Chapter 1
Clustering in Light Nuclei; from the Stable
to the Exotic

Martin Freer

1.1 Clusters and Correlations in Context

The structure of nuclear matter is rich and varied. In one light the nucleus may be-
have like a liquid drop, with its shape and size corresponding to a balance between
the long(ish) range attractive and short range repulsive behaviour of the nucleon-
nucleon interaction and the charges of the constituent protons. This liquid drop dis-
plays collective properties such as vibrations where vibrational modes distort the
nuclear surface; it can be encouraged to deform and then can be rotated—as the
droplet spins it stretches which provides a mechanism for the determination of the
equation-of-state of the fluid. At a critical angular momentum the droplet will fis-
sion. Similarly as the mass of a nucleus increases, typically so does the number of
protons and hence the charge. The repulsive Coulomb energy should cause the nu-
cleus to spontaneously fission when the number of protons is close to 100. However,
it is at this point that another crucial feature contributes which allows nuclei to exist
beyond that point—shell effects. Shell structure, which features for light and heavy
nuclei alike, is associated with the quantal properties of the nucleus and marks a
deviation from the constituent particles to a picture in which the particles are rep-
resented by standing waves. The associated quantum states are those of the nuclear
shell model and give rise to a sequence of magic numbers which are associated with
enhanced stability. A superposition of the macroscopic liquid drop and microscopic
shell model-like behaviour is required to describe the stability of nuclei beyond the
point at which the charged liquid drop should explode.

For light nuclei there is a similar interplay between the collective and single-
particle nature, but here details of the nature of the interaction between the nucleons
becomes increasingly important. Correlations become a dominant feature. The pair-
ing interaction is evident in the nature of the drip-lines, which define the limits
of stability on both the proton and neutron-rich side of the chart of nuclides (see
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Fig. 1.1 Light nuclei. Filled squares are either stable or beta-decay, unfilled particle (neutron, pro-
ton or o) decay. The arrows show the paths corresponding to the removal of a proton or a-particle
from '0C. The diagram on the right hand side illustrates the 4th order Brunian knot

Fig. 1.1). For the helium nuclei, He is stable, whereas *He is not. Similarly, °He
and ®He are stable and "He is not. The difference being that in addition to the “He
core the stable isotopes have even numbers of neutrons, whereas the unstable ones
do not. °He and 8He are known as Borromean nuclei, as for example in the case of
%He if a neutron is removed then the other two components dissociate; further if the
a-particle is extracted then this leaves the unbound 2n system.

As an example of potentially exotic structures on the proton-rich side the '°C
nucleus sits at the head of a loop around unbound nuclei which include B and
8Be. 1°C may be thought of being composed of two protons and two a-particles
and if any of the components are removed then the other three dissociate. This may
be thought as a super-Borromean nucleus, or recognising that Borromean systems
belong to a class of mathematical objects called Brunian knots then '°C is a nucleus
which is 4th order knot (as illustrated in Fig. 1.1).

These are rather extreme examples of correlations, but they are rather common-
place in light nuclei and have a determining role when it comes to the structure.
These correlations can be spatial in addition to energy or momentum and then are
referred to as clusters. The most prevalent cluster is the «-particle due to its re-
markably high binding and inertness. This contribution examines some of the basic
underlying principles behind the formation of clusters and examines some of the
key areas experimentally where they strongly feature.

1.2 Clusters in First Principles Models

The formation of structures in nuclei that have large scale clustering is an intriguing
phenomenon and is in part driven by correlations which stem from the details of
the nucleon-nucleon interaction. For example, the ab initio Green’s Function Monte
Carlo (GFMC) calculations of ®Be [1] predict the structure of nuclei based upon a
starting point which is the nucleon-nucleon interaction expressed in terms of all two-
body and three-body components. The two-body interactions are a parameterisation
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Fig. 1.2 The Green’s
Function Monte Carlo
calculations of the density of
8Be. The left and right-hand
images are the densities
calculated in the laboratory
and intrinsic frames,
respectively [1]. The 2«
cluster structure is clearly
evident
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of the n—n force as determined from nucleon-nucleon scattering. It is not possible to
determine the 3-body force in the same way, but is included through a parameterisa-
tion of terms such as the higher order pion exchange components devised by Fujita
and Miyazawa [2]. In this manner the interaction is ab initio motivated rather than
being grown from QCD. Given, that the model is one which contains the nucleonic
degrees of freedom, it is somewhat remarkable that such an approach yields a $Be
ground state, Fig. 1.2, that is clearly clustered [1]. At this point it is thus tempting
to assert that the nucleus ®Be corresponds to an a—« cluster structure in the ground
state.

There have been many recent developments in the field of nuclear clusters in-
cluding the ability to perform ab initio calculations of the light nuclei, such as the
Green’s Function Monte Carlo methods and Antisymmetrized Molecular Dynam-
ics (Sect. 1.4.4) and Chiral Effective Field Theory (where nuclear properties are
calculated on the lattice), the appearance of both experimental and theoretical ev-
idence for molecular structures (Sect. 1.7) and the renewed focus on cluster states
in nuclear synthesis, in particular the Hoyle-state in '>C which may possess an a-
condensate structure (Sect. 1.4.2). The following section attempts to provide a basic
understanding of some of the underlying principles.

1.3 Appearance of the Nuclear Cluster from the Mean-Field

The possibility that the o-particles could be rearranged in some geometric fashion
was realised even in the earliest days of the subject. An examination of the bind-
ing energy per nucleon of the light nuclei (Fig. 1.3—Ileft-hand-side) shows that the
nuclei which have even, and equal, number of protons and neutrons (so-called «-
conjugate nuclei) are particularly stable, 8Be, 12C, 1°0, ?°Ne, ... . Figure 1.3, right-
hand-side, shows the binding energy per nucleon plotted against the energy of the
first excited state for a variety of nuclei. The nucleus “He stands out as being both
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Fig. 1.3 (Left panel) Binding energy per nucleon of light nuclear systems (up to A = 28), the lines
connect isotopes of each element. The “«-particle nuclei” are marked by the circles. (Right panel)
Excitation energy of first excited states plotted versus binding energy per nucleon for nuclei up to
A = 20. Good clusters should have both high binding energies and first excited states. The nucleus
4He is clearly an outstanding cluster candidate. The box drawn includes nuclei which may also
form clusters: 12C, 140, 14C, 15N and 1°0

stable and inert. These systems were also considered by Hafstad and Teller [3], who
characterised the binding energy with number of “bonds” or interactions between
the «-particles (Fig. 1.4). The rather linear relationship pointed to an apparently con-
stant ¢—« interaction and the inertness of the «-particle in the ground states of these
nuclei (it should be noted that this view is not one which is currently held, where the
cluster structure is believed to be eroded in most ground-states). In essence, what
this reveals is that the binding energies of such N« nuclei (N being an integer repre-
senting the number of «-particles) can be described in terms of N(BEy) + N - Byq,
where BE, is the binding energy of the a-particle and B, is the energy associated
with the a—« interaction. In turn this may be indicative of the important of p—p,
n-n and n—p correlation energies associated with occupation of common orbitals in
nuclei with even and equal numbers of protons and neutrons («-conjugate nuclei).
Earlier Morinaga had postulated, in a rather extreme prediction for the time, that
it should be possible for the «-particles to arrange themselves in a linear fashion [4].
The idea that the cluster should not be manifest in the ground-state but emerge as the
internal energy of the nucleus is increased was realised to be key in the 1960’s [5].
For a nucleus to develop a cluster structure it must be energetically allowed. Asymp-
totically, when the nucleus is separated into its cluster components an energy equiv-
alent to the mass difference between the host and the clusters must be provided.
There is an additional contribution which is the interaction between clusters which
is required to fully separate them. In other words, the cluster structure would expect
to be manifest close to, and probably slightly below, the cluster decay threshold.
This was the view reached by Ikeda and co-workers, and is summarised in the di-
agram in Fig. 1.5. The diagram illustrates that each new cluster degree of freedom
arises as the cluster decay threshold is approached, or crossed. Thus, there is the
gradual transition from the compact ground-state to the full liberation of the N«
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degree of freedom. Schematically, the diagram shows a linear arrangement of «-
particles at the N«-limit, though this need not be the most stable configuration. In
fact, it may be argued that the linear structure has an inherent instability [7], though
many have interpreted this limit as representing a linear structure.

There is a second key ingredient whose role greatly influences the possible ge-
ometric arrangements of the clusters—and that is symmetries. These symmetries
can be thought of as arising from the packing of the «-particles, but have a deeper
origin which relates to the quantal properties if the system. In order to illustrate
this, we start with an analysis of a rather simple and schematic approach to the nu-
clear mean-field, but one which is nevertheless rather powerful. In the application
of the harmonic oscillator (HO) to the nuclear problem, it is assumed that each nu-
cleon moves within a parabolic potential (i.e. a linear restoring force) created by the
mean-interaction of all of the other constituents. The solution of the Schrédinger
equation then yields the well known energy levels

E =ho(n+3/2) (1.1)

for the three dimensional nucleus, where oscillations can be along any of the three
cartesian coordinate axes and n is the number of oscillator quanta. If the nucleus,
or equivalently potential, is deformed, for example stretched along the z-axis, then
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Fig. 1.5 The Ikeda picture
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the size of the potential in the x and y-directions must shrink in order to conserve
the nuclear volume. The extended potential in the z-direction lowers the oscillation
frequency and, for an axially symmetric potential, is increased in the perpendicular
direction. Thus, the degeneracy implicit in (1.1), is removed and

3
E:hwlnj_+ﬁcoznz+§ha)o (1.2)

where the characteristic oscillator frequencies for oscillations perpendicular (L) and
parallel (z) to the deformation axis are now required. These are constrained such that
oo = (2w + w;), and the quadrupole deformation is given by

e=¢& = (wL —w;)/wp. (1.3)

The total number of oscillator quanta is the sum of those on the parallel and perpen-
dicular axes (n3 + n;).

The characteristic energy levels of the deformed harmonic oscillator are shown
in Fig. 1.6 [8]. The striking feature is the crossings of levels (regions of high de-
generacy) which occur for axial deformations of (w] : w;) 2:1 and 3:1. In fact, such
degeneracies occur whenever the ratios wy : wy : w; =a : b :c where a, b and c are
simple integers. Here shell structure is generated and corresponding deformed magic
numbers emerge. In fact, the magic numbers reveal some particularly interesting be-
haviour. If rather than examining the magic numbers the sequence of degeneracies is
explored, then the sequence of spherical degeneracies (2, 6, 12, 20, ...) is repeated
twice at a deformation of 2:1 and three times at 3:1. This pattern would indicate
two interacting spherical harmonic oscillator potentials at 2:1 and three at 3:1, etc.
Here the symmetry appears within the magic numbers. These ideas were articulated
mathematically by Nazarewicz and Dobaczewski [10].
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Fig. 1.6 The deformed 6.0
harmonic oscillator. The shell
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indicate the degeneracy of the 251
level scheme at the crossing
points, from Ref. [9]
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These symmetries have been explored elsewhere in detail in order to identify par-
ticular cluster partitions. Building on some of the earlier work of Bengtsson [11],
Rae [12] focussed on the details of the deformed magic numbers in order to probe
explicitly the cluster decompositions. These are shown in Table 1.1. Rae demon-
strated that the deformed magic numbers could be expressed as the sums of spherical
ones. This description locates at each deformation the associated cluster structure.
At a deformation of 2:1 the superdeformed cluster states should be found in ¥Be
(o + ), 2Ne (1°0 + ), 328 (100 + °Q)... and at 3:1—hyperdef0rmati0n—12C
(a+a+a), 24Mg (o + '°0 + «), etc. Thus, the combination of the ideas of Rae
and the Ikeda-picture permit the excitation-energy, deformation and single-particle
configuration of cluster states to be determined.

The symmetries indicate a mapping between the shell structure and particular
cluster states. However, the link runs deeper. We examine the rather trivial case of
8Be. The levels which are labelled with degeneracy 2 are those with the oscillator
quantum numbers [n,n;] = [0, 0] and [0, 1]. Each of these levels would be oc-
cupied by pairs of protons and pairs of neutrons with their spins coupled to zero.
The density distributions of the particles is given by the square of the corresponding
wave-functions, ¢g o and ¢, 1. The overall 8Be density is given by |<p0,0|2 + |@o.11%
These three components are shown in Fig. 1.7. The feature which emerges is one
in which the density is double humped corresponding to the localisation of the pro-
tons and neutrons within two “a-particles”. Interestingly, the observed distribution
is generated by particles moving in an axially deformed potential, this generates a
clustered density distribution which then in turn creates the mean-field in which the
particles move. This latter field is not identical to the first. Clearly, to provide sta-
ble solutions, self consistent approaches are required. Some of these are described
later (e.g. Antisymmetrized Molecular Dynamics (AMD) and Fermionic Molecular
Dynamics (FMD)).

The above operation can be also applied to the 3:1 deformed shell closure, where
we consider the three lowest orbits which are labelled with degeneracy 2. These
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Table 1.1 Relationship between the deformed magic numbers at deformations of 2:1 and 3:1 and
spherical cluster decompositions from [12]. For example, at a deformation of 2:1 the neutron and
proton magic numbers 4, 10 and 16 can be decomposed into the spherical neutron and proton
magic numbers 2 + 2, 8 + 2 and 8 + 8. Thus, one would expect at a deformation of 2:1 the cluster
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Fig. 1.7 The density corresponding to the HO configurations for (a) 8Be and (¢) '2C. In (a) the
square of the (ny,ny,n;) =(0,0,0) and (0, 0, 1) orbits are plotted as is their sum (solid line). The
square of the (0, 0, 0), (0,0, 1) and (0, 0, 2) orbits together with their sum (solid line) are shown in
(c). Parts (b) and (d) show the separation into the two and three-centered components, respectively.
These show the individual «-particle densities

are the [n,,n;] =10, 0], [0, 1] and [0, 2] HO levels. Figures 1.7 and 1.8 shows the
densities which correspond to these three orbits. What can be clearly observed is
that at the deformation of 3:1 there is a three humped structure. In other words, it
is possible to see the evidence for the systems division into three centers. As with
the 8Be case, it is possible to project out the “a-particles” by appealing to the point
symmetries of a three centered systems. If we employ the wave-functions containing
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Fig. 1.8 The density of the

: *Be
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these symmetries we can equate the number of nodes in the multi-centered wave-
functions with those in the harmonic oscillator wave-functions under consideration;

V0,0 = %%H + %%(0) + %¢a(+) (1.4)
1 1

Yo,1 = E%(_) - E%(Jr) (1.5)
1 1 1

Yo.2 = _§¢a(—) + E%(O) - E¢a(+)- (1.6)

These can be solved for the three a-particle like wave-functions ¢ (— 0,+). The re-
sulting a-particle densities are shown in Figs. 1.7 and 1.8. The greater overlap of
the “«-particles” means that the central «-particle has additional higher order com-
ponents (quantified in [9]).

Such an analysis may be performed universally across the deformed harmonic
oscillator level scheme where ever shell structures arise and similar conclusions
emerge; namely 2-fold clustering at a deformation at 2:1 and 3 at 3:1, etc. What is
evident is that the cluster symmetries which are found in the HO are present both
in degeneracies and densities. Figure 1.8 shows these symmetries for the first -
particle states appearing at deformations of 2:1, 3:1 and 4:1. Given the influence of
the harmonic oscillator on more sophisticated nuclear models these cluster symme-
tries might be expected to be pervasive. The competition between the mean-field and
clustering degrees of freedom is of great interest if the tendency of nuclei to fall ei-
ther a shell-model or cluster-like description is to be probed. Itagaki and co-workers
have recently explored this partition for a range of nuclei, e.g. Refs. [13-15].

Although more sophisticated models allow a more realistic description of the
nucleus to be arrived at, the ideas developed here remain the leading order terms in
our understanding of these nuclear states.

An example of this latter point may be found in a variety of calculations for >*Mg.
Figure 1.9 shows a compilation of calculations for >*Mg. The central panel shows a
Nilsson Strutinsky (NS) potential energy surface which is a macro-microscopic cal-
culation which reveals a series of minima in the surface associated with meta-stable
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Fig. 1.9 Comparison of a
range of calculations of
24Mg. The central panel
shows a Nilsson Strutinsky
calculation for the potential
energy surface, the
calculations around the
outside show densities
predicted by the Alpha
Cluster Model (ACM),
Hartree-Fock (HF) and
Harmonic Oscillator (HO)

ACM S0°

configurations. These may be linked directly with the appearance of shell struc-
tures in the deformed HO and also with Alpha Cluster Model (ACM) calculations
in which the >*Mg nucleus is described in terms of geometric arrangements of 6
a-particles—there is a one-to-one mapping between minima in the potential energy
surface and the configurations found in the Alpha Cluster Model. In addition the
densities for two structures found in Hartree-Fock (HF) calculations are shown—
which bear a close resemblance to the structures found in the ACM. Finally, it is
possible to extract from the NS calculations the underlying single-particle config-
uration and then this may be used to calculate the densities one would expect in
the case of the harmonic oscillator (HO). Remarkably, these HO densities exhibit
symmetries, or equivalently patterns, which are very strongly allied to those of the
ACM. In other words, the symmetries that are associated with the arrangements of
the a-particle clusters are pervasive in the mean-field type models. Thus, even if the
a-particles themselves are not explicitly present within the nucleus their geometrical
symmetries leave an imprint.

It should be noted that in the case of deformed states discussed here there exist
two reference frames. The first is the intrinsic frame in which the coordinate sys-
tem may be aligned with the deformation axis. In this case angular momentum of
individual nucleons is not a good quantum number, only its projection onto the de-
formation axis. The second frame is the laboratory frame, which is the reference
frame of the shell model—here angular momentum is a good quantum number. In
calculations such as Hartree-Fock (HF) or Hartee-Fock-Bogoliubov (HFB), the lat-
ter including pairing, it is necessary to project out from the intrinsic states, states of
good angular momentum (projection after variation). In the HF case this projection
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is performed using the Peierls-Yoccoz procedure [16] and for the more complex
case a technique introduced by Blatt [17]. The majority of the cluster structures pre-
sented in the present review correspond to intrinsic states. It is of course within this
framework in which collective rotational energies have a natural description. In the
case of light nuclei in which SU(3) symmetry is respected it is often possible to de-
duce the relationship between the intrinsic and laboratory descriptions, i.e. the shell
model limit corresponding to various cluster structures [10].

1.4 More Sophisticated Models of Clustering

The deformed harmonic oscillator provides a very good basis for distilling the un-
derlying behavior of light nuclei, but is schematic. If one is to make progress towards
a more detailed understanding and the ability to reproduce experimental observables
such as transition rates, radii and energies then models of greater sophistication
are required. Historically many models have taken as a starting point an implicit
assumption of the existence of clustering and developing an interaction between
a-particles. In more recent times it has been realized that the «-particles within
the nucleus cannot be considered to be truly inert, but that interactions will distort,
polarize and modify the internal structure and that the real degrees of freedom are
those of the nucleons. This section explores some of the developments of models
and their merits.

1.4.1 Bloch-Brink Alpha Cluster Model (ACM)

The Alpha Cluster Model was first conceived of by Margenau [18] and then devel-
oped by Brink [19] drawing on the work of Bloch. Within the nuclear shell model
the “He nucleus is constructed from 2 p + 2n all within the Osy /2 orbital. The princi-
ple construction of the alpha particle model is to build on this idea and that quartets
are produced from pairs of protons and neutrons which are coupled to a total angular
momentum of zero, i.e. they may be represented by a relative Os-state. A collection
of such quartet states may be modeled within the harmonic oscillator framework

using
1 —(r—R;)?
$i(0) =1/ 1337 XP| — ;3 : (L.7)

Here R; is the vector describing the location of the ith quartet, and b = (fi/ mw)'/?
is a scale parameter which determines the size of the «-particle. The overall wave-
function of the system formed from the collection of «-particles must then be anti-
symmetrized in recognition that the true degrees of freedom are fermionic. Corre-
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Fig. 1.10 Alpha Cluster Model (ACM) calculation for 2D structures in a range of light nuclei
from Ref. [23]. See original work for further details

spondingly, the N« wave-function is then created using a Slater determinant

N
®(R1, Ry, ..., Ry) =Ko/ ] ¢i (Ri) (1.8)
i=1

o ]_[lN= 1 i (R;) being the Slater determinant wave-function (& is the antisym-
metrization operator accounting for the Pauli Exclusion Principle) and K a normal-
isation constant. The antisymmetrizer recognizes that the wave-function is actually
composed of the fermionic degrees of freedom, albeit the femions are embedded in
the clusters. At short distances this will serve to break the «-particles. The Hamil-
tonian describing the total energy of the Nu-system is

A
1
H=§Ti+§;[v(ri—l'j)‘l‘vc(l‘i—l‘j)]—Tc.m. (19)

T..m. is the center-of-mass energy and the o—« interactions are governed by the ef-
fective nucleon-nucleon potential v(r; —r;) and Coulomb interaction v.(r; —r;).
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The optimal arrangement of the «-particles is arrived at variationally, where the
parameters which are optimised are the locations and size of the «-particles.
This model has been applied extensively to light cluster systems by for example
Brink [19], to the nucleus 160 [20], a series of rather comprehensive set of calcula-
tions of the structure of 24Mg by Marsh and Rae [21] (Fig. 1.9), linear arrangements
of a-particles by Merchant [22] and finally a series of wide ranging calculations
by Zhang et al. [23, 24], some of which are shown in Fig. 1.10. As was observed
in Fig. 1.10, where the clusters were constrained to lie within a plane, many of the
cluster structures are crystalline in nature.

As pointed out earlier there is a very strong mapping between the spatial sym-
metries found in these calculations and those which may be found in the densities
associated with the deformed harmonic oscillator. In fact it is possible to deduce,
in the limit that the separation of the «-particles tends to zero, the correspond-
ing harmonic oscillator configurations. It is these oscillator configurations that then
produce densities which emulate the patterns that are found in the Alpha Cluster
Model.

1.4.2 Condensates and the THSR Wave-Function

An intriguing possibility that the Alpha Cluster Model raises is that there may be
a class of states in nuclei in which the separation of the «-particles is such that the
internal structure of the a-particle is no longer so important. The conditions nec-
essary to achieve this require that the nuclear radius is sufficiently large. Such a
condition may be achieved close to the «-decay threshold, where in a state which is
only weakly bound an «-particle may significantly tunnel into the barrier increasing
the nuclear volume. Perhaps the best candidate for such behaviour is the 7.65 MeV,
0%, Hoyle-state in '>C. From electron inelastic scattering measurements it is un-
derstood that the volume associated with the Hoyle state is some 3 to 4 times that
of the ground-state. A further possibility then arises; if the state may be described
by a collection of identical bosons is it possible for them to adopt bosonic sym-
metries and behave as an atomic Bose-Einstein condensate? In order to describe
such a possibility, the Bloch-Brink wave-function (Sect. 1.4.1) has been adapted by
Tohsaki, Horiuchi, Schuck and Ropke (THSR) to reflect the possible character of
the state [25-27]. The condensed wave-function has the form

(re, ..., rn|Pug)

= d[@x(rl» r21 1'3, r4)¢0{(r57 r61 1'7, r8)¢0[(rN—37 cet rN)] (110)

here the construction is for N nucleons grouped into quartets described by ¢,. The
wave-function of the a-particle is given by

7R2/82¢

@a(ri, 12,13, 14) =¢ (ry—rp,ry —r3,...) (L.11)
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Fig. 1.11 The calculated 1072
inelastic form factor for
electron inelastic scattering
from the 0 ground state to
the 03’ excited state [29],
compared with the
experimental data

from [30-32]
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where [R =r] + rp 4+ 3 4+ r4]/4 is the c.o.m. coordinate of one «-particle and
¢(ri —rp, r; —rs,....) is a Gaussian wave-function

¢(r1 —r2,r1 —13,...) =exp(—[r1 —Ip,r — r3,...]2/b2) (1.12)

as in the ACM b is the size parameter of the free a-particle and B (o> b) is the
parameter which describes the size of the common Gaussian distribution of the three
a-particles. In the limit that B — oo then the antisymmetrization operator 27 ceases
to be important and the wave-function (1.10) becomes the product of Gaussians, i.e.
a wave-function describing a free «-particle gas [28]. The important feature is that
in the limit that the volume becomes small the antisymmetrization takes over and
the wave-function respects the internal fermionic degrees of freedom. In this way
the wave-function is very similar to that of the Alpha Cluster Model, but possesses
an additional variational degree of freedom.

One of the main successes of this model is that it manages to reproduce the form
factor for the electron elastic excitation to the Hoyle-state without any arbitrary nor-
malisation [29] (see Fig. 1.11). There is remarkable agreement with the experimen-
tal data, which would confirm the nature of the Hoyle-state as being both spatially
extended and strongly influenced by an internal «-particle structure.

1.4.3 Microscopic Cluster Models

The Alpha Cluster Model produces a rather good picture of the nature of states
within A = 4n nuclei which condense out into collections of «-particles. How-
ever, although it antisymmetrizes the «-particles, their individual constituents are
ignored, i.e. the internal excitations of the cluster. For clusters such as «-particles
this may be a good approximation, but for other clusters this is not the case. Such
shortcomings are addressed within the generator coordinate method (GCM) (also
within the resonating group method (RGM)) [33—42]. Moreover, this approach per-
mits reactions between the asymptotic clusters to be studied, as has been performed
extensively by Baye and Descouvement (e.g. Refs. [43—46]).
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Fig. 1.12 The GCM
calculations for °Be showing
the three rotational bands
associated with the

K™ =3/2"

(T -configuration),

K™ =1/2% (o-configuration)
and K™ = 1/27 bands, from
Ref. [47]. The experimental

data are the filled circles and 40
the squares and circles are the 15
calculations for two different K=1/2"
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Within the RGM formalism the wave-function describing the A nucleons, sepa-
rated into two clusters with A1 and A, constituents, may be written as,

W(rira,....ra) = F(Ren) A1 (D)2 (62)2(R)} (1.13)

here F (R, ) describes the motion of the center of mass of the nucleus, ¢; represent
antisymmetrized internal states of the two clusters (whose internal coordinates are
described by £;), g(R) is a function of the relative motion of the two clusters (so
that the relative coordinate R is given by (1/A}) ZZ.A:'] r; — (1/A3) Z;\i] r;) and

A is the antisymmetrization operator which exchanges nucleons between the two
clusters. The great advantage of this approach is the fact that the constituents of
the clusters are fully antisymmetrized and that the center-of-mass of the system is
correctly treated so that the quantum numbers produced have a realistic meaning
in terms of the asymptotic fragments. The above corresponds to the single-channel
form of the RGM, if excitations of the cluster cores are required then so is a multi-
channel approach.

An impressive demonstration of the GCM can be found in the calculations of
the structure of the microscopic structure of %1011 Be isotopes using 2« + Xn con-
figurations by Descouvement [47]. The calculations for °Be reproduce almost per-
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fectly the rotational bands in this system. In particular, the Coriolis decoupling of
the K™ = 1/27 band is found (see Fig. 1.12). These GCM calculations reproduce
the characteristics of the molecular states in the nuclei >!% 1 Be. In this instance the
neutrons reside in molecular orbits whereby they are exchanged between the two
a-particle cores—ur -orbit for the ground state band and o for the excited states (see
Sect. 1.7).

In recognition of this molecular behaviour, some approaches employ such or-
bitals explicitly in defining the basis states for the calculation of the structural prop-
erties. For example, this molecular-orbit (MO) approach has been used to calculate
the properties of the neutron-rich beryllium [48-50] and carbon isotopes [51]. Here
the molecular orbits are formed from linear combinations of p-orbitals based around
a-particle centers. The MO framework also allows collisions between two nuclei to
be considered, for example in the generalized two-center cluster model (GTCM),
using a basis function of the form

o K = Bl o (YL@ vr@pmpm)), (1.14)

the formation of resonances in '°Be from ®He+*He has recently been consid-
ered [52]. Here ¥ r(c) is the wave-function of the left/right (L/R) c«-particle and
¢ (m,n) are the molecular wave-functions of the neutrons. 13,?” and & are the
parity projection and antisymmetrisation operators ensuring states have good an-
gular momentum (J), angular momentum projection (K) and parity (;r). Rather
interestingly, these calculations indicate that in the inelastic scattering reaction
“He +%He = *He 4 ®He(2T) an avoided crossing which takes place between differ-
ent molecular configurations that a Landau-Zener type transition [53, 54] is respon-
sible for the inelastic scattering in the L = 1 channel. In other words the formation
of molecular configurations in the scattering process can have a marked impact on
the elastic and inelastic scattering processes.

1.4.4 Antisymmetrised Molecular Dynamics (AMD) and Fermionic
Molecular Dynamics (FMD)

The AMD approach, which has been comprehensively reviewed recently by
Kanada-En’yo and Horriuchi [55], has many important advantages over micro-
scopic cluster models, but the most significant is that there are no assumptions made
about the cluster or the relative coordinates between clusters. The model is one in
which the nucleonic degrees of freedom are explicitly included and the A-nucleon
wave-function is then antisymmetrised again via a Slater determinant:

(] (Z) 1 | } (1.15)

AMD = —F=2191,92, .-, PA;J- .
VA!

In this way the model resembles the Bloch-Brink cluster model, but contains as
degrees of freedom the nucleons and releases the constraint that «-particles be pre-
formed. Consequently, clusters emerge without being imposed. The ¢; are Gaussian
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Fig. 1.13 The density distributions of the ground-states of the beryllium isotopes calculated within
the framework of the AMD. The first column shows the total nucleon density (p) and the middle
and right-hand columns the proton (p,,) and neutron densities (o). From [55]

wave-packets in space, @x, (r;) o exp(—v(r; — X;/ ﬁ)z), but also possess spin
(xi) and isospin character (7;): ¢; = ¢x, x; Ti. The wave-function is parameterized
in terms of a complex set of variables Z describing the spin and geometry of the
wave-function. The energy of the system is computed, variationally, utilizing an
effective nucleon-nucleon interaction (see Ref. [55] for more details). The flexibil-
ity of this approach allows a suitable description of cluster and shell-model type
systems, alike, and the structure emerges naturally from the details of the nucleon-
nucleon interaction under the guidance of the Pauli Exclusion Principle.

An example of the appearance of the precipitation of clusters from the nucleon-
nucleon interaction within the framework of the AMD is shown in Fig. 1.13 for
the beryllium isotopes ~1¥Be. All isotopes possess a proton distribution which is
prolate and clustered. The role of the neutrons is clear. When the neutron number
is the same as that of the protons (*Be) the separation of the proton-cores is maxi-
mal (maximum clustering), whereas neutrons in more spherical distributions cause
the separation of the proton centers to be reduced. This model has been widely ap-
plied, but with a particular focus on the Li, Be, B and C isotopes, see Ref. [55] and
references therein. In general the model reproduces well both experimental bind-
ing energies, transition rates, radii and moments. Figure 1.14 shows some examples
of the rather close agreement between the AMD calculations and the experimental
electric quadrupole moments and electromagnetic transition rates.
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Fig. 1.14 (Left) Electric quadrupole moments for Li, Be and B isotopes. The squares are exper-
imental data and other symbols are the AMD calculations with slightly different interactions or
constructions. (Right) E2 transition strengths for Li, Be, B and C isotopes. The squares are the
experimental data points, the other symbols are the AMD calculations. See Ref. [55] for further
details

An alternate approach to AMD which contains an additional degree of freedom,
namely each nucleon is represented by two Gaussian wave-packets, is fermionic
molecular dynamics (FMD) [56]. Moreover, the interaction employed (Unitary Cor-
relation Operator Method—UCOM) includes a tensor component. The features of
these calculations essentially coincide with those of the AMD, but the variable
Gaussian width should allow, in principle, a better description of shell-model like
states and should potentially provide a better description of weakly bound states.
The recent calculations for the structure of the 7.65 MeV state in '2C are of partic-
ular note [57].

1.4.5 Ab Initio Type Models

Ultimately, it is important to be able to push beyond models which either employ
assumptions of preformed clusters or effective interactions. The Green’s Function
Monte Carlo (GFMC) method, described earlier, uses realistic two-body interactions
with a parameterization of the 3-body force. Not only does this method reproduce
the properties of light nuclei up to A = 12 rather precisely, but, as shown in Fig. 1.2,
also indicates the emergence of cluster like structures in nuclei such as 8Be [1].
Another approach which attempts to extend beyond the shell model is the no-
core shell model (NCSM) in which realistic interactions are used but with a set
of basis states which are harmonic oscillator states [58]. This approach provides an
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analytic basis for the construction of the many-body Slater determinants. The down-
side is that HO wave-functions do not have the appropriate asymptotic behavior (as
a function of r), which means that they tend not to be a good description of weakly
bound systems, and also all states of the system end up being effectively bound
due to the nature of the potential. As its name suggests the interaction between all
nucleons is taken into account (rather than the valence nucleons beyond the closed
shell) and it may use a variety of interactions including those used in the GFMC
approach (the Argonne potentials) and those from Effective Field Theory (EFT).

In this latter case the interaction is grown from QCD by including various types
of exchange processes which in leading order include one pion exchange terms.
Higher order corrections include more complex processes for example next to lead-
ing order (NLO) includes 2 pion exchange and terms which correspond to pions
being radiated and absorbed by a single nucleon which interacts with a second via
pion exchange (called renormalisation of 1 pion exchange). Current models extend
to N3LO (next to, next to, next to leading order) which amongst other components
would include 3 pion exchange components [59, 60] and even N4LO.

Calculations of the states of '>C using the no-core shell model [61, 62] struggle
to reproduce the excitation of the 7.65 MeV, 0, Hoyle state without an extension
of the basis to include excitations to HO levels at very high energies (large hw). The
Hoyle-state has long been known to possess a cluster-like structure and the failure
of the NCSM to capture the detail of this state without a significant expansion of the
basis is thus not surprising. In fact, this may be taken as a signature of clusterization.

Finally, a rather promising development is the use of chiral EFT interactions in
lattice based calculations. A series of calculations of the structure of the states in
12€, including the Hoyle-state, have been performed. These point to both clusteri-
zation and a rather different structure of the 12C ground and excited states [63—65].
The lattice spacing used in these calculations remains rather coarse, but further op-
timization has the potential for providing great insight into the structure of light
clustered systems and their reactions.

1.5 Experimental Examples of Clustering

1.5.1 The Example Be

The ground-state of 3Be is unbound to 2 decay by 92 keV, and has a lifetime of
~10~ 165 It has a first excited 2% state at 3.03 MeV with a width of 1.51 MeV and
a 4™ state at 11.35 MeV with a width of 3.5 MeV. These three states have an energy
separation which is consistent with a rotational behaviour given by A2 J (J +1)/2.7,
where .# is the moment of inertia. The value for the moment of inertia that one
extracts is consistent with the picture of two touching «-particles, an essentially
super-deformed nucleus. Indeed the Green’s Function Monte Carlo calculations [1]
reproduce the spectrum of excited states which reinforces this interpretation. There
appears to be little doubt that clusterisation is a dominant factor in the structure of
the ®Be nucleus.
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1.5.2 The Structure of 1*C

If the structure of the '?C ground state is influenced by clustering or the symmetries
thereof, then the system can be constructed from a variety of geometric arrange-
ments of three «-particles. It might be expected that the compact equilateral-triangle
arrangement is the lowest energy configuration. Such an arrangement possesses a
D3y, point group symmetry. The corresponding rotational and vibrational spectrum
is described by a form [66]

E =Eo+ Avy + Buy + CL(L + 1) + D(K £2I)? (1.16)

where vy are vibrational quantum numbers, and vy is doubly degenerate; [ =
v2,v2 —2,...,1 or 0, L is angular momentum, M its projection on a laboratory
fixed axis and K a body-fixed axis [66]. A, B,C and D are adjustable parame-
ters. The spectrum of states predicted by the choice A =7.0, B =9.0, C = 0.8 and
D = 0.0 MeV is shown in Fig. 1.15.

The ground state band, (v1; vé) = (0, 00), contains no vibrational modes and co-
incides well with the observed experimental spectrum. Here the states correspond
to different values of K (K =3n,n=0,1,2...)and L.For K =0, L =0, 2,4 etc.,
which is a rotation of the plane of the triangle about a line of symmetry, whereas for
K>0L=K,K+1,K+2,....Inthe present case, K = 0 or 3 is plotted with the
parity being given by (—1)X. The K = 0 states coincide well with the well-known
0T (ground-state), 2+ (4.4 MeV) and 4% (14.1 MeV) states. The K = 3 states cor-
respond to a rotation about an axis which passes through the center of the triangle,
with each of the o-particles carrying one unit of angular momentum. The first state
has spin and parity 3~ and coincides with the 9.6 MeV, 37, excited state. The next
such state wouldbe K =6, JT =617. A prediction of this model is that there should
be a 4~ state almost degenerate with the 4T state. A recent measurement involving
studies of the a-decay correlations indicated that the 13.35 MeV unnatural-parity
state possessed J¥ =4~ [67]. The close degeneracy with the 14.1 MeV 47 state
would appear to confirm the D3, symmetry. The rotational properties of these states
are given by

2 252
EJK:hJ(J—i-l)_hK (1.17)
’ 2. 9Be 4. 9Be
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where #p. is the moment of inertia corresponding to two touching a-particles which
can be determined from the 3Be ground-state rotational band [3].

Historically, one of the pre-eminent tests of our understanding of the structure of
light nuclei lies in the nature of the second excited state in !2C. This system resides
at the limits of many of the ab-initio approaches. This state has character J”™ =
0" and lies at E, = 7.65 MeV. It is known as the Hoyle-state as it was predicted
by Fred Hoyle [68, 69] as a solution to the discrepancy between the observed and
predicted abundance of '?C. !2C is synthesized in the triple-a process, whereby
the two a-particles briefly fuse to make ®Be and at sufficient densities there is a
finite probability of capturing a third a-particle to form '>C. The 7.65 MeV state
serves as a doorway resonance, substantially enhancing the reaction-rate. Without
this resonance, or even if its energy were slightly different, the abundance of carbon
would be dramatically reduced as would that of carbon based life-forms.

In the description illustrated in Fig. 1.15 the O™ state at 7.65 MeV corresponds
to a vibrational mode (v; = 1). The coupling of rotational modes would then pro-
duce a corresponding 27 state at 4.4 MeV above 7.65 MeV, i.e. 12.05 MeV. There
is no known 27 state at this energy, pointing to the more complex structure of this
state. If the 7.65 MeV state in '2C has a structure similar to that of the ground-state
then a 27 state close to 12 MeV is expected. The closest state which has been re-
ported with these characteristics is at 11.16 MeV [70]. This state was observed in the
1'B(®*He, d)'?C reaction, but has not been observed in measurements subsequently.
A re-measurement of this reaction using the K600 spectrometer at iThemba in South
Africa demonstrates that the earlier observation of a state at 11.16 MeV was an ex-
perimental artifact and no such state exists [71]. This introduces an interesting set
of possibilities which lie at the heart of uncovering the structure of the Hoyle-state.
If the Hoyle-state is more deformed than the ground-state, and the system behaves
in a rotational fashion, then the 27 state would be lower in energy and an alterna-
tive possibility is that the Hoyle-state possesses no collective excitations. It has been
suggested that due to the close proximity of the Hoyle-state close to the 3x-decay
threshold, bound only by the presence of the Coulomb barrier, that the system ob-
tains a bosonic rather than fermionic identity and that the «-particle bosons behave
like a weakly interacting bosonic gas or even a bosonic condensate [25]. The reso-
lution of the structure may follow from the identification of the 2% excitation—or
otherwise.

Recent studies of the '>C(a, ') [72-74] and >C(p, p’) [75, 76] reactions indi-
cate the presence of a 2 state close to 9.6-9.7 MeV with a width of 0.5 to 1 MeV.
The state is only weakly populated in these reactions, presumably due to its un-
derlying cluster structure, and is broad. Consequently, its distinction from other
broad-states and dominant collective excitations (e.g. the 9.6 MeV, 3-) makes its un-
ambiguous identification challenging. Further, and perhaps definitive, evidence for
such an excitation comes from measurements of the '>C(y, 3«) reaction performed
at the HIGS facility, TUNL [77] in the US. Here a measurable cross section for this
process was observed in the same region of 9—10 MeV which cannot be attributed to
known states in this region. Furthermore, the angular distributions of the «-particles
are consistent with an L = 2 pattern, indicating a dominant 2 component. Based
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Fig. 1.16 Different Linear
arrangements of «-particles.
The closest possibility fitting
the experimental data is the

triangular arrangement Triangular

on a rather simple description of this state in terms of three «-particles with radii
given by the experimental charge radius (see Fig. 1.16 for possible arrangements),
it is possible to use the 2 MeV separation between the Hoyle-state and the proposed
27T excitation to draw some conclusions as to the arrangements of the clusters. This
would indicate that rather than a linear arrangement of the three clusters, a more ap-
propriate description would be a loose arrangement of the «-particles in something
approaching a triangular structure.

A natural extension of such a conclusion is that there should also be a col-
lective 47 state. Using the simple J(J + 1) scaling, a 4T excitation close to
E x(12C) = 14 MeV would be expected. Recent measurements of the two reactions
9Be(a, 3a)n and 2C(w, 30)*He have been performed [78]. These measurements
indicate a candidate state close to 13.3 MeV with a width estimated to be 1.7 MeV.
It is believed that this is not a contaminant and is observed with similar properties
in all spectra. Angular correlation measurements made using the '2C target are not
definitive, but indicate a 4% assignment.

1.6 Experimental Techniques—Break-up and Resonant
Scattering Reactions

A determination of the structure of light nuclei above the particle decay threshold,
where gamma-decay ceases to be dominant, is challenging. In order to characterize
the nature of excited states, the energies, total and partial widths and spins and par-
ities should be determined. There are few experimental techniques which permit all
of these quantities to be determined simultaneously.

1.6.1 Resonant Scattering

One approach which recently has found greater favor is thick target resonant scat-
tering [79]. Here a beam passes through a thick target loosing energy as it traverses
the medium. By far the majority of the interactions are with the atomic electrons
slowing the beam, however occasionally a nuclear interaction takes place. The cross
section for resonant capture reaches hundreds of millibarns. The resonance in the
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Fig. 1.17 Resonant

scattering using a thick Helium gas Seaftened
. = DCd [E(
helium target volume alpha Silicon
particle Detectors
Window ]
Beam T Beam

target-beam composite system then can decay either back into the entrance channel
or into other final states. The fact that the beam energy is continuously varying in
the medium means that the center-of-mass energy is scanned—this results in a tech-
nique which is considerably more efficient than the traditional excitation function
measurements, where the beam energy must be re-tuned for each data point. For
elastic resonant scattering involving a projectile and an «-particle target the cross
section is given by

27 +1 r?
a2zt o (1.18)

O = AT (E—E 2+ ([)2?

where J is the spin of the resonance, J; is the spin of the projectile, E, the energy of
the resonance and I" and I, the total and «-partial widths, respectively. The cross
section thus scales linearly with J and quadratically with I, —the greater the degree
of clusterization the larger the partial width and the larger the cross section. Reso-
nant elastic scattering from an «-particle target is thus ideally matched to the study
of cluster states. For inverse kinematics, where the beam is heavier than the target,
the resolution with which it is possible to reconstruct excited states can exceed the
energy resolution of the detection system.

The experimental approach is illustrated in Fig. 1.17. The beam, of energy typi-
cally a few MeV/u, passes through a window, which is typically Havar or Mylar of
thickness 5 pum, to contain the helium gas with pressures up to about 1 atmosphere.
The beam loses energy and undergoes energy-loss straggling as it passes through
the window and the target gas. This leads to a loss in resolution. As the beam tra-
verses the gas volume it again decelerates until finally it is stopped. The range of
the beam is adjusted via the variation of the gas pressure, such that the beam stops
immediately in front of the detectors. Of course if the range exceeds the distance
to the detectors and the beam is sufficiently intense the detectors will be destroyed.
Any interaction with an a-particle along the path of the beam has the potential to
result in elastic scattering—either resonant or non-resonant. These two processes
will interfere with each other. For center-of-mass angles close to 180 degrees the
a-particles will be emitted in the same direction as the beam and since typically the
beam has a mass and charge in excess of «-particles, the scattered a-particles have
a lower energy loss in the gas and thus can reach the detectors. The main drawback
for this approach arises when a helium gas target is extended and in this instance the
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precise location of the interaction cannot be determined. This means that there is an
ambiguity in the emission angle when the «-particle is detected in the silicon array.
Only at zero degrees (the beam direction) does this problem vanish. Here it is possi-
ble to establish the location of the interaction within the gas volume and thus correct
for the energy loss of the «-particle as it traversed the gas and hence the energy upon
emission. This then permits the excitation energy of the composite target+projectile
system to be established. For emission away from zero degrees the path length of the
beam and emitted «-particle through the gas is harder to establish—though it is pos-
sible to develop iterative techniques to address this. The excitation energy resolution
away from zero degrees tends to be correspondingly degraded.

The study of resonances in the '80 + « system by Rogachev et al. [80] is shown
in Fig. 1.18. This shows the energy spin systematics of the resonances observed in
22Ne obtained using this technique [80]. The systematics of the energies in the bands
are compared with those for 20Ne and show a similar rotational trend, but for each
rotational level the states are split into two components. It is possible that the states
observed have a molecular structure in which two neutrons are exchanged between
a-particle and 'O cores.

1.6.2 Break-up Measurements

The utility of break-up reactions in the study of nuclear clustering has been reviewed
in Ref. [81]. In this approach, states above particle decay channels with a particular
type of cluster structure are observed to decay into the cluster components. The ar-
gument being, that if the states have large cluster widths then they are more likely
to decay in a manner respecting this structure and hence the break-up spectrum is
most strongly populated by cluster states. The reaction populating such states may
range from inelastic scattering to transfer. Figure 1.19 shows the sequence of states
populated in the '>C(>**Mg, 12C + 2C)'2C inelastic scattering reaction. The exper-
imental technique employed is akin to invariant mass spectroscopy and has been
termed resonant particle spectroscopy. It involves the simultaneous detection of the
two decay products (in this case two '2C nuclei) using detectors which are capable
of measuring both the energy and emission angles of the particles. If the detection
system is capable of also determining the mass of the fragments then the momen-
tum of the two fragments may be established. Using the principles of conservation
of momentum it is possible to calculate the momentum of the 2*Mg nucleus before
decay and hence its kinetic energy, E (**Mg). The excitation energy then follows

E.=E("?C)) + E("C)) — E(*'Mg) — Qwu (1.19)

where Qp, is the breakup threshold, which in this instance is —13.93 MeV. Momen-
tum conservation also permits the energy of the recoil to be calculated and hence the
three-body reaction Q-value to be calculated. In this way it is also possible to select
events in which the decay proceeds only to the ground states of the three final-state
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12C nuclei. This is important otherwise the excitation energy spectrum contains an
ambiguity corresponding to decays proceeding to the '>C first excited state (2,
4.4 MeV).

A second advantage of being able to determine the fact that all three final state
12C nuclei were produced in their 07 ground-states is that the technique of angular
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Fig. 1.19 States in 2*Mg
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correlations may then be utilized. If all initial and final state nuclei are spin zero,
then the mathematical form describing the angular distribution of the decay prod-
ucts is essentially that described by Legendre polynomials [82]. Given that there are
two center-of-mass frames, the first associated with the inelastic scattering of the
2*Mg* nucleus and the second describing the decay of the 2*Mg* nucleus into two
12 nuclei, there are two sets of angles and it is the correlation between these two
processes which reveals the spin of the decaying 2*Mg* excited state. The angular
correlation technique in principle permits quasi model independent spin determina-
tions.

The breakup technique thus allows excitation energies and spins to be deter-
mined. However, it is often difficult to achieve excitation energy resolutions less
than 100 keV and hence measuring the natural widths of states is challenging and in
order to know the partial widths the excitation probability must also be determined
which is also challenging. In some instances this has been overcome for example
using a spectrometer to measure the recoil particle, e.g. [83], in order to determine
the nature of the excitation energy spectrum prior to decay.

1.7 Beyond a-Clusters—Valence Neutrons and Molecules

Alpha-conjugate nuclei are clearly a very small subset of all those which exist in
nature and in this instance that the clusterisation arises from the rather special prop-
erties that stem from the common orbitals in the mean-field limit. As has been ob-
served this gives rise to particular symmetries which pervade both the mean-field
and cluster model limits and may be interpreted as spatially localized clusters. When
one moves away from such even N, Z, N = Z nuclei then some of the energetic ad-
vantage associated with the a-particle are lost and the symmetries disturbed. The
important question is, does clustering vanish at this point or does it remain influen-
tial even at the drip-lines? As described earlier on, there is evidence of the impor-
tance of correlations, or clustering, even at the drip-lines. The properties of *He may
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be traced both to the reliance of the «-particle and the effect of correlations between
the neutrons [84]—the removal of one of the neutrons leaves the unbound >He. The
presence of the «-particle also affects the binding of the two neutrons; the di-neutron
is unbound. Understanding the behaviour of such finely balanced nuclei right at the
drip-lines can give a deep insight into the intricacies of the strong nuclear force. In
this instance it is the «-particle which forms part of the building block. Similarly the
nuclei ®7Li possess o + d and o + ¢ structures, respectively. The ®Li ground-state
spin of 17 would correspond to the J* = 0" a-particle with a deuteron (J7 = 17)
with a relative motion described by L = 0 (ignoring the small D-state component).
The first significant attempt to deal with the additional degrees of freedom that
valence nucleons bring to systems was that of Hafstad and Teller [3]. This semi-
nal piece of work set the ground rules for this field. These authors considered the
sequence of nuclei, SHe, °Be, 13C and 70. The binding energies of these 4n + 1
nuclei (n =1, 2,3, ...) depend on the ¢—« interaction energy, but also the character
of the valence neutrons. The binding energy of the He nucleus reflects the a—n in-
teraction, whereas the o + n + « nucleus °Be whilst containing similar terms in the
Hamiltonian was recognised as having a contribution from an exchange interaction.
Here, the systems were described in terms of the covalent exchange of neutrons be-
tween the a-cores. Again the building blocks are the «-particles and the neutrons are
shared between the cores. This is highly reminiscent of the exchange of electrons in
covalently bound atomic molecules. For example, the H2+ molecule is formed from
two protons with a covalently exchanged electron. The electrons reside in single
center s-orbitals and the covalent bond is formed from their linear combination:
! + 1.20
Yy = ﬁ(wl ©2). (1.20)

This generates two molecular wave-functions, one with no intermediate node (bond-
ing) and a higher energy state with an internal node (anti-bonding). The develop-
ment of atomic orbitals from symmetry adapted linear combinations (SALCs), is
also widely used in molecular physics.

The exchange of neutrons between «-particle cores is a rather important concept
which allows a detailed understanding of the structure of the beryllium isotopes to
be developed [85-89]. The appearance of nuclear molecules is reviewed in [6]. The
nucleus °Be demonstrates this beautiful piece of physics rather well. The N = Z
isotope 8Be is unstable against a-decay, held together only by the Coulomb barrier
for a period of ~107'® seconds. The only stable beryllium isotope is *Be. The
additional neutron is exchanged between the cores just as electrons are exchanged
between atoms in covalent atomic molecules. Thus, such states have been coined
nuclear molecules. 1t is the delocalisation of the neutron which lowers its kinetic
energy giving an enhanced binding energy for the °Be system compared to ®Be.
It is inferred from the neutron separation energy in °Be that the magnitude of the
binding is approximately 1.6 MeV [86].

In the formation of such molecular states in the beryllium isotopes, the single-
center wave-functions are those that the neutrons occupy in 5'(’He, i.e. p3s2. Thus,
one might expect the neutron to reside in covalent orbits, which are the analogues
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Fig. 1.20 Molecular orbitals associated with linear combinations of HO orbitals [n; ,n.] =[1, 0]
and [0, 1] orbits, equivalent to p-states. Here the z-direction is aligned with the separation axis
of the two centers indicated by the black dots. (a) Shows the overlap of the two individual wave—
functions. Diagrams (b) and (c) are the result of forming linear combinations: (b) corresponds to
the binding m-state, and (c) to the anti-binding state. Diagram (d) shows the overlap of the two
(0, 0, 1) orbits, forming the o -configurations, and (e) and (f) the two linear combinations

of those observed in carbon and oxygen molecules, namely ¢ and -orbits, which
are formed in the exchange of p-electrons.

To illustrate this, the possible linear combinations of the equivalent HO orbitals
[n1,n.]=11,0] and [0, 1] are shown in Fig. 1.20. Note that there are two possible
orientations of the dumbbell-like orbitals—either parallel or perpendicular to the
axis separating the a-particles (though phases may vary). The linear combination
shown in part (b) corresponds to the m-type structure for the valence neutron, and
(e) to the o -orbital. The notation o and & corresponds to the projection of the angu-
lar momentum of the molecular orbit onto the symmetry axis of the molecule. If the
linear combination of the p-orbits is considered, then for the orientation shown in
Fig. 1.20a, this would correspond to / = 1 components along the separation axis and
hence m-type orbits. For the alternate case, Fig. 1.20d, the projection of the orbital
angular momentum of the two p-orbitals is perpendicular to the separation axis and
thus the o association (no angular momentum).

Figure 1.21 shows the energy evolution of the energy levels of the two-center
shell model, where the Schrodinger equation is solved for two shell model poten-
tials as a function of their separation—from infinite separation to zero. This model
is one which is appropriate for the description of the merger of two nuclei (with
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Fig. 1.21 The energy levels 60 pa;
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zero impact parameter forming a composite system) and traces the evolution of
the initially degenerate energy levels in the two separate potentials to those of the
merged system. As the separation varies, then the energy levels are essentially those
of the prolate deformed nucleus and will strongly overlap with those found in the
deformed shell, Nilsson, model (as illustrated in Fig. 1.22). The separation of the
two potentials appropriate for two a-particles in the ground state of ®Be is marked
Rmin ~ 3.5 fm in Fig. 1.21—the point at which the «—« potential attains its min-
imum. At this separation the two lowest energy orbits available for the neutron to
follow are marked 73/2~ and o1/27. In fact the two levels are almost degenerate.
These two orbits are analogues of the Nilsson orbitals from the 1p3/, and 1ds,2
levels, with projections of the total angular momentum K* = 3/2~ and 1/2%, re-
spectively.

A natural conclusion is that if such a description of *Be is correct then the ground
state of “Be should be the head of a rotational band associated with K™ = 3/2".
There should also be a second band linked with a K™ = 1/2% configuration and
both bands should have a similar rotational gradient as that of the Be ground state.
In fact one would expect the K™ = 1/2% band to be slightly more deformed than the
ground state band as the valence neutron in the o -configuration intercedes between
the two a-particles enhancing the deformation. Figure 1.23 shows the experimental
situation for the nuclei $Be, Be and °Be. The data indeed confirms the predic-
tion; aside from the fact that the K = 1/2 band possesses Coriolis decoupling. For
such bands, an additional term is introduced with an associated Coriolis decoupling
parameter a,

2

E‘]ZW[

JU+ D+ a +1/2)] (1.21)
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Fig. 1.22 The Nilsson single-particle energy levels. The parameter ¢ corresponds to the deforma-
tion of the potential. The magic numbers are labelled as are some of the key Nilsson orbits [90]
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Fig. 1.23 Rotational bands of 8Be, °Be (left side) and 10Be (right side). The excitation energies
are plotted as a function of angular momentum J(J + 1). The Coriolis decoupling parameter, a,
for the K = 1/2 band is indicated. From Ref. [91]

# being the moment of inertia. It should be noted that the experimental moment
of inertia for the K = 1/2 band is indeed larger than for the K = 3/2 ground-state
band (as indicated in the left hand part of the figure).

1.7.1 The Neutron-Rich Nucleus 1°Be

The addition of two neutrons to the two «-particles results in the formation of 'Be.
The AMD calculations for the nucleus are shown in Fig. 1.24 [92]. The contour
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Fig. 1.24 Left side: Experimental level scheme of 'OBe, and, right side: that calculated with the
spin parity projected AMD model [92]. The density plots of the intrinsic states are shown in special
panels: for protons on the left side of each plot and for neutrons on the right side, respectively.
The proton densities represent the positions of the «-particles. The neutron densities show for the
ground state a density distribution characteristic of -binding. The higher lying O;L state is well
reproduced with a larger «—« distance (seen by the density of protons) as compared to the ground
state, it shows the o2 configuration for the neutrons. The density of the 1~ state shows a mixture
of o—m orbitals with a distorted neutron density

plots show the density of the protons (left side) and neutrons (right side). In the case
of the protons the a-particle structure can be clearly be seen. In the first 07 state
(ground-state) the separation of the “«-particles” is smaller than that corresponding
to the next 0T state (0;). In the molecular picture this can be understood in terms of
the orbitals of the valence neutrons. In the ground-state the neutrons occupy the -
orbital, forming a bridge between the two centers, whilst for the second 0T state the
neutrons intercede between the two «-particles in a o -orbital. The effect of the Pauli
Exclusion Principle is to make it energetically unfavorable for the valence neutrons
and those in the «-particle to overlap and hence the two a-particles are forced apart
in order to minimize the energy of the configuration.

The O;’ state should thus be the more deformed of the two—in fact could be
the most deformed nuclear state yet seen in nature—experimentally it is found at
6.1793 MeV. The gamma-decay of this state is suppressed (it possesses a lifetime
of the order of 1 ps)—an isomeric behavior that may be understood in terms of the
small overlap of its structure and that of the more compact ground state. The excited
state at 7.542 MeV (21) is believed the first rotational member of the associated
band. This state lies very close to the «-decay threshold (7.409 MeV) and thus its
decay to this channel is strongly suppressed by the Coulomb and (L = 2) centrifugal
barriers. Nevertheless, the «-decay has been found to correspond to a very large
reduced width [93], representative of the large degree of clusterisation associated
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with the state. This is however a single, and very challenging, measurement and
needs confirming.

The 4+ member of the same band would lie in the region of 10-11 MeV. There
are a number of possible states which could correspond to the molecular band;
10.15 MeV and 10.57 MeV. The spin of the latter state is unknown, whereas the
former has been associated with spins 3~ [94] and 4™ [95]. The latter assignment
was also found in a measurement of the resonant scattering of °He+*He [96]. Re-
cent re-measurements of resonant scattering verify the 4% assignment [97]. The
energy and width of the state are consistent with the interpretation of an extremely
deformed rotational band with a well-developed cluster structure.

Determination of the structure the ground-state of '°Be cannot be readily made
using particle spectroscopy techniques. A recent set of measurements of the electro-
magnetic transition strengths, B(E2), between the 2 and 0" ground-state for '°Be
and '9C, together with the isobaric analogue state in '°B [98, 99] (made with an un-
precedented precision) provide a significant benchmark against which the character
of the state may be fixed.

The observations made for the nuclei “Be and '°B may be extended to more
complex 20+ Xn systems such as ' 12Be where the valence neutrons can be thought
of as occupying combinations of o and m-orbitals. The interactions between these
valence particles will perturb the zeroth order molecular picture, but it is understood
that some of the molecular characteristics are retained [6].

1.7.2 More Complex Molecular States and the Extended Ikeda
Diagram

1.7.2.1 Asymmetric Cores

Based upon the concept that neutrons may be exchanged between «-particles it has
been proposed that it may also be possible to form covalent structures from non-«
cores in other systems. The next best two centered case corresponds to cores formed
from an a-particle and an '°0 nucleus. '°0 possesses a closed shell, but not quite
the degree of inertness of the a-particle (it has a first excited state of 6.05 MeV,
0%, compared with 20.2 MeV). Nuclei formed from these two components produce
neon isotopes. The nucleus 2°Ne is known to have a well-developed a+'°0 cluster
structure [55, 100, 101], the asymmetric structure giving rise to two rotational bands
of K™ = 0% character [102]. The question as to what happens to valence neutrons
introduced into this system was addressed by von Oertzen [103]. When the neutron
orbits the o-particle it lies in a p-orbital (negative parity), when orbiting the closed
shell 0 it resides in the sd-shell (positive parity, associated with the 5/2* ground-
state).

The two orbitals which are aligned with the intrinsic deformation of the
a-1°0 system are linked to the harmonic oscillator levels [ny, ny, n;] =[0,0, 1] and
[0, 0, 2]. These are associated with the Nilsson orbitals with projections K7 =1/2~
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Fig. 1.25 The covalent

exchange of a neutron -
between the 1°0 and « cores Ne
that occurs in the neon

isotopes, from Ref. [104]
T . < S

1s0d-orbital ~ Op-orbital
around '*0  around o

and 1/27; both have o-character. The strong overlap of these two orbitals in the
region between the cores gives rise to the molecular binding effect, illustrated in
Fig. 1.25. The resulting hybridized orbital gives rise to parity doublet bands [103].
For a complete description of the molecular bands that appear in the neutron-rich
isotopes see Ref. [6].

1.7.2.2 More than Two Centers

The obvious extension from 2« 4+ Xn systems is to nuclei composed of 3a-
particles—carbon isotopes. In this instance the «-particle cores may adopt a number
of different arrangements. Two possible limits are a triangular and linear arrange-
ments. This creates a greater spectrum of molecular states and hence complexity.
There are a number of theoretical predictions for the appearance and characteristics
of such states [6, 105, 106]. From the experimental perspective there is no defini-
tive evidence for their existence [6], though measurements of 13C and '4C indicate
possible rotational bands with the right characteristics.

1.7.2.3 The Extended Ikeda Diagram

The possibility that beyond a-conjugate nuclei there exists a series of states whose
properties are strongly influenced by the underlying «-particle cluster structure,
where the valence particles have the imprint of molecular exchange of the valence
particles opens up some exciting possibilities. The present state-of-play is that only
a few of these possibilities have been characterized. Understanding the conditions
under which these states might appear is important and one element is the threshold
energy—in most cases the states will not be close to the ground-state. Motivated by
the Tkeda Diagram for o-conjugate cases (Fig. 1.5) von Oertzen has devised an ex-
tended Ikeda Diagram which is shown in Fig. 1.26. The diagram charts the expected
location of these exotic states in terms of the constituent particle decay thresholds.

There are a number of intriguing possibilities in terms of new structures, for
example the evolution of the behavior of the Beryllium isotopes ®Be to '?Be with
increasing numbers of neutrons is indicated, as is the evolution of the 3« -systems.

Perhaps the one that captures the imagination most is that characterized by the
structure o + 21 + 10 + 21 + @, in 28Mg. This state has been called nuclear water
due to the similarity with the atomic H,O, however due to the nature of the valence
orbitals it more closely resembles CO,. Identification of such a structure would be
an experimental tour-de-force.
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1.8 Summary and Conclusions

The history of clustering reaches to the earliest days of nuclear science when some
of the first models captured nuclear properties in terms of constituent «-particles.
Though the initial pictures have been found to be overly simplistic there are a num-
ber of cases where nuclei appear to have a behavior which reflects a well-developed
a-particle structure. Key examples of these states are the 8Be ground-state and the
7.65 MeV, 01, Hoyle-state in 12C. 1t is nuclei such as this which have become the
touchstones for the development of state-of-the-art nuclear models. Much of nu-
clear science has moved from this territory to the drip-lines—the limits of isospin
stability. It is here that there is a significant increase in the number of neutrons, for
example. It is in such systems that there is a co-existence of the boson and fermionic
degrees of freedom and the valence neutrons can be thought of as being covalently
exchanged between the a-particle cores. Though systems such as °Be and '°Be are
well characterized in these terms, the precise influence at the drip-lines has yet to be
established. There is no doubt that correlations at the drip-lines play a defining role,
but the question for the future is if they precipitate clusterization.
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