
Chapter 2
Basic Approaches in Recommendation Systems

Alexander Felfernig, Michael Jeran, Gerald Ninaus, Florian Reinfrank,
Stefan Reiterer, and Martin Stettinger

Abstract Recommendation systems support users in finding items of interest.
In this chapter, we introduce the basic approaches of collaborative filtering, content-
based filtering, and knowledge-based recommendation. We first discuss principles
of the underlying algorithms based on a running example. Thereafter, we provide
an overview of hybrid recommendation approaches which combine basic variants.
We conclude this chapter with a discussion of newer algorithmic trends, especially
critiquing-based and group recommendation.

2.1 Introduction

Recommendation systems [7,33] provide suggestions for items that are of potential
interest for a user. These systems are applied for answering questions such as which
book to buy? [39], which website to visit next? [49], and which financial service
to choose? [19]. In software engineering scenarios, typical questions that can be
answered with the support of recommendation systems are, for example, which
software changes probably introduce a bug? [3], which requirements to implement
in the next software release? [25], which stakeholders should participate in the
upcoming software project? [38], which method calls might be useful in the current
development context? [59], which software components (or APIs) to reuse? [45],
which software artifacts are needed next? [40], and which effort estimation methods
should be applied in the current project phase? [50]. An overview of the application
of different types of recommendation technologies in the software engineering
context can be found in Robillard et al. [53].

A. Felfernig (�) • M. Jeran • G. Ninaus • F. Reinfrank • S. Reiterer • M. Stettinger
Institute for Software Technology, Graz University of Technology,
Inffeldgasse 16b/2, 8010 Graz, Austria
e-mail: alexander.felfernig@ist.tugraz.at; mjeran@ist.tugraz.at; gninaus@ist.tugraz.at;
florian.reinfrank@ist.tugraz.at; reiterer@ist.tugraz.at; mstettinger@ist.tugraz.at

M.P. Robillard et al. (eds.), Recommendation Systems in Software Engineering,
DOI 10.1007/978-3-642-45135-5__2, © Springer-Verlag Berlin Heidelberg 2014

15

mailto:alexander.felfernig@ist.tugraz.at
mailto:mjeran@ist.tugraz.at
mailto:gninaus@ist.tugraz.at
mailto:florian.reinfrank@ist.tugraz.at
mailto:reiterer@ist.tugraz.at
mailto:mstettinger@ist.tugraz.at


16 A. Felfernig et al.

The major goal of this book chapter is to shed light on the basic properties of
the three major recommendation approaches of (1) collaborative filtering [12,26,36],
(2) content-based filtering [49], and (3) knowledge-based recommendation [5, 16].
Starting with the basic algorithmic approaches, we exemplify the functioning of the
algorithms and discuss criteria that help to decide which algorithm should be applied
in which context.

The remainder of this chapter is organized as follows. In Sect. 2.2 we give an
overview of collaborative filtering recommendation approaches. In Sect. 2.3 we
introduce the basic concepts of content-based filtering. We close our discussion of
basic recommendation approaches with the topic of knowledge-based recommen-
dation (see Sect. 2.4). In Sect. 2.5, we explain example scenarios for integrating the
basic recommendation algorithms into hybrid ones. Hints for practitioners interested
in the development of recommender applications are given in Sect. 2.6. A short
overview of further algorithmic approaches is presented in Sect. 2.7.

2.2 Collaborative Filtering

The item-set in our running examples is software engineering-related learning
material offered, for example, on an e-learning platform (see Table 2.1). Each
learning unit is additionally assigned to a set of categories, for example, the learning
unit l1 is characterized by Java and UML.

Collaborative filtering [12, 36, 56] is based on the idea of word-of-mouth
promotion: the opinion of family members and friends plays a major role in personal
decision making. In online scenarios (e.g., online purchasing [39]), family members
and friends are replaced by the so-called nearest neighbors (NN) who are users
with a similar preference pattern or purchasing behavior compared to the current
user. Collaborative filtering (see Fig. 2.1) relies on two different types of background
data: (1) a set of users and (2) a set of items. The relationship between users and
items is primarily expressed in terms of ratings which are provided by users and
exploited in future recommendation sessions for predicting the rating a user (in our
case user Ua) would provide for a specific item. If we assume that user Ua currently
interacts with a collaborative filtering recommendation system, the first step of the
recommendation system is to identify the nearest neighbors (users with a similar
rating behavior compared to Ua) and to extrapolate from the ratings of the similar
users the rating of user Ua.

The basic procedure of collaborative filtering can best be explained based on
a running example (see Table 2.2) which is taken from the software engineering
domain (collaborative recommendation of learning units). Note that in this chapter
we focus on the so-called memory-based approaches to collaborative filtering
which—in contrast to model-based approaches—operate on uncompressed versions
of the user/item matrix [4]. The two basic approaches to collaborative filtering are
user-based collaborative filtering [36] and item-based collaborative filtering [54].
Both variants are predicting to which extent the active user would be interested in
items which have not been rated by her/him up to now.



2 Basic Approaches in Recommendation Systems 17

Table 2.1 Example set of software engineering-related learning units (LU). This
set will be exploited for demonstration purposes throughout this chapter. Each
of the learning units is additionally characterized by a set of categories (Java,
UML, Management, Quality), for example, the learning unit l1 is assigned to the
categories Java and UML

Learning unit Name Java UML Management Quality

l1 Data Structures in Java yes yes
l2 Object Relational Mapping yes yes
l3 Software Architectures yes
l4 Project Management yes yes
l5 Agile Processes yes
l6 Object Oriented Analysis yes yes
l7 Object Oriented Design yes yes
l8 UML and the UP yes yes
l9 Class Diagrams yes
l10 OO Complexity Metrics yes

Fig. 2.1 Collaborative filtering (CF) dataflow. Users are rating items and receive recommenda-
tions for items based on the ratings of users with a similar rating behavior—the nearest neighbors
(NN)

User-Based Collaborative Filtering. User-based collaborative filtering identifies
the k-nearest neighbors of the active user—see Eq. (2.1)1—and, based on these
nearest neighbors, calculates a prediction of the active user’s rating for a specific
item (learning unit). In the example of Table 2.2, user U2 is the nearest neighbor
(k D 1) of user Ua, based on Eq. (2.1), and his/her rating of learning unit l3 will
be taken as a prediction for the rating of Ua (rating D 3.0). The similarity between
a user Ua (the current user) and another user Ux can be determined, for example,
based on the Pearson correlation coefficient [33]; see Eq. (2.1), where LUc is the set
of items that have been rated by both users, r˛;li is the rating of user ˛ for item li , and

1For simplicity we assume k D 1 throughout this chapter.



18 A. Felfernig et al.

Table 2.2 Example collaborative filtering data structure (rating matrix): learning
units (LU) versus related user ratings (we assume a rating scale of 1–5)

LU Name U1 U2 U3 U4 Ua

l1 Data Structures in Java 5.0 4.0
l2 Object Relational Mapping 4.0
l3 Software Architectures 3.0 4.0 3.0
l4 Project Management 5.0 5.0 4.0
l5 Agile Processes 3.0
l6 Object Oriented Analysis 4.5 4.0 4.0
l7 Object Oriented Design 4.0
l8 UML and the UP 2.0
l9 Class Diagrams 3.0
l10 OO Complexity Metrics 5.0 3.0

average rating (rα ) 4.33 3.625 4.0 3.75 3.67

Table 2.3 Similarity between
user Ua and the users Uj ¤ Ua

determined based on Eq. (2.1).
If the number of commonly
rated items is below 2, no sim-
ilarity between the two users is
calculated

U1 U2 U3 U4

Ua – 0.97 0.70 –

r˛ is the average rating of user ˛. Similarity values resulting from the application of
Eq. (2.1) can take values on a scale of Œ�1; : : : ; C1�.

similarity.Ua; Ux/ D
P

li 2LUc
.ra;li � ra/ � .rx;li � rx/

qP
li 2LUc

.ra;li � ra/2 �
qP

li 2LUc
.rx;li � rx/2

(2.1)

The similarity values for Ua calculated based on Eq. (2.1) are shown in Table 2.3.
For the purposes of our example we assume the existence of at least two items per
user pair (Ui , Uj ), for i ¤ j , in order to be able to determine a similarity. This
criterion holds for users U2 and U3.

A major challenge in the context of estimating the similarity between users is
the sparsity of the rating matrix since users are typically providing ratings for only
a very small subset of the set of offered items. For example, given a large movie
dataset that contains thousands of entries, a user will typically be able to rate only
a few dozens. A basic approach to tackle this problem is to take into account the
number of commonly rated items in terms of a correlation significance [30], i.e.,
the higher the number of commonly rated items, the higher is the significance of



2 Basic Approaches in Recommendation Systems 19

Table 2.4 User-based collaborative filtering-based recommendations (predic-
tions) for items that have not been rated by user Ua up to now

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10

U2 – – 3.0 5.0 – 4.5 – 2.0 – –
Ua – – – 4.0 – 4.0 – – 3.0
prediction(Ua; li) – – 3.045 – – – – 2.045 – –

the corresponding correlation. For further information regarding the handling of
sparsity, we refer the reader to [30, 33].

The information about the set of users with a similar rating behavior compared
to the current user (NN, the set of nearest neighbors) is the basis for predicting the
rating of user Ua for an item that has not been rated up to now by Ua; see Eq. (2.2).

prediction.Ua; item/ D ra C
P

Uj 2NN similarity.Ua; Uj / � .rj;item � rj /
P

Uj 2NN similarity.Ua; Uj /
(2.2)

Based on the rating of the nearest neighbor of Ua, we are able to determine a
prediction for user Ua (see Table 2.4). The nearest neighbor of Ua is user U2 (see
Table 2.3). The learning units rated by U2 but not rated by Ua are l3 and l8. Due to
the determined predictions—Eq. (2.2)—item l3 would be ranked higher than item
l8 in a recommendation list.

Item-Based Collaborative Filtering. In contrast to user-based collaborative filter-
ing, item-based collaborative filtering searches for items (nearest neighbors—NN)
rated by Ua that received similar ratings as items currently under investigation. In
our running example, learning unit l4 has already received a good evaluation (4.0 on
a rating scale of 1–5) by Ua. The item which is most similar to l4 and has not been
rated by Ua is item l3 (similarity(l3; l4) D 0.35). In this case, the nearest neighbor of
item l3 is l4; this calculation is based on Eq. (2.3).

If we want to determine a recommendation based on item-based collaborative
filtering, we have to determine the similarity (using the Pearson correlation coeffi-
cient) between two items la and lb where U denotes the set of users who both rated
la and lb , ru;li denotes the rating of user u on item li , and rli is the average rating of
the i -th item.

similarity.la; lb/ D
P

u2U .ru;la � rla / � .ru;lb � rlb /
qP

u2U .ru;la � rla /2 � pP
u2U .ru;lb � rlb /2

(2.3)

The information about the set of items with a similar rating pattern compared
to the item under consideration is the basis for predicting the rating of user Ua for
the item; see Eq. (2.4). Note that in this case NN represents a set of items already
evaluated by Ua. Based on the assumption of k D 1, prediction(Ua; l3) D 4.0, i.e.,
user Ua would rate item l3 with 4.0.



20 A. Felfernig et al.

prediction.Ua; item/ D
P

it2NN similarity.item; it/ � ra;it
P

it2NN similarity.item; it/
(2.4)

For a discussion of advanced collaborative recommendation approaches, we refer
the reader to Koren et al. [37] and Sarwar et al. [54].

2.3 Content-Based Filtering

Content-based filtering [49] is based on the assumption of monotonic personal
interests. For example, users interested in the topic Operating Systems are typically
not changing their interest profile from one day to another but will also be interested
in the topic in the (near) future. In online scenarios, content-based recommendation
approaches are applied, for example, when it comes to the recommendation of
websites [49] (news items with a similar content compared to the set of already
consumed news).

Content-based filtering (see Fig. 2.2) relies on two different types of background
data: (1) a set of users and (2) a set of categories (or keywords) that have been
assigned to (or extracted from) the available items (item descriptions). Content-
based filtering recommendation systems calculate a set of items that are most similar
to items already known to the current user Ua.

The basic approach of content-based filtering is to compare the content of already
consumed items (e.g., a list of news articles) with new items that can potentially
be recommended to the user, i.e., to find items that are similar to those already
consumed (positively rated) by the user. The basis for determining such a similarity
are keywords extracted from the item content descriptions (e.g., keywords extracted
from news articles) or categories in the case that items have been annotated with the
relevant meta-information. Readers interested in the principles of keyword extrac-
tion are referred to Jannach et al. [33]. Within the scope of this chapter we focus on
content-based recommendation which exploits item categories (see Table 2.1).

Content-based filtering will now be explained based on a running example which
relies on the information depicted in Tables 2.1, 2.5, and 2.6. Table 2.1 provides an
overview of the relevant items and the assignments of items to categories. Table 2.5
provides information on which categories are of relevance for the different users.
For example, user U1 is primarily interested in items related to the categories Java
and UML. In our running example, this information has been derived from the
rating matrix depicted in Table 2.2. Since user Ua already rated the items l4, l6,
and l10 (see Table 2.2), we can infer that Ua is interested in the categories UML,
Management, and Quality (see Table 2.5) where items related to the category UML
and Management have been evaluated two times and items related to Quality have
been evaluated once.

If we are interested in an item recommendation for the user Ua we have to search
for those items which are most similar to the items that have already been consumed



2 Basic Approaches in Recommendation Systems 21

Fig. 2.2 Content-based filtering (CBF) dataflow. Users rate items and receive recommendations
of items similar to those that have received a good evaluation from the current user Ua

Table 2.5 Degree of interest in different categories. For example,
user U1 accessed a learning unit related to the category Java three
times. If a user accessed an item at least once, it is inferred that
the user is interested in this item

Category U1 U2 U3 U4 Ua

Java 3 (yes) 1 (yes)
UML 3 (yes) 4 (yes) 3 (yes) 3 (yes) 2 (yes)

Management 3 (yes) 3 (yes) 2 (yes)
Quality 1 (yes) 1 (yes)

(evaluated) by the Ua. This relies on the simple similarity metric shown in Eq. (2.5)
(the Dice coefficient, which is a variation of the Jaccard coefficient that “intensively”
takes into account category commonalities—see also Jannach et al. [33]). The major
difference from the similarity metrics introduced in the context of collaborative
filtering is that in this case similarity is measured using keywords (in contrast to
ratings).

similarity.Ua; item/ D 2 � categories.Ua/ \ categories.item/

categories.Ua/ C categories.item/
(2.5)

2.4 Knowledge-Based Recommendation

Compared to the approaches of collaborative filtering and content-based filtering,
knowledge-based recommendation [5,14,16,23,42] does not primarily rely on item
ratings and textual item descriptions but on deep knowledge about the offered items.
Such deep knowledge (semantic knowledge [16]) describes an item in more detail
and thus allows for a different recommendation approach (see Table 2.7).



22 A. Felfernig et al.

Table 2.6 Example of content-based filtering. User Ua has already consumed
the items l4, l6, and l10; see Table 2.2. The item most similar—see Eq. (2.5)—
to the preferences of Ua is l8 and is now the best recommendation candidate for
the current user

LU
Rating

ofUa
Name Java UML Management Quality similarity(Ua, li)

l1
Data Structures

in Java yes yes 2/5

l2
Object

Relational
Mapping

yes yes 2/5

l3
Software

Architectures yes 2/4

l4 4.0 Project
Management yes yes –

l5 Agile Processes yes 2/4

l6 4.0 Object Oriented
Analysis yes yes –

l7
Object Oriented

Design yes yes 2/5

l8
UML and the

UP yes yes 4/5

l9 Class Diagrams yes 2/4

l10 3.0 OO Complexity
Metrics yes –

Ua yes yes yes

Table 2.7 Software engineering learning units (LU) described based on deep
knowledge: obligatory vs. nonobligatory (Oblig.), duration of consumption
(Dur.), recommended semester (Sem.), complexity of the learning unit (Compl.),
associated topics (Topics), and average user rating (Eval.)

LU Name Oblig. Dur. Sem. Compl. Topics Eval

l1
Data Structures

in Java yes 2 2 3 Java, UML 4.5

l2
Object

Relational
Mapping

yes 3 3 4 Java, UML 4.0

l3
Software

Architectures no 3 4 3 UML 3.3

l4
Project

Management yes 2 4 2 UML,
Management 5.0

l5 Agile Processes no 1 3 2 Management 3.0

l6
Object Oriented

Analysis yes 2 2 3 UML,
Management 4.7

l7
Object Oriented

Design yes 2 2 3 Java, UML 4.0

l8
UML and the

UP no 3 3 2 UML,
Management 2.0

l9 Class Diagrams yes 4 3 3 UML 3.0

l10
OO Complexity

Metrics no 3 4 2 Quality 5.0



2 Basic Approaches in Recommendation Systems 23

Fig. 2.3 Knowledge-based recommendation (KBR) dataflow: users are entering their preferences
and receive recommendations based on the interpretation of a set of rules (constraints)

Knowledge-based recommendation (see Fig. 2.3) relies on the following
background data: (a) a set of rules (constraints) or similarity metrics and (b)
a set of items. Depending on the given user requirements, rules (constraints)
describe which items have to be recommended. The current user Ua articulates
his/her requirements (preferences) in terms of item property specifications which
are internally as well represented in terms of rules (constraints). In our example,
constraints are represented solely by user requirements, no further constraint types
are included (e.g., constraints that explicitly specify compatibility or incompatibility
relationships). An example of such a constraint is topics D Java. It denotes the fact
that the user is primarily interested in Java-related learning units. For a detailed
discussion of further constraint types, we refer the reader to Felfernig et al. [16].
Constraints are interpreted and the resulting items are presented to the user.2

A detailed discussion of reasoning mechanisms that are used in knowledge-based
recommendation can be found, for example, in Felfernig et al. [16, 17, 22].

In order to determine a recommendation in the context of knowledge-based
recommendation scenarios, a recommendation task has to be solved.

Definition 2.1. A recommendation task is a tuple .R; I / where R represents a set of
user requirements and I represents a set of items (in our case: software engineering
learning units li 2 LU). The goal is to identify those items in I which fulfill the
given user requirements (preferences).

A solution for a recommendation task (also denoted as recommendation) can be
defined as follows.

2Knowledge-based recommendation approaches based on the determination of similarities
between items will be discussed in Sect. 2.7.



24 A. Felfernig et al.

Definition 2.2. A solution for a recommendation task .R; I / is a set S � I such
that 8li 2 S W li 2 �.R/I where � is the selection operator of a conjunctive
query [17], R represents a set of selection criteria (represented as constraints), and
I represents an item table (see, for example, Table 2.7). If we want to restrict the
set of item properties shown to the user in a result set (recommendation), we have
to additionally include projection criteria � as follows: �.attributes.I //.�.R/I /.

In our example, we show how to determine a solution for a given recom-
mendation task based on a conjunctive query where user requirements are used
as selection criteria (constraints) on an item table I . If we assume that the user
requirements are represented by the set R D fr1 W semester � 3; r2 W topics D
Javag and the item table I consists of the elements shown in Table 2.7, then
�.LU/.�.semester � 3 ^ topicsDJava/I / D {l1; l2; l7}, i.e., these three items are consistent
with the given set of requirements.

Ranking Items. Up to this point we only know which items can be recommended
to a user. One widespread approach to rank items is to define a utility scheme
which serves as a basis for the application of multi-attribute utility theory (MAUT).3

Alternative items can be evaluated and ranked with respect to a defined set of interest
dimensions. In the domain of e-learning units, example interest dimensions of users
could be time effort (time needed to consume the learning unit) and quality (quality
of the learning unit). The first step to establish a MAUT scheme is to relate the
interest dimensions to properties of the given set of items. A simple example of such
a mapping is shown in Table 2.8. In this example, we assume that obligatory learning
units (learning units that have to be consumed within the scope of a study path)
trigger more time efforts than nonobligatory ones, a longer duration of a learning
unit is correlated with higher time efforts, and low complexity correlates with lower
time efforts. In this context, lower time efforts for a learning unit are associated with
a higher utility. Furthermore, we assume that the more advanced the semester, the
higher is the quality of the learning unit (e.g., in terms of education degree). The
better the overall evaluation (eval), the higher the quality of a learning unit (e.g., in
terms of the used pedagogical approach).

We are now able to determine the user-specific utility of each individual item.
The calculation of item utilities for a specific user Ua can be based on Eq. (2.6).

utility.Ua; item/ D
X

d2Dimensions

contribution.item; d / � weight.Ua; d/ (2.6)

If we assume that the current user Ua assigns a weight of 0.2 to the dimension
time effort (weight.Ua; time effort/ D 0:2) and a weight of 0.8 to the dimension
quality (weight.Ua; quality/ D 0:8), then the user-specific utilities of the individual
items (li ) are the ones shown in Table 2.9.

3A detailed discussion of the application of MAUT in knowledge-based recommendation scenarios
can be found in Ardissono et al. [1] and Felfernig et al. [16, 18].



2 Basic Approaches in Recommendation Systems 25

Table 2.8 Contributions of
item properties to the
dimensions time effort and
quality

Item property
Time effort

(1–10)
Quality

(1–10)

obligatory = yes 4 -

obligatory = no 7 -

duration = 1 10 -

duration = 2 5 -

duration = 3 1 -

duration = 4 1 -

complexity = 2 8 -

complexity = 3 5 -

complexity = 4 2 -

semester = 2 - 3

semester = 3 - 5

semester = 4 - 7

eval = 0–2 - 2

eval = >2–3 - 5

eval = >3–4 - 8

eval = >4 - 10

Table 2.9 Item-specific
utility for user Ua (i.e.,
utility.Ua; li /) assuming the
personal preferences for time
effort D 0.2 and quality D
0.8. In this scenario, item l4
has the highest utility for
user Ua

LU Time effort Quality Utility

l1 14 13 2.8+10.4= 13.2
l2 7 13 1.4+10.4= 11.8
l3 13 15 2.6+12.0= 14.6
l4 17 17 3.4+13.6= 17.0
l5 25 10 5.0+8.0= 13.0
l6 14 13 2.8+10.4= 13.2
l7 14 11 2.8+8.8= 11.6
l8 16 7 3.2+5.6= 8.8
l9 10 10 2.0+8.0= 10.0
l10 16 17 3.2+13.6= 16.8

Dealing with Inconsistencies. Due to the logical nature of knowledge-based
recommendation problems, we have to deal with scenarios where no solution
(recommendation) can be identified for a given set of user requirements, i.e.,
�.R/I D ;. In such situations we are interested in proposals for requirements
changes such that a solution (recommendation) can be identified. For example, if a
user is interested in learning units with a duration of 4 h, related to management,
and a complexity level > 3, then no solution can be provided for the given set
of requirements R D fr1 W duration D 4; r2 W topics D management; r3 W
complexity > 3g.

User support in such situations can be based on the concepts of conflict
detection [34] and model-based diagnosis [13, 15, 51]. A conflict (or conflict set)



26 A. Felfernig et al.

Fig. 2.4 Determination of
the complete set of diagnoses
(hitting sets) �i for the given
conflict sets CS1 D fr1; r2g
and CS2 D fr2; r3g:
�1 D fr2g and �2 D fr1; r3g

with regard to an item set I in a given set of requirements R can be defined as
follows.

Definition 2.3. A conflict set is a set CS � R such that �.CS/I D ;. CS is minimal
if there does not exist a conflict set CS0 with CS0 � CS.

In our running example we are able to determine the following minimal conflict
sets CSi : CS1 W fr1; r2g, CS2 W fr2; r3g. We will not discuss algorithms that
support the determination of minimal conflict sets but refer the reader to the
work of Junker [34] who introduces a divide-and-conquer-based algorithm with a
logarithmic complexity in terms of the needed number of consistency checks.

Based on the identified minimal conflict sets, we are able to determine the
corresponding (minimal) diagnoses. A diagnosis for a given set of requirements
which is inconsistent with the underlying item table can be defined as follows.

Definition 2.4. A diagnosis for a set of requirements R D fr1; r2; : : : ; rng is a set
� � R such that �.R��/I ¤ ;. A diagnosis � is minimal if there does not exist a
diagnosis �0 with �0 � �.

In other words, a diagnosis (also called a hitting set) is a minimal set of
requirements that have to be deleted from R such that a solution can be found for
R � �. The determination of the complete set of diagnoses for a set of requirements
inconsistent with the underlying item table (the corresponding conjunctive query
results in ;) is based on the construction of hitting set trees [51]. An example
of the determination of minimal diagnoses is depicted in Fig. 2.4. There are two
possibilities of resolving the conflict set CS1. If we decide to delete the requirement
r2, �.fr1;r3g/I ¤ ;, i.e., a diagnosis has been identified (�1 D fr2g) and—as
a consequence—all CSi have been resolved. Choosing the other alternative and
resolving CS1 by deleting r1 does not result in a diagnosis since the conflict CS2

is not resolved. Resolving CS2 by deleting r2 does not result in a minimal diagnosis,
since r2 already represents a diagnosis. The second (and last) minimal diagnosis that
can be identified in our running example is �2 D fr1; r3g. For a detailed discussion
of the underlying algorithm and analysis we refer the reader to Reiter [51]. Note
that a diagnosis provides a hint to which requirements have to be changed. For a
discussion of how requirement repairs (change proposals) are calculated, we refer
the reader to Felfernig et al. [17].



2 Basic Approaches in Recommendation Systems 27

Table 2.10 Examples of hybrid recommendation approaches (RECS D set of recommenders,
s D recommender-individual prediction, score D item score)

Method Description Example formula

weighted

predictions of
individual

recommenders are
summed up

score(item) = recS ∈RECS s(item,rec)

mixed

recommender-
individual

predictions are
combined into one
recommendation

result

score(item) = zipper-function(item,RECS)

cascade

the predictions of
one recommender
are used as input for

the next
recommender

score(item) = score(item,recn)

score(item,reci)=

⎧
⎨

⎩

s(item,rec1) , if i= 1
s(item,reci)×
score(item,reci−1) , otherwise.

2.5 Hybrid Recommendations

After having discussed the three basic recommendation approaches of collaborative
filtering, content-based filtering, and knowledge-based recommendation, we will
now present some possibilities to combine these basic types.

The motivation for hybrid recommendations is the opportunity to achieve a
better accuracy [6]. There are different approaches to evaluate the accuracy of
recommendation algorithms. These approaches (see also Avazpour et al. [2] and
Tosun Mısırlı et al. [58] in Chaps. 10 and 13, respectively) can be categorized into
predictive accuracy metrics such as the mean absolute error (MAE), classification
accuracy metrics such as precision and recall, and rank accuracy metrics such as
Kendall’s Tau. For a discussion of accuracy metrics we refer the reader also to
Gunawardana and Shani [28] and Jannach et al. [33].

We now take a look at example design types of hybrid recommendation
approaches [6, 33] which are weighted, mixed, and cascade (see Table 2.10). These
approaches will be explained on the basis of our running example. The basic
assumption in the following is that individual recommendation approaches return
a list of five recommended items where each item has an assigned (recommender-
individual) prediction out of {1.0, 2.0, 3.0, 4.0, 5.0}. For a more detailed discussion
of hybridization strategies, we refer the reader to Burke [6] and Jannach et al. [33].

Weighted. Weighted hybrid recommendation is based on the idea of deriving
recommendations by combining the results (predictions) computed by individual
recommenders. A corresponding example is depicted in Table 2.11 where the



28 A. Felfernig et al.

Table 2.11 Example of weighted hybrid recommendation: individual predictions
are integrated into one score. Item l8 receives the best overall score (9.0)

Items l1 l2 l3 l4 l5 l6 l7 l8 l9 l10

s(li;collaborative filtering) 1.0 3.0 – 5.0 – 2.0 – 4.0 – –

s(li;content-based filtering) – 1.0 2.0 – – 3.0 4.0 5.0 – –

score(li) 1.0 4.0 2.0 5.0 0.0 5.0 4.0 9.0 0.0 0.0

ranking(li) 7 4 6 2 8 3 5 1 9 10

Table 2.12 Example of mixed hybrid recommendation. Individual predictions are
integrated into one score conform the zipper principle (best collaborative filtering
prediction receives score D 10, best content-based filtering prediction receives
score D 9 and so forth)

Items l1 l2 l3 l4 l5 l6 l7 l8 l9 l10

s(li;collaborative filtering) 1.0 3.0 – 5.0 – 2.0 – 4.0 – –

s(li;content-based filtering) – 1.0 2.0 – – 3.0 4.0 5.0 – –

score(li) 4.0 8.0 5.0 10.0 0.0 6.0 7.0 9.0 0.0 0.0

ranking(li) 7 3 6 1 8 5 4 2 9 10

individual item scores of a collaborative and a content-based recommender are
summed up. Item l8 receives the highest overall score (9.0) and is ranked highest
by the weighted hybrid recommender.4

Mixed. Mixed hybrid recommendation is based on the idea that predictions of
individual recommenders are shown in one integrated result. For example, the
results of a collaborative filtering and a content-based recommender can be ranked
as sketched in Table 2.12. Item scores can be determined, for example, on the basis
of the zipper principle, i.e., the item with highest collaborative filtering prediction
value receives the highest overall score (10.0), the item with best content-based
filtering prediction value receives the second best overall score, and so forth.

Cascade. The basic idea of cascade-based hybridization is that recommenders
in a pipe of recommenders exploit the recommendation of the upstream recom-
mender as a basis for deriving their own recommendation. The knowledge-based
recommendation approach presented in Sect. 2.4 is an example of a cascade-
based hybrid recommendation approach. First, items that are consistent with the
given requirements are preselected by a conjunctive query Q. We can assume, for
example, that s.item; Q/ D 1.0 if the item has been selected and s.item; Q/ D 0:0

if the item has not been selected. In our case, the set of requirements R D
fr1 W semester � 3; r2 W topics D Javag in the running example leads to the
selection of the items {l1; l2; l7}. Thereafter, these items are ranked conform to

4If two or more items have the same overall score, a possibility is to force a decision by lot; where
needed, this approach can also be applied by other hybrid recommendation approaches.



2 Basic Approaches in Recommendation Systems 29

their utility for the current user (utility-based ranking U ). The utility-based ranking
U would determine the item order utility(l1) > utility(l2) > utility(l7) assuming
that the current user assigns a weight of 0.8 to the interest dimension quality
(weight(Ua,quality) D 0.8) and a weight of 0.2 to the interest dimensions time effort
(weight(Ua,time effort) D 0.2). In this example the recommender Q is the first one
and the results of Q are forwarded to the utility-based recommender.

Other examples of hybrid recommendation approaches include the following [6].
Switching denotes an approach where—depending on the current situation—a
specific recommendation approach is chosen. For example, if a user has a low
level of product knowledge, then a critiquing-based recommender will be chosen
(see Sect. 2.7). Vice versa, if the user is an expert, an interface will be provided
where the user is enabled to explicitly state his/her preferences on a detailed level.
Feature combination denotes an approach where different data sources are exploited
by a single recommender. For example, a recommendation algorithm could exploit
semantic item knowledge in combination with item ratings (see Table 2.7). For an
in-depth discussion of hybrid recommenders, we refer the reader to Burke [6] and
Jannach et al. [33].

2.6 Hints for Practitioners

In this section we provide several hints for practitioners who are interested in
developing recommendation systems.

2.6.1 Usage of Algorithms

The three basic approaches of collaborative filtering, content-based filtering, and
knowledge-based recommendation exploit different sources of recommendation
knowledge and have different strengths and weaknesses (see Table 2.13). Collabo-
rative filtering (CF) and content-based filtering (CBF) are easy to set up (only basic
item information is needed, e.g., item name and picture), whereas knowledge-based
recommendation requires a more detailed specification of item properties (and in
many cases also additional constraints). Both CF and CBF are more adaptive in
the sense that new ratings are automatically taken into account in future activations
of the recommendation algorithm. In contrast, utility schemes in knowledge-based
recommendation (see, for example, Table 2.9) have to be adapted manually (if no
additional learning support is available [21]).

Serendipity effects are interpreted as a kind of accident of being confronted
with something useful although no related search has been triggered by the user.
They can primarily be achieved when using CF approaches. Due to the fact that
content-based filtering does not take into account the preferences (ratings) of other
users, no such effects can be achieved. Achieving serendipity effects for the users
based on KBR is possible in principle, however, restricted to and depending on



30 A. Felfernig et al.

Table 2.13 Summary of the
strengths and weaknesses of
collaborative filtering (CF),
content-based filtering (CBF),
and knowledge-based
recommendation (KBR)

Property CF CBF KBR

easy setup yes yes no

adaptivity yes yes no

serendipity effects yes no no

ramp-up problem yes yes no

transparency no no yes

high-involvement items no no yes

the creativity of the knowledge engineer (who is able to foresee such effects when
defining recommendation rules). The ramp-up problem (also called the cold start
problem) denotes a situation where there is the need to provide initial rating data
before the algorithm is able to determine reasonable recommendations. Ramp-up
problems exist with both CF and CBF: in CF users have to rate a set of items before
the algorithm is able to determine the nearest neighbors; in CBF, the user has to
specify interesting/relevant items before the algorithm is able to determine items
that are similar to those that have already been rated by the user.

Finally, transparency denotes the degree to which recommendations can be
explained to users. Explanations in CF systems solely rely on the interpretation
of the relationship to nearest neighbors, for example, users who purchased item X
also purchased item Y. CBF algorithms explain their recommendations in terms of
the similarity of the recommended item to items already purchased by the user:
we recommend Y since you already purchased X which is quite similar to Y.
Finally—due to the fact that they rely on deep knowledge—KBR is able to provide
deep explanations which take into account semantic item knowledge. An example
of such an explanation is diagnoses that explain the reasons as to why a certain
set of requirements does not allow the calculation of a solution. Other types of
explanations exist: why a certain item has been included in the recommendation
and why a certain question has been asked to the user [16, 24].

Typically, CF and CBF algorithms are used for recommending low-involvement
items5 such as movies, books, and news articles. In contrast, knowledge-based
recommender functionalities are used for the recommendation of high-involvement
items such as financial services, cars, digital cameras, and apartments. In the latter
case, ratings are provided with a low frequency which makes these domains less
accessible to CF and CBF approaches. For example, user preferences regarding a
car could significantly change within a couple of years without being detected by the
recommender system, whereas such preference shifts are detected by collaborative
and content-based recommendation approaches due to the fact that purchases occur
more frequently and—as a consequence—related ratings are available for the

5The impact of a wrong decision (selection) is rather low, therefore users invest less evaluation
effort in a purchase situation.



2 Basic Approaches in Recommendation Systems 31

recommender system. For an overview of heuristics and rules related to the selection
of recommendation approaches, we refer the reader to Burke and Ramezani [9].

2.6.2 Recommendation Environments

Recommendation is an artificial intelligence (AI) technology successfully applied in
different commercial contexts [20]. As recommendation algorithms and heuristics
are regarded as a major intellectual property of a company, recommender systems
are often not developed on the basis of standard solutions but are rather based
on proprietary solutions that are tailored to the specific situation of the company.
Despite this situation, there exist a few recommendation environments that can be
exploited for the development of different recommender applications.

Strands is a company that provides recommendation technologies covering the
whole range of collaborative, content-based, and knowledge-based recommendation
approaches. MyMediaLite is an open-source library that can be used for the devel-
opment of collaborative filtering-based recommender systems. LensKit [11] is an
open-source toolkit that supports the development and evaluation of recommender
systems—specifically it includes implementations of different collaborative filtering
algorithms. A related development is MovieLens which is a noncommercial movie
recommendation platform. The MovieLens dataset (user � item ratings) is publicly
available and popular dataset for evaluating new algorithmic developments. Apache
Mahout is a machine learning environment that also includes recommendation
functionalities such as user-based and item-based collaborative filtering.

Open-source constraint libraries such as Choco and Jacop can be exploited for
the implementation of knowledge-based recommender applications. WeeVis is a
Wiki-based environment for the development of knowledge-based recommender
applications—resulting recommender applications can be deployed on different
handheld platforms such as iOS, Android, and Windows 8. Finally, Choicla is a
group recommendation platform that allows the definition and execution of group
recommendation tasks (see Sect. 2.7).

2.7 Further Algorithmic Approaches

We examine two further algorithmic approaches here: general critiquing-based
recommendations and group recommendations.

http://strands.com/
http://www.mymedialite.net/
http://lenskit.grouplens.org/
http://www.movielens.org/
http://mahout.apache.org/
http://www.emn.fr/
http://jacop.osolpro.com/
http://www.weevis.org/
http://choicla.com/


32 A. Felfernig et al.

Fig. 2.5 Example of a critiquing scenario. The entry item l7 is shown to the user. The user specifies
the critique “less time effort.” The new entry item is l9 since it is consistent with the critique and
the item most similar to l7

2.7.1 Critiquing-Based Recommendation

There are two basic approaches to support item identification in the context of
knowledge-based recommendation.

First, search-based approaches require the explicit specification of search criteria
and the recommendation algorithm is in charge of identifying a set of corresponding
recommendations [16,57] (see also Sect. 2.4). If no solution can be found for a given
set of requirements, the recommendation engine determines diagnoses that indicate
potential changes such that a solution (recommendation) can be identified. Second,
navigation-based approaches support the navigation in the item space where in
each iteration a reference item is presented to the user and the user either accepts
the (recommended) item or searches for different solutions by specifying critiques.
Critiques are simple criteria that are used for determining new recommendations
that take into account the (changed) preferences of the current user. Examples
of such critiques in the context of our running example are less time efforts and
higher quality (see Fig. 2.5). Critiquing-based recommendation systems are useful
in situations where users are not experts in the item domain and prefer to specify
their requirements on the level of critiques [35]. If users are knowledgeable in the
item domain, the application of search-based approaches makes more sense. For an
in-depth discussion of different variants of critiquing-based recommendation, we
refer the reader to [8, 10, 27, 41, 46, 52].

2.7.2 Group Recommendation

Due to the increasing popularity of social platforms and online communities,
group recommendation systems are becoming an increasingly important technology



2 Basic Approaches in Recommendation Systems 33

Table 2.14 Example of group recommendation: selection of a
learning unit for a group. The recommendation (l7) is based on
the least misery heuristic

Items l1 l2 l3 l4 l5 l6 l7 l8 l9 l10

alex 1.0 3.0 1.0 5.0 4.0 2.0 4.0 2.0 1.0 4.0
dorothy 5.0 1.0 2.0 1.0 4.0 3.0 4.0 2.0 2.0 3.0
peter 2.0 4.0 2.0 5.0 3.0 5.0 4.0 3.0 2.0 2.0
ann 3.0 4.0 5.0 2.0 1.0 1.0 3.0 3.0 3.0 4.0

least misery 1.0 1.0 1.0 1.0 1.0 1.0 3.0 2.0 1.0 2.0

[29, 44]. Example application domains of group recommendation technologies
include tourism [47] (e.g., which hotels or tourist destinations should be visited by a
group?) and interactive television [43] (which sequence of television programs will
be accepted by a group?). In the majority, group recommendation algorithms are
related to simple items such as hotels, tourist destinations, and television programs.
The application of group recommendation in the context of our running example is
shown in Table 2.14 (selection of a learning unit for a group).

The group recommendation task is to figure out a recommendation that will
be accepted by the whole group. The group decision heuristics applied in the
context is least misery which returns the lowest voting for alternative li as group
recommendation. For example, the least misery value for alternative l7 is 3:0 which
is the highest value of all possible alternatives, i.e., the first recommendation for the
group is l7. Other examples of group recommendation heuristics are most pleasure
(the group recommendation is the item with the most individual votes) and majority
voting (the voting for an individual solution is defined by the majority of individual
user votes: the group recommendation is the item with the highest majority value).
Group recommendation technologies for high-involvement items (see Sect. 2.6) are
the exception of the rule [e.g., 31, 55]. First applications of group recommendation
technologies in the software engineering context are reported in Felfernig et al. [25].
An in-depth discussion of different types of group recommendation algorithms can
be found in O’Connor et al. [48], Jameson and Smyth [32], and Masthoff [44].

2.8 Conclusion

This chapter provides an introduction to the recommendation approaches of col-
laborative filtering, content-based filtering, knowledge-based recommendation, and
different hybrid variants thereof. While collaborative filtering-based approaches
exploit ratings of nearest neighbors, content-based filtering exploits categories
and/or extracted keywords for determining recommendations. Knowledge-based
recommenders should be used, for example, for products where there is a need
to encode the recommendation knowledge in terms of constraints. Beside algo-
rithmic approaches, we discussed criteria to be taken into account when deciding



34 A. Felfernig et al.

about which recommendation technology to use in a certain application context.
Furthermore, we provided an overview of environments that can be exploited for
recommender application development.

References

1. Ardissono, L., Felfernig, A., Friedrich, G., Goy, A., Jannach, D., Petrone, G., Schäfer, R.,
Zanker, M.: A framework for the development of personalized, distributed web-based config-
uration systems. AI Mag. 24(3), 93–108 (2003)

2. Avazpour, I., Pitakrat, T., Grunske, L., Grundy, J.: Dimensions and metrics for evaluating
recommendation systems. In: Robillard, M., Maalej, W., Walker, R.J., Zimmermann, T. (eds.)
Recommendation Systems in Software Engineering, Chap. 10. Springer, New York (2014)

3. Bachwani, R.: Preventing and diagnosing software upgrade failures. Ph.D. thesis, Rutgers
University (2012)

4. Billsus, D., Pazzani, M.: Learning collaborative information filters. In: Proceedings of the
International Conference on Machine Learning, pp. 46–54 (1998)

5. Burke, R.: Knowledge-based recommender systems. Encyclopedia Libr. Inform. Sci. 69(32),
180–200 (2000)

6. Burke, R.: Hybrid recommender systems: Survey and experiments. User Model. User-Adapt.
Interact. 12(4), 331–370 (2002). DOI 10.1023/A:1021240730564

7. Burke, R., Felfernig, A., Goeker, M.: Recommender systems: An overview. AI Mag. 32(3),
13–18 (2011)

8. Burke, R., Hammond, K., Yound, B.: The FindMe approach to assisted browsing. IEEE Expert
12(4), 32–40 (1997). DOI 10.1109/64.608186

9. Burke, R., Ramezani, M.: Matching recommendation technologies and domains. In: Ricci, F.,
Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 367–386.
Springer, New York (2011). DOI 10.1007/978-0-387-85820-3_11

10. Chen, L., Pu, P.: Critiquing-based recommenders: Survey and emerging trends. User Model.
User-Adapt. Interact. 22(1–2), 125–150 (2012). DOI 10.1007/s11257-011-9108-6

11. Ekstrand, M.D., Ludwig, M., Kolb, J., Riedl, J.: LensKit: A modular recommender framework.
In: Proceedings of the ACM Conference on Recommender Systems, pp. 349–350 (2011a).
DOI 10.1145/2043932.2044001

12. Ekstrand, M.D., Riedl, J.T., Konstan, J.A.: Collaborative filtering recommender systems.
Found. Trends Hum. Comput. Interact. 4(2), 81–173 (2011b). DOI 10.1561/1100000009

13. Falkner, A., Felfernig, A., Haag, A.: Recommendation technologies for configurable products.
AI Mag. 32(3), 99–108 (2011)

14. Felfernig, A., Friedrich, G., Gula, B., Hitz, M., Kruggel, T., Melcher, R., Riepan, D.,
Strauss, S., Teppan, E., Vitouch, O.: Persuasive recommendation: Serial position effects in
knowledge-based recommender systems. In: Proceedings of the International Conference of
Persuasive Technology, Lecture Notes in Computer Science, vol. 4744, pp. 283–294 (2007a).
DOI 10.1007/978-3-540-77006-0_34

15. Felfernig, A., Friedrich, G., Jannach, D., Stumptner, M.: Consistency-based diagnosis of
configuration knowledge bases. Artif. Intell. 152(2), 213–234 (2004). DOI 10.1016/S0004-
3702(03)00117-6

16. Felfernig, A., Friedrich, G., Jannach, D., Zanker, M.: An integrated environment for the
development of knowledge-based recommender applications. Int. J. Electron. Commerce
11(2), 11–34 (2006a). DOI 10.2753/JEC1086-4415110201

17. Felfernig, A., Friedrich, G., Schubert, M., Mandl, M., Mairitsch, M., Teppan, E.: Plausible
repairs for inconsistent requirements. In: Proceedings of the International Joint Conference on
Artificial Intelligence, pp. 791–796 (2009)



2 Basic Approaches in Recommendation Systems 35

18. Felfernig, A., Gula, B., Leitner, G., Maier, M., Melcher, R., Teppan, E.: Persuasion in
knowledge-based recommendation. In: Proceedings of the International Conference on
Persuasive Technology, Lecture Notes in Computer Science, vol. 5033, pp. 71–82 (2008).
DOI 10.1007/978-3-540-68504-3_7

19. Felfernig, A., Isak, K., Szabo, K., Zachar, P.: The VITA financial services sales support
environment. In: Proceedings of the Innovative Applications of Artificial Intelligence
Conference, pp. 1692–1699 (2007b)

20. Felfernig, A., Jeran, M., Ninaus, G., Reinfrank, F., Reiterer, S.: Toward the next generation
of recommender systems: Applications and research challenges. In: Multimedia Services
in Intelligent Environments: Advances in Recommender Systems, Smart Innovation, Systems
and Technologies, vol. 24, pp. 81–98. Springer, New York (2013a). DOI 10.1007/978-3-319-
00372-6_5

21. Felfernig, A., Ninaus, G., Grabner, H., Reinfrank, F., Weninger, L., Pagano, D., Maalej, W.: An
overview of recommender systems in requirements engineering. In: Managing Requirements
Knowledge, Chap. 14, pp. 315–332. Springer, New York (2013b). DOI 10.1007/978-3-642-
34419-0_14

22. Felfernig, A., Schubert, M., Reiterer, S.: Personalized diagnosis for over-constrained problems.
In: Proceedings of the International Joint Conference on Artificial Intelligence, pp. 1990–1996
(2013c)

23. Felfernig, A., Shchekotykhin, K.: Debugging user interface descriptions of knowledge-based
recommender applications. In: Proceedings of the International Conference on Intelligent User
Interfaces, pp. 234–241 (2006). DOI 10.1145/1111449.1111499

24. Felfernig, A., Teppan, E., Gula, B.: Knowledge-based recommender technologies for
marketing and sales. Int. J. Pattern Recogn. Artif. Intell. 21(2), 333–354 (2006b).
DOI 10.1142/S0218001407005417

25. Felfernig, A., Zehentner, C., Ninaus, G., Grabner, H., Maaleij, W., Pagano, D., Weninger, L.,
Reinfrank, F.: Group decision support for requirements negotiation. In: Advances in
User Modeling, no. 7138 in Lecture Notes in Computer Science, pp. 105–116 (2012).
DOI 10.1007/978-3-642-28509-7_11

26. Goldberg, D., Nichols, D., Oki, B., Terry, D.: Using collaborative filtering to weave an
information tapestry. Comm. ACM 35(12), 61–70 (1992). DOI 10.1145/138859.138867

27. Grasch, P., Felfernig, A., Reinfrank, F.: ReComment: Towards critiquing-based recommen-
dation with speech interaction. In: Proceedings of the ACM Conference on Recommender
Systems pp. 157–164 (2013)

28. Gunawardana, A., Shani, G.: A survey of accuracy evaluation metrics of recommendation
tasks. J. Mach. Learn. Res. 10, 2935–2962 (2009)

29. Hennig-Thurau, T., Marchand, A., Marx, P.: Can automated group recommender systems help
consumers make better choices? J. Market. 76(5), 89–109 (2012)

30. Herlocker, J., Konstan, J., Borchers, A., Riedl, J.: An algorithmic framework for per-
forming collaborative filtering. In: Proceedings of the ACM SIGIR International Con-
ference on Research and Development in Information Retrieval, pp. 230–237 (1999).
DOI >10.1145/312624.312682

31. Jameson, A.: More than the sum of its members: Challenges for group recommender systems.
In: Proceedings of the Working Conference on Advanced Visual Interfaces, pp. 48–54 (2004).
DOI 10.1145/989863.989869

32. Jameson, A., Smyth, B.: Recommendation to groups. In: Brusilovsky, P., Kobsa, A.,
Nejdl, W. (eds.) The Adaptive Web: Methods and Strategies of Web Personalization, Lecture
Notes in Computer Science, vol. 4321, Chap. 20, pp. 596–627. Springer, New York (2007).
DOI 10.1007/978-3-540-72079-9_20

33. Jannach, D., Zanker, M., Felfernig, A., Friedrich, G.: Recommender Systems: An Introduction.
Cambridge University Press, Cambridge (2010)

34. Junker, U.: QUICKXPLAIN: Preferred explanations and relaxations for over-constrained
problems. In: Proceedings of the National Conference on Artifical Intelligence, pp. 167–172
(2004)



36 A. Felfernig et al.

35. Knijnenburg, B., Reijmer, N., Willemsen, M.: Each to his own: How different users call
for different interaction methods in recommender systems. In: Proceedings of the ACM
Conference on Recommender Systems, pp. 141–148 (2011). DOI 10.1145/2043932.2043960

36. Konstan, J.A., Miller, B.N., Maltz, D., Herlocker, J.L., Gordon, L.R., Riedl, J.: GroupLens:
Applying collaborative filtering to Usenet news. Comm. ACM 40(3), 77–87 (1997).
DOI 10.1145/245108.245126

37. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems.
Computer 42(8), 30–37 (2009). DOI 10.1109/MC.2009.263

38. Lim, S., Quercia, D., Finkelstein, A.: StakeNet: Using social networks to analyse the
stakeholders of large-scale software projects. In: Proceedings of the ACM/IEEE International
Conference on Software Engineering, pp. 295–304 (2010). DOI 10.1145/1806799.1806844

39. Linden, G., Smith, B., York, J.: Amazon.com recommendations: Item-to-item collaborative
filtering. IEEE Internet Comput. 7(1), 76–80 (2003). DOI 10.1109/MIC.2003.1167344

40. Maalej, W., Sahm, A.: Assisting engineers in switching artifacts by using task semantic
and interaction history. In: Proceedings of the International Workshop on Recommendation
Systems for Software Engineering, pp. 59–63 (2010). DOI 10.1145/1808920.1808935

41. Mandl, M., Felfernig, A.: Improving the performance of unit critiquing. In: Proceedings of
the International Conference on User Modeling, Adaptation, and Personalization, pp. 176–187
(2012). DOI 10.1007/978-3-642-31454-4_15

42. Mandl, M., Felfernig, A., Teppan, E., Schubert, M.: Consumer decision making
in knowledge-based recommendation. J. Intell. Inform. Syst. 37(1), 1–22 (2010).
DOI 10.1007/s10844-010-0134-3

43. Masthoff, J.: Group modeling: Selecting a sequence of television items to suit
a group of viewers. User Model. User-Adapt. Interact. 14(1), 37–85 (2004).
DOI 10.1023/B:USER.0000010138.79319.fd

44. Masthoff, J.: Group recommender systems: Combining individual models. In: Ricci, F.,
Rokach, L., Shapira, B., Kantor, P. (eds.) Recommender Systems Handbook, Chap. 21, pp.
677–702. Springer, New York (2011). DOI 10.1007/978-0-387-85820-3_21

45. McCarey, F., Ó Cinnéide, M., Kushmerick, N.: RASCAL: A recommender agent for agile
reuse. Artif. Intell. Rev. 24(3–4), 253–276 (2005). DOI 10.1007/s10462-005-9012-8

46. McCarthy, K., Reilly, J., McGinty, L., Smyth, B.: On the dynamic generation of compound
critiques in conversational recommender systems. In: Proceedings of the International
Conference on Adaptive Hypermedia and Adaptive Web-Based Systems, Lecture Notes in
Computer Science, vol. 3137, pp. 176–184 (2004)

47. McCarthy, K., Salamo, M., Coyle, L., McGinty, L., Smyth, B., Nixon, P.: Group recommender
systems: A critiquing based approach. In: Proceedings of the International Conference on
Intelligent User Interfaces, pp. 267–269 (2006). DOI 10.1145/1111449.1111506

48. O’Connor, M., Cosley, D., Konstan, J., Riedl, J.: PolyLens: A recommender system for groups
of users. In: Proceedings of the European Conference on Computer Supported Cooperative
Work, pp. 199–218 (2001). DOI 10.1007/0-306-48019-0_11

49. Pazzani, M., Billsus, D.: Learning and revising user profiles: The identification of interesting
web sites. Mach. Learn. 27(3), 313–331 (1997). DOI 10.1023/A:1007369909943

50. Peischl, B., Zanker, M., Nica, M., Schmid, W.: Constraint-based recommendation for
software project effort estimation. J. Emerg. Tech. Web Intell. 2(4), 282–290 (2010).
DOI 10.4304/jetwi.2.4.282-290

51. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95 (1987).
DOI 10.1016/0004-3702(87)90062-2

52. Ricci, F., Nguyen, Q.: Acqiring and revising preferences in a critiquing-based mobile recom-
mender systems. IEEE Intell. Syst. 22(3), 22–29 (2007). DOI 10.1109/MIS.2007.43

53. Robillard, M.P., Walker, R.J., Zimmermann, T.: Recommendation systems for software
engineering. IEEE Software 27(4), 80–86 (2010). DOI 10.1109/MS.2009.161

54. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering recommenda-
tion algorithms. In: Proceedings of the International Conference on the World Wide Web, pp.
285–295 (2001). DOI 10.1145/371920.372071



2 Basic Approaches in Recommendation Systems 37

55. Stettinger, M., Ninaus, G., Jeran, M., Reinfrank, F., Reiterer, S.: WE-DECIDE: A decision
support environment for groups of users. In: Proceedings of the International Conference on
Industrial, Engineering, and Other Applications of Applied Intelligent Systems, pp. 382–391
(2013). DOI 10.1007/978-3-642-38577-3_39

56. Takács, G., Pilászy, I., Németh, B., Tikk, D.: Scalable collaborative filtering approaches for
large recommender systems. J. Mach. Learn. Res. 10, 623–656 (2009)

57. Tiihonen, J., Felfernig, A.: Towards recommending configurable offerings. Int. J. Mass
Customization 3(4), 389–406 (2010). DOI 10.1504/IJMASSC.2010.037652

58. Tosun Mısırlı, A., Bener, A., Çağlayan, B., Çalıklı, G., Turhan, B.: Field studies: A methodol-
ogy for construction and evaluation of recommendation systems in software engineering. In:
Robillard, M., Maalej, W., Walker, R.J., Zimmermann, T. (eds.) Recommendation Systems in
Software Engineering, Chap. 13. Springer, New York (2014)

59. Tsunoda, M., Kakimoto, T., Ohsugi, N., Monden, A., Matsumoto, K.: Javawock: A Java class
recommender system based on collaborative filtering. In: Proceedings of the International
Conference on Software Engineering and Knowledge Engineering, pp. 491–497 (2005)


	Chapter2 Basic Approaches in Recommendation Systems
	2.1 Introduction
	2.2 Collaborative Filtering
	2.3 Content-Based Filtering
	2.4 Knowledge-Based Recommendation
	2.5 Hybrid Recommendations
	2.6 Hints for Practitioners
	2.6.1 Usage of Algorithms
	2.6.2 Recommendation Environments

	2.7 Further Algorithmic Approaches
	2.7.1 Critiquing-Based Recommendation
	2.7.2 Group Recommendation

	2.8 Conclusion
	References


