
Chapter 6
Mining Bug Data

A Practitioner’s Guide

Kim Herzig and Andreas Zeller

Abstract Although software systems control many aspects of our daily life world,
no system is perfect. Many of our day-to-day experiences with computer programs
are related to software bugs. Although software bugs are very unpopular, empirical
software engineers and software repository analysts rely on bugs or at least on those
bugs that get reported to issue management systems. So what makes data software
repository analysts appreciate bug reports? Bug reports are development artifacts
that relate to code quality and thus allow us to reason about code quality, and quality
is key to reliability, end-users, success, and finally profit. This chapter serves as a
hand-on tutorial on how to mine bug reports, relate them to source code, and use
the knowledge of bug fix locations to model, estimate, or even predict source code
quality. This chapter also discusses risks that should be addressed before one can
achieve reliable recommendation systems.

6.1 Introduction

A central human quality is that we can learn from our mistakes: While we may not
be able to avoid new errors, we can at least learn from the past to make sure the same
mistakes are not made again. This makes software bugs and their corresponding bug
reports an important and frequently mined source for recommendation systems that
make suggestions on how to improve the quality and reliability of a software project
or process. To predict, rate, or classify the quality of code artifacts (e.g., source files
or binaries) or code changes, it is necessary to learn which factors influence code
quality. Bug databases—repositories filled with issue reports filed by end users and
developers—are one of the most important sources for this data. These reports of
open and fixed code quality issues make rare and valuable assets.
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In this chapter we discuss the techniques, chances, and perils of mining bug
reports that can be used to build a recommender system that suggests quality.
Such systems can predict the quality of code elements. This information may help
to prioritize resources such as testing and code reviews. In order to build such a
recommendation system, one has to first understand the available content of issue
repositories (Sects. 6.2) and its correctness (Sect. 6.3). The next important step is
to link bug reports to changes, in order to get a quality indicator, for example, a
count of bugs per code artifact. There are many aspects that can lead to incorrect
counts, such as bias, noise, and errors in the data (Sect. 6.4). Once the data has been
collected, a prediction model can be built using code metrics (Sect. 6.5). The chapter
closes with a hands-on tutorial on how to mine bug data and predict bugs using
open-source data mining software (Sect. 6.6).

6.2 Structure and Quality of Bug Reports

Let us start with a brief overview discussing the anatomy and quality of bug
reports. We will then present common practices on mining bug data along with a
critical discussion on bug mining steps, their consequences, and possible impacts
on approaches based on these bug mining approaches.

6.2.1 Anatomy of a Bug Report

In general, a bug report contains information about an observed misbehavior or
issue regarding a software project. In order to fix the problem, the developer
requires information to reproduce, locate, and finally fix the underlying issue. This
information should be part of the bug report.

To provide some guidance and to enforce that certain information be given by
a bug reporter, a bug report is usually structured as a form containing multiple
required and optional fields. A bug report can thus be seen as a collection of
fields dedicated to inform developers and readers about particular bug properties.
The value of each field usually classifies the observed issue with respect to a
given property or contributes to the description or discussion of the underlying
issue. Figure 6.1 shows the structure of a typical bug report. Fields include the
following:

• Information on the product, version, and environment tell developers on which
project and in which environment the issue occurs.

• The description typically contains instructions to reproduce the issue (and to
compare one’s observations against the reported ones).

• Fields such as issue type (from feature request to bug report), assignee, and
priority help management to direct which bug gets fixed by whom and when.
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Fig. 6.1 Sample bug report and common bug report fields to be filled out when creating a new
bug report

Typically, bug reports allow discussion about a particular issue. This discussion
can but may not include the reporter. Comments on bug reports usually start
with questions about an issue and the request of developers to provide additional
information [15]. Later, many comments are dedicated to discussions between
developers on possible fixes and solutions. This shows that bug-tracking systems
should be seen primarily as a communication platform—first between bug reporters
and developers, later between developers themselves. The reporter is usually the
person that observed and reported the problem. She can be a developer (especially
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when considering bugs reported before the software has been released) but might
also be an end-user with varying degree of experience. Usually, the assignee is a
developer that should be considered an expert who can verify the validity of an
issue and knows how to resolve the underlying issue or at least which developer the
report should be assigned to.

When mining issue repositories, it is important to realize that the different bug
report fields and their content are filled by different groups with different expertise or
following different usage patterns. Bettenburg and Begel [8] showed that the usage
of issue management systems may differ greatly between individual teams and sub-
teams leading to problems in understanding bug reports and their background.

Individual fields have a different impact on the bug report and its handling.
The importance and impact of individual bug report fields is frequently the
subject of research studies. There exists a large degree of regularity on bug report
summaries [35] and on questions asked in report discussions between reporters
and assignees [15]. Bettenburg et al. [10] and Marks et al. [39] showed that
well formulated and easy to read bug reports get fixed sooner. Researchers have
shown a similar effect dedicated to other bug report fields. Bug reports with higher
priority get fixed quicker [39, 46]; the more people are involved in a bug report,
the longer it takes to fix the bug [1]—an important motivation for recommendation
systems to automatically determine assignees for bug reports [3, 28, 40, 53]. As bug
report descriptions and attached discussions contain natural text, the use of natural
language processing becomes more and more important. Natural language can
contain important information about related bug severity [37], bug reports [58, 64],
affected code [34, 55], etc.

Bug reports evolve over time: Fields get updated, comments get added, and
eventually they should be marked as resolved. Thus, mining bug reports at a
particular point in time implies the analysis of bug report snapshots. Considering
the history of a bug report and frequently updating the analysis results is important.
Knowing when and who changed which bug report field can be derived by parsing
the history of a bug report and adds additional information allowing to examine
a bug report of previous points in time and to capture its evolution. Consider a
bug report that got marked as fixed and resolved weeks ago but was reopened
recently. Not updating mined artifacts might leave data sources in a misleading
state: bug reports once marked as resolved and fixed might be reopened and should
be considered unresolved until being marked as resolved again.

It is also common to use values of bug report fields as criteria to filter bug reports
of particular interest. To determine code artifacts that were changed in order to fix
a bug (see Sect. 6.4), bug data analysts usually consider only bug reports marked as
fixed and resolved, or closed [4, 22, 69]. Reports with other statuses and resolutions
indicate that the reported issue is either not addressed, has been reopened, or
is invalid; thus, the set of changed artifacts is incomplete or might contain false
positives. The priority field is often used to filter out trivial bug reports and to restrict
the analysis to severe bug reports [18] while fields dedicated to project revisions are
frequently used to distinguish between pre- and post-release bugs [12,52,69]—bugs
filed before or after a product was released.
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When mining bug data,

• Identify the semantics of the individual fields
• Identify the individuals who fill out the fields
• Use only reports that match your researches (e.g., closed and fixed bugs)

6.2.2 Influence of Bug-Tracking Systems

In general, all bug reports, independent from their origin, share the purpose of
documenting program issues. But individual bug-tracking systems and development
processes reflect and create individual process patterns and philosophies. Thus, it is
important to understand that bug reports across different teams and projects should
be considered different, although the differences can be small. But it is essential to
identify these small differences as they are important to determine how bug reports
get created, handled, used, and finally resolved. Thus, bug-tracking systems impact
bug report content.

Depending on the goal of an issue repository analyst, bug-tracking and bug
report differences might be relevant or irrelevant. In this section, we briefly discuss
important aspects when targeting code quality-related recommendation systems:

Default Values. Creating a new bug report usually requires the bug reporter to fill
out a form similar to the one shown in Fig. 6.1. These forms usually populate
specific fields (e.g., bug type, bug severity) with default values. These values
commonly reflect the typical setting or expected default setting but also help
non-expert end-users to fill out all required fields. The drawback is that reporters
tend to fill out only those fields that are required and not already set, thus default
values can influence the values chosen by reporters [59]. Consequently, the
configuration of the issue-tracking system defining which default values to be
set may already impact the content of bug reports.

Report Types. Most bug-tracking systems allow not only bug reports but also
other types of issues, such as feature requests, improvements, or tasks. Bug-
tracking systems have different mechanisms to allow reporters to distinguish
between these report types. A good example is the difference between Bugzilla
and Jira, two commonly used bug tracking systems. In their standard configura-
tions, Bugzilla supports only bug reports but allows the user to mark reports as
enhancement requests using the severity field. In contrast, the Jira tracker not
only supports bug and enhancement reports as full types but also offers report
types like “task” and “improvement”:

• To file an enhancement request instead of a bug report in Jira, the reporter has
to set the field issue type accordingly.

• To perform the same task in Bugzilla, the reporter has to set the severity field
choosing the value enhancement.



136 K. Herzig and A. Zeller

This unusual mechanism in Bugzilla has two consequences:

• To distinguish between bug reports and enhancement requests, we have to
analyze the severity field and not the issue report type.

• Bugzilla does not allow the distinction between high and low severe enhance-
ment requests.

This distinction between bug reports and enhancement requests might also leave
many enhancement requests filed as bug reports. Unexperienced reporters might
not know to use the severity field to file an enhancement request and relying on
the default severity value will automatically mark a report as bug.

Ambiguous Terms. Many fields offer ambiguous terms and vague definitions. In
the default configuration, Bugzilla marks bug reports as enhancement requests
using the severity field (see above). But the term “enhancement” is ambiguous.
Fixing a bug can be seen as an enhancement or improvement but software
repository analysts would like to see bug fixes being classified as “bug.” It is up to
the bug data analyst whether to mark Bugzilla enhancements as feature request,
improvement, or any other issue report type. But no matter how he decides, he
will most likely end up with noise due to misclassification.

Missing Fields. Bug-tracking systems like Google tracker or SourceForge lack
common bug report fields. These fields (e.g., report type, report priority, and
affected product) are managed by labels instead of explicitly given fields.
The advantage is that no default values exist. The disadvantage is that bring-
ing Bugzilla and Google reports to a uniform object model requires detailed
knowledge about possible fields and development processes. SourceForge also
abandons the report type and forces projects to use different issue management
system instances for different report types. While a bug is reported in the issue
management system, feature requests are reported in a different tracker. Although
an issue repository analyst can consider issue reports in a tracker to belong to the
corresponding report type category, it complicates the process of turning a bug
report into a feature request, or vice versa. A developer would have to delete the
original report, file a new report and transfer properties, fields, and discussion—a
process that can be considered to rarely happen. And even if developers would
transfer reports between trackers, timestamp values would become unreliable.

Default field settings and predefined report structures impact mined bug data.

6.2.3 Peril of Duplicate Bug Reports

Once a software contains a bug, it is not unlikely that the issue is detected by
multiple users. Although the underlying bug is the same, the user experience
may vary—a bug can cause multiple crashes and failures. Consequently, it is not
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uncommon that a bug gets reported more than once. But are duplicate bug reports
harmful? The answer to this question depends on the perspective.

Bettenburg et al. [11] showed that most developers do not consider duplicate
bug reports as a serious problem pointing out that duplicate bug reports add
additional bug description and details that help developers in their debugging
process. Dhaliwal et al. [20] performed an empirical study of crash-reports and
showed that grouping bug reports can effectively reduce the fix time of bugs by more
than 5 %. In cases in which bug reports provide only high-level details about the
issue, developers might benefit from additional reports providing additional details
and thus help with progress on that particular issue. On the other hand, duplicate
bug reports can cause unnecessary cost because detecting bug reports that should be
considered duplicates can be expensive.

From an issue repository analyst’s perspective, duplicate bug reports complicate
the mining and in particular the analysis processes. Within an issue repository,
duplicate bug reports are independent development artifacts. But for the purpose of
analyzing bug reports, these independent artifacts should be marked as dependent.
There exist a wide variety of approaches to automatically detect duplicate bug
reports [56, 58, 62, 64]. Software repository analysts and developers can use these
techniques to determine and validate duplicate bug reports. Once these bug reports
are marked as duplicates, analysts face the problem of how to aggregate the
information: should comments contained in different duplicate reports be seen as
one larger discussion group? What priority or severity is to be assumed for a set
of duplicate bug reports with different priority and severity values? Which report
is the master report and should be treated as such [11, 58, 64]? Depending on the
purpose of a study, the problem of duplicate bug reports is irrelevant and ignored.
For example, when identifying the number of fixed bugs per source artifact, not
dealing separately with duplicate bug reports may make sense because code changes
and their commit messages refer to only one of the related reports. Thus, related and
duplicate bug reports will not be associated with the corresponding code changes
(see Sect. 6.4.1) causing no duplicate bug count.

Identify if and how duplicate issue reports should be handled.

6.3 How Reliable Are Bug Reports?

Bug reports play an important role in software maintenance but also in recommenda-
tion systems related to code quality. Many mining approaches and recommendation
systems are based on issue repositories in some way (e.g., [3, 10, 22, 69]), either
as standalone artifact or as measurement for code quality. But how reliable are
bug reports? The quality of bug reports is a frequent topic of research studies [9,
10, 22, 27]. Many of these studies show that bug reports often contain too little
or incomplete information to reproduce and fix the reported issues. This raises



138 K. Herzig and A. Zeller

further questions regarding the correctness of bug reports. If a bug report contains
incomplete information, can we expect the data that is available to be correct?
Antoniol et al. [2] and Herzig et al. [26] report that there exists a significant amount
of incorrectly classified bug reports—reports marked as “bug” but not referring to
any corrective maintenance task. Other fields in bug reports have been reported to
contain many incomplete or even incorrect data.

The quality of bug reports is an issue not only in open-source projects. Aranda
and Venolia [4] showed that even at industry “repositories hold incomplete or
incorrect data more often than not.” Bachmann and Bernstein [6] confirmed that data
quality issues can be an impacting factor in industry datasets and presented a sys-
tematic investigation of software process data quality and measures project-specific
characteristics that may be used to develop project-specific mining algorithms
taking the individual characteristics of software project into account. In a similar
study, Bernstein and Bachmann [7] also showed that “product quality—measured
by number of bugs reported—is affected by process data quality measures.”

6.3.1 Matter of Perspective

Many studies of bug report quality mention a gap between reporters and developers
(at least in cases in which reporters are not developers themselves). We already
discussed that the reputation of a reporter heavily impacts the probability that a
report gets fixed [10,22,27]. Consequently, submitting bug reports seems to be more
complicated than expected. Does a non-developer reporting a bug understand the
differences between and the meanings of the required bug report fields? Reporters
that are not developers are likely to be neither software nor development experts and
thus might not know the difference between a bug and a documentation issue. For a
user, a failure or unexpected behavior is a bug. But using the perspective of a user
to determine the quality of the source code might cause mismatches. A user who
observed bug stemming from outdated documentation does not refer to code issues,
although the developer might have to change the documentation in the source file.
Thus, mapping the source file change to the “bug” report and thus counting it as a
bug fix introduces false bug identifications, because the source code in the source
file is kept unchanged. However, since the user determines the issue report type
when submitting the issue, the report is submitted as bug report and thus suggests a
code issue.

The different perspective of reporters and developers might cause the reporter
to select wrong or misleading values when filling out the bug report form. Herzig
et al. [26] manually inspected over 7,000 bug reports of five open-source projects
and found a significant amount of incorrectly classified issue reports. Table 6.1
shows their reclassification results for “bug” reports. Each column of Table 6.1
refers to the “bug” reports of one investigated open-source project. The rows of
Table 6.1 represent the categories an issue report could be assigned to during manual
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Table 6.1 Reclassification of reports originally filed as “bug”. Taken from [26]

Classified category HttpClient Jackrabbit Lucene Rhino Tomcat Combined

bug 63.5% 75.1% 65.4% 59.2% 61.3% 66.2%
feature 6.6% 1.9% 4.8% 6.0% 3.1% 3.9%
documentation 8.7% 1.5% 4.8% 0.0% 10.3% 5.1%
improvement 13.0% 5.9% 7.9% 8.8% 12.0% 9.0%
refactoring 1.7% 0.9% 4.3% 10.2% 0.5% 2.8%
other 6.4% 14.7% 12.7% 15.8% 12.9% 13.0%

misclassifications 36.5% 24.9% 34.6% 40.8% 38.7% 33.8%

Table 6.2 Fractions of resolved issue reports whose type field got changed

HttpClient Jackrabbit Lucene Rhino Tomcat Combined

reports type changed 1/750 9/2413 1/2683 11/622 57/1242 79/7710

changed to bug 0 2/9 0 0 4/57 6/79

changed to non-bug 1/1 7/9 1/1 11/11 53/57 73/79

misclassified after
type change [ac-
cording to 25]

0 1/9 0 0/11 23/57 24/79

inspection. Thus, each cell of the table contains the proportion of original bug
reports and the category these reports were assigned to during manual inspection.
Between 6 % and 13 % of filed bug reports are improvement requests and up to
10 % contain documentation issues. The fraction of bug reports containing feature
requests lies between 2 % and 7 %. The striking number, however, is that on
average 33.8 % of reports filed against the investigated open-source projects are
misclassified.

Herzig et al. [26] reported similar results for feature requests and improvement
requests. Again, the reporter of a bug report might not know the difference between
a bug, a feature (adding new functionality), or an improvement request (improving
existing functionality)—even among developers, there exist different opinions on
when a bug is a bug or when an improvement is a new feature.

Table 6.2 shows the number of issue reports for which the issue report type was
changed at least once by a developer. Compared to the fraction of misclassified
reports, this fraction is very low and lies between 0.04 % for Lucene and 4.6 % for
Tomcat. Combining all five projects, the fraction of issue reports whose type was
changed at least once lies at 1 %—in contrast to the combined false classification
rate of 30 %. This evidence shows that developers rarely change the type of an
issue report. Thus, bug data analysts should not rely on developers to detect and
in particular to automatically correct issue report types. Interestingly, there exist
many more issue reports being newly marked as non-bugs than reports moved from
a non-bug category to “bug.”
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Fig. 6.2 Percent of resolved issue reports with respect to field changes. Priority, product, and
summary only changed in Bugzilla tracker projects Rhino and Tomcat

How about other bug report fields? Figure 6.2 shows box plots that represent the
fraction of reports for which the corresponding field was changed at least once. The
box plot shows that at most 20 % of the resolved issue report fields get updated.
Important fields like severity and priority (used to train recommendation systems on
severe or important bugs only) are updated for 5 % of the issue reports.

We discuss the consequences of misclassified issue reports on quality-related
models in Sect. 6.4.6.

If bugs are classified by reporters, check for possible misclassification.



6 Mining Bug Data 141

6.3.2 Recommending Bug Report Fields

There exist multiple approaches to predict the correct values of issue report fields.
Antoniol et al. [2] used linguistic data extracted from the issue report content to
classify issue reports into bugs and non-bugs with a precision between 77 % and
82 %. Common keywords marking issue reports as bug reports are “exception,”
“fail,” “npe” (null-pointer exception), or “error” [2].

Other studies have shown that it is also possible to predict the severity or
priority of issue reports [37, 44, 67], who should be assigned [3, 28, 40, 53], and
duplicate bug reports [56, 58, 62, 64]. These and other approaches can be used to
verify the correctness of specific report field values but should be used with care
to automatically correct issues regarding these fields. Most of these approaches
are based on heuristics and should not be used as replacement for careful manual
inspection. Manual inspection and quality assurance is key and should be conducted,
at least on a significant sample.

It is possible to automatically correct misleading bug report fields.

6.4 Mapping Bug Data

As discussed, there exist many research studies and approaches targeting bug reports
as standalone artifacts. Bug reports are key to software maintenance and therefore of
great interest to software developers and managers. But in many software projects
and companies, bug-tracking systems are separated from version control systems
(VCS) and thus do not allow immediate reasoning about code quality and those
artifacts that have shown to be defect prone. Thus, we need to relate bug reports
with code changes. Once we are able to identify which code changes were made in
order to fix which issue, we will be able to reason about code quality in detail, for
example, identifying the most defect-prone source artifacts.

Although mapping bug reports to code changes is a common task when mining
version archives, there exist surprisingly few fundamentally different mapping
strategies and even less studies investigating the correctness of these mapping strate-
gies and their impact on recommendation and prediction models based on these
mappings. Recently, researchers investigated whether natural language processing
and linguistic data can be used to improve existing mapping techniques. We discuss
these approaches in Sect. 6.4.6. However, many mapping strategies are based on
regular expressions searching for issue report references in version control commit
messages and using a set of negative filters (e.g., bug to be closed and fixed or the
bug report not to be marked as resolved before the code changes were committed) to
eliminate obvious false positive mappings. But before discussing the consequences
and issues regarding strategies to map bug reports and code changes, this section
starts with an overview on how to map reported bugs to code changes.
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6.4.1 Relating Bugs to Code Changes

Relating bug reports and code changes means finding references between
artifacts contained in two separate archives. Fischer et al. [21] and Čubranić
et al. [17] were among the first to search for references between code changes
in VCSs and bug reports contained in issue-tracking systems. Their approach is
straightforward. Commit messages of code changes may contain references to
bug reports (e.g., “Fixes bug 7478” or simply “fixing #2367”) that are easily
found using regular expressions. The result is a set of pairs of bug reports and
code changes for which the commit message of a code change is suspected
to contain a reference of the corresponding bug report. But this set might
also contain false positive relations. While regular expressions are excellent to
detect patterns of text, they ignore the context. Thus, a regular expression like
(bug|issue|fix):?\s*#?\s?(\d+) will match a commit message like
“fixing copyright issue: 2002 ! 2003.” Clearly, the bug ID 2002 matched by the
regular expression is referencing a date but not the bug report with the ID 2002.
Thus, most bug data analysts apply a set of filters to prevent such false positives to
be added to the final association set. Common filters are as follows:

Creation Order. The bug report should have been created before the code change
was applied.

Resolution Order. The code change should be committed before the report was
marked as “Resolved.”

Authors. The person who commits the change should be the same person who
marks the report “Resolved” (there exist many development processes in which
the fix requires review and the reviewer marks the report as “Resolved”).

Software Version. Filters might also consider the affected versions mentioned in
the bug reports and the branch(es) where the code change was applied.

Bug ID Ranges. Certain bug report ID ranges are more likely to introduce false
positives as others (e.g., small bug IDs are likely to reference a year, date, build,
or a line number instead of a report ID). Ignoring such references can be simple
but requires software projects with a considerably higher number of reported bug
reports than the chosen ignore-threshold or bug-tracking systems with a starting
bug id above the threshold. The alternative is to mark these references for manual
inspection—a very accurate but also very time-consuming process.

The used regular expressions and filters highly depend on the individual software
project and the underlying development process. There may exist clear commit
message formatting rules or none. Different projects use different bug report
processes. For example, Jira bug reports usually start with a project identifier
followed by a number (e.g., JRUBY-2002); this very simple difference can eliminate
many false-positive mappings such as the confusion between year numbers and
bug report IDs. Depending on these processes, their setups, and the development
process, regular expressions and false positive filters should be changed, added, or
removed. The overall approach described is illustrated in Fig. 6.3.

http://jira.codehaus.org/browse/JRUBY-2002
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Fig. 6.3 Mapping bug reports to code changes using regular expressions

Mapping bugs to changes requires filtering, which is largely project-specific.

6.4.2 Relating Bugs to Code Artifacts

The result of the above-described mapping process is a set of pairs of bug reports
associated with code changes. Each pair suggests that the bug report has been fixed
or at least targeted in the associated code change. Assuming that our bug mapping
strategy is perfect and thus introduces no false positives (see Sect. 6.4.3), we can
use the pairs of bugs and changes to reason about code quality. Each code change
touches a number of code artifacts. Mapping the fixed bug reports associated with
code changes to those artifacts changed by the change, we can identify those bug
reports whose resolution required a code artifact to be modified. Vice versa, for
each code artifact we can list the bug reports that caused a change in the artifact.
Similarly, we can also identify which developer applied changes required to fix
which bug reports or VCS branches in which bug reports were fixed.

The bug report aggregation strategy works if the association between bug reports
and code changes assigns each bug report to exactly one code change. But fixing bug
reports can be a complicated and time-consuming task. It is common that there exist
multiple code changes whose commit message claims to fix a bug report. Looking
at commit messages only, it remains undecidable which code change contributes
to the overall fix. The only thing we know is that the current last code change
is likely to be the last fix and thus likely to be part of the final bug fix. But the
contribution of the previous code changes associated to the same bug report remains
undecidable. There are multiple possible contributions of these code changes: (a) the
code change is part of the final fix but was incomplete, (b) the changes applied
were completely reverted by later changes, or (c) the changes applied were partially
reverted, thus the code change partially contributed to the final fix. Depending on
the actual contribution of the individual code changes, we would have to consider
a code change when aggregating quality data or not. To illustrate this, consider the
following example (also shown in Fig. 6.4): There exist three code changes (CC1,
CC2, CC3) whose commit messages state that bug report #123 has been fixed. Code
change CC1 gets completely reverted by CC2 that also applies a patch in FileB
that will be part of the initial fix. The changes applied by CC2 to FileC are again
overwritten by changes applied in CC3. Looking at the individual code changes,
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Fig. 6.4 Example of code changes overwriting each other. Which code change contributed to the
overall fix?

it is clear that CC1 does not contribute to the final fix whereas CC2 and CC3 do
contribute. Thus, the bug report #123 required changes to the files FileB and FileC
but not to FileA although FileA was changed twice.

Many studies and mining approaches do not consider source code analysis and
patch aggregation when counting the number of applied fixes per source artifact
(e.g., source files of binaries). Two frequently used heuristics are to use either the
last code change only or to count the distinct number of bugs per changed code
artifact. But both heuristics can be dangerous. The rationale behind using the last
code change only is that the last change is very likely to contribute to the fix and thus
proposes a low risk. But this rational assumes that the last applied change does not
revert or clean up earlier unnecessary changes. In these cases, choosing the last code
change selects exactly those code parts that should be considered as not changed.
Counting the distinct number of bug reports per changed code artifact considers all
applied changes but still does not identify code changes reverting earlier changes
or cleaning up code. For code artifacts that are fixed and cleaned up, each bug
ID is counted only once. But code artifacts being changes and later reverted will
still be falsely associated to bug reports and thus considered being fixed, although
the aggregated patch applied no semantical difference to the artifact. Consequently,
there exists no heuristic to aggregate bug reports over a set of code changes without
introducing mapping bias. The only safe way is to apply source code analysis and
to aggregate the individual patches to create a final summarizing patch and to use
this summary patch to detect changed source artifacts.
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Mapping code changes to bug reports is a crucial but also error-prone task. It is
very important to adjust mapping strategies to individual projects and to verify the
correctness of the strategy.

6.4.3 Mapping Bias

Although the described process of relating bug reports and code changes using
regular expressions is frequently used in state-of-the-art research studies, there
exists concerning evidence that such a simplistic process causes mapping bias—
an inclination of mapping only bug reports and code changes that fulfill certain
criteria. Even in realistic scenarios, data quality is low and some values are even
missing [45]. This fact is confirmed by Liebchen and Shepperd [38] who surveyed
hundreds of empirical software engineering papers to assess how studies manage
data quality issues. Their result is alarming: “[. . . ] only 23 out of the many hundreds
of studies assessed, explicitly considered data quality” [38] and the issue of noise
and missing data is not only limited to studies on relating bug data to code changes
but also occurs in software engineering effort and cost estimation [48, 61]. In this
section, we discuss error propagations and mapping limitations (the list is not
complete) and their impact on quality datasets.

Unmapped Bug Reports

The first problem of any mapping strategy is that it will not find code changes that
are bug fixes but state no references to a bug report or which state references in
an unrecognized format. Using regular expressions to detect explicit bug report
references (e.g., “1234” or “XSTR-1234”) will not cover text references such as
using the bug report title as commit message or phrasing the solution of a problem
described in the bug report. Thus, regular expressions are too limited to cover all
possible reference styles.

Bird et al. [12] showed that a selective mapping strategy, such as using only
regular expressions, introduces mapping bias. The mapping strategy determines
which bug reports and code changes get mapped and thus selects only those code
changes and bug reports that reference each other using a specific manner. Bug
reports and code changes using different, not handled, reference styles will be
ignored. In their study, Bird et al. showed that certain bug types are over-represented
leading to a biased quality dataset that “[. . . ] threatens the effectiveness of processes
that rely on biased datasets to build prediction models and the generalizable of
hypotheses tested on biased data.” This effect is not limited to open-source projects
but also present in industrial setups enforcing strict development guidelines [54].
It seems clear that bug data analysts should act to reduce the amount of noise and
bias introduced by mapping strategies. Possible solutions to this problem can be
applied from two different sides of the problem: as pre- or post-processing steps.
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Dealing with the problem as post-processing steps requires statistical methods to
deal with the noise already introduced. Kim et al. [33] introduced a noise detection
and elimination algorithm that eliminates data instances likely to be noise instances.
Similarly, Cartwright et al. [16] used simple data imputation techniques to deal with
the problem of missing data in software engineering datasets.

Dealing with the noise and bias problem from the other side, as preprocessing
step, should be seen as a two-track challenge. Bug data analysts have to come up
with less restrictive mapping strategies (see Sect. 6.4.6) that should be combined.
On the other hand, software repository analysts have to deal with the data created by
others. Empty commit messages or not-existing references cannot be overcome, no
matter which strategy will be used. Thus, we also need better tool support allowing
software developers to link artifacts with each other [14] and allowing repository
analysts to create more reliable and less biased quality datasets.

Mismatched Timestamps

In Sect. 6.4.1, we also used a filtering pipeline to remove false-positive mappings
such as bug reports closed before the fix was applied, or code changes applied
before the bug report was filed. Some filters use timestamps to determine the order
in which code changes and bug reports have been created, applied, and resolved.
But timestamps should be handled with care, especially if we compare timestamps
recorded by different systems and possibly on different machines and even time
zones. A slight offset between timestamps in VCSs and the issue repositories can
be fatal. A good example is the OpenBravo project. Their setup of VCS and issue
management system showed a timestamp offset of multiple hours over a period
of time. The effect is that when mining OpenBravo and mapping bug reports to
code changes, the described filtering mechanism eliminated many true positive bug
mappings. The problem is that many bug reports got created just hours before the
actual fix was applied. But the time offset between both servers caused the creation
time-stamp of the bug report to appear as being after the commit time-stamp of
the actual, manually verified bug fix. Possible solutions would be to allow a certain
time gap. But what is a good value for such a time gap? And should this time gap
be applied to the complete dataset or only to a particular subset?

Similar problems occur when using timestamps to decide if a bug fix candidate
was applied after the referenced bug report was recreated but before the bug was
as marked as resolved. Kim and Whitehead showed that “bug fixes times in buggy
files range from 100–200 days” [32]. Thus, using a time-based filtering mechanism
might be of little help. A time period of 200 days is long and, in active software
projects, we can expect many unrelated code changes to be submitted during such
long time periods.

Unmapped bug reports and mismatched time stamps can introduce bias in bug
data.

http://www.openbravo.com/
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6.4.4 Error Propagation: Misclassified Bug Reports

Section 6.3 already covered the issue of bug report reliability. In this paragraph,
this discussion is continued since unreliable bug reports contribute to mapping bias.
More specific, this section discusses the impact of misclassified issue reports when
mapping issue reports to source code changes.

Herzig et al. [26] used the mapping strategy described in Sect. 6.4.1 to map bug
reports to code changes, once including incorrectly classified bug report and once
excluding these noise instances. The authors reported that for all five investigated
open source projects, the percentage of misclassified bug reports that could be
mapped to code changes and thus to code files lies above 20 %. Thus, more than
20 % of code changes marked as bug fix should not be marked as such since the bug
report associated contained no bug description. Going one step further and counting
the distinct number of bug reports fixed in a source file (see Sect. 6.4.2), the authors
reported that on average 39 % of those source files being marked as having at least
one bug never had a reported bug.

To give some more details on the differences between original and classified
bug counts, Fig. 6.5 shows stacked bar plots displaying the distribution of bug
count differences among source files. Each stacked bar contains intervals reflecting
the difference between the original number of bug fixes (num_original_bugs) and
the number of classified bug fixes (num_classified_bugs). A positive difference
indicates that the number of defects fixed in the corresponding source files is actually
lower. For files showing a negative difference, more defect fixes could have been
found. While most files show no or only little changes to their bug count, there also
exist files with large bug count differences. The number of files for which more bugs
could have been found is marginal.

Misclassified reports can impact the bug count of source files and wrongly mark
bug-free source files as being bug prone.

6.4.5 Impact of Tangled Changes

The last important mapping bias source are simultaneously applied code changes
that serve multiple development tasks (e.g., fixing a bug and cleaning up code or
fixing a bug while implementing a new feature). We call these changes tangled. The
problem is that it is hard for bug data analysts, mapping bug reports to code changes,
to determine which code artifact changed in order to resolve either task. Which code
artifacts were changed to fix the bug report and which code artifacts were changed
to implement the new feature?

Kawrykow and Robillard [30] investigated over 24,000 code changes of seven
open-source projects and showed that up to 15 % of method updates were due to
non-essential differences. Later, Herzig and Zeller [25] manually inspected and
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Fig. 6.5 Histograms showing the difference between the original number of bug fixes
(num_original_bugs) and the number of classified bug fixes (num_classified_bugs) and their
frequencies across all five projects

classified more than 7,000 code changes from five open-source projects and found
that between 6 % and 15 % of all code changes, which contained references to at
least one issue report, are tangled. Independently, Kawrykow and Robillard [30]
and Herzig and Zeller [25] developed algorithms to separate tangled code changes
from each other. The algorithm proposed by Kawrykow and Robillard identified
non-essential changes allowing bug data analysts to map bug-fixing code changes
only to essentially changed source artifacts. The algorithms proposed by Herzig and
Zeller and a similar algorithm proposed by Herzig and Zeller [29] aim to untangle
any multi-purpose code change into so-called code change partitions—subsets of
applied code changes. Each such change partition contains those change operations
likely belonging together. Thus, different change partitions are likely to contain
change operations addressing different change purposes.
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Fig. 6.6 The impact of tangled changes on bug-counting models represented by the percentage of
the most defect-prone files that do not belong to this category because they were falsely associated
with bug reports

But what is the impact of tangled changes on bug-counting models counting the
number of distinct bug reports per source file? Herzig [24] showed this impact by
using the untangling algorithm proposed by Herzig and Zeller [25]. He generated
two datasets associating source files with the distinct number of bug reports whose
resolution required the corresponding source file to change. One dataset contained
the original bug fix count as discussed in Sect. 6.4.2. For the second bug count
set, Herzig associated bug reports only to those code artifacts modified by change
operations located in bug-fixing change partitions. He observed that between 10 %
and 38 % of all source files were assigned a different bug count. Between 2 % and
7 % of files originally associated with at least one bug report had no bug associated
after untangling. The impact on those files with the most bug counts is even worse.
Herzig sorted source files decreasingly once by their original number of associated
reports and once by their number of associated bug reports after untangling. He then
used the symmetric difference between the two sets containing the corresponding
top x% most defect-prone files. The results show that between 6 % and 50 % of
the most defect-prone files do not belong to this category because they were falsely
associated with bug reports. The detailed comparison results for all four open-source
projects can be found in Fig. 6.6. Furthermore, Herzig showed that the Spearman
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rank correlations between the files remaining in the intersections of original and
classified most defect-prone entities tends to be low: between 0.1 and 1 (median:
0.5; harmonic mean: 0.38).

Tangled changes can severely impact bug count models by associating bug fixes to
files that never had a bug.

6.4.6 Alternative Mapping Approaches

Using regular expressions as the only strategy to find references between bug reports
and code changes is clearly not good enough and is empirically proven to introduce
mapping bias—the subset of bug reports that can be linked to bug-fixing code
changes using regular expressions is not representative for the overall set of bug
reports being resolved in a software project [12].

In recent years, more and more alternative approaches of finding such artifact
references have been developed; Thomas [63] showed that there exists a trend in
using topic modeling to trace source code and bug reports. Topic modeling is used
to trace code artifacts and bug reports [5] and to specifically search for source files
that may be related to bug reports [55]. Wu et al. [66] manually inspected explicit
links between bug reports and change logs and extracted characteristic features
of bug reports and code changes linking each other. Based on these features, the
authors developed a prototype that “[. . . ] automatically learns criteria of features
from explicit links to recover missing links.” Wu et al. also evaluated the impact
of recovered links on software maintainability and defect prediction models and
report that ReLink yields significantly better prediction accuracy when compared
to traditional linking heuristics. Any mapping strategy linking bug reports and code
changes that is not relying on developers to explicitly mention bug report identifiers
when committing bug fixes or mentioning code change revisions when closing or
resolving bug reports will help bridge the gap between those bug reports that can
be linked to code changes and those that cannot be linked. Using natural language
processing and topic modeling, we can rely on the individual software repository
artifacts themselves.

The alternative to find links between bug reports and code changes retroactive
during the mining processes are development environments that link artifacts
already during the development process. Many commercial bug tracking, version
control, and code review environments and tools follow this strategy. This does not
only results in much more precise datasets that can be used to build recommendation
systems, but also provides more detailed development information for actual
developers, allowing them to instantly switch between development tools and thus
navigate fluently through related artifacts. Prominent examples are the commercial
tool series from Atlassian, or tools that support an automated mapping between
code changes and bug reports based on usage data collections (e.g., Mylyn [31],

http://www.tlassian.com/software
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Palantír [60], Hipikat [17], Jazz, or Team Foundation Server). Systems like Team
Foundation Server allow developers to attach related work items (e.g., bug reports)
to code changes (and vice versa) using drag and drop. Thus, the developer does
not have to manually add links to bug reports in her commit message but rather
selects proposed artifacts (based on heuristics) or simply selects these artifacts from
a given list of assigned tasks. Although such embedded mapping tools come with
their own challenges (dummy bug reports created to commit or incomplete links
between artifacts), these environments improve the linkage precision and number
of artifacts that can be linked at all dramatically. Although such systems are very
common in industry, they are rarely used in open-source projects. Thus, selecting
the right project also requires investigating which tools and processes are used in
the project.

There exist many approaches that may help to reduce bias in bug data. Using
programming environments integrating version control systems and issue man-
agement systems can significantly improve mapping accuracy.

6.5 Predicting Bugs

Knowing where bugs were fixed can be helpful and allows to review why artifacts
were bug prone and which processes or circumstances led to these issues. Even
more important, it allows to learn from these reviewed issues and to learn for future
development. One way of leveraging past bugs is to estimate and predict future
issues. Such bug prediction models have become popular in research and been
adopted in industry. The number of publications on bug prediction models is too
large to allow an extensive review of all approaches and findings. For a detailed
review on different fault prediction studies in software engineering, we recommend
the systematic literature review conducted by Hall et al. [23]. The authors provide
answers to research questions: “How does context affect fault prediction?” “Which
independent variables should be included in fault prediction models?” “Which
modeling techniques perform best when used in fault prediction?” [23].

The goal of this section is to explain how to turn your own mined historic data
into a bug prediction model. Along this path, analogous to the previous sections of
this chapter, we discuss issues and pitfalls when training bug-prediction models.

6.5.1 Relating Bugs and Code Features

One application of defect prediction models is to support decisions on how to
allocate quality assurance resources—for instance, which components to focus
upon during reviewing and testing. The models can help by predicting the number

http://jazz.net/
http://msdn.microsoft.com/en-us/vstudio/ff637362.spx


152 K. Herzig and A. Zeller

Table 6.3 Overall defect
prediction model accuracy
using different software
measures on Windows Vista
[adapted with permission
from 50, 52]

Model Precision Recall

Change Bursts [52] 91.1% 92.0%
Organizational Structure [51] 86.2% 84.0%
Code Churn [49] 78.6% 79.9%
Code Complexity [41] 79.3% 66.0%
Social network measures [13] 76.9% 70.5%
Dependencies [68] 74.4% 69.9%
Test Coverage [47] 83.8% 54.4%
Pre-Release Defects 73.8% 62.9%

and sometimes the location of defects to be fixed in near future. This works because
defects are not equally distributed across the code base; therefore, defect prediction
models try to locate hot-spots in the system that are more defect prone than others.

Given a set of code artifacts, such a prediction model returns risk factors that
indicate:

• The likelihood that a given artifact contains software defects (classification)
• Even more precisely, a number of expected defects to be found within the code

artifact (prediction)

Most defect prediction models are based on product metrics (e.g., for each module,
its domain or its code complexity) and process metrics (e.g., for each artifact, past
defects found, or past changes applied). The model correlates these metrics with
defect likelihood and can then be used to check new code artifacts expressed by
their corresponding software metrics.

Over the years, researchers and engineers proposed hundreds of code metrics that
can be used to build defect prediction models. The approach is always the same. The
software metrics contains meta-information about each individual software artifact
(e.g., lines of code per source file or number of authors that changed a source file)
that describes code properties separating defect-prone code artifacts from artifacts
that are not. The type of meta information can be arbitrary and can also describe
process information (who developed the code how) or describe the dependencies
between individual code artifacts (e.g., using call graphs). Table 6.3 summarizes
the predictive power of post-release defect prediction models for Windows Vista
categorized by the type of software metrics the models are based on. The differences
in precision and recall measures show that the chosen set of software metrics heavily
influences the prediction performance of the corresponding prediction model. Also
note that these are numbers for the Microsoft’s Windows Vista software product
only. Switching to different software products in Microsoft or outside Microsoft
might lead to different prediction performances and might also result in different
rankings.

To allow machine-learning algorithms to learn which metrics correlate most with
defect-prone source files, the dataset to train defect prediction models (and also to
check their result and measure accuracy) requires a response or dependent variable
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Table 6.4 Excerpt of an example metrics set combining network dependency
metrics as described by Zimmermann and Nagappan [68] and the number of
distinct bugs fixed per source file

filename size sizeOut sizeIn density . . . numBugs

optimizer/ClassCompiler.java 12 11 2 0.2651 . . . 1
optimizer/Codegen.java 30 29 2 0.1678 . . . 37
JavaAdapter.java 23 22 3 0.2094 . . . 11
ast/AstRoot.java 11 7 6 0.4 . . . 0
Parser.java 73 71 5 0.0778 . . . 33
ast/FunctionNode.java 20 7 17 0.2710 . . . 1
IRFactory.java 69 67 3 0.0837 . . . 23
CompilerEnvirons.java 14 5 11 0.2197 . . . 3
ObjToIntMap.java 15 3 13 0.2667 . . . 0
ast/ScriptNode.java 24 10 18 0.2536 . . . 0
ScriptRuntime.java 98 51 72 0.0842 . . . 41
IdFunctionCall.java 9 4 7 0.375 . . . 0
Scriptable.java 122 2 121 0.0529 . . . 0
IdFunctionObject.java 37 8 32 0.1876 . . . 0
Context.java 148 46 130 0.0484 . . . 19
ast/XmlString.java 6 4 3 0.4 . . . 0
ast/NodeVisitor.java 54 2 54 0.0527 . . . 0
ast/XmlFragment.java 8 4 5 0.3928 . . . 0
ast/AstNode.java 67 9 64 0.0961 . . . 1

The path prefix “/org/mozilla/javascript/” has been elided from each

that adds quality-related information per code artifact. Using the approach described
in Sect. 6.4.2, we know which code changes fixed bug reports in which source files.
Thus, we can count the distinct number of bugs fixed per source file and use this
bug count as quality measurement—the more bugs were fixed, the lower the code
quality. Source files without bug fixes have a bug count of zero.

The resulting dataset is a table-like data structure that associates each code
artifact with a set of explanatory variables (metrics) and a dependent variable
(number of recorded bug fixes). Table 6.4 shows an example dataset for the
open-source project Rhino using network dependency metrics as described by
Zimmermann and Nagappan [68] and the bug count metric as described earlier.
The chosen code dependency network metric set is used exemplary and can be
replaced or extended by any other metric set that can be collected for source files.
For more details on the individual metrics, we refer the reader to the original dataset
description [68]. The complete sample dataset as shown in Fig. 6.4 is available
as a comma-separated text file (CSV) for download from http://rsse.org/book/c06/
sampleset.csv.

In the next section, we use this dataset to model the relationship between the
dependent variable and the explanatory variables using machine learners.

Relating software, history, or process metrics with bug fixes allows accurate bug
prediction models to be built.

https://developer.mozilla.org/en-US/docs/Rhino
http://rsse.org/book/c06/sampleset.csv
http://rsse.org/book/c06/sampleset.csv
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Fig. 6.7 (a) Random sampling or stratified random sampling splits one snapshot of a software
project into 2/3 training and 1/3 testing parts. Performing multiple splits (holdouts) and reporting
mean accuracy measures reduces sampling errors. (b) Using two releases or versions of one or
different project histories is closest to what can be deployed in the real world where past project
data is used to identify defect-prone entities in on-going or future releases

6.5.2 Training Prediction Models

To build and evaluate a bug prediction model, one needs a training and a testing
set. Figure 6.7 shows two common approaches to train and test bug prediction
models. Randomly splitting a single dataset into two subsets is frequently used if
only one revision of a software project is available. The single dataset is split
into a training set (usually containing two-thirds of the original set’s artifacts) and
into a testing set (see Fig. 6.7a). The intersection of the training and testing set is
empty while the union of training and testing data matches the original dataset.
Sampling datasets includes fuzziness: a single random sample can produce good
results although the prediction model performs poorly on average. Thus, sampling
is often combined with repeated holdout setups. Instead of splitting once, the dataset
gets repeatedly split into training and testing subsets and for each cross-validation
or holdout precision, recall, and accuracy are recorded. These measures correspond
to the mean values over the corresponding set of performance holdouts.

The alternative of splitting one revision of a software project apart is to use two
revisions of the software code base (see Fig. 6.7b). This method is commonly used
to train and test prediction models based on releases. The earlier release serves as a
training set while the other, later revision, is used to test the prediction model. Mod-
els are trained on revisions of different software projects. These forward or cross-
release prediction setups are closest to what can be deployed in the real world where
past project data is used to identify bug-prone entities in ongoing or future releases.

The training data will then be passed to a machine-learning algorithm (e.g.,
support vector machine). The resulting model will then accept new instances and
returns a predicted value. Prediction models can either be trained as classification
models or regression models. Classification models usually associate instances
with a category (bug-prone or not bug-prone) while regression models predict the
exact number of bugs to be expected in the corresponding code artifact. There are
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many statistical tools and algorithms on how to actually train machine learners
for bug prediction purposes and there exist many different machine learners that
can be used to predict bugs. Different models may assume different preconditions
on the operation dataset and the predictive power of the models not only depends on
the used metric sets but also on the machine learner used to predict bugs. In Chap. 3,
Menzies [43] discusses this topic in more detail.

6.5.3 From Prediction to Recommendation

Many prediction models and their predicted values can be interpreted as recom-
mendations. The predicted values estimate future events or future situations. This
knowledge can be used to take action to support or work against a predicted trend
or a predicted result. Bug prediction models predict the expected number of bugs to
be fixed in code artifacts. Thus, the prediction results of these models can be used to
determine those artifacts that should be tested or reviewed more carefully. Turning
a prediction model into a recommendation system usually requires an interpretation
of the predicted values and insights that allow to draw possible consequences for the
software project.

Discussion the transformation between prediction to recommendation systems
goes beyond the content of this chapter but will be discussed in later chapters.

Just as data quality, the interpretation and consequences of predictor and
recommendation models should be constantly questioned.

6.6 Hands-On: Mining Bug Repositories

After discussing the foundations (and perils!) of mining, let us now provide some
hands-on experience. This section focuses on mining issue repositories, and the next
one will focus on how to predict future bugs.

To mine issue repositories, we use the open-source, general purpose mining
framework Mozkito. It provides the necessary extraction and parsing functionality
required to bring bug reports into a uniform yet powerful format. Out of the box,
Mozkito supports the open-source bug-tracking systems Bugzilla, Jira, Google
Project Hosting, and others. Adding a new or customized connector requires the
user to implement one interface.

The API of the uniform bug data model is shown in Fig. 6.8 as a UML class
diagram. The user can decide whether to operate on an SQL database or to use Java
objects and the Mozkito framework. The bug data model contains the most common
bug report fields including attachments, discussions, and bug report history. For each
bug report mined, Mozkito persists exactly one Report object in the database that
can later be restored (see Step 3) and used for analysis purposes.

http://mozkito.org/
http://bugzilla.org/
http://www.tlassian.com/software/jira
http://code.google.com/
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+ getAssignedTo() : Person
+ getAttachmentEntries() : List<AttachmentEntry>
+ getCategory() : String
+ getComments() : SortedSet<Comment>
+ getComponent() : String
+ getCreationTimestamp() : DateTime
+ getDescription() : String
+ getHistory() : History
+ getId() : String
+ getKeywords() : Set
+ getPriority() : Priority
+ getProduct() : String
+ getResolution() : Resolution
+ getResolutionTimestamp() : DateTime
+ getResolver() : Person
+ getSeverity() : Severity
+ getSiblings() : SortedSet<Report>
+ getStatus() : Status
+ getSubject() : String
+ getSubmitter() : Person
+ getSummary() : String
+ getType() : Type
+ getVersion() : String
+ timewarp(timestamp : DateTime) : Report

Report

+ get(from : DateTime,to : DateTime) : History
+ get(author : Person) : History

+ getBugId() : String
+ getElements() : SortedSet<HistoryElement>
+ getId() : long
+ isEmpty() : boolean
+ iterator() : Iterator
+ last() : HistoryElement

History

+ getAuthor() : Person
+ getBugId() : String
+ getChangedDateValues() : Map<String, DateTimeTuple>
+ getChangedEnumValues() : Map<String, EnumTuple>
+ getChangedPersonValues() : Map<String, PersonTuple>
+ getChangedStringValues() : Map<String, StringTuple>
+ getFields() : Set<String>

+ getId() : long
+ getText() : String
+ getTimestamp() : DateTime

HistoryElement

+ getAuthor() : Person
+ getDescription() : String
+ getFilename() : String
+ getId() : String
+ getLink() : String
+ getMime() : String
+ getSize() : long
+ getTimestamp() : DateTime
+ toURI() : URI
+ toURL() : URL

AttachmentEntry

+ getAuthor() : Person
+ getBugReport() : Report
+ getId() : int
+ getMessage() : String
+ getText() : String
+ getTimestamp() : DateTime

Comment

0..*
1

1

1

0..*

1

0..*

1

Fig. 6.8 Mozkito bug report model. The UML diagram lists only the most important methods

6.6.1 Step 1: Getting Mozkito

Mozkito is an open-source mining framework. For download and installing instruc-
tions, refer to the Mozkito website. To mine issue repositories, we use the Mozkito
issues module. Once the Mozkito issues module is built (see Mozkito website for
instructions), the Mozkito folder

mozkito-tools/mozkito-issues/target/

contains the executable jar file that can be used to mine issue repositories (referred
to as mozkito-issues.jar for the sake of brevity):

mozkito-issues-<version>-jar-with-dependencies.jar1

1Replace <version> with the downloaded version number of Mozkito.

http://mozkito.org
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1: #### DATABASE PROPERTIES ####
2: database.host=localhost
3: database.driver=org.postgresql.Driver
4: database.name=moskito_rhino
5: database.user=<USER>
6: database.password=<PASSWD>
7: ############################
8: #### BUG TRACKER PROPERTIES ####
9: tracker.type=BUGZILLA
10: bugzilla.overviewURI=https://bugzilla.mozilla.org/buglist.cgi

?product=Rhino
11: tracker.uri=https://bugzilla.mozilla.org

Fig. 6.9 Mozkito-Issues configuration to mine the publicly available issue management system
for the Mozilla product Rhino

6.6.2 Step 2: Mining an Issue Repository

To demonstrate how to use Mozkito-Issues to mine issue repositories, we will mine
the publicly available issue management system of Mozilla and focus on project
Rhino—a Javascript engine written in Java. The restriction to project Rhino is for
demonstration purposes, only.

Mozkito-Issues can be configured using JVM arguments. To get a list of all
available Mozkito arguments (required arguments will be marked) execute:

java -Dhelp -jar mozkito-issues.jar.

The configuration of Mozkito-Issues depends on the target bug-tracking system and
the issue management system URL. Mozilla uses the bug-tracking system Bugzilla
that can be accessed using the issue management system URL: https://bugzilla.
mozilla.org. Figure 6.9 summarizes the used Mozkito arguments as Mozkito
configuration file (<config_file>). To let Mozkito use the configuration file,
simply start Mozkito specifying the config JVM argument:

java -Dconfig=<config_file> -jar mozkito-issues.jar.

Line 10 of the configuration (Fig. 6.9) specifies the target product (in our case
Rhino). The configuration file also contains the required database connection prop-
erties that will be used to persist the uniform data format. The listed configuration
requires a PostgreSQL database running on localhost. Most likely, these settings
need to be adapted to fit a given environment (e.g., MySQL and different host name).

Depending on the size and speed of the issue repository, it may take several hours
for Mozkito to fetch and mine all reports found in the target bug-tracking system.
Once the mining process completed, the specified database should be populated
with persisted Report instances (see Fig. 6.8), one for each bug report found in the
mined bug-tracking system. Bug reports requiring additional permissions or that
cause parsing errors will be dropped during the mining process.

https://bugzilla.mozilla.org
https://bugzilla.mozilla.org
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1 public int analysis() {
2 int result = 0;
3

4 /*
5 * please use the Mozkito documentation to see
6 * how to create PersistenceUtil instances
7 */
8 final PersistenceUtil persistenceUtil =
9 this.databaseArguments.getValue();
10

11 final Criteria<Report> loadCriteria =
12 persistenceUtil.createCriteria(Report.class);
13

14 final List<Report> allReports = persistenceUtil.load(
loadCriteria);

15 for (final Report report : allReports) {
16 final History reportHistory = report.getHistory();
17

18 // we are only interested in HistoryElements
19 // changing the report type
20 final History reportTypeHistory = reportHistory.get("type");
21 if (!reportTypeHistory.isEmpty()) {
22 ++result;
23 }
24 }
25 return result;
26 }

Fig. 6.10 Sample source code analyzing the history of issue reports counting the number of
reports for which at least one history entry changing the report type can be found

6.6.3 Step 3: Analyzing Bug Reports in Java

Once the content of the target issue management system is persisted, we can use
Mozkito to analyze the mined issue reports. Figure 6.10 shows Java source code that
loads the mined issue reports from the database and analyzes the report’s history.
The purpose of the program is to investigate for how many issue reports the report
type was at least once changed. In other words, we want to analyze how many issue
reports were filed as bug reports but resolved as feature or improvement request, or
vice versa.

The PersistenceUtil class (line 8 in Fig. 6.10) of Mozkito can be used to load
persisted objects from the database into your program.2 Once we load the Report
instances, we iterate over them (line 15) and check for the report history concerning
the report type (lines 16 and 20). If this history of modifications applied to the report
type is not empty (line 21), we find a report whose report type is changed at least
once. We discussed the result of this particular analysis in Sect. 6.3.

2Please see the Mozkito documentation on how to create such a PersistenceUtil instance.
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The presented sample code demonstrates how easy bug report analysis can be
once we transformed the bug-tracking content into a uniform, persisted data format.
You can use the code snippet presented in Fig. 6.10 as a blueprint to create your own
issue report analysis.

6.6.4 Relating Bugs to Changes

As discussed in Sect. 6.4.1, there exist multiple strategies and approaches to map
bug reports to code changes correctly and exhaustively. The general mining tool
Mozkito ships with a number of state-of-the-art mapping techniques to associate
bug reports with corresponding code changes. Discussing all strategies supported
by and their possible combinations would exceed the scope of this chapter. Instead,
this section explains how to use Mozkito to use the most common and simplest
stand-alone strategy to efficiently map bug reports to code changes using regular
expressions. The wiki pages of Mozkito provide a more detailed overview of built-
in mapping strategies and instructions on how to perform these mappings. Please
note that this mining step requires a mined VCS. Please read the corresponding
wiki page (https://wiki.mozkito.org/x/FgAz) on how to mine VCSs using Mozkito.

Mozkito allows the user to combine multiple mapping engines. Each engine can
be seen as a voter returning a confidence value for each pair of bug report and code
change. The confidence value corresponds to the likelihood that the provided bug
and change should be mapped to each other. To aggregate the different confidence
values, we use a veto-strategy3—if the confidence value of one engine is below a
certain threshold, the pair of report and change are not mapped to each other. In our
case, we want to limit Mozkito to use the following engines:

Regular Expression Engine. To search for explicit bug report references in com-
mit messages.

Report Type Engine. To consider only bug reports to be mapped (our goal is to
map bugs to code changes).

Completed Order Engine. To allow only a pair of associated reports and code
changes for which the code change was applied before the report was marked
as resolved.

Creation Order Engine. To allow only a pair of associated reports and code
changes for which the issue report was filed before the code change was applied.

Timestamp Engine. To enforce that the associated report must be marked as
resolved at most one day after the code change was committed.

To configure Mozkito to use exactly this set of engines, we have to add the following
line to our already existing Mozkito configuration file (<config_file>):

3There exist more aggregation strategies. Please see the Mozkito manual for more details.

https://wiki.mozkito.org/x/LoAj
https://wiki.mozkito.org/x/FgAz
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1.0 "({match}bug:?\\s*#?##ID##)" CASE_INSENSITIVE
1.0 "({match}bugs?:?\\s*(#?\\p{Digit}+,)*#?##ID##)"\
CASE_INSENSITIVE
1.0 "({match}https?://bugzilla.mozilla.org/show_bug.cgi\
\\?id=##ID##)" CASE_INSENSITIVE
1.0 "({match}#\\s?##ID##)" CASE_INSENSITIVE
1.0 "({match}BZ\\s?:?\\s*##ID##)" CASE_INSENSITIVE
1.0 "({match}fix\\s?:?\\s*##ID##)" CASE_INSENSITIVE
1.0 "({match}fixing\\s?:?\\s*##ID##)" CASE_INSENSITIVE
-100.0 "({match}test cases for") CASE_INSENSITIVE
-100.0 "({match} revert fix for") CASE_INSENSITIVE

Fig. 6.11 Sample <REGEX_FILE> specifying the regular expressions to be used to find bug
report reference candidates in commit messages. Note that backslash characters must be escaped

mappings.engines.enabled=[RegexEngine, ReportTypeEngine, \
CompletedOrderEngine, CreationOrderEngine, TimestampEngine]

mappings.engines.reportType.type=BUG
mappings.engines.timestamp.interval="+1d 00h 00m 00s"
mappings.engines.RegexEngine.config=<REGEX_FILE>

The referenced regular expression file (<REGEX_FILE>) should contain the project-
specific regular expressions Mozkito will use to match possible bug report refer-
ences. The regular expression file can specify one expression per line including a
confidence value to be returned if the regular expression matches (first number in
line) and a specification whether Mozkito should treat the expression case sensitive
or not. Mozkito iterates through all regular expressions in the <REGEX_FILE> from
top to bottom and stops as soon as one regular expression matches. A typical regular
expression file that can also be used for our Rhino project is shown in Fig. 6.11.

Once all the above-discussed lines are added to the Mozkito configuration file
(<config_file>), the Mozkito mapping process can be started using the following
command:

java -Dconfig=<config_file> -jar mozkito-mappings.jar4

There exist mining infrastructures allowing immediate mining actions. Using such
infrastructures eases reproduction and allows comparison to other studies.

Exporting Bug Count Per Source File

As a last step, we export the mapping between source files and bug reports into a
comma-separated file that lists the distinct number of fixed bug reports per source
file. To export the mapping we created above into a comma-separated bug count

4mozkito-issues-<version>-jar-with-dependencies.jar
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file, we can use the built-in Mozkito tool mozkito-bugcount located in the folder
mozkito-tools/mozkito-bugcount/target/. To export bug counts per source
file, we execute the following command:

java -Dconfig=<config_file> -Dbugcount.granularity=file

-Dbugcount.output=<csv_file> -jar mozkito-bugcount.jar5

where <csv_file> should point to a file path to which the bug count CSV file will
be written.

In the next section, we use the <csv_file> to build a sample defect prediction
model that can be used as basis for recommendation systems.

6.7 Hands-On: Predicting Bugs

After mining VCS and issue management system and after mapping bug reports
with code changes, this section provides a hands-on tutorial on how to use the
statistical environment and language R [57] to write a script that reads a dataset
of our sample format (Fig. 6.4) as created in the previous section, performs a
stratified repeated holdout sampling of the dataset, trains multiple machine learners
on the training data before evaluating the prediction accuracy of each model
using the evaluation measures precision, recall, and F-measure. Precision, recall,
and f-measure are only one possibility to measure prediction or classification
performance. Other performance measures include ROC curves [19] or even effort-
aware prediction models [42].

The complete script containing all discussed R code snippets is available for
download from http://rsse.org/book/c06/sample.R. The dataset we use for our
example analysis below is also available for download from http://rsse.org/book/
c06/sampleset.csv.

6.7.1 Step 1: Load Required Libraries

The script will use functionalities of multiple third-party libraries. The script will
make heavy use of the caret [36] package for R. The last statement in the first R
snippet below sets the initial random seed to an arbitrary value (we chose 1); this
will make the shown results reproducible.

> rm(list = ls(all = TRUE))
> library(caret)
> library(gdata)
> library(plyr)

5mozkito-bugcount-<version>-jar-with-dependencies.jar

http://rsse.org/book/c06/sample.R
http://rsse.org/book/c06/sampleset.csv
http://rsse.org/book/c06/sampleset.csv
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> library(reshape)
> library(R.utils)
> set.seed(1)

6.7.2 Step 2: Reading the Data

To load the sample dataset containing code dependency network metrics [68] and
bug counts per source file (as described in Sect. 6.5.1 and shown in Fig. 6.4), we use
the following snippet that reads the dataset directly over the Internet.

After execution, the variable data holds the dataset in a table-like data structure
called data.frame. For the rest of the section, we assume that the column holding
the dependent variables for all instances is called numBugs.

> data <- read.table(
+ http://rsse.org/book/c06/sampleset.csv,
+ header=T, row.names=1, sep=",")

We can now access the dataset using the data variable. The command below
outputs the numBugs column for all 266 source files.

> data$numBugs
[1] 1 37 11 0 33 1 23 3 0 0 41 0 0 0 19 0 0 0 1
[20] 0 7 0 6 2 3 11 8 3 10 0 1 10 0 0 0 3 0 25
[39] 5 1 1 0 3 0 1 3 2 2 1 0 0 0 0 2 0 0 1
[58] 0 4 0 1 1 0 0 0 11 2 0 43 0 1 1 1 0 0 3
[77] 0 0 0 4 1 0 2 0 2 0 0 0 0 3 0 0 0 0 0
[96] 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[115] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[134] 0 0 1 0 0 0 0 0 7 1 0 0 0 0 0 0 1 10 4
[153] 7 2 2 4 4 5 0 0 1 4 0 0 1 0 1 3 0 0 2
[172] 1 2 0 0 0 0 0 0 0 1 0 0 0 0 9 0 1 1 4
[191] 1 0 1 1 2 0 0 12 3 16 0 1 3 1 0 6 3 2 0
[210] 3 2 0 0 0 0 0 22 1 6 1 4 1 0 6 0 6 1 0
[229] 0 0 2 1 0 0 0 1 0 0 4 2 3 0 0 0 0 0 0
[248] 0 0 1 1 0 0 0 0 1 0 2 0 0 0 0 0 0 0 1

6.7.3 Step 3: Splitting the Dataset

First, we split the original dataset into training and testing subsets using stratified
sampling—the ratio of files being fixed at least once in the original dataset is
preserved in both training and testing datasets. This makes training and testing sets
more representative by reducing sampling errors.

The first two lines of the R-code below are dedicated to separate the dependent
variable from the explanatory variables. This is necessary since we will use only
the explanatory variables to train the prediction models. In the third line, we
then modify the dependent variable (column numBugs) to distinguish between
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code entities with bugs (“One”) and without (“Zero”). Finally, we use the method
createDataPartition to split the original datasets into training and testing sets
(see Sect. 6.5.2). The training sets contain 2/3 of the data instances while the testing
sets contain the remaining 1/3 of the data instances.

> dataX <- data[,which(!colnames(data) %in% c("numBugs"))]
> dataY <- data[, which(colnames(data) %in% c("numBugs"))]
> dataY <- factor(ifelse(dataY > 0, "One", "Zero"))
>
> inTrain <- createDataPartition(dataY, times = 1, p = 2/3)
>
> trainX <- dataX[inTrain[[1]], ]
> trainY <- dataY[inTrain[[1]]]
> testX <- dataX[-inTrain[[1]], ]
> testY <- dataY[-inTrain[[1]]]

After execution, the variable trainX holds the explanatory variables of all training
instances while the variable trainY holds the corresponding dependent variables.
Respectively, testX and textY contain the explanatory and dependent variables of
all testing instances.

6.7.4 Step 4: Prepare the Data

It is always a good idea to remove explanatory variables that will not contribute to
the final prediction model. There are two cases in which an explanatory variable will
not contribute to the model.

1. If the variable values across all instances have zero variance (can be considered
a constant)—the function call nearZeroVar(trainX) returns the array of
columns whose values show no significant variance:

> train.nzv <- nearZeroVar(trainX)
> if (length(train.nzv) > 0) {
+ trainX <- trainX[, -train.nzv]
+ testX <- testX[, -train.nzv]
+ }

2. If the variable is correlated with other variables and thus does not add any new
information—the function findCorrelation searches through the correlation
matrix trainX and returns a set of columns that should be removed in order
to reduce pair-wise correlations above the provided absolute correlation cutoff
(here, 0.9):

> trainX.corr <- cor(trainX)
> trainX.highcorr <- findCorrelation(trainX.corr, 0.9)
> if (length(trainX.highcorr) > 0) {
+ trainX <- trainX[, -trainX.highcorr]
+ testX <- testX[, -trainX.highcorr]
+ }
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Rescale the training data using the center to minimize the effect of large values
on the prediction model by scaling the data values into the value range [0,1].
To further reduce the number of explanatory variables, you may also perform a
principal component analysis—a procedure to determine the minimum number
of metrics that will account for the maximum variance in the data. The function
preProcess estimates the required parameters for each operation and predict

.preProcess is used to apply them to specific datasets:

> xTrans <- preProcess(trainX, method = c("center", "scale"))
> trainX <- predict(xTrans, trainX)
> testX <- predict(xTrans, testX)

6.7.5 Step 5: Train the Models

This script will use several prediction models for the experiments: Support vector
machine with radial kernel (svmRadial), logistic regression (multinorm), recursive
partitioning (rpart), k-nearest neighbor (knn), tree bagging (treebag), random
forest (rf), and naive Bayesian classifier (nb). For a fuller understanding of these
models, we advise the reader to refer to specialized machine-learning texts such as
Menzies [43] (Chap. 3) or Witten et al. [65].
> models <- c("svmRadial","multinom","rpart","knn","treebag",
+ "rf","nb")

Each model is optimized by the caret package by training models using different
parameters (please see the caret manual for more details). “The performance of
held-out samples is calculated and the mean and standard deviations is summarized
for each combination. The parameter combination with the optimal re-sampling
statistic is chosen as the final model and the entire training set is used to fit a final
model” [36]. The level of performed optimization can be set using the tuneLength
parameter. We set this number to five:

> train.control <- trainControl(number=2)
> tuneLengthValue <- 5

Using the train() function, we generate prediction models (called fit) and store
these models in the list modelsFit to later access them to compute the prediction
performance measures precision, recall, and accuracy:

> modelsFit <- list()
+
+ for(model in models){
+ print(paste("training",model," ..."))
+ fit <- train(trainX, trainY, method = model,
+ tuneLength = tuneLengthValue, trControl = train.control,
+ metric = "Kappa")
+ modelsFit[[model]] <- fit
+ }

http://cran.r-project.org/web/packages/caret/caret.pdf
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6.7.6 Step 6: Make the Prediction

Using the function extractPrediction() we let all models predict the dependent
variables of the testing set testX:

> pred.values <- extractPrediction(modelsFit, testX, testY)
> pred.values <- subset(pred.values, dataType == "Test")
> pred.values.split <- split(pred.values, pred.values$object)

After execution, the variable pred.values.split holds both the real and the
predicted dependent variable values. To check the predicted values for any of the
used models (e.g., svmRadial), we can access the variable pred.values.split

as shown in the following text. The result is a list of observed (obs column) and
predicted (pred column) values for each instance in the testing dataset. The result
depends on the random split and thus may vary between individual experiments.

> pred.values.split$svmRadial
obs pred model dataType object

179 One Zero svmRadial Test svmRadial
180 Zero Zero svmRadial Test svmRadial
181 Zero Zero svmRadial Test svmRadial
182 Zero Zero svmRadial Test svmRadial
183 Zero Zero svmRadial Test svmRadial
184 Zero Zero svmRadial Test svmRadial
185 One Zero svmRadial Test svmRadial
186 One One svmRadial Test svmRadial
187 One One svmRadial Test svmRadial
188 Zero One svmRadial Test svmRadial
189 One One svmRadial Test svmRadial
190 One Zero svmRadial Test svmRadial
191 One One svmRadial Test svmRadial
192 One Zero svmRadial Test svmRadial
193 Zero Zero svmRadial Test svmRadial

6.7.7 Step 7: Compute Precision, Recall, and F-measure

The final part of the script computes precision, recall, and F-measure values for all
models and stores these accuracy measures in a table-like data structure:

> getPrecision <- function(x) as.numeric(unname(x$byClass[3]))
> getRecall <- function(x) as.numeric(unname(x$byClass[1]))
> getFmeasure <- function(x, y) 2 * ((x * y)/(x + y))
>
> n.row = length(pred.values.split)
> results <- NULL
> results <- dataFrame(
+ colClasses = c(Model = "character", Precision = "double",

Recall = "double", F.Measure = "double"), nrow = n.row)
> for (j in 1:length(pred.values.split)) {
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+ conf.matrix <- confusionMatrix(pred.values.split[[j]]$pred,
+ pred.values.split[[j]]$obs, positive = "One")
+
+ precision <- getPrecision(conf.matrix)
+ if(is.na(precision)){ precision <- 0 }
+
+ recall <- getRecall(conf.matrix)
+ if(is.na(recall)){ recall <- 0 }
+
+ f.measure <- getFmeasure(precision, recall)
+ if(is.na(f.measure)){ f.measure <- 0+ }
+
+ results[j, 1] <- names(pred.values.split)[j]
+ results[j, 2:4] <- c(precision, recall, f.measure)
+ }

To print the prediction measures, we simply print the results table. That will
print a table containing precision, recall, and F-measure values sorted by a machine-
learning algorithm used for training and testing.

> print(results)
Model Precision Recall F.Measure

1 knn 0.6562500 0.5833333 0.6176471
2 multinom 0.7096774 0.6111111 0.6567164
3 nb 0.6571429 0.6388889 0.6478873
4 rf 0.7575758 0.6944444 0.7246377
5 rpart 0.5526316 0.5833333 0.5675676
6 svmRadial 0.7307692 0.5277778 0.6129032
7 treebag 0.8181818 0.7500000 0.7826087

The results show that using a tree bag model, we obtain a precision of 0.82, a
recall of 0.75, and an F-measure of 0.78. The high precision value of 0.82 means
that the tree bag model on average reports 18 % false positives—classifies code
entities as having a bug although no bug was found. Similarly, the recall value
of 0.75 implies that the model contains about 25 % false negatives—code entities
classified as bug free but in which bugs have been fixed. Comparing this result with
the overall defect prediction model accuracy measures on Windows Vista presented
in Table 6.3 shows that the just-built classification model has comparable results to
state-of-the-art defect prediction models (although trained and tested on a different
project, using different metrics, and different granularity).

Ready-made scripts are available that predict and recommend future bugs.

6.8 Conclusion

To err is human, but to learn from the past is human too. Mining issue repositories
offer several opportunities to automate this learning process, producing recom-
mendations that can help identify present bugs and avoid future bugs. Bug data
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is not without caveats, though. First, the data reflects specific users, tools, and
processes, which should be identified to ensure proper interpretation of the results.
Second, the data itself is frequently noisy or biased, which should also be taken
into account, and where possible, reduced or eliminated. A bit of manual inspection
and cross-checking can tremendously increase confidence in all automatic findings,
and the future belongs to those who integrate automated tools into well-defined and
systematic empirical investigations.

The central challenge of the future will be to combine both automatic and manual
empirical bug analysis.
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