Chapter 3

Benchmarking a Simple Yet Effective
Approach for Inferring Gene Regulatory
Networks from Systems Genetics Data

Sandra Heise, Robert J. Flassig and Steffen Klamt

Abstract We apply our recently proposed gene regulatory network (GRN)
reconstruction framework for genetical genomics data to the StatSeq data. This
method uses, in a first step, simple genotype—phenotype and phenotype—phenotype
correlation measures to construct an initial GRN. This graph contains a high number
of false positive edges that are reduced by (i) identifying eQTLs and by retaining only
one candidate edge per eQTL, and (ii) by removing edges reflecting indirect effects
by means of TRANSWESD, a transitive reduction approach. We discuss the general
performance of our framework on the StatSeq in silico dataset by investigating the
sensitivity of the two required threshold parameters and by analyzing the impact
of certain network features (size, marker distance, and biological variance) on the
reconstruction performance. Using selected examples, we also illustrate prominent
sources of reconstruction errors. As expected, best results are obtained with large
number of samples and larger marker distances. A less intuitive result is that signif-
icant (but not too large) biological variance can increase the reconstruction quality.
Furthermore, a somewhat surprising finding was that the best performance (in terms
of AUPR) could be found for networks of medium size (1,000 nodes), which we had
expected to see for networks of small size (100 nodes).

3.1 Introduction

Systems Genetics approaches provide a new paradigm of large-scale genome and
network analysis (Jansen and Nap 2001; Jansen 2003; Rockman and Kruglyak 2006;
Rockman 2008). These methods use naturally occurring multifactorial perturbations
(e.g., polymorphisms) to causally link genetic or chromosomal regions to observed
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phenotypic trait data. Identifying a chromosomal region (the quantitative trait locus
(QTL)) that influences a certain phenotypic trait is known as QTL mapping. In genet-
ical genomics, a particular subclass of systems genetics, gene-expression levels are
considered as phenotypic traits (called etraits) and identified QTLs are referred to as
expression-QTLs (eQTLs). One application of eQTL maps obtained from genetical
genomics approaches is the reconstruction of gene regulatory networks (GRNss).

According to Liu et al. (2010), a GRN reconstruction pipeline for genetical
genomics data consists of three major steps: (i) eQTL mapping, (ii) candidate regu-
lator selection, and (iii) network refinement. Step (i) is used to identify chromosomal
regions (eQTLs) that impact on expression levels (=traits) of genes. A detailed
review on eQTL mapping is, for instance, given by Michaelson et al. (2009). In step
(ii), the eQTL map in combination with a genetic map is used to select single candi-
date (regulator) genes from the eQTLs. Frequently used methods include conditional
correlation (Bing and Hoeschele 2005; Keurentjes et al. 2007), local regression (Liu
etal. 2008), or analysis of between-strains SNPs (Li et al. 2005). In the third step (iii),
network refinement methods are employed to the topology obtained in step (ii), e.g.,
with the goal to identify and eliminate (false positive) edges arising from indirect
effects. Here, Bayesian network approaches (Zhu et al. 2007) and structural equation
modeling, SEM, (Liu et al. 2008) have been used.

In this chapter, we apply our recently proposed GRN reconstruction framework
for genetical genomics data (Flassig et al. 2013), which incorporates the three major
reconstruction steps mentioned above in a modular fashion. The framework follows
a simple-yet-effective paradigm: it is based on simple correlation measures, without
the need for computational demanding optimization steps. This approach is therefore
suited for small- and large-scale networks and performed comparable well in the case
of little samples but many genes, as we illustrate in Flassig et al. (2013) using simu-
lated and biological data. The workflow of the framework is shown in Fig.3.1. The
initial GRN is constructed based on genotype—phenotype and phenotype—phenotype
correlation analyses. Due to genetic linkage there are often groups of genetically
adjacent regulator gene candidates, which target the same gene resulting into eQTLs.
To avoid many false-positive interaction predictions, single candidate regulators are
therefore identified from the eQTLs. Finally, as a method for network refinement in
step (iii), indirect path effects are removed by TRANSWESD, a transitive reduction
approach introduced recently (Klamt et al. 2010).

3.2 Methods

Figure 3.1 shows the general workflow of our reconstruction framework together
with a simple illustrative example. Starting from a typical set of genetical genomics
data that include genotyped markers, phenotyped genes and gene-to-marker associ-
ation, marker linkage analysis, and genotype assignment for each gene is performed
in a preprocessing step. In particular, a linkage map is generated in which two mark-
ers are indicated to be genetically linked if their genotype—genotype correlation
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Fig. 3.1 Workflow of the proposed framework for reconstructing GRNs from genetical genomics
data (left) with an illustrative example (top panel and right). For detailed explanations see text.
Reproduced with permission of Oxford University Press from Flassig et al. (2013)

exceeds a given threshold parameter dpin. Then, in a first step, an unweighted and
unsigned perturbation graph G1 is derived in which an edge i — j is included
if their corresponding genotype-phenotype correlation exceeds a second threshold
127 The nodes in the graph directly correspond to genes while the linkage map (of
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the markers) is kept to allow later eQTL assignment for each gene. The perturba-
tion graph Gl is refined to G2 by quantifying each identified edge with respect to
edge sign and weight, which indicate activation/repression and interaction strength,
respectively. Due to genetic linkage true regulators may be masked by other genes
(e.g., on adjacent positions on the genetic map) resulting into eQTLs. The eQTLs
of a given target gene ¢ are identified on the basis of all potential regulator genes of
t (contained in G2) together with the marker linkage map. These relationships are
captured in graph G3, which is the only graph where the nodes represent eQTLs.
Graph G4 is subsequently obtained by selecting one candidate regulator per eQTL
based on the maximum of the edge weights. We call G4 the final perturbation graph,
whose edges reflect direct and indirect effects between genes induced by genetic
variations. To identify and remove indirect edges in G4 that can be explained by the
operation of sequences of edges (paths) we apply the transitive reduction method
TRANSWESD (TRANSItive reduction in WEighted Signed Digraphs) resulting in
the final graph G5 containing the identified gene interactions. Optionally, if one is
left to verify the interactions experimentally, it is desirable to have a list of edges
sorted with respect to edge confidences. Such a list is also required by the evaluation
procedure of the StatSeq Systems Genetics Benchmark to assess the quality of a
reconstructed network (Sect.3.3). We generate such a sorted list based on the edge
weights. More details on the framework can be found in Flassig et al. (2013).

3.3 Application to the StatSeq Systems Genetics Benchmark:
Results and Discussion

We applied our reconstruction framework described in Sect. 3.2 to the in silico Stat-
Seq dataset provided to all contributors of this book. In this section, we will discuss
the general performance of the algorithm and investigate the impact of certain net-
work features (size, marker distance, and biological variance) on the reconstruction
performance of our applied reconstruction framework. Using selected examples, we
will also illustrate prominent sources of reconstruction errors (Sect.3.3.2).

3.3.1 General Performance Analysis with Respect
to Network Configurations

Table 3.1 shows the AUPR and AUROC reconstruction performance (obtained by
using optimal values for the thresholds dp;, and 2T for all studied 72 network
configurations: 3 different network sizes (100, 1000, 5000) x 3 replicates (with
same topological parameters) x 2 marker distances (close and far) x 2 different
biological variances (high and low) x 2 different population sizes (300 and 900)
(see also Chap. 1). The performance measures are given for graph G2, G4, and G5
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to be able to assess the overall effects of the two major pruning steps within our
approach (G2 — G4: selection of one candidate edge per eQTL; G4 — G5: removal
of edges that most likely stem from indirect effects (TRANSWESD); see Fig.3.1).
We will mainly focus on the AUPR measure since this is the most appropriate one
for sparse networks.

As a general trend, we observe that the first (eQTL) pruning step leads in all
cases to an improvement of the AUPR, particularly pronounced in the case of large
population sizes (see also averaged values in Table 3.1). The second (TRANSWESD)
pruning step achieves a significant (but compared to the eQTL pruning lower) AUPR
improvement when using the larger population size, whereas only a minor or even
no effect can be seen for reconstruction based on the small population with 300
individuals. The effects of the two pruning steps are also well reflected by the number
of true positive (TP) and false positive (FP) edges in Table 3.1.

As expected, we see that a larger population size always helps to yield a better
reconstruction quality (see also Fig.3.3). Somewhat surprising was the finding that
the best (averaged) AUPR value could be found for the G5 graph of medium size
networks (1,000 nodes), here we had expected to see this for networks with 100
nodes.

In the following we will discuss the sensitivity of the reconstruction results with
respect to the threshold parameters (t€" and dpi,) and the impact of marker dis-
tance, biological variance, and population sizes by the example of the first 100-
nodes network (networks 100.1.1-100.1.8 in Table 3.1). Similar results can be found
for the replicates (100.2.x and 100.3.x) and/or networks of larger size (1000.x.x;
5000.x.x). Figure 3.2 shows for configurations 100.1.1-100.1.8 the resulting AUPR
and AUROC performances of the reconstructed G5 networks in the two-dimensional
space of meaningful threshold parameters. Clearly, as already outlined above, larger
population size (900 samples instead of 300) improves the reconstruction quality
(compare odd vs. even numbers of network configurations) although, in line with
our results in Flassig et al. (2013), the differences are only moderate. We also see
that the optimal threshold regions are similar for all 8 networks. However, one can
observe that in the case of low sample size (300) the optimal AUROC/AUPR region
is more confined. Thus, the method seems to be fairly robust against a variation of
thresholds but an appropriate threshold selection strategy is important for small sam-
ple sizes. Generally, the genotype—phenotype threshold 27 for edge detection in G1
seems more sensitive and important than the linkage analysis threshold dpy;, required
in preprocessing. Regarding sensitivity of the performance evaluation, AUROC is
much less sensitive to the parameters 27 and dp, than AUPR.

Larger marker distance seems beneficial for reconstruction because genotype cor-
relations are then minimized. This can be seen, for instance, when comparing con-
figuration 2 (marker distance N(5, 1)) with 6 (marker distance N(1, 0.1)) in Fig.3.2.
Partially, weak performance due to small marker distance can be compensated by
biological variability (configuration 2 vs. 8). However, in the case of small samples
and larger marker distance, larger biological variability decreases performance. This
is most likely due to a poor signal-to-noise ratio and can be understood as follows.
Interactions between genes are derived from target expression variations induced
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Fig. 3.2 Performance of AUPR (left) and AUROC (right) of networks 100.1.1-100.1.8 depending
on the chosen threshold parameters

by regulator genotype variations. This approach requires sufficient (i) variation of
the regulator and (ii) sensitivity of targets with respect to expression variations of the
regulator. Variation of the regulator can only be induced by either upstream genes,
i.e., the regulator itself is regulated by other genes, and/or by biological variability
inducing expression variation in each gene along the sample population. The latter is
important for identifying regulator—target interactions of regulators, which have no
upstream genes. In this case, the only source of topological informative expression
variation is biological variability, which however can only be distinguished from
uninformative noise for larger sample sizes.

Figure 3.3 summarizes the AUROC and AUPR performances for all network con-
figurations and sizes averaged over the three network replicates. These results confirm
many of the observations made for networks 100.1.x. Again, for our reconstruction
algorithm, the worst scenario in terms of AUPR values is the one with small sam-
ple size, small marker distance, and small biological variance. We also see that the
AUROC is more or less insensitive with respect to sample size and configuration
of marker distance/biological variance, but sensitive to the total number of nodes.
Specifically, the AUROC is constantly decreased in networks with only 100 nodes
compared to 1,000 and 5,000 nodes. This is most likely due to the fact that there
are less false negative edges in small compared to large networks (if they have the
same connectivity, which is the case for the given dataset) leading to a decreased
AUROLC. Best network configuration for reconstruction in terms of AUPR values is
given by larger samples and large marker distance from which only the first one can
be influenced by experimental design. Increased biological variance has noticeable
effects on the reconstruction quality for small marker distance. Here, higher biolog-
ical variance is favorable. The reconstruction quality with respect to network size
decreases clearly in one particular case: networks with 5,000 nodes perform poorly
in the AUPR values for small sample size (300). Therefore, precision is small in this
setting because of too few samples. For 900 samples, precision is raised, resulting
into similar AUPR values compared to reconstructions of 100/1,000 node networks.
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Fig. 3.3 AUPR and AUROC performance averaged over network replicates for different network
sizes (100/1,000/5,000 nodes) and samples (300 (left panel) or 900 (right panel)) grouped according
to marker distance (Far/Close) / biological variance (Low/High) configurations

Averaged over all configurations, networks with 1,000 nodes are best reconstructed
with respect to AUPR and AUROC values for the eight different configurations.

3.3.2 Prominent Sources of Reconstruction Errors

In the following, we restrict the analysis to (i) a well-identifiable configuration
(100.1.4) and (ii) a poorly identifiable configuration (100.1.6). We further restrict
our analysis to 900 samples, since the influence of the sample size should be clear
from the discussions above. In Fig.3.4 we show the genotype—phenotype corre-
lation matrix and weight matrix as a density plot. Thereby we have indicated TP
(green circles), FP (blue circles), and FN (red circles) in the weight matrix (note
that the green and blue circles together describe the reconstructed network GS5).
In the genotype—phenotype matrix plots we see horizontal gray lines (especially in
100.1.6), which correspond to eQTLs, from which regulators have to be selected, in
order to reconstruct the GRN. We see that configuration 100.1.4 tends to have more
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Fig. 3.4 The upper panel shows the genotype—phenotype correlation matrix and the middle
panel the edge weights (for calculation see Fig.3.1) of all potential interactions for configurations
100.1.4/100.1.6. Horizontal gray lines in the genotype—phenotype correlation matrix correspond to
eQTLs, from which regulator genes have to be selected. In the weight matrix, green (TP) and blue
circles (FP) indicate the edges included in the final reconstructed graph G5, whereas red circles
indicate missed interactions (FN). Some genes (g4, 850, 91, and gg2) were selected for detailed
analysis of the TP/FP/FN edges having these genes as regulators (see also Fig.3.5). Mean expres-
sion and its variance of the regulators are given by pr and aé, respectively. Mean weights and

weight variances over all target edges of a regulator are indicated by p,, and O‘v%
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confined eQTLs due to larger marker distances, i.e., smaller genotype correlation
between adjacent markers. This of course improves reconstruction quality as can be
seen, e.g., in Table 3.1 (AUPR of 0.36 in 100.1.4 vs. 0.12 in 100.1.6).

From the weight matrix plots we also see that 100.1.6 contains more gray spots
than 100.1.4. This results from much more correlations in the data of 100.1.6. Since
many of these correlations are due to marker correlations, they do not reflect true
interactions, thus hampering network inference. The diagonal gray line indicates
self-regulation, which were not considered for reconstruction (and were not taken
into account by the performance evaluation script). A vertical line of red or green
circles indicates a true regulator with many targets. An example is regulator goo,
from which many targets are correctly identified in the case of 100.1.4. In the case of
100.1.6, the algorithm selects gg1 as the regulator and therefore induces many FPs
(vertical line of blue circles at regulator position 91) and many FNs (vertical line of
red circles at regulator position 92). The reason for this is that eQTLs in 100.1.6 are
much larger due to smaller marker distances, corresponding to a strong correlation of
genes gg1/g92 via their genotypes (see genotype—phenotype matrix plot in Fig. 3.4).
For configurations 100.1.4/100.1.6, gene gg> has 1 true upstream gene, 21 true targets,
and mean expressions ug = 1.57/up = 1.35 with 0% = 0.43/01% = 0.098. In
contrast, gene go1 has 5 true upstream nodes, 0 true targets, and mean expressions
pE = 0.35/ng = 0.4witho2 = 0.1/07 = 0.03 for configurations 100.1.4/100.1.6.
Therefore, when deriving the weights for 100.1.6, gene go; has larger weights with
little variance than gene go>, thus being wrongly selected during eQTL analysis.

Notably, even when a gene has no upstream gene (regulator), we may still recover
target interactions. For example, gene g4 has no regulator but we do recover 8 / 12
interactions out of 26 for configuration 100.1.4/100.1.6, simply due to the fact, that
the expression of gene g4 is varying due to higher biological variance resulting into
expression variations of the targets (see mean edge weights of G4 targets in the table
of Fig.3.4).

Another example for typical challenges of correctly reconstructing interactions
from the provided dataset is gene gso. This gene has mean expressions ug =
0.47/pug = 0.48 with 07 = 0.06/07 = 0.02 for configurations 100.1.4/100.1.6,
with 1 true upstream gene. As the variation in the expressions of gene gsq is small, we
cannot get any information on its targets superior to variation by noise. Further, even
in cases where a regulator is varying strongly it does not necessarily induce variation
in the target (see FN histogram and the table in Fig.3.5). This can happen in cases
where a gene has several regulators or if the kinetics of the target activation is in an
insensitive range with respect to changes in the regulator (e.g., due to a very low or
very large K, parameter in a Hill function describing the dependency of the target
on its regulator). Both effects result into small sensitivity with respect to regulators,
thus hampering again the identification of interactions.

In Fig.3.5 we show three histograms of mean and variance of the regulators’
expressions, classified according to whether the (non-)identified target interactions
of the regulator are TPs/FPs/FNs. We use network configuration 100.1.4 with optimal
threshold parameters as it belongs to the networks with highest reconstruction quality.
As expected, regions in the mean—variance expression plane in Fig.3.5 where we
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for network configuration 100.1.4 and classified whether the corresponding target regulation is a
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find TPs also overlap with FP and FN regions. Only for mean and variance levels
above 1.2 and 0.4, respectively, FNs and partially FPs are reduced. The drop in FNs
is due to the fact that interactions are not missed in the high-level region of the
mean—variance plane. Almost independent on the expression mean and variance of a
regulator, regulators are sometimes wrongly selected from the eQTLs. This explains
why FPs are only slightly reduced in the high-level region.

Interactions of regulators with expression values roughly below 0.5 and variance
levels below 0.1 are always mis-classified as either FP or FN. Looking at the mean
and variance of the expression levels of the target genes that belong to TP/FP/FN
of regulator g9 (see table in Fig.3.4), we see that sufficient variation at a sufficient
expression level of the regulator does not guarantee correct identification of (no)
interactions. The expression level of the target and its variance also determine classi-
fication results. The more inputs a target has, the more likely it is to get an FN since
its sensitivity to variation of a specific input node is decreased (see mean expression
variance over the FN target genes). False positives are also generated, when the FP
targets vary too strongly. In the example of Fig.3.5, this is probably due to strong
biological variance and experimental noise, inducing variations in the FP targets; all
five FP targets have a relatively low mean input number of 2.8.
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3.4 Summary and Conclusions

We have analyzed the reconstruction results obtained with our recently developed
framework for reconstructing gene regulatory networks based on simple correlation
measures. Several different network topologies and data qualities have been used to
illustrate limitations and challenges for network inference. We demonstrated that the
reconstruction quality is influenced by (i) experimental design in terms of sample
size and (ii) biological factors (marker distance, biological variability, and target
sensitivity with respect to its regulators). Regarding the experimental design, our
framework is relatively tolerant to small sample sizes, when comparing the recon-
struction results from 300 and 900 sample data. However, best results are obtained
with large number of samples and larger marker distances combined with signifi-
cant (but not too large) biological variances. Biological factors that are beneficial for
reconstruction are: larger biological variance in case of genetically close markers,
input sensitivity, i.e., every gene does vary when its regulators vary in expression or
genotype, respectively.

Finally, we note that meaningful reconstruction results can only be achieved when
marker distances are sufficiently large. Otherwise, one should restrict the reconstruc-
tion to G3, i.e., eQTL mapping, to narrow down potential interaction sites. Then, for
specific genes, the true interactions may be obtained by further focused experimental
analysis based on the initial reconstructed graph G3.
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