Satterthwaite (1946) and
Welch (1947). An approximate two-sided marginal p-value is thus given by
pi = 2(1 − Ftν (|Ti (x)|)).

(b) Assume that the same n1 individuals are measured under two different experi-
mental conditions, such that n = 2n1. Organize the data in thematrix X such that
observational units j andn1+ j correspond to the twodifferent conditions applied
to individual j , where 1 ∈ j ∈ n1. For every gene 1 ∈ i ∈ m, consider the
row vector Di = (Di,1, . . . , Di,n1) of differences, where Di j = Xi j − Xi,n1+ j ,
1 ∈ j ∈ n1. We assume that the mean D̄i = n−1

1

∑n1
j=1 Di j is normally dis-

tributed with mean μi and (in general unknown) variance σ2
i /n1. The system

of hypotheses of interest is now given by Hm = (Hi : 1 ∈ i ∈ m), where
Hi = {μi = 0}, 1 ∈ i ∈ m. Then, the statistic

Ti (X) = ≡
n1

D̄i

Si
,where

S2
i = 1

n1 − 1

n1⎞

j=1

(Di j − D̄i )
2,

is under Hi distributed as tn1−1, leading to the two-sided marginal p-value
pi = 2(1 − Ftn1−1(|Ti (x)|)).

If the model additionally includes adjustments for covariates, one may assume
that the Studentized regression coefficient corresponding to group membership is
t-distributed, where the degrees of freedom are modified in the standard manner, and
our considerations continue to apply. In any case, notice that Definition 10.1 does not
define a complete statistical model, because onlymarginal distributions and p-values
per gene were considered. At least for large sample sizes n, the assumption of a joint
multivariate normal distribution for all m gene-specific mean expression differences
seems justified. The following section is concerned with structural properties of the
resulting covariance matrix for the two-sided test statistics.

10.2 Dependency Considerations

As discussed in Chaps. 4 and 5, the dependency structure among marginal test sta-
tistics or p-values, respectively, is crucial for choosing appropriate multiple test
procedures. Lemma 10.1 shows that among the test statistics for differential gene
expressions that we have discussed in Sect. 10.1, certain positive dependency rela-
tions hold true. For simplicity, we assume knownmarginal variances in Lemma 10.1.

http://dx.doi.org/10.1007/978-3-642-45182-9_4
http://dx.doi.org/10.1007/978-3-642-45182-9_5
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Lemma 10.1 Let Z1 and Z2 denote two standard normal random variables, where

Z = (Z1, Z2)
∀ ≤ N2(0,Σ), Σ =

⎫
1 ρ
ρ 1

⎬

, |ρ| < 1. Then, the first two moments of

|Z | = (|Z1|, |Z2|)∀ are given by

E[|Z1|] = ⎭2/π, V ar(|Z1|) = 1 − 2/π, (10.1)

ρ(|Z1|, |Z2|) =
|ρ|
{

π − 2 arctan

⎫≡
1−ρ2

|ρ|
⎬}

+ 2
(⎭

1 − ρ2 − 1
)

π − 2
. (10.2)

Now, assume that the mean vector of Z1 and Z2, say μ = (μ1,μ2)
∀, is unknown

and that the two coordinate-wise hypotheses H1 = {(μ1,μ2) ∗ R
2| μ1 = μ∨

1} and
H2 = {(μ1,μ2) ∗ R

2| μ2 = μ∨
2} are of interest. For a given local significance level

αloc., let c = c(αloc.) = Φ−1(1− αloc./2) and consider the multiple test ϕ, given by
ϕ j = 1(c,∓)(Tj ) with Tj = |Z j − μ∨

j |, j = 1, 2. Then it holds

Pμ∨(T2 ∈ c | T1 ∈ c) = 1 − 2

1 − αloc.

c∫

−c

φ(x)Φ

(
ρx − c
⎭
1 − ρ2

)

dx . (10.3)

Letting

κ(ρ) = log
(
Pμ∨(T2 ∈ c | T1 ∈ c)

)

log(1 − αloc.)
, (10.4)

we get

αloc. ∈ FWERμ∨(ϕ) = 1 − (1 − αloc.)
1+κ(ρ) ∈ 1 − (1 − αloc.)

2, (10.5)

with equalities if and only if Z1 = Z2 almost surely, or Z1 and Z2 are stochastically
independent, respectively.

Proof. The equations in (10.1) are well known and for instance reported at the
end of Section 4 of Psarakis and Panaretos (2000). The right-hand side of (10.2)
has been obtained by integrating the bivariate pdf of |Z | as provided in Eq. (3.2) of
Psarakis andPanaretos (2000) and is in linewith the series expansion forρ(|Z1|, |Z2|)
given in Appendix B of Asai andMcAleer (2006). Equation (10.3) can be verified by
elementary calculus, cf., e.g., Appendix A ofMoskvina and Schmidt (2008). Finally,
(10.5) can be seen by noticing that

FWERμ∨(ϕ) = 1 − Pμ∨(T2 ∈ c, T1 ∈ c)

= 1 − Pμ∨(T1 ∈ c)Pμ∨(T2 ∈ c | T1 ∈ c)

= 1 − exp
{
log(1 − αloc.) + log(Pμ∨(T2 ∈ c | T1 ∈ c))

}

= 1 − (1 − αloc.)
1+κ(ρ),

http://dx.doi.org/10.1007/978-3-642-45182-9_3
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Fig. 10.1 Correlation coefficient ρ(|Z1|, |Z2|) as in (10.2) (left graph) and κ(ρ) as in (10.4) for
αloc. = 0.05 (right graph), as functions of ρ

proving the equality relation in (10.5). Simple calculus yields that κ(ρ) is decreasing
in |ρ|, with maximum κ(0) = 1 and infimum lim|ρ|∝1 κ(ρ) = 0, completing the
proof. ∩∅
Notice that ρ(|Z1|, |Z2|) only depends on |ρ| and is always non-negative, see the
left graph in Fig. 10.1 for an illustration. The values of κ(ρ) are depicted in the right
graph in Fig. 10.1 for αloc. = 0.05.

Qualitatively, the positive dependency results reported in Lemma 10.1 remain to
hold true if Studentization is performed in order to account for unknown variances.
In the latter case, however, closed form expressions for the quantities corresponding
to the ones in Lemma 10.1 are not so easily available. This is whywe chose to present
the results for the case of known variances for illustration.

In either case, the value of ρ is typically unknown in practice, but can be approx-
imated by resampling, cf. our Sect. 3.2.1. For the particular case of applications in
genetics, the book by Dudoit and van der Laan (2008) is a valuable reference. As
explained in Chap.8, the resampling methods of Dudoit and van der Laan (2008) are
implemented in the multtest package for R. Iterating the reasoning of Lemma
10.1 results in a bound for the exceedance probability of an m-dimensional vector of
test statistics for multiple testing of differential gene expression, where m > 2. Such
a probability bound can be transformed into a simultaneous test procedure by virtue
of our Sect. 4.3. However, this approach requires the estimation of an m × m covari-
ance matrix which is a complicated task if m exceeds n. Alternatively to resampling,
other techniques for covariance matrix estimation in high dimensions include shrink-
age of the empirical covariance matrix Σ̂ (say) toward some pre-specified target (cf.,
for instance, Schäfer and Strimmer (2005)) or low-rank approximations of Σ̂ by,
for example, assuming equi-correlation in blocks or AR(1) or Toeplitz structures, cf.
Ghosal and Roy (2011) for applications in the context of multiple testing.

http://dx.doi.org/10.1007/978-3-642-45182-9_3
http://dx.doi.org/10.1007/978-3-642-45182-9_8
http://dx.doi.org/10.1007/978-3-642-45182-9_4
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If one wants to avoid estimation of Σ , but still make use of the positive depen-
dency results stated in Lemma 10.1, one can use stepwise rejective multiple tests
(cf. Chap. 5) designed for applications with positively dependent test statistics or
p-values, respectively. On the other hand, we have seen in Proposition 4.2 that con-
ditions on the covariance matrix have to be imposed in order that absolute values of
multivariate Gaussian vectors exhibit higher-order dependency relations like MTP2
if the dimensionalitym exceeds 2. Hence, amathematically rigorous and comprehen-
sive investigation of the behavior of stepwise rejective multiple tests which control
the FWER or the FDR, respectively, under MTP2 (cf. Table5.1) is an open prob-
lem for absolute values of multivariate normal distributions. Related remarks can
be found in the works of Block et al. (1993) and Glaz (2000). The case of absolute
values of normal distributions in connection with the linear step-up test from Defin-
ition 5.6 has been treated by Reiner-Benaim (2007), see also the references therein.
It turns out that a maximum FDR violation of α/8 can occur, which is certainly
negligible in practice for reasonable choices of the nominal FDR level α. Moreover,
a positive result regarding multivariate t-distributions has recently been obtained by
Block et al. (2013). Hence, we may conjecture that violations of the nominal FWER
or FDR level, respectively, (if any) are of negligible magnitude in practice if the
respective multiple tests from Table5.1, which are guaranteed to work under MTP2
or PRDS, are applied to vectors of test statistics for differential gene expression.

Furthermore, weak dependency in the sense of Definition 5.2 applies if the covari-
ance matrixΣ has a block structure (as it is typically the case due to the genes’ func-
tional network structure); cf. Chap. 4 of Gontscharuk (2010). This entails asymptotic
(m ∝ ∓) validity of the respective tests discussed in Chap.5, at least if multiple
power is asymptotically bounded away from zero.

10.3 Real Data Examples

10.3.1 Application of Generic Multiple Tests to Large-Scale Data

Notterman et al. (2001) published data from a cancer research project. The aim
of the study was to identify differentially expressed gene and R(D)NA profiles in
tumor tissue in comparison with normal (healthy) tissue. To this end, expression
was assessed for 7457 different RNA, DNA and gene entities in 18 adenocarcinomic
cancer patients. For each of these 18 study participants, the respective expression
data were gathered once in cancer tissue and once in (paired) healthy tissue. The
complete dataset is available as supplementary material to the article by Notterman
et al. (2001).

After some Affymetrix preprocessing (cf. the “Materials andMethods” section in
Notterman et al. (2001)), the comparison between the two paired tissue groups was
performed by applying t-tests to the log-transformed data by utilizing the statistical
model given in part (b) of Definition 10.1. This leads tom = 7457marginal p-values.

http://dx.doi.org/10.1007/978-3-642-45182-9_5
http://dx.doi.org/10.1007/978-3-642-45182-9_5
http://dx.doi.org/10.1007/978-3-642-45182-9_5
http://dx.doi.org/10.1007/978-3-642-45182-9_4
http://dx.doi.org/10.1007/978-3-642-45182-9_5
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Fig. 10.2 Empirical cumulative distribution function of the m = 7457 marginal p-values resulting
from the data by Notterman et al. (2001)

We re-analyzed the data with the μTOSS software, cf. Sect. 8.3. Figure 10.2 displays
the ecdf of the m = 7457 marginal p-values. This plot is a helpful illustration with
respect to stepwise rejective multiple tests, cf. the discussion around Lemma 5.6.

Assume that FWER control at level α = 5% is targeted and no assumption about
the (higher-order) dependency structure of the marginal p-values is imposed. Then, a
generic multiple test keeping the chosen type I error criterion under any dependency
structure is the Bonferroni–Holm test from Definition 5.3. Application of this step-
down test to the marginal p-values results in Rm(ϕHolm) = 113 rejections, cf.
Fig. 10.3.

The mutoss software implements the Bonferroni-Holm test by making use of
the mt.rawp2adjp function from the multtest package, cf. Sect. 8.2. Thus, in
addition to the mere rejection pattern, adjusted p-values for the rejected hypotheses
are displayed in the rightmost column of the output list, see Fig. 10.3.

For comparison, applying the FDR criterion at level α = 5% and the generically
FDR-controlling step-up test ϕBY from Theorem 5.5 to this dataset, we obtain 305
additional rejections. However, we expect that among the Rm(ϕBY ) = 418 rejections
there are approximately 21 type I errors.

10.3.2 Copula Calibration for a Block of Correlated Genes

Let us consider a real-life dataset from cancer research which can be downloaded
freely from the Gene Expression Omnibus data repository, see http://www.ncbi.nlm.
nih.gov/sites/GDSbrowser, namely dataset GDS2771. Detailed information about

http://dx.doi.org/10.1007/978-3-642-45182-9_8
http://dx.doi.org/10.1007/978-3-642-45182-9_8
http://www.ncbi.nlm.nih.gov/sites/GDSbrowser
http://www.ncbi.nlm.nih.gov/sites/GDSbrowser
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Fig. 10.3 Result of applying the Bonferroni–Holm test to the m = 7457 marginal p-values corre-
sponding to the data by Notterman et al. (2001)

the underlying studies is given by Spira et al. (2007) and Gustafson et al. (2010).
Dickhaus and Gierl (2013) focused on one specific aspect of this dataset, namely, the
determination of genes that are (on average) differentially expressed in airway epithe-
lial cells of cancer patients in comparison with healthy controls. To this end, they
restricted their attention to m = 11 genes on chromosome 1, constituting a block of
correlated genes. The considered genes have the identifiersSYCP1,HS2ST1,RERE,
PDE4DIP, CRP, SYT11, PAPPA2, PSEN20, NENF, RAB3GAP2, and OBSCN. In
dataset GDS2771, expression profiles of n1 = 97 patients and n2 = 90 controls
for these m genes are tabulated. In this, the raw expression counts were transformed
in different ways in order to marginally fit normal distributions well. Indeed, diag-
nostic plots (not shown here) confirm that, marginally, Gaussian distributions are
valid models. Consequently, the parameter of interest ϑ = (ϑ1, . . . ,ϑm)∀ consists
of the differences in mean expression levels of the m = 11 genes between the patient
group and the control group on the corresponding transformed scales, with unique
parameter value ϑ∨ = 0 ∗ R

m in the global hypothesis H0. Since all n = 187
observational units correspond to unrelated individuals, part (a) of Definition 10.1
has been applied. However, how the aforementioned (gene-specific) marginal trans-
formations affect the dependency structure of p-values originating from marginal
two-sample t-tests is not at all clear. Therefore, Dickhaus and Gierl (2013) chose to
separate the dependency structure assessment completely from the marginal models
(which is possible by the copula-based approach) and considered the flexible class
of m-variate Clayton copulae (see, for instance, Example 4.23 in Nelsen (2006)) for
the dependency modeling.
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Each member of the family of Clayton copulae is uniquely defined by a one-
dimensional parameter η > 0 and has the form

Cη(u1, . . . , um) =
(

u−η
1 + u−η

2 + · · · + u−η
m − m + 1

)−1/η
. (10.6)

According to the copula-based method for constructing simultaneous test pro-
cedures that we have discussed in Sect. 4.4, Dickhaus and Gierl (2013) fitted an
m-variate Clayton copula for approximating the dependency structure among the
distributional transforms 1 − pi of the t-statistics in each marginal 1 ∈ i ∈ m. In
this, they made use of the “Realized Copula” approach that we have described in
Sect. 3.2.3. In order to assess the correlation structure of (1 − pi : 1 ∈ i ∈ m)

under ϑ∨, a resampling strategy was employed. For a fixed number B = 1,000, the
entire data vectors of the n = n1 + n2 = 187 study participants were permuted,
i. e., randomly assigned to the “cancer positive” or the “cancer negative” group in
each permutation run. This resampling mechanism destroys information about the
differential expression between the two groups in every marginal (thus reflecting the
situation under ϑ∨), but preserves the dependency structure between genes. After
completion of all B permutations and re-calculation of the t-statistics in each per-
mutation run, the empirical covariances of the resulting resampled distributional
transforms were used as estimates σ̂i j in the realized copula optimization step.

Based on this, application of the realized copula method to dataset GDS2771
with η taken as the Clayton copula parameter given in (10.6) resulted in η̂ = 0.1636,
where each gene was treated equally, meaning that W = I(112 )

was used. Having

estimated the copula Cϑ∨ in this way, the reasoning of Theorem 4.8 led, for a target
FWER level of α = 0.05, to α

(i)
loc. ≡ αloc. = 0.00467, 1 ∈ i ∈ m = 11. Hence, the

empirical calibration of αloc. based on the intrinsic correlation structure in the data
allowed for enlarging themultiplicity-adjusted local significance level in comparison
with the Bonferroni correction or the Šidák correction.

10.4 LASSO and Statistical Learning Methods

High-dimensional data are nowadays often analyzed by regularized regression meth-
ods, in particular the LASSO (see our Sect. 7.3.1 for a brief introduction and the
monograph by Bühlmann and van de Geer (2011) for a comprehensive theoretical
treatment).

Wu et al. (2009) were concerned with LASSO penalized logistic regression in
the context of genome-wide association analyses (cf. our Chap.9, notice that both
the endpoint and the predictors are categorical in this case). Wu (2005) proposed to
fit a LASSO regression model for analyzing differential gene expression, but with
the (quasi-)continuous expression profiles as endpoints and the dichotomous (or cat-
egorical) group indicators as covariates. This can be justified by considering that the
direction of causation (if any) is unambiguous by the underlying biology. Further-
more, this approach is convenient from the point of view of implementation. Anyhow,

http://dx.doi.org/10.1007/978-3-642-45182-9_4
http://dx.doi.org/10.1007/978-3-642-45182-9_3
http://dx.doi.org/10.1007/978-3-642-45182-9_7
http://dx.doi.org/10.1007/978-3-642-45182-9_9
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Garcia-Magariños et al. (2010) developed LASSO logistic regression algorithms for
analyzing differential gene expression, where the phenotype is considered as the
response and the expression profiles as the vector of covariates. This may be con-
sidered as the most appropriate LASSO-based data analysis strategy for differential
gene expression.

The methods discussed in this section have a high potential for classification
and diagnostic purposes, because a full multivariate model for the class-specific
gene expression profiles is learned. This also holds true for statistical (machine)
learning methods like support vector machines (SVMs), see Part II in the book of
Vapnik (1998) for a theoretical introduction from the statistical learning perspective,
Blanchard et al. (2008) for a theoretical treatment from the statistical point of view
and Brown et al. (2000) for an application to gene expression data, among many
others. At present, the drawback of such regularized regression methods and statisti-
cal learning models is that inferential theory for the resulting effect size estimates is
not well-developed yet, such that their usage for the purpose of assessing statistical
significance of differential expression profiles is much less straightforward than for
the methods discussed in Sect. 10.3, cf. our Sect. 7.3.1 for some recent results about
inferential methods based on the LASSO. Hence, statistical methodology has to be
chosen according to the actual aim of the analysis.

On the other hand, there are even problems where the two inferential problems
multiple testing and classification occur at the same time.One particular such use case
occurs in biomarker studies if the aim is to classify subjects into disease groups on the
basis of their biomarker profiles. Typically, in a first stage a subset of relevantmarkers
has to be selected from the very large set of all available biomarkers (a multiple
testing problem). Then, in a second stage, classification of subjects is performed on
the basis of feature vectors built from the selected biomarkers. Such a two-stage
design is chosen by Freidlin et al. (2010), for example. They are considered with the
specific problem of identifying a subgroup of cancer patients which is responsive
to treatment on the basis of gene expression levels. Freidlin et al. (2010) employ a
resampling scheme for the entire two-stage procedure in order to assess statistical
significance of treatment effects in the identified subgroup. This can be regarded as
a proxy for classification accuracy in this particular context.

10.5 Gene Set Analyses and Group Structures

Since genes are not isolated biological units, but organized in groups and networks,
one strand of modern research in statistical genetics is concerned with the problem
of integrating experimental genomic data and exogenous functional information as
provided by gene ontology terms, for example. From the point of view of statistical
modeling, this leads to inference for graph- or tree-structured data.

Newton et al. (2012) consider cases inwhich the experimental data aremeasured at
the level of genes, but inference is required at the level of functional categories. They
propose a probabilistic graphical modeling approach for such functional-category

http://dx.doi.org/10.1007/978-3-642-45182-9_7
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inference under the Bayesian paradigm. In particular, their graphical “role model” is
capable of reflecting that genes can have different functions depending on the biolog-
ical context. See also the references in Newton et al. (2012) for earlier developments
in this direction.

Frequentist methods for gene set analyses are often based (sometimes implic-
itly) on the closed test principle, cf. our discussion at the end of Sect. 3.3. For
specific applications in gene expression analyses see, for instance, Goeman et al.
(2004), Mansmann and Meister (2005), Goeman and Bühlmann (2007), Hummel
et al. (2008), Goeman and Mansmann (2008), and Goeman and Finos (2012). The
general idea underlying all these methods is that the graph- or tree-structure imposes
logical constraints on the system of hypotheses, such that not all combinations of
true/false hypotheses which are possible in general can actually occur, because some
of these combinations contradict the relations expressed by edges in the gene net-
work graph. Computationally feasible solutions are worked out to test the remaining
hypotheses in the induced system of intersection hypotheses in an efficient manner.

Acknowledgments Data analysis in Sect. 10.3.2 is joint work with Jakob Gierl.
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Chapter 11
Functional Magnetic Resonance Imaging

Abstract Analyzing functional magnetic resonance imaging (fMRI) data is a
particular challenge for statistical methodology and practice, because such data are
high-dimensional and spatially and temporally correlated. Furthermore, the ques-
tions of scientific interest often relate to so-called regions of interest constituted by
clusters in the sample space.We are first considered with spatial models and describe
false discovery rate-controlling multiple tests for continuous families of hypotheses
and for grouped systems of hypotheses. Then, we show how random field theory can
be utilized to construct family-wise error rate-controlling simultaneous test proce-
dures which account for the topological structure of the brain. Finally, multivariate
time series models are presented which are capable of modeling both the spatial and
the dynamic components of the signals in the data.

If a genetic association or expression study has detected associations between the
phenotype of interest and genes which are related to brain activity, a functional
magnetic resonance imaging (fMRI) experiment can be carried out in order to confirm
the association functionally. This reduces the biological distance between genotype
and phenotype.

Functional magnetic resonance imaging is an indirect (non-invasive) way to mea-
sure brain activity. It consists in imaging the change in blood flow (hemodynamic
response) related to energy use by brain cells. The blood oxygen level dependent
(BOLD) response is thereby measured in three-dimensional volume units (voxels)
over a certain period of time by a series of time-discrete scans (images). The tech-
nical devices used to carry out these measurements are called fMRI scanners. The
data structure arising from an fMRI experiment of one particular individual is a four-
dimensional array, where the first (say) three dimensions correspond to the spatial
location in the brain and the last dimension indexes time on a discrete time axis corre-
sponding to the scans. The challenge for statistical methodology is that such data are
high-dimensional and spatially and temporally correlated. However, the questions
of scientific interest often do not relate to the voxels as observational units them-
selves, but to “regions of interest” (ROIs) constituted by clusters of voxels. Such
ROIs may be explicitly pre-defined according to prior knowledge about the anatomy
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156 11 Functional Magnetic Resonance Imaging

or the function of the brain, or data-adaptively by a cluster analysis in a pre-study
(cf. Poldrack (2007) and Heller et al. (2006) for more details). In either case, the
cluster structure induces a hierarchy (and a grouping) in the voxel space and can be
used to reduce dimensionality.

11.1 Spatial Modeling

The spatial components of the BOLD responses of n observational units can be
modeled as random fields {Yi(s) : s ∈ S }, 1 ≤ i ≤ n, where S → R

3 denotes
a manifold describing the brain or the brain region of interest. Often, the spatial
structure of the BOLD response is the target of statistical inference and hence, the
voxel-wise autocorrelation structure can be regarded as nuisance. If this is the case,
typically whitening is performed to every voxel-wise time series in order to obtain a
valid summary of the brain activity at the respective spatial location; see, e.g.,Worsley
et al. (2002) and references therein for autoregressivemodeling of the autocorrelation
structure in fMRI voxels. Typically, also spatial smoothing is applied to the raw data
to account for the discrete grid structure of the voxels in the scans. For a detailed
discussion about the design of fMRI experiments and different techniques for data
preprocessing we defer the reader to Lazar (2008).

After the aforementioned and possibly further pre-processing steps, we follow the
modeling approach by Worsley (2003) and Taylor and Worsley (2007). We assume
a linear model of the form

Yi(s) = xiα(s) + σ(s)ϑi(s), (11.1)

where xi denotes a k-dimensional row vector of known regressors (covariates) of
observational unit i, α(s) a location-specific, unknown vector of k regression coef-
ficients, and (ϑi(s) : 1 ≤ i ≤ n) are stochastically independent Gaussian random
fields, each with mean zero and unit variance. The location-specific variance σ(s)
is typically unknown and estimated from the repetitions (where whitening plays an
important role if these are autocorrelated repetitions over time). In the case of mere
(spatial) signal detection problems, k maybe equal to one and xi = 1 for all 1 ≤ i ≤ n.
Observational units may relate to different subjects (where a standardization with
respect to brain topology constitutes a further pre-processing step) or to repetitions
of stimulus presentation to the same subject, among other paradigms.

In any case, we assume that inference is targeted at some pre-defined contrasts
regarding α(s), s ∈ S . This leads to a system (Hs : s ∈ S ) of hypotheses in
the spatial domain. Furthermore, we assume that a method (typically some kind
of t-test) exists to transform the original data into a Gaussian-related random field
(T(s) : s ∈ S ) of test statistics for the respective spatial positions, where the
distribution of T(s) under Hs is known such that T(s) can be transformed into a valid
p-value for testing Hs.
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For the case that S is the set of voxel locations itself, application of multiple
testing methods that we have discussed in previous chapters is rather straightfor-
ward. For example, Genovese et al. (2002) proposed to control the FDR on the basis
of individual voxels. They argued that the linear step-up test from Definition 5.6 is
appropriate, because presence of only non-negative correlations among the Gaussian
error terms per voxel “may be a reasonable assumption for many fMRI data sets”.
For the more general case that S may be a spatial continuum, the following gen-
eralization of the FDR has been proposed by Pacifico et al. (2004) and applied by
Benjamini and Heller (2007) and Blanchard et al. (2013), among others.

Definition 11.1 (Pacifico et al. (2004)). Assume that S , equipped with some
σ -field, is a measurable space and that Θ : S ≡ R∀0 is some measure on S .
Let ϕ be a multiple test procedure for the system (Hs : s ∈ S ) of hypotheses and
A = A(ϕ) the random set of hypotheses that are rejected by ϕ. Denote by S0 the
subset of S on which the Hs hold true. Then, the false discovery rate of ϕ with
respect to Θ is defined by

FDRΘ(ϕ) = Eα

[
Θ(A ∗ S0)

Θ(A)
1{Θ(A)>0}

]

, (11.2)

where α denotes the parameter of the underlying statistical model.

As discussed by Blanchard et al. (2013), testing a continuum of null hypotheses
may inducemeasurability issues in general. Hence, we assume here that all objects of
interest are well-defined. Blanchard et al. (2013) also introduce a generalized class of
step-up procedures which offer control of FDRΘ. These procedures are continuous-
space analogues of the linear step-up test ϕLSU fromDefinition 5.6 (applicable under
a continuous-space analogue of the PRDS condition regarding the joint distribution
of p-values) and the family ϕε of tests discussed in Theorem 5.6 (applicable without
any assumption on the dependency structure).

11.2 False Discovery Rate Control for Grouped Hypotheses

11.2.1 Clusters of Voxels

Returning to the ROI approach and following Benjamini and Heller (2007), let us
consider a finite partition of S into m contiguous components C1, . . . , Cm, called
clusters. Then, the finite system Hm = (Hi : 1 ≤ i ≤ m) of null hypotheses with
corresponding alternatives Ki, 1 ≤ i ≤ m, is of interest, where

Hi =
⋂

s∈Ci

Hs, versus Ki =
⋃

s∈Ci

Ks. (11.3)
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In (11.3), Hs and Ks refer to the hypotheses at the individual spatial locations as
discussed before. The interpretation of testing the pair of hypotheses defined in
(11.3) is that a cluster Ci is considered “active” as soon as at least one Hs with
s ∈ Ci is false. Certainly, clusters are in general heterogeneous, for instance with
respect to their Θ-cardinality, where Θ is as in Definition 11.1. In order to incorporate
this cluster heterogeneity into the statistical methodology, a weighted version of
the FDR criterion, originally introduced by Benjamini and Hochberg (1997), seems
appropriate.

Definition 11.2 (cf. Benjamini and Hochberg (1997)).Assume thatm non-negative
weights wi, 1 ≤ i ≤ m, are given such that

∑m
i=1 wi = m. Let I0 ∨ {1, . . . , m}

denote the subset of clusters fulfilling that Hi is true for all i ∈ I0, where Hi is
defined in (11.3), and let ϕ = (ϕi : 1 ≤ i ≤ m) denote a multiple test for the system
Hm = (Hi : 1 ≤ i ≤ m) of cluster hypotheses. Consider random binary indicators
A1 = A1(ϕ), . . . , Am = Am(ϕ) such that Ai = 1 if and only if hypothesis Hi is
rejected by ϕ. Then, the weighted FDR of ϕ under α is given by

wFDRα(ϕ) = Eα

[∑
i∈I0 wiAi

∑m
i=1 wiAi

1{∑m
i=1 Ai>0}

]

. (11.4)

Notice that wFDRα(ϕ) = FDRα(ϕ) in the case that uniform weights w1 =
· · · = wm = 1 are used. Benjamini and Heller (2007) discuss two wFDR-controlling
multiple tests, namely, a weighted version of ϕLSU from Definition 5.6 and a data-
adaptive two-stage step-up test similar to the ones discussed by Benjamini et al.
(2006) (see Sect. 3.1.3).

After the application of a multiple test on cluster basis, it may be of interest to
try to localize the false location-specific hypotheses Hs within each rejected cluster.
To this end, Benjamini and Heller (2007) define conditional within-cluster p-values
which are valid for testing the individual hypotheses Hs, s ∈ Ci, given that cluster
Ci has been rejected. Since these p-values are valid conditionally to the event that
cluster Ci has been rejected in the first stage of the statistical analysis, they may be
used in standard FDR-controlling tests, cf. Chap. 5.

A different weighting approach has been pursued by Hu et al. (2010). The authors
are considered with control of the FDR on the basis of a finite system of individual
hypotheses (which may in the fMRI context relate to voxels), but propose to uti-
lize the group structure among these hypotheses for a weighting of the individual
p-values. In particular, weights based on the estimated proportion of true hypotheses
in each group separately are discussed. Further results regarding group-wise test-
ing and weighting of hypotheses under the FDR paradigm have been derived by
Bogomolov (2011).

It may be remarked here that routines for cluster-based FDR-controlling multiple
tests with weights are not yet implemented in the μTOSS software (cf. Sect. 8.3),
but are available from the original authors; see, for instance, http://www.math.tau.
ac.il/~ybenja/software.html.

http://dx.doi.org/10.1007/978-3-642-45182-9_3
http://dx.doi.org/10.1007/978-3-642-45182-9_5
http://dx.doi.org/10.1007/978-3-642-45182-9_8
http://www.math.tau.ac.il/~ybenja/software.html
http://www.math.tau.ac.il/~ybenja/software.html
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11.2.2 Multiple Endpoints per Location

In some applications of fMRI, brain activity is analyzed with respect to several end-
points (for instance, cognitive tasks) simultaneously. This induces a second layer
of multiplicity and leads to multivariate test statistics or p-values, respectively.
Benjamini andHeller (2008) distinguish between several types of scientific questions
in this context, which can be formalized by different families of hypotheses.

Definition 11.3 (Benjamini and Heller (2008)). Consider a finite set of S spatial
locations and m different endpoints that are to be analyzed at every spatial location
1 ≤ s ≤ S. This leads to a system of m × S individual hypotheses, given by (HΦ(s) :
1 ≤ Φ ≤ m, 1 ≤ s ≤ S). Different possibilities for aggregating the m hypotheses per
spatial locations s are given by the following families of hypotheses.

Hconj.(s) =
⋂

1≤Φ≤m

HΦ(s) versus Kconj.(s) =
⋃

1≤Φ≤m

KΦ(s), (11.5)

Hdisj.(s) =
⋃

1≤Φ≤m

HΦ(s) versus Kdisj.(s) =
⋂

1≤Φ≤m

KΦ(s), (11.6)

Hu/m(s) = m1(s) < u versus Ku/m(s) = m1(s) ∀ u, 1 ≤ u ≤ m, (11.7)

where m1(s) = #{1 ≤ Φ ≤ m : HΦ(s) is false}. Notice that H1/m(s) = Hconj.(s)
and Hm/m(s) = Hdisj.(s). Hypothesis Hconj.(s) is called the conjunction hypothesis,
Hu/m(s) for 1 < u < m a partial conjunction hypothesis, andHdisj.(s) the disjunction
hypothesis at location s, respectively.

Noticing the similarity between testing Hconj.(s) and FWER control in the weak
sense (cf. part (g) ofDefinition 1.2) it is fair to argue that testingHconj.(s) is a tooweak
criterion. On the other hand, it will typically hardly be possible to reject Hdisj.(s) if
m is moderate or large, such that testing the “intermediate” hypotheses Hu/m(s) for
2 ≤ u ≤ m − 1 may be considered a suitable compromise, provided that m > 2.
Motivated by the Simes test (cf. Sect. 5.3), Benjamini and Heller (2008) proved the
following theorem about valid p-values for testing (Hu/m(s) : 1 ≤ s ≤ S).

Theorem 11.1 (Benjamini and Heller (2008)). For every spatial location 1 ≤ s ≤
S, assume that valid p-values p1(s), . . . , pm(s) for testing (HΦ(s) : 1 ≤ Φ ≤ m) are
available and denote their order statistics by p1:m(s) ≤ · · · ≤ pm:m(s). For given
parameter u as in Definition 11.3, let

pu/m(s) = min
1≤Φ≤m−u+1

{
m − u + 1

Φ
pu−1+Φ:m(s)

}

.

If the joint distribution of p1(s), . . . , pm(s) fulfills the PRDS condition, then pu/m(s)
is a valid p-value for testing Hu/m(s).

http://dx.doi.org/10.1007/978-3-642-45182-9_5
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Of course, if the PRDS assumption in Theorem 11.1 can not be established, a
Bonferroni-type adjustment canbe employed, leading topu/m(s) = (m−u+1)pu:m(s).
In practice, it remains to choose u, which may introduce some arbitrariness in the
statistical analysis. Benjamini and Heller (2008) propose to test Hu/m(s) for all
1 ≤ u ≤ m and to superimpose the m rejection patterns in a graphical display. Fur-
thermore, they propose a “second-layer” adjustment for multiplicity with respect to
these m tests per location.

The usage of partial conjunction hypotheses in connection with FWER control
has been discussed by Friston et al. (2005). However, due to the massive multiplicity
given by S and m, FDR control appears to be the more appropriate criterion, at least
for screening purposes.

11.3 Exploiting Topological Structure by Random Field Theory

Adopting the notation of Definition 11.1, the continuous-space analogue of the
FWER of a multiple test ϕ with respect to the measure Θ is given by

FWERΘ(ϕ) = Pα(Θ(A(ϕ) ∗ S0) > 0) (11.8)

and a multiplicity-adjusted p-value at location s corresponding to a simultaneous test
procedure (see Chap.4) is given by

P0

(

max
s̃∈S

T(s̃) ∀ t(s)

)

, (11.9)

where t(s) denotes the actually observed value of T at location s and P0 the measure
under the global hypothesis that all Hs are true. For ease of argumentation, we
assume thatP0 is uniquely defined, an assumption that typically holds true in relevant
applications. Equation (11.9) relates control of FWERΘ by means of simultaneous
test procedures directly to the Euler characteristic heuristic from (4.20) in Sect. 4.5.

Since the human brain has a complex topological structure and the spatial structure
of the noise covariances will in general not be trivial, a nonisotropic field (T(s) :
s ∈ S ) has to be considered and Lipschitz-Killing curvatures Lj(S ) have to be
estimated for 0 ≤ j ≤ 3. To this end, the estimation approach by Worsley et al.
(1999), Worsley (2003) and Taylor and Worsley (2007) is convenient. First, assume
for a moment that the field would be isotropic. Then, the Lj(S ) in formula (4.21)
could be replaced by the intrinsic volumes of S , say μj(S ), 0 ≤ j ≤ 3. The
numbers μj(S ) only depend on the geometry of S , where exact expressions are
provided as formula (4) by Worsley (2003) and formula (9) by Taylor and Worsley
(2007), respectively. In the general (nonisotropic) case, consider the (normalized)
least squares residuals under model (11.1), given by

http://dx.doi.org/10.1007/978-3-642-45182-9_4
http://dx.doi.org/10.1007/978-3-642-45182-9_4
http://dx.doi.org/10.1007/978-3-642-45182-9_4
http://dx.doi.org/10.1007/978-3-642-45182-9_4
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r(s) = Y(s) − X(X∓X)−1X∓Y(s),

u(s) = r(s)/||r(s)||,

whereY(s) = (Y1(s), . . . , Yn(s))∓ andX is the designmatrix ofmodel (11.1), the i-th
row of which is equal to xi, 1 ≤ i ≤ n. Notice that, for any 1 ≤ i ≤ n, (ri(s) : s ∈ S )

is a mean-zero Gaussian random field with the same spatial correlation structure as
the corresponding noise component (ϑi(s) : s ∈ S ) of model (11.1). Based on this
relationship, the proposed estimators are given by

L̂j(S ) = μj(u(S )), 0 ≤ j ≤ 3.

Software for fMRI data analysis based on random field theory is available, cf. the
survey in Appendix A of Lazar (2008).

11.4 Spatio-Temporal Models via Multivariate Time Series

In the previous sections, we have focused our attention on the spatial structure of
the BOLD response and have regarded the autocorrelation structure as nuisance.
Here, we study multivariate time series models which explicitly take into account
this autocorrelation structure. For a particular voxel i, this leads to a time series, say
(Xi(t) : 1 ≤ t ≤ T), where T denotes the number of scans or time points. Conse-
quently, the complete fMRI dataset corresponding to one individual is a multivariate
time series (X(t) : 1 ≤ t ≤ T), where X(t) = (X1(t), . . . , Xp(t))∓ and p denotes the
number of spatial locations (voxels).

Modeling of the BOLD response as amultivariate time series offers the possibility
to analyze both spatial and temporal structures. However, due to the high dimension-
ality p, standard statistics to analyze the dynamic behavior of times series, like for
instance the empirical autocovariance function, are severely ill-conditioned in our
setting. Hence, some kind of dimension reduction or regularization of the time series
model is needed in order to perform statistical inference reliably. One solution is to
consider a factor model. The underlying assumption is that the dynamic behavior of
the process X can already be described well (or completely) by a lower-dimensional,
possibly latent process. This leads to the following type of model.

Definition 11.4. The multivariate time series model for the observable process X is
called a dynamic factor model (DFM), if

X(t) =
∝∑

s=−∝
φ(s) f(t − s) + ϑ(t), 1 ≤ t ≤ T . (11.10)

In (11.10), X = (X(t) : 1 ≤ t ≤ T) denotes a p-dimensional, covariance-stationary
stochastic process in discrete time with mean zero, f(t) = (f1(t), . . . , fk(t))∓
with k < p denotes a k-dimensional vector of so-called “common factors” and
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ϑ(t) = (ϑ1(t), . . . , ϑp(t))∓ denotes a p-dimensional vector of “specific factors”, to
be regarded as error or remainder terms. Both f(t) and ϑ(t) are assumed to be cen-
tered and the error terms are modeled as noise in the sense that they are mutually
uncorrelated at every time point and, in addition, uncorrelated with f(t) at all leads
and lags. The entry (i, j) of the matrix φ(s) is called a “factor loading” and quanti-
tatively reflects the influence of the j-th common factor at lead or lag s, respectively,
on the i-th component of X(t), where 1 ≤ i ≤ p and 1 ≤ j ≤ k.

A special case of model (11.10) results if the same factor loading matrix φ (say)
is assumed at all leads and lags, such that

X(t) = φZ(t) + ϑ(t), 1 ≤ t ≤ T , (11.11)

with common factors Z(t) = (Z1(t), . . . , Zk(t))∓ (say). Peña and Box (1987) were
concerned with methods for the determination of the (number of) common factors in
a factor model of the form (11.11) and derived a canonical transformation allowing
a parsimonious representation of X(t) in (11.11) in terms of the common factors. As
noted by Park et al. (2009), the model (11.10) can be accommodated into (11.11) if
the common factors are themselves considered as unknown model parameters. This
can be seen by considering each Zj, 1 ≤ j ≤ k, as a lagged linear combination of
the common factors f in (11.10). Further relationships between different types of
dynamic factor models are explained by Hallin and Lippi (2013), for example; see
also the references therein.

Under model (11.11), the univariate time series model corresponding to voxel
1 ≤ i ≤ p is given by

Xi(t) =
k∑

j=1

φi,jZj(t) + ϑi(t)

= φi,1Z1(t) + φi,2Z2(t) + · · · + φi,kZk(t) + ϑi(t).

Hence, by symmetry, one may also interpret the columns of φ as spatial factors and
the values (Z1(t), . . . , Zk(t))∓ as time-dependent factor loadings. An interesting idea
was advocated inPark et al. (2009) andvanBömmel et al. (2013). The authors propose
to model the spatial factors as functions of the spatial locations, such that φi,j =
Θj(i1, i2, i3), where (i1, i2, i3) encodes the spatial position of voxel i. Estimating the
functions Θ1, . . . , Θk nonparametrically by a low-dimensional space basis reduces
model complexity further such that inference becomes feasible, even in the very
high-dimensional voxel space. The estimated functions Θ̂1, . . . , Θ̂k approximate the
spatial structure of the BOLD response, while the estimated time-dependent factor
loadings Ẑ1(t), . . . , Ẑk(t), 1 ≤ t ≤ T , capture the dynamic structure.

If small regions of interest are studied, inference can even be targeted at a full
parametric representation of the DFM given in (11.10). To this end, it is convenient
to study the frequency-domain representation of the process. The model equation
(11.10) immediately entails that the autocovariance function of the
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observable process X, λX for short, and its spectral density matrix SX (say), can be
expressed by

λX(u) = E[X(t)X(t + u)∓] =
∝∑

s=−∝
φ(s)

∝∑

v=−∝
λf (u + s − v)φ(v)∓ + λϑ(u),

SX(ξ) = (2Ξ)−1
∝∑

u=−∝
λX(u) exp(−iξu)

= φ̃(ξ)Sf (ξ)φ̃(ξ)∩ + Sϑ(ξ), −Ξ ≤ ξ ≤ Ξ. (11.12)

In (11.12), φ̃(ξ) = ∑∝
s=−∝ φ(s) exp(−iξs) and the prime stands for transposition

and conjugation. For statistical inference, it is important that identifiability conditions
are imposed such that the representation in (11.12) is unique (up to scaling), see
Geweke and Singleton (1981) for details. If the model is identified, the statistical
parameter α(ξ) (say) of interest for given frequency ξ consists of all d = 2pk +
k2 + p distinct parameters in φ̃(ξ), Sf (ξ) and Sϑ(ξ), where each of the (in general)
complex elements in φ̃(ξ) and Sf (ξ) is represented by a pair of real components in
α(ξ), corresponding to its real part and its imaginary part. Hence, Hannan (1973) and
Geweke and Singleton (1981) assumed the existence of B disjoint frequency bands
ν1, . . . , νB, such that SX is approximately constant within each of these bands.
Letting ξ(b) denote the center of band νb and αb = α(ξ(b)), where 1 ≤ b ≤ B, the
final model dimension is equal toBd, which is certainly only feasible for small values
of p and large values of T . Therefore, Hannan (1973) and Geweke and Singleton
(1981) studied an asymptotic setting where T ≡ ∝.

Maximum likelihood estimators α̂b for the parameters αb, 1 ≤ b ≤ B, can be
computed by adapting the algorithm by Jöreskog (1969). Based on central limit
theorems for time series in the frequency domain, Geweke and Singleton (1981)
showed that

α̂b ∅
asympt.

Nd(αb, V̂b), 1 ≤ b ≤ B, (11.13)

where V̂b denotes the estimated covariance matrix of α̂b. The result in (11.13), in
connection with the fact that the vectors α̂b, 1 ≤ b ≤ B, are asymptotically jointly
uncorrelated with each other, is very helpful for testing linear (point) hypotheses.
Such hypotheses are of the form

H : Cα = ξ (11.14)

with a contrast matrix C ∈ R
r×Bd , ξ ∈ R

r and α consisting of all elements of all
the vectors αb. The integer r denotes the number of restrictions imposed on α by H,
where r < Bd and C is assumed to have rank r. Notice that, in contrast to (4.7), H is
regarded as one single hypothesis, namely, the intersection of the rows in the system
of equations in (11.14). Geweke and Singleton (1981) proposed the usage of Wald
statistics in this context. The Wald statistic for testing H is given by

http://dx.doi.org/10.1007/978-3-642-45182-9_4
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W = (Cα̂ − ξ)∓(CV̂C∓)−1(Cα̂ − ξ), (11.15)

where α̂ is built in analogy to α and V̂ is a block matrix built up from the band-
specific matrices V̂b, 1 ≤ b ≤ B. It is well-known that W is asymptotically equiva-
lent to the likelihood ratio statistic for testing H. In particular, W is asymptotically
Σ2-distributedwith r degrees of freedomunder the null hypothesisH, see Sect. 12.4.2
in Lehmann and Romano (2005). Wald statistics have the practical advantage that
they can be computed easily, avoiding restricted (by H) maximization of the likeli-
hood function.

In the remainder of this section, we exemplify how two scientific questions of
interest in the statistical analysis of dynamic factor models of the form (11.10) can
be formalized as multiple test problems and addressed by multiple test procedures
with vectors of Wald statistics as test statistics. To this end, we follow the derivations
of Dickhaus (2012).

11.4.1 Which of the Specific Factors have a Non-trivial
Autocorrelation Structure?

Addressing this question is of interest, because presence of many coloured noise
components may hint at further hidden common factors and therefore, the solution
to this problem can be utilized for the purpose of model diagnosis in the spirit
of a residual analysis and, hence, for the choice of k. For one specific factor ϑi,
1 ≤ i ≤ p, we consider the linear hypothesis Hi : CDunnettsϑi = 0 of a flat spectrum.
The contrast matrix CDunnett is the “multiple comparisons with a control” contrast
matrix with B − 1 rows and B columns, where in each row j the first entry equals
+1, the (j + 1)-th entry equals −1 and all other entries are equal to zero. The vector
sϑi ∈ R

B consists of the values of the spectral density matrix Sϑ corresponding to the
i-th noise component, evaluated at the B centers (ξ(b) : 1 ≤ b ≤ B) of the chosen
frequency bands. Denoting the subvector of α̂ that corresponds to sϑi by ŝϑi , the i-th
Wald statistic is given by

Wi = (CDunnett ŝϑi)
∓ [

CDunnettV̂ϑi C
∓
Dunnett

]−1
(CDunnett ŝϑi),

where V̂ϑi = diag(σ̂ 2
ϑi
(ξ(b)) : 1 ≤ b ≤ B). Then, underHi,Wi asymptotically follows

aΣ2-distributionwithB−1degrees of freedom if the corresponding limitmatrixVϑi is
assumed to be positive definite. Considering the vector W = (W1, . . . , Wp)

∓ of all p
Wald statistics corresponding to the p specific factors in the model and making use of
the notation inDefinition 4.6,we finally haveW ∅

asympt.
Σ2(p, (B−1, . . . , B−1)∓, R)

under the intersection H0 of the p hypotheses H1, . . . , Hp, with some correlation
matrix R. This distributional result allows for applying standard multiple tests that
we have discussed in previous chapters.
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11.4.2 Which of the Common Factors have a Lagged
Influence on Which Xi?

In many applications, it is informative if certain factors have an instantaneous or a
lagged effect. Here, we aim at addressing this question for all common factors simul-
taneously. As done by Geweke and Singleton (1981), we formalize the hypothesis
that common factor j has a purely instantaneous effect on Xi, 1 ≤ j ≤ k, 1 ≤ i ≤ p,
in the spectral domain by

Hij : |φ̃ij|2 is constant across the B frequency bands.

In an analogous manner to the derivations in Sect. 11.4.1, the contrast matrix CDunnett
can be used as the basis to construct a Wald statistic Wij. The vector W = (Wij :
1 ≤ i ≤ p, 1 ≤ j ≤ k) then asymptotically follows a multivariate chi-square
distribution with B−1 degrees of freedom in each marginal under the corresponding
null hypotheses and we can proceed as described in Sect. 11.4.1.

Many other problems of practical relevance can be formalized analogously by
making use of linear contrasts and thus, the described framework applies to them,
too. Furthermore, the hypotheses of interest may also refer to different subsets of
{1, . . . , B}. In such a case, the marginal degrees of freedom for the test statistics are
not balanced, as considered in our general Definition 4.6.
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Chapter 12
Further Life Science Applications

Abstract In this concluding chapter, we exemplarily discuss binary classification
and multiple test problems in two specific areas of the life sciences, namely, brain-
computer interfacing (BCI) and gel electrophoresis-based proteome analysis. In the
BCI context, we demonstrate how multiple testing-based approaches to binary clas-
sification that we have described in Chap.6 can be utilized for data analysis. In
particular, estimation methods for multivariate stationary densities of autocorrelated
time series vectors are employed. In the context of proteome analysis, the applica-
tion of multiple tests is demonstrated by means of analyzing a real-life dataset from
diabetes research. Finally, an outlook to further applications in the respective fields
is provided.

This concluding chapter is concerned with two fields of life science for which the
application of simultaneous statistical inference methods that we have described
in Part I is not so well-established yet. The models and procedures considered in
Sects. 12.1 and 12.2 below are therefore not meant to describe the state-of-the-art
in the respective field, but the chapter attempts to provide an outlook on potential
application fields of simultaneous statistical inference which may attract further
attention in the future.

12.1 Brain-Computer Interfacing

Brain-computer interfaces (BCIs) are systems that convert brain activity in real-time
into control signals for a computer application. This can allow, for instance, paralyzed
patients who are deprived of other means of communication to interact with the
external world via BCI-controlled rehabilitative tools. General introductions to BCIs
and their applications have been provided by Dornhege et al. (2007), Graimann et al.
(2010) and Wolpaw and Wolpaw (2012). Recently, also nonmedical applications of
BCI technologies are being explored, see Blankertz et al. (2010b).
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The neural activity of the central nervous system can be acquired in different
ways. Most BCIs employ the noninvasive electroencephalogram (EEG) or implanted
electrode arrays. There is also a large variety of different control strategies, which
allow the user to generate specific brain signals that have relatively good detection
rates by the BCI. In the implementation of a BCI system one has to use an algo-
rithm which extracts features that correspond to the chosen control strategy (see,
e.g., Blankertz et al. 2008, 2011). The choice of suitable control strategies and cor-
responding feature extraction algorithms typically profits from neurophysiological
background knowledge. The Berlin brain-computer interface group (see Blankertz
et al. 2010a) employs statistical (machine) learning methods for feature extraction
and processing. This approach is meant to avoid extensive training on the users’ side
and to transfer the largest amount of workload to the machines (“let the machines
learn”). A general introduction to machine learning methods for EEG analyses has
been provided by Lemm et al. (2011).

Here, let us focus our attention on one prominent classification problem (cf.
Chap. 6) in the BCI field. It is known for a long time that the imagination of hand
movements corresponds to specific changes of the brain signals that can be detected
at a macroscopic level, i.e., with noninvasive EEG recordings from the scalp. In par-
ticular, the oscillations which can be observed during idle state in the brain area
corresponding to the respective (left or right) hand are attenuated during motor
imagery—an effect called event-related desynchronization (ERD) of sensorimotor
EEG rhythms, see Pfurtscheller and da Silva (1999). Since the two hand areas are
spatially well separated in the motor cortex of the brain, the ERD effects can, in
principle, be distinguished to originate either from the left or from the right hand.
Therefore, one type of BCI can be realized in the following way: the user switches
voluntarily between motor imagery of the left hand and the right hand and thereby
continuously transmits a binary control signal. Hence, even if actual motor functions
of the user are impaired, ERD-based BCIs continue to work if s/he can at least imag-
ine to move his/her hands. This can be used, e.g., for one-dimensional cursor control
(see Blankertz et al. 2007) or, with an intelligent design, for BCI-assisted typewriting
(see Williamson et al. 2009).

Dickhaus et al. (2013) demonstrated how EEG features from a BCI experiment
relying on ERD of sensorimotor rhythms can be classified by making use of mul-
tiple testing-based Algorithms 6.1 and 6.2 that we have described in Sect. 6.2. The
observational units of this classification problem are those segments of the (band-
pass filtered) multichannel EEG data during which motor imagery was performed.
Each of the resulting so-called “single trials” results in a matrix Ξi ∈ R

C×T (say),
where C denotes the number of recorded EEG channels (which is 86 in our example)
and T the number of sampled time points within each trial (which is 400 in our
example: four seconds at a sampling rate of 100 Hz). The entries of Ξi are measure-
ments of the electrical activity in the corresponding channel at the corresponding
time point. The index i refers to the number of the single trial. As described around
Algorithms 6.1 and 6.2, the classification parameters f0, f1 and c(w) have been
learned utilizing a training (calibration) dataset. From these calibration data, spatial
filters w j ∈ R

C for 1 ≤ j ≤ k that are optimized for the discrimination of left
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and right hand trials were determined by Common Spatial Pattern (CSP) analysis
(see Fukunaga 1990). The number k of spatial filters that are employed is data-
dependent andvaries in our approach, as describedbyBlankertz et al. (2008), between
2 and 6. This number k corresponds to the data space dimensionality considered in
our general classification setup, cf. Definition 6.1. Features are then calculated as the
logarithmic bandpower in the spatially filtered channels. Thus, we have k features
xi, j = log(wT

j Ξi Ξ T
i w j ), j = 1, . . . , k, in trial i , forming a feature vector xi ∈ R

k .
Assuming that we have conducted mtrain calibration trials for one BCI user, this
results in a training dataset (x1, y1), . . . , (xmtrain , ymtrain), where yi ∈ {0, 1} is the
class label of trial i with left and right hand motor imagery being coded by 0 and 1,
respectively.

Certainly, the aforementioned EEG features xi are autocorrelated. Hence, as out-
lined in the discussion belowRemark 6.2, a generalization of the classificationmodel
defined in Definition 6.1 is necessary in order to account at least for weak autocor-
relations of features. Dickhaus et al. (2013) defined the following weakly dependent
mixture model for classification.

Definition 12.1 (Dickhaus et al. 2013). Assume that mtrain training trials for a
given classification problem have been performed, resulting in a training dataset
(x1, y1), . . . , (xmtrain , ymtrain). Furthermore, assume that m test data points xmtrain+1,

. . . , xmtrain+m with unknown labels have to be classified, and let M = mtrain + m.
Then, themultivariate distribution of the data tuples {(Xi , Yi )}M

i=1 on (Rk×{0, 1})M is
called aweakly dependentmixturemodel if the conditions (12.1)–(12.3) are fulfilled.

Defining γM = mtrain/M, it holds 0 < lim inf
M→≡ γM ≤ lim sup

M→≡
γM < 1. (12.1)

Independently of the values in the sequence {γM }M , it holds

M−1
M∑

i=1

(1 − Yi ) → π0 = 1 − π1 ∈ (0, 1) almost surely. (12.2)

There exist continuous cdfs F0 ∀= F1 on R
k , not depending on the values in the

sequence {γM }M , with the property that for all x ∈ R
k it holds

M−1
0

M∑

i=1

(1−Yi ) 1{Xi ≤ x} → F0(x) and M−1
1

M∑

i=1

Yi 1{Xi ≤ x} → F1(x), (12.3)

almost surely, with M0 and M1 denoting the total number of trials with yi = 0 and
yi = 1, respectively.

The distributional assumptions in Definition 12.1 imply that the Yi asymptotically
follow a Bernoulli(π1)-distribution and the Xi are asymptotically distributed
according to the mixture cdf (1 − Yi )F0 + Yi F1. Under these assumptions, at least
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for large training data sets, the asymptotic pdfs f0 and f1 can consistently be esti-
mated from the training data where labeling is known and separate estimation of the
densities corresponding to yi = 0 and yi = 1, respectively, is possible. Notice that
Definition 12.1 is only concerned with the dependency structure between distinct
random vectors, while the “inner-vector” dependency structure, i.e., the dependence
between the components of a particular Xi , is not considered. The latter dependency
is implicitly addressed in density (ratio) estimation, cf. Remark 6.2. In our case,
empirically sphered data were used as input of a kernel density estimator.

Under the assumptions of Definition 12.1, Dickhaus et al. (2013) applied Algo-
rithms 6.1 and 6.2 to a BCI dataset described by Dickhaus et al. (2009). The twomul-
tiple testing-based classification procedures exhibited classification performances
whichwere comparable to those of regularized linear discriminant analysis, amethod
known to perform well on log-transformed EEG bandpower features, see Blankertz
et al. (2008, 2011). This is a remarkable result, because the classification approach
making use of Algorithms 6.1 and 6.2 avoids relying on such prior knowledge, since
it is fully nonparametric. Therefore, it may also be applied to data from new experi-
mental paradigms for which no laboratory experience is existing yet.

Remark 12.1. Actual multiple testing problems in the context of EEG analyses
and brain-computer interfaces have been discussed by Hemmelmann et al. (2005),
Hemmelmann et al. (2008), Singh and Phillips (2010), Billinger et al. (2012) and
Milekovic et al. (2012), among others.

12.2 Gel Electrophoresis-Based Proteome Analysis

Two-dimensional electrophoresis (2-DE) is a technique to measure the abundance of
several types of proteins in one experiment.Molecules aremoved through a gelmatrix
by applying an electric field. Depending on their mass and their isoelectric point,
their movement speed and their final position differs. This can be exploited in order
to quantify the amount of specific proteins in the probe. The resulting measurements
originate from imageprocessing and are referred to as spot intensities,where typically
each spot on the gel corresponds to one protein. For some technical details see, for
instance, Bajla et al. (2001). Similarly to the analysis of differential gene expression
(see Chap.10), applying this technique to material from different populations or
different experimental conditions leads to a family of tests for differences between
groups with respect to many endpoints, where every endpoint is given by one spot
(protein). Diz et al. (2011) emphasized the importance of applying multiple testing
methods for the statistical analysis.

Example 12.1. Dickhaus (2008) describes a proteomics experiment in which 1330
protein spots from two groups A and B were detected and matched by a spot detec-
tion software. The protein material consisted of pooled tissue from two different
mice stems under investigation in a diabetes-specific context. Aim of the statistical

http://dx.doi.org/10.1007/978-3-642-45182-9_10
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Fig. 12.1 Simes’ rejection line for α = 0.1 and ecdf. of 393 marginal p-values from Example 12.1

analysis was to detect differences with respect to spot intensities in the two groups.
Group A was processed on four independent gels and group B was processed on
three independent gels (the fourth one for group B was defective). During data
cleaning and preparation, only spots with a minimal measurement number of three
per group were retained. Furthermore, intensities below 0.5 were excluded because
of lacking reliability and relevance. As in gene expression data, often a log-normal
distribution for the intensity ratios is assumed. Therefore, the remaining intensities
were transformed by applying the natural logarithm. After these steps, m = 393
spots remained. Diagnostic plots justified the normal distribution assumption for
these remaining log-intensities and therefore, two-sided two-sample t-tests for the
logarithmic intensity differences per spot were carried out (cf. part (a) of Definition
10.1). This resulted in m = 393 marginal p-values. Figure 12.1 displays Simes’
rejection line for α = 0.1 (cf. the discussion around Lemma 5.6) and the ecdf. of
the obtained m = 393 p-values. The crossing point of these two objects determines
the decision rule of the linear step-up test ϕLSU from Definition 5.6. In this example,
64 hypotheses were rejected at FDR level 0.1. The proportion Rm/m = 0.163 of
rejected hypotheses is given by the ordinate of the crossing point.

Further references for multiple testing theory and applications in gel electro-
phoresis-based proteome analysis comprise Morris et al. (2011), Morris (2013),
Langley et al. (2013), Corzett et al. (2006), Corzett et al. (2010), Rabilloud (2012)
and references therein, among others.
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Remark 12.2. Often, detection of differentially expressed proteins by analyzing
spots in 2-DE is performed in connection with a following mass spectrometry analy-
sis of the detected spots. Analyzing peaks in protein mass spectra and comparing
two or more of such spectra constitute two further applications of multiple testing in
proteome analysis which are, however, rather different from what we have described
in the present section. One multiple testing-related software package for the analysis
of protein mass spectra is MALDIquant, described by Gibb and Strimmer (2012).
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