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Foreword

Phenotypic variation, including that which underlies health and disease in humans,
often results from multiple interactions among numerous genetic and environ-
mental factors. Systems Genetics (SG) seeks to understand this complexity by
integrating the questions and methods of systems biology with those of genetics to
solve the fundamental problem of interrelating genotype and phenotype in com-
plex traits and diseases (Jansen 2003; Rockman 2008; Liu et al. 2009). SG has
been made possible by the advance of experimental techniques that allow mea-
suring biological compounds all along the molecular hierarchy from DNA, RNA,
proteins, metabolites, fatty acids to whole organism phenotypes.

Systems Genetics data consist of genotyping data and other datasets that poten-
tially reflect the effect of a perturbation of the system caused by these naturally
diverse genotypes: phenotypes of interest (e.g., disease, biomass yield), ‘‘molecular
phenotypes’’ such as omics datasets: gene expression levels, gene methylations,
proteins, and metabolite levels. Regular genetic studies (with genotyping and phe-
notyping data alone) permit the identification of genetic loci which affect a given
phenotype. The availability of measurements of tens of thousands of molecular
phenotypes enables algorithms to elucidate the regulatory networks underlying the
complex genotype–phenotype relationships (Jansen 2003; Rockman 2008; Liu et al.
2009). Figure 1 illustrates the essential difference between statistical analysis of
regular genetic studies and the approach of SG.

A large number of network inference methods for SG data have been proposed
(Liu et al. 2009), and more algorithms are expected to appear now that SG data
availability increases due to growing use of Next Generation Sequencing (Wang
et al. 2009). Therefore, thorough verification and fair assessment of algorithms is of
high importance to learn which algorithms are most useful for extracting biological
insights from SG data. This issue needs to be addressed as a community effort (Meyer
et al. 2011). In this book, recent methods for SG data analysis are described and
applied to a suite of simulated SG benchmark datasets. Each of the chapter authors
received the same datasets to evaluate the performance of their method.

The knowledge gained from such benchmarking study ultimately allows for a
confident use of these algorithms in SG studies of, e.g., complex human diseases or
food crop improvement. Several international initiatives emerged with the goal to
systematically assess proposed algorithms in computational biology. Well-known
examples include the Dialogue for Reverse Engineering Assessments and Methods
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(DREAM) project network reverse-engineering challenges (Stolovitzky et al. 2007;
Marbach et al. 2012) (http://www.the-dream-project.org/), the Critical Assessment
of protein Structure Prediction (CASP, http://predictioncenter.org/) tools and the
Genetic Analysis Workshops (GAWs, http://www.gaworkshop.org/). Such initia-
tives have created a sort of ‘‘collaborative-competition’’ from which thorough
insights for data analysis and novel biological discoveries have been obtained
(Meyer et al. 2011). In this book, we take such a collaborative approach: each chapter
describes methods and their evaluation on a common benchmark dataset. Bench-
marking on real biological data is challenging as true regulatory networks are largely
unknown. The availability of realistically simulated datasets, which are generated
under a set of assumptions most relevant to real data, is of utmost importance for the
verification of algorithms for data analysis. Only for these data we are certain about
the true complex system underlying the data (Pinna et al. 2011).

The benchmark dataset used in this book is simulated using the software
SysGenSIM (Pinna et al. 2011). Several parameter settings have been selected to
test how inference is affected by important aspects as the number of observations,
the heritability, genetic linkage, and network size. A total of 72 datasets were
generated. In addition to the simulated gene expression and genotyping data, also
the true network structures underlying the data were provided to give each of the
chapter authors the ability to study the effects of different decisions in their
inference approach (parameter values, scaling methods, etc.) and to get the
maximum out of their algorithms.

There is a variety of approaches to evaluate how good a network prediction is.
The authors were asked to use the ‘‘Area Under the Precision versus Recall curve’’
(AUPR) to evaluate their approaches. In this type of evaluation, instead of the
prediction of an explicit network, the predictions are in the form of a ranked list of
edges. The higher the rank of the edge, the more confidence is placed in the

Fig. 1 The difference between statistical analysis of regular genetic studies and the approach of
SG. While the former results in a ‘‘black box’’ model that relates phenotypes to genotype and
environment by an abstract mathematical function, the latter aims to identify the gene networks
establishing that relationship by making use of large-scale measurements of molecular phenotypes
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existence of that edge. The more the true edges in the network occur in the top of
the predicted ranked list, the better the inference algorithm is considered to be.

The two important quantities can be expressed as

Pecision ¼ TP
TPþFP

Recall ¼ TP
TPþFN

where TP refers to True Positives, edges that are correctly predicted, FP refers
to False Positives, edges that are predicted but actually don’t occur in the true
network, and FN refers to False Negatives, the edges that do occur in the true
network, but are not predicted. The Precision provides the fraction of correct edges
among the predicted edges and the Recall provides the fraction of true edges that
has been discovered.

To obtain a ‘‘Precision versus Recall curve,’’ the Precision and Recall are
evaluated from the top of the sorted list of predicted edges, each time evaluating
for a network with one edge more included. This way a curve is obtained with as
many points as there are edges in the prediction list. The larger the area under the
Precision versus Recall, the better the algorithm used to make the predictions is.
The maximum value for the AUPR is one (perfect prediction: all true edges are
ranked at the top of the list) and the minimum value is 0 (worst possible prediction:
all true edges are ranked at the bottom of the list). Figure 2 shows the precision
versus recall curve of two distinct methods. There are many alternative ways to

Fig. 2 Method I (solid line) predicts the true edges well in the top of the list (high precision), but
then accumulates many false positives, sharply dropping precision, at increasing recall. Method II
(dotted line) has lower precision in the top of the list, but the precision remains relatively high at
increasing recall
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evaluate how good a network prediction is and several are used in the chapters in
this book, but AUPR is the central evaluation criterion used throughout the book.

In Chap. 1 ‘‘Simulation of the Benchmark Datasets’’, Andrea Pinna, Nicola
Soranzo, Ina Hoeschele, and Alberto de la Fuente explain in detail how the
benchmark was created. They used SysGenSIM, a matlab package specially
designed to simulate SG data with large gene networks (Pinna et al. 2011).

In Chap. 2 ‘‘A Panel of Learning Methods for the Reconstruction of Gene
Regulatory Networks in a Systems Genetics Context’’, David Allouche, Christine
Cierco-Ayrolles, Simon de Givry, Gerald Guillermin, Brigitte Mangin, Thomas
Schiex, Jimmy Vandel, and Matthieu Vignes present different approaches
(penalized regression, Bayesian networks, and random forest regression) to the
benchmark datasets and perform an elegant evaluation and comparison among
these methods. Notably, they show that the reliability of the algorithms heavily
depended on several criteria to determine the weights in the network from the
initial predictions of their algorithms.

In Chap. 3 ‘‘Benchmarking a Simple Yet Effective Approach for Inferring Gene
Regulatory Networks from Systems Genetics Data’’, Sandra Heise, Robert J. Flassig,
and Steffen Klamt demonstrate their novel network inference approach on the
benchmark. Based on the marker-expression associations they first build an initial
‘‘perturbation graph,’’ which is subsequently sparsified using transitive reduction.

In Chap. 4 ‘‘Differential Equation-Based Reverse-Engineering Algorithms: Pros
and Cons’’, Gennaro Gambardella, Roberto Pagliarini, Francesco Gregoretti,
Gennaro Oliva, and Diego di Bernardo apply a linear differential equation model
to the benchmark data. The approach was originally conceived to analyze
experimental perturbation data, but could be applied to SG data as well.

In Chap. 5 ‘‘Gene Regulatory Network Inference from Systems Genetics Data
Using Tree-Based Methods’’, Vân Anh Huynh-Thu, Louis Wehenkel, and Pierre
Geurts modified their network inference algorithm GENIE3, based on random
forest regression, to be able to perform integrative analysis of genotypes and gene
expression.

In Chap. 6 ‘‘Extending Partially Known Networks’’, Pegah Tavakkolkhah and
Robert Küffner present a method to infer gene networks which relies on prior
knowledge of the network. Assuming knowledge of 50 % of the edges, they
applied a supervised inference framework to the provided expression datasets and
genotype information.

Chapter 7 ‘‘Integration of Genetic Variation as External Perturbation to Reverse
Engineer Regulatory Networks from Gene Expression Data’’ by Francesco Sambo,
Tiziana Sanavia, and Barbara Di Camillo describe a method based on genotype-
gene expression correlations and a subsequent block-prioritization approach to
disentangle true causal effects from spurious correlations.

Chapter 8 ‘‘Using Simulated Data to Evaluate Bayesian Network Approach for
Integrating Diverse Data’’, Luan Lin and Jun Zhu present their algorithm
Reconstructing Integrative Molecular Bayesian Networks (RIMBANet), a tool
based on Bayesian framework which permits both linear and nonlinear regulation
identification and which facilitates the incorporation of prior knowledge.
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Complex issues like SG data analysis need to be addressed as a community
rather than by individual groups. This book provides the result of an international
community effort dedicated to evaluating algorithms for the inference of Gene
Regulatory Networks from SG data. Before the application of learning algorithms
to SG data, they need to be thoroughly evaluated on benchmark datasets. Thorough
and fair assessment of algorithms is of utmost importance to identify their merits
and pitfalls, before eventually extracting biological insights from SG data. These
studies will only be successful if powerful data analysis methods are available and
applied correctly. To conclude, I would like to acknowledge the European COST
Action STATSEQ for financing a meeting among the authors of the book chapters
in order to present and discuss all the methods presented in this book.

The benchmarks studied in this book, the ‘‘StatSeq benchmark dataset,’’ are
available to the community at: http://sysgensim.sourceforge.net/datasets.html.

Alberto de la Fuente
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Chapter 1
Simulation of the Benchmark Datasets

Andrea Pinna, Nicola Soranzo, Alberto de la Fuente
and Ina Hoeschele

Abstract In this chapter, the in silico systems genetics dataset, used as a benchmark
in the rest of the book, is described in detail, in particular regarding its simulation by
SysGenSIM. Morever, the algorithms underlying the generation of the gene expres-
sion data and the genotype values are fully illustrated.

1.1 Introduction

The presented benchmark dataset is meant to be used for training and evaluating
algorithms and techniques for the inference of networks from systems genetics data.
The goal is to find which methodologies exhibit the best overall network inference
performance, and to analyze their performances under particular conditions (i.e.
population size, large or small marker distances, high or low heritability, and network
size).

1 SysGenSIM 1.0.2, version released on May 8th, 2012. More information is available in the
online manual at http://sysgensim.sourceforge.net.
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2 A. Pinna et al.

Section 1.2 describes how the dataset has been generated by means of SysGen-
SIM,1 a MATLAB toolbox for simulating systems genetics experiments in model
organisms Pinna et al. (2011). Detailed information is provided about the topology
of the gene networks and the settings of the simulator used to produce the genotypes
and the gene expression data. In Sect. 1.3, the algorithms employed to obtain the
networks and genetic data are thoroughly explained.

1.2 Description of the Systems Genetics Dataset

The Systems Genetics benchmark is a collection of 72 in silico datasets generated
from nine artificial gene networks of different size. In the following, details on the
in silico networks (Sect. 1.2.1) and on the configurations of SysGenSIM employed
to produce the data (Sect. 1.2.2) are provided.

1.2.1 In Silico Networks

The systems genetics experiments have been simulated using nine different artifi-
cial gene networks. These networks have been generated using SysGenSIM with
parameters chosen to produce the following topological properties:

• three networks for each of the sizes n = {100, 1000, 5000}, in the following
referred to with the self-explanatory labels 100-{1, 2, 3}, 1000-{1, 2, 3}, and 5000-
{1, 2, 3};

• exponential in-degree and power law out-degree (EIPO) distributions for the nodes;
• average node degree2 K � 6;
• size of the largest strongly connected component (sub-network) equal to at least

20 % of the network nodes (n = 100), 15 % (n = 1000), and 10 % (n = 5000).

Some other topological characteristics of the nine networks are summarized in
Table 1.1, where for each of the networks the number of edges, the size of the largest
strongly connected component (LSCC), the number of nodes in the in- and in the
out-components,3 and the number of nodes amongst tendrils4 and tubes5 are shown.
Network 1000-2 has one isolated node. Figure 1.1 shows a representation of such
network topology.

2 The average number of both ingoing and outgoing edges for a node: K = Kin + Kout.
3 Respectively, all the nodes from which the LSCC is reachable and that are not reachable from the
LSCC, and all the nodes reachable from the LSCC but from which the LSCC cannot be reached.
4 Nodes from which the LSCC cannot be reached, and that cannot be reached from the LSCC itself.
5 Nodes connecting the in- to the out-component, and not belonging to the LSCC.
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Table 1.1 Topological characteristics of the in silico networks

Size Network label Edges LSCC In- Out- Tendrils Tubes

100 100-1 285 21 25 18 30 6
100 100-2 304 26 7 63 4 0
100 100-3 296 34 9 57 0 0
1000 1000-1 3149 165 71 660 96 8
1000 1000-2 2881 162 58 648 108 23
1000 1000-3 3038 150 106 563 158 23
5000 5000-1 14678 528 224 3498 657 93
5000 5000-2 15672 526 233 3580 595 66
5000 5000-3 15270 598 231 3660 480 31

LSCCIN-component OUT-component

Disconnected components

Tubes

Tendrils

Tendrils

Fig. 1.1 Model representing the topology of the artificial networks

1.2.2 Simulation of Datasets

In order to provide a wide range of scenarios, datasets were simulated by combining
the nine topologies with eight different parameter settings for a total of 72 datasets.
The eight parameter settings resulted from a combination of two average marker
distances d = {1, 5 cM}, two median heritability values H (high � 0.8 and low
� 0.4), and two population sizes m = {300, 900}. Simulations have been run with
SysGenSIM’s optional parameter settings set as described in Table 1.2.

By keeping most of the parameters fixed, each dataset has been simulated accord-
ing to the setting configurations summarized in Table 1.3, i.e. only the marker dis-
tance, the biological variance, and the population size have been manipulated.

For each of the 72 datasets, the following four components were made available,
the first two for data analysis (network inference) and the other two for algorithm
evaluation purposes:
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Table 1.2 Values of
SysGenSIM’s optional
parameter settings used to
generate the datasets

Settings Selected value

Network topology EIPO
Network size {100, 1000, 5000}
Edge sign assignment Node-wise
Edge sign probability 0.5
Average node degree 6
Marker positions Generate
Gene positions At markers
Mapping function Haldane
RIL type Selfing
Number of chromosomes {5, 25, 25}
Markers per chromosome N({20, 40, 200}, 2)
Marker distances {N(1, 0.2), N(5, 1)}
Cis-effect % 25
Genotyping error % 5
Z lower 0.5
Z upper 0.8
Basal transcription rate Constant
B.t.r. parameters [1, −]
Interaction strength Constant
I.s. parameters [1, −]
Hill cooperativity coefficient Gamma
H.c.c. parameters [1, 1.67]
Basal degradation rate Constant
B.d.r. parameters [1, −]
Transcription biological variance Gaussian
T.b.v. parameters [1, {0.1, 0.25}]
Degradation biological variance Gaussian
D.b.v. parameters [1, {0.1, 0.25}]
Expression measurement noise Gaussian
E.m.n. parameters [1, 0.1]
Number of phenotype nodes 0
Population size {300, 900}
Number of experiments 1

Gene expression matrix A n×m matrix containing gene expression measurements.
Entry (i, j) is the simulated steady-state expression value
of gene i in individual j.

Genotype matrix A n×m matrix of genotype values {0, 1}. Entry (i, j) is the
genotype value of gene i in individual j.

Heritability The median value of the heritability.
Edge list A signed list of edges encoding the direct interactions

between the nodes of the network.
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Table 1.3 Settings applied to each network

Configuration Marker distance Biological variance Heritability Population size

1 N (5, 1) N (1, 0.1) �0.8 300
2 N (5, 1) N (1, 0.1) �0.8 900
3 N (5, 1) N (1, 0.25) �0.4 300
4 N (5, 1) N (1, 0.25) �0.4 900
5 N (1, 0.1) N (1, 0.1) �0.8 300
6 N (1, 0.1) N (1, 0.1) �0.8 900
7 N (1, 0.1) N (1, 0.25) �0.4 300
8 N (1, 0.1) N (1, 0.25) �0.4 900

1.3 Algorithms in SysGenSIM

This section is dedicated to the detailed description of the most relevant algorithms
underlying the whole simulation process. In particular, the procedure to build the
EIPO in silico networks is illustrated in Sect. 1.3.1, the simulation of the genotypes
is described in Sect. 1.3.2, and the equation modeling the evolution of the gene activity
is explained in Sect. 1.3.3.

1.3.1 Generation of EIPO Networks

The algorithm generates a network with exponential in-degree and power law out-
degree node distributions,6 requiring the user to only specify the size n and the desired
average degree Kd . Subsequently, the inverse scale parameter of the exponential
distribution7 is set to λ = 1/Kd , while the exponent γ in the power law distribution8

is found after a quick iterative search. The algorithm works as follows:

1. Set λ = 1/Kd defining the exponential distribution.
2. Find γ and hence the power law distribution according to the desired average

degree Kd .
3. Calculate the discrete probabilities Pin and Pout from the two distributions, respec-

tively, for each possible degree K , i.e. from K = 0 to K = n − 1 (a node can
maximally be linked to all the remaining n − 1 nodes).

4. Initialize the adjacency matrix A to zero.
5. Sample the in- and out-degree arrays Kin and Kout from the respective distribu-

tions, i.e. according to the probabilities Pin and Pout. The i-th entries of the arrays

6 In-degree and out-degree refer to the number of ingoing and outgoing edges of a node in a graph,
respectively.
7 The probability density function of an exponential distribution is f (x; λ) = λe−λx for x ≥ 0.
8 The power law distribution is described by the probability density function f (x; γ ) = x−γ, for
x ≥ 0.
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Kin and Kout represent, respectively, the number of ingoing and outgoing edges
for node i. The sampling is performed until the following conditions are met:

• Ki
in + Ki

out > 0,∀i, i.e. all nodes are connected to the rest of the network
through at least one (ingoing or outgoing) edge.

• ∑
i Ki

in ≥ ∑
i Ki

out � n · Kd , to assure9 that all the outgoing edges from Kout
can reach a node in Kin.

6. Sort the nodes with Ki
out > 0 (i.e. with at least one outgoing edge) by descending

out-degree in list Nout.
7. Then, for each node i in the ordered list Nout:

a. Place the nodes j with positive in-degree Kj
in in set Nin.

b. Remove, if included, node i from Nin.
c. If |Nin| < Ki

out then go back to step 5, else connect node i with Ki
out randomly

selected nodes from Nin.
d. Decrease by 1 the in-degree of the nodes that have been just connected to node

i.
e. Update the adjacency matrix A with the new edges.

After the procedure has been performed for all nodes in Nout, the network is com-
plete and exhibits exponential in-degree and power law out-degree distributions with
average degree K � Kd .

1.3.2 Simulation of the Genotypes

SysGenSIM simulates genotype data according to a user-defined or to a randomly
generated genetic map based on the number of chromosomes in the genome and the
number of genetic markers per chromosome with constant or normally distributed
pair-wise distance among DNA variant locations. Map distances are converted to
recombination rates for the generation of genotypes at ordered linked loci through
the Haldane (1919) or Kosambi (1944) mapping functions. Markers can be either
placed in perfect linkage with each functional polymorphism, or a marker map can be
generated and then the functional variants randomly placed throughout the genome.

The genotype data for the benchmark datasets have been generated by the follow-
ing algorithm:

1. Sample the number of markers for the ncr chromosomes according to the size of
the network n and the selected distribution of markers per chromosome.

2. Then, for each chromosome h in the genome:

a. Generate the marker distances d by sampling the values according to the
selected distribution (N(1, 0.1), N(5, 1)).

b. Map the functional polymorphisms at markers.

9 The condition is requested in the continuation of the algorithm.



1 Simulation of the Benchmark Datasets 7

c. Convert10 the distances d to recombination rates r and compute the probabil-
ity11 pk of no recombination between any adjacent markers k and k + 1.

d. Generate the genotype vector for the entire chromosome Xh as:
(i) Randomly set X1 to 0 or 1 with equal probability.

(ii) Sample u from a standard uniform distribution, set Xk = Xk−1 if u < pk
and otherwise set Xk = 1 − Xk−1.

3. Combine all Xh into one single genotype vector X.
4. The allelic effects (see Eq. 1.1 in Sect. 1.3.3) of the cis (c) and trans (t) variants

are generated as follows:

a. For variant i (variant is synonymous with gene here as each gene is only
allowed to have a single functional variant in cis or trans), set Zi = 1. Sample
u from a standard uniform distribution and if u > 0.5, sample Zi from the
uniform distribution [Zl, Zu].

b. Randomly select n · pcis genes i to have a cis variant and set Zc
i = Zi.

c. For the remaining genes j having a trans variant, set Zt
j = Zj.

5. A pre-specified number (proportion) of genotyping errors are added by changing
randomly selected entries of the genotype vector X from 0 to 1 or vice versa.

1.3.3 Simulation of the Gene Expression Data

For all the individuals, SysGenSIM computes the solution of a system composed of
n differential equations, one for each gene i:

dGi

dt
= ViZ

c
i θ

syn
i

∏

j∈Ri

⎡

⎢
⎣1 + Aji

G
hji
j

G
hji
j +

(
Kji/Zt

j

)hji

⎤

⎥
⎦ − λiθ

deg
i Gi (1.1)

where Ri is a set containing the indices of all regulators (both activators and
inhibitors) j of gene i; Gi is the gene expression value of gene i, Vi is its basal
transcription rate, and λi its degradation rate constant. Kji is the interaction strength
of Gj on Gi, hji is the Hill cooperativity coefficient, and Aji is an element of the
adjacency matrix A encoding the signed network structure. Finally, the parameters
θ

syn
i and θ

deg
i represent the biological variances in the synthesis and degradation

processes of gene i, while Zc
i (cis-effect) and Zt

i (trans-effect) incorporate the effects
of DNA polymorphisms in the model.

Except for the case of a constant, the distributions from which the model parame-
ters p are sampled are defined by two parameters a and b. The possible distributions
are listed below:

10 According to Haldane: r = 0.5(1 − e−0.02d).
11 For recombinant inbred lines generated by selfing inbred line cross: p = 1/(1 + 2r).
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Constant p = a, where a is a real number.
Uniform distribution p = a + (b − a)ρu, where a and b are the lower and upper

limits of the uniform distribution [a, b], and ρu is a random
number sampled from the standard [0, 1] uniform distribution.

Normal distribution p = a + bρn, where a is the mean and b the standard devia-
tion, and ρn is a random value drawn from the standard normal
N(0, 1) distribution. In the very unlikely (by choice of para-
meters a and b) case of p < 0, then p = 0 is forced to avoid
negative parameters.

Gamma distribution To guarantee a positive value for the parameters, a gamma dis-
tribution is the best choice. Parameters are randomly sampled
from a Gamma distribution with density function:

Gamma(a, b) = 1

baΓ (a)
xa−1e−x/b (1.2)

where Γ (·) is the gamma function, and a and b are the shape
and scale parameters, respectively. The exponential distribu-
tion is a special case of the gamma distribution with a = 1.
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Abstract In this chapter, we study different gene regulatory network learning
methods based on penalized linear regressions (the Lasso regression and the Dantzig
Selector), Bayesian networks, and random forests. We also replicated the learning
scheme using bootstrapped sub-samples of the observations. The biological motiva-
tion relies on a tough nut to crack in Systems Biology: understanding the intertwined
action of genome elements and gene activity to model gene regulatory features of
an organism. We introduce the used methodologies, and then assess the methods on
simulated “Systems Genetics” (or genetical genomics) datasets. Our results show
that methods have very different performances depending on tested simulation set-
tings: total number of genes in the considered network, sample size, gene expression
heritability, and chromosome length. We observe that the proposed approaches are
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able to capture important interaction patterns, but parameter tuning or ad hoc pre-
and post-processing may also have an important effect on the overall learning quality.

2.1 Introduction, Motivations

One of the central targets of Systems Biology is to decipher the complex behavior
of a living cell in its environment. The effective behavior of the cell is probably
defined through multiple layers of interacting entities including DNA, mRNA, non-
coding RNA, proteins, and metabolites. In this chapter, we are interested in the
so-called genetical genomics approach that combines the power of genetics, through
the polymorphism, together with the measurement capabilities of gene expression
to decipher a gene regulatory network (GRN), a simplified representation of the
gene-level interactions occurring under given conditions. In such a network, vertices
represent genes and directed edges represent the direct causal effect of genes over
the expression of other genes through gene regulation (which can be activation or
repression). Although proteins are often considered as the main vector of such regu-
lations (through transcription factors for example), this simplified view of regulation
could also accommodate other regulation effective transcribed molecules acting on
transcription levels such as ncRNA genes. Moreover, protein levels are still quite
difficult to measure.

By deciphering the set of gene regulations that are acting in a given context,
one may be able to identify the most important, possibly indirect, players in the
network that are capable of influencing a specific gene expression or phenotype
of interest (Yvert et al. 2003), one may also link network structure to associated
functional properties (Leclerc 2008; Marbach et al. 2009) and more generally under-
stand the way gene interactions can control the overall cell behavior. A variety of
mathematical formalisms, continuous or discrete (Boolean network Thomas 1973),
defined over time (ordinary differential equations Bansal and di Bernardo 2007 or
dynamic Bayesian networks Rau et al. 2010; Lèbre et al. 2010) or in stationary states
(Friedman et al. 1999) have been proposed to represent the complex behavior of
known gene regulation networks. In this chapter, we consider different statistical
models of gene regulation that have been chosen for their ability to automatically
infer gene regulations from expression data. As initially proposed by Jansen and Nap
(2001), in order to integrate some causality in the inference process, we do not rely
on time series of expression data but follow the so-coined genetical genomics (or
Systems Genetics) path that exploits the possible influence of genetic polymorphisms
on genic expression in a population (Aten et al. 2008). In a genetically controlled
setting, defined for example by a population of recombinant inbred lines (RILs) pro-
ducing randomly perturbed polymorphism combinations, the influence and genomic
positions of polymorphisms that are observed in the population can be exploited to
predict causal influences between gene expressions. The added value of having both
genetic polymorphisms and perturbed phenotypic data, the expression level of genes,
has already been demonstrated, in particular to infer causality (Zhu et al. 2007). From
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a statistical point of view, GRN learning is cursed by its high-dimensionality: the
number of genes in a typical genome is much larger than the number of samples
that can reasonably be produced ever. Existing works that decipher GRN structure
based on genetical genomics data have been using Bayesian networks using genetic
data as prior information (Zhu et al. 2007) or complex multivariate regression in a
structural equation modeling framework with multiple testing, greedy search, and
filtering steps (Liu et al. 2008). More recently, a meta-analysis of the output of dif-
ferent statistical methods targeted at learning in high dimension (based on penalized
linear regression or penalized Bayesian network structure learning) has been shown
to define the best performer (Vignes et al. 2011) on different datasets of simulated
genetical genomics data, including up to 1,000 genes.

This chapter follows on this result in different directions: we first exploit the new
genetical genomics simulated datasets that were produced by A. de la Fuente and
colleagues, described in more detail in Chap. 1 of this book. These new datasets
include a variety of different network topologies and include larger sets of genes (up
to 5,000 genes for the largest ones), defining very challenging problems both in terms
of dimensionality and in terms of computational learning cost. We also sophisticate
and extend the set of statistical methods that are tested on these problems. The original
methods included gene-by-gene Lasso regressions (Tibshirani 1996) and the Dantzig
selector (Candès and Tao 2007) as well as a penalized Bayesian network learning
algorithm. We have improved each of them by bootstrapping, in order to offer more
reliable ranked list of edges representing regulations. Finally, we also integrated the
random forest approach (Breiman 2001). This method has been used in Huynh-Thu
et al. (2010) for GRN learning with expression data only. It is of specific interest
for its ability to predict directed edges in all cases, compensating for the weaknesses
of linear regression models, that only infer causal orientation from linear marker to
genes relations, and Bayesian networks which may not allow to orient edges in all
situations because of Markov equivalence (Koller and Friedman 2009).

In Sect. 2.2, we present the mathematical models and associated learning methods
which have been used to analyze the data. In Sect. 2.3, we then present and discuss
the results obtained by each of these methods and conclude.

2.2 Methods

In this section, we detail the statistical models and learning methods we used to
tackle the datasets at hand, and how we adapted them to actually learn GNR with an
associated edge-specific confidence score.

http://dx.doi.org/10.1007/978-3-642-45161-4_1
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2.2.1 Data and Notations

The genetical genomics datasets were provided by Alberto de la Fuente and
colleagues from CRS4 Bioinformatica (Pula, Italia). These datasets were simulated
with the SysGenSim software (Pinna et al. 2011) and are available at the follow-
ing http://sysgensim.sourceforge.net/datasets.html. Starting from a given network
(a directed graph), the software simulates the network behavior using differential
equations capturing expression, regulation, and molecule decay. The datasets and
simulator are detailed in Chap. 1 of this book.

For each gene regulation network, a dataset is defined by a sample of n RILs
which are measured for p bi-allelic markers and p gene expression levels. Every
polymorphism is associated with a single gene and may influence either its direct
expression (cis polymorphism occurring in the regulatory region of the gene) or its
ability to regulate other target genes (trans polymorphism in the transcribed gene
region itself, influencing its affinity with other gene regulatory complexes). A dataset
is therefore defined by:

1. a n × p matrix e where eij gives the steady-state expression level of gene j for
the RIL individual i (a real number). Each eij is an observation of the random
variable Ej representing the expression level of gene j. E is the random matrix of
all such variables. For a given gene g ∈ {1, . . . , p} we denote by E−g, matrix E
omitting its gth component.

2. a n × p matrix m where mij gives the allelic state of the polymorphism associated
with gene j for RIL individual i (a 0/1-data). Each mij is an observation of the
random variable Mj representing the allelic state of the polymorphism associated
to gene j. M is the random matrice of all such variables.

The dataset generation is controlled by the network size p, the RIL population
size n, chromosome size, and gene expression heritability. The chromosome size is
controlled by a mean genetic distance (either 1 or 5 cM) between adjacent marker
positions, on all five chromosomes. The shorter the genetic distances between two
markers, the stronger their genetic linkage. This leads to highly correlated allelic
states between neighboring and even close markers. The latter parameter, heritability,
is defined for each gene as the ratio of expression variance due to genetic factors over
the expression variance when both genetic factors and biological/technical noise
is accounted for. A broader distribution for biological noise implies lower gene
heritability.

Our goal is to reconstruct the GRN that gave rise to the observed steady-state
expression measures. Following the DREAM5 challenge, a prediction is defined by
a directed consensus graph, each directed edge being associated with a “confidence
score.” In practice, all the statistical inference methods we used produce two con-
fidence scores. One score derives from the estimated influence of allelic states on
each expression levels and is denoted wm

kl for the k ≥ l edge. A similar score we
kl is

obtained by estimating the influence of expression level Ek on expression level El.
In the following sections we introduce the most important components of the

statistical learning methods we used: bootstrapping, penalized linear regressions,

http://sysgensim.sourceforge.net/datasets.html
http://dx.doi.org/10.1007/978-3-642-45161-4_1
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random forests, and Bayesian network structure learning. We detail how they can
produce wm

kl and we
kl scores. Then, in Sect. 2.2.6, we show how one can produce a

final network prediction in the form of a ranked list of edges.

2.2.2 Bootstrapping

Bootstrapping (Efron 1981) is a resampling technique for assigning measures of
accuracy to sample estimates. It has the advantage of allowing the estimation of
the sampling distribution of virtually any statistic using only a simple resampling
approach, at the cost of repeated computations.

The general idea of bootstrapping is to randomly draw Nboot replicate datasets with
the same sample size as the original data. Each of these replicate dataset is obtained
by randomly sampling with replacement from the original sample. For each replicate
dataset, the model is fitted, and it is then possible to study the statistical properties
of the distribution of the considered statistic on all resampled datasets.

In this chapter, the major use of bootstrapping is to contribute to the construction of
the so-called “confidence score” of edges in the predicted GRN. However, bootstrap-
ping offers further opportunities. Since bootstrap datasets are obtained by sampling
with replacement, each of them is deprived from around 1 − 0.632 = 36.8 % of
the original samples (Efron and Tibshirani 1997). It is possible to use these out-of-
bootstrap samples to study the behavior of any given loss function on those samples.
This feature is used internally in the random forest approach and allows to avoid
overfitting.

A major drawback of bootstrapping is that it roughly multiplies the computational
burden by Nboot. The loss of 36.8 % of the data in every bootstrap sample may also
affect the sharpness of estimates on every resampled dataset.

2.2.3 Penalized Linear Regression Approaches

A natural approach to solve the network inference problem is to consider each gene g
individually from the others and consider that its expression value can be represented
as a linear function of all other gene expression levels and of all polymorphisms:

Eg =
p∑

j=1

λgjMj +
p∑

j=1
j ∀=g

γgjEj + θg,

where λg is the p-vector of linear effects of polymorphisms on Eg, γg is the p-vector
of linear effects of other expression levels on Eg (we assume γgg = 0), and θg is a
Gaussian residual error term.
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Parameters λg and γg can be estimated for each gene g from matrices m and e
using a variety of linear regression methods. The main strength of this model lies
in its simplicity, leading to only 2p parameters to estimate for Eg, a very desirable
property for estimation in high-dimensionality settings. More complex linear models
including interactions terms between polymorphisms and expression levels would
immediately lead to a quadratic number of parameters.

Given the fact that n ∈ p and that regulation networks are expected to be sparse,
penalized regression methods leading to variable selection such as the Lasso regres-
sion (Tibshirani 1996) or the Dantzig selector (Candès and Tao 2007) were chosen
to perform the regression.

2.2.3.1 Lasso Penalized Regression

In the linear regression problem, a response variable Y is a linear combination of r
regressors X = (X1, . . . Xr) and Gaussian noise θ:

Y = Xρ + θ

Having observed Y and X on a sample of size n and assuming Gaussian
distributions, the estimation ρ̂ of the parameters ρ is obtained by minimizing the
residual sum of squares (RSS):

ρ̂ rss = arg min
ρ

n∑

i=1

(yi −
r∑

j=1

xijρj)
2 = arg min

ρ
|| Y − Xρ ||2Γ2

,

where yi and xij are the observed values of Y and Xj for the ith individual.
The Lasso regression (Tibshirani 1996) penalizes this RSS criteria by the sum of

the absolute values of the parameters (their Γ1 norm):

ρ̂ lasso = arg min
ρ

|| Y − Xρ ||2Γ2
+λ || ρ ||Γ1 (2.1)

This penalization leads to a shrinkage of parameter estimation. More importantly,
the shape of the Γ1-norm specifically favors the estimation of zero values, leading to
a natural variable selection behavior. Shrinkage and selection levels are controlled
by the magnitude of the penalty term λ. The Lasso criterion can also be written in
its dual form (by Lagrangian transform), which makes the constraint on parameters
more explicit:

ρ̂ lasso = arg min
ρ

|| Y − Xρ ||Γ2 , subject to || ρ ||Γ1≤ t (2.2)

In Eq. (2.1), the larger λ is, the greater the amount of shrinkage, and the more
parsimonious the selected model will be. More precisely, λ is an upper bound on the
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correlation between regressors excluded from the model and the regression residual.
Interpreting t of Eq. (2.2) is also possible by considering the specific value t0 =||
ρ̂ rss ||Γ1 . Then, setting t to t0/2 roughly shrinks active coefficients in the regression
by 50 % (Hastie et al. 2009).

Equation (2.1) was solved using the Least Angle Regression (LAR) algorithm
implemented in the R glmnet package (Friedman et al. 2010). The choice of the
penalty λ is presented later.

2.2.3.2 The Dantzig Selector

The Dantzig selector (Candès and Tao 2007) is a related penalized linear regression
method based on Γ1 norm penalization of the parameters subject to a constraint bound
on the maximum absolute correlation between the residuals and regressors (we use
�X to denote the transpose of X):

ρ̂dantzig = arg min
ρ

|| ρ ||Γ1, || �X(Y − Xρ) ||Γ∞≤ δ, (2.3)

where δ is the actual bound on the correlation between the residual and each regressor.
With no bound, the Dantzig selector sets all coefficients to zero which minimizes
the Γ1 norm of the parameters. When the bound tends to 0, the Dantzig selector
imposes a null correlation between the residual and the regressors. This condition is
satisfied by the RSS estimate, as it is equivalent to enforcing a null derivative of the
RSS (Hastie et al. 2009). Equation (2.3) can be written in its dual form, as an analog
of Eq. (2.2) for the Lasso:

ρ̂dantzig = arg min
ρ

|| �X(Y − Xρ) ||Γ∞, || ρ ||Γ1≤ t (2.4)

In Vignes et al. (2011), we used the reduction of the Dantzig selector to lin-
ear programming and an open source linear programming solver (glpk) for resolu-
tion. Because of the increased computational burden generated by bootstrapping, we
decided to instead use a dedicated homotopy Dantzig algorithm (Asif and Romberg
2010) and its companion Matlab package, which was run using Octave. The choice
of the value for the parameter δ is difficult and is described in the following.

2.2.3.3 Confidence Scores with Penalized Linear Regressions and Bootstrap

We want to provide confidence scores on the prediction of every oriented edge j ≥ g
capturing the causal influence of gene j on gene g. For a fixed value of the penalization
and for a given bootstrap sample, two distinct cases can be identified. If λgj estimation
is nonzero, marker j is assumed to have a direct effect on the expression of gene g.
The converse is impossible since expression levels cannot affect polymorphism.
The interpretation of a nonzero γgj (or γjg) is slightly different: this indicates that a
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relationship exists between the expressions of genes j and g, but the causal orientation
is unknown: either j influences g or g influences j.

Choosing the ‘right’ level of penalization in the Lasso regression or in the Dantzig
selector is a difficult model selection problem. To avoid this problem, we follow the
idea of Vignes et al. (2011), described here for the Lasso regression. Instead of
choosing a fixed value for the penalty term λ, we explore an evenly spaced grid of
possible penalty values from a starting value 0 (no penalization) to a maximum value
λmax: the infimum of the set of all λ that prevents a single regressor to be included in
any of the regressions. A total of q = 10 different penalty values we used from λmax

q

(low penalty level) to λmax (maximal penalty level). A similar mechanism, with the
same number q of penalty values, is used for the Dantzig selector. The fraction of
times, over all penalizations, that a regressor is introduced with a nonzero parameter
estimate was then used as a confidence score.

In our case, bootstrapping offers a second dimension that can be exploited to
evaluate a confidence score. Besides the first dimension defined by the grid of q
evenly spaced values of penalizations, a second dimension is available through the
set of Nboot different bootstrap samples. We denote by #(λgj) (resp. #(γgj) the total
number of regressions along these two dimensions where λgj ∀= 0 (resp. γgj ∀= 0).
The marker-based confidence score wm

kl of the oriented edge k ≥ l is then defined
as the frequency:

wm
kl = #(λlk)

q Nboot

The computation of the expression-based confidence score we
kl of the oriented

edge k ≥ l has to take into account the fact that it can be derived from any (or both)
of γkl and γlk to be nonzero and also that this information is uncertain on the two
possible edge orientations. This leads to:

we
kl = #(γkl) + #(γlk)

4 q Nboot

Bach (2008) studied the asymptotic (n ≥ ∞) properties of the Lasso variable
selection for some penalization decays. In specific settings, the Lasso tends to select
correct variables with probability 1 and irrelevant variables with a probability which
is strictly between 0 and 1. Hence Bach (2008) proposed to use bootstrapping to
assess the probability of selecting a variable at a given penalty level, keeping only
those variables that are always selected.

Our strategy is quite different from the strategy proposed in Bach (2008), and
it may ultimately include false positive regressors in the model (especially for low
confidence scores). But the properties of the analyzed data—including their high
dimensionality—and the predicted object, with edge confidence scores, are different
from those considered in Bach (2008).

We tested the Lasso method with values of Nboot equal to 100 and 200. Given the
very limited impact of this choice on the results, we ultimately decided to use the
computationally favorable solution of Nboot = 100.
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2.2.4 Random Forests

In the previous section, we reduced the GRN learning procedure to a gene-by-gene
linear regression problem. However, nonlinear regression methods can also be con-
sidered, assuming that the expression level of Eg is a function of the remaining
expression levels E−g and of allelic states M:

Eg = fg(M, E−g)

The use of random forest for GRN reconstruction from expression data alone
has been originally proposed in GENIE3 (Huynh-Thu et al. 2010). Indeed, one way
to solve such a nonlinear regression problem between a response variable Y and
regressors X is to try to recursively split the observed data with binary tests based
each on a single regressor variable, trying to reduce as much as possible the variance
of the response variable in the resulting subsets of samples. Each test is a node in a
binary tree and typically compares the input variable value with a threshold which
is determined during the tree growing. Ultimately, the leaves of the tree give the
predicted numerical value for the response variable.

A random forest (Breiman 2001) is a collection of such trees grown partially at
random, using two sources of randomness:

• Each tree is grown using a random bootstrapped sample of the data.
• The variable used at each split node is selected only from a random subset of all

variables (typically of a fixed size K).

The random forest predicted response for a sample is the mean of all the regressions
predicted by each tree. Besides the possible nonlinearity of the response, a specific
strength of random forests lies in the fact that they can use the internal bootstrapping
to estimate the importance of any regressor. After shuffling the values of the regressor
considered in the samples that have not been used in each bootstrapped sub-sample,
it is possible to compute the resulting increase in the variance of the regression error
compared to non-permuted samples. This provides an evaluation of the regressor
importance.

In the context of GRN learning for any gene g ∈ {1, . . . , p}, the random forest
method provides us with importance factors f m

ig with i ∈ {1, . . . , p} and f e
jg with

j ∈ {1, . . . , p}, j ∀= g, that respectively give the importance of allelic state Mi and
of expression level Ej to predict Eg. These weights can then be normalized for each
gene (Huynh-Thu et al. 2010). For each g ∈ {1, . . . , p} independently, we normalized
the f m

ig and f e
jg by their estimated standard deviation. All these importance factors can

then be sorted producing global ranks rm
ig and re

ig. The marker-based “confidence
scores” for oriented edge k ≥ l are then defined as:

wm
kl = 1 − rm

kl − 1

N
,

where N is the largest overall rank. A similar definition is used for the we
kl.
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The computation was performed using therandomForestR package (Liaw and
Wiener 2002). The number of trees was set to 1,000 and other parameters (defining
individual tree depth or the number of variable to draw at each split for example)
were kept at their default value.

2.2.5 Bayesian Networks

A Bayesian network is a directed acyclic graphical (DAG) model that captures the
joint distribution probability over a set of variables by a factorization in local con-
ditional probabilities linking one random variable with its “parents.” The fact that
a Bayesian network naturally defines a directed graph makes this formalism highly
suitable for learning directed GRNs and unsurprisingly, this mathematical model has
already been used to predict GRN in the context of pure expression data analysis in
the seminal paper (Friedman et al. 2000).

More formally, a Bayesian network denoted by B = (G , PG ) is defined by a DAG
G = (V , A) with vertices representing random discrete variables V = {V1, . . . , Vm},
linked by a set of directed edges A, and a set of conditional probability distributions
PG = {P1, . . . , Pm}. The variables involved in each conditional probability table Pi

are defined by the DAG: Pi = P(Vi|Pa(Vi)), where Pa(Vi) = {Vj ∈ V | (Vj, Vi) ∈ A}
is the set of parental nodes of Vi in G .

The DAG of a Bayesian network B implicitly captures a set of conditional inde-
pendencies between variables and represents a joint probability distribution on V
defined as:

P(V) =
m∏

i=1

P(Vi|Pa(Vi)) (2.5)

To model the available data, as in previous approaches, we used one variable Ei to
represent the expression level of gene i and one variable Mi to represent the associated
allelic state (for all i ∈ {1, . . . , p}). All variables are discrete (see below for expression
level discretization scheme) , allowing to capture nonlinear relationships between
variables. If a given DAG structure G is assumed, maximum likelihood estimates of
the parameters defining the conditional probability tables can be computed by simple
counting. The GRN learning process then reduces to the problem of learning a DAG
structure among these variables that maximizes P(G |D) ∝ P(D|G )P(G ), where D
represents the observed data.

Under specific assumptions, the marginal loglikelihood log(P(D|G )) can be
expressed as a decomposable scoring function. We used the BDeu score (Heckerman
et al. 1995).
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2.2.5.1 GRN Structure Learning with Bootstrapped Greedy Search

Learning Bayesian networks is an NP-hard problem with a super-exponential search
space of potential DAG structures (Chickering et al. 2004). Even a greedy search
heuristic method can be very time-consuming when the number of variables p is
large. In order to get reasonable computation times, we selected for each gene a set
of candidate parents if the local BDeu score increases when each candidate parent
is added separately in comparison to the empty graph. Furthermore, we kept only
one marker having the best BDeu score increase in a sliding window of 10 markers
along the chromosomes. We also limited the maximum number of parents per gene
to 5. In addition, we took into account biological knowledge of the observed data to
reduce the search space.

First, genetic linkage between close markers induces strong correlations between
their allelic states. Learning the corresponding edges between marker variables Mi

is useless for reconstructing the GRN and just makes the structure search more
complex. We therefore forbade such edges. We also forbade edges from genes to
markers, which have no biological meaning.

Furthermore, a preliminary analysis of variance was used to predict cis-regulatory
markers: detected positive markers (Bonferroni corrected p-value < 0.1) were those
giving the most significant signal in a seven marker-width window, centered on the
gene, to avoid false marker influence due to genetic linkage. We used this cis-effect
information to constrain the structure: since each cis-marker Mi had an effect on its
associated gene activity Ei only, we constrained our model to use an Mi ≥ Ei edge.
In the opposite case, when the marker Mi was detected as not being a cis-regulatory
marker, we only forbade the Mi ∀≥ Ei edge.

The structure and parameters of the underlying graph can then be estimated using
the BDeu score-based structure learning algorithm described in Vandel et al. (2012),
using the same adaptive discretization policy into 2–4 states as in Vignes et al.
(2011). We selected the DAG with the best BDeu score among three restarts of the
Stochastic Greedy Search algorithm which exploits extended local move operators
(SGS3, Vandel et al. 2012). We used BDeu equivalent sample size parameter λ = 1.
Each learnt DAG structure produces a set of oriented edges which therefore translate
directly into the predicted GRN. For each edge Mi ≥ Ej or Ei ≥ Ej in the learnt
structure, we predict the existence of a directed edge i ≥ j in the GRN. Notice that
thanks to this mapping procedure, an initial acyclic directed graph may ultimately
lead to the prediction of a cyclic GRN.

This procedure was improved by bootstrapping, allowing to produce a set of
directed edges with confidence scores set to the frequency of the corresponding
edge over all bootstrap samples (Nboot = 100). Again, this may lead to cycles in
the predicted GRN. Because of the important computational burden generated by
bootstrapping, the Bayesian network approach could, however, not be applied to the
largest datasets with p = 5,000 genes.
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2.2.6 Postprocessing

Each of the methods produces two weighted oriented graphs, one that connects
marker variables Mj to expression variables Eg (where edge j ≥ g is weighted by
wm

jg) and another connecting expression variables Ej to other expression variables Eg

(where edge j ≥ g is weighted by we
jg). Ultimately,a single ranked list of edges is

wanted, representing one gene regulation network.
In order to combine the two informations, we simply ranked all edges k ≥ l by

the sum of their weights wm
kl + we

kl. This ranking is denoted in the rest of the paper
as the “genes-and-markers” ranking.

To further evaluate the influence of the post-processing on the ultimate results and
the specific contribution of the causal marker-expression information, we also tested
two additional post-processings. The first variant focuses on the genetic information
and ranks each edge k ≥ l using the wm

kl weight only. Whenever marker j influences
the expression of gene g, the strong correlations between the allelic states of j and
other close markers on the genome (caused by genetic linkage) may easily lead
to spurious predictions involving neighboring markers. We therefore scanned all
markers along the genome and removed all edges that were locally dominated by
other edges with the same target. More precisely, for all genes g, we removed any
marker i such that there exists another marker j within a window of five markers
containing i with wm

jg > wm
ig. The resulting ranked list of edges is called the “filtered

markers” ranking in the following sections.
To evaluate the importance of this filtering process, we also included this marker

filtering process in the initial “genes-and-markers” ranking method. In this post-
processing method, the we and the wm weights are combined by addition, as in
the initial “genes-and-markers” post-processing, but only weights wm coming from
the list of “filtered-markers” edges are used. This third post-processing is naturally
termed “genes-and-filtered-markers.”

2.3 Results

2.3.1 General Analysis of the Predicted Networks

The above methods have been applied to the 72 datasets, including cases with 100,
1,000, and 5,000 genes. In this section we report results on the 1,000 gene datasets.
The 100-gene networks were essentially provided as test datasets. The general trends
in the 5,000 gene situation is that it is similar to the 1,000 gene situation (except
for the fact that the Bayesian network approach could not be applied, our current
implementation being limited to 4 GB corresponding to less than 3,000 variables, pro-
viding less opportunity for comparison) with slightly degraded overall performances.

We first present in Table 2.1 performances obtained by individual approaches as
the area under the precision versus recall curve (AUPR). We remind the reader that
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Table 2.1 Area (in percentage) under the precision versus recall curve (AUPR) for predicted
networks with 1,000 genes by, respectively, the Lasso penalized regression, the Dantzig selector,
random forests (RF), and Bayesian networks (BN)

Network/configuration/ AUPR with edge orientations AUPR without edge orientations
data-set Methods Methods

Lasso Dantzig RF BN Lasso Dantzig RF BN

Net4-Conf1-DS25-300SH 11.65 12.02 9.63 14.20 15.76 16.41 11.06 15.90
Net4-Conf2-DS26-900SH 15.88 15.66 17.95 18.30 21.97 21.68 20.05 20.08
Net4-Conf3-DS27-300SL 11.20 11.35 3.88 11.83 16.64 17.18 5.29 15.01
Net4-Conf4-DS28-900SL 21.49 21.78 9.64 27.28 32.46 33.30 11.31 32.95
Net4-Conf5-DS29-300DH 4.89 5.02 7.31 7.13 6.97 7.29 8.41 8.60
Net4-Conf6-DS30-900DH 9.68 10.05 13.82 20.15 13.81 14.53 15.60 22.23
Net4-Conf7-DS31-300DL 8.60 9.57 3.09 13.18 13.07 14.95 4.38 16.59
Net4-Conf8-DS32-900DL 16.20 17.43 7.39 23.24 24.20 26.71 9.12 28.76
Net5-Conf1-DS33-300SH 16.05 15.71 16.16 16.96 21.52 21.27 17.81 18.89
Net5-Conf2-DS34-900SH 22.17 21.71 23.96 30.46 31.08 30.64 26.28 32.25
Net5-Conf3-DS35-300SL 14.55 14.61 5.56 13.28 21.69 22.10 7.42 16.89
Net5-Conf4-DS36-900SL 24.57 24.70 13.53 25.56 37.38 37.85 15.86 31.37
Net5-Conf5-DS37-300DH 6.66 6.74 9.04 8.71 9.34 9.63 10.58 10.27
Net5-Conf6-DS38-900DH 12.80 12.67 21.76 23.74 17.55 17.76 23.73 25.66
Net5-Conf7-DS39-300DL 10.71 11.16 3.60 15.36 17.10 18.19 5.20 18.71
Net5-Conf8-DS40-900DL 17.42 17.92 11.04 25.57 26.33 27.75 12.86 30.71
Net6-Conf1-DS41-300SH 13.07 12.83 13.34 15.75 17.90 17.64 15.05 17.72
Net6-Conf2-DS42-900SH 17.54 17.59 23.63 24.13 24.81 24.80 25.56 26.14
Net6-Conf3-DS43-300SL 12.62 12.72 4.32 13.40 19.00 19.38 5.64 17.02
Net6-Conf4-DS44-900SL 20.72 21.07 10.67 20.14 32.06 32.72 12.69 26.12
Net6-Conf5-DS45-300DH 5.43 5.51 7.41 5.70 7.79 7.98 8.83 6.98
Net6-Conf6-DS46-900DH 8.55 8.43 15.90 12.34 11.91 11.95 17.67 14.13
Net6-Conf7-DS47-300DL 8.70 9.23 2.57 10.07 13.69 14.84 3.98 13.42
Net6-Conf8-DS48-900DL 14.68 15.33 7.82 16.11 22.86 24.41 10.06 21.36

Each network name ends by a short string which defines the sample size (n = 300 or 900), the gene
density (D/S for dense or sparse), and the simulated gene expression heritability (H/L for high or
low)

the recall is the ratio of correctly predicted edges among all edges to predict. The
precision is the ratio of correctly predicted edges among all predicted edges. Since the
predicted list of edges is ranked, edges are successively introduced with decreasing
confidence scores, and precision and recall levels are computed at each step, defining
a curve in the precision–recall space. The AUPR score is a compromise of the global
performance of the method. It is a usual criterion in the Machine Learning community.
Its values range from 1 (perfect recovery of all true edges with no error) to 0 (all
predicted edges are incorrect). Note that a simple random guessing of edges should
produce an AUPR of 	{true edges}

	{possible edges} often close to 0 if the network is sparse (with a
number of edges much lower than the potential number of directed edges of n(n−1)).
We report AUPR scores with and without taking edge orientations into account.
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Sensitivity to Simulated Parameters

As described in Chap. 1, the different datasets were generated by varying different
parameters: the underlying directed network, the number of simulated RILs
(samples), the spacing between markers (and therefore gene density given the one
gene/one marker assumption), and the gene expression heritability. The first obser-
vation that can be done on these datasets is the sensitivity of all methods to sample
size that was expected. For 300 individuals (odd configuration numbers), the AUPR
is usually between 5 and 15 % roughly. These results are weaker than the results pre-
sented in Vignes et al. (2011), using a set of different simulation parameters. With
900 individuals, the performance of all methods almost doubles, but still remains
relatively poor.

Considering the inter-marker distance (low distance for configurations 5–8), all
methods were sensitive to gene density. The higher the gene density, the lower the
AUPR for the linear regressions and the random forest-based method. Indeed, with a
high density marker map, the allelic states of two neighboring markers are correlated.
It therefore becomes more difficult to precisely predict which marker i regulates a
gene g: all neighboring markers offer essentially the same predictive information.
Compared to these methods, the Bayesian network approach benefits from the dedi-
cated marker pre-processing aimed at identifying cis-regulatory markers. When such
a cis marker is detected, the corresponding edge is forced into the Bayesian network
structure, avoiding increasingly likely mistakes in high-density configurations.

This marker distance effect became less important in configurations with a great
number of individuals. This is due to the increased power and reliability of the
regulatory marker localization and the expression data itself that becomes more
informative.

From a more usual linkage analysis point of view, we must point out that the eval-
uation criteria used here is a very hard one. Imagine Mi is the regulatory marker that
should have been identified as influencing gene g. If Mi+1 (or any other neighbor
marker/gene) is predicted instead, then the difference in terms of the chromoso-
mal region that influences Eg is negligible and becomes increasingly small with an
increasing gene density. Despite this increasingly small error, our edge detection
criteria is purely Boolean and counts any neighbor prediction as a totally bad pre-
diction. This probably advocates for new evaluation criteria beyond a pure 0/1 edge
detection event.

Another possibility that could explain this sensitivity to inter-marker distances lies
in the quality of our confidence score. Compared to Vignes et al. (2011), the explored
grid of penalizations was reduced to only q = 10 different values (instead of 20),
offering a coarser image of the frequency of inclusion of a variable. This was required,
from a computational point of view, because of the additional computational burden
generated by bootstrapping. Another possibility would be that the bootstraping itself
facilitates the selection of neighboring markers, because of the generated sampling
noise. Our later evaluation of the bootstrapping influence (in one network), however,
tends to show this is probably not the case.

http://dx.doi.org/10.1007/978-3-642-45161-4_1
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Finally, all methods seem to be sensitive to the simulated gene expression heritabil-
ity. In many cases, and quite unexpectedly at first, a weak heritability (high biological
variance) seems to be favorable, especially for linear regression approaches. A likely
explanation lies in the relationships that one can observe between the expression
levels of two genes g1 and g2 that have a common parent regulator. In high heritabil-
ity situations, a strong nonlinear dependency between the two genes was visible. In
low heritability situations, the nonlinearity of the relationship seemed to fade away,
which was favorable to linear regression methods. A possible way to enhance the
behavior of linear regression in these conditions would be to apply a power transform
such as the Box–Cox transform (Box and Cox 1964), a useful data pre-processing
technique used to stabilize variance and make the data more normal distribution-like.

Comparison of Different Methods

The Lasso regression and the Dantzig selector had, as expected, very similar perfor-
mances (both are linear regression approaches, using the same underlying model).
Although, Dantzig seemed to offer better performances than Lasso in a majority
of cases, the difference was usually negligible. This is different from our previ-
ous comparison in Vignes et al. (2011), where the Dantzig selector seemed to offer
better performance than the Lasso regression (the Dantzig selector approach fin-
ished second of the DREAM5 challenge, and was outperformed only by a consensus
meta-analysis that exploited its predictions). More tests would be needed to check
whether this could be caused by the shift in the underlying optimisation method.
Vignes et al. (2011) used an exact simplex-based linear programming solver, while
we used a more efficient homotopy-based method (Asif and Romberg 2010) to cope
with the additional computational burden generated by the bootstrapping process.

Surprisingly, our random forest approach often gave the worst performance
(except on configurations 2 and 6, with high heritability). A likely explanation for the
limited performance of our random forest approach lies in the fact that we handled
expression data Ei and allelic states Mj together, as possible splitting variables in
the same trees. However, these two variables are very different. Expression data is
a continuous variable, which offers a lot of freedom on possible splitting decisions.
Allelic states are Boolean variables, and therefore offer no freedom in the possible
splitting decision. The criteria used to grow forests and decide which variable is
taken next being its ability to reduce the variance in the separated datasets, it is likely
that allelic state variables tend to be inserted lately compared to expression data
variables. This tendency is confirmed by Strobl et al. (2007) when random forests
are used for classification purpose: the algorithm tends to be biased and to be more
likely to select variables with a higher number of levels than variables with few
levels like binary variables. This may lower the performance of the approach a lot
compared to others. A better approach would probably be to handle expression data
variables and allelic state variables in two independent random forest constructions
to later mix the associated confidence scores in a single confidence score (Geurts and
Huynh-Thu 2012) instead of mixing the simultaneous edge ranks as we did (see also
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Chap. 7 of this book). The better performances (compared to other methods) on the
configurations 2 and 6 (high heritability) can also be explained with the previously
mentioned highly nonlinear relationships that appear between co-regulated genes
in this case. The ability of random forests to capture nonlinear relationships may
explain its relative success on these configurations.

Overall, Bayesian networks offer the best performance in most cases, comparable
to those obtained in Vignes et al. (2011). We observe that each method has
an advantage in a specific area of the parameter space, showing their potential
complementarity.

Directed or Undirected Edges

In our linear regression methods, the current post-processing only partially allows us
to orientate edges, thanks to marker data: it is known that genetic content influences
observed phenotypes, including gene expression levels, and not the converse. Learnt
relationships between variables that account for gene expression levels are symetrical,
hence the predicted direct links between these variables are given a disadvantage.
The other way to see this is that edges from a marker variable to a gene expression are
favored even if they are slightly less supported by the data according to a modeling
criterion. This may result in either spurious marker to gene expression arcs being
assigned relative scores higher than they should or significant relationships between
gene expression levels being moved back in the list of predicted edges. For this reason,
we also evaluate the performances considering undirected edges. This analyzes the
ability to predict noncausal relationships between genes. The corresponding AUPR
scores are given in the four rightmost columns of Table 2.1.

The limited ability of penalized linear regression methods to infer causality (which
is only done when a polymorphism is detected as a possible regressor of the expres-
sion level) leads to visible improvements in their predictive capabilities. The Lasso
regression and the Dantzig selector are performing best in only two cases if directed
edges are considered and in 12 cases over 24 in the undirected edge case. In the best
cases, the Dantzig selector can offer an AUPR of almost 40 %, with performances
that more frequently exceed those of Bayesian networks.

Overall, both the Bayesian Network approach and the random forest approach
seems to benefit less from this relaxation in the evaluation criteria. This means that
when they predict a directed edge, in most cases, this edge may be a correct directed
edge or else, it is often a false edge (even ignoring orientation).

http://dx.doi.org/10.1007/978-3-642-45161-4_7
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Table 2.2 Effect of different post-processings on the AUPR scores (in percentage) for learning
Net5-Conf2-DS34 (n = 900, sparse marker map and high gene expression heritability) with the
Lasso regression, the Dantzig selector and our random forest method (RF)

Post-processing Methods
Lasso Dantzig RF

Genes-and-markers 22.17 21.71 23.96
Genes-and-filtered-markers 23.38 23.21 25.66
Filtered-markers 28.10 26.30 20.05

2.3.2 Focus on a 1,000 Gene Network with n = 900, High Gene
Expression Heritability, and 5 cM Between Consecutive
Markers (Net5-Conf2-DS34-900SH)

Implementing a practical learning scheme for GRN in System Biology cannot be just
characterized by the underlying mathematical method used to perform the inference
itself. The modeling, the pre- and post-processing of the data, possible bootstrapping
(and number of bootstrap samples), the criteria used for evaluation may all have
non-negligible impacts on the final results.

2.3.2.1 Post-processing

To analyze the importance of the post-processing used on the obtained results, we
compared two other post-processing methods on one network. We used dataset 34.
With a large sample, a sparse gene density and high heritability, it defines a play-
ground where most methods (including our random forest approach) obtain compara-
ble performances for the directed edges prediction. The Bayesian network approach
is excluded from this comparison since it uses a specific pre-processing that could
hinder the effect of the different post-processings.

Table 2.2 gives the AUPR obtained using the previous “genes-and-markers” post-
processing (which combines expression data-based scores we and allelic states-based
scores wm by addition) with two extra post-processing (described in
Sect. 2.2.6). The “filtered-markers” post-processing focuses on marker information
by using only wm scores. It also tries to weaken the influence of high correlations
between close markers by keeping only markers with local undominated wm score.
The “genes-and-filtered-markers” post-processing combines this filtering process in
the original “gene-and-markers” post-processing.

On this dataset, one can check that a change in the post-processing may change
the ranking of the different methods. On dataset 34, retaining only allelic state-
based scores gave much better results for linear regression methods but was rather
disappointing for random forests. As we mentioned previously, the Boolean allelic
state variables are probably introduced lately in the regression trees, giving priority
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to expression levels. This may explain the important effect of keeping only allelic
state-based scores on random forests. The mixed “genes-and-filtered-markers” post-
processing gave more even performances.

All three post-processing were tested on all configurations of the whole datasets.
The “filtered-markers” post-processing gave the overall best result on dataset 34, but
it gave extremely poor results on most other configurations (except for configurations
1 and 2, all AUPR being below 11 %). The “genes-and-filtered-markers”
post-processing often offered performances that were comparable to our initial
“genes-and-marker” post-processing, but was more often dominated by it than the
converse.

Clearly, because of the dual nature of genetical genomics data that captures differ-
ent effects through different types of variables, there are plenty of possible choices
for combining the two types of information. A sensible conclusion at this point is that
the optimal post-processing depends on features of the data that need to be carefully
checked before proposing analysis results.

2.3.2.2 The AUPR Curve

To be consistent with the previous DREAM5 experiment, we used the AUPR criteria
to compare the performances of the different approaches. In this section, we want
to show that AUPR is a very high-level criterion. It summarizes the performance of
every method as a unique number, but hides different behaviors.

In Fig. 2.1, we give the complete precision versus recall curve for all methods on
dataset 34 using two different post-processings (“genes-and-markers” and the best
post-processing from Table 2.2). Some methods (such as the Dantzig selector in the
“filtered-markers” post-processing) tend to have a very high precision initially. This
means that almost all of the first few hundred predicted edges are correct. On this
same dataset, the Bayesian network learning presented a similar AUPR but a very
different behavior. The initial precision decreased more rapidly. This means that false
positive edges existed in the beginning of the list of ranked edges, making the output
harder to use. Again, this comparison between the Dantzig selector and the Bayesian
network learning is valid for this dataset and this post-processing but conclusion may
differ on another dataset and with different post-processings.

2.3.2.3 Effect of the Chosen Number of Bootstraps

The use of bootstrapping is quite costly in terms of computation time: all cpu times
are immediately multiplied by our Nboot = 100 bootstraps. We checked whether
this additional work is of interest first beyond theoretical grounds and whether it is
sufficient. We therefore compared the results obtained using bootstrapping with an
increasing number of bootstraps. The results obtained on dataset 34 are presented
in Fig. 2.2 using the Lasso regression approach and two different post-processings.
These curves give the observed recall at different precision levels. Precision levels
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range from a nearly acceptable degree of precision of 0.4 to a good degree of precision
of 0.7. One can see that bootstrapping enhances performance, but the importance of
the improvement varies a lot depending on the post-processing used. These curves
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Fig. 2.3 Normalized frequency for shortest path lengths in the predicted network as a function
of shortest path lengths in the Gold Standard network. Disc areas are proportional to normalized
frequencies. Dataset 34 was analyzed with the Lasso regression method using the “genes-and-
filtered-markers” post-processing. The predicted network was built with the 1,000 first predicted
edges. Raw total column frequencies are 540, 2,283, 2,407, 1,098, and 82. For clarity, we do not
represent shortest paths that are not recovered (virtually of length ∞)

also confirm that the number of bootstrap sub-samples we performed is sufficient,
an asymptotic behavior being reached before 50 sub-samples in most cases.

2.3.2.4 Shortest Path Lengths

Another way to gain knowledge about the topology of the predicted network (without
edge orientations) is to compare its shortest paths to the shortest paths of the true
(Gold Standard) network. In a graph, the shortest path between two nodes is defined
as the path of minimum length connecting these two nodes. For example, shortest
paths of length 1 are direct edges between two nodes. If the network was perfectly
recovered, the length of shortest paths for any pair of nodes in the predicted graph
would perfectly match the length of the corresponding shortest paths in the true
network. We depict in Fig. 2.3 the normalized distribution of shortest path lengths
in one of the predicted network as a function of the shortest path lengths in the
corresponding Gold Standard network. Note that shortest paths which exist in the
true network but whose extremities are not connected in the predicted network are
not accounted for here. The rationale here is to check whether the distribution of
distances between genes of the two compared networks are close. If this is the case,
the distribution should concentrate around the y = x axis.

For example, we found 2,341 shortest paths of length one (i.e., edges) that were
not connected at all in the predicted network. It means that among the 2,882 true
edges to recover, 439 (implying a recall of 15.2 %) were correctly identified by the
predicted network while 102 were found with at least another intermediate gene in
the path between them, and 2,341 pair of genes were not connected in the predicted
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network. This is due to the fact that the predicted network was not fully connected,
and that only 1,000 edges were predicted while the true network contained three
times more edges.

Focusing on the first two columns of Fig. 2.3, we see that the predicted graph
had a distribution of shortest paths of lengths 1 and 2 that matched with the actual
distribution of such edges in the true network. This was not the case anymore for paths
of length 3 and over: the predicted network tended to overestimate the length of such
shortest paths when it was able to identify them. Again, the fact that we only studied
the first 1,000 predicted edges plays an important role in this observation. Longer
paths are needed to cope with correct paths of a given length that are composed of
true edges only. However, even those few edges and some of them that were not
correct (the precision level was here below 0.5), the distributions of shortest path
lengths in the predicted network and in the true network were not too different.

2.4 Conclusion

In contrast with our previous experiments in Vignes et al. (2011), which relied on
a subset of the same algorithms (the Lasso regression, the Dantzig selector and
Bayesian network structure learning) on data generated using the same generator but
with simplified settings, the results we obtained here with additional effort (computa-
tional cost of the bootstrapping process and integration of a random forest approach)
are rather disappointing in the hardest situations, in terms of AUPRs. On these hardest
problems, whether because of limited number of individuals, or because of nonlinear
relationships induced by high heritability, these low AUPR often hide rapidly decreas-
ing precision, which means that the list of predicted edges quickly becomes hard to
exploit to predict gene regulations.

Given that boostrapping seems to be able to provide improved prediction quality,
the most likely reason of these results lies in the generated data itself which relies on
new parameters and new networks. Clearly, the specific characteristics of these new
datasets could probably be accommodated, to some extent, by the same methods,
using different modeling or pre/post-processing strategies. In the case of configura-
tion 2, the use of the “filtered-marker” post-processing strategy provided significant
improvements in the AUPR of the linear regression-based approaches, leading to
respectable performances.

These results point also to the ambitious aim of trying to identify which statistical
method would perform best for GRN learning in a genetical genomics context, based
on a large scope of methods and on large datasets of simulated data. The overwhelm-
ing size of combinations that can be imagined using different methods, models and
pre and post-processing procedures to deal with a large amount of simulated data
which is itself parameterized by several parameters defines a daunting task. It is quite
obvious for us that we have only explored a small fraction of all possible combina-
tions and that much work remains to be done to identify an ideal performer, if it
exists. Indeed, our results show that every method, even those that tend to give the
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worst results, can outperform other methods in specific situations. A combination of
methods may therefore be, ultimately, the best approach.

These experiments also show the possible difficulty in the generation of realistic
simulated data for genetical genomics. Given the radically different results obtained
depending on the change of parameters used for problem generation, it is natural to
wonder which of these different settings could be considered as the most realistic
model for real genetical genomics data and for which organism. First elements of
response to this question may finally open the door to tackle real datasets.
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Chapter 3
Benchmarking a Simple Yet Effective
Approach for Inferring Gene Regulatory
Networks from Systems Genetics Data

Sandra Heise, Robert J. Flassig and Steffen Klamt

Abstract We apply our recently proposed gene regulatory network (GRN)
reconstruction framework for genetical genomics data to the StatSeq data. This
method uses, in a first step, simple genotype–phenotype and phenotype–phenotype
correlation measures to construct an initial GRN. This graph contains a high number
of false positive edges that are reduced by (i) identifying eQTLs and by retaining only
one candidate edge per eQTL, and (ii) by removing edges reflecting indirect effects
by means of TRANSWESD, a transitive reduction approach. We discuss the general
performance of our framework on the StatSeq in silico dataset by investigating the
sensitivity of the two required threshold parameters and by analyzing the impact
of certain network features (size, marker distance, and biological variance) on the
reconstruction performance. Using selected examples, we also illustrate prominent
sources of reconstruction errors. As expected, best results are obtained with large
number of samples and larger marker distances. A less intuitive result is that signif-
icant (but not too large) biological variance can increase the reconstruction quality.
Furthermore, a somewhat surprising finding was that the best performance (in terms
of AUPR) could be found for networks of medium size (1,000 nodes), which we had
expected to see for networks of small size (100 nodes).

3.1 Introduction

Systems Genetics approaches provide a new paradigm of large-scale genome and
network analysis (Jansen and Nap 2001; Jansen 2003; Rockman and Kruglyak 2006;
Rockman 2008). These methods use naturally occurring multifactorial perturbations
(e.g., polymorphisms) to causally link genetic or chromosomal regions to observed
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phenotypic trait data. Identifying a chromosomal region (the quantitative trait locus
(QTL)) that influences a certain phenotypic trait is known as QTL mapping. In genet-
ical genomics, a particular subclass of systems genetics, gene-expression levels are
considered as phenotypic traits (called etraits) and identified QTLs are referred to as
expression-QTLs (eQTLs). One application of eQTL maps obtained from genetical
genomics approaches is the reconstruction of gene regulatory networks (GRNs).

According to Liu et al. (2010), a GRN reconstruction pipeline for genetical
genomics data consists of three major steps: (i) eQTL mapping, (ii) candidate regu-
lator selection, and (iii) network refinement. Step (i) is used to identify chromosomal
regions (eQTLs) that impact on expression levels (= traits) of genes. A detailed
review on eQTL mapping is, for instance, given by Michaelson et al. (2009). In step
(ii), the eQTL map in combination with a genetic map is used to select single candi-
date (regulator) genes from the eQTLs. Frequently used methods include conditional
correlation (Bing and Hoeschele 2005; Keurentjes et al. 2007), local regression (Liu
et al. 2008), or analysis of between-strains SNPs (Li et al. 2005). In the third step (iii),
network refinement methods are employed to the topology obtained in step (ii), e.g.,
with the goal to identify and eliminate (false positive) edges arising from indirect
effects. Here, Bayesian network approaches (Zhu et al. 2007) and structural equation
modeling, SEM, (Liu et al. 2008) have been used.

In this chapter, we apply our recently proposed GRN reconstruction framework
for genetical genomics data (Flassig et al. 2013), which incorporates the three major
reconstruction steps mentioned above in a modular fashion. The framework follows
a simple-yet-effective paradigm: it is based on simple correlation measures, without
the need for computational demanding optimization steps. This approach is therefore
suited for small- and large-scale networks and performed comparable well in the case
of little samples but many genes, as we illustrate in Flassig et al. (2013) using simu-
lated and biological data. The workflow of the framework is shown in Fig. 3.1. The
initial GRN is constructed based on genotype–phenotype and phenotype–phenotype
correlation analyses. Due to genetic linkage there are often groups of genetically
adjacent regulator gene candidates, which target the same gene resulting into eQTLs.
To avoid many false-positive interaction predictions, single candidate regulators are
therefore identified from the eQTLs. Finally, as a method for network refinement in
step (iii), indirect path effects are removed by TRANSWESD, a transitive reduction
approach introduced recently (Klamt et al. 2010).

3.2 Methods

Figure 3.1 shows the general workflow of our reconstruction framework together
with a simple illustrative example. Starting from a typical set of genetical genomics
data that include genotyped markers, phenotyped genes and gene-to-marker associ-
ation, marker linkage analysis, and genotype assignment for each gene is performed
in a preprocessing step. In particular, a linkage map is generated in which two mark-
ers are indicated to be genetically linked if their genotype–genotype correlation
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Fig. 3.1 Workflow of the proposed framework for reconstructing GRNs from genetical genomics
data (left) with an illustrative example (top panel and right). For detailed explanations see text.
Reproduced with permission of Oxford University Press from Flassig et al. (2013)

exceeds a given threshold parameter dmin. Then, in a first step, an unweighted and
unsigned perturbation graph G1 is derived in which an edge i → j is included
if their corresponding genotype-phenotype correlation exceeds a second threshold
t QT. The nodes in the graph directly correspond to genes while the linkage map (of
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the markers) is kept to allow later eQTL assignment for each gene. The perturba-
tion graph G1 is refined to G2 by quantifying each identified edge with respect to
edge sign and weight, which indicate activation/repression and interaction strength,
respectively. Due to genetic linkage true regulators may be masked by other genes
(e.g., on adjacent positions on the genetic map) resulting into eQTLs. The eQTLs
of a given target gene t are identified on the basis of all potential regulator genes of
t (contained in G2) together with the marker linkage map. These relationships are
captured in graph G3, which is the only graph where the nodes represent eQTLs.
Graph G4 is subsequently obtained by selecting one candidate regulator per eQTL
based on the maximum of the edge weights. We call G4 the final perturbation graph,
whose edges reflect direct and indirect effects between genes induced by genetic
variations. To identify and remove indirect edges in G4 that can be explained by the
operation of sequences of edges (paths) we apply the transitive reduction method
TRANSWESD (TRANSitive reduction in WEighted Signed Digraphs) resulting in
the final graph G5 containing the identified gene interactions. Optionally, if one is
left to verify the interactions experimentally, it is desirable to have a list of edges
sorted with respect to edge confidences. Such a list is also required by the evaluation
procedure of the StatSeq Systems Genetics Benchmark to assess the quality of a
reconstructed network (Sect. 3.3). We generate such a sorted list based on the edge
weights. More details on the framework can be found in Flassig et al. (2013).

3.3 Application to the StatSeq Systems Genetics Benchmark:
Results and Discussion

We applied our reconstruction framework described in Sect. 3.2 to the in silico Stat-
Seq dataset provided to all contributors of this book. In this section, we will discuss
the general performance of the algorithm and investigate the impact of certain net-
work features (size, marker distance, and biological variance) on the reconstruction
performance of our applied reconstruction framework. Using selected examples, we
will also illustrate prominent sources of reconstruction errors (Sect. 3.3.2).

3.3.1 General Performance Analysis with Respect
to Network Configurations

Table 3.1 shows the AUPR and AUROC reconstruction performance (obtained by
using optimal values for the thresholds dmin and t QT ) for all studied 72 network
configurations: 3 different network sizes (100, 1000, 5000) × 3 replicates (with
same topological parameters) × 2 marker distances (close and far) × 2 different
biological variances (high and low) × 2 different population sizes (300 and 900)
(see also Chap. 1). The performance measures are given for graph G2, G4, and G5

http://dx.doi.org/10.1007/978-3-642-45161-4_1
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to be able to assess the overall effects of the two major pruning steps within our
approach (G2 → G4: selection of one candidate edge per eQTL; G4 → G5: removal
of edges that most likely stem from indirect effects (TRANSWESD); see Fig. 3.1).
We will mainly focus on the AUPR measure since this is the most appropriate one
for sparse networks.

As a general trend, we observe that the first (eQTL) pruning step leads in all
cases to an improvement of the AUPR, particularly pronounced in the case of large
population sizes (see also averaged values in Table 3.1). The second (TRANSWESD)
pruning step achieves a significant (but compared to the eQTL pruning lower) AUPR
improvement when using the larger population size, whereas only a minor or even
no effect can be seen for reconstruction based on the small population with 300
individuals. The effects of the two pruning steps are also well reflected by the number
of true positive (TP) and false positive (FP) edges in Table 3.1.

As expected, we see that a larger population size always helps to yield a better
reconstruction quality (see also Fig. 3.3). Somewhat surprising was the finding that
the best (averaged) AUPR value could be found for the G5 graph of medium size
networks (1,000 nodes), here we had expected to see this for networks with 100
nodes.

In the following we will discuss the sensitivity of the reconstruction results with
respect to the threshold parameters (t Qt and dmin) and the impact of marker dis-
tance, biological variance, and population sizes by the example of the first 100-
nodes network (networks 100.1.1–100.1.8 in Table 3.1). Similar results can be found
for the replicates (100.2.x and 100.3.x) and/or networks of larger size (1000.x.x;
5000.x.x). Figure 3.2 shows for configurations 100.1.1–100.1.8 the resulting AUPR
and AUROC performances of the reconstructed G5 networks in the two-dimensional
space of meaningful threshold parameters. Clearly, as already outlined above, larger
population size (900 samples instead of 300) improves the reconstruction quality
(compare odd vs. even numbers of network configurations) although, in line with
our results in Flassig et al. (2013), the differences are only moderate. We also see
that the optimal threshold regions are similar for all 8 networks. However, one can
observe that in the case of low sample size (300) the optimal AUROC/AUPR region
is more confined. Thus, the method seems to be fairly robust against a variation of
thresholds but an appropriate threshold selection strategy is important for small sam-
ple sizes. Generally, the genotype–phenotype threshold t QT for edge detection in G1
seems more sensitive and important than the linkage analysis threshold dmin required
in preprocessing. Regarding sensitivity of the performance evaluation, AUROC is
much less sensitive to the parameters t QT and dmin than AUPR.

Larger marker distance seems beneficial for reconstruction because genotype cor-
relations are then minimized. This can be seen, for instance, when comparing con-
figuration 2 (marker distance N(5, 1)) with 6 (marker distance N(1, 0.1)) in Fig. 3.2.
Partially, weak performance due to small marker distance can be compensated by
biological variability (configuration 2 vs. 8). However, in the case of small samples
and larger marker distance, larger biological variability decreases performance. This
is most likely due to a poor signal-to-noise ratio and can be understood as follows.
Interactions between genes are derived from target expression variations induced
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Fig. 3.2 Performance of AUPR (left) and AUROC (right) of networks 100.1.1–100.1.8 depending
on the chosen threshold parameters

by regulator genotype variations. This approach requires sufficient (i) variation of
the regulator and (ii) sensitivity of targets with respect to expression variations of the
regulator. Variation of the regulator can only be induced by either upstream genes,
i.e., the regulator itself is regulated by other genes, and/or by biological variability
inducing expression variation in each gene along the sample population. The latter is
important for identifying regulator–target interactions of regulators, which have no
upstream genes. In this case, the only source of topological informative expression
variation is biological variability, which however can only be distinguished from
uninformative noise for larger sample sizes.

Figure 3.3 summarizes the AUROC and AUPR performances for all network con-
figurations and sizes averaged over the three network replicates. These results confirm
many of the observations made for networks 100.1.x. Again, for our reconstruction
algorithm, the worst scenario in terms of AUPR values is the one with small sam-
ple size, small marker distance, and small biological variance. We also see that the
AUROC is more or less insensitive with respect to sample size and configuration
of marker distance/biological variance, but sensitive to the total number of nodes.
Specifically, the AUROC is constantly decreased in networks with only 100 nodes
compared to 1,000 and 5,000 nodes. This is most likely due to the fact that there
are less false negative edges in small compared to large networks (if they have the
same connectivity, which is the case for the given dataset) leading to a decreased
AUROC. Best network configuration for reconstruction in terms of AUPR values is
given by larger samples and large marker distance from which only the first one can
be influenced by experimental design. Increased biological variance has noticeable
effects on the reconstruction quality for small marker distance. Here, higher biolog-
ical variance is favorable. The reconstruction quality with respect to network size
decreases clearly in one particular case: networks with 5,000 nodes perform poorly
in the AUPR values for small sample size (300). Therefore, precision is small in this
setting because of too few samples. For 900 samples, precision is raised, resulting
into similar AUPR values compared to reconstructions of 100/1,000 node networks.
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Fig. 3.3 AUPR and AUROC performance averaged over network replicates for different network
sizes (100/1,000/5,000 nodes) and samples (300 (left panel) or 900 (right panel)) grouped according
to marker distance (Far/Close) / biological variance (Low/High) configurations

Averaged over all configurations, networks with 1,000 nodes are best reconstructed
with respect to AUPR and AUROC values for the eight different configurations.

3.3.2 Prominent Sources of Reconstruction Errors

In the following, we restrict the analysis to (i) a well-identifiable configuration
(100.1.4) and (ii) a poorly identifiable configuration (100.1.6). We further restrict
our analysis to 900 samples, since the influence of the sample size should be clear
from the discussions above. In Fig. 3.4 we show the genotype–phenotype corre-
lation matrix and weight matrix as a density plot. Thereby we have indicated TP
(green circles), FP (blue circles), and FN (red circles) in the weight matrix (note
that the green and blue circles together describe the reconstructed network G5).
In the genotype–phenotype matrix plots we see horizontal gray lines (especially in
100.1.6), which correspond to eQTLs, from which regulators have to be selected, in
order to reconstruct the GRN. We see that configuration 100.1.4 tends to have more
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Fig. 3.4 The upper panel shows the genotype–phenotype correlation matrix and the middle
panel the edge weights (for calculation see Fig. 3.1) of all potential interactions for configurations
100.1.4/100.1.6. Horizontal gray lines in the genotype–phenotype correlation matrix correspond to
eQTLs, from which regulator genes have to be selected. In the weight matrix, green (TP) and blue
circles (FP) indicate the edges included in the final reconstructed graph G5, whereas red circles
indicate missed interactions (FN). Some genes (g4, g50, g91, and g92) were selected for detailed
analysis of the TP/FP/FN edges having these genes as regulators (see also Fig. 3.5). Mean expres-
sion and its variance of the regulators are given by μE and σ 2

E , respectively. Mean weights and
weight variances over all target edges of a regulator are indicated by μw and σ 2
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confined eQTLs due to larger marker distances, i.e., smaller genotype correlation
between adjacent markers. This of course improves reconstruction quality as can be
seen, e.g., in Table 3.1 (AUPR of 0.36 in 100.1.4 vs. 0.12 in 100.1.6).

From the weight matrix plots we also see that 100.1.6 contains more gray spots
than 100.1.4. This results from much more correlations in the data of 100.1.6. Since
many of these correlations are due to marker correlations, they do not reflect true
interactions, thus hampering network inference. The diagonal gray line indicates
self-regulation, which were not considered for reconstruction (and were not taken
into account by the performance evaluation script). A vertical line of red or green
circles indicates a true regulator with many targets. An example is regulator g92,
from which many targets are correctly identified in the case of 100.1.4. In the case of
100.1.6, the algorithm selects g91 as the regulator and therefore induces many FPs
(vertical line of blue circles at regulator position 91) and many FNs (vertical line of
red circles at regulator position 92). The reason for this is that eQTLs in 100.1.6 are
much larger due to smaller marker distances, corresponding to a strong correlation of
genes g91/g92 via their genotypes (see genotype–phenotype matrix plot in Fig. 3.4).
For configurations 100.1.4/100.1.6, gene g92 has 1 true upstream gene, 21 true targets,
and mean expressions μE = 1.57/μE = 1.35 with σ 2

E = 0.43/σ 2
E = 0.098. In

contrast, gene g91 has 5 true upstream nodes, 0 true targets, and mean expressions
μE = 0.35/μE = 0.4 withσ 2

E = 0.1/σ 2
E = 0.03 for configurations 100.1.4/100.1.6.

Therefore, when deriving the weights for 100.1.6, gene g91 has larger weights with
little variance than gene g92, thus being wrongly selected during eQTL analysis.

Notably, even when a gene has no upstream gene (regulator), we may still recover
target interactions. For example, gene g4 has no regulator but we do recover 8 / 12
interactions out of 26 for configuration 100.1.4/100.1.6, simply due to the fact, that
the expression of gene g4 is varying due to higher biological variance resulting into
expression variations of the targets (see mean edge weights of G4 targets in the table
of Fig. 3.4).

Another example for typical challenges of correctly reconstructing interactions
from the provided dataset is gene g50. This gene has mean expressions μE =
0.47/μE = 0.48 with σ 2

E = 0.06/σ 2
E = 0.02 for configurations 100.1.4/100.1.6,

with 1 true upstream gene. As the variation in the expressions of gene g50 is small, we
cannot get any information on its targets superior to variation by noise. Further, even
in cases where a regulator is varying strongly it does not necessarily induce variation
in the target (see FN histogram and the table in Fig. 3.5). This can happen in cases
where a gene has several regulators or if the kinetics of the target activation is in an
insensitive range with respect to changes in the regulator (e.g., due to a very low or
very large Km parameter in a Hill function describing the dependency of the target
on its regulator). Both effects result into small sensitivity with respect to regulators,
thus hampering again the identification of interactions.

In Fig. 3.5 we show three histograms of mean and variance of the regulators’
expressions, classified according to whether the (non-)identified target interactions
of the regulator are TPs/FPs/FNs. We use network configuration 100.1.4 with optimal
threshold parameters as it belongs to the networks with highest reconstruction quality.
As expected, regions in the mean–variance expression plane in Fig. 3.5 where we
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Fig. 3.5 Histograms of expression mean versus expression variance of (non)identified regulators
for network configuration 100.1.4 and classified whether the corresponding target regulation is a
TP/FP/FN

find TPs also overlap with FP and FN regions. Only for mean and variance levels
above 1.2 and 0.4, respectively, FNs and partially FPs are reduced. The drop in FNs
is due to the fact that interactions are not missed in the high-level region of the
mean–variance plane. Almost independent on the expression mean and variance of a
regulator, regulators are sometimes wrongly selected from the eQTLs. This explains
why FPs are only slightly reduced in the high-level region.

Interactions of regulators with expression values roughly below 0.5 and variance
levels below 0.1 are always mis-classified as either FP or FN. Looking at the mean
and variance of the expression levels of the target genes that belong to TP/FP/FN
of regulator g92 (see table in Fig. 3.4), we see that sufficient variation at a sufficient
expression level of the regulator does not guarantee correct identification of (no)
interactions. The expression level of the target and its variance also determine classi-
fication results. The more inputs a target has, the more likely it is to get an FN since
its sensitivity to variation of a specific input node is decreased (see mean expression
variance over the FN target genes). False positives are also generated, when the FP
targets vary too strongly. In the example of Fig. 3.5, this is probably due to strong
biological variance and experimental noise, inducing variations in the FP targets; all
five FP targets have a relatively low mean input number of 2.8.
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3.4 Summary and Conclusions

We have analyzed the reconstruction results obtained with our recently developed
framework for reconstructing gene regulatory networks based on simple correlation
measures. Several different network topologies and data qualities have been used to
illustrate limitations and challenges for network inference. We demonstrated that the
reconstruction quality is influenced by (i) experimental design in terms of sample
size and (ii) biological factors (marker distance, biological variability, and target
sensitivity with respect to its regulators). Regarding the experimental design, our
framework is relatively tolerant to small sample sizes, when comparing the recon-
struction results from 300 and 900 sample data. However, best results are obtained
with large number of samples and larger marker distances combined with signifi-
cant (but not too large) biological variances. Biological factors that are beneficial for
reconstruction are: larger biological variance in case of genetically close markers,
input sensitivity, i.e., every gene does vary when its regulators vary in expression or
genotype, respectively.

Finally, we note that meaningful reconstruction results can only be achieved when
marker distances are sufficiently large. Otherwise, one should restrict the reconstruc-
tion to G3, i.e., eQTL mapping, to narrow down potential interaction sites. Then, for
specific genes, the true interactions may be obtained by further focused experimental
analysis based on the initial reconstructed graph G3.
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Chapter 4
Differential Equation Based
Reverse-Engineering Algorithms:
Pros and Cons
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Abstract Ordinary Differential Equations (ODEs) represent a deterministic
approach to model gene regulatory networks. ODEs can be used to model changes
in gene transcription induced by an external perturbation, such as gene overexpres-
sion/downregulation or treatment with a drug. Reverse-engineering algorithms based
on ODEs require a choice of a functional form describing the effect of a regulator on
its target genes. Here, we focused on an ODE-based reverse engineering algorithm
named Network Identification by multiple Regression (NIR) which is rooted on the
hypothesis that the regulation exerted by one gene (i.e., a TF) on a target gene can be
approximated by a linear function, i.e., the transcription rate of the target gene is pro-
portional to the amount of TF. NIR uses steady-state gene expression measurements
and requires knowledge of the genes perturbed in each experiment. We showed that
even if originally NIR was created for a different purpose, it can be successfully
used to infer gene regulation from an integrated genotype and phenotype dataset.
Our results provide evidence of the feasibility of applying reverse-engineering algo-
rithms, such as NIR, to infer gene regulatory networks by integrated analysis of
genotype and phenotype.
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4.1 Introduction

The aim of Systems Biology is the elucidation of regulatory and signalling pathways
by integrating different levels of experimental evidences in order to build computa-
tional models of these complex processes. A paradigm shift is occurring in Biology,
which is moving away from being a descriptive science toward becoming a quanti-
tative one, thanks to innovative technologies able to generate vast amounts of quan-
titative experimental data in a relatively short time (Faith et al. 2007).

Statistical methods for the analysis and visualization of data, such as clustering
algorithms and principal component analysis (Andreopoulos et al. 2009; Clarke et al.
2008), have provided a significant contribution to biology. These methods, however,
mostly provide information on statistical associations between thousands of RNAs
and proteins operating in a cell, but are not able to infer direct causal interactions.
Indeed, genes interact with each other in complex regulatory networks which enable
the processing of information and the metabolism of nutrients. The identification
of these networks represents a fundamental step to understand cellular functions,
but it is challenging because of experimental limitations: (i) the number of large-
scale measurements available, for example gene expression profiles, is much less
than the number of genes, which leads to mathematically ill-posed problems; (ii) the
high-level of biological noise, which requires replicated experiments thus increasing
experimental costs; (iii): the need of prior knowledge in order to interpret the inferred
network in a biologically meaningful way.

Reverse-engineering can be defined as the process of identifying gene regulatory
interactions from large-scale experimental data through computational methods. Typ-
ically, the aim is to infer (causal) regulatory interactions among genes from gene
expression profiles (GEPs). These interactions may not necessarily represent phys-
ical ones, but could refer also to indirect regulations via proteins, metabolites, and
ncRNA which have not been measured directly. As a result, the meaning of inter-
actions is not well-defined and depends on the formalism selected to model the
network. Nevertheless, the inferred networks have several practical uses (Bansal
et al. 2007), such as (i) identification of functional modules, (ii) prediction of the
system’s behavior, (iii) identification of master regulators controlling the major cell
functions.

In the recent years, several computational approaches have been proposed to
reverse-engineering gene networks from GEPs. Nevertheless, there is not a single
“winning approach” which can be generally applied, but each method is tailored to
a specific question and to a given type of experimental data (Marbach et al. 2012).

These approaches can be roughly classified into: (i) boolean networks, (ii)
bayesian networks, (iii) information-theoretic approaches, (iv) relevance networks,
(v) graphical models, (vi) neural networks, (vii) generating automata and (viii) dif-
ferential equations. All of these models have advantages and drawbacks, and we refer
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the interested reader to (Chen 2004; de la Fuente et al. 2004; Kauffman 1969, 1993;
Sima et al. 2009; Somogyi and Sniegoski 1996; Szallasi and Liang 1998; Basso et al.
2005) for furthers details.

In this chapter, we will describe the last class of methods, namely Ordinary
Differential Equations (ODEs). ODEs represent a deterministic approach to model
gene regulatory networks. ODEs relate changes in gene transcription to each other
and to an external perturbation, such as overexpression/downregulation of specific
genes or the treatment with a drug.

Reverse-engineering algorithms based on ODEs require the choice of a functional
form describing the effect of a transcription factor (TF) on its target genes. Nonlinear
functions can better capture the regulatory relationship between a TF and a target
gene, but these can lead to an exponential rise in the unknown parameters to be
estimated.

In what follows, we will focus on an ODE-based reverse-engineering algorithm
named Network Identification by multiple Regression (NIR) (Gardner et al. 2003)
which is rooted on the hypothesis that the regulation exerted by one gene (i.e., a TF)
on a target gene can be approximated by a linear function, i.e., the transcription rate
of the target gene is proportional to the amount of TF.

NIR uses steady-state gene expression measurements and does not require any
prior information about gene function or network structure, but only the knowledge
of which genes are directly perturbed (overexpressed or downregulated) in each
experiment. NIR is based on multiple linear regression models and assumes that only
a small subset of genes has been perturbed in each experiment (where one experiment
usually corresponds to one measured GEP). It infers sparse gene networks with high
accuracy (Cantone et al. 2009).

The chapter is organized as follows. Section 4.2 briefly recalls the ODE model
and describes the NIR algorithm. Section 4.3 reports the performances achieved by
NIR on the StatSeq benchmark dataset. Finally, further remarks and conclusions are
the topic of Sect. 4.4.

4.2 Methods

4.2.1 Model

Let us consider a set X = {x1, x2, . . . , xn} of n genes, where xi indicates the gene
expression measurement of gene i . Let D be the set of m GEPs measuring all the
genes at steady-state following m different perturbations (i.e., gene overexpression
or knockdown).

A set of ODEs, one for each of the elements of X , can be used to describe gene
regulation as a function of other transcripts (de Jong 2002):

ẋi (t) = fi (x1, x2, . . . , xn, u, θi ), i = 1, 2, . . . n (4.1)
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where ẋi (t) = dxi
dt is the rate of transcription of transcript i , u is an external per-

turbation to the system, and θi is a set of (unknown) parameters describing causal
interaction among genes. fi can be expanded in a Taylor series around the point in
which measurement is made, x0. If it is assumed that perturbations around this point
are small,1 then it is possible to truncate the series after the first order term in order
to obtain a linear approximation of (4.1), that is:

ẋi (t) =
n∑

j=1

ai j x j (t) + bi ui (t), i = 1, 2, . . . n (4.2)

where xi (t) and ẋi (t) are, respectively, the concentration and the rate of change of
transcript i measured at time t in one experiment, ai j models the influence of gene x j

on gene xi , bi represents the effect of perturbation on xi , while ui (t) is the external
perturbation to gene xi at time t (ai j and bi form the set θi of parameters in Eq. (4.1)).
In particular, a positive sign for ai j indicates activation, a negative one represents
repression, while a zero value means no interaction between xi and x j .

In the case of steady-state data, ẋi (t) = 0 for i = 1, 2, . . . n, and then Eq. (4.2)
becomes independent of time. Therefore, it can be simplified in the following form:

n∑

j=1

ai j x j = −bi ui (4.3)

for each gene xi . Since we have m experiments, we can write for gene xi :

[ai1, ai2, . . . ain]
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Equation (4.4) can be written as:

ai
T
X = −bi ui

T (4.5)

where ai is a vector whose components are ai j , j = 1, 2, . . . n, ui is a vector whose

components are u j
i , j = 1, 2, . . . m, and X ∈ R

n×m . Equation (4.5) can now be
solved to obtain the unknowns ai j , if m ≥ n, whereas the coefficients bi are usually
assumed equals to 1 without loss of generality.

1 A perturbation ul is defined small if the system returns to the original steady-state point after
removal of ul and if the magnitude of the response is roughly proportional to the magnitude of ul
(typically the 10 % of the original mRNA concentration).
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4.2.2 Algorithm

The NIR algorithm identifies quantitative regulatory relationships among genes, i.e.,
the parameters ai j , starting from the measured GEPs and the knowledge of which
gene(s) have been perturbed in each experiment. In order to apply this approach, the
following steps must be performed: (i) controlled perturbations, such as a set of gene
overexpression, are delivered to a cell population, (ii) the measured gene expression
profiles are collected, and finally (iii) the NIR algorithm is applied to the data in
order to learn an ODEs model of the gene network.

The algorithm employs multiple linear regression (Draper and Smith 1998) to
estimate the unknown model parameters ai j from Eq. (4.5). NIR requires, as input, the
GEPs following each of the m perturbation experiments (X), the knowledge of which
genes have been directly perturbed in each perturbation experiment (U = {ui

T },
i = 1 . . . n), and, optionally, the standard deviation of replicate measurements.

To solve the set of equations in (4.5), a linear regression approach is applied,
which identifies the set of unknowns ai j which minimizes the least-squared error
between the model prediction and the experimental data. These are the values for
which the first derivative of the residual sum of square function is zero under the
assumption that the n genes are linearly independent, and can be computed if and
only if m ≥ n. This means that, in order to identify the network model, we have to
make at least n distinct perturbations to the considered genes. However, for large sets
of genes, it could be impractical to perform a perturbation for each gene and thus the
problem would remain undetermined.

To overcome this problem, NIR adopts the sparsity assumption (Newma 2003)
which imposes an upper bound, k, on the number of ingoing edges for each gene.
That is, it is assumed that each gene can be regulated by at most k other genes, and
this upper bound can be defined by the user.

In this way, an undetermined problem is transformed into an overdetermined prob-
lem (if we chose k < m) which is robust both to measurement noise and incomplete
datasets.

In order to infer the best subset of k regulators of each gene, NIR employs the
residual sum of squared error minimization criterion. The algorithm therefore has
to test, for each gene xi , all the possible n!/(k!(n − k)!) combinations of k genes.
This exhaustive approach is not feasible for a set of genes having cardinality greater
than 100, thus NIR employs a heuristic approach developed in (Someren et al. 2001)
to reduce the number of sets to test. This approach first computes all the possible
solutions with one regulator for each gene, then select the d ones having the smallest
least squared error. After that, it computes all the possible solutions with two regula-
tors only for the d intermediate solutions. Then, it again selects the best d solutions,
and so on until the number of regulators for each gene is k.

The final output of NIR is the matrix A which encodes the directed graph, two
matrices containing the variance and covariance of each ai j ∈ A, respectively, and
the goodness of fit of the regression.
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A drawback of the original NIR was the impossibility to run it on a dataset with
more than 100 genes because it would have taken too long to compute (Bansal et al.
2007). However, NIR can be parallelized to handle a larger number of genes in a com-
putationally efficient manner by distributing the overall computation burden among
different processors to reduce the total execution time. A parallel version of NIR
has been developed in (Gregoretti et al. 2010) and extended in this work. The paral-
lelization is based on the fact that the computational steps of NIR can be performed
independently for each gene, and then the parallel implementation assigns differ-
ent genes to different computing processes. In this way, the parallel implementation
scales well as the number of processors increases, has a linear speedup, and the time
complexity of the original algorithm can be reduced by one order of magnitude.

4.3 Results

In this section, we reported the results obtained by evaluating the performance of
NIR on the StatSeq compendium presented in Chap. 1. Briefly, StatSeq consists of
72 datasets originated from 9 different “in silico” gene networks, each simulated
under 8 different parameter settings such as population sizes, marker distances, and
heritability. For each of the 72 datasets there are two matrices: (i) the gene expression
matrix and (ii) the genotype matrix which represents the mutated genes.

To evaluate the NIR performances, we computed two scoring metrics commonly
applied to test the efficiency of a binary classifier as a function of the classification
threshold: (i) the Area Under the Precision–Recall Curve (AUPR) which summarizes
the Precision-Recall tradeoff and (ii) the Area Under the Receiver operating char-
acteristic curve (AUROC) which summarizes the tradeoff between the true positive
prediction ratio and the false positive prediction.

Precision is defined as the fraction of retrieved connections that are correctly
identified, that is:

Precision = TP

(TP + FP)
(4.6)

where TP are the true positives and FP are the false positives. Recall, instead, is the
fraction of true connections that are retrieved by the algorithm:

Recall = TP

(TP + FN)
(4.7)

where FN are the false negatives. Hence, while a Precision–Recall curve represents
the Precision against the Recall at different thresholds setting, an ROC curve plots the
True Positive Rate (TPR) also known as Recall (or Sensitivity) against the False Pos-
itive Rate (FPR) at various threshold settings. FPR is also defined as 1-Speci f ici t y,
where Specificity is computed as:

http://dx.doi.org/10.1007/978-3-642-45161-4_1
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Table 4.1 NIR results for datasets 25–48

Dataset Network AUROC AUPR AUPRrand AUPR10 % AUPRrand10 %

25 4 54.08 0.96 0.31 0.60 0.03
26 4 55.54 1.43 0.31 0.98 0.03
27 4 51.70 0.49 0.31 0.20 0.03
28 4 54.11 0.90 0.31 0.55 0.03
29 4 51.93 0.54 0.31 0.24 0.03
30 4 52.86 0.62 0.31 0.31 0.03
31 4 50.85 0.41 0.31 0.12 0.03
32 4 51.96 0.50 0.31 0.20 0.03
33 5 56.13 1.47 0.29 0.99 0.03
34 5 57.68 1.86 0.29 1.19 0.03
35 5 53.23 0.61 0.29 0.31 0.03
36 5 55.81 1.20 0.29 0.76 0.03
37 5 53.37 0.57 0.29 0.27 0.03
38 5 54.25 0.72 0.29 0.39 0.03
39 5 51.85 0.47 0.29 0.19 0.03
40 5 53.68 0.61 0.29 0.30 0.03
41 6 55.08 0.10 0.30 0.62 0.03
42 6 56.93 1.65 0.30 1.06 0.03
43 6 53.35 0.59 0.30 0.28 0.03
44 6 54.66 0.87 0.30 0.51 0.03
45 6 53.25 0.58 0.30 0.27 0.03
46 6 54.53 0.72 0.30 0.37 0.03
47 6 52.26 0.41 0.30 0.12 0.03
48 6 53.48 0.54 0.30 0.83 0.03

Results for datasets 1000 genes. AUROC is the area under the entire ROC curve; AUPR the area
under the entire precision recall curve; AUPRrand the area under the precision recall curve consider-
ing the performance of a random algorithm; AUPR10 % the area under the precision recall curve at
10 % of recall; AUPRrand10 % the area under the precision recall curve at 10 % of recall considering
the performance of a random algorithm

Specificity = FP

(FP + TN)
(4.8)

where TN are the true negatives.
As we discussed in the previous section, NIR requires two matrices in input: (i)

the gene expression profile matrix X and (ii) the perturbation matrix U. This because
NIR absolutely requires the knowledge of which genes have been directly perturbed
in each experiment. Here, we used the genotype matrix as the perturbation matrix,
with the “naive” assumption that a mutated gene will change its expression level.
Although NIR is able to infer a signed directed graph, to facilitate comparison among
algorithms, we computed the Precision–Recall curve and the ROC curve considering
the inferred networks as an unsigned directed graph.
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Table 4.2 NIR results for datasets 49–72

Dataset Network AUROC AUPR AUPRrand AUPR10 % AUPRrand10 %

49 7 53.3606 0.3638 0.059 0.3024 0.006
50 7 55.0744 0.6059 0.059 0.5154 0.006
51 7 51.5462 0.1199 0.059 0.064 0.006
52 7 53.6633 0.3337 0.059 0.271 0.006
53 7 51.9643 0.1256 0.059 0.0688 0.006
54 7 52.8732 0.1883 0.059 0.1288 0.006
55 7 51.1194 0.0863 0.059 0.0313 0.006
56 7 52.0822 0.1256 0.059 0.0685 0.006
57 8 52.8597 0.2571 0.063 0.194 0.006
58 8 54.5249 0.4978 0.063 0.4244 0.006
59 8 51.2068 0.1005 0.063 0.042 0.006
60 8 52.9636 0.2858 0.063 0.2221 0.006
61 8 51.4912 0.1069 0.063 0.0477 0.006
62 8 52.269 0.1449 0.063 0.0836 0.006
63 8 50.8817 0.0833 0.063 0.0255 0.006
64 8 51.7043 0.1109 0.063 0.0512 0.006
65 9 52.5285 0.2525 0.061 0.191 0.006
66 9 54.2944 0.454 0.061 0.3823 0.006
67 9 51.2804 0.1106 0.061 0.0529 0.006
68 9 53.1384 0.2741 0.061 0.2105 0.006
69 9 51.5462 0.1106 0.061 0.0522 0.006
70 9 52.3102 0.1526 0.061 0.0921 0.006
71 9 50.8189 0.0814 0.061 0.0247 0.006
72 9 51.6396 0.1236 0.061 0.0649 0.006

Results for datasets of 5000 genes. AUROC is the area under the entire ROC curve; AUPR the
area under the entire precision recall curve; AUPRrand the area under the precision recall curve
considering the performance of a random algorithm; AUPR10 % the area under the precision recall
curve at 10 % of recall; AUPRrand10 % the area under the precision recall curve at 10 % of recall
considering the performance of a random algorithm

Results from the application of NIR to the StatSeq dataset are reported in Table 4.1
for gene networks of size 1000 and in Table 4.2 for gene networks of size 5000. The
label “AUPRrand” refers to the expected performance of an algorithm that randomly
connects genes assuming a uniform probability distribution over the set of possible
edges. In order to compute this value, we considered a hyper-geometrically distrib-
uted random variable whose distribution function and expected value are, respec-
tively:

Px =
⎦M

x

)⎦N−M
n p−x

)

⎦N
x

) , E[X ] = M

⎦ N−1
n p−1

)

⎦ N
n p

) = M
n p

N
(4.9)

where N is the number of possible edges in the network, M is the number of true
edges, and n p is the number of predicted edges. We then computed the random
Precision as follows:
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Fig. 4.1 Precision–Recall curve at 10 % of Recall for the 24 networks of size 1000. The Precision
(TP/(TP + FP) ) versus Recall (TP/(TP + FN) ) curve at 10 % of Recall across the 24 datasets
composed of 1,000 genes. The dashed line represent the precision of a random algorithm

Precisionrand = TPrand

TP + FP
= E[X ]

n p
= M

N
. (4.10)

From Eq. (4.10), since the width of the Recall interval is always 1, it is possible
to obtain the area under the precision–recall curve of a random algorithm simply as
the area of a rectangle of base equal to 1 and height equal to Precisionrand:

AUPRrand = 1 ∗ Precisionrand (4.11)

Since NIR assumes that each gene can be regulated by at most k regulators and
k << n (i.e. in our settings k = 10 and n = 1000 or n = 5000), then the algorithm
produces an extremely sparse matrix A. Therefore the AUC of the entire Precision–
Recall curve could not be considered as a right measure to assess the performance
of NIR, because the majority of inferred connections in the network are zero and
then randomly sorted. To avoid this bias, we reported in Tables 4.1 and 4.2 also the
AUC at a Recall level of 10 % and its comparison with the random (all the values
are multiplied by 100 to obtain a percentage value).

At the end of this section, we would like to point out that, since we approximated
the perturbation matrix U with the genotype matrix, the used data were not an ideal
input for NIR. However, Tables 4.1, 4.2, Figs. 4.1 and 4.2 show that the results are
quite remarkable. Indeed, it is possible to see that NIR performed better than random.
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Fig. 4.2 Precision–Recall curve at 10 % of Recall for the 24 networks of size 5000. The Precision
(TP/(TP + FP) ) versus Recall (TP/(TP + FN) ) curve at 10 % of Recall across the 24 datasets
composed of 5,000 genes. The dashed line represents the precision of the random algorithm

In addition, for smaller network (i.e., size 100), the performance of NIR increases
considerably (i.e., on average AUPR = 4.4 % and AUROC = 56.6 %).

As a further test, we compared NIR with ARACNe (Adam et al. 2006), an infer-
ence algorithm based on an information-theoretic approach. This algorithm uses a
generalization of Pearson’s correlation coefficient called mutual information (MI),
to measure the degree of independence between two genes. For each pair of genes
(xi , x j ), their MIi j is computed and an edge is added between the two genes depend-
ing on a significant threshold to which MIi j is compared. If two genes xi and x j are
statistically independent then MIi j = 0, while a higher MIi j indicates that the two
genes are non-randomly associated to each other. However, in experimental setting,
an estimated mutual information never equals zero. Under this scenario the recovered
gene network would be full connected.

Figure 4.3 shows the comparison between the two algorithms by plotting the
Precision–Recall curves at Recall level of 10 % for six networks of size 1000. It is
possible to see that, for these datasets, NIR outperforms ARACNe.
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Fig. 4.3 Precision–Recall curve at 10 % of Recall for NIR and ARACNe algorithms. The Precision
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ARACNe (blue line) algorithms. Only the first two types of each datasets composed of 1,000 genes
have been used. The dashed line represents the precision of the random algorithm

4.4 Discussions and Conclusions

This chapter has been dedicated to NIR, a deterministic reverse-engineering algo-
rithm which quantifies the influence of genes on one another by using measurements
of transcptional responses to genetic perturbations and multiple linear regression.
NIR uses a set of linear differential equations to describe a gene regulatory network.
This approximation of genetic interactions allows NIR to infer a gene network from
a small number of GEPs, by limiting the number of regulators for each gene.

We described the application of NIR to steady-state gene expression traits which
have been simulated for a population of individuals, based on a complex nonlinear
gene network model and a simulated set of genome-wide DNA variants. We would
like to point out that the data used in this book are not specific to NIR. Therefore,
in order to apply it, we made the “naive” assumption that a mutated gene always
changes its expression level. This assumption allows us to use the genotype matrix
as a perturbation matrix. However, in spite of this assumption, the sign of each
perturbation was not known. Despite this limitation, we showed that NIR performs
better than the random and better than an approach, such as ARACNe (Adam et al.
2006), which does not use the genotype information. Our results provide evidence of
the feasibility of applying reverse-engineerig algorithms, such as NIR, to infer gene
regulation by integrated analysis of genotype and phenotype data.
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We conclude this chapter by recalling some limitations of NIR, which need to be
considered when it is applied on real datasets. First, the computation time of NIR
increases quickly with the network size. For this reason, a parallel version of this
algorithm, which allows to reduce the time complexity of the original NIR by one
order of magnitude, has been developed in (Gregoretti et al. 2010) and extended in
this work.

Moreover, since the algorithm is based on a linear approximation of gene network
interactions, then it could not be appropriate for inferring some very dynamic cellular
behaviors such as the cell-cycle or circadian clock. In this case, other models of
varying complexity, such as neural networks, could be better suited for analyzing
these more complex processes. However, it is important to stress that, in the process
of modeling and reverse-engineering, one of the major challenges is the selection
of an appropriate model structure that allows the analysis of global properties while
preserving computational tractability, and experimental feasibility.
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Chapter 5
Gene Regulatory Network Inference
from Systems Genetics Data Using
Tree-Based Methods

Vân Anh Huynh-Thu, Louis Wehenkel and Pierre Geurts

Abstract One of the pressing open problems of computational systems biology is
the elucidation of the topology of gene regulatory networks (GRNs). In an attempt
to solve this problem, the idea of systems genetics is to exploit the natural variations
that exist between the DNA sequences of related individuals and that can represent
the randomized and multifactorial perturbations necessary to recover GRNs. In this
chapter, we present new methods, called GENIE3-SG-joint and GENIE3-SG-sep, for
the inference of GRNs from systems genetics data. Experiments on the artificial data
of the StatSeq benchmark and of the DREAM5 Systems Genetics challenge show that
exploiting jointly expression and genetic data is very helpful for recovering GRNs,
and one of our methods outperforms by a large extent the official best performing
method of the DREAM5 challenge.

5.1 Introduction

Networks are commonly used in biological research to represent information. In
this chapter, we focus on GRNs. These networks represent regulatory interactions
among genes that happen at the level of transcription, through transcription factors.
They often offer a simplified view of gene regulation, and are usually represented
by graphs where each node corresponds to a gene and an edge directed from one
gene to another gene indicates that the first gene codes for a transcription factor that
regulates the rate of transcription of the second gene.

V. A. Huynh-Thu · L. Wehenkel · P. Geurts (B)

Department of EE and CS and GIGA-R , University of Liège, Liège, Belgium
e-mail: P.Geurts@ulg.ac.be

V. A. Huynh-Thu
e-mail: vahuynh@ulg.ac.be

L. Wehenkel
e-mail: L.Wehenkel@ulg.ac.be

A. de la Fuente (ed.), Gene Network Inference, 63
DOI: 10.1007/978-3-642-45161-4_5, © Springer-Verlag Berlin Heidelberg 2013



64 V. A. Huynh-Thu et al.

Edges in regulatory networks can be directed or undirected. An undirected edge
connecting two genes indicates that there exists a transcriptional regulatory inter-
action between these two genes, while a directed edge means furthermore that the
source gene regulates the expression of the target gene. Edges can also be signed.
When a gene is connected to another gene, a positive (resp. negative) sign indi-
cates that the former is an activator (resp. repressor) of the latter. In this chapter, we
focus on directed unsigned networks. The targeted networks are thus graphs with
p nodes, where an edge directed from one gene i to another gene j indicates that
gene i (directly) regulates, either positively or negatively, the expression of gene j
(i, j = 1, . . . , p).

The problem of the inference of regulatory networks has been studied for many
years in the literature and many algorithms already exist. The authors De Smet and
Marchal (2010) proposed a categorization of these methods. First, they distinguish
supervised from unsupervised methods. Supervised methods exploit prior partial
knowledge of the network to guide the network inference, while unsupervised meth-
ods do not assume any prior knowledge. There are also direct methods, which con-
sider only individual interactions, and module-based methods, which search for sets
of genes that are regulated by the same transcription factors. Finally, non-integrative
methods only use expression data for the inference, while integrative methods also
use other kinds of information besides expression data, e.g. counts of sequence motifs
that serve as binding sites for transcription factors.

Among integrative methods, one can also find methods exploiting systems
genetics data. The goal of systems genetics is to exploit the natural variations that
exist between the DNA sequences of related individuals in a segregating population
and that can represent the randomized and multifactorial perturbations necessary to
recover (GRNs) (Jansen and Nap 2001; Jansen 2003). In such a study, two strains
that are widely separated in terms of genetic background are crossed and their chil-
dren are self-crossed during several generations in order to produce a recombinant
inbred line (RIL) segregating population. The genomes of the individuals of this pop-
ulation comprise random segments of the genomes of the two original parents and
genetic differences can therefore be detected between them, representing multifacto-
rial genetic perturbations. Each individual is then analyzed by microarray expression
profiling as well as by genetic marker analysis.

Multiple methods have been developed to infer GRNs from systems genetics data.
Several methods infer causal regulatory relationships among pairs of genes, including
procedures that rely on statistical tests to identify causal links (Chen et al., 2007) and
approaches based on the fitting of causal models (Kulp and Jagalur 2006; Schadt et al.
2005). Other methods are based on the analysis of the correlation between expression
profiles of genes located in a particular genomic region and expression profiles of
genes that are potentially affected by the markers located in this region (Bing and
Hoeschele, 2005). Methods that study the regulatory relationships at a systems-level
include approaches based on Bayesian networks (Zhu et al. 2007; Li et al. 2005;
Vignes et al. 2011), structural equation models (Li et al. 2006; Liu et al. 2008), and
the orientation of the edges of an undirected network using genetic markers as causal
anchors (Aten et al. 2008; Chaibub Neto et al. 2008). Random Forests have also been
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successfully used for expression quantitative trait loci (eQTL) mapping (Michaelson
et al., 2010).

In this chapter, we propose new methods, based on ensembles of regression trees,
for the inference of regulatory networks from systems genetics data. According to
the categories of De Smet and Marchal (2010), these methods are direct (we do not
search for modules) and unsupervised (we do not assume any prior knowledge of
the network).

The chapter is structured as follows. Section 5.2 describes our network inference
methods. Section 5.3 shows the results obtained with these methods on the StatSeq
compendium as well as on the datasets of the DREAM5 Systems Genetics chal-
lenge. Finally, Sect. 5.4 concludes the chapter and discusses some ideas for further
developments.

5.2 Methods

We assume that we have at our disposal a dataset containing the steady-state
expression levels of p genes measured in N individuals, as well as the genotype
value of one genetic marker for each of these genes in the same N individuals:

LS = {(e1, m1), (e2, m2), . . . , (eN , mN )}, (5.1)

where ek ∈ R
p and mk ∈ {0, 1}p, k = 1, . . . , N are, respectively, the vectors of

expression levels and genotype values of the p genes in the kth individual:

{
ek = (e1

k, e2
k, . . . , ep

k)
≥,

mk = (m1
k , m2

k , . . . , mp
k)

≥.
(5.2)

Note that we suppose that the individuals come from a RIL population and are hence
homozygous. Each genetic marker can thus have two possible genotype values only.

From this dataset, our goal is to infer a gene regulatory network, i.e., to make a
prediction of the underlying regulatory links between genes. Many network inference
algorithms work first by providing a ranking of the potential regulatory links from
the most to the less significant. A practical network prediction is then obtained by
setting a threshold on this ranking. In this chapter, we focus only on the first task and
the question of the choice of an optimal confidence threshold, although important,
is left open.

A network inference algorithm is thus defined in this chapter as a procedure that
assigns weights wi,j ∀ 0(i, j = 1, . . . , p) to putative regulatory links from any gene
i to any gene j, with the aim of yielding larger values for weights that correspond to
actual regulatory interactions.

To infer GRNs from systems genetics data, we propose two extensions of a method
called GENIE3 (Huynh-Thu et al., 2010) that exploits tree-based ensemble methods
for the inference of networks from expression data. As in the GENIE3 procedure,
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our two extensions decompose the problem of recovering a network of p genes
into p feature selection subproblems, where each of these subproblems consists in
identifying the regulators of one of the genes of the network. This idea has also been
exploited in other methods, such as MRNET (Meyer et al., 2007), the Graphical Lasso
(Meinshausen and Bühlmann, 2006), or the meta-analysis developed by Vignes et
al. (2011).

5.2.1 Network Inference as a Feature Selection Problem

To infer GRNs from systems genetics data, the two procedures that we propose make
the assumption that the expression of each gene j in a given individual is a function
of the expression and genotype values of the other genes of the network in the same
individual (plus some random noise). The first procedure, called GENIE3-SG-joint,
learns a single predictive model from both expression and genetic data, while the
second procedure, called GENIE3-SG-sep, learns two separate predictive models,
one based on the genetic markers and the other based on the expression data. Both
methods then compute, for each gene i ∈= j, two scores we

i,j and wm
i,j, measuring,

respectively, the importances of the expression and of the marker of gene i when
predicting the expression of gene j. Depending on the method, the computation of
we

i,j and wm
i,j is different. These two scores are then aggregated to obtain a single

weight wi,j for the regulatory link directed from gene i to gene j.
We first describe the procedures for training the predictive models and computing

the importance scores. We then discuss aggregation techniques, which are common
to both approaches, to obtain the final weights.

5.2.1.1 GENIE3-SG-Joint

The GENIE3-SG-joint procedure assumes that a unique model fj explains the expres-
sion of a gene j in a given individual, knowing the expression levels and the genotype
values of the different genes of the network:

ej
k = fj(e

−j
k , mk) + λk,≤k, (5.3)

where λk is a random noise and e−j
k is the vector containing the expression levels of

all the genes except gene j in the kth individual:

e−j
k = (e1

k, . . . , ej−1
k , ej+1

k , . . . , ep
k)

≥. (5.4)

We further make the assumption that the function fj only exploits the expression

levels in e−j
k and/or the genotype values in mk of the genes that are direct regulators

of gene j, i.e., genes that are directly connected to gene j in the targeted network.
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Notice that mk contains the genotype value of gene j. Indeed, it often happens that a
genetic marker contributes to the expression of the gene in which it is located (cis-
acting polymorphism). Including the marker mj of gene j in the input variables thus
avoids to wrongly attribute to another regulator the part of the expression of gene j
that is actually explained by mj.

Recovering the regulatory links pointing to gene j thus amounts to finding those
genes whose expression and/or genetic marker are predictive of the expression of
the target gene. In machine learning terminology, this can be considered as a feature
selection problem (in regression) for which many solutions exist (Guyon and Elisseeff
2003; Saeys et al. 2007). We assume here the use of a feature ranking technique that,
instead of directly returning a feature subset, yields a ranking of the features from
the most relevant to the least relevant for predicting the output.

The GENIE3-SG-joint procedure is illustrated in Fig. 5.1 and works as follows:

• For j = 1 to p:

– Generate the learning sample of input–output pairs for gene j:

LSj = {((e−j
k , mk), ej

k), k = 1, . . . , N}. (5.5)

– Use a feature ranking technique on LSj to compute confidence levels we
i,j(i ∈= j)

and wm
i,j, i = 1, . . . , p, respectively, for the expression and the genetic marker

of input gene i.
– Aggregate we

i,j and wm
i,j to get a weight wi,j for each gene i ∈= j (see Sect. 5.2.1.3).

• Use wi,j as weight for the regulatory link i → j and get a ranking of all links.

5.2.1.2 GENIE3-SG-Sep

In the second proposed procedure, GENIE3-SG-sep, we assume that two different
models f e

j and f m
j can both explain the expression of a gene j in a given individual,

either from the expression levels of the other genes, or from the genotype values:

{
ej

k = f e
j (e−j

k ) + λk,≤k,

ej
k = f m

j (mk) + λ∞
k,≤k.

(5.6)

The functions f e
j and f m

j are therefore, respectively, learned from two different
learning samples. The method is illustrated in Fig. 5.2 and works as follows:

• For j = 1 to p:

– Generate two learning samples of input–output pairs for gene j:

LSj
e = {(e−j

k , ej
k), k = 1, . . . , N},

LSj
m = {(mk, ej

k), k = 1, . . . , N}. (5.7)
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Fig. 5.1 GENIE3-SG-joint
procedure. For each gene
j = 1, . . . , p, a learning
sample LSj is generated with
expression levels of gene j as
output values and expression
levels and genotypes values
of all the other genes as input
values. A function fj is learned
from LSj and confidence levels
we

i,j and wm
i,j are computed for

the expression and genotype
value of each input gene i
respectively. These levels are
then aggregated for each input
gene and a ranking of all
regulatory links is obtained
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Fig. 5.2 GENIE3-SG-sep
procedure. For each gene
j = 1, . . . , p, two learning
samples LSj

e and LSj
m are

generated. In both learning
samples, the output values
are the expression levels of
gene j. In LSj

e the input values
are the expression levels of
all the other genes, while in
LSj

m the input values are the
genotypes values. Functions
f e
j and f m

j are, respectively,

learned from LSj
e and LSj

m,
and confidence levels we

i,j
and wm

i,j are computed for
the expression and genotype
value of each input gene i
respectively. These levels are
then aggregated for each input
gene and a ranking of all
regulatory links is obtained
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– Use a feature ranking technique on LSj
e to compute the confidence level we

i,j of
the expression of input gene i,≤i ∈= j.

– Use a feature ranking technique on LSj
m to compute the confidence level wm

i,j of
the genetic marker of input gene i,≤i.

– Aggregate we
i,j and wm

i,j to get a weight wi,j for each gene i ∈= j (see Sect. 5.2.1.3).

• Use wi,j as weight for the regulatory link i → j and get a ranking of all links.

5.2.1.3 Weight Aggregation

In both procedures GENIE3-SG-joint and GENIE3-SG-sep, we obtain for each input
gene i, two separate importance scores we

i,j and wm
i,j, corresponding, respectively, to

the expression and the marker of gene i. We propose two procedures to aggregate
these two scores and hence obtain a ranking of regulatory interactions. In the first
procedure, the final weight of the edge directed from gene i to gene j is given by the
sum of the importance scores:

wi,j = we
i,j + wm

i,j. (5.8)

The edge will thus have a high weight if either the marker or the expression of gene i
is predictive of the expression of gene j. In the second aggregation procedure, we
consider the product of the importance scores:

wi,j = we
i,j × wm

i,j. (5.9)

The edge directed from gene i to gene j will thus have a high weight if the marker
and the expression of gene i are both predictive of the expression of gene j.

5.2.2 Feature Ranking with Tree-Based Methods

As in the original GENIE3 method (Huynh-Thu et al., 2010), GENIE3-SG-joint
and GENIE3-SG-sep exploit the embedded feature ranking mechanism of tree-based
ensemble methods to compute the weights we

i,j and wm
i,j. These methods are described

below.

5.2.2.1 Tree-Based Ensemble Methods

Among supervised learning methods, which allow to learn a predictive model or
function fj from observed data, one can find methods based on regression trees
(Breiman et al., 1984). The basic idea of regression trees is to recursively split the
learning sample with binary tests each based on one input variable, trying to reduce
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as much as possible the variance of the output variable in the resulting subsets of
samples. Candidate splits for numerical variables typically compare the input variable
values with a threshold that is determined during the tree growing.

Single trees are usually much improved by ensemble methods, which average the
predictions of several trees, such as Bagging (Breiman, 1996) or Random Forests
(Breiman, 2001). In a Bagging ensemble, each tree is built from a bootstrap sample
of the original learning sample. The Random Forests method adds an extra level of
randomization compared to the Bagging; at each test node, K attributes are selected
at random among all candidate attributes before determining the best split.

5.2.2.2 Variable Importance Measure

One of the most interesting characteristics of tree-based methods is the possibility to
compute from a tree a variable importance measure that allows us to rank the input
features according to their relevance for predicting the output. In our experiments,
we consider a measure that computes, at each test node N , the total reduction of the
variance of the output variable due to the split, defined by Breiman et al. (1984):

I(N ) = #S.Var(S) − #St .Var(St) − #Sf .Var(Sf ), (5.10)

where S denotes the set of samples that reach node N , St (resp. Sf ) denotes its subset
for which the test is true (resp. false), Var(.) is the variance of the output variable in a
subset, and # denotes the cardinality of a set of samples. For a single tree, the overall
importance w of one variable is then computed by summing the I values of all tree
nodes where this variable is used to split. Those attributes that are not selected at all
obtain a zero value of their importance, and those that are selected close to the root
node of the tree typically obtain high scores. Attribute importance measures can be
easily extended to ensembles, simply by averaging importance scores over all trees in
the ensemble. The resulting importance measure is then even more reliable because
of the variance reduction effect resulting from this averaging (Hastie et al., 2009).

5.2.2.3 Regulatory Link Ranking

In the GENIE3-SG-joint and GENIE3-SG-sep procedures, the different tree-based
models that are generated yield importance scores we

i,j and wm
i,j for each pair of genes

(i, j), computed as sums of variance reductions in the form (5.10). The sum of the
importance scores of all input features for a tree is usually very close to the initial
total variance of the output. In the case of the GENIE3-SG-joint procedure, we thus
have for each target gene j:

p∑

i ∈=j

we
i,j +

p∑

i=1

wm
i,j ∝ N .Varj(LS∞j), (5.11)



72 V. A. Huynh-Thu et al.

where LS∞j is the learning sample from which the tree was built (i.e., a bootstrap
sample of LSj for the Random Forests and Bagging methods) and Varj(LS∞j) is the
variance of the target gene j estimated in the corresponding learning sample.

Similarly, for the GENIE3-SG-sep procedure, we have:

{∑
i ∈=j we

i,j ∝ N .Varj(LS∞j
e ),

∑
i wm

i,j ∝ N .Varj(LS∞j
m),

(5.12)

where LS∞j
e and LS∞j

m are the learning samples generated from the expression and
genotype data respectively.

As a consequence, if we trivially use the scores we
i,j and wm

i,j to order the regulatory
links, this is likely to introduce a positive bias for regulatory links directed towards
the most highly variable genes. To avoid this bias, we first normalize the expression of
the target gene j so that it has a unit variance in the training set (LSj for GENIE3-SG-
joint, LSj

e and LSj
m for GENIE3-SG-sep), before applying the tree-based ensemble

method:

ej ← ej

γ j
, ≤j, (5.13)

where ej ∈ R
N is the vector of expression levels of gene j in all N experiments

and γ j denotes its standard deviation. This normalization indeed implies that the
different importance scores inferred from different models predicting the different
gene expressions are comparable.

5.2.2.4 Computational Complexity

The computational complexity of the Random Forests and Bagging algorithms is
O(TKN log N), where T is the number of trees, N is the dataset size, and K is the
number of randomly selected variables at each node of a tree (in the case of Bagging,
K is equal to the number of input variables). The complexities of GENIE3-SG-joint
and GENIE3-SG-sep are thus of the order of O(pTKN log N) since these methods
require to build, respectively, one and two ensemble(s) of trees for each of the p genes.
The complexities are thus log linear with respect to the number of measurements
and, at worst, quadratic with respect to the number of genes (when K = 2p − 1 for
GENIE3-SG-joint and K = p for GENIE3-SG-sep).

To give an idea of the computing times, with our MATLAB®1 implementations
of the methods, GENIE3-SG-sep and GENIE3-SG-joint take, respectively, about 1
and 3 h to infer a network of 1,000 genes from 300 individuals, when K is fixed to
the square root of the number of input variables and 1,000 trees are grown in each
ensemble. In the worst-case scenario (5,000 genes, 900 individuals, and K equal
to the number of input variables), GENIE3-SG-sep and GENIE3-SG-joint would,

1 http://www.mathworks.com/.

http://www.mathworks.com/
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respectively, take 4 months and more than a year to infer the network on a single
computer. To reduce computing times, the two algorithms can be trivially parallelized
on a computing grid (with one separate computing process for each gene and/or tree).

5.3 Results

After a presentation of the performance metrics, this section presents the results that
we obtained when we applied the proposed procedures to two series of synthetic
datasets: the StatSeq datasets (Sect. 5.3.2) and the datasets of the DREAM5 Systems
Genetics challenge (Sect. 5.3.3).

5.3.1 Performance Metrics

Each of our algorithms provides a ranking of the regulatory links from the most
confident to the less confident. To evaluate such a ranking independently of the choice
of a specific threshold, we used the precision–recall (PR) curve and the area under
this curve (AUPR). The PR curve plots, for different thresholds on the weights of the
links, the proportion of true positives among all predictions (precision) versus the
percentage of true positives among those to be retrieved (recall). A perfect ranking,
i.e., a ranking where all the positives are located at the top of the list, yields an AUPR
equal to one, while a random ranking results in an AUPR close to the proportion
of positives (i.e., close to zero since the proportion of true links among all possible
links in a network is usually very low).

5.3.2 Experiments on the StatSeq Datasets

5.3.2.1 Description of the Data

The StatSeq compendium2 comprises 72 datasets generated from nine different net-
works. These networks can be divided into three groups of networks of 100, 1,000,
and 5,000 genes respectively. For each individual in a dataset, the gene expression
levels are provided as well as the genotype value of one genetic marker for each
gene. For each of the nine networks, datasets have been generated under eight dif-
ferent setting configurations, by combining different population sizes (300 or 900
individuals), distances between the genetic markers (large or small), and heritability
(large or small), as shown in Table 5.1. All networks and datasets were generated
using SysGenSIM3 1.0.2 (Pinna et al., 2011). The reader can refer to Chap. 1 for
details about the StatSeq compendium.

2 http://sysgensim.sourceforge.net/datasets.html.
3 http://sysgensim.sourceforge.net/.

http://dx.doi.org/10.1007/978-3-642-45161-4_1
http://sysgensim.sourceforge.net/datasets.html
http://sysgensim.sourceforge.net/
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Table 5.1 Setting configurations for data simulation

Configuration Marker distanceθ Heritability Population size

1 ∼N (5, 1) High 300
2 ∼N (5, 1) High 900
3 ∼N (5, 1) Low 300
4 ∼N (5, 1) Low 900
5 ∼N (1, 0.1) High 300
6 ∼N (1, 0.1) High 900
7 ∼N (1, 0.1) Low 300
8 ∼N (1, 0.1) Low 900
θMeans and standard deviations are expressed in centimorgans

5.3.2.2 Comparison of Tree-Based Methods

We applied the GENIE3-SG-joint and GENIE3-SG-sep methods on the StatSeq
datasets, using the Random Forests algorithm with the main parameter K fixed to
the square root of the number of input variables, as well as the Bagging procedure
(equivalent to Random Forests with K fixed to the number of input variables). Ensem-
bles of 1,000 trees were grown in each case, except when we used Bagging to infer
networks of 5,000 genes. In that case, only 100 trees were grown in order to reduce
the computational burden.4

Figure 5.3 shows the AUPR scores obtained with the different combinations. Bag-
ging typically yields better performances than Random Forests, whatever the com-
bination. Lower scores are obtained only with GENIE3-SG-joint (using the product
of the weights we

i,j and wm
i,j) for some networks. Therefore, all results shown in the

remainder of this chapter will be those obtained with the Bagging procedure.

5.3.2.3 Performance of the GENIE3 Methods

GENIE3-SG-joint versus GENIE3-SG-sep

Figure 5.4 shows the performances of the different GENIE3 procedures. Given an
aggregation procedure (either sum or product of the importance scores), better per-
formances are obtained when two separate models are, respectively, learned from
the two types of data (GENIE3-SG-sep), instead of one single model (GENIE3-SG-
joint). The worse performance of GENIE3-SG-joint can be potentially explained by
the fact that when the inputs comprise continuous and discrete variables (with a low
number of categories), the Bagging method has a positive bias for the continuous
variables when selecting a variable at a test node (Strobl et al., 2007). Indeed, since
a continuous variable provides more possible cut-points than a variable with a low
number of categories, it has more chance to provide the highest variance reduction

4 Note that, for the smaller networks, we do not observe significant differences in performance
when reducing the number of trees from 1,000 to 100.
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Fig. 5.3 Comparison of tree-based methods. The Bagging method typically yields better perfor-
mances than Random Forests. The AUPR values of each method were averaged over the eight
datasets corresponding to each of the nine networks

Fig. 5.4 Performances of inference methods. GENIE3-SG-sep yields better performances than
GENIE3-SG-joint and higher AUPR scores are obtained by taking the product of the weights we

i,j
and wm

i,j rather than their sum. The AUPR scores of each method were averaged over the 24 datasets
related to each network size

on the local node, and hence to be selected for the test, even if it is actually less or
equally informative globally. Therefore, in GENIE3-SG-joint, which learns a joint
model from the gene expression values (continuous variables) and from the geno-
type values (discrete variables), the importance wm

i,j of the marker of each gene i is
systematically lower than the importance we

i,j of its expression, as shown in Fig. 5.5.
Moreover, the ranking of interactions obtained from the importances wm

i,j is signifi-
cantly less accurate with GENIE3-SG-joint compared to GENIE3-SG-sep, while the
rankings obtained from we

i,j are equally good (Fig. 5.6).
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Fig. 5.5 Importance of expressions and markers. This figure shows, for each network, the average
weight we

i,j obtained from the expression profiles, as well as the average weight wm
i,j obtained from

the markers, both computed over the edges i → j that are part of the gold standard network. The
weights we

i,j and wm
i,j are those obtained on the datasets simulated with the setting configuration 1

(large marker distance, high heritability, and small population size). Despite the high heritability,
the tree-based importance values of the genetic markers, as computed in GENIE3-SG-joint, are
typically much lower than those obtained from the expression data

Fig. 5.6 AUPR scores of expressions and markers. This figure shows the AUPR scores obtained
when the weight of each edge i → j is the importance we

i,j obtained from the expression data (left) and
the importance wm

i,j obtained from the genetic markers (right). The ranking of interactions obtained
from the markers is significantly less accurate with GENIE3-SG-joint, compared to GENIE3-SG-
sep. The AUPR values of each method were averaged over the eight datasets corresponding to each
of the nine networks

Aggregation procedures

For both procedures GENIE3-SG-joint and GENIE3-SG-sep, higher scores are
obtained when the importance scores we

i,j and wm
i,j are aggregated by taking their

product rather than their sum (Fig. 5.4), i.e., when we consider that both the genetic
marker and the expression of a regulating gene are important for the prediction of
the expression of a target gene. This conservative aggregation procedure allows to
give a lower weight to a lot of false edges, since many of them can still have a high
value of we

i,j or a high value of wm
i,j without having a regulatory effect (Fig. 5.7). By

contrast, high values for both we
i,j and wm

i,j are obtained only for true edges.
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Fig. 5.7 Scatter plot of importances of expressions and markers returned by GENIE3-SG-sep.
The red circles correspond to the true edges of the gold standard network, while the black crosses
correspond to the false edges (i.e., edges that are not part of the gold standard). In addition, each plot
shows the contour lines of the sum and product of we

i,j and wm
i,j (left and right figures respectively).

The values of the product are shown in a logarithmic scale. These results are those obtained on the
first network of 100 genes (Network 100-1), under configuration 1 (high heritability, large marker
distance, and small population size). Taking the product of the importance scores allows to give a
lower weight to a lot of false edges

5.3.2.4 Influence of Population Size, Heritability, and Marker Distance

Figure 5.8 shows the AUPR scores obtained by the different GENIE3 procedures on
the networks of 1,000 genes, for each setting configuration of the simulation runs.
As expected, the performance of each method improves when the number of indi-
viduals for which data are available increases. The scores also indicate that genetic
markers are much more informative than expression data for the inference of the net-
works when the median heritability as well as the distance between the markers are
both high (configurations 1 and 2). In these configurations, only exploiting genetic
data (“GENIE3 on markers”) results in significantly more accurate predictions than
learning from expression data alone (“GENIE3 on expression”). This result is not
surprising since a higher heritability means that a higher proportion of the vari-
ance of the expression data is actually explained by the genetic markers. Moreover,
a higher distance between the markers implies an increased rate of chromosomal
crossovers between the different markers, and hence more meaningful multifactorial
perturbations (i.e., genetic variations) between the individuals, helping to recover the
networks in a more accurate way. By contrast, when the heritability and the marker
distance are both small (configurations 7 and 8), expression data are more informative
than the markers. In the remaining configurations (configurations 3–6), the perfor-
mance obtained from gene expression is not very different from the one obtained
from genetic markers. Nevertheless, it seems that expression and genetic data contain
different and complementary information about the underlying networks, since in
all configurations the predictions can be highly improved when both types of data
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Fig. 5.8 Performances of inference methods for each setting configuration. Predictions can be
highly improved when expression and genetic data are integrated, the highest AUPR scores being
obtained by GENIE3-SG-sep, using the product of the weights we

i,j and wm
i,j . GENIE3 on expression:

weight of edge i → j is the importance we
i,j of the expression of gene i as computed in GENIE3-

SG-sep. GENIE3 on markers: weight of edge i → j is the importance wm
i,j of the genetic marker of

gene i as computed in GENIE3-SG-sep. Her.: heritability. The AUPR values of each method were
averaged, for each configuration, over the three datasets related to the networks of 1,000 genes

are integrated, the best results being achieved by far by GENIE3-SG-sep using the
product of the weights we

i,j and wm
i,j.

The PR curves related to the first network of 1,000 genes (Network 1000-1) are
plotted in Fig. 5.9, for the configuration 1 (high heritability, large marker distance,
and small population size). As an example, the 500 first regulatory links obtained with
GENIE3-SG-sep (product) yield a precision of 77 % and a recall of 12 %. Increasing
the number of considered edges to 1,000 allows us to recover more true edges (recall
equal to 18 %), with however, a decrease in precision (57 %). Limiting the network
to the first 200 links allows to keep a precision higher than 90 % (recall equal to
6 %). On the other hand, more than 800,000 links have to be considered to obtain a
recall higher than 90 % (precision equal to 0.4 %), which is of course of no practical
interest.

5.3.2.5 Direction of the Edges

One interesting feature of the GENIE3 methods is their potential ability to predict
directed networks. To assess the ability of each method to predict link directions, we
computed the error rate on the direction of the edges, i.e., the proportion of edges
i → j in the gold standard network such that there is no edge j → i and for which the
method wrongly predicts wi,j < wj,i. The error rates are shown in Fig. 5.10. Com-
pared to exploiting expression data alone, using information about genetic markers
greatly helps for the prediction of the direction of the edges. However, there is no
significant difference between the different methods exploiting the markers. As an
example, the GENIE3-SG-sep (product) method yields an average error rate of 27 %.
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Fig. 5.9 Precision–recall curves. These PR curves were obtained for the first network of 1,000
genes (Network 1000-1), under configuration 1 (high heritability, large marker distance, and small
population size). As an example, the 500 first regulatory links obtained with GENIE3-SG-sep
(product) yield a precision of 77 % and a recall of 12 %. GENIE3 on expression: weight of edge
i → j is the importance we

i,j of the expression of gene i as computed in GENIE3-SG-sep. GENIE3
on markers: weight of edge i → j is the importance wm

i,j of the genetic marker of gene i as computed
in GENIE3-SG-sep

Fig. 5.10 Error rates on edge directionality. Using information about genetic markers greatly helps
for the prediction of the direction of the edges. GENIE3 on expression: weight of edge i → j is the
importance we

i,j of the expression of gene i as computed in GENIE3-SG-sep. GENIE3 on markers:
weight of edge i → j is the importance wm

i,j of the genetic marker of gene i as computed in GENIE3-
SG-sep. The error rates of each method were averaged over the eight setting configurations of
Table 5.1 corresponding to each of the nine networks

5.3.2.6 Interactions Types

We adopted the same evaluation protocol as in Vignes et al. (2011), and analyzed the
performance of the GENIE3-SG-sep (product) method, as a function of the type of
interactions. We labeled a gene “cis” if the corresponding genetic marker is detected
in its promoter region, and “trans” if the marker is in its coding region. The gene
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Fig. 5.11 Frequency of the different interaction types. For each method, we selected the first 500
regulatory links of the predicted ranking and for each type of interaction, we computed its frequency
among the true interactions of the gold standard that are retrieved. Whatever the method, the top
of the ranking typically contains links directed toward trans genes. The predictions were obtained
from the datasets simulated under configuration 2 (high heritability, large marker distance, and large
population size), and the interactions frequencies were averaged over the nine networks

classification was obtained by performing an analysis of variance, as described in
Vignes et al. (2011). Genes with a corrected p-value lower than 0.001 were identified
as cis, and those with an uncorrected p-value higher than 0.1 were identified as trans.
Using the datasets simulated under configuration 2 (high heritability, large marker
distance, and large population size), 23 % of the genes were predicted as cis on
average, which is close to the actual proportion of 25 % announced in the description
of the data, and 63 % of the genes were predicted as trans. The classification of genes
was used to define four types of interactions: cis → cis, cis → trans, trans → cis,
and trans → trans. For example, an interaction of type cis → trans is a regulatory
link directed from a cis gene to trans gene. Figure 5.11 shows that the top-ranked
predicted interactions typically contain links that are directed toward trans genes,
whatever the method used. As explained in Vignes et al. (2011), these interactions are
predicted more reliably since the target gene does not undergo a cis-effect and hence
the variation of its expression is only due to the regulating gene (plus the noise).

Cis → trans interactions are more frequently predicted than trans → trans inter-
actions by all methods except GENIE3 on markers and GENIE3-SG-joint with the
product. This difference can be explained. In trans → trans interactions, the impact of
the marker of the regulating gene on the expression of the target gene is indeed more
direct than in cis → trans interactions, where the marker only affects the expression
of the target gene through the expression of the regulating gene. This leads to higher
scores for trans → trans interactions when GENIE3 is applied on markers only.
In GENIE3-SG-joint, the scores of markers and expressions are more balanced for
trans → trans interactions than for cis → trans, as in trans → trans interactions both
the marker and the expression of the regulating gene are directly and independently
affecting the expression of the target gene. This eventually leads to higher scores for
trans → trans interactions when taking the product of marker and expression scores.



5 Gene Regulatory Network Inference from Systems Genetics Data 81

5.3.3 The DREAM5 Systems Genetics Challenge

5.3.3.1 Description of the Challenge

The Dialogue for Reverse Engineering Assessments and Methods (DREAM) ini-
tiative organizes an annual reverse engineering competition that comprises several
challenges5 (Marbach 2012; Prill et al. 2010; Stolovitzky et al. 2009, 2007). We
report here our results on the DREAM5 Systems Genetics challenge.6 This chal-
lenge concerned the inference of in silico regulatory networks from systems genetics
data. It was divided into three sub-challenges. The goal of each sub-challenge was to
infer five networks from populations of 100, 300, and 999 individuals respectively.
Each of the 15 networks contained 1,000 genes and were of increasing connectivity
within each sub-challenge. For each individual, expression levels of all the genes
were provided, as well as the genotype value of one genetic marker for each gene.
All data of the challenge were generated using a preliminary version of SysGenSIM.
However, the information about the configuration used to run the simulations was
not provided to the challenge participants.

5.3.3.2 Performance of the GENIE3 Methods

Figure 5.12 shows the performances of the different methods. We observe results
similar to those obtained on the StatSeq datasets: the performance increases with
the number of individuals, better performances are obtained with GENIE3-SG-sep
compared to GENIE3-SG-joint, and the product of importance scores we

i,j and wm
i,j

also yields higher AUPR scores than the sum.

5.3.3.3 Comparison with the DREAM5 Best Performer

Figure 5.13 compares, in terms of AUPR scores, GENIE3-SG-sep to the procedure
that was used by the official best performing team of the DREAM5 Systems Genet-
ics challenge. This procedure is a meta-analysis of different methods, respectively,
based on Dantzig regression (Candès and Tao, 2007), LASSO regression (Tibshirani,
1996), and static Bayesian network learning (Friedman et al., 2000). The procedure
is described in detail in Vignes et al. (2011). The AUPR scores indicate that our
procedure significantly outperforms the meta-analysis for each of the networks.

5 http://www.the-dream-project.org/.
6 http://wiki.c2b2.columbia.edu/dream/index.php/D5c3.

http://www.the-dream-project.org/
http://wiki.c2b2.columbia.edu/dream/index.php/D5c3
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Fig. 5.12 AUPR scores for the DREAM5 Systems Genetics challenge. As for the StatSeq networks,
the best predictions are obtained with GENIE3-SG-sep, using the product of the weights we

i,j and
wm

i,j . GENIE3 on expression: weight of edge i → j is the importance we
i,j of the expression of gene i

as computed in GENIE3-SG-sep. GENIE3 on markers: weight of edge i → j is the importance wm
i,j

of the genetic marker of gene i as computed in GENIE3-SG-sep. The AUPR values of each method
were averaged over the five networks of each sub-challenge

Fig. 5.13 Comparison with the best performer and influence of network density. The GENIE3-
gen-sep (product) method outperforms the procedure of the official best performer of the challenge.
The performance of both methods, however, decreases when the number of edges in the network
increases

5.3.3.4 Influence of Network Density

Besides the study of the effect of the dataset size (number of individuals) on the
predictions returned by inference methods, the DREAM5 Systems Genetics chal-
lenge was also designed to study the effect of the connectivity of a network on the
predictions. Figure 5.13 shows the effect of the network density on the predictions.
Clearly, in each sub-challenge, the ability of the methods to recover a network tends to
decrease as the number of edges in the network increases and regulatory interactions
become more complex.
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5.4 Discussion

In this chapter, we proposed two procedures, GENIE3-SG-joint and GENIE3-SG-
sep, that infer (GRNs) from systems genetics data. Both procedures decompose
the problem of inferring a regulatory network of p genes into p different feature
selection problems, the goal of each being to retrieve the regulators of one of the
genes of the network. Each feature selection problem is then solved by applying a
tree-based ensemble method in order to obtain a model predicting the expression of
one gene j. In the GENIE3-SG-joint procedure, a single predictive model is learned
from expression and genetic data, while in GENIE3-SG-sep, two separate predictive
models are learned, one based on the genetic markers and the other based on the
expression data. Both methods then compute, for each gene i ∈= j, two scores we

i,j and
wm

i,j, measuring, respectively, the importances of the expression and of the marker of
gene i when predicting the expression of gene j. These two scores are then aggregated,
by computing either their sum or their product, to obtain a single weight wi,j for the
regulatory link directed from gene i to gene j.

The artificial datasets of the StatSeq benchmark were simulated using different
setting configurations, i.e., by combining different values of the number of individu-
als, distance between the markers, and heritability, allowing us to check under which
configurations our different methods perform best. Results showed that depending on
the marker distance and heritability, genetic markers bring more or less information
about the regulatory networks than expression data, and combining the two types of
data can be highly helpful for their recovering. GENIE3-SG-sep, using the product
of the weight we

i,j and wm
i,j, yields the best performances, whatever the configuration.

This method also yields the best performances when recovering the networks of the
DREAM5 Systems Genetics challenge, and actually outperforms the official best
performing algorithm of the challenge.

The StatSeq datasets and the DREAM5 challenge allowed us to make a first
evaluation of the performances of our different procedures on systems genetics data.
However, these benchmarks are solely based on networks and data that are artificial.
As future works, we thus would like to apply our methods on real datasets. Datasets
related to various organisms are publicly available, such as the S. cerevisiae dataset
of Brem and Kruglyak (2005). However, in our different procedures, we assume that
each gene whose expression is measured in N individuals is also analyzed for one
single genetic marker in each of these N individuals. Unfortunately, this situation is
usually not encountered in real datasets. We will thus have to modify our methods
in order to deal with missing data, and also to establish a procedure to aggregate the
importance scores of different genetic markers related to the same gene.

Finally, although we exploited tree-based ensemble methods, the frameworks
of GENIE3-SG-joint and GENIE3-SG-sep are general, and other feature ranking
techniques could have been used as well. In the future, we thus plan to apply and
compare different ranking techniques, and check which of them permit the best
exploitation of expression and genetic data.
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Chapter 6
Extending Partially Known Networks

Pegah Tavakkolkhah and Robert Küffner

Abstract Besides experimental techniques, computational inference approaches
have contributed to the reconstruction of gene regulatory networks in model organ-
isms. Particularly successful are supervised approaches that take the known regula-
tory interactions and gene expression data into account. However, they have not yet
been applied to individuals genotyped by systems genetics data, where genetic poly-
morphisms are the major source of variation in gene expression profiles. We apply a
supervised inference framework to expression datasets, genotype information, and
the known gene regulatory interactions that are generated in a standardized setup
by the SysGenSim software. We confirmed in this setup that supervised approaches
exploiting the known interactions perform better than pure expression-based methods
as well as methods exploiting expression data and genotype information. The perfor-
mance of supervised methods was robust with respect to parameterization and data
pre-processing. Furthermore, whether or not the genotype information was explicitly
used influenced the performance of supervised approaches only little. We also ana-
lyzed differences between real and artificial data and setups to assess the chances of a
successful inference in real systems. Due to reasons discussed in this chapter, several
extensions of supervised approaches that considerably improve performance on real
data were not effective in the SysGenSim case. Our thorough comparison between
real and artificial setups suggested that the application of supervised approaches to
real systems might be more robust and straightforward in comparison to current
unsupervised approaches. In particular, as real genotypes likely are more complex
and cause more versatile responses, the finding that supervised approaches are not
dependent on the explicit representation of genotype information might prove of
advantage.
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6.1 Introduction

Inference of gene regulatory networks from high-throughput data provides new
insights into the regulatory mechanisms that control the expression of genes in cells.
Gene regulatory networks control the response of the cell to local and environmental
input signals by regulating the expression of genes. Considering that genes are not
necessarily regulated by single transcription factors (TFs), but different combina-
tions of regulators might be involved, the theoretical possible number of combinato-
rial regulations might impede the full experimental determination of all interactions.
In addition, TFs are activated under specific experimental conditions that play an
important role in detecting potential interactions. As a result, employing compu-
tational approaches can complement our knowledge of regulatory networks and a
range of different kinds of data and methods have been devised and employed to
address the regulatory network inference problem.

The inference process is based on analysis of the system’s behavior to pertur-
bations (De Smet and Marchal 2010). Environmental perturbations, for example,
manipulate experimental conditions such as heat shock, or chemical stress. The
transcriptome data has been the main source for analyzing such perturbations or pre-
dicting gene regulatory interactions, mainly because measurement of transcription
(mRNA level) is more feasible compared to proteomic and metabolic datasets. It
has to be taken into account, though, that alternative mRNA splicing (increasing the
number of possible proteins compared to the number of protein-encoding genes) and
post-translational mechanisms may increase the diversity of the mRNA response,
and that many of these mechanisms are not immediately observable on the level of
mRNA profiling. For instance, proteins enter complexes with other proteins or vari-
ous other molecules including RNAs molecules, which are required for their specific
functions. Thus, describing the behavior of the network only from the perspective of
the mRNA expression level ignores all other mechanisms involved in molecular cell
regulation.

Other types of experimental datasets informative for the reconstruction of networks
can be obtained on an organism-wide scale that include Chromatin Immuno-
Precipitation (ChIP, e.g., as ChIP-on-chip, i.e., ChIP combined with microarray
technology or ChIP-seq, i.e., ChIP combined with sequencing; Zheng et al. 2010;
Abdulrehman et al. 2011), or protein–protein interactions. For example, ChIP identi-
fies the binding site of a particular TF (TF binding sites, TFBS) on the entire genome,
and particularly at the promoter region of putative target genes (TG). TFBS reveals
potential TF:TG regulatory effects, since TF binding might lead to transcription of
the gene.

Genetic perturbations, on the other hand, involve techniques such as gene deletion
(knock-out, KO; Hu et al. 2007) or overexpression (OE; Chua et al. 2006), frequently
combined with mRNA profiling experiments, to detect regulatory dependencies.
Such perturbations are of particular interest as given regulators can be directly tar-
geted to identify their downstream effects and perturbations therefore can reveal
regulatory dependencies between perturbed gene and its targets. The impact of
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perturbations can be profiled via microarrays or next generation sequencing tech-
niques to identify repression or induction of expression levels (according to the type
of the interaction) of genes regulated by the corresponding TF. However, it should
be noted that the change in behavior is not only limited to direct targets of the TF
in question, but also pathways indirectly regulated by the perturbed TF might also
show distinct signals. Although informative, the cost of (single- or multi-factorial)
KO and OE experiments can become prohibitive.

Genetic polymorphisms are particular examples of multifactorial in vivo pertur-
bation (Jansen et al. 2001). A polymorphism is due to the crossing of genetically
diverse parent strains and further crossings of their children for several generations,
thus effectively randomizing the distribution of alleles. The individuals of the final
population, which is known as recombinant inbred line (RIL) segregating popula-
tion, comprise a wide diversity of genetic information in respect to parent sequences.
The variations between RILs represent random multifactorial perturbations that can
further affect the cell phenotypes. The study of these variations between RILs and
their direct/indirect effect on cell traits is known as “genetical genomics” or “systems
genetics.” Analysis of genetic markers (in the genotype data used here each gene is
characterized by just two states) and perturbed phenotypes (here, expression data) for
each individual are two common steps to identify the potential causal dependencies
between genetic variations and cell behavior (Loh et al. 2011; Vignes et al. 2011).
While such polymorphisms are more cost and time effective, from an experimen-
tal point of view, than targeted genetic perturbations as they are already present in
population of interest or easy to come by, they are more difficult to interpret as they
exhibit a multifactorial response that is difficult to connect to a single cause.

Nevertheless, as genetic polymorphism is inherent in most expression profiles, it
has, explicitly or implicitly, been exploited for network inference. The conceptually
simplest types of approaches (although they can be demanding algorithmically and/or
computationally) are approaches that rely on expression data alone to infer networks
(De Smet and Marchal 2010). There are several strategies to design such expression-
based inference approaches. Module inference methods such as Stochastic LeMoNe
(learning module networks) rely on clustering genes according to their response to
specific conditions, i.e., genes with similar behaviors tend to be clustered in the same
sets. This approach defines regulatory programs that explain the behavior of a set of
genes and as a result the possible number of interactions is drastically reduced. On the
other hand, direct inference methods such as CLR (context likelihood of relatedness;
Faith et al. 2007) and ARACNE and ANOVA-based regressions (Margolin et al.
2006; Küffner et al. 2012) consider each gene individually.

Another inference strategy is to use part of the information that we want to predict
as input knowledge, which is known as supervised inference in machine learning ter-
minology (Bleakey et al. 2007; Mordelet and Vert 2008). Supervised methods use
part of the gold standard, in addition to other data sources, to train a model/classifier,
which can be further used to classify genes into interacting and non-interacting
classes. Using gold standard as training data is feasible, since many TF:TG interac-
tions have been curated in model organisms so far (e.g. RegulonDB for E. coli or
YeastRACT for yeast). Furthermore, it has been shown that cross-species knowledge
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transfer can suggest interactions known in one species to be present in another based
on sequence homology (Reference!!).

Inference methods can be further categorized as integrative and non-integrative
(De Smet and Marchal 2010). While non-integrative methods are only based on
using expression data (and perhaps part of the known gene regulatory interactions
as in case of supervised approaches), integrative approaches use other data sources
as well. Integrative methods aim to combine other datasets with expression data to
predict new interactions. Using other data sources is expected to not only increase
the validity of the inferred network, but also to provide a more comprehensive picture
of the network, including not only genes but also proteins and metabolites. The type
of data most commonly used in this context are TFBS (Ernst et al. 2008) represented
and employed for predicting putative TF:TG interactions in the form of positional
weight matrices (PWMs). A second source of information that has been utilized for
inference are chromatin profiles (Ernst et al. 2011).

Network inference is not limited to reconstruction of gene regulatory networks, but
other domains such as protein networks (Bleakley et al. 2007), metabolic networks
(Vert and Kanehisa 2003), or protein functions (Lanckriet et al. 2004; Mostafavi et al.
2008) are also of interest as these different types of networks are tightly interlinked
and mutually influence each other. Protein networks are used to describe interacting
proteins, while protein functions represent associations between proteins and biolog-
ical concepts such as biological processes. Protein networks and protein functions
are often employed for mutual inference as for instance the networks could be used
to predict functions of unknown proteins. Reconstruction of protein networks is chal-
lenging, not only due to the high complexity of the problem but also due to the fact
that these networks are largely unknown. Another issue is due to the vast number of
post-transcriptional modifications of proteins that might imply functional switches,
which in turn might correspondingly change the role of affected proteins in the
network. Metabolic networks are an example of protein networks, where enzymes
represent metabolic reactions that transform different chemical compounds called
metabolites. Metabolic reactions can thus be represented as bipartite graph (with
enzymes and metabolites as nodes) or as common graph where an edge is implied
for instance between two enzymes catalyzing two successive reactions. Computa-
tional approaches for the inference and simulation of networks frequently address
only a restricted sub-domain of molecular networks and their regulation (Hecker et
al. 2009).

In this work we explore the application of supervised approaches to reconstruct
gene regulatory networks from known gene regulatory interactions and information
on genotypes that were used by the simulator SysGenSim (SGS; Pinna et al. 2011)
to generate artificial expression datasets. As central component we apply and extend
the approach of SIRENE (Mordelet and Vert 2008), that has, to our knowledge, not
been applied to integrate genotypes in the form of systems genetic data. Based on
single and combined datasets in the provided SGS compendia, we derive several
processed datasets containing information on expression, interactions, genotypes,
and their combinations. We thus explore and compare the performance between the
original SIRENE approach as well as several supervised and unsupervised variants



6 Extending Partially Known Networks 91

thereof to determine the utility of genotype information. We further devise a simple
unsupervised inference approach based on Wilcoxon’s test that exploits genotype
information but neglects known gene regulatory interactions. Furthermore, we eval-
uate the effects of SGS and SIRENE parameters on prediction performance. We
consider this work as a pilot study to assess the feasibility of SIRENE and exten-
sions to enable its application on real expression and systems genetics data. Toward
this goal, we also evaluate differences between real and simulated datasets to assess
the chances for a successful application to real data.

6.2 Methods

6.2.1 Basic Inference Setting and Notations

The majority of gene regulatory network inference approaches analyze expression
data to detect regulatory relationships between regulators r ∈ R such as transcription
factors (TFs) and regulated target genes (TGs) g ∈ G. Here the set of regulators R
is equivalent to the set of genes G. Usually, all possible pairs (r, g) are examined
and scored to rank putative interactions. Three distinct types of data are generated
by the software SysGenSim to facilitate the present work: (i) a gene expression
data matrix D, (ii) a matrix of genotypes T responsible for the observed changes in
gene expression, and (iii) a label matrix consisting of the known gene regulatory
interactions that are derived from a predefined gold standard S.

Inference of interactions is based on expression data that is represented by a matrix
of |G| genes × |E | expression measurements. In the present case, different gene
expression measurements are generated by the software SysGenSim by a simulation
of the effects of genotype variants (gene mutations such as single nucleotide poly-
morphisms, SNPs). Mutations can be located in the promoter (‘cis’: influencing the
expression of the associated gene and its targets) or in the coding sequence (‘trans’:
influencing target expression only). SysGenSim generates data for |E | recombinant
inbred lines (RILs) by recombination. As SysGenSim considers a single locus for
mutations per gene that can assume two states ‘0’ and ‘1’, an individual RIL can
be specified by a vector of size |G| representing the two mutation states as Boolean
values for each gene.

Subsequently, inference results are evaluated by comparing the method-specific
confidence scores assigned to putative interactions against a gold standard of known
interactions. A gold standard is represented as a matrix S of |R| label vectors of size
|G|. For each of the regulators r ∈ R, label vectors assign ‘1’ if the transcription
factor r regulates a corresponding gene g ∈ G and ‘0’ otherwise. Method evaluation
results in a high performance if the method assigns higher scores to gold standard
interactions than to TF:TG pairs that are not regarded as interactions by the gold
standard.
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Basic performance evaluation
To evaluate the performance of inference, we ranked all predictions (r, g) by
decreasing score and computed the area under the ROC curve (AUC) and the area
under the precision recall curve (AUPR). The AUC is equal to the probability that
a predictor will rank a randomly chosen positive instance higher than a randomly
chosen negative one. AUPR measures the average of precision (the number of true
positives with a score higher than a threshold) over all thresholds. AUC and AUPR are
computed from sensitivity, specificity, and precision values. Sensitivity, also known
as recall, measures the probability that the label of a positive sample is correctly iden-
tified. Precision and specificity address similar questions but are calculated differ-
ently. Precision measures the percentage of true positives that are correctly predicted.
Specificity, on the other hand, represents the probability that a negative sample is
correctly predicted as negative.

6.2.2 Supervised Inference of Gene Regulatory Interactions

Most approaches for the inference of gene regulatory interactions exclusively rely
on the information provided by the gene expression matrix and use the gold stan-
dard matrix for evaluation only. In contrast, supervised approaches such as SIRENE
(Mordelet and Vert 2008) exploit a subset of the known gene regulatory interactions
(GRIs) as labels or prediction targets during the training phase. SIRENE is based on
supervised machine learning approaches to train so-called local models, i.e., separate
models are trained for all regulators. A model is trained for a given regulator r ∈ R
by selecting the corresponding label vector from the gold standard S. Thus, a given
local model can only be used to predict novel targets for the corresponding regulator.
If no targets are known for a given regulator, local models cannot be trained and
new targets cannot be predicted. Although this is a drawback of local models, its
impact will likely be reduced in the future as more and more TF binding experiments
are currently performed (ENCODE reference!!). Local models thereby represent the
problem of network inference as |R| binary classification tasks, each predicting tar-
gets for a single regulator r. Measurements contained in the expression data matrix
D are considered as features, i.e., training and prediction is based on |E | features to
describe each gene g. Such a binary classification task can be addressed by many
machine learning methods. Following the SIRENE approach, we apply support vec-
tor machines (SVMs). This setting is denoted as SVC(D) in Fig. 6.1a. In order to
evaluate such supervised inference approaches, a 2-times cross-validation (2-fold
CV) setup is employed. Half of the gold standard interactions are used for training
while the other half is used for evaluation. Subsequently, training and evaluation
sets are swapped so that a complete set of |G| × |R| scores are obtained. Training
and evaluation sets are generated for each regulator in a stratified way, i.e., each
set contains the same number of true targets of that regulator according to the gold
standard interactions. This 2CV procedure is repeated thrice to obtain more robust
performance estimates.
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(a)

(b)

Fig. 6.1 Comparison of inference settings. We implemented various inference settings based on
two different formulations. The supervised variant (a), support vector classification (SVC), utilizes
the gold standard S of gene regulatory interactions in contrast to the unsupervised variant (b), support
vector regression (SVR). Feature matrices (hatched) are required for training and prediction, while
label vectors (white) contain prediction targets that are extracted and thus deleted from the respective
feature matrices. Both formulations result in confidence scores (grey). Additional variants stem from
utilizing different subsets of the available data. For instance, features are defined from expression
data only (SVC (D)) or from both expression data and the gold standard (SVC(D, S)). Such a
combination (‘+’ sign) involves the concatenation of several matrices with mutually matching
rows, e.g., both of the blue matrices shown in (a) have |G| rows that correspond to genes in the
same order. Note that in the present application, the set of regulators R is equivalent to the set of
genes G. The set of measurements E corresponds to the number of recombinant inbred lines (RILs)

6.2.3 Variants of the Basic Approach

The conventional SIRENE approach relies on a matrix representing the gene
expression data and label vectors representing the gold standard network of reg-
ulatory interactions. As first level of variants, we evaluate the influence of different
SVM parameter settings and kernels. If not mentioned otherwise, we use default
parameters with linear kernels. In this study, we also considered a number of addi-
tional variants to derive additional features (i) from the genotype information or (ii)
from the gold standard.

A first variant derives additional features from the gold standard matrix S and
thus explicitly represents the known gene regulatory interactions. It is implemented
as an extension of the feature matrix that concatenates the expression data matrix D
and the gold standard matrix S. This extension is particularly straightforward as the
structures of the two matrices match, i.e., |G| × |E | in case of the expression data
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matrix and |G| × |R| in case of the topology matrix. Thereby, the local models can
access and utilize information from non-random network topologies, for instance to
exploit cases where genes are regulated by overlapping sets of regulators or where
TFs (e.g., that form a complex) regulate similar sets of target genes. This setting is
referred to SVR (D, S) as indicated by Fig. 6.1b.

For a second variant exploiting the genotype information we generated a modified
version of the expression data matrix where we replace the absolute expression
measurements D by fold changes C. As we examine each regulator r separately,
we expect that fold changes are particularly informative if two measurements are
compared to regulator r in genotype 0 versus genotype 1. We therefore select 150 and
300 such comparisons to generate a corresponding fold change matrix that replaces
the absolute expression matrix in training and prediction. Thereby, the performance
of SVC(C) can be estimated.

In addition, we derive a normalized matrix N from the expression data matrix D,
by subtracting the average and dividing by the standard deviation. Thereby, measure-
ments are transformed into z-scores. This z-score normalization is first applied to
the |E | columns (to normalize the measurement, i.e., individual, specific expression
range of measurements) and then to the |G| rows (to normalize the gene-specific
expression range) of the matrix D.

The genotype matrix provides information on the generation of the expression
data matrix and has the same |G| × |E | layout. Given that genotypes are generated
by random permutation, there should be no co-dependencies between the genotype
and network topology and a representation SVC(D, T) might thus not be immediately
informative for the inference of the network topology. We therefore created an inter-
mediate representation displayed in Fig. 6.1b by transposing the genotype (i.e. T T )
and/or expression data matrices (i.e. DT ). This representation is used to preprocess
and combine expression data and genotype before training. Instead of classification,
we employ support vector regression with linear kernels to predict expression lev-
els of target genes based on either the expression levels of the TFs, the genotype
information, or both. Please note that this formulation of the problem resembles the
formulation chosen by the Genie3 approach (Huyunh–Thu et al. 2010). Linear SVMs
or SVRs trained by optimizing SVM coefficients (α weights) can be converted into
TF specific weights by an α-weighted linear combination of the support vectors. This
yields SVR (T T ), i.e., a further matrix of a |G| × |R| layout that can be used for
training, e.g., via SVC(D, SVR(T T )).

6.2.4 Unsupervised Inference

For the purpose of method comparison we implemented some unsupervised inference
approaches that do not exploit the gold standard interactions. Similar to supervised
inference, unsupervised approaches result in matrices of a |G| × |R| layout con-
taining weights that represent the confidence that a certain gene g is regulated by
the corresponding regulator r. Generally, these confidence score matrices can serve
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two purposes. In the first case, these result matrices are evaluated against the gold
standard S in the same fashion as described above in the context of supervised infer-
ence methods. This constitutes unsupervised inference approaches. In addition, these
result matrices can be employed to extend feature matrices in supervised approaches.
This illustrates that the support vector regression approaches such as SVR(T T ) or
SVR(DT ) can extend feature matrices as described in the previous section and at the
same time constitute stand-alone unsupervised approaches.

An additional unsupervised approach is based on the assumption that the targets
of a given regulator r show significantly different responses if r has genotype 0 versus
genotype 1. For each regulator r, we generate two distributions that take into account
all measurements where r assumes genotype 0 and 1 respectively. The statistical
significance of the difference between these two distributions can be calculated via
Wilcoxon’s rank sum test. As this approach utilizes both expression data and geno-
types we refer to it as WC(D, T), which again yields a matrix of |G|×|R| confidence
scores.

6.3 Results

6.3.1 Performance of Inference Settings

The standard SIRENE is the application of support vector machines to the expression
data matrix as illustrated as SVC (D) in Fig. 6.1a. This is the starting point for our
analysis and we will explore this setting and several variants (that will be denoted
accordingly) on provided SGS data. Figure 6.2a depicts the results of this standard
analysis for each of the 72 provided networks. The performance is robust between
networks of the same size (100 genes, 1,000 genes, 5,000 genes), while inference on
larger networks exhibits a slightly improved performance. In the following, we will
by default refer to the networks of 1,000 genes (and averaged measures) if not stated
otherwise.

In Figs. 6.2b and 6.3, we show the influence of the choice of input data on method
performance. As explained in the method section, SVC generally refers to supervised
inference while SVR and WT correspond to unsupervised settings that neglect the
information on known interactions contained in the gold standard S. The argument
X of the methods SVC(X) or SVR(X) denotes the (set of) input datasets, each of
which is represented in the form of a matrix. The output of methods is also a matrix
as indicated in Fig. 6.1. Predominant input data matrices store expression data (D),
genotypes (T) and the gold standard of known interactions (S). From the expres-
sion data matrix D, we derive two additional matrices, a fold change matrix C and
a normalized matrix N. The matrix C has the same size as the expression matrix
(|G| × |E |). E fold changes for a given gene are calculated from E pairs of expres-
sion values that are randomly chosen, so that they have opposite mutation types.
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Properties of SGS data
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Fig. 6.2 Performance of inference settings (AUC). a shows the performance on each of the 72 pro-
vided datasets. In (b), the effect of different input data matrices on the performance of supervised
and unsupervised approaches is depicted. See main text for more information on the method and
dataset nomenclature. (c) Analyzes how different SysGenSim (SGS) settings influence the genera-
tion of expression data. (d) Depicts different SVM settings and parameters. In (e), the inference is
restricted to TFs with a minimum number of target genes. If not noted otherwise, average results
are depicted for the standard approach, SVC(D), based on datasets with 1,000 genes

Thus, Figs. 6.2b and 6.3 depict the results of 14 method variants incorporating dif-
ferent combinations of these input datasets.

The best performance of 87–88 % AUC is obtained if matrix D or one of the derived
matrices C or N is used as an immediate input to SVC. Additional input datasets such
as the gold standard S or the processed genotype T do not substantially increase per-
formance. On the other hand, we observed a slight (non-significant) reduction in
performance if only matrices are deployed that have been processed by one of the
unsupervised steps (SVR or WT). Note that while the preprocessing has been per-
formed via unsupervised steps, the processed data has been incorporated into a super-
vised setting, hence SVC(SVR(T)) or SVC(WT(D, T)). The lowest performance is
obtained if unsupervised settings are immediately evaluated as SVR(T) or WT(D, T).
Here, Wilcoxon’s test performed substantially better than a corresponding SVR setup.
These general trends are confirmed by the AUPR evaluation in Fig. 6.3 with the
exception that the gold standard S led to an increase in the AUPR value.
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Fig. 6.3 Performance of inference settings (AUPR). The same tests as depicted in Fig. 6.1b are
shown here with respect to the area under the precision–recall curve (AUPR)

The performance of SVR(D) is compared to the performance of WT(D, T) on
the 1,000 gene networks in Fig. 6.4. This demonstrates that the performance of the
supervised SVR(D) in the range of 85–88 % AUC is much more robust than the
unsupervised WT(D, T) performance exhibiting a much broader range of 71–88 %.
Furthermore, this figure depicts 6 datasets of a particularly low WT(D, T) perfor-
mance. According to the SGS annotation, these 6 datasets are characterized by a high
biological variance and a low heritability (a term coined by the challenge organizers
to describe the chance that markers are inherited, Pinna et al. 2011), which apparently
impedes unsupervised inference.

As shown in Fig. 6.2c, different SGS parameters have little influence on per-
formance, confirming the findings in Fig. 6.2a that the performance on 100 gene
networks is slightly reduced. Similarly, SVM settings and parameters had almost no
impact (Fig. 6.2d).

Generally, supervised local models can only be applied for TFs with known tar-
gets. Therefore, we restricted the network to TFs with a preselected minimum number
of targets. Requiring a higher minimum consequently decreases the number of pre-
dictions. That the performance decreases if more targets are required per TF is a
side effect of evaluation, as then more interactions count as ‘not predicted,’ which
reduces the value of AUC. This trend is reversed if only predicted interactions are
scored (not shown).

6.3.2 Properties of SGS Data

Here, we explore several SGS properties and parameters, including (i) the effect of
TF genotype changes on the TF targets and (ii) the effects of chromosomal proximity.

Figure 6.5 shows that only a subset of target genes (here TG15) is visibly affected
by genotype changes in their regulating TFs. Interactions involving targets such as
TG15 are easy to detect by unsupervised approaches. For instance, the depicted
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Fig. 6.4 Supervised versus unsupervised performance. This scatter plot compares the AUC perfor-
mance of two approaches on the 24 datasets with 1,000 genes: (i) a supervised approach exploiting
known interactions that is based on support vector classification SVC(D), and (ii) an unsuper-
vised approach exploiting genotype information that is based on Wilcoxon’s test WT(D, T). The
supervised approach performed better in the examples shown below the diagonal (dashed line)

distribution shift is precisely the property that is quantified by the unsupervised
Wilcoxon’s test WT. In contrast, other target genes such as TG42 show little or no
response at genotype changes and are thus more difficult.

We further examined the influence of chromosomal proximity on inferability. If
two TFs x and y are located close to each other on the genome, they are subject to
linked genetic polymorphisms. In such cases, genotype changes are not informative
for the distinction whether a given target gene is regulated by x or y. We examine this
by testing the association between genotype changes in a given TF and shifts in the
distribution of expression of a given target gene by WT as described in the previous
paragraph. In a subsequent step, we extend this to measure the association between
a TF and a set of target genes G. Therefore, we employ the AUC to compare the
WT scores for genes in G to the WT scores of the remaining genes. Here, an AUC
of 1 means that all genes in G experience stronger shifts from genotype changes in
a TF than all remaining genes not in G. This is analyzed in Fig. 6.6 where genotype
changes in all possible TFs x are analyzed regarding their association with expression
changes in targets of TF y (TF13 in Fig. 6.6).

Indeed, genotype changes in TF13 have a strong effect on its targets as demon-
strated by the high AUC value of 97 %. However, genotype changes in TFs located
close to TF13 on the genome also exhibit a similarly strong association although
they neither regulate TF13 nor its targets. Here, differences in genetic polymorphism
are correlated with chromosomal distance: nearby TFs experience similar geno-
type distributions and are thus hard to distinguish based on systems genetics data.
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Fig. 6.5 Effect of regulator genotypes on target genes. This plot depicts the distributions of expres-
sion levels for two target genes of regulator TF1, namely TG15 and TG42. The switch of genotype
0 (dashed) to genotype 1 (solid) in regulator TF1 has a noticeable impact on TG15, but not on
TG42. Such effects can be exploited for unsupervised inference, e.g., by Wilcoxon’s test (see main
text)

We indicated two other TFs (TF24 and TF52) in Fig. 6.6 that are the only regula-
tors of TF13, but nevertheless, seemingly exhibit a much lower influence on TF13’s
targets.

6.3.3 Comparison Between Real and SGS Datasets

In Fig. 6.7 we explore the link between co-regulation and correlation. Each line
compares the correlation distribution histograms in units of probability between
arbitrary and co-regulate gene pairs. Thus, positive or negative probability differences
indicate ranges of correlation with an increased or decreased respectively, likelihood
of observing gene pairs regulated by the same TF. The strong negative difference at
a correlation of 0 indicates that co-regulated gene pairs are unlikely to exhibit no
correlation at all. On the other hand, the positive difference at positive correlation
denotes an enrichment of co-regulated genes. Qualitatively, this behavior is shown by
SGS and real data while the strength of this effect is substantially more pronounced
in case of the SGS data.

We furthermore analyzed pairs of TFs with respect to overlapping sets of target
genes in Fig. 6.8. The real networks clearly show much stronger overlaps indicating
TF complexes where several TFs regulate (almost) the same targets. We compare
this effect to the correlation between pairs of TFs. Interestingly, TFs with strongly
overlapping sets of targets exhibit an increased correlation in their expression profiles
in case of E. coli data. This could indicate that functionally related TFs tend to be
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Depicted are two SGS derived datasets (solid) and one E. coli dataset (dashed)

co-regulated as well. Such an effect is not apparent in the SGS data and networks.
This suggests that correlation of TFs might be a feature that could be informative
in real but not artificial inference settings. Also, the lack of strong target set over-
laps offers a potential explanation on why the utilization of the network topology
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Fig. 6.8 Relationship between TF correlation and TF target genes. Each point corresponds to a
pair of TFs in the SGS dataset 25 (dots) and an E. coli dataset (squares). The abscissa shows the
overlaps between the target genes of the two transcription factors calculated as scalar product.
The ordinate depicts the Pearson’s correlation computed between the two TF’s expression profiles.
Points in the upper right corner thus refer to pairs of TFs that exhibit both a high correlation and
highly overlapping sets of target genes

in SVC(D, S) only slightly increases performance (compare Fig. 6.2b), whereas it
strongly increases prediction performance in case of real data (not shown).

6.4 Discussion

Several classes of methods have been successfully applied to the inference of gene
regulatory networks from expression data. To deduce gene regulatory interactions,
unsupervised approaches depend on some dependency between the expression pro-
files of TFs and targets. This procedure consequently assumes that the activity of
the TF itself is regulated on the expression level. The approach might fail in case
of TFs that are regulated at the protein level that is not visible in gene expression
measurements. In contrast, Mordelet and Vert (2008) demonstrated that a supervised
approach called SIRENE, by exploiting prior information from known gene regula-
tory interactions, can improve the performance of inference considerably. Variants
of this approach have been proposed that integrate additional types of information
(e.g., TF promoter binding predictions) to further improve performance.

Here, we examined the feasibility of network inference by supervised approaches
that integrate expression data, gene regulatory interactions, and genotype information.
On the one hand, a subset of genotype variations is expected to have a substantial
impact on the variability of gene expression measurement. Being able to inform
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inference approaches with genotype information is thus expected to improve infer-
ence performance. On the other hand, a reliable analysis of feasibility of genotype
supported inference requires a controlled use case that is currently only available
through network simulation. This study was therefore based on SysGenSim (SGS),
a well-known simulator of networks with genotype information.

In this setup, we compared the performance of inferring gene regulatory inter-
actions by several supervised and unsupervised methods and examined how the
availability of expression data, genotype information, and known gold standard
interactions influences performance. We indeed confirmed that supervised methods
are able to perform substantially better than unsupervised approaches. Supervised
approaches can assess the importance of features (such as microarray experiments
where a given TF is active, Naeem et al. 2012) and thus improve the inference of
targets of a given TF if some of the targets are already known.

We first analyzed the effect of preprocessing and parameterization on the perfor-
mance of supervised inference. We found that different approaches to data normaliza-
tion and data representation (e.g absolute measurements vs. fold-changes) had little
influence on the performance. The little effect of normalization on the performance is
possibly due to the fact that the SGS data is almost normalized/standardized (personal
communication with organizers). However, it is still recommended to apply normal-
ization, especially in case of combining data from different experiments/labs. Apart
from preprocessing steps, choosing different parameters and kernels for training had
little effect. Given SGS simulated data, we thus observed a robust performance that
was almost independent of the specific training setting.

Next, we examined whether the basic supervised setting, i.e training models on
features derived from expression data, could be improved by incorporating addi-
tional features generated from the genotype information or from the known gold
standard interactions. Strikingly, we found that expression data in this setup was the
most informative data and integration of additional information could hardly improve
performance. Apparently, from training the models on subsets of the known targets
of a given regulator, genotype information could be deduced from the expression
measurements so that explicitly providing that information did not lead to further
performance improvements. A further explanation of this finding is that genes adja-
cent on the chromosome are affected similarly by recombination and thus overlap
strongly in their genotypes across individuals. Consequently, in the simulated data,
genotype information provides limited information on sets of contiguous regulators
and genes.

We also aimed to more thoroughly exploit the known gold standard interactions
for inference. The standard SIRENE approach predicts targets for a given regulator
at a time and is thus not able to incorporate information on other regulators and their
targets. We therefore represented the network topology of genes and their regulators
explicitly as additional features to better inform the training of supervised infer-
ence models. However, this feature set extension could hardly improve performance,
which is in stark contrast to our previous experience on real gene regulatory networks
and datasets where a substantial increase in performance could be achieved here. In
real networks, functionally related genes tend to be regulated by similar sets of TFs
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and, vice versa, TFs forming complexes tend to regulate similar sets of target genes.
We indeed find such significant overlaps between regulator and target sets in real
networks, but they are virtually absent in the SGS networks. Using more realistic
network topologies could thus improve SGS simulations.

To estimate the feasibility of network inference from real systems genetics data,
we examined further similarities and differences between real and SGS datasets. We
first analyzed whether functionally related TFs show an increased correlation in their
expression profiles. In order to compare real and artificial datasets, we quantified the
functional similarity of TFs based on their sets of target genes: two TFs are assumed
more related if their respective target sets exhibit higher overlaps. Functionally related
TFs indeed tend to exhibit a higher correlation on the expression level (Segal et al.
2003; Remenyi et al. 2004) which can be exploited for inference in case of the real
data. This is not possible for the SGS generated data, where overlaps in target sets
did not lead to a higher correlation between expression profiles of the corresponding
TFs. In addition to using realistic network topologies, a careful parametrization of
network models would be required so that simulated and real datasets exhibit similar
properties.

We also found that some other properties of expression data were qualitatively
similar between real and artificial datasets. For instance, in both real and artificial
data, pairs of genes regulated by the same set of TFs exhibited stronger correlations
in their expression profiles than arbitrary pairs. However, this effect was noticeably
more extreme in the SGS data.

As the SGS datasets and networks analyzed here represent simplified models, it
will be an important future task to explore network inference assisted by genotype
information in case of real systems. Real genotypes will exhibit a higher complexity
with respect to both structure and effects of the genotypes. Exploiting the more
complex genotype information in real organisms will be thus more challenging. First,
in real systems SNPs may exhibit a much broader range of effects, e.g., they may be
ineffective, kill the protein completely, or exhibit strong side effects. In comparison
to SGS-generated data, only a minority of ‘real’ mutations will just modulate the
effect of a TF on its targets, and will thus be informative for network inference.
A second simplification of SGS is that each gene has a single mutation locus that can
assume only two states, i.e., the genotype for a given gene is represented as a single
binary value. Genes in real systems may host several mutation sites in both promoter
and coding sequence that influence the function of that gene in a combinatorial
manner. Third, the expression of targets genes is not only modulated by SNPs and
through gene regulatory networks, but also by other mechanisms affecting the protein
sequence such as alternative splicing and other mechanisms affecting the state of the
biological system such as metabolic and protein networks.

These complexities may decrease the performance of inference approaches on real
data and will require corresponding adjustments that might complicate their appli-
cation. Exploiting this information in unsupervised inference approaches might for
instance require to understand the impact of combinatorial genotypes for every single
regulator or gene so that they can be modeled explicitly. In the light of these consider-
ations it is interesting to recall our above finding that the explicit specification of the
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genotype might not be necessary in supervised inference approaches. The application
of supervised approaches to real data might thus be more robust and straightforward
than employing current unsupervised methods. Supervised approaches, on the other
hand, could further be applied as feature selection approaches that evaluate which
of the given features are most informative for the problem at hand. As an interest-
ing future exploratory approach, supervised inference methods could thus determine
weights of SNPs and therefore evaluate the structural basis of how SNPs influence
the effect of TFs on their targets.
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Chapter 7
Integration of Genetic Variation as External
Perturbation to Reverse Engineer Regulatory
Networks from Gene Expression Data

Francesco Sambo, Tiziana Sanavia and Barbara Di Camillo

Abstract In systems genetics, genetic variations can be thought as a randomized,
multifactorial set of perturbations and the gene/protein expression profile of each
individual as the system response to a specific set of perturbations. Current systems
genetics approaches, known as genetics genomics, try to combine different types of
data such as expression and genetic data both to improve the performance of reverse
engineering application and to get deepest biological insights. In this chapter, we
present an integrative reverse-engineering approach which exploits both genetic and
expression data. The method: 1) codifies genetic-induced perturbations by a variation
matrix, which represents differences of mean expressions in each gene according to
the genotype of its regulators; 2) define genetic correlation blocks within the variation
matrix based on the correlation between genotypes; 3) infers the correct cause-effect
pairs based on local peaks of intensity in the variation matrix, since genetic correlation
decreases with genetic distance from the real causal gene. Compared to other pair-
wise methods typically used in reverse-engineering, the variation matrix shows good
performance in terms of both area under receiver operating characteristic and area
under the precision versus recall curve. However, on the StatSeq benchmark our
approach is able to address a limited number of independent perturbations, due to
the high genetic linkage observed in the data. The obtained results provide a basis
for advanced integrative approaches able to automate the systematic interpretation
of perturbation experiments exploiting the genetic-based prior knowledge.

7.1 Introduction

Cellular processes involve millions of molecules playing a coherent role in the
exchange of matter, energy and information both among themselves and with the

F. Sambo · T. Sanavia · B. Di Camillo (B)

Department of Information Engineering, University of Padova, Padua, Italy
e-mail: barbara.dicamillo@dei.unipd.it

A. de la Fuente (ed.), Gene Network Inference, 107
DOI: 10.1007/978-3-642-45161-4_7, © Springer-Verlag Berlin Heidelberg 2013



108 F. Sambo et al.

environment. These processes are regulated by proteins, whose expression is con-
trolled by a tight network of interactions between genes, proteins, and other mole-
cules. A major goal of systems biology is the elucidation of the complex network
of interacting DNA sequences, RNAs and proteins regulating and controlling gene
expression. The term “reverse engineering” indicates the set of methods useful to
reconstruct a regulatory network from its observed output, obtained from either
dynamic or static multiple stimulus-response experiments. Today, high-throughput
technologies such as microarray and mass spectrometry can measure the expression
of genes and proteins at a given instant, thus making possible, at least in principle, the
reconstruction of the regulatory network from its observed output through reverse-
engineering approaches. However, given the complexity of biological systems and
the high number of molecules involved, reverse-engineering approaches are usually
limited to very general and abstract models, where RNA expression is considered as
a proxy of protein expression in controlling gene transcription.

Several reverse-engineering approaches have been proposed in the recent years
to infer transcriptional regulatory networks from microarray gene expression data.
Among them Boolean models (Somogyi et al. 1996; Liang et al. 1998; Shmulevich
et al. 2002; Gat-Viks and Shamir 2003), models based on differential equations,
(D’haeseleer et al. 1999; de la Fuente et al. 2002; Gardner et al. 2003; de Jong 2002;
Sambo et al. 2012), Bayesian networks, (Friedman et al. 2000; Friedman 2004; Yu
et al. 2002), and methods based on pair-wise gene expression correlations (Butte e
Kohane 2000; Ferrazzi et al. 2007; Herrero et al. 2003; Basso et al. 2005; Schäfer
and Strimmer 2005; Badaloni et al. 2012; Margolin et al. 2007). However, reverse-
engineering methods on real datasets and realistically simulated data (Mendes et al.
2003; Di Camillo et al. 2009; Marbach et al. 2009) are known to exhibit poor perfor-
mance (Bansal et al. 2007; Soranzo et al. 2007). Commonly adopted performance
measures, such as Precision and Recall, rarely rise beyond 0.5 in a 0–1 scale, one of the
main reasons being the impossibility to design an experiment rich enough to observe
all the different states of the system responding to a randomized, multifactorial set of
perturbation.

As Jansen observed, high-throughput genomics, transcriptomics, proteomics and
metabolomics have the potential to identify the functional consequences of induced
and natural genetic variation (Jansen 2003). In other words, genetic variations can be
thought as perturbations and the gene/protein expression profile of each individual
as the system response to its specific set of perturbations. Current systems genetics
approaches try to combine different types of data such as expression and genetic data
both to improve the performance of reverse engineering application and to get deepest
biological insights. The StatSeq benchmark, presented in Chap. 1 of this book, was
designed to allow training and evaluation of reverse-engineering algorithms applied
to expression and genetic data. It consists of 72 datasets simulated on networks with
100, 1,000, or 5,000 genes.

In this chapter, we present our reverse-engineering approach by following the
rationale of its development and motivating the design choices on the 24 datasets of
size 100. The datasets of size 1,000 and 5,000 will be used to show how performance
scales on networks of larger size.

http://dx.doi.org/10.1007/978-3-642-45161-4_1
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7.2 Genetic Variation as Local Perturbation

The StatSeq benchmark provides genotype and gene expression data for in-silico
populations, where each gene exhibits a single DNA polymorphism either in the
promoter region (cis-effect) or in the coding region (trans-effect). Simulated poly-
morphisms are characterized by two possible genetic variants (coded by 0 or 1).

Both types of polymorphisms can be interpreted as multifactorial genetic per-
turbations and can be exploited to gain a system-level understanding of biological
networks: in the cis-effect case, genetic variants affect the steady-state expression
of the gene itself; in the trans-effect case, genetic variants have no effects on the
expression of the gene, but the effect can be seen in the expression levels of the
corresponding gene targets. In both cases, the polymorphism leads to an alteration
of the expression levels of the downstream genes and can thus be treated as a local
perturbation of the gene network.

Even without knowing which genetic variant is associated to the active state of
the polymorphism and which type of effect (between -cis and -trans) characterizes
the polymorphism, it is possible to analyze the alterations in the expression of all
genes according to the variations in the genotype of each gene. Considering two
genes i and j, we can thus assess if the variations of the gene j across the genotype of
different subjects induce any significant change in the expression of gene i. A first
attempt to quantify this kind of interaction is to consider the differences in the mean
gene expression values of gene i between two groups of subjects, divided according
to the two genetic variants belonging to the gene j.

We define a variation matrix V as an N × N matrix (with N indicating the number
of genes) coding all pair-wise genetic-induced interactions. Each element (i, j) in
V measures how much the genotype of j affects the expression of i as the absolute
difference between the mean expression of gene i across subjects with genotype j=0
and subjects with genotype j=1.

The pseudocode for computing the variation matrix is as follows, with E and G
representing the gene expression matrix and the binary genotype matrix, respectively:

VariationMatrix (E, G)
E : gene expression matrix
G : binary genotype matrix
for each gene j

g0 = subjects for which j’s genotype equals 0
g1 = subjects for which j’s genotype equals 1
for each gene i

m0 = mean(E(i, g0))
m1 = mean(E(i, g1))
V(i, j) = |m0 − m1|

return V

We computed the variation matrix for each pair of expression and genotype matri-
ces E and G provided by the StatSeq benchmark. Figure 7.1 shows two examples of
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Fig. 7.1 Variation matrices for data sets 2 (left panel, higher average marker distance) and 6 (right
panel, lower average marker distance) of size 100. Darker gray intensities correspond to greater
values of absolute difference between the mean expression of gene i across subjects with genotype
j = 0 and subjects with genotype j = 1

variation matrices for datasets 2 (left panel) and 6 (right panel) with intensities rep-
resented in gray scale. As a first approximation, the variation matrix can be related
to the regulatory effect of gene j on gene i; however, by inspecting Fig. 7.1, one can
observe horizontal lines corresponding to genes which are close to each other in
the genome and show correlation in the response they induce. In other words, the
simulated genetic linkage, i.e., the nonrandom association between portions of the
genome close to each other, strongly affects the variation matrices. This effect is more
evident for dataset 6 as compared to dataset 2. In fact, genetic linkage is simulated
in the StatSeq benchmark with two levels of strength: lower association between
markers due to a higher average marker distance (dataset 2) and higher association
due to lower average distance (dataset 6). Genetic linkage implies that the genetic
variation, interpreted as a local perturbation in our variation matrix analysis, cannot
be considered independent for genes close to each other. The presence of genetic
linkage, thus, limits the ability of identifying true causal relations directly from the
variation matrix.

The strength of genetic linkage can be more clearly observed and compared by
plotting the absolute correlation between the genotype of all pairs of genes (Fig. 7.3).
Comparing the two correlation matrices in Fig. 7.2 with the corresponding variation
matrices in Fig. 7.1, it stands out how the effect of genetic linkage is reflected also in
the gene expression data, since correlated perturbations result in correlated variations
of the gene expression.
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Fig. 7.2 Matrices of correlation between genotypes for data sets 2 (left panel, higher average marker
distance) and 6 (right panel, lower average marker distance) of size 100. Darker gray intensities
correspond to greater absolute values of correlation

7.3 Genetic Variation as Block-Wise External Perturbation

Considering high-valued elements of variation matrices as candidate causal relations,
thus, we are deemed to identify a large number of false-positive associations due
to genetic linkage. Suppose in fact to have a set of adjacent genes j1, j2, . . . , jn ,
characterized by strongly correlated genetic variations as a consequence of genetic
linkage, and a gene i regulated just by one or few of the jk : if we infer regulatory
relations by the strength of the effect of genetic variations, i will appear to be regulated
by the entire set j1, j2, . . . , jn .

Despite the confounding effect of genetic linkage, however, the correct cause–
effect pair will tend to be associated, with high probability, to a local peak of intensity
in the corresponding row of the variation matrix: since genetic correlation decreases
with genetic distance from the real causal gene, so will, in general, the intensity in
the variation matrix. Maximal elements of each correlated block in each row thus
have higher probability of corresponding to real regulatory relations.

Stemming from this idea, we developed an algorithm for prioritizing the maxima
in each row and each correlation block (i.e., each simulated chromosome) of the
variation matrix. The pseudocode of the algorithm is as follows:

Block-Prioritize(A, G)
A : input matrix
G : binary genotype matrix
θ = threshold of absolute pair-wise correlation (0.2, in our experiments)
C = Pair-Wise Correlation (G)
Identify the borders between chromosomes, as the pairs ( i, i +1) of consecutive

genes for which |C(i, i + 1)| < θ

Chromosomes = list of vectors, one for each chromosome ch, each containing
the indices of the genes in ch
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Fig. 7.3 Box plots of the Area Under the ROC curve (left panel) and of the Area Under the PvR
curve (right panel) for variation matrices and block-prioritized variation matrices, computed for
the 24 datasets of size 100

M = max(A)
for each gene i and chromosome ch

j = argmax(A(i, Chromosomes{ch}))
A(i, j) + = M

return A

We name this procedure block-prioritization and apply it to the variation matrix.
If the elements of the matrix are interpreted as levels of confidence on the corre-
sponding cause–effect relations, block-prioritization assigns the highest confidence
to the identified maxima. This way, we impose to each gene i a major regulator j
in each chromosome ch. Block-prioritization was designed ad hoc for the StatSeq
benchmark, to cope with the limited number of independent perturbations due to
the high genetic linkage observed in the simulated data. However, this way we limit
the number of false positives at the price of a large number of false negatives. The
threshold θ of absolute pairwise correlation (Block-prioritization, line 3) was fixed
to 0.2 with the only purpose of identifying the borders between chromosomes on the
simulated data. On real data, where genetic linkage pattern is more blurred, we do
not expect the need for using the block-prioritization procedure.

We tested the performance in reverse engineering of both variation matrices and
block-prioritized variation matrices, on the 24 simulated datasets of size 100, in
terms of Area under the Receiver Operating Characteristic (AUROC) and Area under
the Precision versus Recall Curve (AUPvR). As it can be seen from Fig. 7.3, the
application of block-prioritization significantly increases the performance in terms
of both AUROC (left panel) and AUPvR (right panel) as compared to the variation
matrix representation.
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Fig. 7.4 Box plots of the Area Under the ROC curve (top) and of the Area Under the PvR curve
(bottom) obtained, on the 24 datasets of size 100, by rank average of block-prioritized variation matri-
ces (BPVM) with different combinations of matrices. From left to right: without other matrices, with
GGM, with mMI, with both GGM and mMI, with block-prioritized GGM, with block-prioritized
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7.4 Improving Performance with Pair-Wise Methods

Given the proven effectiveness of Graphical Gaussian Models (GGM) and minimum
conditional Mutual Information (mMI) in reverse engineering large-scale gene reg-
ulatory networks (Soranzo et al. 2007), we explored how to best exploit the two
procedures for further improving the performance of our algorithm.

Graphical Gaussian Models assess the strength of a relation between two genes
as their partial correlation conditioned on all the other genes. We adopted the
approach described in (Schäfer and Strimmer 2005) and implemented in the R pack-
age GeneNet, version 1.2.5 (http://strimmerlab.org/software/genenet/): the partial
correlation is estimated through the Moore-Penrose pseudo-inverse of the correla-
tion matrix and the estimate is stabilized with Bootstrap resampling.

Mutual Information is another measure of dependency between random vari-
ables, arising from information theory, which has been proposed in the literature
for assessing the strength of a relation between two genes (Butte and Kohane 2000;
Daub et al. 2004). Following the approach described in Soranzo et al. (2007) and
implemented in the C++/MATLAB package NetRec (http://people.sissa.it/~altafini/
papers/SoBiAl07/), we considered for each pair of genes the minimal Mutual Infor-
mation conditioned on each of the other genes. Mutual Information is computed with
the B-spline algorithm of (Daub et al. 2004).

http://strimmerlab.org/software/genenet/
http://people.sissa.it/~altafini/papers/SoBiAl07/
http://people.sissa.it/~altafini/papers/SoBiAl07/


114 F. Sambo et al.

The GGM and mMI algorithms process the entire matrix of gene expression for
all individuals and return a symmetric matrix, reporting a measure of association
between all gene pairs. Tested on the 24 datasets of size 100, GGM has poor perfor-
mance in terms of both AUROCs and AUPvRs as compared to block prioritization
of the variation matrix (BPVM), while mMI exhibits higher AUROCs but lower
AUPvRs, as shown in Fig. 7.4 (box plots 1–3).

Furthermore, we test the application of the block-prioritization algorithm to the
GGM and mMI matrices (BPGGM and BPmMI): as it is clear from Fig. 7.4, the
performance of GGM increases while that of mMI decreases (box plots 4 and 5).

Finally, to exploit the information gained by each method, we build an ensemble
network by integrating block-prioritized variation matrices (BPVM) with block-
prioritized GGM (BPGGM) and simple mMI. To integrate two or more matrices, we
first compute the absolute rank of each element in each matrix: the largest element
receives rank 1, the second largest rank 2, and so forth down to the smallest element,
receiving rank N × N = N 2 (if N is the number of genes). Elements are then globally
ranked by taking the average rank across matrices.

As it is clear from Fig. 7.4, combining the BPVM matrix with either the mMI
matrix or the block-prioritized GGM matrix leads to a significant increase in AUROC
and AUPvR (box plots 5 and 6). The effect is even stronger when the three matrices
are combined (box plot 7).

Given the experimental results on networks of size 100, our final reverse-
engineering algorithm is thus as follows:

ReverseEngineering(E, G)
E : gene expression matrix
G : binary genotype matrix
VM = VariationMatrix(E, G)
GGM = GraphicalGaussianModels(E)
mMI = MinimumConditionalMI(E)
BPVM = Block-Prioritize(VM, G)
BPGGM = Block-Prioritize(GGM, G)
R = mean(rank(BPVM), rank(BPGGM), rank(mMI))
return R

7.5 Experimental Results

The complete reverse-engineering algorithm was tested on datasets of size 1,000
and 5,000 from the StatSeq benchmark, to assess how performance scales with the
number of genes. Comparisons throughout the section are carried out with the two-
tailed Wilcoxon sign-rank test and differences are considered significant for p-values
below 0.05.

We were not able to compute mMI for networks of size 5,000 in a reasonable
time: the complexity of the mMI computation is cubic in the number of genes and
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Fig. 7.6 Box plots of the Area Under the ROC curve (top row) and of the Area Under the PvR
curve (bottom row) obtained by grouping the 24 datasets of size 1,000 according to population size
(left column), average marker distance (middle column) and biological variance (right column)

the estimated time for completion of a single dataset is between 10 and 20 days. For
this reason, we integrated BPVM, BPGGM, and mMI for datasets of size 1,000 and
just the BPVM and BPGGM for datasets of size 5,000.

We report in Fig. 7.5 the box plots of AUROC and AUPvR for the three dataset
sizes 100, 1,000, and 5,000. As it is clear from the figure, AUROC and AUPvR exhibit
a different behavior: while AUPvR monotonically decreases with size (all p-values ≤
3 × 10−3), AUROC increases for networks of size 1,000 (p-value 2 × 10−5) and
then decreases again for size 5,000 (p-value 6 × 10−3). This last drop in AUROC
might be imputed to the unavailability of the mMI matrix for datasets of size 5,000.
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Fig. 7.7 Box plots of the Area Under the ROC curve (top row) and of the Area Under the PvR
curve (bottom row) obtained by grouping 24 datasets of size 5,000 according to population size (left
column), average marker distance (middle column) and biological variance (right column)

We then assessed, for datasets of size 1,000 and 5,000, how much the perfor-
mance is sensitive to three parameters of the simulation, namely the population
size (300/900 individuals), the average marker distance (low/high, corresponding to
stronger/weaker genetic linkage), and biological variance (low/high).

Figure 7.6 (for size 1,000) and Fig. 7.7 (for size 5,000) reports the box plots of
AUROC (top row) and AUPvR (bottom row) obtained by grouping the 24 datasets
according to population size (left column), average marker distance (middle col-
umn), and biological variance (right column). As it is clear from the two figures, the
algorithm significantly benefits from increasing the population size in terms of both
AUROC and AUPvR, for both dataset sizes (all p-values < 5 × 10−5).

A higher average marker distance positively affects AUPvR for both datasets
sizes (both p-values < 5 × 10−5), whereas it exhibits a weaker but significant effect
on AUROC for size 5,000 (p-value 0.027) and no significant effect for size 1,000
(p-value 0.176).

Finally, the effect of biological variance on performance seems to have an opposite
trend for sizes 1,000 and 5,000: in the former case, an increase in biological variance
appears beneficial, though only significant for AUROC (p-value 5×10−5) and not for
AUPvR (p-value 0.077); in the latter case, increasing biological variance significantly
deteriorates AUPvR (p-value 5 × 10−5) but not AUROC (p-value 0.569).
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7.6 Conclusions

In this chapter we presented a simple approach, integrating genetic and expression
data and different reverse-engineering methods to reconstruct the regulatory network
underlying the observed gene expression. Our method was designed ad hoc on the
StatSeq benchmark, based on the results obtained on the 24 datasets of 100 genes.

The original plan, however, was to apply the variation matrix algorithm to dis-
tinguish between -cis and -trans effects and then to infer regulatory relations with
SPQR (Systematic Perturbation—Qualitative Reasoning), a novel Qualitative Rea-
soning approach to automate the interpretation of the results of systematic perturba-
tion experiments (Badaloni et al. 2012). SPQR exploits a set of IF-THEN rules to
infer causal relations between the variables, analyzing the patterns of propagation of
the perturbation signals through the biological network, and is specifically designed
to minimize the rate of false positives among the inferred relations.

This latter strategy was not performing well on the StatSeq benchmark, due to
the high genetic linkage observed in the data. In fact, the systematic perturbation of
the components of a biological system has been proven among the most informative
experimental setups for the identification of causal relations between the components.
However, the high genetic linkage observed in the simulated data limited the actual
number of independent perturbations. For example, in the dataset of 100 genes, we
observed basically five independent stimuli corresponding to the five blocks of highly
correlated genotypes shown in Fig. 7.2.

In real data, the distinction between -cis and -trans effect of a genetic variant
can be reasonably inferred from the variant position; moreover, correlation between
genetic markers is expected to be lower than the one observed here, especially if one
is trying to reconstruct regulatory networks involving genes with high distance in
the genome. Our future plan is thus to test the application of SPQR on real eQTL
data. On the other hand, the block-prioritized approach developed here proved to
be a valid representation of the genetic-induced interactions, robust to the indeter-
minateness intrinsically introduced by high genetic linkage, and it can be easily
integrated in SPQR to optimize its performance when analyzing regions of high
genetic correlation.
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Chapter 8
Using Simulated Data to Evaluate Bayesian
Network Approach for Integrating Diverse Data

Luan Lin and Jun Zhu

Abstract Large-scale high-dimensional omics data sets have been generate to
survey complex biological systems. However, it is a challenge how to integrate multi-
ple dimensions of biological data to biological causal networks where comprehensive
knowledge can be derived in contexts. We developed a RIMBANet (Reconstructing
Integrative Molecular Bayesian Networks) method to integrate diverse biological
data. In this chapter, we disseminate results of applying our RIMBANet method on
a series of simulated datasets. Two sets of networks are inferred with or without
integrating genetic markers with gene expression data. We show that integration
of genetic data into network reconstruction using RIMBANet approach improves
network construction accuracy. Furthermore, false-positive links in reconstructed
networks are not randomly distributed. More than 80 % of them connect nodes that
are indirect neighbors.

8.1 Introduction

Biological systems are complex. Cells employ multiple levels of regulation that
enable them to respond to genetic and environmental perturbations. Advances in
high-throughput technologies in biology in the past few years have created a plethora
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of data measuring different levels of cell regulations, such as genetics, genomics,
transcriptomics, proteomics, metabolomics, glycomics, etc. Despite the complexity
of biological systems, research in the context of large-scale high-dimensional omics
data has tended to focus on single data dimensions. While we achieve some under-
standing in this way, progress is limited because none of the dimensions on their
own provide a comprehensive context in which results can be fully interpreted. For
example, genome-wide association studies (GWAS) have identified many hundreds
of highly replicated loci associated with disease, but our understanding of underly-
ing molecular mechanisms is still limited because the genetic loci do not necessarily
inform on the gene affected, on how gene function is altered, or more generally,
how the biological processes involving a given gene are altered (Altshuler 2008;
Chen 2008; Emilsson 2008; Witte 2010). It is apparent that if different biological
data dimensions could be integrated into biological networks, we would achieve a
more complete understanding of biological systems (Chen 2008; Emilsson 2008;
Hsu 2010; Schadt 2008; Zhong 2010).

Many methods for integrating high-dimensional data into networks are emerging.
For example, we recently developed methods that simultaneously integrate DNA
variation and RNA expression data generated in a population context to identify
coherent modules of interconnected gene expression traits driven by common genetic
factors (Chen 2008; Zhang et al. 2010). In addition, many groups began incorporating
a time dimension in the context of high-dimensional molecular profiling data to
elucidate how networks can transform over time (Leonardson 2010; Zhu 2010).

Many computational methods have been developed to utilize high-throughput data
to generate comprehensive networks for elucidating biological processes and disease
phenotypes. However, how to assess different computational methods for biological
network construction with respect to aiding our understanding of cell regulation,
elucidating complex biological processes, and generating new insights of molec-
ular mechanisms underlying disease phenotypes, remains a difficult task. Ideally,
series of prospective validation experiments are needed to systematically evaluate
each computational method. However, it is costly and time-consuming. To save time
and cost of experimental validations, many simulated datasets have been generated to
evaluate different network reconstruction methods (Zhu 2007; Vignes 2011). Several
drawbacks of the approach are (1) the simulation scheme may not truly reflect biolog-
ical systems; (2) methods that share similarity of computational models underlying
simulation datasets are likely to perform better. Alternatively, many hybrid schemes
are created for assessing computational methods, such as DREAM (Marbach 2012),
where experimental data is generated and methods are evaluated for how well the true
biological regulations underlying the experimental data can be recovered. However,
the evaluation results not only depend on computational methods, but also on how
well participating scientists intellectually understand these biological systems. Here
we disseminate results of applying our RIMBANet method (Zhu 2012, 2008) on a
series of simulated datasets (Vignes 2011).
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8.2 Methods and Results

8.2.1 Bayesian Network

Many methods have been proposed or developed for constructing molecular net-
works, some of which can only deal with linear relationships, and some of which
are not easy to incorporate prior information. We have developed RIMBANet
(Reconstructing Integrative M olecular Bayesian Networks) (Zhu 2012, 2008), a
tool based on Bayesian framework which permits both linear and nonlinear reg-
ulation identification and which facilitates the incorporation of prior knowledge.
Bayesian networks are directed acyclic graphs in which the edges of the graph are
defined by conditional probabilities that characterize the distribution of states of
each node given the state of its parents (Pearl 1988). The network topology defines
a partitioned joint probability distribution over all nodes in a network, such that the
probability distribution of states of a node depends only on the states of its parent
nodes: formally, a joint probability distribution p(X) on a set of nodes X can be
decomposed as p(X) = ∏

i
p(Xi |Pa(Xi )), where Pa(Xi ) represents the parent set

of Xi . In our networks, each node represents a quantitative trait which can be the
expression level of a gene or the abundance of a protein or metabolite, the genotype at
a locus, the DNA copy variation at locus, etc. These conditional probabilities reflect
not only relationships between nodes, but also the stochastic nature of these rela-
tionships, as well as noise in the data used to reconstruct the network. The simulated
datasets under study consist of genetic markers and gene expression traits. Geno-
type data is discrete. Expression traits can be taken directly as continuous variables
or be discretized as discrete variables. In the hybrid model with both continuous
and discrete variables, discrete variables can be parent nodes of continuous nodes,
but cannot be children of continuous nodes. In the result, we present only discrete
models. Hybrid models require significantly more computational time than discrete
models. The performance gain by applying hybrid models is neglectable in a few
cases that we tested.

8.2.2 Learning Bayesian Network Structures

Bayes formula allows us to determine the maximum of a posterior probability
P(M|D) of a network model M given observed data D as a function of P(M)—our
prior belief that the model is correct and P(D|M)—the maximum marginal likelihood
of the observed data given the model: P(M|D) ∼ P(D|M) ∗ P(M). The constant in
the equation depends only on the data and is fixed given a dataset. The number of pos-
sible network structures grows super-exponentially with the number of nodes, so an
exhaustive search of all possible structures to find the one best supported by the data
is not feasible, as soon as the number of nodes exceeds ten or so. We implemented
a local search algorithm (Friedman et al. 2000), shown in Fig. 8.1.
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Fig. 8.1 A flow diagram illustrating local search algorithm for learning Bayesian network structure

8.2.2.1 Local Search Algorithm

The local search algorithm is a local model selection method, which starts with
selecting a random node Xi with n parents Pa = {Pa1, Pa2 . . . , Pan}. Then, we
find local structure variants that are possible for the node Xi by (a) removing a parent
node; (b) adding a new parent node from a pool of potential parents; (c) reversing
a parent–child relationship if the resulted structure does not violate the directed
acyclic graph requirement. How to evaluate a modified structure and how to choose
a criterion for accepting or not a resulted structure variation will be discussed in
Sect. 8.2.2.3. After accepting or rejecting a proposed structural change at the node
Xi , we randomly select the next node Xi , and iterate the process until the global
structure is stable (no structure modification is accepted in 3 × n trials).

8.2.2.2 Relation to Reversible Jumping in MCMC

The local search algorithm is closely related to the reversible jumping in Markov
chain Monte Carlo (MCMC). The original model and proposed models have different
dimensions (different numbers of parameters to estimate from data). For example
in Fig. 8.1, the proposed mode1 Fig. 8.1a has less parameters to estimate than the
original model. A transition function for jumping between models with different
dimensions in reversible jump MCMC reflects the principle of penalizing model
complexity in the model selection as discussed in Sect. 8.2.2.3.
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8.2.2.3 Criteria for Model Structure Selection

A network model M consists of both a network structure and a set of parame-
ters θ describing conditional probabilities. Here, we refer to a network model M
mainly as a network structure because the set of parameters θ that give rise to
the maximum likelihood given a network structure are used in our calculation.
Given a given network model M, we can evaluate it by its posterior probability
logP(M|D) ∼ logP(D|M) + logP(M). For simplicity, we assume all structures are
equal likely. Schwarz (Schwarz 1978) developed an approximation for the marginal
likelihood as Bayesian Information Criterion (BIC) as the following:

logP(D|M) ≈ log P(D|M, θ̂ )−0.5d ∗ logN , where P(D|M, θ̂ ) is the maximum
likelihood given the model M, d is the number of parameters for the model M,
and N is the number of samples. Intuitively, BIC score penalizes complex models.
To avoid being trapped in local maximum, we apply simulated annealing so that
a structure with smaller posterior probability can also be accepted according to a
rejection function which takes into account the difference in posterior probabilities
of current and proposed structures and annealing temperature (reverse proportional
to the number of proceed moves).

8.2.2.4 Averaged Model Selection

Searching optimal BN structures given a dataset is an NP-hard problem. We employed
Monte Carlo Markov Chain (MCMC) (Madigan 1995) simulation to identify poten-
tially hundreds of thousands of different plausible networks as described above.
As the method is stochastic and the potential structure space is huge, the result-
ing structure will very likely be different for each run. In our process, 1,000 BNs
were reconstructed using different random seeds to start the stochastic reconstruction
process. From the resulting set of 1,000 networks generated by this process, edges
that appeared in greater than 30 % of the networks were used to define a consensus
network. A 30 % cutoff threshold for edge inclusion was based on our simulation
study (Zhu 2007), where a 30 % cutoff yields the best tradeoff between recall rate
and precision. In practice, cutoffs around 30 % (which have the lowest number of
links in the histogram, shown in Fig. 8.2) results robustly similar structures. The his-
togram of edges shown in Fig. 8.2 suggests that there are two types of edges: highly
recurrent ones that may represent high confident signals and sporadic recurrent ones
that may represent noise. The goal of this averaging step is to keep as many high
confident edges as possible and remove as many as low confident edges. In addition,
a small variation of the cutoff value will result in a small number of edges, inclusion
or exclusion. A cutoff around 30 % recurrence clearly separates edges into high and
low confident groups. It is also the minimum of the histogram so that 30 % is chosen
as the cutoff value. The consensus network resulting from the averaging process may
not be a BN (a directed acyclic graph). To ensure the consensus network structure is
a directed acyclic graph, edges in this consensus network were trimmed if and only if
(1) the edge was involved in a loop, and (2) the edge was the most weakly supported
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Fig. 8.2 A histogram of consensus links among 1000 independently reconstructed Bayesian
network structures

of all edges making up the loop. In a case that A−> B and B−> A are equal likely,
one directed edge is randomly chosen to keep.

8.2.3 Bayesian Network as a Causal Structure

Even though edges in Bayesian networks are directed, we cannot infer causal relation-
ships from the structure directly in general. For example, in a network with two nodes,
X1 and X2, the two models X1 → X2 and X2 → X1 have equal probability distri-
butions as p(X1, X2) = p(X2|X1)p(X1) = p(X1|X2)p(X2). Thus, by data itself,
we cannot infer whether X1 is causal to X2, or vice versa. In a more general case,
a network with three nodes, X1,X2, and X3, there are multiple groups of structures
that are mathematically equivalent. For example, the following three different models
(shown in Fig. 8.3), M1 : X1 → X2, X2 → X3, M2 : X2 → X1, X2 → X3, and
M3 : X2 → X1, X3 → X2, are Markov equivalent (which means that they all encode
for the same conditional independent relationships). In the above case, all three struc-
tures encode the same conditional independent relationship, X1�⊥X3|X2, X1 and X3

are independent conditioning on X2, and they are mathematically equal

p(X) = p(M1|D) = p(X2|X1)p(X1)p(X3|X2)

= p(M2|D) = p(X1|X2)p(X2)p(X3|X2)

= p(M3|D) = p(X2|X3)p(X3)p(X1|X2)

.
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Fig. 8.3 A set of Markov equivalent models (M1-3)

Thus, we cannot infer whether X1 is causal to X2 or vice versa from these types
of structures. However, there is a class of structures, V-shape structure (e.g., Mv :
X1 → X2, X3 → X2), which has no Markov equivalent structure. In this case,
we can infer causal relationships. There are more parameters to estimate in the Mv
model than M1, M2, or M3, which means a large penalty in BIC score for the Mv
model. In practice, a large sample size is needed to differentiate the Mv model from
the M1, M2, or M3 models.

8.2.3.1 Incorporating Genetic Data as a Structure Prior

In general, Bayesian networks can only be determined by their Markov equivalent
structures, so that it is often not possible to determine the causal direction of a link
between two nodes even though Bayesian networks are directed graphs. In a biolog-
ical system, DNA variations can cause changes in gene expression levels or protein
abundance, but not the other way around. Taking this into account, the Bayesian
network reconstruction algorithm—RIMBNet that we developed can incorporate
genetic data to break the symmetry among nodes in the network that lead to Markov
equivalent structures, thereby providing a way to infer causal directions in the net-
work in an unambiguous fashion (Zhu 2004). The genetic priors can be derived from
multiple basic sources (Zhu 2007). In the application for these simulated data, we
incorporate genetic marker data as additional nodes in the Bayesian network recon-
struction process, shown in Fig. 8.4. It is only possible that genetic locus regulates
gene expression nodes (information can only flow from genetic variation to tran-
scriptional changes), but gene expression node cannot regulate genetic mark nodes.
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Fig. 8.4 A network structure model with two types of nodes for genetic markers and gene expression
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Fig. 8.5 Precision-recall plots for networks reconstructed for 24 sets of data with 1,000 nodes. The
red curves are for structures reconstructed with integration of genetic marker data. The blue curves
are for structures reconstructed without considering genetic marker data
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Fig. 8.6 Shortest path distributions for random pairs (a) and false positive pairs predicted in the
reconstructed networks (b). Most false positive pairs are closely linked in the true networks

8.2.4 Comparing Reconstructed Structures with True Network
Structures Underlying Simulated Data

We applied RIMBAnet network reconstruction algorithm to a set of simulated data
for networks with 1,000 genes. We inferred two sets of networks using genetic marker
data or not. Each reconstructed network is the averaged network structure based on
1,000 independent runs (see Sect. 8.2.2.4 for details). Network edges that occur in
more than 30 % 1,000 individual runs are included in the final reconstructed network.
In each constructed network, network edges are rank ordered by their recurrences in
1,000 individual runs. Then, we compared them to the true corresponding network
structures used for data simulation. We calculated precision = true positive/total
predictions, and recall = true positive links/total true links, for each reconstructed
structure. Results are shown in Fig. 8.5, where red lines are for structures with genetic
marker data integrated and blue lines are for structures without considering genetic
marker data. When comparing lines in columns 1 and 3 with corresponding lines
in columns 2 and 4, it is clear that the sample size is an important factor affecting
network reconstruction accuracy. Comparing network reconstructions with the same
underlying true network structure, the same number of samples but with different
signal strength in the simulated data (e.g., comparing blue line in the first column in
the first row with the blue line in the third column in the first row), it is not surprising
to see that the network reconstruction accuracies heavily depend on signals. The
stronger the signal is, the better the reconstruction accuracy can be achieved (better
precision at the same recall rate or large recall rate at the same precision). Integration
of genetic data improves network reconstruction accuracy (comparing red and blue
lines in the same column). The improvement is obvious when the signal is weak
(comparing red and blue lines in columns 1 and 2 in Fig. 8.5), which is consistent
with our previous simulation results (Zhu 2007).
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Fig. 8.7 Correlation coefficient distribution for random pairs and pairs predicted networks. a the
correlation coefficient distribution of all possible pairs in a true underlie network; b the correla-
tion coefficient distribution of all true pairs in a true underlie network; c the correlation coefficient
distribution of all true positive pairs in a reconstructed network; d the correlation coefficient distri-
bution of all true positive pairs in a reconstructed network; Some true positive links with very weak
correlations (red marks) are predicted in our networks, which suggests the RIMBANet approach
identifies nonlinear interactions

For two nodes that are predicted to be causally related, we tested whether they are
closely related in the true network. We compared the shortest distance distribution
of false positive pairs with the distribution of random pairs, shown in Fig. 8.6. Most
random pairs of nodes are at least three steps away from each other (Fig. 8.6a).
A small faction of false positives in our reconstructed networks is due to wrong
causal direction predicted (shortest distance equal one in Fig. 8.6b). Most of false
positive pairs in the reconstructed networks are indirect neighbors (two nodes share
a direct neighbor) in the true underlie network structures (shortest distance equal two
in Fig. 8.6b). To further dissect why false positives and false negatives are predicted,
we compared pairwise correlation coefficients of all pairs (Fig. 8.7a), all true pairs
(Fig. 8.7b), true positives (Fig. 8.7c), and false positives (Fig. 8.7d). Nodes that are
linked in the true network structures are stronger correlated compared to nodes in
random pairs (Fig. 8.7a, b). The correlation co-efficient distribution of true positives
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(Fig. 8.7c) is the distribution of all true pairs (Fig. 8.7b). The stronger the correlation,
the more likely it is to be recovered as expected. However, some links with pairwise
correlation coefficients close to zeros (red marked region in Fig. 8.7c, d) are also
predicted in our reconstructed networks.

Discussion

One of the potential drawbacks of simulation studies is that a reconstruction method
tends to perform better if it shares similar assumptions with the models in simulation.
In general application of RIMBNet, we discretize continuous data, then use discrete
data to evaluate different structure configurations in the Bayesian network recon-
struction process. The network model with discrete data can represent both linear
and nonlinear relationships. However, any discretization process loses information so
that the number of samples required is generally larger than linear-only models. On
the other hand, the computation speed is much faster with discrete data than contin-
uous data. Discrete Bayesian networks such as RIMBANet can be used to construct
large biological networks with over 10,000 nodes (Zhu 2010). In general, it takes
1,000 × 10 CPU h (10 h for each 1,000 independent MCMC chains) to construct a
network with 5,000 nodes. To apply RIMBANet to the simulated dataset of 5,000-
gene networks and perform similar analysis in this chapter, at least 48 structures
(24 and 24 for with and without genetic priors, respectively) need to be constructed.
We did not apply our approach to the 5,000-gene network dataset as the computa-
tional requirement is out of our capacity.

In conclusion, we show that integration of genetic data into network reconstruction
using our RIMBANet approach improves network reconstruction accuracy. False-
positive links in reconstructed networks are not randomly distributed. More than
80 % of them connect nodes that are indirect neighbors.
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