
Chapter 12
Simulation

A Methodology to Evaluate Recommendation Systems
in Software Engineering

Robert J. Walker and Reid Holmes

Abstract Scientists and engineers have long used simulation as a technique for
exploring and evaluating complex systems. Direct interaction with a real, complex
system requires that the system be already constructed and operational, that people
be trained in its use, and that its dangers already be known and mitigated.
Simulation can avoid these issues, reducing costs, reducing risks, and allowing an
imagined system to be studied before it is created. The explorations supported by
simulation serve two purposes in the realm of evaluation: to determine whether and
where undesired behavior will arise and to predict the outcomes of interactions
with the real system. This chapter examines the use of simulation to evaluate
recommendation systems in software engineering (RSSEs). We provide a general
model of simulation for evaluation and review a small set of examples to examine
how the model has been applied in practice. From these examples, we extract
some general strengths and weaknesses of the use of simulation to evaluate RSSEs.
We also explore prospects for making more extensive use of simulation in the future.

12.1 Introduction

The creation and study of simulations is a traditional activity performed by scientists
and engineers, aimed at understanding something about the “real world,” in which
the real world is too complex, too expensive, or too risky to directly understand
well [29]. Consider two examples: a computer program that forecasts the weather
and a wind tunnel containing a scale model of an airplane. In weather forecasting,
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predictions about the weather are needed in advance in order to plan; while an
unexpected rainy weekend is unpleasant, imagine an unexpected hurricane arriving.
In the wind tunnel, avionics engineers can measure properties of a proposed
airplane’s performance; this avoids the high cost of constructing a prototype real
airplane, avoids the risk to a real test pilot’s life, and avoids the necessity of locating
the precise physical conditions somewhere in the real world that are of interest.

Essentially, a simulation is an imitation of the functioning of one system by
the functioning of another, typically simpler one; a simulation involves executing
a model of behavior with specific inputs to obtain the resulting outputs. In other
words, we seek to abstract away those details of the real system that are too complex
or that otherwise are not considered important for what is being studied.

The word “simulation” can refer to the general, abstract idea (“simulation is a
common methodology”); a specific instance in which the methodology is applied
(“the simulation was conducted as follows”); and a particular execution of a specific
model (“we observed interesting phenomena recorded during the third simulation”).
Some research fields differentiate simulation modeling [6, 11, 29] as the activity
that creates the static model that is then dynamically driven to produce the results,
i.e., during the “simulation.” While in principle this overloading of the term can
confuse the reader, the context in which the term is used generally disambiguates
the meaning.

Simulation is performed for three main purposes: (1) to estimate the answer to a
problem whose exact computation would be too expensive to solve directly; (2) to
explore the range of behaviors attainable from the model for a set of inputs that
are representative in some sense; or (3) to predict a set of outputs that can then be
compared against reality, for the sake of evaluating the model. Cases 2 and 3 involve
evaluation and will be most pertinent to this chapter.

For recommendation systems in software engineering (RSSEs), few authors [5,
15, 23, 36] make mention of the term “simulation,” often referring to their studies
as simply “experiments” or “evaluations” [4, 12, 13, 18, 19, 21, 37]. An evaluation
involves an examination of something to assess its merits. An experiment involves
following a disciplined procedure to test a hypothesis, usually under controlled
conditions. A simulation involves imitating the behavior of some process, usually
for the purpose of study. Thus, experiments and simulations can be used in
evaluation, and simulations can be used in order to conduct experiments. But a
simulation need not involve experimentation (an exploration does not involve testing
a hypothesis) nor even an evaluation (watching an animated simulation may be
simply aesthetically pleasing).

Perceptions of the value of simulation can color the accepted usage of the term.
For example, some disciplines make a distinction between “the use of computer
techniques to perform calculations, on the one hand, and [proper] computer
simulation, on the other” [16, p. 128]. Winsberg [35] claims that two characteristics
distinguish “mere number crunching” from “true simulation”:

1. the use of a variety of techniques to draw inferences from the numbers; and
2. the application of expertise and judgment to decide which results are reliable.
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Fig. 12.1 A model of a typical RSSE

The essential point is to say that the algorithmic production of data does not imbue
it with validity [2, p. 67]: garbage-in/garbage-out. A serious simulation must be
designed with careful consideration of its underlying model and choice of inputs;
triangulation of the results—in which different methodologies are applied to address
a research question—is most likely to ensure that they are meaningful [8].

The remainder of the chapter is structured as follows. Section 12.2 describes a
general model for the use of simulation in evaluating RSSEs. Section 12.3 describes
examples from the RSSE literature that have made use of simulation for evaluation,
focusing specifically on that use, and referring to our general model. Section 12.4
summarizes the lessons learned.

12.2 A General Model of Simulation for Evaluation of RSSEs

RSSEs come in many varieties, with differing characteristics, differing purposes,
and differing design decisions [26, 27]. Nevertheless, consider the model shown
in Fig. 12.1, which represents a common arrangement in many RSSEs. In it, a
developer interacts with an integrated development environment (IDE) in order to
perform development tasks. This interaction may explicitly involve asking the RSSE
for recommendations (query/response), or the developer’s activities may cause
events to be reported to the RSSE, which in turn can cause changes to occur in the
IDE (to announce recommendations). During these activities, the IDE will typically
interact with some internal representation of the programs and other artifacts upon
which it operates (the “workspace,” which may include a version control system or
other repositories); some RSSEs will also directly access this representation. Many
RSSEs are configurable in some form, which we represent as an artifact upon which
the RSSE depends. Furthermore, the RSSE may record and later utilize a history of
information: for example, past decisions by this developer or decisions by others.

This is a potentially complex situation. The workspace and history can be large
and can differ significantly between organizations; the human developer can be
unpredictable; the IDE can contain bugs. Simulation can most obviously be used
here in two ways: to determine how the developer will react to certain situations and
to determine how the RSSE will react to certain situations. Unlike other simulation
contexts (like the wind tunnel or in weather forecasting), we will typically have
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the RSSE already in hand, so the simulation will either involve (a) constructing
an artificial workspace/history/configuration in order to see how the developer
will react or (b) imitating the developer and the environment around the RSSE to
examine how the RSSE behaves.

As a standard means of simplifying the situation, we note that the RSSE receives
inputs and produces outputs, but that the real sources and sinks of that data can
be imitated; this results in the generic simulation model of Fig. 12.2. In it, the
developer is removed along with the IDE to be replaced with a simulator that
generates events/queries and receives responses (likely recording these somehow);
in practice, the simulator is simple and may not even be automated. A simulation
environment for an RSSE is a combination of workspace, history, and configuration,
appropriate for the particular RSSE being studied. Note that this generic simulation
model will work for RSSEs that are not well described by the model of Fig. 12.1; its
only assumption is that the RSSE takes input (explicit and/or implicit) and produces
output.

This model is analogous to the standard model of unit testing, in which a
software unit of functionality (e.g., a class) provides an interface that can be
called, that can have data passed to it, that returns output, and that may depend
on other units of functionality; we want to isolate the unit of interest, and so the
other units that it depends upon are eliminated in favor of ones constructed to
collect information and/or to return specific values to the unit under test. These
replacement dependencies are often called stubs (they come in many varieties each
using different names).

The RSSE is analogous to the unit under test, the simulator is the driver, and
the simulation environment is the stub that replaces the other dependencies of the
RSSE. Different scenarios can be explored by adjusting the content of the simulator
and simulation environment. As with choosing the extent of a given unit in unit
testing, the researcher can adjust the boundary between the RSSE and the simulation
environment to achieve different purposes: for example, one might choose to have
the RSSE construct and modify a real history over an extended interaction sequence,
rather than just initializing a synthetic history directly.

An alternative simulation scenario makes sense in some settings (see Fig. 12.3).
In this scenario, the RSSE is not present, but the researcher wants to evaluate
the reaction of the developer to potential recommendations, possibly derived from
data previously collected from them. In this case, the RSSE itself is simulated: its
recommendations may be computed offline or synthesized and can be presented
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directly by a human being, as a paper prototype, or as a mocked-up program. This
case is not currently common in the RSSE literature, but it is not unknown in other
areas—so-called Wizard of Oz experiments [17] are one variation on this idea.

Given either of these setups, it is necessary to determine with what inputs the
simulation will be driven and what to do with the outputs that result. Ultimately,
these decisions are important and should be based on the purposes for conducting
the specific simulation. The chapter henceforth focuses on the case where the
RSSE’s context is being imitated (as per Fig. 12.2).

12.2.1 Inputs and Outputs

Let V be the set of possible simulation environments for a specific RSSE. In
addition, let Q be the set of possible queries on the RSSE. Then the set I of
possible inputs will be I � Q � V (it is a subset because not all queries may be
possible for all simulation environments). Furthermore, let R be the set of possible
recommendations that the RSSE could possibly produce, and let M be the set of
meta-results (like the time needed to perform its calculations) that are not derivable
from R. Then the set O of possible outputs from the RSSE will be O � R�M �V ,
where V is included as the RSSE could modify the simulation environment. Thus,
we can see the RSSE as defining a function f W Q � V 7! R � M � V . For most
RSSEs, the input space and output space will be too large to evaluate exhaustively;
even sampling thoroughly such a large space will be infeasible in general [31].

While the need to abstract away from the full input and output spaces ought
to be obvious, there is the danger of oversimplification that can lead to poor
generalizability and questionable meaningfulness [9, 32]. The inputs tried and
outputs obtained ought to comprise a representative sample of the possible inputs
and outputs—that is, the results ought to generalize to the full space, or at least
the subset of that space that is considered most important. There are three basic
approaches to obtain representative samples. (1) Consider the full input space
abstractly, without concern for the relative likelihood that a given query will occur
in practice. (2) Consider the intended application, where we have knowledge or
assumptions of realistic inputs and can judge whether a given input is likely.
(3) Select inputs so that the resulting outputs are representative of the output space,
which can require either that the function f be invertible or that a search process be
followed to find an input that can obtain a given output. Hybrid approaches between
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the three basic ones are also conceivable. In general, the desire is to sample more
heavily those regions of the full (input or output) space that are more likely to occur
in practice. But sometimes, the researcher is interested in determining the overall
characteristics of the space, such as whether problematic states can ever result.

Simulations of RSSEs often consist of multiple trials of single-step simulations:
each trial i consists of selecting qi 2 Q and vi 2 V to obtain ri 2 R, mi 2 M ,
and v0

i 2 V . But it is also possible to have each trial involve multiple steps, where
vi;j is v0

i;j�1 obtained from the previous step. In this way, emergent behavior of
an RSSE that alters its environment can be investigated; this is obviously only of
interest where vi;j ¤ v0

i;j�1 for at least some trials. Whether single-step or multiple-
step trials make more sense depends greatly on the characteristics of the specific
RSSE and the purpose of the simulation. In practice, many RSSEs do not directly
modify their environment, although they are used within environments that change
over time, for example, where a version control system tracks code modifications
and the RSSE uses this information.

12.2.2 Characterizing the Results

How a researcher should characterize the results of simulation trials depends on
what the purpose is for conducting them. Such purposes could involve (1) descrip-
tion of individual results without reference to an external notion of what would be
good; (2) indication of under what conditions certain classes of results occur; or
(3) assessment of the quality of the results.

As an example of simple, descriptive summarization, if the execution time of
the RSSE is to be described, standard descriptive statistics will often suffice (i.e.,
minimum, maximum, mean, standard deviation), but sometimes, a graphical plot
of the execution time may be better—especially if the researcher has noticed that
the execution time appears to have a relationship with other factors. These kinds
of characterizations depend heavily on the numeric nature of the (meta-)data being
characterized and are not appropriate for categorical data, in particular, which is
what a recommendation would typically consist of.

Simulation can also be used to explore the behavior of the RSSE without
concern about the “correctness” of its recommendations. This can be appropriate
in situations where the general properties of the RSSE’s behavior, relative to the
inputs, are of interest. For example, if one wished to determine under what input
conditions the RSSE would provide no recommendations, simulation could be used
to probe the input space to address the question. In practice, such questions are
usually supplementary to asking about the “correctness” of the recommendations.

In many settings, we want to assess the quality of the resulting recommendations.
Quality is an imprecise term that may possess both objective and subjective
elements; as a result, different stakeholders can have significantly different opinions
about the quality of a recommendation. Consider that the needs of a novice are often
very different from those of an expert: the same recommendation given to each
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would likely attain different opinions as to its quality. Furthermore, users’ needs
depend heavily on the context of their applications: in some contexts, incorrect rec-
ommendations would be disastrous; in others, recommending all possible answers
is irrelevant as long as a single expected recommendation is actually recommended;
in yet others, the order of individual recommendations will matter.

In the typical RSSE simulation scenario, a key purpose is to avoid the use of
collecting subjective assessments and the complications outlined in the previous
paragraph, so some means of determining the “right answer” (i.e., the expected
recommendation) is needed that would be expected to be recommended by an ideal
oracle with perfect knowledge (see Sect. 12.2.2); this can then be used to assess the
objective aspect of the quality. Expected recommendations are often derived from
data collected from the real world; note that this does not automatically mean that
the expected recommendations are objectively “correct” though (see Sect. 12.2.2).
A variety of measures are available to characterize the objective quality, with
varying levels of detail and appropriateness (see Sect. 12.2.2). But one must be
careful: this purely quantitative approach to assessing quality may not result in an
accurate reflection of the user experience. Ultimately, human-participant studies are
needed to determine whether the quantitative analysis of quality agrees with the
reality; this would be a form of triangulation.

In Chaps. 11, 13, and 9, Said et al. [28], Tosun Mısırlı et al. [33], and Murphy-Hill
and Murphy [24] (respectively) expand on the idea of a more complete evaluation
of an RSSE, often involving real developers.

Determining Expected Recommendations

Most commonly, it is the quality of the RSSE’s recommendations that is to be
evaluated; this requires knowing, assuming, or otherwise estimating the expected
recommendations. With a given expected recommendation for a given input, the
researcher can compare the RSSE’s actual recommendation against the expected
recommendation for the given input.

It is generally problematic to determine the expected recommendations. In
many situations, it is impossible or impractical to automatically generate the
expected recommendations; otherwise, the RSSE would use that algorithm and the
“RSSE” would no longer qualify as a recommendation system (instead it would
compute the correct answer). There are three possibilities for determining expected
recommendations: (1) asking human participants for their assessments; (2) using a
variety of other automated approaches comparatively; or (3) using data collected
previously from the real world.

Human participants from an appropriate population (e.g., students, experts, etc.)
can be asked to either provide the correct answers or judge whether the RSSE’s
answers are correct. When the definition of correctness is dependent on the context
of the task for which recommendations are being produced, it is important that the
participants understand the context of the task in order to make such judgments.
Detailed instruction and training exercises with feedback are common techniques
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for ensuring that participants have a common understanding of the tasks to be
performed. It is also important that the study design avoid the participants’ biases:
their tendency to assume that the recommendations are correct, or their wish to
provide the answers that they assume are desired by the experimenters. Ideally,
the experimenters should avoid giving any hint of their own opinions and avoid
indicating whether the RSSE being studied is their own. When the definition of
correctness being used is subjective, the human participants will tend to differ in
their opinions. Often, the majority opinion is interpreted to be the expected recom-
mendation (particularly for categorical data); other options include using the average
(for numerical data) or allowing multiple possible expected recommendations. But
when participants’ opinions differ, there exists a threat to validity of the results: it
may be that the experimenters failed to instruct the participants sufficiently, or that
the task is too subjective. Minor variations in opinions are often ignored without
serious problems. But even when participants’ opinions agree, there is no guarantee
that no threat to validity exists; it could be that all the participants share the same
bias, and so a systematic error exists in the experiment. In either case, it is best
practice to be explicit that the threat exists.

Attempting to estimate the expected recommendation on the basis of other
automated approaches (e.g., other RSSEs) is fraught with danger. First, if based
on published results of the other approaches’ application to the same data, there is a
strong chance that the current RSSE will have been developed with the knowledge
of those results—it has been overfitted to this data. Second, triangulation of other
RSSEs’ recommendations is no guarantee of the correctness of those other RSSEs
nor of their “averaged” results; a researcher will be biased in evaluating novel
recommendations not in the union of the recommendations from the other RSSEs
(see previous paragraph). As argued in the literature [3,7], although determining the
ground truth for expected recommendations may be costly, reference to the ground
truth is the only way that an evaluation of quality can approach a lack of bias.

Real Data

For many RSSEs, the researcher can take advantage of some sort of real-world data
in producing the set of queries and/or the simulation environment. For example,
a repository of open-source programs can serve either to produce queries that ask
about source constructs or as the simulated workspace from which the RSSE will
draw its knowledge. If a reasonable argument can be made that the data thus used is
representative, or at least not a bad representation of other inputs (because it is not
too trivial, too large, or too biased in some way), such real data can often avoid the
high costs and questionable validity of constructing that data artificially.

For some RSSEs, a repository of data is available that contains both examples
of real queries and the corresponding examples of expected recommendations; that
is, the repository D consists of pairs di D .qi ; ei / of queries qi and corresponding
expected recommendations ei . (Note that the generality of these extracted examples
is dependent on the representativeness of the source of the data, too.) If the RSSE
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need not draw upon a workspace or history, each query qi from the repository can
be posited to the RSSE, and its actual recommendation ai can be compared against
the expected recommendation ei . If the RSSE does need to draw upon a workspace
or history, it is important to separate the data used for querying from the data used
to form the workspace or history—otherwise, the RSSE would already have access
to the expected answer for that query, which will generally not be a representative
simulation situation. The typical approach to this process divides the real data into
a training set and an evaluation set. When this process is repeated with k different
partitions (often chosen at random) and measures of quality are averaged over each,
it is called a k-fold cross-validation [22]. In many RSSE situations, a truly random
partition of the data cannot be chosen, but instead all data before a given point (for
example, a particular timestamp) are used as the training set, and the remaining k

data items are used for the evaluation set; this is called k-tail evaluation [21].
It is possible to draw both the queries and the simulation environment’s data

from the same data items, but this is necessarily a tricky proposition. Given a data
item ei 2 D0 that will ultimately serve as an expected recommendation, one can
construct its corresponding query qi by extracting a subset of the information from
ei . If that set of information is too perfect, this will not be a fair evaluation. Thus,
the researcher must define a transformation T W D0 ! Q that will obfuscate the
original identity of ei from the RSSE. For example, elements can be removed from
the set of extracted information, elements can be added to it, or elements can be
modified to hide their nature. The details of fair and appropriate transformations
depend heavily upon the application context, the design of the RSSE, and the
research questions being addressed. A researcher can expect to have difficulty
convincing reviewers that the chosen transformation is not biased.

Evaluating the Objective Aspect of Quality

Researchers are often interested in the objective quality of the recommendations
produced by an RSSE. As discussed above, a careful choice of the inputs (both
queries and simulation environment) is important to obtain meaningful results, and
availability of the expected recommendations is needed for the sake of evaluating
the quality. But in the absence of perfect agreement or perfect disagreement
between the actual and expected recommendations, one needs a way to assess the
quality. This is often done with measures borrowed from the field of information
retrieval, but several aspects of their use is important to note: (a) there are many
such measures available with differing strengths and weaknesses; (b) summarizing
a set of observations of agreements/disagreements between actual and expected
recommendations necessarily eliminates information—the fewer in quantity that
the resulting summary measurements are, the more information that has been
lost; (c) the measurements are correct only for the specific inputs and outputs for
the RSSE, and these will generalize to other situations only if the inputs were
representative of those other situations; and thus (d) comparing two RSSEs requires



310 R.J. Walker and R. Holmes

that the same measures be used on each, and that they be collected in identical
situations.

A useful notion in evaluating quality is the confusion matrix, shown below:

Expected
Yes No

Actual Yes TP FP
No FN TN

For any given item, the two dimensions represent what the expected recommenda-
tion is (either “Yes,” it is in the set of interest, or “No,” it is not) and what the actual
recommendation from a given RSSE and simulation environment was. Where the
expected and actual recommendations agree, we have a true recommendation from
the RSSE—either a true positive (TP) or true negative (TN); in case of disagreement,
we have a false recommendation from the RSSE—either false positive (FP) or
false negative (FN). Typical RSSEs will provide multiple recommendations in a
given situation, so each recommendation in the set can then be classified within a
confusion matrix; this results in a four-valued characterization of the quality of that
recommendation.

Often, people use a characterization of quality with fewer values, in which the
confusion matrix is reduced to other measures [34]—for example, the precision and
recall, or just the F-measure (the harmonic mean of the precision and recall). To
summarize the overall quality of recommendations from a set of trials, one can
either populate a single confusion matrix (called microevaluation) or use a means
of summarizing the individual quality measures [30] (called macroevaluation): for
example, a simple approach is to take the mean over the individual measures.

One can introduce schemes to weight certain cells in the confusion matrix,
allowing us to account for contexts in which, say, false positives are problematic.
Such a scheme ought to possess some a priori justification, such as empiri-
cal knowledge of the application context, in order to achieve construct validity
[10, 20].

Variations on the standard idea of the confusion matrix are possible. For
example, one can use matrices with higher dimensionality in order to simultaneously
compare multiple RSSEs with expected recommendations. One can allow more
than two outcomes: some RSSEs are explicit about recommending to do something,
recommending not to do something, or making no recommendation [e.g., 15]. One
can permit the confusion matrix cells to represent fuzzy sets: the probable count
of cases that fall within a cell. For example, recommendations often come with
confidence values attached to them that can be interpreted as the probability that the
recommendation is right. Each cell of the confusion matrix would then be a sum of
the probabilities of the recommendations that fall therein.

In Chap. 10, Avazpour et al. [1] expand on the notion of quality, exploring a
variety of other measures.
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12.3 Experience with Simulation to Evaluate RSSEs

We proceed to examine four papers from the literature on RSSEs that have applied
simulation for the sake of evaluation. These four papers use simulation in different
problem contexts and in different ways; common strengths and weaknesses of
simulation for evaluation can be seen from these. Section 12.3.1 examines eROSE
(originally called ROSE) [37]; its evaluation solely involved simulation, derived
from data collected in industrial version control systems. Section 12.3.2 examines
Strathcona [15]; its evaluation used simulation only to generalize the results
from its formal experiments. Section 12.3.3 examines GilliganCSuade [12]; its
evaluation made heavy use of simulation, derived from data previously collected
during a formal experiment. Section 12.3.4 examines an unnamed approach for
recommending development environment commands [23]; its design started from
a simulation, derived from data collected from actual industrial use of an IDE.
It is particularly interesting as it is a rare case in which the RSSE itself was
simulated.

Only enough detail is provided to describe the application problem addressed and
the solution pursued in order to contextualize the use of simulation in the evaluation
of the research. In addition, each subsection attempts to emphasize the evaluation
problem that the research attempted to address through simulation, details of the
simulation procedure followed, and threats to the validity of the results as reported
by the authors of each paper.

12.3.1 Recommending Programmatic Entities to Change:
eROSE

Real software systems tend to be large and complex. As a result, developers can
have trouble recognizing dependencies between different parts of a system: in some
cases, they fail to see explicit dependencies due to excess visual noise from other
code; in other cases, the dependencies are too subtle to easily detect. As a result,
when the developer modifies one part of their system, they are liable to overlook
other parts that should also be changed. Automated analyses of the control- and
data-flow within the system can help in some cases, but undecidability can limit the
effectiveness of such analyses.

The Recommendation System

Instead of analyzing the structure or runtime of the program to look for depen-
dencies, past human experience can be leveraged as recorded in a version control
system. By detecting that two (or more) entities have tended to change together in
the past, the hypothesis is that they are likely to change together again in the future.
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Thus, in detecting the fact that a developer has modified one or more entities in the
program, recommendations for other entities to change can also be made. This is
the premise of the eROSE tool [37].

eROSE mines the history to locate commits: sets of changes simultaneously
submitted, where a change consists of a change type and an entity. Commits
must be inferred, particularly for repositories using CVS (which versions only
individual files, and so groups of files simultaneously submitted can be detected only
indirectly). Furthermore, entities are considered the same (and hence two versions
of the same entity) if and only if their names (or signatures, for methods) and the
names of their structural ancestors are identical. The presence of two (or more)
changes occurring frequently enough together leads eROSE to infer a rule that a
change to one entity likely ought to be accompanied with a change to that (or
those) other entities. CVS supports branching to allow independent development
paths of different variants of a system; in some cases, changes within a branch are
merged back into the main trunk, resulting in apparent commits involving very large
numbers of entities. eROSE heuristically ignores commits that involve too many
entities, in order to avoid considering merges.

In general eROSE takes a set of changed entities as the query from the devel-
oper’s IDE, mines for rules involving those entities, and makes recommendations
about other entities to investigate. For each recommendation it indicates two
measures of relevance: the confidence, representing the frequency with which the
rule has applied previously for equivalent queries, and the support count, indicating
how many cases have gone into constructing the rule.

The Evaluation Problem

eROSE operates by finding other entities to recommend once the developer has
made a change to a system. If real developers were provided with eROSE while they
performed change tasks, very little empirical data would be collected relative to the
large amount of time required to conduct the experiments. Furthermore, eROSE has
many aspects that could be and were evaluated, including: the length of history to be
analyzed; the kind of scenario in which it is being applied; the kinds of changes to
be analyzed from history; the minimum thresholds of confidence and support count
at which to make a recommendation; and the specific system to which it is being
applied. Simulation is a promising methodology to apply here in order to assess a
wide variety of situations at relatively low cost.

How Simulation Was Used

A set of industrial software systems, each with an available change history, were
selected. The general simulation procedure that was used followed four steps: (1) a
time-limited portion of the history was designated as the training set to be mined by
eROSE (the training set formed the simulation environment V ); (2) the remainder
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of the history was used to collect a set of commits T ; (3) each commit t 2 T

was partitioned into a query q and an expected recommendation e; and (4) eROSE
was given each query, and the actual recommendation was compared against the
expected recommendation.

Several variations on this general procedure were followed. In particular, the
manner of partitioning the commits into queries and expected recommendations
was varied according to three conjectured usage scenarios.

1. Navigation involved the simulated developer making a single change and
recommending to them a set of other changes. For each commit ti , jti j distinct
queries qj were formed such that jqj j D 1.

2. Error prevention involved the simulated developer making a set of changes but
missing one. Again, jti j distinct queries were formed, but each one contained the
entirety of the commit except for one change; hence, each qj D ti � fej g for
some unique ej .

3. Closure involved checking that eROSE would not recommend additional changes
when the whole commit was used as the query. This involved one query for each
commit, for which ei D ;.

The general simulation procedure was then followed for several cases.

• The effects, on the quality of eROSE’s results, of selecting thresholds for
confidence and support count were explored for each of the usage scenarios.
For each scenario, different levels were selected representing the appropriate
trade-off between precise recommendations (few wrong recommendations) and
complete recommendations (few missing, correct recommendations). This can
be seen as a configuration phase.

• With the preferred settings for a given usage scenario in place, the quality of
eROSE’s results was then evaluated for that scenario.

• The effects of the level of granularity of the entities being analyzed and reported
were considered. The configurations from the previous item were repeated, but
for which the entities were considered only in terms of files, rather than individual
functions or variables. The quality of eROSE’s results was then evaluated and
compared against those from the previous item.

• The effects of restricting changes to consider only alteration (“maintenance”)
events, as opposed to addition or deletion of entities, were considered. Two
conditions were compared: where only maintenance events were considered,
and where all change events were considered. The navigation scenario with its
preferred configuration was again used to instantiate the general procedure.

• The effects of differentiating the kinds of change events, as opposed to treating
them all as generic change events, were considered. The configuration from the
previous item, in which all change events were considered was used again; this
time, two conditions varied this configuration: whether the kinds of change events
were differentiated or not.

• The effects of the duration of the project’s history were considered on the quality
of the recommendations, both in terms of looking at the intervals from the project
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start until a set of specific moments and in terms of looking at the intervals of a
specific length prior to a set of specific moments. This investigation was restricted
to two projects.

Reported Threats to Validity

Zimmermann et al. [37] report four possible threats to validity in their work on
eROSE. (1) More than 100,000 commits on eight large open-source systems were
studied. Although these systems differ in terms of domain (and likely also in terms
of development processes, design issues, etc.), the results may not be representative
of all systems. This issue plagues much research in software engineering, regardless
of methodology applied or problem context investigated. (2) Transactions do not
record ordering information about individual changes. Zimmermann et al. express
concern that different frequencies for specific orderings of changes could affect
results for the navigation and error prevention usage scenarios. (3) Transactions
are not assessed for their quality. Any commit that is not filtered out by the
branch-merging heuristic is used by eROSE. This is potentially problematic since
developers sometimes make bad decisions, and so the expected recommendations
extracted from the history would differ from the true expected recommendations.
But since bad decisions will make their way into the version control system far
less frequently than good decisions, the effect on the expected recommendations
is likely small. (4) There is a difference between a recommendation being correct
and it being useful. Assessing the usefulness of recommendations would require a
different methodology to be applied.

12.3.2 Recommending Usage Examples for an API:
Strathcona

Developers frequently make use of libraries and frameworks to create software
applications. Libraries and frameworks provide application programming interfaces
(APIs) specifically for this purpose. For nontrivial cases, understanding how to
correctly utilize an API can be difficult: particular subtypes must be provided,
particular objects must be created, and particular methods must be called in
particular orders. Examples are often used by developers to understand usage
scenarios for APIs, but this requires (a) that the examples exist and (b) that the
developer know how to locate the appropriate example for their needs.
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The Recommendation System

To overcome these weaknesses, a recommendation system can be created that allows
the developer to specify the kind of example of interest. Many forms of specification
are possible, but few are developer-centric, placing a high burden on the developer
to be precise and accurate. Instead, the fact that the developer is specifically trying
to interact with the API means that they will have a partial implementation of
what interests them, a skeleton. This skeleton may not even compile, but hopefully
describes certain details of the interaction that matter to the developer. Furthermore,
for many APIs, source code already exists that uses it in some form. By extracting
information from the skeleton and looking for existing source code that also contains
(some of) the same information, we can hope to provide meaningful examples to the
developer.

This is the basic idea behind the Strathcona example recommendation sys-
tem [15]. Strathcona utilizes only the structural facts it locates in the skeleton (the
developer’s class containing the skeleton, plus the skeleton’s supertypes; types used
in the skeleton; methods called), but this is often enough to locate even uncommon
examples. Strathcona was configured to weigh the importance of particular facts;
these heuristics were determined over time with informal experimentation.

The Evaluation Problem

Many aspects of Strathcona could be and were evaluated. For example, user studies
were conducted to determine whether developers would be able to interpret and
utilize the recommended examples. The generalizability of these studies was of
concern: they were expensive and focused on a small set of tasks that (while of
differing levels of complexity) were not definable as representative of all possible
tasks. In particular, to reduce variability between subjects, skeletons were provided
to the participants.

How Simulation Was Used

In order to generalize from these user studies, a simulation was conducted to
evaluate Strathcona’s ability to return appropriate examples given varying skeletons.

The general simulation procedure consisted of four steps: (1) code fragments of
between 10 and 20 lines in length were selected at random from the repository that
Strathcona was using (these were the expected recommendations); (2) the set of
structural facts used by Strathcona were extracted from the selected code fragment
(with references eliminated to entities that would easily identify examples, such as
private methods); (3) subsets of these filtered structural facts were selected to form
queries; and (4) it was recorded whether the Strathcona server was able to locate the
target answer amongst the top ten matches.
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The general procedure was followed in two variations: (1) all subsets of the
structural facts were used, even when these were clearly generic (e.g., calls to
methods on String) and (2) the structural facts were restricted to eliminate those
that were deemed generic, then all subsets of the restricted structural facts were
used. The purpose of the second variation was to determine how many important
facts needed to be known by a developer in order to locate the target answer.

A graph was provided for each of the two variations, in which the number of
facts in the query was plotted against the occurrence rate of the target answer, for
each of the (four) randomly selected code fragments.

Reported Threats to Validity

Although the simulation part of the evaluation was conducted by Holmes et al.
specifically to address threats to validity arising in other parts of their evaluation,
the simulation itself possessed three reported threats to validity. (1) It is unknown
if the queries (which are the essence of what is extracted from the skeletons)
that are successful in actually recommending the expected recommendation are
representative of the queries that a developer would form in practice. (2) The
examples selected for the simulation all contained slightly fewer than the average
number of structural facts. It is unknown if this biased the results in a serious way.
(3) The simulation focused on the APIs provided by the Eclipse IDE. Although the
paper describes informal experience with other APIs, it is possible that the results
are not representative of general APIs.

12.3.3 Recommending Dependency Treatments During Reuse:
GilliganCSuade

While software reuse has long been pursued for its potential benefits for productivity
and quality, traditional approaches require that the needed form of reuse of
functionality be predicted ahead of time and be explicitly designed for. When
unpredicted reuse scenarios occur, developers will often pursue a pragmatic process
of reuse, involving copying and modifying the source code that provides their
needed functionality.

During such a task, the developer attempts to balance the desire to reuse as much
code as possible that implements the desired functionality, with the desire to avoid
reusing as much irrelevant code as possible. A pragmatic reuse task involves the
developer navigating the source code for potential reuse, following dependencies
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between elements, and considering the cost of eliminating each element versus the
(future) cost of retaining each element. The Gilligan tool [14] allows the developer
to record their decisions about whether to retain or eliminate elements while
investigating the functionality to be reused; the result is a plan about the pragmatic
reuse task that can be semiautomatically enacted at any point, and atomically undone
if the results are unsatisfactory, to be revised when necessary.

The process of creating a pragmatic-reuse plan is an iterative one in which the
goal is to find the ideal dependencies at which to “cut away” unwanted functionality
while minimizing the effort required to repair or replace the resulting dangling
references. This is a complex decision process hampered by four factors: cutting a
given dependency may eliminate relevant functionality; cutting a given dependency
may incur high costs to repair the resulting dangling reference; not cutting a
given dependency may fail to eliminate irrelevant functionality; and not cutting a
given dependency may force us to cut a dependency in an even worse situation.
Analyzing the possibilities requires both local and nonlocal reasoning to determine
good dependencies at which to cut. Gilligan does not directly aid in making these
decisions, but only in recording them and analyzing whether the overall plan is
complete.

The Recommendation System

Developers are generally good at local reasoning about repairing dangling refer-
ences, and low-cost analyses are unlikely to improve upon the manual approach.
In contrast, nonlocal reasoning on the dependency graph is much more difficult as
standard tools provide at most localized views of this information. An opportunity
exists for a recommendation system that draws on knowledge of transitive depen-
dencies and a model of cost and relevance to suggest where good or bad cuts could
be made. This is the central idea of the GilliganCSuade tool [12].

GilliganCSuade takes a partial pragmatic-reuse plan and the dependency graph
of the system from which functionality is to be reused; it makes recommendations
to cut dependencies (reject the depended upon entity) or not to cut dependencies
(accept the depended upon entity). For a given depended upon entity, it may make
no recommendation about its treatment. The recommendations are revised as the
developer makes additional decisions or revises previous decisions.

These recommendations are based on two heuristic measures for each entity: its
structural relevance [25] and its reuse cost. The structural relevance (as defined by
the Suade tool [25]) is based on heuristics that attempt to characterize the local
shape of the dependency graph; dependencies from elements that possess fewer
dependencies are each deemed more relevant, and dependencies back to entities
already marked as being reused are also deemed more relevant. The reuse cost is
based on the number of descendants of a given entity in the dependency graph,
weighted by the length of the shortest path to each of them.
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The Evaluation Problem

Human participant studies involving the performance of pragmatic reuse tasks
are expensive to design and run, as the tasks cannot be trivial if they are to be
meaningful. A set of such experiments had been conducted previously [14] during
which interaction data from developers’ actions with Gilligan were recorded. Rather
than repeat such actual experiments again, it was desired to make use of the recorded
data. A recommendation system for these decisions had been specifically requested
by the study participants to enhance the usefulness of Gilligan.

How Simulation Was Used

Two simulation phases were performed. In the first phase, each experimental
session was replayed by executing the developer’s decisions in chronological
order, in order to reconstruct the partial pragmatic-reuse plans at each moment.
The recommendations that would have been displayed by GilliganCSuade were
computed for each instant at which a decision was actually made.

The sessions for which the data was reused ultimately resulted in successful
pragmatic-reuse plans; “correct” decisions were deemed to be those for which
at least 75 % of the developers agreed, and these were treated as the expected
recommendation in each situation. Each actual recommendation was thus compared
against the expected recommendation and the developer’s immediate decision,
which they sometimes changed (even multiple times) later. The quality of the
recommendations was reported in terms of agreement or disagreement with the
expected recommendations; the presence of the cases where no recommendation
was made inhibited the use of standard quality measures.

The second simulation phase was performed because the authors perceived that
the behavior of an actual developer in performing a pragmatic reuse task could be
quite different in the presence of the RSSE: the results of the first simulation phase
might have had little external validity. The second phase thus involved one of the
authors (Holmes) using GilliganCSuade to repeat the experimental tasks to see how
it would affect his decision behavior and whether the tasks would still be successful.

Holmes spent little effort confirming cases with recommendations and never
disagreed with these, but focused carefully on the (minority of) cases where no
recommendation was forthcoming. The result was successful completion of both
tasks according to the criteria of the original human-participant experiment, but at
the cost of a small expansion of the code having been reused.

Reported Threats to Validity

Holmes et al. [12] explained that their rationale for conducting the second phase
of the simulation was the concern that the presence of the recommendation system
could have affected the developer actions enough to have invalidated the use of
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the recorded data. Nevertheless, the second phase of the simulation involved only
one author following a largely mechanical procedure in order to gain confidence
that the results were promising. This involved a small set of tasks that may not
have been representative of all tasks, by a “participant” who possessed a biased
perspective.

12.3.4 Recommending Development Environment Commands

IDEs have grown increasingly complex. With their increased usage and increased
ease of extension, a plethora of tools have been added to them. While the existence
of the right tool for a given task is of benefit to the developer performing that task,
that benefit can be realized only if the developer is aware of the existence of the
tool, of how the tool can be activated, and of how to use the tool. At some point,
tools become hard to find within an IDE because of their large numbers: this is the
proverbial “finding a needle in a haystack.” If the developer knows that the tool
exists, simple navigation strategies like searching and browsing will likely suffice to
find it. But if the developer is unaware that a tool exists, that a better tool exists than
the one they are using, or that a simpler command exists for activating that tool, they
will not even know to perform a search or browse.

The Recommendation System

When a developer learns how to make use of a tool, their initial attempts can be
awkward and inefficient; upon discovering a more effective approach, they abandon
their original style of usage for the one that they see as better. This gives rise
to a detectable pattern over time. Patterns of interaction by the current developer
can be compared to such patterns from other developers. If those other developers
eventually abandoned a style of usage that the current developer is also following,
the improved style of usage adopted by those others can be recommended to the
current developer. This is the premise of the work of Murphy-Hill et al. [23].
Their proposed recommendation system is proactive: it observes the developer’s
interactions with an IDE and makes recommendations when it can.

The Evaluation Problem

Murphy-Hill et al. were in possession of a large repository of data concerning
developers’ interactions with an IDE. Their problem was to decide on an algorithm
(out of eight possibilities postulated) that would most effectively leverage this data
to recommend novel commands to developers and, ultimately, to determine whether
such a recommendation system would be useful in practice.
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How Simulation Was Used

Two simulations were performed. The initial phase involved an automated sim-
ulation in which k-tail evaluation (see Sect. 12.2.2) over the data repository was
performed. The second phase involved a human participant-based evaluation of the
usefulness of a set of recommendations; this also was essentially a simulation. Both
simulations focused on commands in the Eclipse IDE (e.g., commands involving the
use of CVS; commands involving the editing and refactoring of Java source code).

For the automated simulation, the general procedure was as follows. The data
repository was factored into interaction histories for individual developers. For
a given value of k, the last k commands discovered by each developer was
determined, by detecting the first occurrence of each command in the interaction
history for a given developer. (Developers without k command discovery events
were immediately eliminated from consideration.) The full interaction history for
a developer prior to the first of the k command-discovery events formed the
simulated history (i.e., training set) for the recommendation system. The expected
recommendations would then be the k commands themselves. The recommendation
system was configured in turn with each of the postulated algorithms. The authors
chose to suppress cases where one or more of the algorithms were unable to deliver
recommendations, for example, due to insufficient history in the training set.

Three variations on this generic procedure were followed. The standard variation
is as described above; it assumes that the first use of a given command led to
the developer deeming the command to be useful. Examination of the interaction
histories indicated that, in some cases, the command was not repeated again, and so
the assumption of usefulness was likely not correct. This led to two other variations:
(1) k-tail multi-use, in which commands that are not repeated are ignored and do
not contribute to the k commands sought and (2) k-tail multi-session, in which
commands that are not repeated in different development sessions are ignored and
do not contribute to the k commands sought. (The multi-session variation is strictly
more conservative than the multiuse variation.)

For the simulation involving human participants, a set of recommendations was
generated from the dataset by each algorithm and for each participant. Two pop-
ulations of participants were sampled: experts and novices. Each recommendation
was presented verbally to a participant who was asked to rate the novelty of the
command and to explain the rationale for this rating.

Reported Threats to Validity

Murphy-Hill et al. [23] report one key threat to validity for the automated simulation:
the inability to determine whether the recommendations were actually useful,
since the expected recommendations were constructed by inferring behaviors in
the previously recorded interaction traces. For the simulation involving human
participants, they report one other key threat: the fact that the recommendations
were delivered to participants by a human experimenter could have influenced the
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participant to be more willing to accept them; an automated RSSE would likely find
more resistance from its users.

12.4 Lessons Learned

Every nontrivial empirical study necessarily has some weaknesses: the space to be
explored is effectively infinite, while a study must be finite. Nevertheless, each of
the studies described in the previous section points to issues about which we need
to worry and strategies that we can apply to address these. We discuss here four
lessons we can learn from these studies.

12.4.1 Triangulation

One convenient but misguided interpretation of the papers described in the previous
section would be that simulations suffice for evaluation, and that through the use
of simulation, one can avoid user studies altogether. But simulations can only be as
good as the model, assumptions, and data that go into them. While being careful in
designing and running a simulation can go a long way towards the validity of its
results, this is not enough to ensure that some issue has not been overlooked.

Every empirical methodology has inherent strengths and weaknesses; this is
equally true of simulation. The strengths can be eroded by a poor study design,
and the weaknesses can be mitigated in some circumstances. Triangulation is an
approach in which multiple evaluations are conducted, each using different methods
and/or on different data sources in order to improve the generalizability of the
findings. When the threats to validity of the individual evaluations differ and the
results support the same conclusion, the threats are mitigated overall.

In the works on Strathcona, GilliganCSuade, and the approach of Murphy-Hill,
we see that simulation was used in combination with other studies for the sake of
triangulation. Sometimes simulation was used to mitigate the threats accrued from
other evaluations (in the case of Strathcona); sometimes simulation was used as the
first step in collecting evidence before a human-participant study was conducted (in
the other two cases).

In the work on eROSE, triangulation consisted of repeating the same kind of
study on multiple software systems and performing different kinds of study to
evaluate different aspects of the approach. Zimmermann et al. point out that their
methodology was unable to address the actual usefulness of the recommendations,
and further, that their study could be affected by bad developer decisions recorded in
history. The purpose of their study was to examine how often eROSE could produce
correct recommendations; there is no obvious alternative means to obtain a set of
expected recommendations for simulation purposes. Further triangulation involving



322 R.J. Walker and R. Holmes

user studies could help to mitigate these threats, but the contribution of their work
was already large, so it is not surprising that this last step was not taken.

It would be wrong to think that the authors of the work on eROSE chose the
wrong path for triangulation. In the other three papers, the overall study was smaller
and less thorough, sometimes necessitated by the available data source from which
to extract expected recommendations. In the end, it is easy to say, “they should
have done more studies”; it is much harder to judge when this demand is excessive.
Further studies beget further studies; such is the nature of science. We all have
limited resources to expend; how best to make use of those resources depends on
our goals and how important the answers are. As an area matures, it is natural for
reviewers to expect stronger results.

12.4.2 Quality of Real Data

The availability of real-world data with which to evaluate or populate a simulation
is an important factor in pursuing a simulation. As such, it is natural to believe
that whatever real-world data one has in possession will be good enough. Much of
science revolves around this fact: all real data is imperfect.

Most data that is used in evaluating or driving a simulation has been automati-
cally recorded by some program. All programs contain bugs. Any useful program
will execute on a real computer; real computers contain bugs. Humans make
mistakes, and this can affect the quality of any data that was written down by a
human.

All real data was recorded in a real setting. Particular people doing particular
things in a particular context and at a particular time. In using this data for other
purposes, one has to assume that differences between the original setting and the
setting being simulated are not significant, but this assumption can be false.

Sometimes the real data does not provide the information that is desired. In the
case of eROSE, Zimmermann et al. tell us that they would have liked to know
about the order in which entities were changed, but that this was not recorded and
no inference could be made to recover this information. There is no obvious way
to overcome this limitation, but it is also unclear that the limitation would be a
significant one, so following a more expensive route to collect this data might be
unwarranted.

In the case of the work by Murphy-Hill et al., the recommendations were not
received by the participants as well as had been predicted by the initial simulation.
The data quality could have been an issue. Murphy-Hill et al. assumed that evidence
of learning commands could be inferred from the available interaction traces; they
were surprised to find that some participants claimed that they were already using
recommended commands, as a recommendation should not happen in that situation.
Either the data was wrong, their tool contained bugs, or the participants’ claims were
false—all problematic cases to deal with. There is no obvious way that they could
have avoided this issue a priori. Perhaps with further study, the nature of the issue
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will be discovered as well as how it can be avoided. Another potential issue was that
there could have been a time gap between when the trace data was recorded, and
when the recommendations were made; in this time gap, the developers could have
discovered the command and started to use it. Ensuring that the data being leveraged
is very fresh and that it contains all of the participant’s interactions would be about
the only way to avoid this, but could be difficult to enforce in most studies.

12.4.3 The Importance and Dangers of Assumptions

We all make assumptions. Sometimes we are aware of our assumptions, and
sometimes we make them implicitly. Assumptions are absolutely needed when the
evidence available does not permit inference. But obviously, assumptions can be
wrong. When assumptions are explicit, one needs to decide whether it is worthwhile
to invest time into testing them. When assumptions are implicit, they cannot
be directly tested, so triangulation in general is the best means to discover any
consequences arising from false ones.

In the case of eROSE, assumptions were made about its usage scenarios. These
were necessary to drive the simulations; they were presumably derived from the
experience of Zimmermann et al. rather than actual data. While these assumptions
appear reasonable, there is no guarantee that they would really occur in practice
or that other important scenarios would not occur. This is an inherent weakness of
the methodology used that could only be mitigated through other methodologies or
other data sources containing direct evidence of such usage scenarios.

In the case of Strathcona, the sensitivity of the approach to the amount of input
facts was assessed through simulation. The simulation attempted to use as queries all
subsets of facts of a small set of examples. This implicitly assumes that these queries
are representative of what developers would typically provide. Perhaps a better
design would have been to non-exhaustively select subsets of facts from a larger
number of examples; this could have avoided the combinatorial explosion problems
arising from trying all subsets. Follow-on studies could have been performed on the
more problematic cases to see whether human participants could handle them well
enough.

12.4.4 Effects from the Presence of the RSSE

In most cases, the real-world data that a researcher uses in driving or assessing a
simulation was necessarily collected without the RSSE being present. The hope is
that the RSSE will not alter the essential decisions that were made, but perhaps
allow them to be made faster and with greater confidence.

In the case of GilliganCSuade, this assumption about the recorded data was
challenged. The second simulation phase found that the results from the tool seemed
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better than predicted by the initial simulation. The presence of the RSSE in the
decision process appeared to actually alter nontrivially the decisions made by the
“participant.” The effect at work could be that developers will make sub-optimal
decisions when a complex decision process is not well supported. Thus, the recorded
choices were not the “gold standard” that were assumed, but merely good enough
for the developers to have completed the task; the presence of GilliganCSuade
apparently improved the decision process. To determine whether this effect was real
or an artifact from a biased investigation would require follow-on study.

In the case of the work of Murphy-Hill et al., they point out the fact that their
simulation that involved human participants was not completely natural, as a human
was giving them the recommendations. Recommendations delivered by an RSSE
could be received with less trust, or be deemed annoying if they were delivered at
the wrong time. They suggest that social tagging of recommendations be supported
as a developer is more likely to pay attention to a recommendation seconded by a
trusted colleague.

12.5 Conclusion

Simulation is an important empirical technique used in many areas of science and
engineering. Simulation can serve to explore a complex system or to evaluate it.
Simulation involves the imitation of some part of a system, in order to avoid the
complexities, risks, or costs involved in directly evaluating the system.

We have specifically examined the use of simulation for the evaluation of RSSEs.
We have presented a general model of simulation for evaluation of RSSEs that
applies to a typical situation in which RSSEs are to be evaluated; this typical
situation is analogous to the standard setting of unit testing of software, with drivers
and stubs. Variations on this model were mentioned briefly, including the alternative
of simulating the RSSE itself to assess developer actions.

Four examples from the literature were described that involved simulation for
evaluation of RSSEs. Three of these involved the typical simulation scenario in
which the context of the RSSE was simulated to drive the actual RSSE. One of
them used the alternative simulation scenario of simulating the RSSE itself as well
as its simulation environment.

All empirical methodologies have strengths and weaknesses. A typical simula-
tion has the advantage that a much wider of range of behavior can be examined
than could be through user studies, at a lower cost, with greater control, and with
greater reproducibility. A typical simulation has the disadvantage that it involves
driving a model, which must be assumed to serve as a valid abstraction of the
system of interest; when this assumption fails to hold, the conclusions drawn from
the simulation may not be valid.

To mitigate this problem, simulations are often used in combination with other
forms of evaluation (i.e., in triangulation). Simulations are sometimes used to
generalize the results of human-participant studies. Simulations are commonly used
as a first step before more expensive, alternative methodologies are pursued.
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All the example RSSEs that we have described made use of real-world data
to drive their simulations. Real-world data has the advantage that it has not been
contrived, so it can be claimed to represent at least some aspect of the real
world. Unfortunately, real-world data does not eliminate the need to be cautious
in its application. Real-world data has to be collected and recorded and there is
no guarantee that this process is free of errors. The data may violate important
assumptions of the simulation, despite being “real.” The real-world context in which
the data was collected could be radically altered were the RSSE added to it, thereby
reducing the validity of the results of the simulation. Still, real-world data would
generally be more reliable than synthetic data, and thus is highly sought after. The
increasing availability of high-quality, real-world data needed to assess the quality of
recommendations will only serve to make simulation an even more feasible option
on the road ahead.

The future of simulation for evaluation of RSSEs looks bright. An interesting
possibility, hinted at in some of the studies described in this chapter, is to directly
simulate a limited range of behaviors of developers. From recorded traces of tool
interactions, one may be able to extract common behaviors and use these to model
the “representative developer” over an extended time. Time will tell if this is more
than a dream, but we believe that there is promise.

Overall, simulation is an exciting option with growing importance as an explo-
ration and evaluation technique for RSSEs.
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